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Overview of My Group’s Research 
n  Heterogeneous systems, accelerating bottlenecks 

n  Memory (and storage) systems 
q  Scalability, energy, latency, parallelism, performance 
q  Compute in/near memory 

n  Predictable performance, QoS 
 

n  Efficient interconnects 

n  Bioinformatics algorithms and architectures 

n  Acceleration of important applications, software/hardware 
co-design 
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Three Key Problems in Future Systems 

n  Memory system 
q  Many important existing and future applications are 

increasingly data intensive à require bandwidth and capacity 
q  Data storage and movement limits performance & efficiency 

n  Efficiency (performance and energy) à scalability 
q  Enables scalable systems à new applications 
q  Enables better user experience à new usage models 

 
n  Predictability and robustness 

q  Resource sharing and unreliable hardware causes QoS issues 
q  Predictable performance and QoS are first class constraints  
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Readings and Videos 

 
 
 
 



Mini Course: Multi-Core Architectures 

n  Lecture 1.1: Multi-Core System Design 
q  http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-

June-6-2013-lecture1-1-multicore-and-asymmetry-
afterlecture.pptx 

n  Lecture 1.2: Cache Design and Management 
q  http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-

June-7-2013-lecture1-2-cache-management-afterlecture.pptx 

n  Lecture 1.3: Interconnect Design and Management 
q  http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-

June-10-2013-lecture1-3-interconnects-afterlecture.pptx 
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Mini Course: Memory Systems 

n  Lecture 2.1: DRAM Basics and DRAM Scaling 
q  http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-

June-13-2013-lecture2-1-dram-basics-and-scaling-
afterlecture.pptx 

n  Lecture 2.2: Emerging Technologies and Hybrid Memories 
q  http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-

June-14-2013-lecture2-2-emerging-memory-afterlecture.pptx 

n  Lecture 2.3: Memory QoS and Predictable Performance  
q  http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-

June-17-2013-lecture2-3-memory-qos-afterlecture.pptx 
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Readings for Today 
n  Required – Symmetric and Asymmetric Multi-Core Systems 

q  Suleman et al., “Accelerating Critical Section Execution with Asymmetric 
Multi-Core Architectures,” ASPLOS 2009, IEEE Micro 2010.  

q  Suleman et al., “Data Marshaling for Multi-Core Architectures,” ISCA 2010, 
IEEE Micro 2011. 

q  Joao et al., “Bottleneck Identification and Scheduling for Multithreaded 
Applications,” ASPLOS 2012. 

q  Joao et al., “Utility-Based Acceleration of Multithreaded Applications on 
Asymmetric CMPs,” ISCA 2013. 

 

n  Recommended 
q  Amdahl, “Validity of the single processor approach to achieving large scale 

computing capabilities,” AFIPS 1967.  
q  Olukotun et al., “The Case for a Single-Chip Multiprocessor,” ASPLOS 1996. 
q  Mutlu et al., “Runahead Execution: An Alternative to Very Large Instruction 

Windows for Out-of-order Processors,” HPCA 2003, IEEE Micro 2003. 
q  Mutlu et al., “Techniques for Efficient Processing in Runahead Execution 

Engines,” ISCA 2005, IEEE Micro 2006. 
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Videos for Today 
n  Multiprocessors 

q  Basics:
http://www.youtube.com/watch?
v=7ozCK_Mgxfk&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=31 

q  Correctness and Coherence: 
http://www.youtube.com/watch?v=U-
VZKMgItDM&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=32 

q  Heterogeneous Multi-Core: 
http://www.youtube.com/watch?
v=r6r2NJxj3kI&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=34  

n  Runahead Execution 
q  http://www.youtube.com/watch?

v=z8YpjqXQJIA&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=28 
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Online Lectures and More Information 
n  Online Computer Architecture Lectures 

q  http://www.youtube.com/playlist?
list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ  

n  Online Computer Architecture Courses 
q  Intro: http://www.ece.cmu.edu/~ece447/s13/doku.php 
q  Advanced: http://www.ece.cmu.edu/~ece740/f11/doku.php  
q  Advanced: http://www.ece.cmu.edu/~ece742/doku.php  

 
n  Recent Research Papers 

q  http://users.ece.cmu.edu/~omutlu/projects.htm 
q  http://scholar.google.com/citations?

user=7XyGUGkAAAAJ&hl=en 
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Architecting and Exploiting 
Asymmetry in Multi-Core Architectures  

 
 
 
 



Warning 
n  This is an asymmetric talk 
n  But, we do not need to cover all of it… 

n  Component 1: A case for asymmetry everywhere 

n  Component 2: A deep dive into mechanisms to exploit 
asymmetry in processing cores 

n  Component 3: Asymmetry in memory controllers 

n  Asymmetry = heterogeneity 
q  A way to enable specialization/customization 
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The Setting 
n  Hardware resources are shared among many threads/apps 

in a many-core system 
q  Cores, caches, interconnects, memory, disks, power, lifetime, 

… 

n  Management of these resources is a very difficult task 
q  When optimizing parallel/multiprogrammed workloads 
q  Threads interact unpredictably/unfairly in shared resources 

n  Power/energy consumption is arguably the most valuable 
shared resource 
q  Main limiter to efficiency and performance 
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Shield the Programmer from Shared Resources 

n  Writing even sequential software is hard enough 
q  Optimizing code for a complex shared-resource parallel system 

will be a nightmare for most programmers 

n  Programmer should not worry about                   
(hardware) resource management 
q  What should be executed where with what resources 

n  Future computer architectures should be designed to 
q  Minimize programmer effort to optimize (parallel) programs 
q  Maximize runtime system’s effectiveness in automatic     

shared resource management 
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Shared Resource Management: Goals 

n  Future many-core systems should manage power and 
performance automatically across threads/applications 

n  Minimize energy/power consumption 
n  While satisfying performance/SLA requirements 

q  Provide predictability and Quality of Service 
n  Minimize programmer effort 

q  In creating optimized parallel programs 
 

n  Asymmetry and configurability in system resources essential 
to achieve these goals  
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Asymmetry Enables Customization 

n  Symmetric: One size fits all 
q  Energy and performance suboptimal for different phase behaviors 

n  Asymmetric: Enables tradeoffs and customization 
q  Processing requirements vary across applications and phases 
q  Execute code on best-fit resources (minimal energy, adequate perf.) 
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Thought Experiment: Asymmetry Everywhere 

n  Design each hardware resource with asymmetric, 
(re-)configurable, partitionable components 
q  Different power/performance/reliability characteristics 
q  To fit different computation/access/communication patterns 
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Thought Experiment: Asymmetry Everywhere 
 

n  Design the runtime system (HW & SW) to automatically choose 
the best-fit components for each phase 
q  Satisfy performance/SLA with minimal energy 
q  Dynamically stitch together the “best-fit” chip for each phase  
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Thought Experiment: Asymmetry Everywhere 
 

n  Morph software components to match asymmetric HW 
components  
q  Multiple versions for different resource characteristics 
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Many Research and Design Questions 
n  How to design asymmetric components? 

q  Fixed, partitionable, reconfigurable components? 
q  What types of asymmetry? Access patterns, technologies? 

n  What monitoring to perform cooperatively in HW/SW? 
q  Automatically discover phase/task requirements 

n  How to design feedback/control loop between components and 
runtime system software? 

n  How to design the runtime to automatically manage resources? 
q  Track task behavior, pick “best-fit” components for the entire workload 
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Talk Outline 
n  Problem and Motivation 
n  How Do We Get There: Examples 
n  Accelerated Critical Sections (ACS) 
n  Bottleneck Identification and Scheduling (BIS) 
n  Staged Execution and Data Marshaling 
n  Thread Cluster Memory Scheduling (if time permits) 
n  Ongoing/Future Work 
n  Conclusions 
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Exploiting Asymmetry: Simple Examples 
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n  Execute critical/serial sections on high-power, high-performance 
cores/resources [Suleman+ ASPLOS’09, ISCA’10, Top Picks’10’11, Joao+ ASPLOS’12] 

n  Programmer can write less optimized, but more likely correct programs  

Serial Parallel 



Exploiting Asymmetry: Simple Examples 
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n  Execute streaming “memory phases” on streaming-optimized 
cores and memory hierarchies 
n  More efficient and higher performance than general purpose hierarchy 

Streaming Random access 



Exploiting Asymmetry: Simple Examples 
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n  Partition memory controller and on-chip network bandwidth 
asymmetrically among threads [Kim+ HPCA 2010, MICRO 2010, Top Picks 
2011] [Nychis+ HotNets 2010] [Das+ MICRO 2009, ISCA 2010, Top Picks 2011] 
n  Higher performance and energy-efficiency than symmetric/free-for-all 

Latency sensitive 

Bandwidth sensitive 



Exploiting Asymmetry: Simple Examples 
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n  Have multiple different memory scheduling policies apply them to 
different sets of threads based on thread behavior [Kim+ MICRO 
2010, Top Picks 2011] [Ausavarungnirun, ISCA 2012] 
n  Higher performance and fairness than a homogeneous policy 

Memory intensive Compute intensive 



Exploiting Asymmetry: Simple Examples 
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n  Build main memory with different technologies with different 
characteristics (energy, latency, wear, bandwidth) [Meza+ IEEE CAL’12] 

n  Map pages/applications to the best-fit memory resource 
n  Higher performance and energy-efficiency than single-level memory 

CPU 
DRAM
Ctrl 

Fast, durable 
Small,  

leaky, volatile,  
high-cost 

Large, non-volatile, low-cost 
Slow, wears out, high active energy 

PCM 
Ctrl DRAM Phase Change Memory (or Tech. X) 

DRAM Phase Change Memory 



Talk Outline 
n  Problem and Motivation 
n  How Do We Get There: Examples 
n  Accelerated Critical Sections (ACS) 
n  Bottleneck Identification and Scheduling (BIS) 
n  Staged Execution and Data Marshaling 
n  Thread Cluster Memory Scheduling (if time permits) 
n  Ongoing/Future Work 
n  Conclusions 
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Serialized Code Sections in Parallel Applications 
n  Multithreaded applications: 

q  Programs split into threads 

n  Threads execute concurrently on multiple cores 

n  Many parallel programs cannot be parallelized completely 

n  Serialized code sections: 
q  Reduce performance 
q  Limit scalability 
q  Waste energy 
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Causes of Serialized Code Sections 
n  Sequential portions (Amdahl’s “serial part”) 
n  Critical sections 
n  Barriers 
n  Limiter stages in pipelined programs 
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Bottlenecks in Multithreaded Applications 
Definition: any code segment for which threads contend (i.e. wait) 
 

Examples: 
 

n  Amdahl’s serial portions 
q  Only one thread exists à on the critical path 

n  Critical sections 
q  Ensure mutual exclusion à likely to be on the critical path if contended 

n  Barriers 
q  Ensure all threads reach a point before continuing à the latest thread arriving 

is on the critical path 

n  Pipeline stages 
q  Different stages of a loop iteration may execute on different threads,  

slowest stage makes other stages wait à on the critical path 
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Critical Sections 
n  Threads are not allowed to update shared data concurrently 

q  For correctness (mutual exclusion principle) 

n  Accesses to shared data are encapsulated inside  
critical sections 

n  Only one thread can execute a critical section at  
a given time 
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Example from MySQL 
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Contention for Critical Sections 
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Contention for Critical Sections 
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0 

Critical 
Section 
Parallel 
Idle 

12 iterations, 33% instructions inside the critical section 
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Accelerating critical sections  
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Impact of Critical Sections on Scalability 
n  Contention for critical sections leads to serial execution 

(serialization) of threads in the parallel program portion 
n  Contention for critical sections increases with the number of 

threads and limits scalability 
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A Case for Asymmetry 
n  Execution time of sequential kernels, critical sections, and 

limiter stages must be short 

n  It is difficult for the programmer to shorten these 
serialized sections 
q  Insufficient domain-specific knowledge 
q  Variation in hardware platforms  
q  Limited resources 

n  Goal: A mechanism to shorten serial bottlenecks without 
requiring programmer effort 

n  Idea: Accelerate serialized code sections by shipping them 
to powerful cores in an asymmetric multi-core (ACMP) 
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ACMP 

 
 

n  Provide one large core and many small cores 
n  Execute parallel part on small cores for high throughput 
n  Accelerate serialized sections using the large core 

q  Baseline: Amdahl’s serial part accelerated [Morad+ CAL 2006, 
Suleman+, UT-TR 2007] 
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Conventional ACMP 
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On-chip 
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1.  P2 encounters a Critical Section 
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Accelerated Critical Sections (ACS) 

n  Accelerate Amdahl’s serial part and critical sections 
using the large core 
q  Suleman et al., “Accelerating Critical Section Execution with 

Asymmetric Multi-Core Architectures,” ASPLOS 2009, IEEE 
Micro Top Picks 2010.  
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Accelerated Critical Sections (ACS) 
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ACS Architecture Overview 
n  ISA extensions 

q  CSCALL  LOCK_ADDR, TARGET_PC 
q  CSRET   LOCK_ADDR 

n  Compiler/Library inserts CSCALL/CSRET 

n  On a CSCALL, the small core: 
q  Sends a CSCALL request to the large core 

n  Arguments: Lock address, Target PC, Stack Pointer, Core ID 
q  Stalls and waits for CSDONE 

n  Large Core 
q  Critical Section Request Buffer (CSRB) 
q  Executes the critical section and sends CSDONE to the requesting 

core 
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Accelerated Critical Sections (ACS) 

41 

A = compute() 
 
LOCK X 
      result = CS(A) 
UNLOCK X 
 
print result 
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CSDONE Response 
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Send X, TPC, 

STACK_PTR, CORE_ID 

PUSH A 
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…
 
…
 
…
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result  = CS(A) 
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POP result 
print result 

…
 
…
 
…
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… 
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… 

Waiting in 
Critical Section 
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False Serialization 
n  ACS can serialize independent critical sections 

n  Selective Acceleration of Critical Sections (SEL) 
q  Saturating counters to track false serialization 
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ACS Performance Tradeoffs 
n  Pluses 

+ Faster critical section execution 
+ Shared locks stay in one place: better lock locality 
+ Shared data stays in large core’s (large) caches: better shared 
data locality, less ping-ponging 
 

n  Minuses 
- Large core dedicated for critical sections: reduced parallel 
throughput 
- CSCALL and CSDONE control transfer overhead 
- Thread-private data needs to be transferred to large core: worse 
private data locality 
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ACS Performance Tradeoffs 
n  Fewer parallel threads vs. accelerated critical sections 

q  Accelerating critical sections offsets loss in throughput 
q  As the number of cores (threads) on chip increase: 

n  Fractional loss in parallel performance decreases 
n  Increased contention for critical sections  

makes acceleration more beneficial 

n  Overhead of CSCALL/CSDONE vs. better lock locality 
q  ACS avoids “ping-ponging” of locks among caches by keeping them at 

the large core 

n  More cache misses for private data vs. fewer misses 
for shared data 
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Cache Misses for Private Data 
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Private Data: 
NewSubProblems 
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The priority heap 
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ACS Performance Tradeoffs 
n  Fewer parallel threads vs. accelerated critical sections 

q  Accelerating critical sections offsets loss in throughput 
q  As the number of cores (threads) on chip increase: 

n  Fractional loss in parallel performance decreases 
n  Increased contention for critical sections  

makes acceleration more beneficial 

n  Overhead of CSCALL/CSDONE vs. better lock locality 
q  ACS avoids “ping-ponging” of locks among caches by keeping them at 

the large core 

n  More cache misses for private data vs. fewer misses 
for shared data 
q  Cache misses reduce if shared data > private data 
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ACS Comparison Points 

n  Conventional 
locking 
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Accelerated Critical Sections: Methodology 

n  Workloads: 12 critical section intensive applications 
q  Data mining kernels, sorting, database, web, networking 

 

n  Multi-core x86 simulator 
q  1 large and 28 small cores  
q  Aggressive stream prefetcher employed at each core 

n  Details: 
q  Large core: 2GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage 
q  Small core: 2GHz, in-order, 2-wide, 5-stage 
q  Private 32 KB L1, private 256KB L2, 8MB shared L3 
q  On-chip interconnect: Bi-directional ring, 5-cycle hop latency 
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ACS Performance 
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ACS Summary 
n  Critical sections reduce performance and limit scalability 

n  Accelerate critical sections by executing them on a powerful 
core 

n  ACS reduces average execution time by: 
q  34% compared to an equal-area SCMP 
q  23% compared to an equal-area ACMP 

n  ACS improves scalability of 7 of the 12 workloads 

n  Generalizing the idea: Accelerate all bottlenecks (“critical 
paths”) by executing them on a powerful core 
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Talk Outline 
n  Problem and Motivation 
n  How Do We Get There: Examples 
n  Accelerated Critical Sections (ACS) 
n  Bottleneck Identification and Scheduling (BIS) 
n  Staged Execution and Data Marshaling 
n  Thread Cluster Memory Scheduling (if time permits) 
n  Ongoing/Future Work 
n  Conclusions 
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BIS Summary 
n  Problem: Performance and scalability of multithreaded applications  

are limited by serializing bottlenecks 
q  different types: critical sections, barriers, slow pipeline stages 
q  importance (criticality) of a bottleneck can change over time 

n  Our Goal: Dynamically identify the most important bottlenecks and  
accelerate them 
q  How to identify the most critical bottlenecks 
q  How to efficiently accelerate them 

n  Solution: Bottleneck Identification and Scheduling (BIS) 
q  Software: annotate bottlenecks (BottleneckCall, BottleneckReturn) and 

implement waiting for bottlenecks with a special instruction (BottleneckWait) 
q  Hardware: identify bottlenecks that cause the most thread waiting and 

accelerate those bottlenecks on large cores of an asymmetric multi-core system 

n  Improves multithreaded application performance and scalability, 
outperforms previous work, and performance improves with more cores 
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Bottlenecks in Multithreaded Applications 
Definition: any code segment for which threads contend (i.e. wait) 
 

Examples: 
 

n  Amdahl’s serial portions 
q  Only one thread exists à on the critical path 

n  Critical sections 
q  Ensure mutual exclusion à likely to be on the critical path if contended 

n  Barriers 
q  Ensure all threads reach a point before continuing à the latest thread arriving 

is on the critical path 

n  Pipeline stages 
q  Different stages of a loop iteration may execute on different threads,  

slowest stage makes other stages wait à on the critical path 

54 



Observation: Limiting Bottlenecks Change Over Time 

A=full linked list; B=empty linked list 
repeat 

 Lock A 
  Traverse list A 
  Remove X from A 
 Unlock A 
 Compute on X 
 Lock B 
  Traverse list B 
  Insert X into B 
 Unlock B 

until A is empty 
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Lock A is limiter 
Lock B is limiter 

32 threads 



Limiting Bottlenecks Do Change on Real Applications 
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MySQL running Sysbench queries, 16 threads 



Previous Work on Bottleneck Acceleration 
n  Asymmetric CMP (ACMP) proposals [Annavaram+, ISCA’05]  

[Morad+, Comp. Arch. Letters’06] [Suleman+, Tech. Report’07] 
q  Accelerate only the Amdahl’s bottleneck 

n  Accelerated Critical Sections (ACS) [Suleman+, ASPLOS’09] 
q  Accelerate only critical sections 
q  Does not take into account importance of critical sections 

n  Feedback-Directed Pipelining (FDP) [Suleman+, PACT’10 and PhD thesis’11] 
q  Accelerate only stages with lowest throughput 
q  Slow to adapt to phase changes (software based library) 

No previous work can accelerate all three types of bottlenecks or  
quickly adapts to fine-grain changes in the importance of bottlenecks 

 

Our goal: general mechanism to identify performance-limiting bottlenecks of 
any type and accelerate them on an ACMP 
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Bottleneck Identification and Scheduling (BIS) 

n  Key insight: 
q  Thread waiting reduces parallelism and  

is likely to reduce performance 
q  Code causing the most thread waiting                             

à likely critical path 

n  Key idea: 
q  Dynamically identify bottlenecks that cause  

the most thread waiting 
q  Accelerate them (using powerful cores in an ACMP) 



1.  Annotate 
bottleneck code 

2.  Implement waiting 
     for bottlenecks 

1.  Measure thread  
waiting cycles (TWC) 
for each bottleneck 

2.  Accelerate bottleneck(s) 
with the highest TWC 

Binary containing  
 BIS instructions 

Compiler/Library/Programmer Hardware 
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Bottleneck Identification and Scheduling (BIS) 



   while cannot acquire lock 
    Wait loop for watch_addr 
   acquire lock 
   … 
   release lock 

 

Critical Sections: Code Modifications 

   … 
   BottleneckCall bid, targetPC 
   … 

targetPC:  while cannot acquire lock 
    Wait loop for watch_addr 
   acquire lock 
   … 
   release lock 
   BottleneckReturn bid 
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 BottleneckWait bid, watch_addr 

   … 
 
 
 
 
 

   … Used to keep track of 
waiting cycles 
Used to enable 

acceleration 
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Barriers: Code Modifications 
   … 
   BottleneckCall bid, targetPC 
   enter barrier 
   while not all threads in barrier 
    BottleneckWait bid, watch_addr 
   exit barrier 
   … 

targetPC:  code running for the barrier 
   … 
   BottleneckReturn bid 
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Pipeline Stages: Code Modifications 

   BottleneckCall bid, targetPC 
   … 

targetPC:  while not done 
    while empty queue 
     BottleneckWait prev_bid 
    dequeue work 
    do the work … 
    while full queue 
     BottleneckWait next_bid 
    enqueue next work 
   BottleneckReturn bid 

 



1.  Annotate 
bottleneck code 

2.  Implements waiting 
     for bottlenecks 

1.  Measure thread  
waiting cycles (TWC) 
for each bottleneck 

2.  Accelerate bottleneck(s) 
with the highest TWC 

Binary containing  
 BIS instructions 

Compiler/Library/Programmer Hardware 
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Bottleneck Identification and Scheduling (BIS) 



BIS: Hardware Overview 

n  Performance-limiting bottleneck identification and 
acceleration are independent tasks 

n  Acceleration can be accomplished in multiple ways 
q  Increasing core frequency/voltage 
q  Prioritization in shared resources [Ebrahimi+, MICRO’11] 
q  Migration to faster cores in an Asymmetric CMP 
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1.  Annotate 
bottleneck code 

2.  Implements waiting 
     for bottlenecks 

1.  Measure thread  
waiting cycles (TWC) 
for each bottleneck 

2.  Accelerate bottleneck(s) 
with the highest TWC 

Binary containing  
 BIS instructions 

Compiler/Library/Programmer Hardware 
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Bottleneck Identification and Scheduling (BIS) 



Determining Thread Waiting Cycles for Each Bottleneck 
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Small Core 1 Large Core 0 

Small Core 2 

Bottleneck 
Table (BT) 

… 

BottleneckWait x4500 

bid=x4500, waiters=1, twc = 0 bid=x4500, waiters=1, twc = 1 bid=x4500, waiters=1, twc = 2 

BottleneckWait x4500 

bid=x4500, waiters=2, twc = 5 bid=x4500, waiters=2, twc = 7 bid=x4500, waiters=2, twc = 9 bid=x4500, waiters=1, twc = 9 bid=x4500, waiters=1, twc = 10 bid=x4500, waiters=1, twc = 11 bid=x4500, waiters=0, twc = 11 bid=x4500, waiters=1, twc = 3 bid=x4500, waiters=1, twc = 4 bid=x4500, waiters=1, twc = 5 



1.  Annotate 
bottleneck code 

2.  Implements waiting 
     for bottlenecks 

1.  Measure thread  
waiting cycles (TWC) 
for each bottleneck 

2.  Accelerate bottleneck(s) 
with the highest TWC 

Binary containing  
 BIS instructions 

Compiler/Library/Programmer Hardware 
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Bottleneck Identification and Scheduling (BIS) 



Bottleneck Acceleration 
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Small Core 1 Large Core 0 

Small Core 2 

Bottleneck 
Table (BT) 

… 

Scheduling Buffer (SB) 
bid=x4700, pc, sp, core1 

Acceleration 
Index Table (AIT) 

BottleneckCall x4600 
Execute locally 

BottleneckCall x4700 

bid=x4700 , large core 0 

Execute remotely 

AIT 

bid=x4600, twc=100 

bid=x4700, twc=10000 

BottleneckReturn x4700 

bid=x4700 , large core 0 

bid=x4700, pc, sp, core1 

ß  twc < Threshold 

ß  twc > Threshold 

Execute locally Execute remotely 



BIS Mechanisms 
n  Basic mechanisms for BIS: 

q  Determining Thread Waiting Cycles  ü 
q  Accelerating Bottlenecks  ü 

n  Mechanisms to improve performance and generality of BIS: 
q  Dealing with false serialization 
q  Preemptive acceleration 
q  Support for multiple large cores 
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False Serialization and Starvation 

n  Observation: Bottlenecks are picked from Scheduling Buffer 
in Thread Waiting Cycles order 

n  Problem: An independent bottleneck that is ready to execute  
has to wait for another bottleneck that has higher thread 
waiting cycles à False serialization 

n  Starvation: Extreme false serialization 

n  Solution: Large core detects when a bottleneck is ready to 
execute in the Scheduling Buffer but it cannot à sends the 
bottleneck back to the small core 
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Preemptive Acceleration 

n  Observation: A bottleneck executing on a small core can 
become the bottleneck with the highest thread waiting cycles 

n  Problem: This bottleneck should really be accelerated (i.e., 
executed on the large core) 

n  Solution: The Bottleneck Table detects the situation and  
sends a preemption signal to the small core. Small core: 
q  saves register state on stack, ships the bottleneck to the large core 

n  Main acceleration mechanism for barriers and pipeline stages 
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Support for Multiple Large Cores 

n  Objective: to accelerate independent bottlenecks 
 
n  Each large core has its own Scheduling Buffer  

(shared by all of its SMT threads) 

n  Bottleneck Table assigns each bottleneck to  
a fixed large core context to 
q  preserve cache locality 
q  avoid busy waiting 

n  Preemptive acceleration extended to send multiple 
instances of a bottleneck to different large core contexts 
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Hardware Cost 
n  Main structures: 

q  Bottleneck Table (BT): global 32-entry associative cache, 
minimum-Thread-Waiting-Cycle replacement 

q  Scheduling Buffers (SB): one table per large core,  
as many entries as small cores 

q  Acceleration Index Tables (AIT): one 32-entry table 
per small core 

n  Off the critical path 

n  Total storage cost for 56-small-cores, 2-large-cores < 19 KB 
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BIS Performance Trade-offs 
n  Faster bottleneck execution vs. fewer parallel threads 

q  Acceleration offsets loss of parallel throughput with large core counts 
 
 
 

n  Better shared data locality vs. worse private data locality 
q  Shared data stays on large core (good) 
q  Private data migrates to large core (bad, but latency hidden with Data 

Marshaling [Suleman+, ISCA’10]) 

n  Benefit of acceleration vs. migration latency 
q  Migration latency usually hidden by waiting (good) 
q  Unless bottleneck not contended (bad, but likely not on critical path) 
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Methodology 

n  Workloads: 8 critical section intensive, 2 barrier intensive 
and 2 pipeline-parallel applications 
q  Data mining kernels, scientific, database, web, networking, specjbb 

n  Cycle-level multi-core x86 simulator 
q  8 to 64 small-core-equivalent area, 0 to 3 large cores, SMT 
q  1 large core is area-equivalent to 4 small cores 

n  Details: 
q  Large core: 4GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage 
q  Small core: 4GHz, in-order, 2-wide, 5-stage 
q  Private 32KB L1, private 256KB L2, shared 8MB L3 
q  On-chip interconnect: Bi-directional ring, 2-cycle hop latency 
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BIS Comparison Points (Area-Equivalent) 
n  SCMP (Symmetric CMP) 

q  All small cores 
q  Results in the paper 

n  ACMP (Asymmetric CMP) 
q  Accelerates only Amdahl’s serial portions 
q  Our baseline 

n  ACS (Accelerated Critical Sections) 
q  Accelerates only critical sections and Amdahl’s serial portions 
q  Applicable to multithreaded workloads  

(iplookup, mysql, specjbb, sqlite, tsp, webcache, mg, ft) 

n  FDP (Feedback-Directed Pipelining) 
q  Accelerates only slowest pipeline stages 
q  Applicable to pipeline-parallel workloads (rank, pagemine) 
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BIS Performance Improvement 

77 

Optimal number of threads, 28 small cores, 1 large core 

n  BIS outperforms ACS/FDP by 15% and ACMP by 32% 
n  BIS improves scalability on 4 of the benchmarks 

barriers, which ACS  
cannot accelerate 

limiting bottlenecks change over time 
ACS FDP 



Why Does BIS Work? 

78 

n  Coverage: fraction of program critical path that is actually identified as bottlenecks 
q  39% (ACS/FDP) to 59% (BIS) 

n  Accuracy: identified bottlenecks on the critical path over total identified bottlenecks 
q  72% (ACS/FDP) to 73.5% (BIS) 

Fraction of execution time spent on predicted-important bottlenecks 

Actually critical 



BIS Scaling Results 
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Performance increases with: 
 
1) More small cores 

n  Contention due to bottlenecks 
increases 

n  Loss of parallel throughput due 
to large core reduces 

 

2) More large cores 
n  Can accelerate  

independent bottlenecks 
n  Without reducing parallel 

throughput (enough cores) 

2.4% 
6.2% 

15% 19% 



BIS Summary 
n  Serializing bottlenecks of different types limit performance of 

multithreaded applications: Importance changes over time 

n  BIS is a hardware/software cooperative solution:  
q  Dynamically identifies bottlenecks that cause the most thread waiting 

and accelerates them on large cores of an ACMP 
q  Applicable to critical sections, barriers, pipeline stages 

n  BIS improves application performance and scalability: 
q  15% speedup over ACS/FDP 
q  Can accelerate multiple independent critical bottlenecks 
q  Performance benefits increase with more cores 

n  Provides comprehensive fine-grained bottleneck acceleration 
for future ACMPs with little or no programmer effort 
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Talk Outline 
n  Problem and Motivation 
n  How Do We Get There: Examples 
n  Accelerated Critical Sections (ACS) 
n  Bottleneck Identification and Scheduling (BIS) 
n  Staged Execution and Data Marshaling 
n  Thread Cluster Memory Scheduling (if time permits) 
n  Ongoing/Future Work 
n  Conclusions 
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Staged Execution Model (I) 
n  Goal: speed up a program by dividing it up into pieces 
n  Idea 

q  Split program code into segments 
q  Run each segment on the core best-suited to run it 
q  Each core assigned a work-queue, storing segments to be run 

n  Benefits 
q  Accelerates segments/critical-paths using specialized/heterogeneous cores 
q  Exploits inter-segment parallelism 
q  Improves locality of within-segment data 

n  Examples 
q  Accelerated critical sections, Bottleneck identification and scheduling 
q  Producer-consumer pipeline parallelism 
q  Task parallelism (Cilk, Intel TBB, Apple Grand Central Dispatch) 
q  Special-purpose cores and functional units 
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Staged Execution Model (II) 

LOAD X 
STORE Y 
STORE Y 

 
LOAD Y 

…. 
STORE Z 

 
LOAD Z 

…. 
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Staged Execution Model (III) 

LOAD X 
STORE Y 
STORE Y 

LOAD Y 
…. 

STORE Z 

LOAD Z 
…. 

Segment S0 

Segment S1 

Segment S2 

Split code into segments 
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Staged Execution Model (IV) 

Core 0 Core 1 Core 2 

Work-queues 

Instances 
 of S0 

Instances 
 of S1 

Instances 
 of S2 
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LOAD X 
STORE Y 
STORE Y 

LOAD Y 
…. 

STORE Z 

LOAD Z 
…. 

Core 0 Core 1 Core 2 

S0 

S1 

S2 

Staged Execution Model: Segment Spawning 



Staged Execution Model: Two Examples 

n  Accelerated Critical Sections [Suleman et al., ASPLOS 2009] 
q  Idea: Ship critical sections to a large core in an asymmetric CMP 

n  Segment 0: Non-critical section 
n  Segment 1: Critical section 

q  Benefit: Faster execution of critical section, reduced serialization, 
improved lock and shared data locality 

n  Producer-Consumer Pipeline Parallelism 
q  Idea: Split a loop iteration into multiple “pipeline stages” where 

one stage consumes data produced by the next stage à each 
stage runs on a different core 
n  Segment N: Stage N 

q  Benefit: Stage-level parallelism, better locality à faster execution 
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Problem: Locality of Inter-segment Data 

LOAD X 
STORE Y 
STORE Y 

LOAD Y 
…. 

STORE Z 

LOAD Z 
…. 

Transfer Y 

Transfer Z 

S0 

S1 

S2 

Core 0 Core 1 Core 2 

Cache Miss 

Cache Miss 



Problem: Locality of Inter-segment Data 
n  Accelerated Critical Sections [Suleman et al., ASPLOS 2010] 

q  Idea: Ship critical sections to a large core in an ACMP 
q  Problem: Critical section incurs a cache miss when it touches data 

produced in the non-critical section (i.e., thread private data) 

n  Producer-Consumer Pipeline Parallelism 
q  Idea: Split a loop iteration into multiple “pipeline stages” à each 

stage runs on a different core 
q  Problem: A stage incurs a cache miss when it touches data 

produced by the previous stage 

n  Performance of Staged Execution limited by inter-segment 
cache misses 
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What if We Eliminated All Inter-segment Misses? 



Talk Outline 
n  Problem and Motivation 
n  How Do We Get There: Examples 
n  Accelerated Critical Sections (ACS) 
n  Bottleneck Identification and Scheduling (BIS) 
n  Staged Execution and Data Marshaling 
n  Thread Cluster Memory Scheduling (if time permits) 
n  Ongoing/Future Work 
n  Conclusions 
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Terminology 

LOAD X 
STORE Y 
STORE Y 

LOAD Y 
…. 

STORE Z 

LOAD Z 
…. 

Transfer Y 

Transfer Z 

S0 

S1 

S2 

Inter-segment data: Cache 
block written by one segment 
and consumed by the next 
segment 

Generator instruction: 
The last instruction to write to an       
inter-segment cache block in a segment 

Core 0 Core 1 Core 2 



Key Observation and Idea 
n  Observation: Set of generator instructions is stable over 

execution time and across input sets 

n  Idea:  
q  Identify the generator instructions  
q  Record cache blocks produced by generator instructions 
q  Proactively send such cache blocks to the next segment’s core 

before initiating the next segment 

n  Suleman et al., “Data Marshaling for Multi-Core 
Architectures,” ISCA 2010, IEEE Micro Top Picks 2011. 
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Data Marshaling 

1.  Identify generator 
instructions 

2.  Insert marshal 
instructions 

1.  Record generator-                     
     produced addresses 
2.   Marshal recorded  
     blocks to next core Binary containing  

generator prefixes & 
marshal Instructions 

Compiler/Profiler Hardware 
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Data Marshaling 

1.  Identify generator 
instructions 

2.  Insert marshal 
instructions 

1.  Record generator-                     
     produced addresses 
2.   Marshal recorded  
     blocks to next core Binary containing  

generator prefixes & 
marshal Instructions 

Hardware 
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Compiler/Profiler 
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Profiling Algorithm 

LOAD X 
STORE Y 
STORE Y 

LOAD Y 
             …. 

STORE Z 

LOAD Z 
            …. 

Mark as Generator 
Instruction 

Inter-segment data 
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Marshal Instructions 

     LOAD X 
     STORE Y 
G: STORE Y 
     MARSHAL C1 

    LOAD Y 
         …. 
G:STORE Z 
    MARSHAL C2 

0x5: LOAD Z 
            …. 

When to send (Marshal) 

Where to send (C1) 



DM Support/Cost 
n  Profiler/Compiler: Generators, marshal instructions 
n  ISA: Generator prefix, marshal instructions 
n  Library/Hardware: Bind next segment ID to a physical core 

n  Hardware 
q  Marshal Buffer 

n  Stores physical addresses of cache blocks to be marshaled 
n  16 entries enough for almost all workloads à 96 bytes per core 

q  Ability to execute generator prefixes and marshal instructions 
q  Ability to push data to another cache 
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DM: Advantages, Disadvantages 
n  Advantages 

q  Timely data transfer: Push data to core before needed 
q  Can marshal any arbitrary sequence of lines: Identifies 

generators, not patterns 
q  Low hardware cost: Profiler marks generators, no need for 

hardware to find them 

n  Disadvantages 
q  Requires profiler and ISA support 
q  Not always accurate (generator set is conservative): Pollution 

at remote core, wasted bandwidth on interconnect 
n  Not a large problem as number of inter-segment blocks is small  
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Accelerated Critical Sections with DM 

Small Core 0 

Marshal 
Buffer 

Large Core 

     LOAD X 
     STORE Y 
G: STORE Y 
     CSCALL 

    LOAD Y 
         …. 
G:STORE Z 
    CSRET 

Cache Hit! 

L2  
Cache 

L2  
Cache Data Y 

Addr Y 

Critical 
Section 



Accelerated Critical Sections: Methodology 

n  Workloads: 12 critical section intensive applications 
q  Data mining kernels, sorting, database, web, networking 
q  Different training and simulation input sets 

n  Multi-core x86 simulator 
q  1 large and 28 small cores  
q  Aggressive stream prefetcher employed at each core 

n  Details: 
q  Large core: 2GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage 
q  Small core: 2GHz, in-order, 2-wide, 5-stage 
q  Private 32 KB L1, private 256KB L2, 8MB shared L3 
q  On-chip interconnect: Bi-directional ring, 5-cycle hop latency 
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DM on Accelerated Critical Sections: Results 
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Pipeline Parallelism 

Core 0 

Marshal 
Buffer 

Core 1 

     LOAD X 
     STORE Y 
G: STORE Y 
     MARSHAL C1 

    LOAD Y 
         …. 
G:STORE Z 
    MARSHAL C2 

0x5: LOAD Z 
            …. 

Cache Hit! 

L2  
Cache 

L2  
Cache Data Y 

Addr Y 

S0 

S1 

S2 



Pipeline Parallelism: Methodology 

n  Workloads: 9 applications with pipeline parallelism  
q  Financial, compression, multimedia, encoding/decoding 
q  Different training and simulation input sets 

n  Multi-core x86 simulator 
q  32-core CMP: 2GHz, in-order, 2-wide, 5-stage 
q  Aggressive stream prefetcher employed at each core 

q  Private 32 KB L1, private 256KB L2, 8MB shared L3 
q  On-chip interconnect: Bi-directional ring, 5-cycle hop latency 
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DM on Pipeline Parallelism: Results 
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DM Coverage, Accuracy, Timeliness 

n  High coverage of inter-segment misses in a timely manner 
n  Medium accuracy does not impact performance 

q  Only 5.0 and 6.8 cache blocks marshaled for average segment 

106 

0
10
20
30
40
50
60
70
80
90
100

ACS Pipeline

Pe
rc
en
ta
ge

Coverage
Accuracy
Timeliness



Scaling Results 

n  DM performance improvement increases with 
q  More cores 
q  Higher interconnect latency 
q  Larger private L2 caches 

n  Why? Inter-segment data misses become a larger bottleneck 
q  More cores à More communication 
q  Higher latency à Longer stalls due to communication 
q  Larger L2 cache à Communication misses remain  
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Other Applications of Data Marshaling 

n  Can be applied to other Staged Execution models 
q  Task parallelism models 

n  Cilk, Intel TBB, Apple Grand Central Dispatch 
q  Special-purpose remote functional units 
q  Computation spreading [Chakraborty et al., ASPLOS’06] 

q  Thread motion/migration [e.g., Rangan et al., ISCA’09] 

 
n  Can be an enabler for more aggressive SE models 

q  Lowers the cost of data migration 
n  an important overhead in remote execution of code segments 

q  Remote execution of finer-grained tasks can become more 
feasible à finer-grained parallelization in multi-cores 



Data Marshaling Summary 
n  Inter-segment data transfers between cores limit the benefit 

of promising Staged Execution (SE) models 

n  Data Marshaling is a hardware/software cooperative solution: 
detect inter-segment data generator instructions and push 
their data to next segment’s core 
q  Significantly reduces cache misses for inter-segment data 
q  Low cost, high-coverage, timely for arbitrary address sequences 
q  Achieves most of the potential of eliminating such misses 

n  Applicable to several existing Staged Execution models 
q  Accelerated Critical Sections: 9% performance benefit 
q  Pipeline Parallelism: 16% performance benefit 

n  Can enable new modelsà very fine-grained remote execution 
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Motivation 
•  Memory	  is	  a	  shared	  resource	  

•  Threads’	  requests	  contend	  for	  memory	  
– Degrada>on	  in	  single	  thread	  performance	  
–  Can	  even	  lead	  to	  starva>on	  

•  How	  to	  schedule	  memory	  requests	  to	  increase	  
both	  system	  throughput	  and	  fairness?	  
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System	  throughput	  	  
bias	  

Fairness	  	  
bias	  

No	  previous	  memory	  scheduling	  algorithm	  provides	  
both	  the	  best	  fairness	  and	  system	  throughput	  
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Take	  turns	  accessing	  memory	  

Why do Previous Algorithms Fail? 
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Fairness	  biased	  approach	  

thread	  C	  

thread	  B	  

thread	  A	  

less	  memory	  	  
intensive	  

higher	  
priority	  

Priori>ze	  less	  memory-‐intensive	  threads	  

Throughput	  biased	  approach	  

Good	  for	  throughput	  

starva3on	  è	  unfairness	  

thread	  C	   thread	  B	  thread	  A	  

Does	  not	  starve	  

not	  priori3zed	  è	  	  
reduced	  throughput	  

Single	  policy	  for	  all	  threads	  is	  insufficient	  



Insight: Achieving Best of Both Worlds 

114	  

thread	  

thread	  

higher	  
priority	  

thread	  

thread	  

thread	  	  

thread	  

thread	  

thread	  

Priori:ze	  memory-‐non-‐intensive	  threads	  

For	  Throughput	  

Unfairness	  caused	  by	  memory-‐intensive	  
being	  priori:zed	  over	  each	  other	  	  

• 	  Shuffle	  threads	  

Memory-‐intensive	  threads	  have	  	  
different	  vulnerability	  to	  interference	  

• 	  Shuffle	  asymmetrically	  

For	  Fairness	  

thread	  

thread	  

thread	  

thread	  



Overview: Thread Cluster Memory Scheduling 
1.   Group	  threads	  into	  two	  clusters	  
2.   Priori:ze	  non-‐intensive	  cluster	  
3.   Different	  policies	  for	  each	  cluster	  
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Priori3ze	  threads	  according	  to	  MPKI	  

•  Increases	  system	  throughput	  
– Least	  intensive	  thread	  has	  the	  greatest	  poten>al	  
for	  making	  progress	  in	  the	  processor	  

Non-Intensive Cluster 
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Periodically	  shuffle	  the	  priority	  of	  threads	  
	  

•  Is	  trea>ng	  all	  threads	  equally	  good	  enough?	  
•  BUT:	  Equal	  turns	  ≠	  Same	  slowdown	  

Intensive Cluster 
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Results: Fairness vs. Throughput 
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8%	  
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TCM	  provides	  best	  fairness	  and	  system	  throughput	  

Averaged	  over	  96	  workloads	  



Results: Fairness-Throughput Tradeoff 
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TCM Summary 
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•  No	  previous	  memory	  scheduling	  algorithm	  provides	  
both	  high	  system	  throughput	  and	  fairness	  
– Problem:	  They	  use	  a	  single	  policy	  for	  all	  threads	  

•  TCM	  is	  a	  heterogeneous	  scheduling	  policy	  
1.  Priori>ze	  non-‐intensive	  cluster	  è	  throughput	  
2.  Shuffle	  priori>es	  in	  intensive	  cluster	  è	  fairness	  
3.  Shuffling	  should	  favor	  nice	  threads	  è	  fairness	  

•  Heterogeneity	  in	  memory	  scheduling	  provides	  the	  	  
best	  system	  throughput	  and	  fairness	  



More Details on TCM 
•  Kim	  et	  al.,	  “Thread	  Cluster	  Memory	  Scheduling:	  
Exploi>ng	  Differences	  in	  Memory	  Access	  Behavior,”	  
MICRO	  2010,	  Top	  Picks	  2011.	  
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Memory Control in CPU-GPU Systems 
n  Observation: Heterogeneous CPU-GPU systems require 

memory schedulers with large request buffers 

n  Problem: Existing monolithic application-aware memory 
scheduler designs are hard to scale to large request buffer sizes 

n  Solution: Staged Memory Scheduling (SMS)  
decomposes the memory controller into three simple stages: 
1) Batch formation: maintains row buffer locality 
2) Batch scheduler: reduces interference between applications 
3) DRAM command scheduler: issues requests to DRAM 

n  Compared to state-of-the-art memory schedulers: 
q  SMS is significantly simpler and more scalable 
q  SMS provides higher performance and fairness 

122 Ausavarungnirun et al., “Staged Memory Scheduling,” ISCA 2012. 



Asymmetric Memory QoS in a Parallel Application 

n  Threads in a multithreaded application are inter-dependent 
n  Some threads can be on the critical path of execution due 

to synchronization; some threads are not 
n  How do we schedule requests of inter-dependent threads to 

maximize multithreaded application performance? 

n  Idea: Estimate limiter threads likely to be on the critical path and 
prioritize their requests; shuffle priorities of non-limiter threads 
to reduce memory interference among them [Ebrahimi+, MICRO’11] 

n  Hardware/software cooperative limiter thread estimation: 
n  Thread executing the most contended critical section 
n  Thread that is falling behind the most in a parallel for loop 

 
123 Ebrahimi et al., “Parallel Application Memory Scheduling,” MICRO 2011. 
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Related Ongoing/Future Work 
n  Dynamically asymmetric cores 
n  Memory system design for asymmetric cores 
 

n  Asymmetric memory systems 
q  Phase Change Memory (or Technology X) + DRAM 
q  Hierarchies optimized for different access patterns 

n  Asymmetric on-chip interconnects 
q  Interconnects optimized for different application requirements 

n  Asymmetric resource management algorithms 
q  E.g., network congestion control 

n  Interaction of multiprogrammed multithreaded workloads 
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Summary 
n  Applications and phases have varying performance requirements 
n  Designs evaluated on multiple metrics/constraints: energy, 

performance, reliability, fairness, …  
 

n  One-size-fits-all design cannot satisfy all requirements and metrics: 
cannot get the best of all worlds 

n  Asymmetry in design enables tradeoffs: can get the best of all 
worlds 
q  Asymmetry in core microarch. à Accelerated Critical Sections, BIS, DM             

à Good parallel performance + Good serialized performance 
q  Asymmetry in memory scheduling à Thread Cluster Memory Scheduling 

à Good throughput + good fairness 

n  Simple asymmetric designs can be effective and low-cost 
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Vector Machine Organization (CRAY-1) 
n  CRAY-1 
n  Russell, “The CRAY-1 

computer system,” 
CACM 1978. 

n  Scalar and vector modes 
n  8 64-element vector 

registers 
n  64 bits per element 
n  16 memory banks 
n  8 64-bit scalar registers 
n  8 24-bit address registers 
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Identifying and Accelerating 
Resource Contention Bottlenecks 



Thread Serialization 
n  Three fundamental causes 
 

 1. Synchronization 
  
 2. Load imbalance 

 
 3. Resource contention 
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Memory Contention as a Bottleneck 
n  Problem: 

q  Contended memory regions cause serialization of threads 
q  Threads accessing such regions can form the critical path 
q  Data-intensive workloads (MapReduce, GraphLab, Graph500) 

can be sped up by 1.5 to 4X by ideally removing contention 

n  Idea:  
q  Identify contended regions dynamically  
q  Prioritize caching the data from threads which are slowed 

down the most by such regions in faster DRAM/eDRAM 

n  Benefits: 
q  Reduces contention, serialization, critical path 

133 



Evaluation 
n  Workloads: MapReduce, GraphLab, Graph500 

n  Cycle-level x86 platform simulator 
q  CPU: 8 out-of-order cores, 32KB private L1, 512KB shared L2 
q  Hybrid Memory: DDR3 1066 MT/s, 32MB DRAM, 8GB PCM 

n  Mechanisms 
q  Baseline: DRAM as a conventional cache to PCM 
q  CacheMiss: Prioritize caching data from threads with highest 

cache miss latency 
q  Region:  Cache data from most contended memory regions 
q  ACTS: Prioritize caching data from threads most slowed down 

due to memory region contention 
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Caching Results 
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Heterogeneous Main Memory 



Heterogeneous Memory Systems 

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and Scalable Hybrid Memories,” 
IEEE Comp. Arch. Letters, 2012. 

CPU 
DRAM
Ctrl 

Fast, durable 
Small,  

leaky, volatile,  
high-cost 

Large, non-volatile, low-cost 
Slow, wears out, high active energy 

PCM 
Ctrl DRAM Phase Change Memory (or Tech. X) 

Hardware/software manage data allocation and movement  
to achieve the best of multiple technologies 



One Option: DRAM as a Cache for PCM 
n  PCM is main memory; DRAM caches memory rows/blocks 

q  Benefits: Reduced latency on DRAM cache hit; write filtering 

n  Memory controller hardware manages the DRAM cache 
q  Benefit: Eliminates system software overhead 

n  Three issues: 
q  What data should be placed in DRAM versus kept in PCM? 
q  What is the granularity of data movement? 
q  How to design a low-cost hardware-managed DRAM cache? 

n  Two idea directions: 
q  Locality-aware data placement [Yoon+ , CMU TR 2011] 

q  Cheap tag stores and dynamic granularity [Meza+, IEEE CAL 2012] 
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DRAM vs. PCM: An Observation 
n  Row buffers are the same in DRAM and PCM 
n  Row buffer hit latency same in DRAM and PCM 
n  Row buffer miss latency small in DRAM, large in PCM 

 
 
 

n  Accessing the row buffer in PCM is fast 
n  What incurs high latency is the PCM array access à avoid this 
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CPU 
DRAM
Ctrl 

PCM 
Ctrl 

Bank Bank Bank Bank 

Row	  buffer	  
DRAM Cache PCM Main Memory 

N ns row hit 
Fast row miss 

N ns row hit 
Slow row miss 



Row-Locality-Aware Data Placement 
n  Idea: Cache in DRAM only those rows that 

q  Frequently cause row buffer conflicts à because row-conflict latency 
is smaller in DRAM 

q  Are reused many times à to reduce cache pollution and bandwidth 
waste 

n  Simplified rule of thumb: 
q  Streaming accesses: Better to place in PCM  
q  Other accesses (with some reuse): Better to place in DRAM 

n  Bridges half of the performance gap between all-DRAM and all-
PCM memory on memory-intensive workloads 

n  Yoon et al., “Row Buffer Locality-Aware Data Placement in Hybrid 
Memories,” CMU SAFARI Technical Report, 2011. 
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The Problem with Large DRAM Caches 
n  A large DRAM cache requires a large metadata (tag + 

block-based information) store 
n  How do we design an efficient DRAM cache? 
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DRAM	   PCM	  

CPU 

(small, fast cache) (high capacity) 

Mem	  
Ctlr	  

Mem	  
Ctlr	  

LOAD	  X	  

Access X 

Metadata:	  
X	  à	  DRAM	  
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Idea 1: Tags in Memory 
n  Store tags in the same row as data in DRAM 

q  Store metadata in same row as their data 
q  Data and metadata can be accessed together 

n  Benefit: No on-chip tag storage overhead 
n  Downsides:  

q  Cache hit determined only after a DRAM access 
q  Cache hit requires two DRAM accesses 
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Cache	  block	  2	  Cache	  block	  0	   Cache	  block	  1	  
DRAM row 

Tag0	   Tag1	   Tag2	  



Idea 2: Cache Tags in SRAM 
n  Recall Idea 1: Store all metadata in DRAM  

q  To reduce metadata storage overhead 

n  Idea 2: Cache in on-chip SRAM frequently-accessed 
metadata 
q  Cache only a small amount to keep SRAM size small 
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Idea 3: Dynamic Data Transfer Granularity 
n  Some applications benefit from caching more data 

q  They have good spatial locality 

n  Others do not 
q  Large granularity wastes bandwidth and reduces cache 

utilization 

n  Idea 3: Simple dynamic caching granularity policy 
q  Cost-benefit analysis to determine best DRAM cache block size 
q  Group main memory into sets of rows 
q  Some row sets follow a fixed caching granularity 
q  The rest of main memory follows the best granularity 

n  Cost–benefit analysis:  access latency versus number of cachings 
n  Performed every quantum 
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Methodology 
n  System:  8 out-of-order cores at 4 GHz 

n  Memory: 512 MB direct-mapped DRAM, 8 GB PCM 
q  128B caching granularity 
q  DRAM row hit (miss): 200 cycles (400 cycles) 
q  PCM row hit (clean / dirty miss): 200 cycles (640 / 1840 cycles) 

n  Evaluated metadata storage techniques 
q  All SRAM system (8MB of SRAM) 
q  Region metadata storage 
q  TIM metadata storage (same row as data) 
q  TIMBER, 64-entry direct-mapped (8KB of SRAM) 
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TIMBER	  Performance	  

-‐6%	  

Meza,	  Chang,	  Yoon,	  Mutlu,	  Ranganathan,	  “Enabling	  Efficient	  and	  
Scalable	  Hybrid	  Memories,”	  IEEE	  Comp.	  Arch.	  LeUers,	  2012.	  
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TIMBER	  Energy	  Efficiency	  
18%	  

Meza,	  Chang,	  Yoon,	  Mutlu,	  Ranganathan,	  “Enabling	  Efficient	  and	  
Scalable	  Hybrid	  Memories,”	  IEEE	  Comp.	  Arch.	  LeUers,	  2012.	  



Summary 
n  Applications and phases have varying performance requirements 
n  Designs evaluated on multiple metrics/constraints: energy, 

performance, reliability, fairness, …  
 

n  One-size-fits-all design cannot satisfy all requirements and metrics: 
cannot get the best of all worlds 

n  Asymmetry in design enables tradeoffs: can get the best of all 
worlds 
q  Asymmetry in core microarch. à Accelerated Critical Sections, BIS, DM             

à Good parallel performance + Good serialized performance 
q  Asymmetry in main memory à Data Management for DRAM-PCM 

Hybrid Memory à Good performance + good efficiency 

n  Simple asymmetric designs can be effective and low-cost 
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Memory QoS 



Trend: Many Cores on Chip 
n  Simpler and lower power than a single large core 
n  Large scale parallelism on chip 
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IBM	  Cell	  BE	  
8+1	  cores	  

Intel	  Core	  i7	  
8	  cores	  

Tilera	  TILE	  Gx	  
100	  cores,	  networked	  

IBM	  POWER7	  
8	  cores	  

Intel	  SCC	  
48	  cores,	  networked	  

Nvidia	  Fermi	  
448	  “cores”	  

AMD	  Barcelona	  
4	  cores	  

Sun	  Niagara	  II	  
8	  cores	  



Many Cores on Chip 

n  What we want: 
q  N times the system performance with N times the cores 

n  What do we get today? 
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(Un)expected Slowdowns 

Memory Performance Hog 
Low priority 

High priority 

(Core 0) (Core 1) 

Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service  
in multi-core systems,” USENIX Security 2007. 

Attacker 
(Core 1) 

Movie player 
(Core 2) 
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Why? Uncontrolled Memory Interference 

CORE 1 CORE 2 

    L2  
CACHE 

    L2  
CACHE 

DRAM MEMORY CONTROLLER 

DRAM  
Bank 0 

DRAM  
Bank 1 

DRAM  
Bank 2 

Shared DRAM 
Memory System 

Multi-Core 
Chip 

unfairness 
INTERCONNECT 

attacker movie player 

DRAM  
Bank 3 
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// initialize large arrays A, B 
 
for (j=0; j<N; j++) { 
     index = rand(); 
     A[index] = B[index]; 
     … 
} 
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A Memory Performance Hog 

STREAM 

-  Sequential memory access  
-  Very high row buffer locality (96% hit rate) 
-  Memory intensive 

RANDOM 

-  Random memory access 
-  Very low row buffer locality (3% hit rate) 
-  Similarly memory intensive 

// initialize large arrays A, B 
 
for (j=0; j<N; j++) { 
     index = j*linesize; 
     A[index] = B[index]; 
     … 
} 

streaming random 

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007. 
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What Does the Memory Hog Do? 

Row Buffer 
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Data 

Row 0 

T0: Row 0 

Row 0 

T1: Row 16 
T0: Row 0 T1: Row 111 

T0: Row 0 T0: Row 0 T1: Row 5 

T0: Row 0 T0: Row 0 T0: Row 0 T0: Row 0 T0: Row 0 

Memory Request Buffer 

T0: STREAM 
T1: RANDOM 

Row size: 8KB, cache block size: 64B 
128 (8KB/64B) requests of T0 serviced before T1 

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007. 
 



Effect of the Memory Performance Hog 
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1.18X slowdown 

2.82X slowdown 

Results on Intel Pentium D running Windows XP 
(Similar results for Intel Core Duo and AMD Turion, and on Fedora Linux)  
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Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007. 
 



Greater Problem with More Cores 

n  Vulnerable to denial of service (DoS) [Usenix Security’07] 

n  Unable to enforce priorities or SLAs [MICRO’07,’10,’11, ISCA’08’11’12, ASPLOS’10] 

n  Low system performance [IEEE Micro Top Picks ’09,’11a,’11b,’12] 
 

Uncontrollable, unpredictable system 
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Distributed DoS in Networked Multi-Core Systems 
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Attackers 
(Cores 1-8) 

Stock option pricing application 
(Cores 9-64) 

    Cores connected via  
    packet-switched 
    routers on chip 

     ~5000X slowdown 

Grot, Hestness, Keckler, Mutlu,  
“Preemptive virtual clock: A Flexible,  
Efficient, and Cost-effective QOS  
Scheme for Networks-on-Chip,“ 
MICRO 2009. 



n  Problem: Memory interference is uncontrolled à 
uncontrollable, unpredictable, vulnerable system 

n  Goal: We need to control it à Design a QoS-aware system  

n  Solution: Hardware/software cooperative memory QoS 
q  Hardware designed to provide a configurable fairness substrate  

n  Application-aware memory scheduling, partitioning, throttling 

q  Software designed to configure the resources to satisfy different 
QoS goals 

q  E.g., fair, programmable memory controllers and on-chip 
networks provide QoS and predictable performance  

      [2007-2012, Top Picks’09,’11a,’11b,’12] 

Solution: QoS-Aware, Predictable Memory 



Designing QoS-Aware Memory Systems: Approaches 

n  Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism 
q  QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07] 

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11, 
MICRO’11] [Ausavarungnirun+, ISCA’12] 

q  QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09, 
ISCA’11, Top Picks ’12] 

q  QoS-aware caches 

n  Dumb resources: Keep each resource free-for-all, but reduce/
control interference by injection control or data mapping 
q  Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10, 

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10] 

q  QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11] 

q  QoS-aware thread scheduling to cores 

160 



n  Memory Channel Partitioning 
q  Idea: System software maps badly-interfering applications’ pages 

to different channels [Muralidhara+, MICRO’11] 

 
n  Separate data of low/high intensity and low/high row-locality applications 
n  Especially effective in reducing interference of threads with “medium” and 

“heavy” memory intensity  
q  11% higher performance over existing systems (200 workloads) 

A Mechanism to Reduce Memory Interference 
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Designing QoS-Aware Memory Systems: Approaches 

n  Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism 
q  QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07] 

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11, 
MICRO’11] [Ausavarungnirun+, ISCA’12] 

q  QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09, 
ISCA’11, Top Picks ’12] 

q  QoS-aware caches 

n  Dumb resources: Keep each resource free-for-all, but reduce/
control interference by injection control or data mapping 
q  Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10, 

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10] 

q  QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11] 

q  QoS-aware thread scheduling to cores 
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QoS-Aware Memory Scheduling 

n  How to schedule requests to provide 
q  High system performance 
q  High fairness to applications 
q  Configurability to system software  

n  Memory controller needs to be aware of threads 
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QoS-Aware Memory Scheduling: Evolution 
n  Stall-time fair memory scheduling [Mutlu+ MICRO’07] 

q  Idea: Estimate and balance thread slowdowns 

q  Takeaway: Proportional thread progress improves performance, 
especially when threads are “heavy” (memory intensive) 

n  Parallelism-aware batch scheduling [Mutlu+ ISCA’08, Top Picks’09] 

q  Idea: Rank threads and service in rank order (to preserve bank 
parallelism); batch requests to prevent starvation 

q  Takeaway: Preserving within-thread bank-parallelism improves 
performance; request batching improves fairness 

n  ATLAS memory scheduler [Kim+ HPCA’10] 

q  Idea: Prioritize threads that have attained the least service from the 
memory scheduler  

q  Takeaway: Prioritizing “light” threads improves performance 
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Take	  turns	  accessing	  memory	  

Throughput vs. Fairness 
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Achieving the Best of Both Worlds 
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Thread Cluster Memory Scheduling [Kim+ MICRO’10] 

1.   Group	  threads	  into	  two	  clusters	  
2.   Priori:ze	  non-‐intensive	  cluster	  
3.   Different	  policies	  for	  each	  cluster	  

167	  

thread	  

Threads	  in	  the	  system	  

thread	  

thread	  

thread	  

thread	  

thread	  

thread	  

Non-‐intensive	  	  
cluster	  

Intensive	  cluster	  

thread	  

thread	  

thread	  

Memory-‐non-‐intensive	  	  

Memory-‐intensive	  	  

Priori3zed	  

higher	  
priority	  

higher	  
priority	  

Throughput	  

Fairness	  



TCM: Throughput and Fairness 
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TCM: Fairness-Throughput Tradeoff 
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Memory Control in CPU-GPU Systems 
n  Observation: Heterogeneous CPU-GPU systems require 

memory schedulers with large request buffers 

n  Problem: Existing monolithic application-aware memory 
scheduler designs are hard to scale to large request buffer sizes 

n  Solution: Staged Memory Scheduling (SMS)  
decomposes the memory controller into three simple stages: 
1) Batch formation: maintains row buffer locality 
2) Batch scheduler: reduces interference between applications 
3) DRAM command scheduler: issues requests to DRAM 

n  Compared to state-of-the-art memory schedulers: 
q  SMS is significantly simpler and more scalable 
q  SMS provides higher performance and fairness 

170 Ausavarungnirun et al., “Staged Memory Scheduling,” ISCA 2012. 



Memory QoS in a Parallel Application 

n  Threads in a multithreaded application are inter-dependent 
n  Some threads can be on the critical path of execution due 

to synchronization; some threads are not 
n  How do we schedule requests of inter-dependent threads to 

maximize multithreaded application performance? 

n  Idea: Estimate limiter threads likely to be on the critical path and 
prioritize their requests; shuffle priorities of non-limiter threads 
to reduce memory interference among them [Ebrahimi+, MICRO’11] 

n  Hardware/software cooperative limiter thread estimation: 
n  Thread executing the most contended critical section 
n  Thread that is falling behind the most in a parallel for loop 

 
171 Ebrahimi et al., “Parallel Application Memory Scheduling,” MICRO 2011. 



Some Related Past Work 
n  That I could not cover… 

n  How to handle prefetch requests in a QoS-aware multi-core 
memory system? 
q  Prefetch-aware shared resource management, ISCA’11. 
q  Prefetch-aware memory controllers, MICRO’08, IEEE-TC’11. 
q  Coordinated control of multiple prefetchers, MICRO’09. 

n  How to design QoS mechanisms in the interconnect? 
q  Topology-aware, scalable QoS, ISCA’11. 
q  Slack-based packet scheduling, ISCA’10. 
q  Efficient bandwidth guarantees, MICRO’09. 
q  Application-aware request prioritization, MICRO’09. 
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Summary: Memory QoS Approaches and Techniques 

n  Approaches: Smart vs. dumb resources 
q  Smart resources: QoS-aware memory scheduling 
q  Dumb resources: Source throttling; channel partitioning 
q  Both approaches are effective in reducing interference 
q  No single best approach for all workloads 

n  Techniques: Request scheduling, source throttling, memory 
partitioning 
q  All approaches are effective in reducing interference 
q  Can be applied at different levels: hardware vs. software 
q  No single best technique for all workloads 

n  Combined approaches and techniques are the most powerful 
q  Integrated Memory Channel Partitioning and Scheduling [MICRO’11] 
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