
Architecting and Exploiting
Asymmetry in Multi-Core Architectures

Onur Mutlu
onur@cmu.edu
July 23, 2013

BSC/UPC

Overview of My Group’s Research
n  Heterogeneous systems, accelerating bottlenecks

n  Memory (and storage) systems
q  Scalability, energy, latency, parallelism, performance
q  Compute in/near memory

n  Predictable performance, QoS

n  Efficient interconnects

n  Bioinformatics algorithms and architectures

n  Acceleration of important applications, software/hardware
co-design

2

Three Key Problems in Future Systems

n  Memory system
q  Many important existing and future applications are

increasingly data intensive à require bandwidth and capacity
q  Data storage and movement limits performance & efficiency

n  Efficiency (performance and energy) à scalability
q  Enables scalable systems à new applications
q  Enables better user experience à new usage models

n  Predictability and robustness

q  Resource sharing and unreliable hardware causes QoS issues
q  Predictable performance and QoS are first class constraints

3

Readings and Videos

Mini Course: Multi-Core Architectures

n  Lecture 1.1: Multi-Core System Design
q  http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-

June-6-2013-lecture1-1-multicore-and-asymmetry-
afterlecture.pptx

n  Lecture 1.2: Cache Design and Management
q  http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-

June-7-2013-lecture1-2-cache-management-afterlecture.pptx

n  Lecture 1.3: Interconnect Design and Management
q  http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-

June-10-2013-lecture1-3-interconnects-afterlecture.pptx

5

Mini Course: Memory Systems

n  Lecture 2.1: DRAM Basics and DRAM Scaling
q  http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-

June-13-2013-lecture2-1-dram-basics-and-scaling-
afterlecture.pptx

n  Lecture 2.2: Emerging Technologies and Hybrid Memories
q  http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-

June-14-2013-lecture2-2-emerging-memory-afterlecture.pptx

n  Lecture 2.3: Memory QoS and Predictable Performance
q  http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-

June-17-2013-lecture2-3-memory-qos-afterlecture.pptx

6

Readings for Today
n  Required – Symmetric and Asymmetric Multi-Core Systems

q  Suleman et al., “Accelerating Critical Section Execution with Asymmetric
Multi-Core Architectures,” ASPLOS 2009, IEEE Micro 2010.

q  Suleman et al., “Data Marshaling for Multi-Core Architectures,” ISCA 2010,
IEEE Micro 2011.

q  Joao et al., “Bottleneck Identification and Scheduling for Multithreaded
Applications,” ASPLOS 2012.

q  Joao et al., “Utility-Based Acceleration of Multithreaded Applications on
Asymmetric CMPs,” ISCA 2013.

n  Recommended
q  Amdahl, “Validity of the single processor approach to achieving large scale

computing capabilities,” AFIPS 1967.
q  Olukotun et al., “The Case for a Single-Chip Multiprocessor,” ASPLOS 1996.
q  Mutlu et al., “Runahead Execution: An Alternative to Very Large Instruction

Windows for Out-of-order Processors,” HPCA 2003, IEEE Micro 2003.
q  Mutlu et al., “Techniques for Efficient Processing in Runahead Execution

Engines,” ISCA 2005, IEEE Micro 2006.
7

Videos for Today
n  Multiprocessors

q  Basics:
http://www.youtube.com/watch?
v=7ozCK_Mgxfk&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=31

q  Correctness and Coherence:
http://www.youtube.com/watch?v=U-
VZKMgItDM&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=32

q  Heterogeneous Multi-Core:
http://www.youtube.com/watch?
v=r6r2NJxj3kI&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=34

n  Runahead Execution
q  http://www.youtube.com/watch?

v=z8YpjqXQJIA&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=28

8

Online Lectures and More Information
n  Online Computer Architecture Lectures

q  http://www.youtube.com/playlist?
list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ

n  Online Computer Architecture Courses
q  Intro: http://www.ece.cmu.edu/~ece447/s13/doku.php
q  Advanced: http://www.ece.cmu.edu/~ece740/f11/doku.php
q  Advanced: http://www.ece.cmu.edu/~ece742/doku.php

n  Recent Research Papers

q  http://users.ece.cmu.edu/~omutlu/projects.htm
q  http://scholar.google.com/citations?

user=7XyGUGkAAAAJ&hl=en
9

Architecting and Exploiting
Asymmetry in Multi-Core Architectures

Warning
n  This is an asymmetric talk
n  But, we do not need to cover all of it…

n  Component 1: A case for asymmetry everywhere

n  Component 2: A deep dive into mechanisms to exploit
asymmetry in processing cores

n  Component 3: Asymmetry in memory controllers

n  Asymmetry = heterogeneity
q  A way to enable specialization/customization

11

The Setting
n  Hardware resources are shared among many threads/apps

in a many-core system
q  Cores, caches, interconnects, memory, disks, power, lifetime,

…

n  Management of these resources is a very difficult task
q  When optimizing parallel/multiprogrammed workloads
q  Threads interact unpredictably/unfairly in shared resources

n  Power/energy consumption is arguably the most valuable
shared resource
q  Main limiter to efficiency and performance

12

Shield the Programmer from Shared Resources

n  Writing even sequential software is hard enough
q  Optimizing code for a complex shared-resource parallel system

will be a nightmare for most programmers

n  Programmer should not worry about
(hardware) resource management
q  What should be executed where with what resources

n  Future computer architectures should be designed to
q  Minimize programmer effort to optimize (parallel) programs
q  Maximize runtime system’s effectiveness in automatic

shared resource management

13

Shared Resource Management: Goals

n  Future many-core systems should manage power and
performance automatically across threads/applications

n  Minimize energy/power consumption
n  While satisfying performance/SLA requirements

q  Provide predictability and Quality of Service
n  Minimize programmer effort

q  In creating optimized parallel programs

n  Asymmetry and configurability in system resources essential
to achieve these goals

14

Asymmetry Enables Customization

n  Symmetric: One size fits all
q  Energy and performance suboptimal for different phase behaviors

n  Asymmetric: Enables tradeoffs and customization
q  Processing requirements vary across applications and phases
q  Execute code on best-fit resources (minimal energy, adequate perf.)

15

C4 C4

C5 C5

C4 C4

C5 C5

C2

C3

C1

Asymmetric

C C

C C

C C

C C

C C

C C

C C

C C

Symmetric

Thought Experiment: Asymmetry Everywhere

n  Design each hardware resource with asymmetric,
(re-)configurable, partitionable components
q  Different power/performance/reliability characteristics
q  To fit different computation/access/communication patterns

16

!"#$%&'()%)'*$%+,*+',

-,.//$*%+'&0&1)%*+*+"2)34$
+2*$%'"22$'*

-,.//$*%+'&0&'"25+67%)34$

-,.//$*%+'&0&1)%*+*+"2)34$
/$/"%.&(+$%)%'(+$,

-,.//$*%+'&/)+2&/$/"%+$,

'"%$,&)28&)''$4$%)*"%,9+6(!1"#$%
9+6(&1$%5:

!"#$%01$%5"%/)2'$
"1*+/+;$8&5"%
$)'(&)''$,,&1)**$%2

<+55$%$2*&*$'(2"4"6+$,

Thought Experiment: Asymmetry Everywhere

n  Design the runtime system (HW & SW) to automatically choose
the best-fit components for each phase
q  Satisfy performance/SLA with minimal energy
q  Dynamically stitch together the “best-fit” chip for each phase

17

!"#$%&'()%)'*$%+,*+',

-,.//$*%+'&0&1)%*+*+"2)34$
+2*$%'"22$'*

-,.//$*%+'&0&'"25+67%)34$

-,.//$*%+'&0&1)%*+*+"2)34$
/$/"%.&(+$%)%'(+$,

-,.//$*%+'&/)+2&/$/"%+$,

'"%$,&)28&)''$4$%)*"%,9+6(!1"#$%
9+6(&1$%5:

!"#$%01$%5"%/)2'$
"1*+/+;$8&5"%
$)'(&)''$,,&1)**$%2

<+55$%$2*&*$'(2"4"6+$,

Phase 1

Phase 2

Phase 3

Thought Experiment: Asymmetry Everywhere

n  Morph software components to match asymmetric HW
components
q  Multiple versions for different resource characteristics

18

!"#$%&'()%)'*$%+,*+',

-,.//$*%+'&0&1)%*+*+"2)34$
+2*$%'"22$'*

-,.//$*%+'&0&'"25+67%)34$

-,.//$*%+'&0&1)%*+*+"2)34$
/$/"%.&(+$%)%'(+$,

-,.//$*%+'&/)+2&/$/"%+$,

'"%$,&)28&)''$4$%)*"%,9+6(!1"#$%
9+6(&1$%5:

!"#$%01$%5"%/)2'$
"1*+/+;$8&5"%
$)'(&)''$,,&1)**$%2

<+55$%$2*&*$'(2"4"6+$,

Version 1
Version 2
Version 3

Many Research and Design Questions
n  How to design asymmetric components?

q  Fixed, partitionable, reconfigurable components?
q  What types of asymmetry? Access patterns, technologies?

n  What monitoring to perform cooperatively in HW/SW?
q  Automatically discover phase/task requirements

n  How to design feedback/control loop between components and
runtime system software?

n  How to design the runtime to automatically manage resources?
q  Track task behavior, pick “best-fit” components for the entire workload

19

Talk Outline
n  Problem and Motivation
n  How Do We Get There: Examples
n  Accelerated Critical Sections (ACS)
n  Bottleneck Identification and Scheduling (BIS)
n  Staged Execution and Data Marshaling
n  Thread Cluster Memory Scheduling (if time permits)
n  Ongoing/Future Work
n  Conclusions

20

Exploiting Asymmetry: Simple Examples

!"#$%&'()%)'*$%+,*+',

-,.//$*%+'&0&1)%*+*+"2)34$
+2*$%'"22$'*

-,.//$*%+'&0&'"25+67%)34$

-,.//$*%+'&0&1)%*+*+"2)34$
/$/"%.&(+$%)%'(+$,

-,.//$*%+'&/)+2&/$/"%+$,

'"%$,&)28&)''$4$%)*"%,9+6(!1"#$%
9+6(&1$%5:

!"#$%01$%5"%/)2'$
"1*+/+;$8&5"%
$)'(&)''$,,&1)**$%2

<+55$%$2*&*$'(2"4"6+$,

21

n  Execute critical/serial sections on high-power, high-performance
cores/resources [Suleman+ ASPLOS’09, ISCA’10, Top Picks’10’11, Joao+ ASPLOS’12]

n  Programmer can write less optimized, but more likely correct programs

Serial Parallel

Exploiting Asymmetry: Simple Examples

!"#$%&'()%)'*$%+,*+',

-,.//$*%+'&0&1)%*+*+"2)34$
+2*$%'"22$'*

-,.//$*%+'&0&'"25+67%)34$

-,.//$*%+'&0&1)%*+*+"2)34$
/$/"%.&(+$%)%'(+$,

-,.//$*%+'&/)+2&/$/"%+$,

'"%$,&)28&)''$4$%)*"%,9+6(!1"#$%
9+6(&1$%5:

!"#$%01$%5"%/)2'$
"1*+/+;$8&5"%
$)'(&)''$,,&1)**$%2

<+55$%$2*&*$'(2"4"6+$,

22

n  Execute streaming “memory phases” on streaming-optimized
cores and memory hierarchies
n  More efficient and higher performance than general purpose hierarchy

Streaming Random access

Exploiting Asymmetry: Simple Examples

!"#$%&'()%)'*$%+,*+',

-,.//$*%+'&0&1)%*+*+"2)34$
+2*$%'"22$'*

-,.//$*%+'&0&'"25+67%)34$

-,.//$*%+'&0&1)%*+*+"2)34$
/$/"%.&(+$%)%'(+$,

-,.//$*%+'&/)+2&/$/"%+$,

'"%$,&)28&)''$4$%)*"%,9+6(!1"#$%
9+6(&1$%5:

!"#$%01$%5"%/)2'$
"1*+/+;$8&5"%
$)'(&)''$,,&1)**$%2

<+55$%$2*&*$'(2"4"6+$,

23

n  Partition memory controller and on-chip network bandwidth
asymmetrically among threads [Kim+ HPCA 2010, MICRO 2010, Top Picks
2011] [Nychis+ HotNets 2010] [Das+ MICRO 2009, ISCA 2010, Top Picks 2011]
n  Higher performance and energy-efficiency than symmetric/free-for-all

Latency sensitive

Bandwidth sensitive

Exploiting Asymmetry: Simple Examples

!"#$%&'()%)'*$%+,*+',

-,.//$*%+'&0&1)%*+*+"2)34$
+2*$%'"22$'*

-,.//$*%+'&0&'"25+67%)34$

-,.//$*%+'&0&1)%*+*+"2)34$
/$/"%.&(+$%)%'(+$,

-,.//$*%+'&/)+2&/$/"%+$,

'"%$,&)28&)''$4$%)*"%,9+6(!1"#$%
9+6(&1$%5:

!"#$%01$%5"%/)2'$
"1*+/+;$8&5"%
$)'(&)''$,,&1)**$%2

<+55$%$2*&*$'(2"4"6+$,

24

n  Have multiple different memory scheduling policies apply them to
different sets of threads based on thread behavior [Kim+ MICRO
2010, Top Picks 2011] [Ausavarungnirun, ISCA 2012]
n  Higher performance and fairness than a homogeneous policy

Memory intensive Compute intensive

Exploiting Asymmetry: Simple Examples

!"#$%&'()%)'*$%+,*+',

-,.//$*%+'&0&1)%*+*+"2)34$
+2*$%'"22$'*

-,.//$*%+'&0&'"25+67%)34$

-,.//$*%+'&0&1)%*+*+"2)34$
/$/"%.&(+$%)%'(+$,

-,.//$*%+'&/)+2&/$/"%+$,

'"%$,&)28&)''$4$%)*"%,9+6(!1"#$%
9+6(&1$%5:

!"#$%01$%5"%/)2'$
"1*+/+;$8&5"%
$)'(&)''$,,&1)**$%2

<+55$%$2*&*$'(2"4"6+$,

25

n  Build main memory with different technologies with different
characteristics (energy, latency, wear, bandwidth) [Meza+ IEEE CAL’12]

n  Map pages/applications to the best-fit memory resource
n  Higher performance and energy-efficiency than single-level memory

CPU
DRAM
Ctrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
Ctrl DRAM Phase Change Memory (or Tech. X)

DRAM Phase Change Memory

Talk Outline
n  Problem and Motivation
n  How Do We Get There: Examples
n  Accelerated Critical Sections (ACS)
n  Bottleneck Identification and Scheduling (BIS)
n  Staged Execution and Data Marshaling
n  Thread Cluster Memory Scheduling (if time permits)
n  Ongoing/Future Work
n  Conclusions

26

Serialized Code Sections in Parallel Applications
n  Multithreaded applications:

q  Programs split into threads

n  Threads execute concurrently on multiple cores

n  Many parallel programs cannot be parallelized completely

n  Serialized code sections:
q  Reduce performance
q  Limit scalability
q  Waste energy

27

Causes of Serialized Code Sections
n  Sequential portions (Amdahl’s “serial part”)
n  Critical sections
n  Barriers
n  Limiter stages in pipelined programs

28

Bottlenecks in Multithreaded Applications
Definition: any code segment for which threads contend (i.e. wait)

Examples:

n  Amdahl’s serial portions
q  Only one thread exists à on the critical path

n  Critical sections
q  Ensure mutual exclusion à likely to be on the critical path if contended

n  Barriers
q  Ensure all threads reach a point before continuing à the latest thread arriving

is on the critical path

n  Pipeline stages
q  Different stages of a loop iteration may execute on different threads,

slowest stage makes other stages wait à on the critical path

29

Critical Sections
n  Threads are not allowed to update shared data concurrently

q  For correctness (mutual exclusion principle)

n  Accesses to shared data are encapsulated inside
critical sections

n  Only one thread can execute a critical section at
a given time

30

Example from MySQL

31

Open database tables

Perform the operations
….

Critical
Section

Parallel

Access Open Tables Cache

Contention for Critical Sections

32

0

Critical
Section
Parallel
Idle

12 iterations, 33% instructions inside the critical section

P = 1

P = 3

P = 2

P = 4

1 2 3 4 5 6 7 8 9 10 11 12

33% in critical section

Contention for Critical Sections

33

0

Critical
Section
Parallel
Idle

12 iterations, 33% instructions inside the critical section

P = 1

P = 3

P = 2

P = 4

1 2 3 4 5 6 7 8 9 10 11 12

Accelerating critical sections
increases performance and scalability

Critical
Section
Accelerated
by 2x

Impact of Critical Sections on Scalability
n  Contention for critical sections leads to serial execution

(serialization) of threads in the parallel program portion
n  Contention for critical sections increases with the number of

threads and limits scalability

34

0

1

2

3

4

5

6

7

8

0	 8	 16	 24	 32	
0

1

2

3

4

5

6

7

8

0	 8	 16	 24	 32	

Chip Area (cores)

S
pe

ed
up

Today

Asymmetric

MySQL (oltp-1)

A Case for Asymmetry
n  Execution time of sequential kernels, critical sections, and

limiter stages must be short

n  It is difficult for the programmer to shorten these
serialized sections
q  Insufficient domain-specific knowledge
q  Variation in hardware platforms
q  Limited resources

n  Goal: A mechanism to shorten serial bottlenecks without
requiring programmer effort

n  Idea: Accelerate serialized code sections by shipping them
to powerful cores in an asymmetric multi-core (ACMP)

35

ACMP

n  Provide one large core and many small cores
n  Execute parallel part on small cores for high throughput
n  Accelerate serialized sections using the large core

q  Baseline: Amdahl’s serial part accelerated [Morad+ CAL 2006,
Suleman+, UT-TR 2007]

36

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Large
core

ACMP

Conventional ACMP

37

EnterCS()

PriorityQ.insert(…)

LeaveCS()

On-chip
Interconnect

1.  P2 encounters a Critical Section
2.  Sends a request for the lock
3.  Acquires the lock
4.  Executes Critical Section
5.  Releases the lock

Core executing
critical section

P1
P2 P3 P4

Accelerated Critical Sections (ACS)

n  Accelerate Amdahl’s serial part and critical sections
using the large core
q  Suleman et al., “Accelerating Critical Section Execution with

Asymmetric Multi-Core Architectures,” ASPLOS 2009, IEEE
Micro Top Picks 2010.

38

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Large
core

ACMP

Critical Section
Request Buffer
(CSRB)

Accelerated Critical Sections (ACS)

39

EnterCS()

PriorityQ.insert(…)

LeaveCS()

Onchip-
Interconnect

Critical Section
Request Buffer
(CSRB)

1. P2 encounters a critical section (CSCALL)
2. P2 sends CSCALL Request to CSRB
3. P1 executes Critical Section
4. P1 sends CSDONE signal

Core executing
critical section

P4 P3 P2
P1

ACS Architecture Overview
n  ISA extensions

q  CSCALL LOCK_ADDR, TARGET_PC
q  CSRET LOCK_ADDR

n  Compiler/Library inserts CSCALL/CSRET

n  On a CSCALL, the small core:
q  Sends a CSCALL request to the large core

n  Arguments: Lock address, Target PC, Stack Pointer, Core ID
q  Stalls and waits for CSDONE

n  Large Core
q  Critical Section Request Buffer (CSRB)
q  Executes the critical section and sends CSDONE to the requesting

core

40

Accelerated Critical Sections (ACS)

41

A = compute()

LOCK X
 result = CS(A)
UNLOCK X

print result

Small Core Small Core Large Core
A = compute()

CSDONE Response

CSCALL Request
Send X, TPC,

STACK_PTR, CORE_ID

PUSH A
CSCALL X, Target PC

…

…

…

Acquire X
POP A
result = CS(A)
PUSH result
Release X
CSRET X

TPC:

POP result
print result

…

…

…

…

…
…
…

Waiting in
Critical Section
Request Buffer

(CSRB)

False Serialization
n  ACS can serialize independent critical sections

n  Selective Acceleration of Critical Sections (SEL)
q  Saturating counters to track false serialization

42

CSCALL (A)

CSCALL (A)

CSCALL (B)

Critical Section
Request Buffer
(CSRB)

4

4

A

B

3 2

5

To large core

From small cores

ACS Performance Tradeoffs
n  Pluses

+ Faster critical section execution
+ Shared locks stay in one place: better lock locality
+ Shared data stays in large core’s (large) caches: better shared
data locality, less ping-ponging

n  Minuses
- Large core dedicated for critical sections: reduced parallel
throughput
- CSCALL and CSDONE control transfer overhead
- Thread-private data needs to be transferred to large core: worse
private data locality

43

ACS Performance Tradeoffs
n  Fewer parallel threads vs. accelerated critical sections

q  Accelerating critical sections offsets loss in throughput
q  As the number of cores (threads) on chip increase:

n  Fractional loss in parallel performance decreases
n  Increased contention for critical sections

makes acceleration more beneficial

n  Overhead of CSCALL/CSDONE vs. better lock locality
q  ACS avoids “ping-ponging” of locks among caches by keeping them at

the large core

n  More cache misses for private data vs. fewer misses
for shared data

44

Cache Misses for Private Data

45

Private Data:
NewSubProblems

Shared Data:
The priority heap

PriorityHeap.insert(NewSubProblems)

Puzzle Benchmark

ACS Performance Tradeoffs
n  Fewer parallel threads vs. accelerated critical sections

q  Accelerating critical sections offsets loss in throughput
q  As the number of cores (threads) on chip increase:

n  Fractional loss in parallel performance decreases
n  Increased contention for critical sections

makes acceleration more beneficial

n  Overhead of CSCALL/CSDONE vs. better lock locality
q  ACS avoids “ping-ponging” of locks among caches by keeping them at

the large core

n  More cache misses for private data vs. fewer misses
for shared data
q  Cache misses reduce if shared data > private data

46

We will get back to this

ACS Comparison Points

n  Conventional
locking

47

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Large
core

ACMP

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Large
core

ACS

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

SCMP

n  Conventional
locking

n  Large core executes
Amdahl’s serial part

n  Large core executes
Amdahl’s serial part
and critical sections

Accelerated Critical Sections: Methodology

n  Workloads: 12 critical section intensive applications
q  Data mining kernels, sorting, database, web, networking

n  Multi-core x86 simulator
q  1 large and 28 small cores
q  Aggressive stream prefetcher employed at each core

n  Details:
q  Large core: 2GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage
q  Small core: 2GHz, in-order, 2-wide, 5-stage
q  Private 32 KB L1, private 256KB L2, 8MB shared L3
q  On-chip interconnect: Bi-directional ring, 5-cycle hop latency

48

ACS Performance

49

0
20
40
60
80

100
120
140
160

pagem
ine

puzz
le

qsort

sq
lite

tsp

iplooku
p

oltp
-1

oltp
-2

sp
ec

jbb

web
cac

he

hmea
n

Sp
ee

du
p

ov
er

 S
C

M
P

Accelerating Sequential Kernels
Accelerating Critical Sections

Equal-area comparison
Number of threads = Best threads

Chip Area = 32 small cores
SCMP = 32 small cores
ACMP = 1 large and 28 small cores

 269 180 185

Coarse-grain locks Fine-grain locks

Equal-Area Comparisons

50

0

1

2

3

4

0	 8	 16	 24	 32	
0

0.5

1

1.5

2

2.5

3

0	 8	 16	 24	 32	
0

1

2

3

4

5

0	 8	 16	 24	 32	
0

2

4

6

8

0	 8	 16	 24	 32	
0

1

2

3

4

0	 8	 16	 24	 32	
0

5

10

15

0	 8	 16	 24	 32	

0

1

2

3

4

5

6

0	 8	 16	 24	 32	
0

2

4

6

8

10

0	 8	 16	 24	 32	
0

2

4

6

8

0	 8	 16	 24	 32	
0

2

4

6

8

10

12

0	 8	 16	 24	 32	
0

0.5

1

1.5

2

2.5

3

0	 8	 16	 24	 32	
0

2

4

6

8

10

12

0	 8	 16	 24	 32	

Sp
ee

du
p

ov
er

 a
 s

m
al

l c
or

e

Chip Area (small cores)

(a) ep (b) is (c) pagemine (d) puzzle (e) qsort (f) tsp

(i) oltp-1 (i) oltp-2 (h) iplookup (k) specjbb (l) webcache (g) sqlite

Number of threads = No. of cores

------ SCMP
------ ACMP
------ ACS

ACS Summary
n  Critical sections reduce performance and limit scalability

n  Accelerate critical sections by executing them on a powerful
core

n  ACS reduces average execution time by:
q  34% compared to an equal-area SCMP
q  23% compared to an equal-area ACMP

n  ACS improves scalability of 7 of the 12 workloads

n  Generalizing the idea: Accelerate all bottlenecks (“critical
paths”) by executing them on a powerful core

51

Talk Outline
n  Problem and Motivation
n  How Do We Get There: Examples
n  Accelerated Critical Sections (ACS)
n  Bottleneck Identification and Scheduling (BIS)
n  Staged Execution and Data Marshaling
n  Thread Cluster Memory Scheduling (if time permits)
n  Ongoing/Future Work
n  Conclusions

52

BIS Summary
n  Problem: Performance and scalability of multithreaded applications

are limited by serializing bottlenecks
q  different types: critical sections, barriers, slow pipeline stages
q  importance (criticality) of a bottleneck can change over time

n  Our Goal: Dynamically identify the most important bottlenecks and
accelerate them
q  How to identify the most critical bottlenecks
q  How to efficiently accelerate them

n  Solution: Bottleneck Identification and Scheduling (BIS)
q  Software: annotate bottlenecks (BottleneckCall, BottleneckReturn) and

implement waiting for bottlenecks with a special instruction (BottleneckWait)
q  Hardware: identify bottlenecks that cause the most thread waiting and

accelerate those bottlenecks on large cores of an asymmetric multi-core system

n  Improves multithreaded application performance and scalability,
outperforms previous work, and performance improves with more cores

53

Bottlenecks in Multithreaded Applications
Definition: any code segment for which threads contend (i.e. wait)

Examples:

n  Amdahl’s serial portions
q  Only one thread exists à on the critical path

n  Critical sections
q  Ensure mutual exclusion à likely to be on the critical path if contended

n  Barriers
q  Ensure all threads reach a point before continuing à the latest thread arriving

is on the critical path

n  Pipeline stages
q  Different stages of a loop iteration may execute on different threads,

slowest stage makes other stages wait à on the critical path

54

Observation: Limiting Bottlenecks Change Over Time

A=full linked list; B=empty linked list
repeat

 Lock A
 Traverse list A
 Remove X from A
 Unlock A
 Compute on X
 Lock B
 Traverse list B
 Insert X into B
 Unlock B

until A is empty

55

Lock A is limiter
Lock B is limiter

32 threads

Limiting Bottlenecks Do Change on Real Applications

56

MySQL running Sysbench queries, 16 threads

Previous Work on Bottleneck Acceleration
n  Asymmetric CMP (ACMP) proposals [Annavaram+, ISCA’05]

[Morad+, Comp. Arch. Letters’06] [Suleman+, Tech. Report’07]
q  Accelerate only the Amdahl’s bottleneck

n  Accelerated Critical Sections (ACS) [Suleman+, ASPLOS’09]
q  Accelerate only critical sections
q  Does not take into account importance of critical sections

n  Feedback-Directed Pipelining (FDP) [Suleman+, PACT’10 and PhD thesis’11]
q  Accelerate only stages with lowest throughput
q  Slow to adapt to phase changes (software based library)

No previous work can accelerate all three types of bottlenecks or
quickly adapts to fine-grain changes in the importance of bottlenecks

Our goal: general mechanism to identify performance-limiting bottlenecks of
any type and accelerate them on an ACMP

57

58

Bottleneck Identification and Scheduling (BIS)

n  Key insight:
q  Thread waiting reduces parallelism and

is likely to reduce performance
q  Code causing the most thread waiting

à likely critical path

n  Key idea:
q  Dynamically identify bottlenecks that cause

the most thread waiting
q  Accelerate them (using powerful cores in an ACMP)

1.  Annotate
bottleneck code

2.  Implement waiting
 for bottlenecks

1.  Measure thread
waiting cycles (TWC)
for each bottleneck

2.  Accelerate bottleneck(s)
with the highest TWC

Binary containing
 BIS instructions

Compiler/Library/Programmer Hardware

59

Bottleneck Identification and Scheduling (BIS)

 while cannot acquire lock
 Wait loop for watch_addr
 acquire lock
 …
 release lock

Critical Sections: Code Modifications

 …
 BottleneckCall bid, targetPC
 …

targetPC: while cannot acquire lock
 Wait loop for watch_addr
 acquire lock
 …
 release lock
 BottleneckReturn bid

60

 BottleneckWait bid, watch_addr

 …

 … Used to keep track of
waiting cycles
Used to enable

acceleration

61

Barriers: Code Modifications
 …
 BottleneckCall bid, targetPC
 enter barrier
 while not all threads in barrier
 BottleneckWait bid, watch_addr
 exit barrier
 …

targetPC: code running for the barrier
 …
 BottleneckReturn bid

62

Pipeline Stages: Code Modifications

 BottleneckCall bid, targetPC
 …

targetPC: while not done
 while empty queue
 BottleneckWait prev_bid
 dequeue work
 do the work …
 while full queue
 BottleneckWait next_bid
 enqueue next work
 BottleneckReturn bid

1.  Annotate
bottleneck code

2.  Implements waiting
 for bottlenecks

1.  Measure thread
waiting cycles (TWC)
for each bottleneck

2.  Accelerate bottleneck(s)
with the highest TWC

Binary containing
 BIS instructions

Compiler/Library/Programmer Hardware

63

Bottleneck Identification and Scheduling (BIS)

BIS: Hardware Overview

n  Performance-limiting bottleneck identification and
acceleration are independent tasks

n  Acceleration can be accomplished in multiple ways
q  Increasing core frequency/voltage
q  Prioritization in shared resources [Ebrahimi+, MICRO’11]
q  Migration to faster cores in an Asymmetric CMP

64

Large core

Small
 core

Small
 core

Small
 core

Small
 core

Small
 core

Small
 core

Small
 core

Small
 core

Small
 core

Small
 core

Small
 core

Small
 core

1.  Annotate
bottleneck code

2.  Implements waiting
 for bottlenecks

1.  Measure thread
waiting cycles (TWC)
for each bottleneck

2.  Accelerate bottleneck(s)
with the highest TWC

Binary containing
 BIS instructions

Compiler/Library/Programmer Hardware

65

Bottleneck Identification and Scheduling (BIS)

Determining Thread Waiting Cycles for Each Bottleneck

66

Small Core 1 Large Core 0

Small Core 2

Bottleneck
Table (BT)

…

BottleneckWait x4500

bid=x4500, waiters=1, twc = 0 bid=x4500, waiters=1, twc = 1 bid=x4500, waiters=1, twc = 2

BottleneckWait x4500

bid=x4500, waiters=2, twc = 5 bid=x4500, waiters=2, twc = 7 bid=x4500, waiters=2, twc = 9 bid=x4500, waiters=1, twc = 9 bid=x4500, waiters=1, twc = 10 bid=x4500, waiters=1, twc = 11 bid=x4500, waiters=0, twc = 11 bid=x4500, waiters=1, twc = 3 bid=x4500, waiters=1, twc = 4 bid=x4500, waiters=1, twc = 5

1.  Annotate
bottleneck code

2.  Implements waiting
 for bottlenecks

1.  Measure thread
waiting cycles (TWC)
for each bottleneck

2.  Accelerate bottleneck(s)
with the highest TWC

Binary containing
 BIS instructions

Compiler/Library/Programmer Hardware

67

Bottleneck Identification and Scheduling (BIS)

Bottleneck Acceleration

68

Small Core 1 Large Core 0

Small Core 2

Bottleneck
Table (BT)

…

Scheduling Buffer (SB)
bid=x4700, pc, sp, core1

Acceleration
Index Table (AIT)

BottleneckCall x4600
Execute locally

BottleneckCall x4700

bid=x4700 , large core 0

Execute remotely

AIT

bid=x4600, twc=100

bid=x4700, twc=10000

BottleneckReturn x4700

bid=x4700 , large core 0

bid=x4700, pc, sp, core1

ß twc < Threshold

ß twc > Threshold

Execute locally Execute remotely

BIS Mechanisms
n  Basic mechanisms for BIS:

q  Determining Thread Waiting Cycles ü
q  Accelerating Bottlenecks ü

n  Mechanisms to improve performance and generality of BIS:
q  Dealing with false serialization
q  Preemptive acceleration
q  Support for multiple large cores

69

False Serialization and Starvation

n  Observation: Bottlenecks are picked from Scheduling Buffer
in Thread Waiting Cycles order

n  Problem: An independent bottleneck that is ready to execute
has to wait for another bottleneck that has higher thread
waiting cycles à False serialization

n  Starvation: Extreme false serialization

n  Solution: Large core detects when a bottleneck is ready to
execute in the Scheduling Buffer but it cannot à sends the
bottleneck back to the small core

70

Preemptive Acceleration

n  Observation: A bottleneck executing on a small core can
become the bottleneck with the highest thread waiting cycles

n  Problem: This bottleneck should really be accelerated (i.e.,
executed on the large core)

n  Solution: The Bottleneck Table detects the situation and
sends a preemption signal to the small core. Small core:
q  saves register state on stack, ships the bottleneck to the large core

n  Main acceleration mechanism for barriers and pipeline stages

71

Support for Multiple Large Cores

n  Objective: to accelerate independent bottlenecks

n  Each large core has its own Scheduling Buffer

(shared by all of its SMT threads)

n  Bottleneck Table assigns each bottleneck to
a fixed large core context to
q  preserve cache locality
q  avoid busy waiting

n  Preemptive acceleration extended to send multiple
instances of a bottleneck to different large core contexts

72

Hardware Cost
n  Main structures:

q  Bottleneck Table (BT): global 32-entry associative cache,
minimum-Thread-Waiting-Cycle replacement

q  Scheduling Buffers (SB): one table per large core,
as many entries as small cores

q  Acceleration Index Tables (AIT): one 32-entry table
per small core

n  Off the critical path

n  Total storage cost for 56-small-cores, 2-large-cores < 19 KB

73

BIS Performance Trade-offs
n  Faster bottleneck execution vs. fewer parallel threads

q  Acceleration offsets loss of parallel throughput with large core counts

n  Better shared data locality vs. worse private data locality
q  Shared data stays on large core (good)
q  Private data migrates to large core (bad, but latency hidden with Data

Marshaling [Suleman+, ISCA’10])

n  Benefit of acceleration vs. migration latency
q  Migration latency usually hidden by waiting (good)
q  Unless bottleneck not contended (bad, but likely not on critical path)

74

Methodology

n  Workloads: 8 critical section intensive, 2 barrier intensive
and 2 pipeline-parallel applications
q  Data mining kernels, scientific, database, web, networking, specjbb

n  Cycle-level multi-core x86 simulator
q  8 to 64 small-core-equivalent area, 0 to 3 large cores, SMT
q  1 large core is area-equivalent to 4 small cores

n  Details:
q  Large core: 4GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage
q  Small core: 4GHz, in-order, 2-wide, 5-stage
q  Private 32KB L1, private 256KB L2, shared 8MB L3
q  On-chip interconnect: Bi-directional ring, 2-cycle hop latency

75

BIS Comparison Points (Area-Equivalent)
n  SCMP (Symmetric CMP)

q  All small cores
q  Results in the paper

n  ACMP (Asymmetric CMP)
q  Accelerates only Amdahl’s serial portions
q  Our baseline

n  ACS (Accelerated Critical Sections)
q  Accelerates only critical sections and Amdahl’s serial portions
q  Applicable to multithreaded workloads

(iplookup, mysql, specjbb, sqlite, tsp, webcache, mg, ft)

n  FDP (Feedback-Directed Pipelining)
q  Accelerates only slowest pipeline stages
q  Applicable to pipeline-parallel workloads (rank, pagemine)

76

BIS Performance Improvement

77

Optimal number of threads, 28 small cores, 1 large core

n  BIS outperforms ACS/FDP by 15% and ACMP by 32%
n  BIS improves scalability on 4 of the benchmarks

barriers, which ACS
cannot accelerate

limiting bottlenecks change over time
ACS FDP

Why Does BIS Work?

78

n  Coverage: fraction of program critical path that is actually identified as bottlenecks
q  39% (ACS/FDP) to 59% (BIS)

n  Accuracy: identified bottlenecks on the critical path over total identified bottlenecks
q  72% (ACS/FDP) to 73.5% (BIS)

Fraction of execution time spent on predicted-important bottlenecks

Actually critical

BIS Scaling Results

79

Performance increases with:

1) More small cores

n  Contention due to bottlenecks
increases

n  Loss of parallel throughput due
to large core reduces

2) More large cores
n  Can accelerate

independent bottlenecks
n  Without reducing parallel

throughput (enough cores)

2.4%
6.2%

15% 19%

BIS Summary
n  Serializing bottlenecks of different types limit performance of

multithreaded applications: Importance changes over time

n  BIS is a hardware/software cooperative solution:
q  Dynamically identifies bottlenecks that cause the most thread waiting

and accelerates them on large cores of an ACMP
q  Applicable to critical sections, barriers, pipeline stages

n  BIS improves application performance and scalability:
q  15% speedup over ACS/FDP
q  Can accelerate multiple independent critical bottlenecks
q  Performance benefits increase with more cores

n  Provides comprehensive fine-grained bottleneck acceleration
for future ACMPs with little or no programmer effort

80

Talk Outline
n  Problem and Motivation
n  How Do We Get There: Examples
n  Accelerated Critical Sections (ACS)
n  Bottleneck Identification and Scheduling (BIS)
n  Staged Execution and Data Marshaling
n  Thread Cluster Memory Scheduling (if time permits)
n  Ongoing/Future Work
n  Conclusions

81

Staged Execution Model (I)
n  Goal: speed up a program by dividing it up into pieces
n  Idea

q  Split program code into segments
q  Run each segment on the core best-suited to run it
q  Each core assigned a work-queue, storing segments to be run

n  Benefits
q  Accelerates segments/critical-paths using specialized/heterogeneous cores
q  Exploits inter-segment parallelism
q  Improves locality of within-segment data

n  Examples
q  Accelerated critical sections, Bottleneck identification and scheduling
q  Producer-consumer pipeline parallelism
q  Task parallelism (Cilk, Intel TBB, Apple Grand Central Dispatch)
q  Special-purpose cores and functional units

82

83

Staged Execution Model (II)

LOAD X
STORE Y
STORE Y

LOAD Y

….
STORE Z

LOAD Z

….

84

Staged Execution Model (III)

LOAD X
STORE Y
STORE Y

LOAD Y
….

STORE Z

LOAD Z
….

Segment S0

Segment S1

Segment S2

Split code into segments

85

Staged Execution Model (IV)

Core 0 Core 1 Core 2

Work-queues

Instances
 of S0

Instances
 of S1

Instances
 of S2

86

LOAD X
STORE Y
STORE Y

LOAD Y
….

STORE Z

LOAD Z
….

Core 0 Core 1 Core 2

S0

S1

S2

Staged Execution Model: Segment Spawning

Staged Execution Model: Two Examples

n  Accelerated Critical Sections [Suleman et al., ASPLOS 2009]
q  Idea: Ship critical sections to a large core in an asymmetric CMP

n  Segment 0: Non-critical section
n  Segment 1: Critical section

q  Benefit: Faster execution of critical section, reduced serialization,
improved lock and shared data locality

n  Producer-Consumer Pipeline Parallelism
q  Idea: Split a loop iteration into multiple “pipeline stages” where

one stage consumes data produced by the next stage à each
stage runs on a different core
n  Segment N: Stage N

q  Benefit: Stage-level parallelism, better locality à faster execution

87

88

Problem: Locality of Inter-segment Data

LOAD X
STORE Y
STORE Y

LOAD Y
….

STORE Z

LOAD Z
….

Transfer Y

Transfer Z

S0

S1

S2

Core 0 Core 1 Core 2

Cache Miss

Cache Miss

Problem: Locality of Inter-segment Data
n  Accelerated Critical Sections [Suleman et al., ASPLOS 2010]

q  Idea: Ship critical sections to a large core in an ACMP
q  Problem: Critical section incurs a cache miss when it touches data

produced in the non-critical section (i.e., thread private data)

n  Producer-Consumer Pipeline Parallelism
q  Idea: Split a loop iteration into multiple “pipeline stages” à each

stage runs on a different core
q  Problem: A stage incurs a cache miss when it touches data

produced by the previous stage

n  Performance of Staged Execution limited by inter-segment
cache misses

89

90

What if We Eliminated All Inter-segment Misses?

Talk Outline
n  Problem and Motivation
n  How Do We Get There: Examples
n  Accelerated Critical Sections (ACS)
n  Bottleneck Identification and Scheduling (BIS)
n  Staged Execution and Data Marshaling
n  Thread Cluster Memory Scheduling (if time permits)
n  Ongoing/Future Work
n  Conclusions

91

92

Terminology

LOAD X
STORE Y
STORE Y

LOAD Y
….

STORE Z

LOAD Z
….

Transfer Y

Transfer Z

S0

S1

S2

Inter-segment data: Cache
block written by one segment
and consumed by the next
segment

Generator instruction:
The last instruction to write to an
inter-segment cache block in a segment

Core 0 Core 1 Core 2

Key Observation and Idea
n  Observation: Set of generator instructions is stable over

execution time and across input sets

n  Idea:
q  Identify the generator instructions
q  Record cache blocks produced by generator instructions
q  Proactively send such cache blocks to the next segment’s core

before initiating the next segment

n  Suleman et al., “Data Marshaling for Multi-Core
Architectures,” ISCA 2010, IEEE Micro Top Picks 2011.

93

Data Marshaling

1.  Identify generator
instructions

2.  Insert marshal
instructions

1.  Record generator-
 produced addresses
2.  Marshal recorded
 blocks to next core Binary containing

generator prefixes &
marshal Instructions

Compiler/Profiler Hardware

94

Data Marshaling

1.  Identify generator
instructions

2.  Insert marshal
instructions

1.  Record generator-
 produced addresses
2.  Marshal recorded
 blocks to next core Binary containing

generator prefixes &
marshal Instructions

Hardware

95

Compiler/Profiler

96

Profiling Algorithm

LOAD X
STORE Y
STORE Y

LOAD Y
 ….

STORE Z

LOAD Z
 ….

Mark as Generator
Instruction

Inter-segment data

97

Marshal Instructions

 LOAD X
 STORE Y
G: STORE Y
 MARSHAL C1

 LOAD Y
 ….
G:STORE Z
 MARSHAL C2

0x5: LOAD Z
 ….

When to send (Marshal)

Where to send (C1)

DM Support/Cost
n  Profiler/Compiler: Generators, marshal instructions
n  ISA: Generator prefix, marshal instructions
n  Library/Hardware: Bind next segment ID to a physical core

n  Hardware
q  Marshal Buffer

n  Stores physical addresses of cache blocks to be marshaled
n  16 entries enough for almost all workloads à 96 bytes per core

q  Ability to execute generator prefixes and marshal instructions
q  Ability to push data to another cache

98

DM: Advantages, Disadvantages
n  Advantages

q  Timely data transfer: Push data to core before needed
q  Can marshal any arbitrary sequence of lines: Identifies

generators, not patterns
q  Low hardware cost: Profiler marks generators, no need for

hardware to find them

n  Disadvantages
q  Requires profiler and ISA support
q  Not always accurate (generator set is conservative): Pollution

at remote core, wasted bandwidth on interconnect
n  Not a large problem as number of inter-segment blocks is small

99

100

Accelerated Critical Sections with DM

Small Core 0

Marshal
Buffer

Large Core

 LOAD X
 STORE Y
G: STORE Y
 CSCALL

 LOAD Y
 ….
G:STORE Z
 CSRET

Cache Hit!

L2
Cache

L2
Cache Data Y

Addr Y

Critical
Section

Accelerated Critical Sections: Methodology

n  Workloads: 12 critical section intensive applications
q  Data mining kernels, sorting, database, web, networking
q  Different training and simulation input sets

n  Multi-core x86 simulator
q  1 large and 28 small cores
q  Aggressive stream prefetcher employed at each core

n  Details:
q  Large core: 2GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage
q  Small core: 2GHz, in-order, 2-wide, 5-stage
q  Private 32 KB L1, private 256KB L2, 8MB shared L3
q  On-chip interconnect: Bi-directional ring, 5-cycle hop latency

101

102

DM on Accelerated Critical Sections: Results

0

20

40

60

80

100

120

140

is

pag
em

ine

puzz
le

qso
rt

tsp

maz
e

nque
en

sq
lite

iploo
ku

p

mys
ql-1

mys
ql-2

web
ca

ch
e

hmea
n

Sp
ee

du
p

ov
er

 A
C

S

DM
Ideal

 168 170

8.7%

103

Pipeline Parallelism

Core 0

Marshal
Buffer

Core 1

 LOAD X
 STORE Y
G: STORE Y
 MARSHAL C1

 LOAD Y
 ….
G:STORE Z
 MARSHAL C2

0x5: LOAD Z
 ….

Cache Hit!

L2
Cache

L2
Cache Data Y

Addr Y

S0

S1

S2

Pipeline Parallelism: Methodology

n  Workloads: 9 applications with pipeline parallelism
q  Financial, compression, multimedia, encoding/decoding
q  Different training and simulation input sets

n  Multi-core x86 simulator
q  32-core CMP: 2GHz, in-order, 2-wide, 5-stage
q  Aggressive stream prefetcher employed at each core

q  Private 32 KB L1, private 256KB L2, 8MB shared L3
q  On-chip interconnect: Bi-directional ring, 5-cycle hop latency

104

105

DM on Pipeline Parallelism: Results

0

20

40

60

80

100

120

140

160

black

co
mpres

s

dedupD

dedupE

fer
ret

im
ag

e

mtw
ist

ran
k

sig
n

hmea
n Sp

ee
du

p
ov

er
 B

as
el

in
e

 DM
 Ideal

16%

DM Coverage, Accuracy, Timeliness

n  High coverage of inter-segment misses in a timely manner
n  Medium accuracy does not impact performance

q  Only 5.0 and 6.8 cache blocks marshaled for average segment

106

0
10
20
30
40
50
60
70
80
90
100

ACS Pipeline

Pe
rc
en
ta
ge

Coverage
Accuracy
Timeliness

Scaling Results

n  DM performance improvement increases with
q  More cores
q  Higher interconnect latency
q  Larger private L2 caches

n  Why? Inter-segment data misses become a larger bottleneck
q  More cores à More communication
q  Higher latency à Longer stalls due to communication
q  Larger L2 cache à Communication misses remain

107

108

Other Applications of Data Marshaling

n  Can be applied to other Staged Execution models
q  Task parallelism models

n  Cilk, Intel TBB, Apple Grand Central Dispatch
q  Special-purpose remote functional units
q  Computation spreading [Chakraborty et al., ASPLOS’06]

q  Thread motion/migration [e.g., Rangan et al., ISCA’09]

n  Can be an enabler for more aggressive SE models

q  Lowers the cost of data migration
n  an important overhead in remote execution of code segments

q  Remote execution of finer-grained tasks can become more
feasible à finer-grained parallelization in multi-cores

Data Marshaling Summary
n  Inter-segment data transfers between cores limit the benefit

of promising Staged Execution (SE) models

n  Data Marshaling is a hardware/software cooperative solution:
detect inter-segment data generator instructions and push
their data to next segment’s core
q  Significantly reduces cache misses for inter-segment data
q  Low cost, high-coverage, timely for arbitrary address sequences
q  Achieves most of the potential of eliminating such misses

n  Applicable to several existing Staged Execution models
q  Accelerated Critical Sections: 9% performance benefit
q  Pipeline Parallelism: 16% performance benefit

n  Can enable new modelsà very fine-grained remote execution

109

Talk Outline
n  Problem and Motivation
n  How Do We Get There: Examples
n  Accelerated Critical Sections (ACS)
n  Bottleneck Identification and Scheduling (BIS)
n  Staged Execution and Data Marshaling
n  Thread Cluster Memory Scheduling (if time permits)
n  Ongoing/Future Work
n  Conclusions

110

Motivation
•  Memory	 is	 a	 shared	 resource	

•  Threads’	 requests	 contend	 for	 memory	
– Degrada>on	 in	 single	 thread	 performance	
–  Can	 even	 lead	 to	 starva>on	

•  How	 to	 schedule	 memory	 requests	 to	 increase	
both	 system	 throughput	 and	 fairness?	

111	

Core	 Core	

Core	 Core	
Memory	

1	

3	

5	

7	

9	

11	

13	

15	

17	

8	 8.2	 8.4	 8.6	 8.8	 9	

M
ax
im

um
	 S
lo
w
do

w
n	

Weighted	 Speedup	

FRFCFS	
STFM	
PAR-‐BS	
ATLAS	

Previous Scheduling Algorithms are Biased

112	

System	 throughput	 	
bias	

Fairness	 	
bias	

No	 previous	 memory	 scheduling	 algorithm	 provides	
both	 the	 best	 fairness	 and	 system	 throughput	

BeUer	 system	 throughput	

Be
U
er
	 fa

irn
es
s	

Take	 turns	 accessing	 memory	

Why do Previous Algorithms Fail?

113	

Fairness	 biased	 approach	

thread	 C	

thread	 B	

thread	 A	

less	 memory	 	
intensive	

higher	
priority	

Priori>ze	 less	 memory-‐intensive	 threads	

Throughput	 biased	 approach	

Good	 for	 throughput	

starva3on	 è	 unfairness	

thread	 C	 thread	 B	 thread	 A	

Does	 not	 starve	

not	 priori3zed	 è	 	
reduced	 throughput	

Single	 policy	 for	 all	 threads	 is	 insufficient	

Insight: Achieving Best of Both Worlds

114	

thread	

thread	

higher	
priority	

thread	

thread	

thread	 	

thread	

thread	

thread	

Priori:ze	 memory-‐non-‐intensive	 threads	

For	 Throughput	

Unfairness	 caused	 by	 memory-‐intensive	
being	 priori:zed	 over	 each	 other	 	

• 	 Shuffle	 threads	

Memory-‐intensive	 threads	 have	 	
different	 vulnerability	 to	 interference	

• 	 Shuffle	 asymmetrically	

For	 Fairness	

thread	

thread	

thread	

thread	

Overview: Thread Cluster Memory Scheduling
1.   Group	 threads	 into	 two	 clusters	
2.   Priori:ze	 non-‐intensive	 cluster	
3.   Different	 policies	 for	 each	 cluster	

115	

thread	

Threads	 in	 the	 system	

thread	

thread	

thread	

thread	

thread	

thread	

Non-‐intensive	 	
cluster	

Intensive	 cluster	

thread	

thread	

thread	

Memory-‐non-‐intensive	 	

Memory-‐intensive	 	

Priori3zed	

higher	
priority	

higher	
priority	

Throughput	

Fairness	

Priori3ze	 threads	 according	 to	 MPKI	

•  Increases	 system	 throughput	
– Least	 intensive	 thread	 has	 the	 greatest	 poten>al	
for	 making	 progress	 in	 the	 processor	

Non-Intensive Cluster

116	

thread	

thread	

thread	

thread	

higher	
priority	 lowest	 MPKI	

highest	 MPKI	

Periodically	 shuffle	 the	 priority	 of	 threads	
	

•  Is	 trea>ng	 all	 threads	 equally	 good	 enough?	
•  BUT:	 Equal	 turns	 ≠	 Same	 slowdown	

Intensive Cluster

117	

thread	

thread	

thread	

Increases	 fairness	

Most	 priori3zed	 higher	
priority	

thread	

thread	

thread	

Results: Fairness vs. Throughput

FRFCFS	

STFM	

PAR-‐BS	

ATLAS	

TCM	

4	

6	

8	

10	

12	

14	

16	

7.5	 8	 8.5	 9	 9.5	 10	

M
ax
im

um
	 S
lo
w
do

w
n	

Weighted	 Speedup	

118	

BeUer	 system	 throughput	

Be
U
er
	 fa

irn
es
s	

5%	

39%	

8%	
5%	

TCM	 provides	 best	 fairness	 and	 system	 throughput	

Averaged	 over	 96	 workloads	

Results: Fairness-Throughput Tradeoff

119	

2	

4	

6	

8	

10	

12	

12	 12.5	 13	 13.5	 14	 14.5	 15	 15.5	 16	

M
ax
im

um
	 S
lo
w
do

w
n	

Weighted	 Speedup	

When	 configura:on	 parameter	 is	 varied…	

AdjusDng	 	
ClusterThreshold	

TCM	 allows	 robust	 fairness-‐throughput	 tradeoff	 	

STFM	
PAR-‐BS	

ATLAS	

TCM	

BeUer	 system	 throughput	

Be
U
er
	 fa

irn
es
s	 FRFCFS	

TCM Summary

120	

•  No	 previous	 memory	 scheduling	 algorithm	 provides	
both	 high	 system	 throughput	 and	 fairness	
– Problem:	 They	 use	 a	 single	 policy	 for	 all	 threads	

•  TCM	 is	 a	 heterogeneous	 scheduling	 policy	
1.  Priori>ze	 non-‐intensive	 cluster	 è	 throughput	
2.  Shuffle	 priori>es	 in	 intensive	 cluster	 è	 fairness	
3.  Shuffling	 should	 favor	 nice	 threads	 è	 fairness	

•  Heterogeneity	 in	 memory	 scheduling	 provides	 the	 	
best	 system	 throughput	 and	 fairness	

More Details on TCM
•  Kim	 et	 al.,	 “Thread	 Cluster	 Memory	 Scheduling:	
Exploi>ng	 Differences	 in	 Memory	 Access	 Behavior,”	
MICRO	 2010,	 Top	 Picks	 2011.	

121	

Memory Control in CPU-GPU Systems
n  Observation: Heterogeneous CPU-GPU systems require

memory schedulers with large request buffers

n  Problem: Existing monolithic application-aware memory
scheduler designs are hard to scale to large request buffer sizes

n  Solution: Staged Memory Scheduling (SMS)
decomposes the memory controller into three simple stages:
1) Batch formation: maintains row buffer locality
2) Batch scheduler: reduces interference between applications
3) DRAM command scheduler: issues requests to DRAM

n  Compared to state-of-the-art memory schedulers:
q  SMS is significantly simpler and more scalable
q  SMS provides higher performance and fairness

122 Ausavarungnirun et al., “Staged Memory Scheduling,” ISCA 2012.

Asymmetric Memory QoS in a Parallel Application

n  Threads in a multithreaded application are inter-dependent
n  Some threads can be on the critical path of execution due

to synchronization; some threads are not
n  How do we schedule requests of inter-dependent threads to

maximize multithreaded application performance?

n  Idea: Estimate limiter threads likely to be on the critical path and
prioritize their requests; shuffle priorities of non-limiter threads
to reduce memory interference among them [Ebrahimi+, MICRO’11]

n  Hardware/software cooperative limiter thread estimation:
n  Thread executing the most contended critical section
n  Thread that is falling behind the most in a parallel for loop

123 Ebrahimi et al., “Parallel Application Memory Scheduling,” MICRO 2011.

Talk Outline
n  Problem and Motivation
n  How Do We Get There: Examples
n  Accelerated Critical Sections (ACS)
n  Bottleneck Identification and Scheduling (BIS)
n  Staged Execution and Data Marshaling
n  Thread Cluster Memory Scheduling (if time permits)
n  Ongoing/Future Work
n  Conclusions

124

Related Ongoing/Future Work
n  Dynamically asymmetric cores
n  Memory system design for asymmetric cores

n  Asymmetric memory systems
q  Phase Change Memory (or Technology X) + DRAM
q  Hierarchies optimized for different access patterns

n  Asymmetric on-chip interconnects
q  Interconnects optimized for different application requirements

n  Asymmetric resource management algorithms
q  E.g., network congestion control

n  Interaction of multiprogrammed multithreaded workloads

125

Talk Outline
n  Problem and Motivation
n  How Do We Get There: Examples
n  Accelerated Critical Sections (ACS)
n  Bottleneck Identification and Scheduling (BIS)
n  Staged Execution and Data Marshaling
n  Thread Cluster Memory Scheduling (if time permits)
n  Ongoing/Future Work
n  Conclusions

126

Summary
n  Applications and phases have varying performance requirements
n  Designs evaluated on multiple metrics/constraints: energy,

performance, reliability, fairness, …

n  One-size-fits-all design cannot satisfy all requirements and metrics:
cannot get the best of all worlds

n  Asymmetry in design enables tradeoffs: can get the best of all
worlds
q  Asymmetry in core microarch. à Accelerated Critical Sections, BIS, DM

à Good parallel performance + Good serialized performance
q  Asymmetry in memory scheduling à Thread Cluster Memory Scheduling

à Good throughput + good fairness

n  Simple asymmetric designs can be effective and low-cost

127

Thank You

Onur Mutlu

onur@cmu.edu
http://www.ece.cmu.edu/~omutlu

Email me with any questions and feedback!

Architecting and Exploiting
Asymmetry in Multi-Core Architectures

Onur Mutlu
onur@cmu.edu
July 23, 2013

BSC/UPC

Vector Machine Organization (CRAY-1)
n  CRAY-1
n  Russell, “The CRAY-1

computer system,”
CACM 1978.

n  Scalar and vector modes
n  8 64-element vector

registers
n  64 bits per element
n  16 memory banks
n  8 64-bit scalar registers
n  8 24-bit address registers

130

Identifying and Accelerating
Resource Contention Bottlenecks

Thread Serialization
n  Three fundamental causes

 1. Synchronization

 2. Load imbalance

 3. Resource contention

132

Memory Contention as a Bottleneck
n  Problem:

q  Contended memory regions cause serialization of threads
q  Threads accessing such regions can form the critical path
q  Data-intensive workloads (MapReduce, GraphLab, Graph500)

can be sped up by 1.5 to 4X by ideally removing contention

n  Idea:
q  Identify contended regions dynamically
q  Prioritize caching the data from threads which are slowed

down the most by such regions in faster DRAM/eDRAM

n  Benefits:
q  Reduces contention, serialization, critical path

133

Evaluation
n  Workloads: MapReduce, GraphLab, Graph500

n  Cycle-level x86 platform simulator
q  CPU: 8 out-of-order cores, 32KB private L1, 512KB shared L2
q  Hybrid Memory: DDR3 1066 MT/s, 32MB DRAM, 8GB PCM

n  Mechanisms
q  Baseline: DRAM as a conventional cache to PCM
q  CacheMiss: Prioritize caching data from threads with highest

cache miss latency
q  Region: Cache data from most contended memory regions
q  ACTS: Prioritize caching data from threads most slowed down

due to memory region contention

134

Caching Results

0%

5%

10%

15%

Av
er

ag
e

Pr
og

ra
m

 S
pe

ed
up

CacheMiss
Region
ACTS

0%

25%

50%

75%

100%

125%

N
or

m
al

iz
ed

 E
D

CacheMiss
Region
ACTS.Group

2

135

Heterogeneous Main Memory

Heterogeneous Memory Systems

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and Scalable Hybrid Memories,”
IEEE Comp. Arch. Letters, 2012.

CPU
DRAM
Ctrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
Ctrl DRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

One Option: DRAM as a Cache for PCM
n  PCM is main memory; DRAM caches memory rows/blocks

q  Benefits: Reduced latency on DRAM cache hit; write filtering

n  Memory controller hardware manages the DRAM cache
q  Benefit: Eliminates system software overhead

n  Three issues:
q  What data should be placed in DRAM versus kept in PCM?
q  What is the granularity of data movement?
q  How to design a low-cost hardware-managed DRAM cache?

n  Two idea directions:
q  Locality-aware data placement [Yoon+ , CMU TR 2011]

q  Cheap tag stores and dynamic granularity [Meza+, IEEE CAL 2012]

138

DRAM vs. PCM: An Observation
n  Row buffers are the same in DRAM and PCM
n  Row buffer hit latency same in DRAM and PCM
n  Row buffer miss latency small in DRAM, large in PCM

n  Accessing the row buffer in PCM is fast
n  What incurs high latency is the PCM array access à avoid this

139

CPU
DRAM
Ctrl

PCM
Ctrl

Bank Bank Bank Bank

Row	 buffer	
DRAM Cache PCM Main Memory

N ns row hit
Fast row miss

N ns row hit
Slow row miss

Row-Locality-Aware Data Placement
n  Idea: Cache in DRAM only those rows that

q  Frequently cause row buffer conflicts à because row-conflict latency
is smaller in DRAM

q  Are reused many times à to reduce cache pollution and bandwidth
waste

n  Simplified rule of thumb:
q  Streaming accesses: Better to place in PCM
q  Other accesses (with some reuse): Better to place in DRAM

n  Bridges half of the performance gap between all-DRAM and all-
PCM memory on memory-intensive workloads

n  Yoon et al., “Row Buffer Locality-Aware Data Placement in Hybrid
Memories,” CMU SAFARI Technical Report, 2011.

140

The Problem with Large DRAM Caches
n  A large DRAM cache requires a large metadata (tag +

block-based information) store
n  How do we design an efficient DRAM cache?

141

DRAM	 PCM	

CPU

(small, fast cache) (high capacity)

Mem	
Ctlr	

Mem	
Ctlr	

LOAD	 X	

Access X

Metadata:	
X	 à	 DRAM	

X	

Idea 1: Tags in Memory
n  Store tags in the same row as data in DRAM

q  Store metadata in same row as their data
q  Data and metadata can be accessed together

n  Benefit: No on-chip tag storage overhead
n  Downsides:

q  Cache hit determined only after a DRAM access
q  Cache hit requires two DRAM accesses

142

Cache	 block	 2	 Cache	 block	 0	 Cache	 block	 1	
DRAM row

Tag0	 Tag1	 Tag2	

Idea 2: Cache Tags in SRAM
n  Recall Idea 1: Store all metadata in DRAM

q  To reduce metadata storage overhead

n  Idea 2: Cache in on-chip SRAM frequently-accessed
metadata
q  Cache only a small amount to keep SRAM size small

143

Idea 3: Dynamic Data Transfer Granularity
n  Some applications benefit from caching more data

q  They have good spatial locality

n  Others do not
q  Large granularity wastes bandwidth and reduces cache

utilization

n  Idea 3: Simple dynamic caching granularity policy
q  Cost-benefit analysis to determine best DRAM cache block size
q  Group main memory into sets of rows
q  Some row sets follow a fixed caching granularity
q  The rest of main memory follows the best granularity

n  Cost–benefit analysis: access latency versus number of cachings
n  Performed every quantum

144

Methodology
n  System: 8 out-of-order cores at 4 GHz

n  Memory: 512 MB direct-mapped DRAM, 8 GB PCM
q  128B caching granularity
q  DRAM row hit (miss): 200 cycles (400 cycles)
q  PCM row hit (clean / dirty miss): 200 cycles (640 / 1840 cycles)

n  Evaluated metadata storage techniques
q  All SRAM system (8MB of SRAM)
q  Region metadata storage
q  TIM metadata storage (same row as data)
q  TIMBER, 64-entry direct-mapped (8KB of SRAM)

145

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

SRAM	 Region	 TIM	 TIMBER	 TIMBER-‐Dyn	

N
or
m
al
iz
ed

	 W
ei
gh
te
d	
Sp
ee
du

p	

146	

TIMBER	 Performance	

-‐6%	

Meza,	 Chang,	 Yoon,	 Mutlu,	 Ranganathan,	 “Enabling	 Efficient	 and	
Scalable	 Hybrid	 Memories,”	 IEEE	 Comp.	 Arch.	 LeUers,	 2012.	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

SRAM	 Region	 TIM	 TIMBER	 TIMBER-‐Dyn	

N
or
m
al
iz
ed

	 P
er
fo
rm

an
ce
	 p
er
	 W

aY
	

(fo
r	 M

em
or
y	
Sy
st
em

)	

147	

TIMBER	 Energy	 Efficiency	
18%	

Meza,	 Chang,	 Yoon,	 Mutlu,	 Ranganathan,	 “Enabling	 Efficient	 and	
Scalable	 Hybrid	 Memories,”	 IEEE	 Comp.	 Arch.	 LeUers,	 2012.	

Summary
n  Applications and phases have varying performance requirements
n  Designs evaluated on multiple metrics/constraints: energy,

performance, reliability, fairness, …

n  One-size-fits-all design cannot satisfy all requirements and metrics:
cannot get the best of all worlds

n  Asymmetry in design enables tradeoffs: can get the best of all
worlds
q  Asymmetry in core microarch. à Accelerated Critical Sections, BIS, DM

à Good parallel performance + Good serialized performance
q  Asymmetry in main memory à Data Management for DRAM-PCM

Hybrid Memory à Good performance + good efficiency

n  Simple asymmetric designs can be effective and low-cost

148

Memory QoS

Trend: Many Cores on Chip
n  Simpler and lower power than a single large core
n  Large scale parallelism on chip

150

IBM	 Cell	 BE	
8+1	 cores	

Intel	 Core	 i7	
8	 cores	

Tilera	 TILE	 Gx	
100	 cores,	 networked	

IBM	 POWER7	
8	 cores	

Intel	 SCC	
48	 cores,	 networked	

Nvidia	 Fermi	
448	 “cores”	

AMD	 Barcelona	
4	 cores	

Sun	 Niagara	 II	
8	 cores	

Many Cores on Chip

n  What we want:
q  N times the system performance with N times the cores

n  What do we get today?

151

(Un)expected Slowdowns

Memory Performance Hog
Low priority

High priority

(Core 0) (Core 1)

Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service
in multi-core systems,” USENIX Security 2007.

Attacker
(Core 1)

Movie player
(Core 2)

152

Why? Uncontrolled Memory Interference

CORE 1 CORE 2

 L2
CACHE

 L2
CACHE

DRAM MEMORY CONTROLLER

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

Shared DRAM
Memory System

Multi-Core
Chip

unfairness
INTERCONNECT

attacker movie player

DRAM
Bank 3

153

// initialize large arrays A, B

for (j=0; j<N; j++) {
 index = rand();
 A[index] = B[index];
 …
}

154

A Memory Performance Hog

STREAM

-  Sequential memory access
-  Very high row buffer locality (96% hit rate)
-  Memory intensive

RANDOM

-  Random memory access
-  Very low row buffer locality (3% hit rate)
-  Similarly memory intensive

// initialize large arrays A, B

for (j=0; j<N; j++) {
 index = j*linesize;
 A[index] = B[index];
 …
}

streaming random

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

155

What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0

T0: Row 0

Row 0

T1: Row 16
T0: Row 0 T1: Row 111

T0: Row 0 T0: Row 0 T1: Row 5

T0: Row 0 T0: Row 0 T0: Row 0 T0: Row 0 T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Row size: 8KB, cache block size: 64B
128 (8KB/64B) requests of T0 serviced before T1

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

Effect of the Memory Performance Hog

0

0.5

1

1.5

2

2.5

3

STREAM RANDOM

156

1.18X slowdown

2.82X slowdown

Results on Intel Pentium D running Windows XP
(Similar results for Intel Core Duo and AMD Turion, and on Fedora Linux)

Sl
ow

do
w

n

0

0.5

1

1.5

2

2.5

3

STREAM gcc
0

0.5

1

1.5

2

2.5

3

STREAM Virtual PC

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

Greater Problem with More Cores

n  Vulnerable to denial of service (DoS) [Usenix Security’07]

n  Unable to enforce priorities or SLAs [MICRO’07,’10,’11, ISCA’08’11’12, ASPLOS’10]

n  Low system performance [IEEE Micro Top Picks ’09,’11a,’11b,’12]

Uncontrollable, unpredictable system

157

Distributed DoS in Networked Multi-Core Systems

158

Attackers
(Cores 1-8)

Stock option pricing application
(Cores 9-64)

 Cores connected via
 packet-switched
 routers on chip

 ~5000X slowdown

Grot, Hestness, Keckler, Mutlu,
“Preemptive virtual clock: A Flexible,
Efficient, and Cost-effective QOS
Scheme for Networks-on-Chip,“
MICRO 2009.

n  Problem: Memory interference is uncontrolled à
uncontrollable, unpredictable, vulnerable system

n  Goal: We need to control it à Design a QoS-aware system

n  Solution: Hardware/software cooperative memory QoS
q  Hardware designed to provide a configurable fairness substrate

n  Application-aware memory scheduling, partitioning, throttling

q  Software designed to configure the resources to satisfy different
QoS goals

q  E.g., fair, programmable memory controllers and on-chip
networks provide QoS and predictable performance

 [2007-2012, Top Picks’09,’11a,’11b,’12]

Solution: QoS-Aware, Predictable Memory

Designing QoS-Aware Memory Systems: Approaches

n  Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism
q  QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07]

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11,
MICRO’11] [Ausavarungnirun+, ISCA’12]

q  QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09,
ISCA’11, Top Picks ’12]

q  QoS-aware caches

n  Dumb resources: Keep each resource free-for-all, but reduce/
control interference by injection control or data mapping
q  Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10,

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10]

q  QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11]

q  QoS-aware thread scheduling to cores

160

n  Memory Channel Partitioning
q  Idea: System software maps badly-interfering applications’ pages

to different channels [Muralidhara+, MICRO’11]

n  Separate data of low/high intensity and low/high row-locality applications
n  Especially effective in reducing interference of threads with “medium” and

“heavy” memory intensity
q  11% higher performance over existing systems (200 workloads)

A Mechanism to Reduce Memory Interference

161

Core 0
App A

Core 1
App B

Channel 0

Bank 1

Channel 1

Bank 0

Bank 1

Bank 0

Conventional Page Mapping

Time Units

1 2 3 4 5

Channel Partitioning

Core 0
App A

Core 1
App B

Channel 0

Bank 1

Bank 0

Bank 1

Bank 0

Time Units

1 2 3 4 5

Channel 1

MCP Micro 2011 Talk

Designing QoS-Aware Memory Systems: Approaches

n  Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism
q  QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07]

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11,
MICRO’11] [Ausavarungnirun+, ISCA’12]

q  QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09,
ISCA’11, Top Picks ’12]

q  QoS-aware caches

n  Dumb resources: Keep each resource free-for-all, but reduce/
control interference by injection control or data mapping
q  Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10,

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10]

q  QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11]

q  QoS-aware thread scheduling to cores

162

QoS-Aware Memory Scheduling

n  How to schedule requests to provide
q  High system performance
q  High fairness to applications
q  Configurability to system software

n  Memory controller needs to be aware of threads

163

Memory	
Controller	

Core	 Core	

Core	 Core	
Memory	

Resolves memory contention
by scheduling requests

QoS-Aware Memory Scheduling: Evolution
n  Stall-time fair memory scheduling [Mutlu+ MICRO’07]

q  Idea: Estimate and balance thread slowdowns

q  Takeaway: Proportional thread progress improves performance,
especially when threads are “heavy” (memory intensive)

n  Parallelism-aware batch scheduling [Mutlu+ ISCA’08, Top Picks’09]

q  Idea: Rank threads and service in rank order (to preserve bank
parallelism); batch requests to prevent starvation

q  Takeaway: Preserving within-thread bank-parallelism improves
performance; request batching improves fairness

n  ATLAS memory scheduler [Kim+ HPCA’10]

q  Idea: Prioritize threads that have attained the least service from the
memory scheduler

q  Takeaway: Prioritizing “light” threads improves performance
164

Take	 turns	 accessing	 memory	

Throughput vs. Fairness

165	

Fairness	 biased	 approach	

thread	 C	

thread	 B	

thread	 A	

less	 memory	 	
intensive	

higher	
priority	

Priori>ze	 less	 memory-‐intensive	 threads	

Throughput	 biased	 approach	

Good	 for	 throughput	

starva3on	 è	 unfairness	

thread	 C	 thread	 B	 thread	 A	

Does	 not	 starve	

not	 priori3zed	 è	 	
reduced	 throughput	

Single	 policy	 for	 all	 threads	 is	 insufficient	

Achieving the Best of Both Worlds

166	

thread	

thread	

higher	
priority	

thread	

thread	

thread	 	

thread	

thread	

thread	

Priori:ze	 memory-‐non-‐intensive	 threads	

For	 Throughput	

Unfairness	 caused	 by	 memory-‐intensive	
being	 priori:zed	 over	 each	 other	 	

• 	 Shuffle	 thread	 ranking	

Memory-‐intensive	 threads	 have	 	
different	 vulnerability	 to	 interference	

• 	 Shuffle	 asymmetrically	

For	 Fairness	

thread	

thread	

thread	

thread	

Thread Cluster Memory Scheduling [Kim+ MICRO’10]

1.   Group	 threads	 into	 two	 clusters	
2.   Priori:ze	 non-‐intensive	 cluster	
3.   Different	 policies	 for	 each	 cluster	

167	

thread	

Threads	 in	 the	 system	

thread	

thread	

thread	

thread	

thread	

thread	

Non-‐intensive	 	
cluster	

Intensive	 cluster	

thread	

thread	

thread	

Memory-‐non-‐intensive	 	

Memory-‐intensive	 	

Priori3zed	

higher	
priority	

higher	
priority	

Throughput	

Fairness	

TCM: Throughput and Fairness

FRFCFS	

STFM	

PAR-‐BS	

ATLAS	

TCM	

4	

6	

8	

10	

12	

14	

16	

7.5	 8	 8.5	 9	 9.5	 10	

M
ax
im

um
	 S
lo
w
do

w
n	

Weighted	 Speedup	

168	

BeUer	 system	 throughput	

Be
U
er
	 fa

irn
es
s	

24	 cores,	 4	 memory	 controllers,	 96	 workloads	 	

TCM,	 a	 heterogeneous	 scheduling	 policy,	
provides	 best	 fairness	 and	 system	 throughput	

TCM: Fairness-Throughput Tradeoff

169	

2	

4	

6	

8	

10	

12	

12	 12.5	 13	 13.5	 14	 14.5	 15	 15.5	 16	

M
ax
im

um
	 S
lo
w
do

w
n	

Weighted	 Speedup	

When	 configura:on	 parameter	 is	 varied…	

AdjusDng	 	
ClusterThreshold	

TCM	 allows	 robust	 fairness-‐throughput	 tradeoff	 	

STFM	
PAR-‐BS	

ATLAS	

TCM	

BeUer	 system	 throughput	

Be
U
er
	 fa

irn
es
s	 FRFCFS	

Memory Control in CPU-GPU Systems
n  Observation: Heterogeneous CPU-GPU systems require

memory schedulers with large request buffers

n  Problem: Existing monolithic application-aware memory
scheduler designs are hard to scale to large request buffer sizes

n  Solution: Staged Memory Scheduling (SMS)
decomposes the memory controller into three simple stages:
1) Batch formation: maintains row buffer locality
2) Batch scheduler: reduces interference between applications
3) DRAM command scheduler: issues requests to DRAM

n  Compared to state-of-the-art memory schedulers:
q  SMS is significantly simpler and more scalable
q  SMS provides higher performance and fairness

170 Ausavarungnirun et al., “Staged Memory Scheduling,” ISCA 2012.

Memory QoS in a Parallel Application

n  Threads in a multithreaded application are inter-dependent
n  Some threads can be on the critical path of execution due

to synchronization; some threads are not
n  How do we schedule requests of inter-dependent threads to

maximize multithreaded application performance?

n  Idea: Estimate limiter threads likely to be on the critical path and
prioritize their requests; shuffle priorities of non-limiter threads
to reduce memory interference among them [Ebrahimi+, MICRO’11]

n  Hardware/software cooperative limiter thread estimation:
n  Thread executing the most contended critical section
n  Thread that is falling behind the most in a parallel for loop

171 Ebrahimi et al., “Parallel Application Memory Scheduling,” MICRO 2011.

Some Related Past Work
n  That I could not cover…

n  How to handle prefetch requests in a QoS-aware multi-core
memory system?
q  Prefetch-aware shared resource management, ISCA’11.
q  Prefetch-aware memory controllers, MICRO’08, IEEE-TC’11.
q  Coordinated control of multiple prefetchers, MICRO’09.

n  How to design QoS mechanisms in the interconnect?
q  Topology-aware, scalable QoS, ISCA’11.
q  Slack-based packet scheduling, ISCA’10.
q  Efficient bandwidth guarantees, MICRO’09.
q  Application-aware request prioritization, MICRO’09.

172

ISCA 2011 Talk

Micro 2009 Talk

Micro 2008 Talk

Summary: Memory QoS Approaches and Techniques

n  Approaches: Smart vs. dumb resources
q  Smart resources: QoS-aware memory scheduling
q  Dumb resources: Source throttling; channel partitioning
q  Both approaches are effective in reducing interference
q  No single best approach for all workloads

n  Techniques: Request scheduling, source throttling, memory
partitioning
q  All approaches are effective in reducing interference
q  Can be applied at different levels: hardware vs. software
q  No single best technique for all workloads

n  Combined approaches and techniques are the most powerful
q  Integrated Memory Channel Partitioning and Scheduling [MICRO’11]

173

Partial List of Referenced/
Related Papers

174

Heterogeneous Cores
n  M. Aater Suleman, Onur Mutlu, Moinuddin K. Qureshi, and Yale N. Patt,

"Accelerating Critical Section Execution with Asymmetric Multi-Core
Architectures"
Proceedings of the
14th International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 253-264, Washington, DC, March 2009. Slides (ppt)

n  M. Aater Suleman, Onur Mutlu, Jose A. Joao, Khubaib, and Yale N. Patt,
"Data Marshaling for Multi-core Architectures"
Proceedings of the 37th International Symposium on Computer Architecture (ISCA), pages
441-450, Saint-Malo, France, June 2010. Slides (ppt)

n  Jose A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt,
"Bottleneck Identification and Scheduling in Multithreaded Applications"
Proceedings of the
17th International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), London, UK, March 2012. Slides (ppt) (pdf)

175

QoS-Aware Memory Systems (I)
n  Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian, Gabriel Loh, and Onur Mutlu,

"Staged Memory Scheduling: Achieving High Performance and Scalability in
Heterogeneous Systems"
Proceedings of the 39th International Symposium on Computer Architecture (ISCA),
Portland, OR, June 2012.

n  Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut Kandemir, and
Thomas Moscibroda,
"Reducing Memory Interference in Multicore Systems via Application-Aware
Memory Channel Partitioning"
Proceedings of the 44th International Symposium on Microarchitecture (MICRO), Porto
Alegre, Brazil, December 2011

n  Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter,
"Thread Cluster Memory Scheduling: Exploiting Differences in Memory Access
Behavior"
Proceedings of the 43rd International Symposium on Microarchitecture (MICRO), pages
65-76, Atlanta, GA, December 2010. Slides (pptx) (pdf)

n  Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Fairness via Source Throttling: A Configurable and High-Performance Fairness
Substrate for Multi-Core Memory Systems"
ACM Transactions on Computer Systems (TOCS), April 2012.

176

QoS-Aware Memory Systems (II)
n  Onur Mutlu and Thomas Moscibroda,

"Parallelism-Aware Batch Scheduling: Enabling High-Performance and Fair
Memory Controllers"
IEEE Micro, Special Issue: Micro's Top Picks from 2008 Computer Architecture Conferences
(MICRO TOP PICKS), Vol. 29, No. 1, pages 22-32, January/February 2009.

n  Onur Mutlu and Thomas Moscibroda,
"Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors"
Proceedings of the 40th International Symposium on Microarchitecture (MICRO), pages
146-158, Chicago, IL, December 2007. Slides (ppt)

n  Thomas Moscibroda and Onur Mutlu,
"Memory Performance Attacks: Denial of Memory Service in Multi-Core Systems"
Proceedings of the 16th USENIX Security Symposium (USENIX SECURITY), pages
257-274, Boston, MA, August 2007. Slides (ppt)

177

QoS-Aware Memory Systems (III)
n  Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin, Chang Joo Lee, Onur Mutlu, and Yale

N. Patt,
"Parallel Application Memory Scheduling"
Proceedings of the 44th International Symposium on Microarchitecture (MICRO), Porto
Alegre, Brazil, December 2011. Slides (pptx)

n  Boris Grot, Joel Hestness, Stephen W. Keckler, and Onur Mutlu,
"Kilo-NOC: A Heterogeneous Network-on-Chip Architecture for Scalability and
Service Guarantees"
Proceedings of the 38th International Symposium on Computer Architecture (ISCA), San
Jose, CA, June 2011. Slides (pptx)

n  Reetuparna Das, Onur Mutlu, Thomas Moscibroda, and Chita R. Das,
"Application-Aware Prioritization Mechanisms for On-Chip Networks"
Proceedings of the 42nd International Symposium on Microarchitecture (MICRO), pages
280-291, New York, NY, December 2009. Slides (pptx)

178

Heterogeneous Memory
n  Justin Meza, Jichuan Chang, HanBin Yoon, Onur Mutlu, and Parthasarathy Ranganathan,

"Enabling Efficient and Scalable Hybrid Memories Using Fine-Granularity DRAM
Cache Management"
IEEE Computer Architecture Letters (CAL), May 2012.

n  HanBin Yoon, Justin Meza, Rachata Ausavarungnirun, Rachael Harding, and Onur Mutlu,
"Row Buffer Locality-Aware Data Placement in Hybrid Memories"
SAFARI Technical Report, TR-SAFARI-2011-005, Carnegie Mellon University, September
2011.

n  Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger,
"Architecting Phase Change Memory as a Scalable DRAM Alternative"
Proceedings of the 36th International Symposium on Computer Architecture (ISCA), pages
2-13, Austin, TX, June 2009. Slides (pdf)

n  Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao, Engin Ipek, Onur Mutlu, and
Doug Burger,
"Phase Change Technology and the Future of Main Memory"
IEEE Micro, Special Issue: Micro's Top Picks from 2009 Computer Architecture Conferences
(MICRO TOP PICKS), Vol. 30, No. 1, pages 60-70, January/February 2010.

179

Flash Memory
n  Yu Cai, Eric F. Haratsch, Onur Mutlu, and Ken Mai,

"Error Patterns in MLC NAND Flash Memory: Measurement,
Characterization, and Analysis"
Proceedings of the Design, Automation, and Test in Europe Conference
(DATE), Dresden, Germany, March 2012. Slides (ppt)

180

Latency Tolerance
n  Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,

"Runahead Execution: An Alternative to Very Large Instruction
Windows for Out-of-order Processors"
Proceedings of the
9th International Symposium on High-Performance Computer Architecture
(HPCA), pages 129-140, Anaheim, CA, February 2003. Slides (pdf)

n  Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Techniques for Efficient Processing in Runahead Execution Engines"
Proceedings of the 32nd International Symposium on Computer Architecture
(ISCA), pages 370-381, Madison, WI, June 2005. Slides (ppt) Slides (pdf)

n  Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Address-Value Delta (AVD) Prediction: Increasing the Effectiveness
of Runahead Execution by Exploiting Regular Memory Allocation
Patterns"
Proceedings of the 38th International Symposium on Microarchitecture
(MICRO), pages 233-244, Barcelona, Spain, November 2005. Slides (ppt)
Slides (pdf)

181

Scaling DRAM: Refresh and Parallelism
n  Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu,

"RAIDR: Retention-Aware Intelligent DRAM Refresh"
Proceedings of the 39th International Symposium on Computer Architecture
(ISCA), Portland, OR, June 2012.

n  Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu, and Onur Mutlu,
"A Case for Exploiting Subarray-Level Parallelism (SALP) in DRAM"
Proceedings of the 39th International Symposium on Computer Architecture
(ISCA), Portland, OR, June 2012.

182

