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The Main Memory System

Processor
and caches

\_

Main Memory

/

Storage (SSD/HDD)

= Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

= Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits
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Memory System: A Shared Resonrce View
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State of the Main Memory System

Recent technology, architecture, and application trends
o lead to new requirements
o exacerbate old requirements

DRAM and memory controllers, as we know them today,
are (will be) unlikely to satisfy all requirements

Some emerging non-volatile memory technologies (e.g.,
PCM) enable new opportunities: memory+storage merging

We need to rethink the main memory system
o to fix DRAM issues and enable emerging technologies
o to satisfy all requirements
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Major Trends Atfecting Main Memory (I)

= Need for main memory capacity, bandwidth, QoS increasing

= Main memory energy/power is a key system design concern

= DRAM technology scaling is ending
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Major Trends Attecting Main Memory (II)

= Need for main memory capacity, bandwidth, QoS increasing
o Multi-core: increasing number of cores
o Data-intensive applications: increasing demand/hunger for data
o Consolidation: cloud computing, GPUs, mobile

= Main memory energy/power is a key system design concern

= DRAM technology scaling is ending
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Example Trend: Many Cores on Chip

= Simpler and lower power than a single large core
= Large scale parallelism on chip

Memory Controller

: Intel Core i7 IBM Cell BE
AM D“Barcelona 8 cores 8+1 cores 8 cores
4 cores

Nvidia Fermi Intel SCC Tilera TILE Gx
Sun Niagara ll 448 “cores” 48 cores, networked 100 cores, networked
8 cores
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Consequence: The Memory Capacity Gap

Core count doubling ~ every 2 years
DRAM DIMM capacity doubling ~ every 3 years
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Source: Lim et al., ISCA 2009.

Memory capacity per core expected to drop by 30% every two years
Trends worse for memory bandwidth per core!



Major Trends Attecting Main Memory (I1I)

= Need for main memory capacity, bandwidth, QoS increasing

= Main memory energy/power is a key system design concern

o ~40-50% energy spent in off-chip memory hierarchy [Lefurgy,
IEEE Computer 2003]

o DRAM consumes power even when not used (periodic refresh)

= DRAM technology scaling is ending
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Major Trends Attecting Main Memory (IV)

= Need for main memory capacity, bandwidth, QoS increasing

= Main memory energy/power is a key system design concern

= DRAM technology scaling is ending
o ITRS projects DRAM will not scale easily below X nm

o Scaling has provided many benefits:
= higher capacity (density), lower cost, lower energy
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The DRAM Scaling Problem

DRAM stores charge in a capacitor (charge-based memory)
o Capacitor must be large enough for reliable sensing

o Access transistor should be large enough for low leakage and high
retention time

o Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]
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DRAM capacity, cost, and energy/power hard to scale

SAFARI 1



Solutions to the DRAM Scaling Problem

Two potential solutions
o Tolerate DRAM (by taking a fresh look at it)

o Enable emerging memory technologies to eliminate/minimize
DRAM

Do both
o Hybrid memory systems
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Solution 1: Tolerate DRAM

Overcome DRAM shortcomings with

o System-DRAM co-design

o Novel DRAM architectures, interface, functions
o Better waste management (efficient utilization)

Key issues to tackle

o Reduce refresh energy

o Improve bandwidth and latency

a Reduce waste

o Enable reliability at low cost

Liu, Jaiyen, Veras, Mutlu, "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.
Kim, Seshadri, Lee+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.

Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.
Liu+, “"An Experimental Study of Data Retention Behavior in Modern DRAM Devices” ISCA"13.
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Solution 2: Emerging Memory Technologies

Some emerging resistive memory technologies seem more
scalable than DRAM (and they are non-volatile)

Example: Phase Change Memory

o Expected to scale to 9nm (2022 [ITRS])

o Expected to be denser than DRAM: can store multiple bits/cell

But, emerging technologies have shortcomings as well
o Can they be enabled to replace/augment/surpass DRAM?

Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a Scalable DRAM
Alternative,” ISCA 2009, CACM 2010, Top Picks 2010.

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and Scalable Hybrid
Memories,” IEEE Comp. Arch. Letters 2012.

Yoon, Meza et al., "Row Buffer Locality Aware Caching Policies for Hybrid Memories,”
ICCD 2012 Best Paper Award.
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Hybrid Memory Systems

-

DRAM
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Phase Change Memory (or Tech. X)

~

/

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
Yoon, Meza et al., "Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD

2012 Best Paper Award.
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An Orthogonal Issue: Memory Interference

Problem: Memory interference is uncontrolled >
uncontrollable, unpredictable, vulnerable system

Goal: We need to control it > Design a QoS-aware system

Solution: Hardware/software cooperative memory QoS

o Hardware designed to provide a configurable fairness substrate
Application-aware memory scheduling, partitioning, throttling

o Software designed to configure the resources to satisfy different
QoS goals

o E.g., fair, programmable memory controllers and on-chip

networks provide QoS and predictable performance
[2007-2012, Top Picks’09,'11a,’11b,'12]
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Agenda for Today

What Will You Learn in This Mini-Lecture Series
Main Memory Basics (with a Focus on DRAM)
Major Trends Affecting Main Memory

DRAM Scaling Problem and Solution Directions
Solution Direction 1: System-DRAM Co-Design
Ongoing Research

Summary

SAFARI
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What Will You Learn in Mini Course 27

Memory Systems in the Multi-Core Era
o June 13, 14, 17 (1-4pm)

Lecture 1: Main memory basics, DRAM scaling
Lecture 2: Emerging memory technologies and hybrid memories
Lecture 3: Main memory interference and QoS

Major Overview Reading:

o Mutlu, "Memory Scaling: A Systems Architecture Perspective,”
IMW 2013.
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Attendance Sheet

If you are not on the email list, please sign the attendance
sheet with your name and email address.
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This Course

Will cover many problems and potential solutions related to
the design of memory systems in the many core era

The design of the memory system poses many
o Difficult research and engineering problems

o Important fundamental problems

o Industry-relevant problems

Many creative and insightful solutions are needed to solve
these problems

Goal: Acquire the basics to develop such solutions (by
covering fundamentals and cutting edge research)
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An Example Problem: Shared Main Memory

Multi-Core
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Unexpected Slowdowns 1n Multi-Core
High _priority
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Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service
in multi-core systems,” USENIX Security 2007.
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A Question or Two

Can you figure out why there is a disparity in slowdowns if
you do not know how the processor executes the
programs?

Can you fix the problem without knowing what is
happening “underneath”?
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Why the Disparity in Slowdowns?
4

unfairness
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DRAM Bank Operation

Access Address:
(Row 0, Column 0)

(Row 0, Column 1)
(Row 0, Column 85)
(Row 1, Column 0)

Row address @ —»

Row decoder

Columns

________________________

—————————————————————————

__________________________

________________________

Column address 65—»\ Column mux/

l

Data

Row Buffer EONFLICT !
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DRAM Controllers

A row-conflict memory access takes significantly longer
than a row-hit access

Current controllers take advantage of the row buffer

Commonly used scheduling policy (FR-FCFS) [Rixner 20007*
(1) Row-hit first: Service row-hit memory accesses first
(2) Oldest-first: Then service older accesses first

This scheduling policy aims to maximize DRAM throughput

*Rixner et al., “Memory Access Scheduling,” ISCA 2000.
*Zuravleff and Robinson, “Controller for a synchronous DRAM ...,” US Patent 5,630,096, May 1997.
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The Problem

Multiple threads share the DRAM controller
DRAM controllers designed to maximize DRAM throughput

DRAM scheduling policies are thread-unfair

o Row-hit first: unfairly prioritizes threads with high row buffer locality
Threads that keep on accessing the same row
o Oldest-first: unfairly prioritizes memory-intensive threads

DRAM controller vulnerable to denial of service attacks
o Can write programs to exploit unfairness
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Now That We Know What Happens Underneath

= How would you solve the problem?
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Some Solution Examples (To Be Covered)

= We will cover some solutions later in this accelerated course

= Example recent solutions (part of your reading list)

o Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter,
"Thread Cluster Memory Scheduling: Exploiting Differences in Memory Access
Behavior"
Proceedings of the 43rd International Symposium on Microarchitecture (MICRO), pages
65-76, Atlanta, GA, December 2010.

o Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut Kandemir, and
Thomas Moscibroda,
"Reducing Memory Interference in Multicore Systems via Application-Aware
Memory Channel Partitioning”
Proceedings of the 44th International Symposium on Microarchitecture (MICRO), Porto
Alegre, Brazil, December 2011. Slides (pptx)

o Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian, Gabriel Loh, and Onur
Mutlu,
"Staged Memory Scheduling: Achieving High Performance and Scalability in
Heterogeneous Systems"
Proceedings of the 39th International Symposium on Computer Architecture (ISCA),
Portland, OR, June 2012.
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Readings and Videos




Overview Reading

= Mutlu, "Memory Scaling: A Systems Architecture Perspective,”
IMW 2013.

= Onur Mutluy,
"Memory Scaling: A Systems Architecture
Perspective"

Proceedings of the 5th International Memory Workshop
(IMW), Monterey, CA, May 2013. Slides (pptx) (pdf)
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Memory Lecture Videos

Memory Hierarchy (and Introduction to Caches)

o http://www.youtube.com/watch?
v=]BdfZ5i21cs&list=PL5PHmM?2jkkXmidJOd59RE0q9iDnPDTG61]&index=22

Main Memory

o http://www.youtube.com/watch?
v=ZLCy3pG7RcO&list=PL5PHM2jkkXmidJOd59RE0g9iDnPDTG6I]&index=25

Memory Controllers, Memory Scheduling, Memory QoS

o http://www.youtube.com/watch?
v=Z7SotvL3WXmARlist=PL5PHmM2jkkXmidJOd59RE0g9iDnPDTG6I]&index=26

o http://www.youtube.com/watch?
v=1xe2w3 NzmI&list=PL5PHmM2jkkXmidJOd59RE0g9iDnPDTG6I]&index=27

Emerging Memory Technologies

o http://www.youtube.com/watch?
v=LzfOghMKyAQ&list=PL5PHmM2jkkXmidJOd59RE0g9iDnPDTG6I]&index=35

Multiprocessor Correctness and Cache Coherence

o http://www.youtube.com/watch?v=U-
VZKMgItDM&list=PL5PHmM2jkkXmidJOd59RE0g9iDnPDTG61]&index=32
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Readings for Lecture 2.1 (DRAM Scaling)

Lee et al., "Tiered-Latency DRAM: A Low Latency and Low Cost DRAM
Architecture,” HPCA 2013.

Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA
2012.

Kim et al., "A Case for Exploiting Subarray-Level Parallelism in DRAM,”
ISCA 2012.

Liu et al., “"An Experimental Study of Data Retention Behavior in Modern
DRAM Devices,” ISCA 2013.

Seshadri et al., "RowClone: Fast and Efficient In-DRAM Copy and
Initialization of Bulk Data,” CMU CS Tech Report 2013.

David et al., "Memory Power Management via Dynamic Voltage/
Frequency Scaling,” ICAC 2011.

Ipek et al., “Self Optimizing Memory Controllers: A Reinforcement
Learning Approach,” ISCA 2008.
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Readings for Lecture 2.2 (Emerging Technologies)

Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a
Scalable DRAM Alternative,” ISCA 2009, CACM 2010, Top Picks 2010.

Qureshi et al., “Scalable high performance main memory system using
phase-change memory technology,” ISCA 20009.

Meza et al., “Enabling Efficient and Scalable Hybrid Memories,” IEEE
Comp. Arch. Letters 2012.

Yoon et al., “"Row Buffer Locality Aware Caching Policies for Hybrid
Memories,” ICCD 2012 Best Paper Award.

Meza et al., “A Case for Efficient Hardware-Software Cooperative
Management of Storage and Memory,” WEED 2013.

Kultursay et al., "Evaluating STT-RAM as an Energy-Efficient Main
Memory Alternative,” ISPASS 2013.

More to come in next lecture...
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Readings for Lecture 2.3 (Memory QoS)

Moscibroda and Mutlu, "Memory Performance Attacks,” USENIX
Security 2007.

Mutlu and Moscibroda, “Stall-Time Fair Memory Access Scheduling,”
MICRO 2007.

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA
2008, IEEE Micro 20009.

Kim et al., "ATLAS: A Scalable and High-Performance Scheduling
Algorithm for Multiple Memory Controllers,” HPCA 2010.

Kim et al., "Thread Cluster Memory Scheduling,” MICRO 2010, IEEE
Micro 2011.

Muralidhara et al., *Memory Channel Partitioning,” MICRO 2011.
Ausavarungnirun et al., "Staged Memory Scheduling,” ISCA 2012.

Subramanian et al., "MISE: Providing Performance Predictability and
Improving Fairness in Shared Main Memory Systems,” HPCA 2013.

Das et al., “"Application-to-Core Mapping Policies to Reduce Memory
System Interference in Multi-Core Systems,” HPCA 2013.
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Readings for Lecture 2.3 (Memory QoS)

Ebrahimi et al., “Fairness via Source Throttling,” ASPLOS 2010, ACM
TOCS 2012.

Lee et al., “Prefetch-Aware DRAM Controllers,” MICRO 2008, IEEE TC
2011.

Ebrahimi et al., “Parallel Application Memory Scheduling,” MICRO 2011.

Ebrahimi et al., “Prefetch-Aware Shared Resource Management for
Multi-Core Systems,” ISCA 2011.

More to come in next lecture...
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Readings in Flash Memory

Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal, Osman Unsal, and Ken Mai,
"Error Analysis and Retention-Aware Error Management for NAND Flash Memory"
Intel Technology Journal (ITJ) Special Issue on Memory Resiliency, Vol. 17, No. 1, May 2013.

Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai,

"Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization,
Analysis and Modeling"

Proceedings of the Design, Automation, and Test in Europe Conference (DATE), Grenoble,
France, March 2013. Slides (ppt)

Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal, Osman Unsal, and Ken
Mai,

"Flash Correct-and-Refresh: Retention-Aware Error Management for Increased
Flash Memory Lifetime"

Proceedings of the 30th IEEE International Conference on Computer Design (ICCD),
Montreal, Quebec, Canada, September 2012. Slides (ppt) (pdf)

Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai,

"Error Patterns in MLC NAND Flash Memory: Measurement, Characterization,
and Analysis"

Proceedings of the Design, Automation, and Test in Europe Conference (DATE), Dresden,
Germany, March 2012. Slides (ppt)
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Online Lectures and More Information

= Online Computer Architecture Lectures

a http://www.youtube.com/playlist?
list=PL5PHmM2jkkXmidJOd59RE0g9iDNPDTG6I]

= Online Computer Architecture Courses
a Intro: http://www.ece.cmu.edu/~ece447/s13/doku.php
o Advanced: http://www.ece.cmu.edu/~ece740/f11/doku.php
o Advanced: http://www.ece.cmu.edu/~ece742/doku.php

= Recent Research Papers
a http://users.ece.cmu.edu/~omutlu/projects.htm

o http://scholar.google.com/citations?
user=7/XyGUGKAAAAJ&hl=en
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Agenda for Today

What Will You Learn in This Mini-Lecture Series
Main Memory Basics (with a Focus on DRAM)
Major Trends Affecting Main Memory

DRAM Scaling Problem and Solution Directions
Solution Direction 1: System-DRAM Co-Design
Ongoing Research

Summary
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Main Memory in the System
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Ideal Memory

Zero access time (latency)

Infinite capacity

Zero cost

Infinite bandwidth (to support multiple accesses in parallel)
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The Problem

Ideal memory’s requirements oppose each other

Bigger is slower
o Bigger - Takes longer to determine the location

Faster is more expensive
o Memory technology: SRAM vs. DRAM

Higher bandwidth is more expensive

o Need more banks, more ports, higher frequency, or faster
technology
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Memory Technology: DRAM

Dynamic random access memory
Capacitor charge state indicates stored value

o Whether the capacitor is charged or discharged indicates
storage of 1 or O

o 1 capacitor

o 1 access transistor row enable
Capacitor leaks through the RC path o _|£

o DRAM cell loses charge over time El L

o DRAM cell needs to be refreshed \V4

o Read Liu et al., "RAIDR: Retention-aware Intelligent DRAM
Refresh,” ISCA 2012.
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Memory Technology: SRAM

Static random access memory
Two cross coupled inverters store a single bit
o Feedback path enables the stored value to persist in the “cell”

o 4 transistors for storage
o 2 transistors for access

row select

bitline

bitline

_I_%_L
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Memory Bank: A Fundamental Concept

Interleaving (banking)

o Problem: a single monolithic memory array takes long to
access and does not enable multiple accesses in parallel

o Goal: Reduce the latency of memory array access and enable
multiple accesses in parallel

o Idea: Divide the array into multiple banks that can be
accessed independently (in the same cycle or in consecutive
cycles)

Each bank is smaller than the entire memory storage
Accesses to different banks can be overlapped

o Issue: How do you map data to different banks? (i.e., how do

you interleave data across banks?)
46



Memory Bank Organization and Operation

Read access sequence:

o
/ 2D Storage 1. Decode row address
o T Array & drive word-lines
k% Ly
o 2 e o
8 o | MS blt§ S 2. Selected bits drive
O— 2 -
kS, o O I bit-lines
< = S e Enti d
S o ntire row rea
< o
BN 3. Amplify row data
: YVvVYwY v v 4. Decode column
L5 IS \,\Column Decoder/ address & select subset
l of row
e Send to output
Data Out

5. Precharge bit-lines
e For next access
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SRAM (Static Random Access Memory)

bitline

n+m

b G

row select

Do 21

bitline

<}

bit-cell array

2n
2" row x 2™M-col

(n=m to minimize
overall latency)

1 2™ diff pairs

\sense amgand muy/
1

Read Sequence

1. address decode

2. drive row select

3. selected bit-cells drive bitlines
(entire row is read together)

4. differential sensing and column select
(data is ready)

5. precharge all bitlines
(for next read or write)

Access latency dominated by steps 2 and 3

Cycling time dominated by steps 2, 3 and 5
. step 2 proportional to 2™
- step 3 and 5 proportional to 2"
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DRAM (Dynamic Random Access Memory)

row enable _
Bits stored as charges on node

Fol capacitance (non-restorative)

§ | - bit cell loses charge when read
5 1 bi .
| T - bit cell loses charge over time
\V4 Read Sequence
1~3 same as SRAM
RAS / | 4. a “flip-flopping” sense amp
bit-cell array amplifies and regenerates the
n 2l o . bitline, data bit is mux’ ed out
, row x 2™M-col o
7 5. precharge all bitlines
(n=m to minimize
Il lat
N overall latency) Refresh: A DRAM controller must
m Tom periodically read all rows within the
a Ysense amp and mux/ allowed refresh time (10s of ms)

g1 such that charge is restored in cells

A DRAM die comprises
CAS of multiple such arrays
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DRAM vs. SRAM
DRAM

a
a
a
a
a

Slower access (capacitor)

Higher density (1T 1C cell)

Lower cost

Requires refresh (power, performance, circuitry)
Manufacturing requires putting capacitor and logic together

SRAM

a
a
a
a
a

Faster access (no capacitor)

Lower density (6T cell)

Higher cost

No need for refresh

Manufacturing compatible with logic process (no capacitor)
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An Aside: Phase Change Memory

Phase change material (chalcogenide glass) exists in two states:
o Amorphous: Low optical reflexivity and high electrical resistivity
o Crystalline: High optical reflexivity and low electrical resistivity

BITLINE

METAL (bitline) |
, -----
CHALCOGENIDE ! :
STORAGE! :
I
I
/

HEATER \elp--

WORDLINE I’

N

v
PCM is resistive memory: High resistance (0), Low resistance (1)

METAL (access)

ACCESS DEV

Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a Scalable DRAM
Alternative,” ISCA 2009.
51



An Aside: How Does PCM Work?

= Write: change phase via current injection o | RESET
o SET: sustained current to heat cell above Tcryst 3
o RESET: cell heated above Tmelt and quenched 3 Tomet
= Read: detect phase via material resistance g - T
2 amorphous/crystalline = et
Tim: [ns]

Large Small
Current Current
!
Memory
Element

_l

SET (cryst) Access RESET (amorph)
Low resistance Device High resistance

101070 S

103-10%Q

Photo Courtesy: Bipin Rajendran, IBM Slide Courtesy: Moinuddin Qureshi, IBM 52




The Problem

Bigger is slower

o SRAM, 512 Bytes, sub-nanosec

o SRAM, KByte~MByte, ~nanosec
o DRAM, Gigabyte, ~50 nanosec

o Hard Disk, Terabyte, ~10 millisec

Faster is more expensive (dollars and chip area)
o SRAM, < 10$ per Megabyte

o DRAM, < 1% per Megabyte

o Hard Disk < 1$ per Gigabyte

o These sample values scale with time

Other technologies have their place as well
o Flash memory, Phase-change memory (not mature yet)
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Why Memory Hierarchy?

We want both fast and large
But we cannot achieve both with a single level of memory

Idea: Have multiple levels of storage (progressively bigger
and slower as the levels are farther from the processor)
and ensure most of the data the processor needs is kept in
the fast(er) level(s)
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Memory Hierarchy

Fundamental tradeoff
o Fast memory: small
o Large memory: slow

Idea: Memory hierarchy

CPU # Cache

RF

Latency, cost, size,
bandwidth

Main
Memory
(DRAM)

Hard Disk
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Locality

One’s recent past is a very good predictor of his/her near
future.

Temporal Locality: If you just did something, it is very
likely that you will do the same thing again soon

Spatial Locality: If you just did something, it is very likely
you will do something similar/related
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Memory Locality

A “typical” program has a lot of locality in memory
references

o typical programs are composed of “loops”

Temporal: A program tends to reference the same memory
location many times and all within a small window of time

Spatial: A program tends to reference a cluster of memory
locations at a time

o most notable examples:
1. instruction memory references
2. array/data structure references
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Caching Basics: Exploit Temporal Locality

Idea: Store recently accessed data in automatically
managed fast memory (called cache)

Anticipation: the data will be accessed again soon

Temporal locality principle

o Recently accessed data will be again accessed in the near
future

o This is what Maurice Wilkes had in mind:

Wilkes, “Slave Memories and Dynamic Storage Allocation,” IEEE
Trans. On Electronic Computers, 1965.

“The use is discussed of a fast core memory of, say 32000 words
as a slave to a slower core memory of, say, one million words in
such a way that in practical cases the effective access time is
nearer that of the fast memory than that of the slow memory.”
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Caching Basics: Exploit Spatial Locality

Idea: Store addresses adjacent to the recently accessed
one in automatically managed fast memory

o Logically divide memory into equal size blocks
o Fetch to cache the accessed block in its entirety
Anticipation: nearby data will be accessed soon

Spatial locality principle

o Nearby data in memory will be accessed in the near future
E.g., sequential instruction access, array traversal

o This is what IBM 360/85 implemented
16 Kbyte cache with 64 byte blocks

Liptay, “Structural aspects of the System/360 Model 85 II: the
cache,” IBM Systems Journal, 1968.
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Caching in a Pipelined Design

The cache needs to be tightly integrated into the pipeline

o Ideally, access in 1-cycle so that dependent operations do not
stall

High frequency pipeline - Cannot make the cache large
o But, we want a large cache AND a pipelined design
Idea: Cache hierarchy

Main
Level 2 Memory
CPU Level Cache > (DRAM)

RF Cache
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A Note on Manual vs. Automatic Management

Manual: Programmer manages data movement across levels
-- too painful for programmers on substantial programs
a core” vs “drum” memory in the 50's

o still done in some embedded processors (on-chip scratch pad
SRAM in lieu of a cache)

Automatic: Hardware manages data movement across levels,
transparently to the programmer

++ programmer’s life is easier

o simple heuristic: keep most recently used items in cache

o the average programmer doesn’t need to know about it

You don't need to know how big the cache is and how it works to
write a “correct” program! (What if you want a “fast” program?)
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Automatic Management in Memory E

Wilkes, “Slave Memories and Dynamic Storage
IEEE Trans. On Electronic Computers, 1965.

terarchy

Allocation,”

Slave Memories and Dynamic Storage Allocation

M. V. WILKES
SUMMARY

The use is discussed of a fast core memory of, say,

32 000 words as

a slave to a slower core memory of, say, one million words in such a
way that in practical cases the effective access time is nearer that of

the fast memory than that of the slow memory.

"By a slave memory I mean one which automatically
accumulates to itself words that come from a slower main
memory, and keeps them available for subsequent use
without it being necessary for the penalty of main memory

access to be incurred again.”
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A Modern Memory Hierarchy

Memory
Abstraction

Register File
32 words, sub-nsec

L1 cache
~32 KB, ~nsec

L2 cache
512 KB ~ 1MB, many nsec

L3 cache,

manual/compiler

register spilling

Automatic
HW cache
management

Main memory (DRAM),
GB, ~100 nsec

automatic

Swap Disk
100 GB, ~10 msec

demand
paging
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The DRAM Subsystem




DRAM Subsystem Organization

= Channel

= DIMM

= Rank

N Chu)

= Bank

= Row/Column
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The DRAM Bank Structure
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Page Mode DRAM

A DRAM bank is a 2D array of cells: rows x columns
A “DRAM row” is also called a “DRAM page”
“Sense amplifiers” also called “row buffer”

Each address is a <row,column> pair

Access to a “closed row”

o Activate command opens row (placed into row buffer)

o Read/write command reads/writes column in the row buffer

o Precharge command closes the row and prepares the bank for
next access

Access to an “open row”

o No need for activate command
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DRAM Bank Operation

Access Address:
(Row 0, Column 0)

(Row 0, Column 1)
(Row 0, Column 85)
(Row 1, Column 0)

Row address @ —»

Row decoder

Columns

________________________

—————————————————————————

__________________________

________________________

Column address 65—»\ Column mux/

l

Data

Row Buffer EONFLICT !
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The DRAM Chip

Consists of multiple banks (2-16 in Synchronous DRAM)
Banks share command/address/data buses
The chip itself has a narrow interface (4-16 bits per read)
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128M x 8-bit DRAM Chip
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DRAM Rank and Module

Rank: Multiple chips operated together to form a wide
interface

All chips comprising a rank are controlled at the same time

o Respond to a single command
o Share address and command buses, but provide different data

A DRAM module consists of one or more ranks
o E.g., DIMM (dual inline memory module)
o This is what you plug into your motherboard

If we have chips with 8-bit interface, to read 8 bytes in a
single access, use 8 chips in a DIMM
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A 64-bit Wide DIMM (One Rank)




A 64-bit Wide DIMM (One Rank)

____________________________________________________________________________________

' DIMM i
| RAM CHIP 7 |
| DRAM CHIP 1 5
| DRAM CHIP 0 :
i BANK 0 BANK 7 E
2] [ Rewo
i Row 2 - g : i
| Address| 5 _z E |
| =z < - |
i = Réow R—l i
i N H : ; i : :
| ] |
i | ROW BUFFER | | | i
i Column — - § i
i Address _ Column Decoder j ( ] :
| {z % g !
| - !
| 8 !
| [ 8 64 |
s I RRREanEEEE e L LR P L PP 1___________,'

DRAM T

Command Bus 64—bit wide

] - channel
|

DRAM Address Bus ‘ DRAM MEMORY CONTROLLER

DRAM Data Bus

Advantages:

o Acts like a high-
capacity DRAM chip
with a wide
interface

o Flexibility: memory
controller does not
need to deal with
individual chips

Disadvantages:

o Granularity:
Accesses cannot be
smaller than the
interface width
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Multiple DIMMs

lDimmi, Dimm2  Dimm3, Pimm4,

j L |
I | N |
wi
| I | I
: I I :
Single | I I
Channel , = :
SDRAM I I I
Controller | Ifi !
| I
| I | I
| Il I
I | (N [
L Iq |
| I
_— | I | I

Addr & Cmd

“Mesh Topology” Data Bus

Chip (DIMM) Select

= Advantages:

o Enables even
higher capacity

= Disadvantages:

o Interconnect
complexity and
energy
consumption
can be high

74



DRAM Channels

‘DIMM
| [DRAM CHIP 7 ,

[DRAM CHIP 1

DRAM CHIP 0
BANK 0

ess Decoder |
J

Row

Address| 5
=z
ROW BUFFER
Column I N
Address Column Decoder /|

BANK 7

Command Bus

DRAM Address Bus S A A DRAM Data Bus

64—bit wide
channel

‘DIMM
i [DRAM CHIP 7 ,

[DRAM CHIP 1

DRAM CHIP 0
BANK 7

BANK 0

ess Decoder |
J

Row

Address| 5
=z
2 REO\\';Rflé
—
Column o .
Address Column Decoder ) (—]
v g
T 8
[ 8 64
E BT Y R -~
| Command Bus 64-bit wide
channel

DRAM Address Bus DRAMMEMORY CONTROLLER DRAM Data Bus

2 Independent Channels: 2 Memory Controllers (Above)

2 Dependent/Lockstep Channels: 1 Memory Controller with
wide interface (Not Shown above)
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Generalized Memory Structure

cache line
column

row

bank

Memory channel
Controller
Memory channel
Controller
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Generalized Memory Structure

-------------------------

Processor |

Rank

Rank

Bank a

Bank _j

Rank

Bank ﬂ

Channel

_.<—data bus—)

................................

- —cmd bus— i

—addr bus—)

......
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The DRAM Subsystem
The Top Down View




DRAM Subsystem Organization

= Channel

= DIMM

= Rank

N Chu)

= Bank

= Row/Column
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The DRAM subsystem

“Channel” DIMM (Dual in-line memory module)

Memory channel Memory channel



Breaking down a DIMM

SEEN

DIMM (Dual in-line memory module)

Front of DIMM Back of DIMM




Breaking down a DIMM

DIMM (Dual in-line memory module)

Front of DIMM Back of DIMM

= LT, "

I L | I I
N




Rank

Rank O (Front) Rank 1 (Back)

‘ Addr/Cmd CS <0:1> Data <0:63> ’

Memory channel




Breaking down a Rank

Data <0:63>



Breaking down a Chip




Breaking down a Bank

1B (column)

2kB

R¢

>w-|auﬂ]er

~

row 16k-1

row 0




DRAM Subsystem Organization

= Channel

= DIMM

= Rank

N Chu)

= Bank

= Row/Column
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Example: Transferring a cache block

Physical memory space

OXFFFF...F

Channel 0

0x40 A

64B
cache block

0x00 v



Example: Transferring a cache block

Physical memory space

Chip 0 Chip 1 Chip 7
P P Rank O P

|

OXFFFF...F

<0:7>

0x40 A

64B
D <0:63>
cache block ata <0:63

0x00 v



Example: Transferring a cache block

Physical memory space

Chip 0 Chip 1 Chip 7
P P Rank O P

OXFFFF...F

<0:7>

0x40 A

64B
D <0:63>
cache block ata <0:63

0x00 v



Example: Transferring a cache block

Physical memory space

Chip 0 Chip 1 Chip 7
P P Rank O P

OXFFFF...F

<0:7>

0x40 A

64B
cache block

Data <0:63>

8B

0x00 v



Example: Transferring a cache block

Physical memory space

Chip 0 Chip 1 Chip 7
P P Rank O P

o o |

OXFFFF...F

<0:7>

0x40 A

64B
D <0:63>
cache block ata <0:63

8B
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Example: Transferring a cache block

Physical memory space

Chip 0 Chip 1 Chip 7
P P Rank O P

o o |

OXFFFF...F

<0:7>

0x40 A

64B
cache block

Data <0:63>

8B

8B

0x00 v



Example: Transferring a cache block

Physical memory space

Chip 0 Chip 1 Chip 7
P P Rank O P

o o |

OXFFFF...F

<0:7>

0x40 A

64B
o8 D <0:63>
cache block ata <0:63

8B

0x00 v

A 64B cache block takes 8 1/O cycles to transfer.

During the process, 8 columns are read sequentially.



Latency Components: Basic DRAM Operation

CPU — controller transfer time

Controller latency

o Queuing & scheduling delay at the controller

o Access converted to basic commands

Controller — DRAM transfer time

DRAM bank latency

o Simple CAS if row is “open” OR

o RAS + CAS if array precharged OR

o PRE + RAS + CAS (worst case)

DRAM — CPU transfer time (through controller)
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Multiple Banks (Interleaving) and Channels

Multiple banks

o Enable concurrent DRAM accesses

o Bits in address determine which bank an address resides in
Multiple independent channels serve the same purpose

o But they are even better because they have separate data buses
a Increased bus bandwidth

Enabling more concurrency requires reducing

o Bank conflicts

o Channel conflicts

How to select/randomize bank/channel indices in address?

o Lower order bits have more entropy
o Randomizing hash functions (XOR of different address bits)
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How Multiple Banks/Channels Help

Addr
Bus

DRAM

(A % (&)
Wait for DRAM access | Wait for DRAM access | Wait...
Data /D \

Bus \ 0/ \D1/

Before: No Overlapping
Assuming accesses to different DRAM rows

After: Overlapped Accesses
Assuming no bank conflicts




Multiple Channels

Advantages
o Increased bandwidth

o Multiple concurrent accesses (if independent channels)

Disadvantages

o Higher cost than a single channel
More board wires

More pins (if on-chip memory controller)
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Address Mapping (Single Channel)

Single-channel system with 8-byte memory bus
o 2GB memory, 8 banks, 16K rows & 2K columns per bank

Row interleaving
o Consecutive rows of memory in consecutive banks

| Row (14 bits) | Bank (3 bits) | Column (11 bits) | Byte in bus (3 bits) |

Cache block interleaving
Consecutive cache block addresses in consecutive banks
64 byte cache blocks

| Row (14 bits) | High Column | Bank (3 bits) | Low Col. | Byte in bus (3 bits) |
8 bits 3 bits

Accesses to consecutive cache blocks can be serviced in parallel
How about random accesses? Strided accesses?

99



Bank Mapping Randomization

= DRAM controller can randomize the address mapping to
banks so that bank conflicts are less likely

| : ! |  3bits | Column (11 bits) | Byte in bus (3 bits) |

Bank index
(3 bits)
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Address Mapping (Multiple Channels)

4 Row (14 bits) | Bank (3 bits) | Column (11 bits) | Byte in bus (3 bits) |
| Row (14 bits) | d Bank (3 bits) | Column (11 bits) | Byte in bus (3 bits) |
| Row (14 bits) | Bank (3 bits) | G Column (11 bits) | Byte in bus (3 bits) |
| Row (14 bits) | Bank (3 bits) | Column (11 bits) | d Byte in bus (3 bits) |

= Where are consecutive cache blocks?

4 Row (14 bits) | High Column | Bank (3 bits) | Low Col. | Byte in bus (3 bits) |
8 bits 3 bits
| Row (14 bits) | d High Column | Bank (3 bits) | Low Col. | Byte in bus (3 bits) |
8 bits 3 bits
| Row (14 bits) | High Column | d Bank (3 bits) | Low Col. | Byte in bus (3 bits) |
8 bits 3 bits
| Row (14 bits) | High Column | Bank (3 bits) | G| Low Col. | Byte in bus (3 bits) |
8 bits 3 bits
| Row (14 bits) | High Column | Bank (3 bits) | Low Col. E Byte in bus (3 bits) |
8 bits 3 bits
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Interaction with Virtual=2 Physical Mapping

= Operating System influences where an address maps to in
DRAM

Virtual Page number (52 bits) | Page offset (12 bits) | VA
I Physical Frame number (19 bits) I Page offset (12 bits) I PA
| Row (14 bits) | Bank (3 bits) Column (11 bits) | Byte in bus (3 bits) | PA

= Operating system can control which bank/channel/rank a
virtual page is mapped to.

= It can perform page coloring to minimize bank conflicts
= Or to minimize inter-application interference
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DRAM Retresh (I)

DRAM capacitor charge leaks over time

The memory controller needs to read each row periodically
to restore the charge

WL BL

o Activate + precharge each row every N ms L
a Typical N = 64 ms ae ,
Implications on performance? 1 V

-- DRAM bank unavailable while refreshed

-- Long pause times: If we refresh all rows in burst, every 64ms
the DRAM will be unavailable until refresh ends

Burst refresh: All rows refreshed immediately after one
another

Distributed refresh: Each row refreshed at a different time,
at regular intervals
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DRAM Reftresh (II)

reren |00

sl 111 LI
Refresh \ :
y Time ——= ;

Each pulse represents Required time to
a refresh cycle complete refresh of all rows

Distributed refresh eliminates long pause times

How else we can reduce the effect of refresh on
performance?

o Can we reduce the number of refreshes?
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Downsides of DRAM Refresh

Downsides of refresh
-- Energy consumption: Each refresh consumes energy

-- Performance degradation: DRAM rank/bank unavailable while
refreshed

-- QoS/predictability impact: (Long) pause times during refresh
-- Refresh rate limits DRAM density scaling

CAP

hi SENSE
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Memory Controllers




DRAM versus Other Types of Memories

Long latency memories have similar characteristics that
need to be controlled.

The following discussion will use DRAM as an example, but
many issues are similar in the design of controllers for other
types of memories

o Flash memory

o Other emerging memory technologies
Phase Change Memory
Spin-Transfer Torque Magnetic Memory
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DRAM Controller: Functions

Ensure correct operation of DRAM (refresh and timing)

Service DRAM requests while obeying timing constraints of
DRAM chips

o Constraints: resource conflicts (bank, bus, channel), minimum
write-to-read delays

o Translate requests to DRAM command sequences

Buffer and schedule requests to improve performance
o Reordering, row-buffer, bank, rank, bus management

Manage power consumption and thermals in DRAM

o Turn on/off DRAM chips, manage power modes
108



DRAM Controller: Where to Place

In chipset
+ More flexibility to plug different DRAM types into the system

+ Less power density in the CPU chip

On CPU chip

+ Reduced latency for main memory access
+ Higher bandwidth between cores and controller

More information can be communicated (e.g. request’s
importance in the processing core)
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DRAM Controller (IT)

DRAM memory controller
queue bank %
cpu pool management
T Bank 0 =
cpu arbiter
- Bank 1 2 §
Vo request \ - E
streams Bank 2 % £
\ m
- - - - > -
transaction address command electrical DRAM
scheduling translation scheduling signalling access
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A Modern DRAM Controller

L2 Cache 0
To/From Cores  Requests

A }

L2 Cache N-1
Requests

e P e ——

Bank B—-1
Scheduler

DEAM Bus Scheduler

A

] Bank 0
:i Scheduler
=
- .
el ;
=) .

\

Y
To/From DEAM Banks

Selected Address and DEAM Command

DEAM Address/Command Bus

To DRAM Banks

= ( ™
ﬁ Crossbar
= - J
= — * _____________________________ " _______ | Memory Request
? : ! Buffer
1 BANK 0 ) BANK B-1 |
[ REQUEST REQUEST :
= BUFFER BUFFER !
| |
I |

Memory Access
| Scheduler
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DRAM Scheduling Policies (I)

FCFS (first come first served)
o Oldest request first

FR-FCFS (first ready, first come first served)
1. Row-hit first

2. Oldest first
Goal: Maximize row buffer hit rate - maximize DRAM throughput

o Actually, scheduling is done at the command level

Column commands (read/write) prioritized over row commands
(activate/precharge)

Within each group, older commands prioritized over younger ones
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DRAM Scheduling Policies (I1I)

A scheduling policy is essentially a prioritization order

Prioritization can be based on

o Request age

Row buffer hit/miss status

Request type (prefetch, read, write)
Requestor type (load miss or store miss)

Request criticality
Oldest miss in the core?
How many instructions in core are dependent on it?
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Row Butter Management Policies

Open row

o Keep the row open after an access

+ Next access might need the same row - row hit

-- Next access might need a different row = row conflict, wasted energy

Closed row

o Close the row after an access (if no other requests already in the request
buffer need the same row)

+ Next access might need a different row = avoid a row conflict
-- Next access might need the same row - extra activate latency

Adaptive policies

o Predict whether or not the next access to the bank will be to
the same row
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Open vs. Closed Row Policies

Policy

Open row
Open row

Closed row

Closed row

Closed row

Row 0
Row 0

Row 0O

Row 0

Row 0O

Row 0 (row hit)

Row 1 (row
conflict)

Row 0 — access in
request buffer
(row hit)

Row 0 — access not
in request buffer
(row closed)

Row 1 (row closed)

Commands
needed for next
access

Read

Precharge +
Activate Row 1 +
Read

Read

Activate Row 0 +
Read + Precharge

Activate Row 1 +
Read + Precharge
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Why are DRAM Controllers Ditficult to Design?

Need to obey DRAM timing constraints for correctness
o There are many (50+) timing constraints in DRAM

o tWTR: Minimum number of cycles to wait before issuing a
read command after a write command is issued

o tRC: Minimum number of cycles between the issuing of two
consecutive activate commands to the same bank

a ...

Need to keep track of many resources to prevent conflicts
o Channels, banks, ranks, data bus, address bus, row buffers

Need to handle DRAM refresh

Need to optimize for performance (in the presence of constraints)
o Reordering is not simple
o Predicting the future?
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Many DRAM Timing Constraints

Latency | Symbol | DRAM cyeles H Latency | Symbol | DRAM cycles |

Precharge ‘RP 11 Activate to read/write ‘RCD 11

Read column address strobe CL 11 Write column address strobe CWL 8
Additive AL 0 Activate to activate ‘RC 39

Activate to precharge ‘RAS 28 Read to precharge ‘RTP 6

Burst length ‘BL 4 Column address strobe to column address strobe | ‘CC D 4
Activate to activate (different bank) | *RRD 6 Four activate windows ‘FAW 24
Write to read ‘WTR 6 Write recovery ‘WR 12

Table 4. DDR3 1600 DRAM timing specifications

= From Lee et al., “DRAM-Aware Last-Level Cache Writeback: Reducing

Write-Caused Interference in Memory Systems,” HPS Technical Report,

April 2010.
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More on DRAM Operation

= Kim et al., “A Case for Exploiting Subarray-Level Parallelism
(SALP) in DRAM,” ISCA 2012.

= Lee et al., "Tiered-Latency DRAM: A Low Latency and Low
Cost DRAM Architecture,” HPCA 2013.

Q .| Q
® & & Gi N Table 2. Timing Constraints (DDR3-1066) [43]
< 3 Q < 3
N tRC | Phase Commands Name Value
——tRAS——— | < tRP—| ACT o READ
; time —
Subarray —{ 1. Activation Pre 1. Activation — 1 ACT — WRITE  CRCD 15ns
| |
peripheral & | < tRCD S5 | ¢tRCD> N time ACT — PRE tRAS  37.5ns
|/0-Circuitry READ — data tCL 15ns
«—tCcL— | «<tCL—~> ! time 2  WRITE — data tCWL 11.25ns
Bus data >
' ! : data burst tBL 7.5ns
_ 'EBLy tBL| 3 PRE— ACT tRP  15ms
<—first access latency—> | i TRC
second access latency | 1&3 ACT — ACT (tRAS+LRP) 52.5ns

Figure 5. Three Phases of DRAM Access
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Selt-Optimizing DRAM Controllers

Problem: DRAM controllers difficult to design - It is difficult for
human designers to design a policy that can adapt itself very well
to different workloads and different system conditions

Idea: Design a memory controller that adapts its scheduling
policy decisions to workload behavior and system conditions
using machine learning.

Observation: Reinforcement learning maps nicely to memory
control.

Design: Memory controller is a reinforcement learning agent that
dynamically and continuously learns and employs the best
scheduling policy.
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Selt-Optimizing DRAM Controllers

’ I ENVIRONMENT

Action a(t+1) Agent

’ I SYSTEM

<— Data Bus Utilization (t)
<— State Attributes (t)

— Scheduled Command (t+1) 1 Scheduler

Figure 2: (a) Intelligent agent based on reinforcement learning
principles; (b) DRAM scheduler as an RL-agent



Selt-Optimizing DRAM Controllers

= Engin Ipek, Onur Mutlu, José F. Martinez, and Rich Caruana,
"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach”
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.

N\

/State\ yti ‘
Transaction Queue o
= 3
(o 8 :
S &
P ~ )
- o Coaa
- ~
- - ~ ~ \
Valid |Bank | Row | Col | Data | Fequest Rewa\rd/
State

Figure 4: High-level overview of an RL-based scheduler.
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Performance Results

BORON BOOON
COO0COO0OCO00O

Speedup over FR-FCFS
COORREEEENN

ART CG EQUAKE FFT MG OCEAN RADIX  SCALPARC SWIM  G-MEAN
B In-Order W FR-FCFS MWRL M Optimistic

Figure 7: Performance comparison of in-order, FR-FCFS, RL-based, and optimistic memory controllers

Speedup over
1-Channel FR-FCFS

ART CG EQUAKE FFT MG OCEAN RADIX SCALPARC SWIM G-MEAN

M FR-FCFS-1Channel = RL-1Channel M FR-FCFS-2 Channels M RL-2 Channels

Figure 15: Performance comparison of FR-FCFS and RL-based memory controllers on systems with 6.4GB/s and 12.8GB/s peak
DRAM bandwidth
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DRAM Power Management

DRAM chips have power modes
Idea: When not accessing a chip power it down

Power states

o Active (highest power)

o All banks idle

o Power-down

o Self-refresh (lowest power)

State transitions incur latency during which the chip cannot
be accessed
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Trends Atfecting Main Memory
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Technology Trends

DRAM does not scale well beyond N nm [ITRS 2009, 2010]
o Memory scaling benefits: density, capacity, cost

Energy/power already key design limiters

o Memory hierarchy responsible for a large fraction of power

IBM servers: ~50% energy spent in off-chip memory hierarchy
[Lefurgy+, IEEE Computer 2003]

DRAM consumes power when idle and needs periodic refresh

More transistors (cores) on chip

Pin bandwidth not increasing as fast as number of transistors
o Memory is the major shared resource among cores
o More pressure on the memory hierarchy
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Application Trends

Many different threads/applications/virtual-machines (will)
concurrently share the memory system

o Cloud computing/servers: Many workloads consolidated on-chip to
improve efficiency

o GP-GPU, CPU+GPU, accelerators: Many threads from multiple
applications

o Mobile: Interactive + non-interactive consolidation

Different applications with different requirements (SLAs)
o Some applications/threads require performance guarantees
o Modern hierarchies do not distinguish between applications

Applications are increasingly data intensive
o More demand for memory capacity and bandwidth
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Architecture/System Trends

Sharing of memory hierarchy

More cores and components
o More capacity and bandwidth demand from memory hierarchy

Asymmetric cores: Performance asymmetry, CPU+GPUs,
accelerators, ...

o Motivated by energy efficiency and Amdahl’s Law
Different cores have different performance requirements
o Memory hierarchies do not distinguish between cores

Different goals for different systems/users

o System throughput, fairness, per-application performance
o Modern hierarchies are not flexible/configurable
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Summary: Major Trends Affecting Memory
Need for memory capacity and bandwidth increasing

New need for handling inter-core interference; providing
fairness, QoS, predictability

Need for memory system flexibility increasing
Memory energy/power is a key system design concern

DRAM capacity, cost, energy are not scaling well
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Requirements from an Ideal Memory System

= Traditional
o High system performance
o Enough capacity
o Low cost

= New

o Technology scalability
o QoS and predictable performance
o Energy (and power, bandwidth) efficiency
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Requirements from an Ideal Memory System

= Traditional
o High system performance: More parallelism, less interference
o Enough capacity: New technologies and waste management
o Low cost: New technologies and scaling DRAM

= New
o Technology scalability
= New memory technologies can help? DRAM can scale?
o QoS and predictable performance
= Hardware mechanisms to control interference and build QoS policies

o Energy (and power, bandwidth) efficiency
= Need to reduce waste and enable configurability
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The DRAM Scaling Problem

DRAM stores charge in a capacitor (charge-based memory)
o Capacitor must be large enough for reliable sensing

o Access transistor should be large enough for low leakage and high
retention time

o Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

WL BL

= |

CAP —— ;
- SENSE

V

DRAM capacity, cost, and energy/power hard to scale
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Solutions to the DRAM Scaling Problem

Two potential solutions
o Tolerate DRAM (by taking a fresh look at it)

o Enable emerging memory technologies to eliminate/minimize
DRAM

Do both
o Hybrid memory systems

SAFARI 134



Solution 1: Tolerate DRAM

Overcome DRAM shortcomings with

o System-DRAM co-design

o Novel DRAM architectures, interface, functions
o Better waste management (efficient utilization)

Key issues to tackle

o Reduce refresh energy

o Improve bandwidth and latency

a Reduce waste

o Enable reliability at low cost

Liu, Jaiyen, Veras, Mutlu, "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.
Kim, Seshadri, Lee+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.

Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.
Liu+, “"An Experimental Study of Data Retention Behavior in Modern DRAM Devices” ISCA"13.
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Tolerating DRAM:
System-DRAM Co-Design




New DRAM Architectures

RAIDR: Reducing Refresh Impact

TL-DRAM: Reducing DRAM Latency

SALP: Reducing Bank Conflict Impact

RowClone: Fast Bulk Data Copy and Initialization
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RAIDR: Reducing
DRAM Retresh Impact




DRAM Refresh

DRAM capacitor charge leaks over time

The memory controller needs to refresh each row
periodically to restore charge

o Activate + precharge each row every N ms
o Typical N = 64 ms

Downsides of refresh

-- Energy consumption: Each refresh consumes energy

-- Performance degradation: DRAM rank/bank unavailable while
refreshed

-- QoS/predictability impact: (Long) pause times during refresh
-- Refresh rate limits DRAM density scaling
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Refresh Today: Auto Refresh

Columns

——————————————————————————

________________________
[}

_____

_____

SMOY

________________________

________________________

Row Buffer

l

BANK 1 BANK 2

BANK 3

!

lDRAM Bus

A batch of rows are
periodically refreshed

l

DRAM CONTROLLER

via the auto-refresh command

SAFARI
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Refres

h Overhead: Performance

100

% time spent refreshing

o0
S

A
S

B
-

()
S

Present i Future

2Gb 4Gb 8Gb 16Gb 32Gb 64 Gb
Device capacity
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Retresh Overhead: Energy

100

% DRAM energy spent refreshing

o0
S

o)
S

I~
)

()
S

-

T

Present i Future

2Gb 4Gb 8Gb 16Gb 32Gb 64 Gb
Device capacity
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Problem with Conventional Refresh

= Today: Every row is refreshed at the same rate

;‘-'.; -lollm
£ 1ot
e, 110° &
: i
= | sp)
E 110° =
= < 1000 cell failures @ 256 ms | e
210710 | .-
= i | .28
6 10 10—2 10—1 100 101 102 103 104 2

Refresh interval (s)

= Observation: Most rows can be refreshed much less often
without losing data [Kim+, EDL'09]

= Problem: No support in DRAM for different refresh rates per row
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Retention Time of DRAM Rows

= Observation: Only very few rows need to be refreshed at the
worst-case rate

= =
= 10-5
= 10 _106§
S 107° a
1103
g 1032
107 O
= 110*
= 1075 ~ 1000 cells @ 256 ms -
: 10—9j ______________________________________________________ 10“;
S 1010l ~30cells @128 ms ~ | 103
2 T 110''S
310 Cutoff @ 64 ms 1002
S 10 12— ittt ettt =
g 107 10! 100 2

Refresh interval (s)

= Can we exploit this to reduce refresh operations at low cost?
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Reducing DRAM Retresh Operations

Idea: Identify the retention time of different rows and
refresh each row at the frequency it needs to be refreshed

(Cost-conscious) Idea: Bin the rows according to their
minimum retention times and refresh rows in each bin at
the refresh rate specified for the bin

o e.g., a bin for 64-128ms, another for 128-256ms, ...

Observation: Only very few rows need to be refreshed very
frequently [64-128ms] - Have only a few bins > Low HW
overhead to achieve large reductions in refresh operations

Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

SAFARI 145



RAIDR: Mechanism
04-128ms

1.25KB storage in controller for 32GB DRAM memory

128-250ms

bins at different rates
- probe Bloom Filters to determine refresh rate of a row
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1. Profiling

To profile a row:

1. Write data to the row
2. Prevent it from being refreshed
3. Measure time before data corruption

Row 1 Row 2 Row 3
Initially 11111111... 11111111... 11111111...

After64 ms 11111111... 11111111... 11111111...

After 128 ms 11011111... 11111111... 11111111...
(64-128ms)

After 256 ms 11111011... 11111111..

(128- 256ms) (>256ms)
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2. Binning

= How to efficiently and scalably store rows into retention
time bins?

= Use Hardware Bloom Filters [Bloom, CACM 1970]

Example with 64-128ms bin:

0]1]0]1(0]21])]0]0}10]0

N —

Hash function 1 Hash function 2 Hash function 3

Insert Row 1
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Bloom Filter Operation Example

Example with 64-128ms bin:

1 & 1 & 1 =1
o(fol1]10]1lO|lO]J]O]J]O(1]O|l]O|lO]lO]O
Hash function 1 Hash function 2 Hash function 3

Row 1 present?
Yes
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Bloom Filter Operation Example

Example with 64-128ms bin:

0)j]0j]1f{0)]11J]0/0)J]0}J0[1T)]O[0O0O]J0]0(]0O0

Hash function 1 Hash function 2 Hash function 3

Row 2 present?
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Bloom Filter Operation Example

Example with 64-128ms bin:

Hash function 1 Hash function 2 Hash function 3

T\

/

Insert Row 4

SAFARI
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Bloom Filter Operation Example

Example with 64-128ms bin:

O)J]0f[1]0O0

1

1

1 & 1 & 1 =1
0]j]0jJO0O)]1jJ0O0)]J]0O0]J1T}]0]1

_——

Hash function 1

Hash function 2

Hash function 3

SAFARI

Row 5 present?
Yes (false positive)
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Benefits of Bloom Filters as Bins

False positives: a row may be declared present in the
Bloom filter even if it was never inserted

o Not a problem: Refresh some rows more frequently than
needed

No false negatives: rows are never refreshed less
frequently than needed (no correctness problems)

Scalable: a Bloom filter never overflows (unlike a fixed-size
table)

Efficient: No need to store info on a per-row basis; simple
hardware - 1.25 KB for 2 filters for 32 GB DRAM system
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3. Refreshing (RAIDR Retresh Controller)
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3. Refreshing (RAIDR Retresh Controller)

Memory controller
chooses each row
as a refresh candidate
every 64ms

:

Row in 64-128ms bin?—> Row in 128-256ms bin?
(First Bloom filter: 256B) (Second Bloom filter: 1KB)

| | |

Refresh the row Every other 64ms window, Every 4th 64ms window,
refresh the row refresh the row

Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.
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Tolerating Temperature Changes

» Change in temperature causes retention time of all cells to
change by a uniform and predictable factor

» Refresh rate scaling: increase the refresh rate for all rows
uniformly, depending on the temperature

» Implementation: counter with programmable period

» Lower temperature = longer period = less frequent refreshes
» Higher temperature = shorter period = more frequent
refreshes
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RAIDR: Baseline Design

Refresh control is in DRAM in today’s auto-refresh systems

RAIDR can be implemented in either the controller or DRAM
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RAIDR in Memory Controller: Option 1

Overhead of RAIDR in DRAM controller:
1.25 KB Bloom Filters, 3 counters, additional commands

issued for per-row refresh (all accounted for in evaluations)
SAFARI




RAIDR in DRAM Chip: Option 2

Overhead of RAIDR in DRAM chip:
Per-chip overhead: 20B Bloom Filters, 1 counter (4 Gbit chip)

Total overhead: 1.25KB Bloom Filters, 64 counters (32 GB DRAM)
SAFARI




RAIDR Results

Baseline:
o 32 GB DDR3 DRAM system (8 cores, 512KB cache/core)

o 64ms refresh interval for all rows

RAIDR:

0 64-128ms retention range: 256 B Bloom filter, 10 hash functions
o 128-256ms retention range: 1 KB Bloom filter, 6 hash functions
o Default refresh interval: 256 ms

Results on SPEC CPU2006, TPC-C, TPC-H benchmarks
a 74.6% refresh reduction

o ~16%/20% DRAM dynamic/idle power reduction

o ~9% performance improvement
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RAIDR Refresh Reduction

32 GB DDR3 DRAM system

4,010’

B Auto B Smart
[ Distributed [__1RAIDR

"
I

)
o O

o

74.6%

—_—
.

# of refreshes performed
()
N O

—_—
N o

o O

=)

Normal temperature  Extended temperature
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RAIDR: Performance

8.5
8.0'6'1%

B Auto [ 1RAIDR
[ Distributed I No Refresh
B Smart

9.3%

40%0% 25% 50% 75% 100%  Ave
Memory-intensive benchmarks in workload

RAIDR performance benefits increase with workload’s memory intensity
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RAIDR: DRAM Energy Etficiency

100
I Auto [ TRAIDR
18.9% 1 Distributed [ No Refresh

- 20 I Smart
o
p—
@)
O
3 60
S
-
D)
S 40
S
20
=
S 20

0%0% 25% 50% 75% 100% Avg
Memory-intensive benchmarks in workload
RAIDR energy benefits increase with memory idleness
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DRAM Device Capacity Scaling: Performance

8
Bl Auto
7} I RAIDR
o,
= 6
b5
§5
= 4
L
j§03
=2
|

0%4Gb 8Gb 16Gb 32Gb 64 Gb
Device capacity

RAIDR performance benefits increase with DRAM chip capacity
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DRAM Device Capacity Scaling: Energy

160
E
=120}

S0%

Bl Auto
T RAIDR

[E—
= N 0o O
S S S S

Energy per acces

DO
-

0%4Gb 8Gb 16Gb 32Gb 64 Gb
Device capacity

RAIDR energy benefits increase with DRAM chip capacity RAIDR slides
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New DRAM Architectures

RAIDR: Reducing Refresh Impact

TL-DRAM: Reducing DRAM Latency

SALP: Reducing Bank Conflict Impact

RowClone: Fast Bulk Data Copy and Initialization
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Tiered-Latency DRAM:
Reducing DRAM Latency




Historical DRAM Latency-Capacity Trend

#*Capacity *Llatency (tRC)

2.5 100
16X
2.0 80 —
© — £
.‘?1.5 — \/ . 60 3
o ) c
8 -20% 0 2
S 05 20 -
0.0 I | | 0
2000 2003 2006 2008 2011
Year

DRAM latency continues to be a critical bottleneck
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What Causes the Long Latency?
DRAM Chip subarray

subarray

cell
Yo gt —y
t ,/,,/” \\\\\\'u,t'
Ch anne I 8 , /,_ \\\
% = I access |
| ® transistor i| c
3 “\ % l" E
YO / o)
E \\\ I /,/

sense amplifier 169



What Causes the Long Latency?

|
MilL__subarray || \ g'
Il Y
| )
n
S
Q
(7,
I/0 mlux /
channel ‘ i

DRAM Latency {Subarray Lattemay ¥+ [)/D latt=moy

Dominant 10



Why is the Subarray So Slow?

Subarray Cell
cell N
© w5 wordline
. prrr—
T m /”’ Ss &
3 g % 7 L. | B
° N 8 II/ \\\ $
S ™~ ;= - —
Y ) U [ 2 ‘ access | o,
RS o i s transistor || & g
1 @© | ==
g .S 3 ‘\\ 1 5= (@
E E E \ / —Q &
= <
U
....... (7
sense amplifier large sense amplifier

* Long bitline
— Amortizes sense amplifier cost = Small area

— Large bitline capacitance = High latency & power
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Trade-Off: Area (Die Size) vs. Latency
Long Bitline Short Bitline

—
%%%%

AYAYAYA
Trade-Off. Area vs. Latency

172



Trade-Off: Area (Die Size) vs. Latency

I

32

w

FENIE] LAY Commodity

64 Short Bitline DRAM
Long Bitline

(B

512 cells/bitline

0
Normalized DRAM Area
N

50 60 70

o

Latency (ns)
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Approximating the Best of Both Worlds

Long Bitline J Our Proposal | Short Bitline
Small Area __lorgeAreq

' N7 N/ \/ \

M Low Latency

Need Add Isolatlon
Isolation Transistors

tline = Fast
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Approximating the Best of Both Worlds

Long Bitlir Tiered-Latency DRAM ort Bitline

Small Area  Small Area M

' N/ N/ N/ \

M Low Latency Low Latency

SmaII area
using long

bitline §
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Tiered-Latency DRAM

* Divide a bitline into two segments with an
isolation transistor

Far Segment

Isolation Transistor

Near Segment

Sense Amplifier
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Near Segment Access

* Turn off the isolation transistor

Reduced bitline length
Reduced bitline capacitance
=» Low latency & low power

)

Isolation Transistor (Off)

Near Segment

Sense Amplifier
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Far Segment Access

e Turn on the isolation transistor

Long bitline length

Large bitline capacitance

Additional resistance of isolation transistor
=» High latency & high power

Isolation Transistor (ON)

Near Segment

Sense Amplifier
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Latency, Power, and Area Evaluation

 Commodity DRAM: 512 cells/bitline

* TL-DRAM: 512 cells/bitline

— Near segment: 32 cells
— Far segment: 480 cells

* Latency Evaluation
— SPICE simulation using circuit-level DRAM model
* Power and Area Evaluation

— DRAM area/power simulator from Rambus
— DDR3 energy calculator from Micron
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Commodity DRAM vs. TL-DRAM
 DRAM Latency (tRC) - DRAM Power

150% 150%
> o - 0
G 100% L+ 100%
Q S
T o
- 50% - Q. 50%
0% 0%
Commodity Near | Far Commodity Near | Far
DRAM TL-DRAM DRAM TL-DRAM

 DRAM Area Overhead

~3%: mainly due to the isolation transistors 120



Latency vs. Near Segment Length

(o]
o

B Near Segment

(o)
o

Latency (ns)
N o
o o

1‘2‘4‘8‘16‘32‘64‘128‘256 512

o

Near Segment Length (Cells) Ref.

Longer near segment length leads to

higher near segment latency 181



Latency vs. Near Segment Length

(o]
o

B Near Segment M Far Segment

‘ 8 ‘16 32 ‘ 64 128 256 512
f

Near Segment Length (Cells)
Far Segment Length = 512 — Near Segment Length

(o)
o

Latency (ns)
-
o

N
o
|

o
|

Far segment latency is higher than
commodity DRAM latency
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Trade-Off: Area (Die-Area) vs. Latency

I

32

w

64

128
256 512 cells/bitline

® ®
& Near Segment Far Segment

0 10 20 30 40 50 60 /70
Latency (ns)

0
Normalized DRAM Area
S N

o
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Leveraging Tiered-Latency DRAM

* TL-DRAM is a substrate that can be leveraged
by the hardware and/or software

 Many potential uses

1. Use near segment as hardware-managed inclusive |
cache to far segment )

2. Use near segment as hardware-managed exclusive
cache to far segment

3. Profile-based page mapping by operating system
4. Simply replace DRAM with TL-DRAM

\.

J
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Near Segment as Hardware-Managed Cache
TL-DRAM

main
memory
hearsegmentyiry-Te -
sense amplifier

far segment

I/0

channel‘

[° Challenge 1: How to efficiently migrate a row between}
segments?

* Challenge 2: How to efficiently manage the cache?
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Inter-Segment Migration

* Goal: Migrate source row into destination row

* Naive way: Memory controller reads the source row
byte by byte and writes to destination row byte by byte
-> High latency

Far Segment

Isolation Transistor

Destination

Near Segment

Sense Amplifier
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Inter-Segment Migration

* Our way:
— Source and destination cells share bitlines

— Transfer data from source to destination across
shared bitlines concurrently

\

Far Segment

Isolation Transistor

Near Segment

Sense Amplifier
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Inter-Segment Migration

* Our way:
— Source and destination cells share bitlines

— Transfer data from so
shared bitlines concu

Step 1: Activate source row

Migration is overlapped with source row access
Additional ~4ns over row access latency

Step 2: Activate destination

S i d g i @l oW to connect cell and bitline
Yoo 0 o

Near Segment

Sense Amplifier
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Near Segment as Hardware-Managed Cache
TL-DRAM

main
memory
hearsegmentyiry-Te -
sense amplifier

far segment

I/0

channel‘

* Challenge 1: How to efficiently migrate a row between
segments?

* Challenge 2: How to efficiently manage the cache?
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Evaluation Methodology

e System simulator
— CPU: Instruction-trace-based x86 simulator
— Memory: Cycle-accurate DDR3 DRAM simulator

* Workloads
— 32 Benchmarks from TPC, STREAM, SPEC CPU2006

* Performance Metrics
— Single-core: Instructions-Per-Cycle
— Multi-core: Weighted speedup
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Configurations

e System configuration
— CPU: 5.3GHz
— LLC: 512kB private per core

— Memory: DDR3-1066
e 1-2 channel, 1 rank/channel

* 8 banks, 32 subarrays/bank, 512 cells/bitline
* Row-interleaved mapping & closed-row policy

 TL-DRAM configuration
— Total bitline length: 512 cells/bitline
— Near segment length: 1-256 cells
— Hardware-managed inclusive cache: near segment
191



Performance & Power Consumption

Q 120% 792 4% 11.5% 10.7% 120%

c —720/ _294A9. _9€O

g 100% gloo% 23% —-24% —-26%

1 &
o) o o)

_c:> 80% o 80%

o D

o 60% Q 60%

© —_—

) (]

N 40% & 40%

= | 9

© o

£ 2% 2 20%

1 &

o

= 0% T T | 0% T T |

1 (1-ch) 2 (2-ch) 4 (4-ch) 1 (1-ch) 2 (2-ch) 4 (4-ch)

Core-Count (Channel) Core-Count (Channel)

Using near segment as a cache improves

performance and reduces power consumption
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Single-Core: Varying Near Segment Length

Maximum IPC
~—\Improvement

14%
12%
10%

8%
Larger cache capacity

6%
gl I E R E R REERE

4%
2; Higher cache access latency
0

0%

Performance Improvement

1 2 4 8 16 32 64 128 256
Near Segment Length (cells)

By adjusting the near segment length, we can
trade off cache capacity for cache latency
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Other Mechanisms & Results

* More mechanisms for leveraging TL-DRAM
— Hardware-managed exclusive caching mechanism
— Profile-based page mapping to near segment

— TL-DRAM improves performance and reduces power
consumption with other mechanisms

* More than two tiers
— Latency evaluation for three-tier TL-DRAM

* Detailed circuit evaluation
for DRAM latency and power consumption

— Examination of tRC and tRCD

* Implementation details and storage cost analysis
in memory controller
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Summary of TL-DRAM

* Problem: DRAM latency is a critical performance bottleneck

* Qur Goal: Reduce DRAM latency with low area cost

* Observation: Long bitlines in DRAM are the dominant source
of DRAM latency

* Key Idea: Divide long bitlines into two shorter segments

—Fast and slow segments
* Tiered-latency DRAM: Enables latency heterogeneity in DRAM

—Can leverage this in many ways to improve performance
and reduce power consumption

* Results: When the fast segment is used as a cache to the slow
segment =2 Significant performance improvement (>12%) and
power reduction (>23%) at low area cost (3%)
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New DRAM Architectures

RAIDR: Reducing Refresh Impact

TL-DRAM: Reducing DRAM Latency

SALP: Reducing Bank Conflict Impact

RowClone: Fast Bulk Data Copy and Initialization
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Subarray-Level Parallelism:
Reducing Bank Conflict Impact




The Memory Bank Conflict Problem

Two requests to the same bank are serviced serially
Problem: Costly in terms of performance and power

Goal: We would like to reduce bank conflicts without
increasing the number of banks (at low cost)

Idea: Exploit the internal sub-array structure of a DRAM bank
to parallelize bank conflicts

o By reducing global sharing of hardware between sub-arrays

Kim, Seshadri, Lee, Liu, Mutlu, “A Case for Exploiting
Subarray-Level Parallelism in DRAM,"” ISCA 2012.
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The Problem with Memory Bank Contlicts
* Two BankW» Served in parallel

Wr .>

--------------




Goal

* Goal: Mitigate the detrimental effects of
bank conflicts in a cost-effective manner

* Naive solution: Add more banks
— Very expensive

* Cost-effective solution: Approximate the
benefits of more banks without adding
more banks
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Key Observation #1
A DRAM bank is divided into subarrays
Logical Bank Physical Bank

Subarray,

32k ro

Global Row-Buf

A single row-buffer  Many local row-buffers,
cannot drive all rows  one at each subarray
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Key Observation #2

Each subarray is mostly independent...
— except occasionally sharing global structures
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Key Idea: Reduce Sharing of Globals
1. Parallel access to subarrays

—
Local Row-Buf

—
Local Row-Buf

Global Row-Buf

2. Utilize multiple local row- buffers

S
v
3
O
O
O
O
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Overview of Our Mechanism

Subarray,

1. Parallelize

G5 [Raa) 1 Red)
Tosdme\bankers

but diff. subarrays

Subarray,

----------_,

Global Row-Buf

——————————————

‘----------
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Challenges: Global Structures
1. Global Address Latch



Challenge #1. Global Address Latch

Latch

Global Decoder

/
w-buffer

Global
row-buffer
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Solution #1. Subarray Address Latch

O

S /

8 w-buffer

Q

)

2

L, Voo

X Fifdb
ow-buffer

Global
Global latch = : row-buffer

local latches



Challenges: Global Structures

1. Global Address Latch
* Problem: Only one raised wordline

* Solution: Subarray Address Latch
2. Global Bitlines



Challenge #2. Global Bitlines
Global bitlines

bLoca/ -_-
row-bujier AT/ switch
-




Solution #2. Designated-Bit Latch
Global bitlines

S
S

D

local be————
[rer

ro

.« Y 4

—71 Switch

—

D T71 Switch

| —
Global
READ row-bgﬁ‘gr A—

Selectively connect local to global




Challenges: Global Structures

1. Global Address Latch
* Problem: Only one raised wordline

* Solution: Subarray Address Latch

2. Global Bitlines

* Problem: Collision during access
* Solution: Designhated-Bit Latch

MASA (Multitude of Activated Subarrays)



MASA: Advantages

e Baseline (Subarray-Oblivious)
1. Seria/izat'ion

Wr23-23 Rd 3 &

->
time
2 Wr/te 3. Thrashing
Penalty
* MASA . Saved .
—D >
( ] time
| wr | Rd >
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MASA: Overhead

* DRAM Die Size: Only 0.15% increase

— Subarray Address Latches
— Designated-Bit Latches & Wire

* DRAM Static Energy: Small increase
— 0.56mW for each activated subarray
— But saves dynamic energy

* Controller: Small additional storage

— Keep track of subarray status (< 256B)
— Keep track of new timing constraints
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System Configuration

e System Configuration
— CPU: 5.3GHz, 128 ROB, 8 MSHR
— LLC: 512kB per-core slice

* Memory Configuration
— DDR3-1066
— (default) 1 channel, 1 rank, 8 banks, 8 subarrays-per-bank
— (sensitivity) 1-8 chans, 1-8 ranks, 8-64 banks, 1-128 subarrays

* Mapping & Row-Policy
— (default) Line-interleaved & Closed-row
— (sensitivity) Row-interleaved & Open-row

* DRAM Controller Configuration

— 64-/64-entry read/write queues per-channel
— FR-FCFS, batch scheduling for writes
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SALP: Single-core Results
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MASA achieves most of the benefit
of having more banks (“Ideal”)



SALP: Single-Core Results

SALP-1 B SALP-2 B MASA B "|deal”

13%_11%

>

30%

20%

10%

IPC Increase

0%

DRAM
Die Area

SALP-1, SALP-2, MASA improve

<0.15%

20%

0.15%

36.3%

performance at low cost
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Subarray-Level Parallelism: Results

B Baseline N MASA B Baseline H MASA
1.2 100%

)
> ©

= %01.0 ml 80%
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0.0 e 0%

MASA increases energy-efficiency
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New DRAM Architectures

RAIDR: Reducing Refresh Impact

TL-DRAM: Reducing DRAM Latency

SALP: Reducing Bank Conflict Impact

RowClone: Fast Bulk Data Copy and Initialization
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RowClone: Fast Bulk Data
Copy and Initialization




Today’s Memory: Bulk Data Copy

1) High latency
3) Cache pollution \

2) High bandwidth utilization

4) Unwanted data movement
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Future: RowClone (In-Memory Copy)

3) No cache pollution 1) Low latency

2) Low bandwidth utilization
4) No unwanted data movement
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DRAM operation (load one byte)

4 Kbits

I 1. Activate row

2. Transfer DRAM array
row

CITTTTTT PP TTTTTTTITTTTTTT]  Row Buffer (4 Kbits)

3.Transfer
byte onto bus

Data pins (8 bits)

Memory Bus



RowClone: in-DRAM Row Copy (and Initialization)

4 Kbits

1. Activate row A

3. Activate row B

2. Transfer DRAM array
row

ransfer
row

CLET PV PV PP PP PP PP PP PPV PRV E 0] RowBuffer (4 Kbits)

Data pins (8 bits)

Memory Bus



Our Approach: Key Idea

* DRAM banks contain
1. Mutiple rows of DRAM cells — row = 8KB
2. A row buffer shared by the DRAM rows

* Large scale copy
1. Copy data from source row to row buffer
2. Copy data from row buffer to destination row



DRAM Subarray Microarchitecture

DRAM Row

(share wordline)
(~8Kb)

Sense
Amplifiers

(row buffer)

DRAM Cell

wordline

o

rF

226



DRAM Operation

Raise wordline

Sense
Amplifiers

(row buffer)

Activate (src) — Precharge

%2
—
@)

dst
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RowClone: Intra-subarray Copy

(row buffer)

dst

Deactivate

Activate (src) —— —> Activate (dst)
(our proposal)
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RowClone: Inter-bank Copy

dst

SIrc

Read Write

/O Bus

Transfer
(our proposal)
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RowClone: Inter-subarray Copy

dst

SIrc

temp

/O Bus
1. Transfer (src to temp)

2. Transfer (temp to dst)
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Fast Row Initialization

v

Fix a row at Zero
(0.5% loss in capacity)
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RowClone: Latency and Energy Savings

1.2 W Baseline ¥ Intra-Subarray
¥ Inter-Subarray
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"~ Inter-Bank

=
|

74X
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Normalized Savings
o o
IN o

o
N
|

Latency Energy

Seshadri et al., "RowClone: Fast and Efficient In-DRAM Copy and
Initialization of Bulk Data,” CMU Tech Report 2013. 2



Goal: Ultra-efficient heterogeneous architectures

min-CPU [ i1 gpy GPU :
CPU (PU core : | (throughput) | | (throughput) |
core core core core :
video
core
4 ICd U |
CPU CPU e : | (throughput) | |(throughput) | :
core core 'mfogr'eng core core : Memory
LLC
N Specialized
Memory Controller compute-capability
in memory

Memory Bus

Slide credit: Prof. Kayvon Fatahalian, (MU



Enabling Ultra-efficient (Visual) Search

Main Memory
| |

Processor
Core

Database
(of images)

Query vector

Results

= What s the right partitioning of computation capability?
= What s the right low-cost memory substrate?

= What memory technologies are the best enablers?
m How do we rethink/ease (visual) search algorithms/applications?

Picture credit: Prof. Kayvon Fatahalian, (MU



Agenda for Today

What Will You Learn in This Mini-Lecture Series
Main Memory Basics (with a Focus on DRAM)
Major Trends Affecting Main Memory

DRAM Scaling Problem and Solution Directions
Solution Direction 1: System-DRAM Co-Design
Ongoing Research

Summary
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Sampling ot Ongoing Research
Online retention time profiling
Refresh/demand parallelization
More computation in memory and controllers

Efficient use of 3D stacked memory
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Summary

Major problems with DRAM scaling and design: high refresh
rate, high latency, low parallelism, bulk data movement

Four new DRAM designs

o RAIDR: Reduces refresh impact

o TL-DRAM: Reduces DRAM latency at low cost

o SALP: Improves DRAM parallelism

o RowClone: Reduces energy and performance impact of bulk data copy

All four designs

o Improve both performance and energy consumption

a Are low cost (low DRAM area overhead)

o Enable new degrees of freedom to software & controllers

Rethinking DRAM interface and design essential for scaling
o Co-design DRAM with the rest of the system
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Thank you.




Memory Systems in the Multi-Core Fra
Lecture 1: DRAM Basics and
DRAM Scaling

Prof. Onur Mutlu
http://www.ece.cmu.edu/~omutlu
onur@cmu.edu
Bogazici University
June 13, 2013

Carnegie Mellon
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Aside: Scaling Flash Memory [Cai+, ICCD’12]

NAND flash memory has low endurance: a flash cell dies after 3k P/E
cycles vs. 50k desired - Major scaling challenge for flash memory
Flash error rate increases exponentially over flash lifetime

Problem: Stronger error correction codes (ECC) are ineffective and
undesirable for improving flash lifetime due to

o diminishing returns on lifetime with increased correction strength

o prohibitively high power, area, latency overheads

Our Goal: Develop techniques to tolerate high error rates w/o strong ECC

Observation: Retention errors are the dominant errors in MLC NAND flash
o flash cell loses charge over time; retention errors increase as cell gets worn out
Solution: Flash Correct-and-Refresh (FCR)

o Periodically read, correct, and reprogram (in place) or remap each flash page
before it accumulates more errors than can be corrected by simple ECC

o Adapt “refresh” rate to the severity of retention errors (i.e., # of P/E cycles)

Results: FCR improves flash memory lifetime by 46X with no hardware
changes and low energy overhead; outperforms strong ECCs

SAFARI 240



Memory Power Management via

Dynamic Voltage/Frequency Scaling

Howard David (Intel) _ _
Eugene Gorbatov (Intel) Chris Fallin (CMU)
UIf R. Hanebutte (Intel) Onur Mutlu (CMU)

tel SAFARI
(lnte, Carnegie Mellon




Memory Power 1s Significant

= Power consumption is a primary concern in modern servers

= Many works: CPU, whole-system or cluster-level approach

= But memory power is largely unaddressed

= Our server system*: memory is 19% of system power (avg)
o Some work notes up to 40% of total system power

= Goal: Can we reduce this figure? ® System Power

B Memory Power

400
=300
gzoo :
o 100 -
a
O B o R Y >
N L o X o O = 0 o W X T 9V wv =
El—-mgﬂégga’oageEngeegaew
- 0O E .G_) + Q = Q (o) N O .2 o < o E > E
% s 5 2 5 P, T 2o w2 88985 £ g ¢
c o 8 v 2o 3 oY) S = ¢ S Q =
3 (o3 (@) v
© 2 S o
*Dual 4-core Intel Xeon®, 48GB DDR3 (12 DIMMs), SPEC CPU2006, all cores active. 242
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Existing Solution: Memory Sleep States?

= Most memory energy-efficiency work uses sleep states
o Shut down DRAM devices when no memory requests active
= But, even low-memory-bandwidth workloads keep memory
awake
o Idle periods between requests diminish in multicore workloads
o CPU-bound workloads/phases rarely completely cache-resident
Sleep State Residency
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4%
2% -

Time Spent in Sleep
States
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Memory Bandwidth Varies Widely

= Workload memory bandwidth requirements vary widely

Memory Bandwidth for SPEC CPU2006
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= Memory system is provisioned for peak capacity
- often underutilized
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Memory Power can be Scaled Down

DDR can operate at multiple frequencies - reduce power
o Lower frequency directly reduces switching power

o Lower frequency allows for lower voltage

o Comparable to CPU DVFS

CPU Voltage/ [System Memory  [System
Freq. Power Freq. Power
J 15% J 9.9% J 40% J 7.6%

Frequency scaling increases latency - reduce performance
o Memory storage array is asynchronous

o But, bus transfer depends on frequency

o When bus bandwidth is bottleneck, performance suffers
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Observations So Far

Memory power is a significant portion of total power
o 19% (avg) in our system, up to 40% noted in other works

Sleep state residency is low in many workloads
o Multicore workloads reduce idle periods

o CPU-bound applications send requests frequently enough
to keep memory devices awake

Memory bandwidth demand is very low in some workloads

Memory power is reduced by frequency scaling
o And voltage scaling can give further reductions

246



DVES tor Memory

Key Idea: observe memory bandwidth utilization, then
adjust memory frequency/voltage, to reduce power with
minimal performance loss

- Dynamic Voltage/Frequency Scaling (DVFS)
for memory

Goal in this work:
o Implement DVFS in the memory system, by:

o Developing a simple control algorithm to exploit opportunity
for reduced memory frequency/voltage by observing behavior

o Evaluating the proposed algorithm on a real system
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Outline

Motivation

Background and Characterization
o DRAM Operation

o DRAM Power

o Frequency and Voltage Scaling

Performance Effects of Frequency Scaling
Frequency Control Algorithm

Evaluation and Conclusions
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Outline

Background and Characterization
o DRAM Operation

o DRAM Power

o Frequency and Voltage Scaling
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DRAM Operation

= Main memory consists of DIMMs of DRAM devices
= Each DIMM is attached to a memory bus (channel)
= Multiple DIMMs can connect to one channe

Controller
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Inside a DRAM Device

Runs at bus

I/0 Circuitry Banks

speed e TIndenendent arrav

Clock sync/d
Bus drivers ¢
Buffering/qu

On-Die Termination

e Required by bus electrical characteristics
for reliable operation

e Resistive element that dissipates power

when bus is active
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Efttect ot Frequency Scaling on Power

Reduced memory bus frequency:

Does not affect bank power:

o Constant energy per operation

o Depends only on utilized memory bandwidth
Decreases I/O power:

o Dynamic power in bus interface and clock circuitry
reduces due to less frequent switching

Increases termination power:
o Same data takes longer to transfer

o Hence, bus utilization increases

Tradeoff between I/O and termination results in a net
power reduction at lower frequencies
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Ettects of Voltage Scaling on Power

Voltage scaling further reduces power because all parts of
memory devices will draw less current (at less voltage)

Voltage reduction is possible because stable operation
requires lower voltage at lower frequency:

Minimum Stable Voltage for 8 DIMMs in a Real System

=16 ==\/dd for Power Model

>
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1333MHz 1066MHz 800MHz
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Outline

Performance Effects of Frequency Scaling
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Memory Bandwidth for SPEC CPU2006
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Performance Impact of Static Frequency Scaling

= Performance impact is proportional to bandwidth demand
= Many workloads tolerate lower frequency with minimal

performance drop
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Outline

Motivation

Background and Characterization
o DRAM Operation

o DRAM Power

o Frequency and Voltage Scaling

Performance Effects of Frequency Scaling
Frequency Control Algorithm

Evaluation and Conclusions
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Memory Latency Under LLoad

= At low load, most time is in array access and bus transfer
- small constant offset between bus-frequency latency curves
= As load increases, queueing delay begins to dominate
- bus frequency significantly affects latency

Memory Latency as a Function of Bandwidth and Mem Frequency
—+-800MHz “+1067MHz +1333MHz

180 ~
2 150 /., 77
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Utilized Channel Bandwidth (MB/s)
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Control Algorithm: Demand-Based Switching

Memory Latency as a Function of Bandwidth and Mem Frequency

~+-800MHz 1067MHz “*+-1333MHz
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=
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Utilized Channel Bandwidth (MB/s)

After each epoch of length Ty,

Measure per-channel bandwidth BW

if BW < Tgy, : switchto 800MHz

else if BW < T,y : switch to 1066MHz

else : switch to 1333MHz
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Implementing V/F Switching

Halt Memory Operations
o Pause requests
o Put DRAM in Self-Refresh
o Stop the DIMM clock
Transition Voltage/Frequency
o Begin voltage ramp
" N

Memory frequency already adjustable statically

& Voltage regulators for CPU DVFS can work for
memory DVFS

© Full transition takes ~20us

g )
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Outline

Motivation

Background and Characterization
o DRAM Operation

o DRAM Power

o Frequency and Voltage Scaling

Performance Effects of Frequency Scaling
Frequency Control Algorithm

Evaluation and Conclusions
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Evaluation Methodology

Real-system evaluation
o Dual 4-core Intel Xeone, 3 memory channels/socket
o 48 GB of DDR3 (12 DIMMs, 4GB dual-rank, 1333MHz)

Emulating memory frequency for performance
o Altered memory controller timing registers (tRC, tB2BCAS)
o Gives performance equivalent to slower memory frequencies

Modeling power reduction
o Measure baseline system (AC power meter, 1s samples)
o Compute reductions with an analytical model (see paper)
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Evaluation Methodology

Workloads
o SPEC CPU2006: CPU-intensive workloads
a All cores run a copy of the benchmark

Parameters
0 Tepoch = 10ms
o Two variants of algorithm with different switching thresholds:
o BW(0.5, 1): Tgyy = 0.5GB/s, T,pe = 1GB/s
o BW(0.5, 2): Tgqqy = 0.5GB/s, Ty = 2GB/s
- More aggressive frequency/voltage scaling
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Performance Impact of Memory DVES

= Minimal performance degradation: 0.2% (avg), 1.7% (max)

= Experimental error ~1%

i

ONV

*~

= BW(0.5,1)

<t N N O H O

Ay

Jawuwy
Aeisnod
ssawesd
soewo.3
pweu
$24¥9¢yY
youaq|sad
X1jnojes
duals
ywqo3s
¢dizq
0ju0}
lHesp

Jo:
INQVsSn1doed
Jow
exulyds
xa|dos
wniuenbqi|
PE3NISI|
J|Iw
alrgd4swso
wqj

-]

(%) uonepes8aqg 2duewsopad

264



Memory Frequency Distribution
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Memory Power Reduction

= Memory power reduces by 10.4% (avg), 20.5% (max)
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System Power Reduction

= As a result, system power reduces by 1.9% (avg), 3.5% (max)

= BW(0.5,1)
= BW(0.5,2)
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System Energy Reduction

= System energy reduces by 2.4% (avg), 5.1% (max)
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Related Work

MemScale [Dengl11], concurrent work (ASPLOS 2011)
o Also proposes Memory DVFS

o Application performance impact model to decide voltage and
frequency: requires specific modeling for a given system; our
bandwidth-based approach avoids this complexity

o Simulation-based evaluation; our work is a real-system proof
of concept

Memory Sleep States (Creating opportunity with data placement
[Lebeck00,Pandey06], OS scheduling [Delaluz02], VM subsystem [Huang05];
Making better decisions with better models [Hur08,Fan01])

Power Limiting/Shifting (RAPL [David10] uses memory throttling for
thermal limits; CPU throttling for memory traffic [Lin07,08]; Power shifting
across system [Felter05])
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Conclusions

Memory power is a significant component of system power
o 19% average in our evaluation system, 40% in other work

Workloads often keep memory active but underutilized
o Channel bandwidth demands are highly variable
o Use of memory sleep states is often limited

Scaling memory frequency/voltage can reduce memory
power with minimal system performance impact

o 10.4% average memory power reduction
o Yields 2.4% average system energy reduction

Greater reductions are possible with wider frequency/
voltage range and better control algorithms
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