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Agenda for Today 
n  Course logistics, info, requirements 

q  Who am I? 
q  What will you learn? 
q  How can you get the best out of these lectures? 

 
n  Outline of lectures this week and the next 

n  Some readings for next time 

n  Deep dive into the course material 
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Two Mini Courses 
n  Multi-core Architectures and Shared Resource Management: 

Fundamentals and Recent Research 
q  June 6, 7, 10 (1-4pm) 

n  Memory Systems in the Multi-Core Era 
q  June 13, 14, 17 (1-4pm) 
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What These Mini Lecture Series is About 
n  Multi-core Architectures and Shared Resource Management: 

Fundamentals and Recent Research 
n  Memory Systems in the Multi-Core Era 

n  A very “hot” portion of computer architecture research and 
practice 

n  A very large design space  
n  Many opportunities for innovation and groundbreaking 

research 

n  We will focus on major aspects of multi-core design 
q  Fundamentals 
q  Tradeoffs (advantages and disadvantages) 
q  Cutting edge research 
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What These Mini Lecture Series is About 
n  Goal 1: 

q  Build a strong understanding of the fundamentals of the multi-
core architectures and the tradeoffs made in their design. 

q  Examine how cores and shared resources can be designed. 
q  The focus will be on fundamentals, tradeoffs in parallel 

architecture design, and cutting-edge research.  

n  Goal 2: 
q  Build an understanding of the state-of-the-art research 

problems in multi-core architectures.  
q  Get familiar with some important research papers.  
q  You will be expected to read, critique, and discuss research 

papers.  
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Course Info: Who Am I? 
n  Instructor: Prof. Onur Mutlu 

q  Carnegie Mellon University ECE/CS 
q  PhD from UT-Austin, worked at Microsoft Research, Intel, AMD 
q  http://www.ece.cmu.edu/~omutlu 
q  onur@cmu.edu (Best way to reach me) 
q  http://users.ece.cmu.edu/~omutlu/projects.htm  

n  Research, Teaching, Consulting Interests 
q  Computer architecture, hardware/software interaction 
q  Many-core systems 
q  Memory systems 
q  Interconnects 
q  Hardware/software interaction and co-design (PL, OS, Architecture) 
q  Predictable and QoS-aware systems 
q  Hardware fault tolerance and security 
q  Algorithms and architectures for genome analysis 
q  … 

6 

Interested in developing efficient, high-performance, 
and scalable (multi-core, memory) systems; solving 
difficult architectural problems at low cost & complexity 



A Bit More About My Group and CMU 
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Pittsburgh, Pennsylvania, USA 

§   “America’s Most Livable City” multiple times; #1 in 2010 by Forbes 
§   Rated in the top 10 “Smartest Places to Live” for its low cost of living.   
§   Ranked #1 in the nation and #26 in the world for “Global Livability” 

§   Rated as one of the top 10 “World’s Cleanest Cities” 

§   Top ten in “green” buildings in the nation, including world’s 1st and largest green 
convention center  and Carnegie Mellon’s own LEED-certified residence hall, 1st in 
USA. 

Sources: Forbes, Places Rated Almanac, Kiplinger’s Personal Finance Magazine, The Economist, MSN Encarta 



Carnegie Mellon 
Research 
§  $320+ million per year in sponsored research 

Award Highlights 
§  17   Nobel Prize Laureates 
§  10   Turing Award Winners 
§  36   National Academy of Engineering Members 
§  10   National Academy of Sciences Members 
§  9     American Academy of Arts & Sciences Members 
§  12   Fulbright Scholars 
§  96   Emmy Award Winners 
§  20   Tony Award Winners 
§  6     Academy Award (Oscar) Winners 



Carnegie Mellon 

10,402 undergraduate and graduate students 
1,426 faculty members 
8:1 student to faculty ratio 
72,496 alumni 
50 U.S. alumni chapters 
20 international alumni chapters 
10 degree programs in 12 countries 
 



A Bit More About My Group and CMU 
n  http://www.ece.cmu.edu/~safari/ 
n  http://www.ece.cmu.edu/~safari/pubs.html 
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My Students @ SAFARI 
n  http://www.ece.cmu.edu/~safari/people.html 
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Who Should Attend This Course? 
 
n  You should be motivated to learn about and possibly do 

research in computer architecture 

n  Must know some Computer Architecture basics 
q  However, ask if you do not know a concept I talk about 

n  Be willing and ready to  
q  Ask questions 
q  Think hard  
q  Read papers 
q  Focus on tradeoffs 
q  Discover on your own 

13 



What Will I Assume? 
n  Familiarity with basic computer architecture 

n  However, you should ask questions 
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How Can You Make the Best out of These Lectures? 

n  Ask and answer questions 
n  Take notes 
n  Participate in discussion 
n  Read discussed papers 
n  Explore on your own 
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Homework 0 
n  Due tonight at midnight Istanbul time 

n  Send me (onur@cmu.edu) an email with 
q  Your name 
q  Your picture  
q  An interesting fact about something personal to you 
q  Why are you interested in these lectures? 
q  What do you expect to learn? 
q  Anything else you would like to share or ask 
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What Will You Learn? 
n  Tentative, Aggressive Schedule 

q  Lecture 1: Why multi-core? Basics, alternatives, tradeoffs 
                   Symmetric versus asymmetric multi-core systems 
q  Lecture 2: Shared cache design for multi-cores 
                   (if time permits) Interconnect design for multi-cores 
q  Lecture 3: Data parallelism and GPUs (if time permits) 
                   (if time permits) Prefetcher design and management 

n  But, do not believe all of this tentative schedule 
q  Why? 

n  Systems that perform best are usually dynamically scheduled 
q  Static vs. Dynamic Scheduling   
q  Why do you *really* need dynamic scheduling? 
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Static versus Dynamic Scheduling 
n  Static: Done at compile time or parallel task creation time 

q  Schedule does not change based on runtime information 

n  Dynamic: Done at run time (e.g., after tasks are created) 
q  Schedule changes based on runtime information 

n  Example: Parallel Task Assignment 
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Parallel Task Assignment: Tradeoffs 
n  Problem: N tasks, P processors, N>P. Do we assign tasks to 

processors statically (fixed) or dynamically (adaptive)?  

n  Static assignment 
+ Simpler: No movement of tasks.  
- Inefficient: Underutilizes resources when load is not balanced 
  When can load not be balanced? 
 

n  Dynamic assignment 
+ Efficient: Better utilizes processors when load is not balanced  
- More complex: Need to move tasks to balance processor load 
- Higher overhead: Task movement takes time, can disrupt 

locality 
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Parallel Task Assignment: Example 
n  Compute histogram of a large set of values 
n  Parallelization:  

q  Divide the values across T tasks 
q  Each task computes a local histogram for its value set 
q  Local histograms merged with global histograms in the end 
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Parallel Task Assignment: Example (II) 
n  How to schedule tasks updating local histograms?  

q  Static: Assign equal number of tasks to each processor 
q  Dynamic: Assign tasks to a processor that is available 
q  When does static work as well as dynamic? 

n  Implementation of Dynamic Assignment with Task Queues 
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Software Task Queues 
n  What are the advantages and disadvantages of each? 

q  Centralized 
q  Distributed 
q  Hierarchical 
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Task Stealing 
n  Idea: When a processor’s task queue is empty it steals a 

task from another processor’s task queue 
q  Whom to steal from? (Randomized stealing works well) 
q  How many tasks to steal? 

+ Dynamic balancing of computation load 
     
- Additional communication/synchronization overhead 

between processors 
- Need to stop stealing if no tasks to steal 
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Parallel Task Assignment: Tradeoffs 
n  Who does the assignment? Hardware versus software? 

n  Software 
+ Better scope 
- More time overhead 
- Slow to adapt to dynamic events (e.g., a processor becoming 

idle) 

n  Hardware 
+ Low time overhead 
+ Can adjust to dynamic events faster 
- Requires hardware changes (area and possibly energy 

overhead) 
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How Can the Hardware Help? 
n  Managing task queues in software has overhead 

q  Especially high when task sizes are small 

n  An idea: Hardware Task Queues 
q  Each processor has a dedicated task queue 
q  Software fills the task queues (on demand) 
q  Hardware manages movement of tasks from queue to queue 
q  There can be a global task queue as well à hierarchical 

tasking in hardware 

q  Kumar et al., “Carbon: Architectural Support for Fine-Grained 
Parallelism on Chip Multiprocessors,” ISCA 2007. 
n  Optional reading 
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Dynamic Task Generation 
n  Does static task assignment work in this case? 

n  Problem: Searching the exit of a maze 
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Why Do We Really Want Dynamic Scheduling? 

n  Uncertainty in dynamic events 

n  E.g., Out-of-order execution (dynamic instruction 
scheduling) 
q  Really necessary if you do not know the latency of an 

instruction 
q  Compiler cannot reorder instructions with unknown latencies 
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What Will You Learn in Mini Course 1? 
n  Multi-core Architectures and Shared Resource Management: 

Fundamentals and Recent Research 
q  June 6, 7, 10 (1-4pm) 

 
n  Lecture 1: Why multi-core? Basics, alternatives, tradeoffs 
                   Symmetric versus asymmetric multi-core systems 
n  Lecture 2: Shared cache design for multi-cores 
                   (if time permits) Interconnect design for multi-cores 
n  Lecture 3: Data parallelism and GPUs (if time permits) 
                   (if time permits) Prefetcher design and management 
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What Will You Learn in Mini Course 2? 
n  Memory Systems in the Multi-Core Era 

q  June 13, 14, 17 (1-4pm) 
 
n  Lecture 1: Main memory basics, DRAM scaling 
n  Lecture 2: Emerging memory technologies and hybrid memories 
n  Lecture 3: Main memory interference and QoS  
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Readings for Lecture Today (Lecture 1.1)  
n  Required 

q  Mutlu et al., “Runahead Execution: An Alternative to Very Large Instruction 
Windows for Out-of-order Processors,” HPCA 2003, IEEE Micro 2003. 

q  Suleman et al., “Accelerating Critical Section Execution with Asymmetric 
Multi-Core Architectures,” ASPLOS 2009, IEEE Micro 2010.  

q  Suleman et al., “Data Marshaling for Multi-Core Architectures,” ISCA 2010, 
IEEE Micro 2011. 

q  Joao et al., “Bottleneck Identification and Scheduling for Multithreaded 
Applications,” ASPLOS 2012. 

q  Joao et al., “Utility-Based Acceleration of Multithreaded Applications on 
Asymmetric CMPs,” ISCA 2013. 

 

n  Recommended 
q  Amdahl, “Validity of the single processor approach to achieving large scale 

computing capabilities,” AFIPS 1967.  
q  Olukotun et al., “The Case for a Single-Chip Multiprocessor,” ASPLOS 1996. 
q  Mutlu et al., “Techniques for Efficient Processing in Runahead Execution 

Engines,” ISCA 2005, IEEE Micro 2006. 
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Videos for Lecture Today (Lecture 1.1) 
n  Runahead Execution 

q  http://www.youtube.com/watch?
v=z8YpjqXQJIA&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=28 

n  Multiprocessors 
q  Basics:

http://www.youtube.com/watch?
v=7ozCK_Mgxfk&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=31 

q  Correctness and Coherence: 
http://www.youtube.com/watch?v=U-
VZKMgItDM&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=32 

q  Heterogeneous Multi-Core: 
http://www.youtube.com/watch?
v=r6r2NJxj3kI&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=34  
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Readings for Lecture June 7 (Lecture 1.2)  
n  Required 

q  Qureshi et al., “A Case for MLP-Aware Cache Replacement,” ISCA 2005. 
q  Seshadri et al., “The Evicted-Address Filter: A Unified Mechanism to 

Address both Cache Pollution and Thrashing,” PACT 2012. 
q  Pekhimenko et al., “Base-Delta-Immediate Compression: Practical Data 

Compression for On-Chip Caches,” PACT 2012.  
q  Pekhimenko et al., “Linearly Compressed Pages: A Main Memory 

Compression Framework with Low Complexity and Low Latency,” SAFARI 
Technical Report 2013. 

 

n  Recommended 
q  Qureshi et al., “Utility-Based Cache Partitioning: A Low-Overhead, High-

Performance, Runtime Mechanism to Partition Shared Caches,” MICRO 
2006.  
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Videos for Lecture 1.2 
n  Cache basics: 

q  http://www.youtube.com/watch?
v=TpMdBrM1hVc&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG
6IJ&index=23  

n  Advanced caches: 
q  http://www.youtube.com/watch?v=TboaFbjTd-

E&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=24 
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Readings for Lecture June 10 (Lecture 1.3)  
n  Required 

q  Moscibroda and Mutlu, “A Case for Bufferless Routing in On-Chip 
Networks,” ISCA 2009. 

q  Fallin et al., “CHIPPER: A Low-Complexity Bufferless Deflection Router,” 
HPCA 2011. 

q  Fallin et al., “MinBD: Minimally-Buffered Deflection Routing for Energy-
Efficient Interconnect,” NOCS 2012. 

q  Das et al., “Application-Aware Prioritization Mechanisms for On-Chip 
Networks,” MICRO 2009. 

q  Das et al., “Aergia: Exploiting Packet Latency Slack in On-Chip 
Networks,” ISCA 2010, IEEE Micro 2011. 

 

n  Recommended 
q  Grot et al. “Preemptive Virtual Clock: A Flexible, Efficient, and Cost-

effective QOS Scheme for Networks-on-Chip,” MICRO 2009. 
q  Grot et al., “Kilo-NOC: A Heterogeneous Network-on-Chip Architecture 

for Scalability and Service Guarantees,” ISCA 2011, IEEE Micro 2012. 
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Videos for Lecture 1.3 
n  Interconnects 

q  http://www.youtube.com/watch?
v=6xEpbFVgnf8&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ
&index=33 

n  GPUs and SIMD processing 
q  Vector/array processing basics: 

http://www.youtube.com/watch?v=f-
XL4BNRoBA&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=15  

q  GPUs versus other execution models: 
http://www.youtube.com/watch?
v=vr5hbSkb1Eg&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=20  

q  GPUs in more detail: 
http://www.youtube.com/watch?
v=vr5hbSkb1Eg&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=20  
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Online Lectures and More Information 
n  Online Computer Architecture Lectures 

q  http://www.youtube.com/playlist?
list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ  

n  Online Computer Architecture Courses 
q  Intro: http://www.ece.cmu.edu/~ece447/s13/doku.php 
q  Advanced: http://www.ece.cmu.edu/~ece740/f11/doku.php  
q  Advanced: http://www.ece.cmu.edu/~ece742/doku.php  

 
n  Recent Research Papers 

q  http://users.ece.cmu.edu/~omutlu/projects.htm 
q  http://scholar.google.com/citations?

user=7XyGUGkAAAAJ&hl=en 

36 



Parallel Computer Architecture 
Basics 
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What is a Parallel Computer?   
n  Definition of a “parallel computer” not really precise 
n  “A ‘parallel computer’ is a “collection of processing elements 

that communicate and cooperate to solve large problems fast”  
q  Almasi and Gottlieb, “Highly Parallel Computing,” 1989 

n  Is a superscalar processor a parallel computer? 

n  A processor that gives the illusion of executing a sequential ISA 
on a single thread at a time is a sequential machine  

n  Almost anything else is a parallel machine  

n  Examples of parallel machines: 
q  Multiple program counters (PCs)  
q  Multiple data being operated on simultaneously  
q  Some combination 
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Flynn’s Taxonomy of Computers 

n  Mike Flynn, “Very High-Speed Computing Systems,” Proc. 
of IEEE, 1966 

n  SISD: Single instruction operates on single data element 
n  SIMD: Single instruction operates on multiple data elements 

q  Array processor 
q  Vector processor 

n  MISD: Multiple instructions operate on single data element 
q  Closest form: systolic array processor, streaming processor 

n  MIMD: Multiple instructions operate on multiple data 
elements (multiple instruction streams) 
q  Multiprocessor 
q  Multithreaded processor 
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Why Parallel Computers? 
n  Parallelism: Doing multiple things at a time 
n  Things: instructions, operations, tasks 

n  Main Goal 
q  Improve performance (Execution time or task throughput) 

n  Execution time of a program governed by Amdahl’s Law 

n  Other Goals 
q  Reduce power consumption 

n  (4N units at freq F/4) consume less power than (N units at freq F) 
n  Why?  

q  Improve cost efficiency and scalability, reduce complexity 
n  Harder to design a single unit that performs as well as N simpler units  

q  Improve dependability: Redundant execution in space 
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Types of Parallelism and How to Exploit Them 

n  Instruction Level Parallelism 
q  Different instructions within a stream can be executed in parallel 
q  Pipelining, out-of-order execution, speculative execution, VLIW 
q  Dataflow 

n  Data Parallelism 
q  Different pieces of data can be operated on in parallel 
q  SIMD: Vector processing, array processing 
q  Systolic arrays, streaming processors 

n  Task Level Parallelism 
q  Different “tasks/threads” can be executed in parallel 
q  Multithreading 
q  Multiprocessing (multi-core) 
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Task-Level Parallelism: Creating Tasks 
n  Partition a single problem into multiple related tasks 

(threads) 
q  Explicitly: Parallel programming 

n  Easy when tasks are natural in the problem 
q  Web/database queries 

n  Difficult when natural task boundaries are unclear 

q  Transparently/implicitly: Thread level speculation 
n  Partition a single thread speculatively 

n  Run many independent tasks (processes) together 
q  Easy when there are many processes 

n  Batch simulations, different users, cloud computing workloads 

q  Does not improve the performance of a single task 
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Caveats of Parallelism 
n  Amdahl’s Law 

q  p: Parallelizable fraction of a program 
q  N: Number of processors 

q  Amdahl, “Validity of the single processor approach to achieving large scale 
computing capabilities,” AFIPS 1967.  

n  Maximum speedup limited by serial portion: Serial bottleneck 
n  Parallel portion is usually not perfectly parallel 

q  Synchronization overhead (e.g., updates to shared data) 
q  Load imbalance overhead (imperfect parallelization) 
q  Resource sharing overhead (contention among N processors) 
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Sequential Bottleneck 
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Why the Sequential Bottleneck? 
n  Parallel machines have the 

sequential bottleneck 

n  Main cause: Non-parallelizable 
operations on data (e.g. non-
parallelizable loops) 

 for ( i = 0 ; i < N; i++) 
    A[i] = (A[i] + A[i-1]) / 2 

 
n  Single thread prepares data 

and spawns parallel tasks 
(usually sequential) 
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Another Example of Sequential Bottleneck 
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Bottlenecks in Parallel Portion 
n  Synchronization: Operations manipulating shared data 

cannot be parallelized 
q  Locks, mutual exclusion, barrier synchronization 
q  Communication: Tasks may need values from each other 
- Causes thread serialization when shared data is contended 

n  Load Imbalance: Parallel tasks may have different lengths 
q  Due to imperfect parallelization or microarchitectural effects 
- Reduces speedup in parallel portion 
 

n  Resource Contention: Parallel tasks can share hardware 
resources, delaying each other 
q  Replicating all resources (e.g., memory) expensive 
- Additional latency not present when each task runs alone 
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Difficulty in Parallel Programming 
n  Little difficulty if parallelism is natural 

q  “Embarrassingly parallel” applications 
q  Multimedia, physical simulation, graphics 
q  Large web servers, databases? 

n  Difficulty is in  
q  Getting parallel programs to work correctly 
q  Optimizing performance in the presence of bottlenecks 

n  Much of parallel computer architecture is about 
q  Designing machines that overcome the sequential and parallel 

bottlenecks to achieve higher performance and efficiency 
q  Making programmer’s job easier in writing correct and high-

performance parallel programs 
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Multiprocessor Types 
n  Loosely coupled multiprocessors 

q  No shared global memory address space 
q  Multicomputer network 

n  Network-based multiprocessors 
q  Usually programmed via message passing 

n  Explicit calls (send, receive) for communication 

n  Tightly coupled multiprocessors 
q  Shared global memory address space 
q  Traditional multiprocessing: symmetric multiprocessing (SMP) 

n  Existing multi-core processors, multithreaded processors 
q  Programming model similar to uniprocessors (i.e., multitasking 

uniprocessor) except 
n  Operations on shared data require synchronization 
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Multi-Core Processors 
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Moore’s Law 

51 

Moore, “Cramming more components onto integrated circuits,”  
Electronics Magazine, 1968. 
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Multi-Core 
n  Idea: Put multiple processors on the same die.  

n  Technology scaling (Moore’s Law) enables more transistors 
to be placed on the same die area 

n  What else could you do with the die area you dedicate to 
multiple processors? 
q  Have a bigger, more powerful core 
q  Have larger caches in the memory hierarchy 
q  Simultaneous multithreading 
q  Integrate platform components on chip (e.g., network 

interface, memory controllers) 
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Why Multi-Core? 
n  Alternative: Bigger, more powerful single core 

q  Larger superscalar issue width, larger instruction window, 
more execution units, large trace caches, large branch 
predictors, etc 

 
+ Improves single-thread performance transparently to 

programmer, compiler 
- Very difficult to design (Scalable algorithms for improving 

single-thread performance elusive) 
- Power hungry – many out-of-order execution structures 

consume significant power/area when scaled. Why?  
- Diminishing returns on performance  
- Does not significantly help memory-bound application 

performance (Scalable algorithms for this elusive) 
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Large Superscalar vs. Multi-Core 
n  Olukotun et al., “The Case for a Single-Chip 

Multiprocessor,” ASPLOS 1996. 
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Multi-Core vs. Large Superscalar 
n  Multi-core advantages 

+ Simpler cores à more power efficient, lower complexity, 
easier to design and replicate, higher frequency (shorter 
wires, smaller structures) 

+ Higher system throughput on multiprogrammed workloads à 
reduced context switches 

+ Higher system throughput in parallel applications  
 

n  Multi-core disadvantages 
- Requires parallel tasks/threads to improve performance 

(parallel programming) 
- Resource sharing can reduce single-thread performance 
- Shared hardware resources need to be managed 
- Number of pins limits data supply for increased demand 
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Large Superscalar vs. Multi-Core 
n  Olukotun et al., “The Case for a Single-Chip 

Multiprocessor,” ASPLOS 1996. 

n  Technology push 
q  Instruction issue queue size limits the cycle time of the 

superscalar, OoO processor à diminishing performance 
n  Quadratic increase in complexity with issue width 

q  Large, multi-ported register files to support large instruction 
windows and issue widths à reduced frequency or longer RF 
access, diminishing performance 

n  Application pull 
q  Integer applications: little parallelism? 
q  FP applications: abundant loop-level parallelism 
q  Others (transaction proc., multiprogramming): CMP better fit 
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Why Multi-Core? 
n  Alternative: Bigger caches 

 
+ Improves single-thread performance transparently to 

programmer, compiler 
+ Simple to design 
 
- Diminishing single-thread performance returns from cache size. 

Why? 
- Multiple levels complicate memory hierarchy  
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Cache vs. Core 
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Why Multi-Core? 
n  Alternative: (Simultaneous) Multithreading 

+ Exploits thread-level parallelism (just like multi-core) 
+ Good single-thread performance with SMT 
+ No need to have an entire core for another thread 
+ Parallel performance aided by tight sharing of caches 
 
- Scalability is limited: need bigger register files, larger issue 

width (and associated costs) to have many threads à complex 
with many threads 

- Parallel performance limited by shared fetch bandwidth 
- Extensive resource sharing at the pipeline and memory system 

reduces both single-thread and parallel application 
performance 
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Why Multi-Core? 
n  Alternative: Integrate platform components on chip instead 

+ Speeds up many system functions (e.g., network interface 
cards, Ethernet controller, memory controller, I/O controller) 

 
- Not all applications benefit (e.g., CPU intensive code sections) 

61 



Why Multi-Core? 
n  Alternative: More scalable superscalar, out-of-order engines 

q  Clustered superscalar processors (with multithreading) 

+ Simpler to design than superscalar, more scalable than 
simultaneous multithreading (less resource sharing) 

+ Can improve both single-thread and parallel application 
performance 

 
- Diminishing performance returns on single thread: Clustering 

reduces IPC performance compared to monolithic superscalar. 
Why? 

- Parallel performance limited by shared fetch bandwidth 
- Difficult to design 
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Clustered Superscalar+OoO Processors 

n  Clustering (e.g., Alpha 21264 integer units) 
q  Divide the scheduling window (and register file) into multiple clusters 
q  Instructions steered into clusters (e.g. based on dependence) 
q  Clusters schedule instructions out-of-order, within cluster scheduling 

can be in-order 
q  Inter-cluster communication happens via register files (no full bypass) 
+ Smaller scheduling windows, simpler wakeup algorithms 
+ Smaller ports into register files 
+ Faster within-cluster bypass 
-- Extra delay when instructions require across-cluster communication 
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Clustering (I) 
n  Scheduling within each cluster can be out of order 
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Clustering (II) 
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n  Palacharla et al., “Complexity 
Effective Superscalar 
Processors,” ISCA 1997.  

Clustering (III) 

66 

Each scheduler is a FIFO 
+ Simpler  
+ Can have N FIFOs 
   (OoO w.r.t. each other) 
+ Reduces scheduling  
complexity 
-- More dispatch stalls 
 

Inter-cluster bypass: Results 
produced by an FU in 
Cluster 0 is not individually 
forwarded to each FU in 
another cluster. 
 



Why Multi-Core? 
n  Alternative: Traditional symmetric multiprocessors 

+ Smaller die size (for the same processing core) 
+ More memory bandwidth (no pin bottleneck) 
+ Fewer shared resources à less contention between threads 
 
- Long latencies between cores (need to go off chip) à shared 

data accesses limit performance à parallel application 
scalability is limited 

- Worse resource efficiency due to less sharing à worse power/
energy efficiency  
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Why Multi-Core? 
n  Other alternatives? 

q  Dataflow? 
q  Vector processors (SIMD)? 
q  Integrating DRAM on chip? 
q  Reconfigurable logic? (general purpose?) 
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Review: Multi-Core Alternatives 
n  Bigger, more powerful single core 
n  Bigger caches 
n  (Simultaneous) multithreading 
n  Integrate platform components on chip instead 
n  More scalable superscalar, out-of-order engines 
n  Traditional symmetric multiprocessors 
n  Dataflow? 
n  Vector processors (SIMD)? 
n  Integrating DRAM on chip? 
n  Reconfigurable logic? (general purpose?) 
n  Other alternatives? 
n  Your solution? 
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Computer Architecture Today (I) 
n  Today is a very exciting time to study computer architecture 

n  Industry is in a large paradigm shift (to multi-core and 
beyond) – many different potential system designs possible 

n  Many difficult problems motivating and caused by the shift 
q  Power/energy constraints  
q  Complexity of design à multi-core? 
q  Difficulties in technology scaling à new technologies? 
q  Memory wall/gap 
q  Reliability wall/issues 
q  Programmability wall/problem 

n  No clear, definitive answers to these problems 
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Computer Architecture Today (II) 
n  These problems affect all parts of the computing stack – if 

we do not change the way we design systems 

n  No clear, definitive answers to these problems 
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Computer Architecture Today (III) 
n  You can revolutionize the way computers are built, if you 

understand both the hardware and the software (and 
change each accordingly) 

n  You can invent new paradigms for computation, 
communication, and storage 

n  Recommended book: Kuhn, “The Structure of Scientific 
Revolutions” (1962) 
q  Pre-paradigm science: no clear consensus in the field 
q  Normal science: dominant theory used to explain things 

(business as usual); exceptions considered anomalies 
q  Revolutionary science: underlying assumptions re-examined 
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… but, first … 
n  Let’s understand the fundamentals… 

n  You can change the world only if you understand it well 
enough… 
q  Especially the past and present dominant paradigms 
q  And, their advantages and shortcomings -- tradeoffs 
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Multi-Core Design 
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Many Cores on Chip 
n  Simpler and lower power than a single large core 
n  Large scale parallelism on chip 
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IBM	  Cell	  BE	  
8+1	  cores	  

Intel	  Core	  i7	  
8	  cores	  

Tilera	  TILE	  Gx	  
100	  cores,	  networked	  

IBM	  POWER7	  
8	  cores	  

Intel	  SCC	  
48	  cores,	  networked	  

Nvidia	  Fermi	  
448	  “cores”	  

AMD	  Barcelona	  
4	  cores	  

Sun	  Niagara	  II	  
8	  cores	  



With Many Cores on Chip 
n  What we want: 

q  N times the performance with N times the cores when we 
parallelize an application on N cores 

n  What we get: 
q  Amdahl’s Law (serial bottleneck) 
q  Bottlenecks in the parallel portion 
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Caveats of Parallelism 
n  Amdahl’s Law 

q  f: Parallelizable fraction of a program 
q  N: Number of processors 

q  Amdahl, “Validity of the single processor approach to achieving large scale 
computing capabilities,” AFIPS 1967.  

n  Maximum speedup limited by serial portion: Serial bottleneck 
n  Parallel portion is usually not perfectly parallel 

q  Synchronization overhead (e.g., updates to shared data) 
q  Load imbalance overhead (imperfect parallelization) 
q  Resource sharing overhead (contention among N processors) 
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The Problem: Serialized Code Sections 
n  Many parallel programs cannot be parallelized completely 

n  Causes of serialized code sections 
q  Sequential portions (Amdahl’s “serial part”) 
q  Critical sections 
q  Barriers 
q  Limiter stages in pipelined programs 

n  Serialized code sections 
q  Reduce performance 
q  Limit scalability 
q  Waste energy 
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Example from MySQL 
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Demands in Different Code Sections 
n  What we want: 

n  In a serialized code section à one powerful “large” core  

n  In a parallel code section à many wimpy “small” cores 

n  These two conflict with each other: 
q  If you have a single powerful core, you cannot have many 

cores 
q  A small core is much more energy and area efficient than a 

large core 
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“Large” vs. “Small” Cores 
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•  Out-of-order 
•  Wide fetch e.g. 4-wide 
•  Deeper pipeline 
•  Aggressive branch 

predictor (e.g. hybrid) 
•  Multiple functional units 
•  Trace cache 
•  Memory dependence 

speculation 

•  In-order 
•  Narrow Fetch e.g. 2-wide 
•  Shallow pipeline 
•  Simple branch predictor 

(e.g. Gshare) 
•  Few functional units 

Large 
Core 

Small 
Core 

Large Cores are power inefficient: 
e.g., 2x performance for 4x area (power) 



Large vs. Small Cores 
n  Grochowski et al., “Best of both Latency and Throughput,” 

ICCD 2004. 
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Meet Small: Sun Niagara (UltraSPARC T1) 
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n  Kongetira et al., “Niagara: A 32-Way Multithreaded SPARC 
Processor,” IEEE Micro 2005. 



Niagara Core 
n  4-way fine-grain multithreaded, 6-stage, dual-issue in-order 
n  Round robin thread selection (unless cache miss) 
n  Shared FP unit among cores 
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Niagara Design Point 
n  Designed for commercial applications 
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Meet Small, but Larger: Sun ROCK  
n  Chaudhry et al., “Rock: A High-Performance Sparc CMT Processor,” 

IEEE Micro, 2009. 
n  Chaudhry et al., “Simultaneous Speculative Threading: A Novel Pipeline 

Architecture Implemented in Sun's ROCK Processor,” ISCA 2009 

n  Goals: 
q  Maximize throughput when threads are available 
q  Boost single-thread performance when threads are not 

available and on cache misses 
n  Ideas:  

q  Runahead on a cache miss à ahead thread executes miss-
independent instructions, behind thread executes dependent 
instructions 

q  Branch prediction (gshare) 
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Sun ROCK 
n  16 cores, 2 threads 

per core (fewer 
threads than Niagara 
2) 

n  4 cores share a 32KB 
instruction cache 

n  2 cores share a 32KB 
data cache 

n  2MB L2 cache (smaller 
than Niagara 2) 
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Runahead Execution (I) 
n  A simple pre-execution method for prefetching purposes 
n  Mutlu et al., “Runahead Execution: An Alternative to Very 

Large Instruction Windows for Out-of-order Processors,” 
HPCA 2003, IEEE Micro 2003. 

n  When the oldest instruction is a long-latency cache miss: 
q  Checkpoint architectural state and enter runahead mode 

n  In runahead mode: 
q  Speculatively pre-execute instructions 
q  The purpose of pre-execution is to generate prefetches 
q  L2-miss dependent instructions are marked INV and dropped 

n  Runahead mode ends when the original miss returns 
q  Checkpoint is restored and normal execution resumes 
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Runahead Execution (II) 
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Runahead Execution (III) 
n  Advantages 

+ Very accurate prefetches for data/instructions (all cache levels) 
    + Follows the program path 
+ Simple to implement, most of the hardware is already built in 

n  Disadvantages 
-- Extra executed instructions 

n  Limitations 
-- Limited by branch prediction accuracy 
-- Cannot prefetch dependent cache misses. Solution? 
-- Effectiveness limited by available Memory Level Parallelism 

n  Mutlu et al., “Efficient Runahead Execution: Power-Efficient 
Memory Latency Tolerance,” IEEE Micro Jan/Feb 2006. 

n  Implemented in IBM POWER6, Sun ROCK 
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More Powerful Cores in Sun ROCK 
n  Chaudhry talk, Aug 2008. 
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Meet Large: IBM POWER4 
n  Tendler et al., “POWER4 system microarchitecture,” IBM J 

R&D, 2002. 

n  Another symmetric multi-core chip… 
n  But, fewer and more powerful cores 
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IBM POWER4 
n  2 cores, out-of-order execution 
n  100-entry instruction window in each core 
n  8-wide instruction fetch, issue, execute 
n  Large, local+global hybrid branch predictor 
n  1.5MB, 8-way L2 cache 
n  Aggressive stream based prefetching 
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IBM POWER5 
n  Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE 

Micro 2004. 
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Meet Large, but Smaller: IBM POWER6 
n  Le et al., “IBM POWER6 

microarchitecture,” IBM J R&D, 
2007. 

 
n  2 cores, in order, high 

frequency (4.7 GHz) 
n  8 wide fetch 
n  Simultaneous multithreading in 

each core 
n  Runahead execution in each 

core 
q  Similar to Sun ROCK 
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Remember the Demands 
n  What we want: 

n  In a serialized code section à one powerful “large” core  

n  In a parallel code section à many wimpy “small” cores 

n  These two conflict with each other: 
q  If you have a single powerful core, you cannot have many 

cores 
q  A small core is much more energy and area efficient than a 

large core 

n  Can we get the best of both worlds? 
97 



Performance vs. Parallelism 
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Assumptions: 

 1. Small cores takes an area budget of 1 and has  
 performance  of 1 

  

 2. Large core takes an area budget of 4 and has 
 performance of 2 

  

  



Tile-Large Approach 

n  Tile a few large cores 
n  IBM Power 5, AMD Barcelona, Intel Core2Quad, Intel Nehalem 
+ High performance on single thread, serial code sections (2 units) 
- Low throughput on parallel program portions (8 units) 
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Tile-Small Approach 

n  Tile many small cores 
n  Sun Niagara, Intel Larrabee, Tilera TILE (tile ultra-small) 
+ High throughput on the parallel part (16 units) 
- Low performance on the serial part, single thread (1 unit) 
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Can we get the best of both worlds? 
n  Tile Large 

 + High performance on single thread, serial code sections (2 
units) 
 - Low throughput on parallel program portions (8 units) 

 

n  Tile Small 
 + High throughput on the parallel part (16 units) 
 - Low performance on the serial part, single thread (1 unit), 
reduced single-thread performance compared to existing single 
thread processors 

 
n  Idea: Have both large and small on the same chip à 

Performance asymmetry 
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Asymmetric Multi-Core 
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Asymmetric Chip Multiprocessor (ACMP) 

 
n  Provide one large core and many small cores 
+ Accelerate serial part using the large core (2 units) 
+ Execute parallel part on small cores and large core for high 

throughput (12+2 units) 
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Accelerating Serial Bottlenecks 
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Performance vs. Parallelism 
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Assumptions: 

 1. Small cores takes an area budget of 1 and has  
 performance  of 1 

  

 2. Large core takes an area budget of 4 and has 
 performance of 2 

  

  



ACMP Performance vs. Parallelism 
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Caveats of Parallelism, Revisited 
n  Amdahl’s Law 

q  f: Parallelizable fraction of a program 
q  N: Number of processors 

q  Amdahl, “Validity of the single processor approach to achieving large scale 
computing capabilities,” AFIPS 1967.  

n  Maximum speedup limited by serial portion: Serial bottleneck 
n  Parallel portion is usually not perfectly parallel 

q  Synchronization overhead (e.g., updates to shared data) 
q  Load imbalance overhead (imperfect parallelization) 
q  Resource sharing overhead (contention among N processors) 
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Accelerating Parallel Bottlenecks 
n  Serialized or imbalanced execution in the parallel portion 

can also benefit from a large core 

n  Examples: 
q  Critical sections that are contended 
q  Parallel stages that take longer than others to execute 

n  Idea: Dynamically identify these code portions that cause 
serialization and execute them on a large core 
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Accelerated Critical Sections 

M. Aater Suleman, Onur Mutlu, Moinuddin K. Qureshi, and Yale N. Patt, 
"Accelerating Critical Section Execution with Asymmetric Multi-Core Architectures"  

Proceedings of the 
14th International Conference on Architectural Support for Programming Languages and 

Operating Systems (ASPLOS) 
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Contention for Critical Sections 
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Contention for Critical Sections 
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Impact of Critical Sections on Scalability 
n  Contention for critical sections leads to serial execution 

(serialization) of threads in the parallel program portion 
n  Contention for critical sections increases with the number of 

threads and limits scalability 
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A Case for Asymmetry 
n  Execution time of sequential kernels, critical sections, and 

limiter stages must be short 

n  It is difficult for the programmer to shorten these 
serialized sections 
q  Insufficient domain-specific knowledge 
q  Variation in hardware platforms  
q  Limited resources 

n  Goal: A mechanism to shorten serial bottlenecks without 
requiring programmer effort 

n  Idea: Accelerate serialized code sections by shipping them 
to powerful cores in an asymmetric multi-core (ACMP) 
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An Example: Accelerated Critical Sections 
n  Idea: HW/SW ships critical sections to a large, powerful core in an 

asymmetric multi-core architecture 

n  Benefit:  
q  Reduces serialization due to contended locks 
q  Reduces the performance impact of hard-to-parallelize sections 
q  Programmer does not need to (heavily) optimize parallel code à fewer 

bugs, improved productivity 

n  Suleman et al., “Accelerating Critical Section Execution with Asymmetric 
Multi-Core Architectures,” ASPLOS 2009, IEEE Micro Top Picks 2010. 

n  Suleman et al., “Data Marshaling for Multi-Core Architectures,” ISCA 2010, 
IEEE Micro Top Picks 2011. 

114 



115 

Accelerated Critical Sections 

EnterCS() 

PriorityQ.insert(…) 

LeaveCS() 

Onchip-
Interconnect 

Critical Section 
Request Buffer 
(CSRB) 

1. P2 encounters a critical section (CSCALL) 
2. P2 sends CSCALL Request to CSRB 
3. P1 executes Critical Section 
4. P1 sends CSDONE signal 

Core executing 
critical section 

P4 P3 P2 
P1 



Accelerated Critical Sections (ACS) 

 
n  Suleman et al., “Accelerating Critical Section Execution with 

Asymmetric Multi-Core Architectures,” ASPLOS 2009. 
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A = compute() 
 
LOCK X 
      result = CS(A) 
UNLOCK X 
 
print result 
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CSRET X 
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print result 
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False Serialization 
n  ACS can serialize independent critical sections 

n  Selective Acceleration of Critical Sections (SEL) 
q  Saturating counters to track false serialization 
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ACS Performance Tradeoffs 
n  Pluses 

+ Faster critical section execution 
+ Shared locks stay in one place: better lock locality 
+ Shared data stays in large core’s (large) caches: better shared 
data locality, less ping-ponging 
 

n  Minuses 
- Large core dedicated for critical sections: reduced parallel 
throughput 
- CSCALL and CSDONE control transfer overhead 
- Thread-private data needs to be transferred to large core: worse 
private data locality 
 

118 



ACS Performance Tradeoffs 
n  Fewer parallel threads vs. accelerated critical sections 

q  Accelerating critical sections offsets loss in throughput 
q  As the number of cores (threads) on chip increase: 

n  Fractional loss in parallel performance decreases 
n  Increased contention for critical sections  

makes acceleration more beneficial 

n  Overhead of CSCALL/CSDONE vs. better lock locality 
q  ACS avoids “ping-ponging” of locks among caches by keeping them at 

the large core 

n  More cache misses for private data vs. fewer misses 
for shared data 
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Cache Misses for Private Data 
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Private Data: 
NewSubProblems 
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ACS Performance Tradeoffs 
n  Fewer parallel threads vs. accelerated critical sections 

q  Accelerating critical sections offsets loss in throughput 
q  As the number of cores (threads) on chip increase: 

n  Fractional loss in parallel performance decreases 
n  Increased contention for critical sections  

makes acceleration more beneficial 

n  Overhead of CSCALL/CSDONE vs. better lock locality 
q  ACS avoids “ping-ponging” of locks among caches by keeping them at 

the large core 

n  More cache misses for private data vs. fewer misses 
for shared data 
q  Cache misses reduce if shared data > private data 
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ACS Comparison Points 

n  Conventional 
locking 
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Accelerated Critical Sections: Methodology 

n  Workloads: 12 critical section intensive applications 
q  Data mining kernels, sorting, database, web, networking 

 

n  Multi-core x86 simulator 
q  1 large and 28 small cores  
q  Aggressive stream prefetcher employed at each core 

n  Details: 
q  Large core: 2GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage 
q  Small core: 2GHz, in-order, 2-wide, 5-stage 
q  Private 32 KB L1, private 256KB L2, 8MB shared L3 
q  On-chip interconnect: Bi-directional ring, 5-cycle hop latency 
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ACS Performance 
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Equal-Area Comparisons 
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ACS Summary 
n  Critical sections reduce performance and limit scalability 

n  Accelerate critical sections by executing them on a powerful 
core 

n  ACS reduces average execution time by: 
q  34% compared to an equal-area SCMP 
q  23% compared to an equal-area ACMP 

n  ACS improves scalability of 7 of the 12 workloads 

n  Generalizing the idea: Accelerate all bottlenecks (“critical 
paths”) by executing them on a powerful core 
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Bottleneck Identification and 
Scheduling 

Jose A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt, 
"Bottleneck Identification and Scheduling in Multithreaded Applications"  

Proceedings of the 
17th International Conference on Architectural Support for Programming Languages 

and Operating Systems (ASPLOS), London, UK, March 2012. 
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BIS Summary 
n  Problem: Performance and scalability of multithreaded applications  

are limited by serializing synchronization bottlenecks 
q  different types: critical sections, barriers, slow pipeline stages 
q  importance (criticality) of a bottleneck can change over time 

n  Our Goal: Dynamically identify the most important bottlenecks and  
accelerate them 
q  How to identify the most critical bottlenecks 
q  How to efficiently accelerate them 

n  Solution: Bottleneck Identification and Scheduling (BIS) 
q  Software: annotate bottlenecks (BottleneckCall, BottleneckReturn) and 

implement waiting for bottlenecks with a special instruction (BottleneckWait) 
q  Hardware: identify bottlenecks that cause the most thread waiting and 

accelerate those bottlenecks on large cores of an asymmetric multi-core system 

n  Improves multithreaded application performance and scalability, 
outperforms previous work, and performance improves with more cores 
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Bottlenecks in Multithreaded Applications 
Definition: any code segment for which threads contend (i.e. wait) 
 

Examples: 
 

n  Amdahl’s serial portions 
q  Only one thread exists à on the critical path 

n  Critical sections 
q  Ensure mutual exclusion à likely to be on the critical path if contended 

n  Barriers 
q  Ensure all threads reach a point before continuing à the latest thread arriving 

is on the critical path 

n  Pipeline stages 
q  Different stages of a loop iteration may execute on different threads,  

slowest stage makes other stages wait à on the critical path 
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Observation: Limiting Bottlenecks Change Over Time 

A=full linked list; B=empty linked list 
repeat 

 Lock A 
  Traverse list A 
  Remove X from A 
 Unlock A 
 Compute on X 
 Lock B 
  Traverse list B 
  Insert X into B 
 Unlock B 

until A is empty 
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Lock A is limiter 
Lock B is limiter 

32 threads 



Limiting Bottlenecks Do Change on Real Applications 
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MySQL running Sysbench queries, 16 threads 



Previous Work on Bottleneck Acceleration 
n  Asymmetric CMP (ACMP) proposals [Annavaram+, ISCA’05]  

[Morad+, Comp. Arch. Letters’06] [Suleman+, Tech. Report’07] 

n  Accelerated Critical Sections (ACS) [Suleman+, ASPLOS’09, Top Picks’10] 

n  Feedback-Directed Pipelining (FDP) [Suleman+, PACT’10 and PhD thesis’11] 

No previous work  
 à can accelerate all types of bottlenecks or  
à adapts to fine-grain changes in the importance of bottlenecks 

 
 
 
 

Our goal:  
 general mechanism to identify and accelerate performance-limiting 
bottlenecks of any type  
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Bottleneck Identification and Scheduling (BIS) 

n  Key insight: 
q  Thread waiting reduces parallelism and  

is likely to reduce performance 
q  Code causing the most thread waiting                             

à likely critical path 

n  Key idea: 
q  Dynamically identify bottlenecks that cause  

the most thread waiting 
q  Accelerate them (using powerful cores in an ACMP) 



1.  Annotate 
bottleneck code 

2.  Implement waiting 
     for bottlenecks 

1.  Measure thread  
waiting cycles (TWC) 
for each bottleneck 

2.  Accelerate bottleneck(s) 
with the highest TWC 

Binary containing  
 BIS instructions 

Compiler/Library/Programmer Hardware 
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Bottleneck Identification and Scheduling (BIS) 



   while cannot acquire lock 
    Wait loop for watch_addr 
   acquire lock 
   … 
   release lock 

 

Critical Sections: Code Modifications 

   … 
   BottleneckCall bid, targetPC 
   … 

targetPC:  while cannot acquire lock 
    Wait loop for watch_addr 
   acquire lock 
   … 
   release lock 
   BottleneckReturn bid 
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 BottleneckWait bid, watch_addr 

   … 
 
 
 
 
 

   … Used to keep track of 
waiting cycles 
Used to enable 

acceleration 
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Barriers: Code Modifications 
   … 
   BottleneckCall bid, targetPC 
   enter barrier 
   while not all threads in barrier 
    BottleneckWait bid, watch_addr 
   exit barrier 
   … 

targetPC:  code running for the barrier 
   … 
   BottleneckReturn bid 
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Pipeline Stages: Code Modifications 

   BottleneckCall bid, targetPC 
   … 

targetPC:  while not done 
    while empty queue 
     BottleneckWait prev_bid 
    dequeue work 
    do the work … 
    while full queue 
     BottleneckWait next_bid 
    enqueue next work 
   BottleneckReturn bid 

 



1.  Annotate 
bottleneck code 

2.  Implement waiting 
     for bottlenecks 

1.  Measure thread  
waiting cycles (TWC) 
for each bottleneck 

2.  Accelerate bottleneck(s) 
with the highest TWC 

Binary containing  
 BIS instructions 

Compiler/Library/Programmer Hardware 
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Bottleneck Identification and Scheduling (BIS) 



BIS: Hardware Overview 

n  Performance-limiting bottleneck identification and 
acceleration are independent tasks 

n  Acceleration can be accomplished in multiple ways 
q  Increasing core frequency/voltage 
q  Prioritization in shared resources [Ebrahimi+, MICRO’11] 
q  Migration to faster cores in an Asymmetric CMP 
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Small 
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Small 
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Small 
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1.  Annotate 
bottleneck code 

2.  Implement waiting 
     for bottlenecks 

1.  Measure thread  
waiting cycles (TWC) 
for each bottleneck 

2.  Accelerate bottleneck(s) 
with the highest TWC 

Binary containing  
 BIS instructions 

Compiler/Library/Programmer Hardware 
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Bottleneck Identification and Scheduling (BIS) 



Determining Thread Waiting Cycles for Each Bottleneck 

141 

Small Core 1 Large Core 0 

Small Core 2 

Bottleneck 
Table (BT) 

… 

BottleneckWait x4500 

bid=x4500, waiters=1, twc = 0 bid=x4500, waiters=1, twc = 1 bid=x4500, waiters=1, twc = 2 

BottleneckWait x4500 

bid=x4500, waiters=2, twc = 5 bid=x4500, waiters=2, twc = 7 bid=x4500, waiters=2, twc = 9 bid=x4500, waiters=1, twc = 9 bid=x4500, waiters=1, twc = 10 bid=x4500, waiters=1, twc = 11 bid=x4500, waiters=0, twc = 11 bid=x4500, waiters=1, twc = 3 bid=x4500, waiters=1, twc = 4 bid=x4500, waiters=1, twc = 5 



1.  Annotate 
bottleneck code 

2.  Implement waiting 
     for bottlenecks 

1.  Measure thread  
waiting cycles (TWC) 
for each bottleneck 

2.  Accelerate bottleneck(s) 
with the highest TWC 

Binary containing  
 BIS instructions 

Compiler/Library/Programmer Hardware 
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Bottleneck Identification and Scheduling (BIS) 



Bottleneck Acceleration 
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Small Core 1 Large Core 0 

Small Core 2 

Bottleneck 
Table (BT) 

… 

Scheduling Buffer (SB) 
bid=x4700, pc, sp, core1 

Acceleration 
Index Table (AIT) 

BottleneckCall x4600 
Execute locally 

BottleneckCall x4700 

bid=x4700 , large core 0 

Execute remotely 

AIT 

bid=x4600, twc=100 

bid=x4700, twc=10000 

BottleneckReturn x4700 

bid=x4700 , large core 0 

bid=x4700, pc, sp, core1 

ß  twc < Threshold 

ß  twc > Threshold 

Execute locally Execute remotely 



BIS Mechanisms 
n  Basic mechanisms for BIS: 

q  Determining Thread Waiting Cycles  ü 
q  Accelerating Bottlenecks  ü 

n  Mechanisms to improve performance and generality of BIS: 
q  Dealing with false serialization 
q  Preemptive acceleration 
q  Support for multiple large cores 
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Hardware Cost 
n  Main structures: 

q  Bottleneck Table (BT): global 32-entry associative cache, 
minimum-Thread-Waiting-Cycle replacement 

q  Scheduling Buffers (SB): one table per large core,  
as many entries as small cores 

q  Acceleration Index Tables (AIT): one 32-entry table 
per small core 

n  Off the critical path 

n  Total storage cost for 56-small-cores, 2-large-cores < 19 KB 
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BIS Performance Trade-offs 
n  Faster bottleneck execution vs. fewer parallel threads 

q  Acceleration offsets loss of parallel throughput with large core counts 
 
 
 

n  Better shared data locality vs. worse private data locality 
q  Shared data stays on large core (good) 
q  Private data migrates to large core (bad, but latency hidden with Data 

Marshaling [Suleman+, ISCA’10]) 

n  Benefit of acceleration vs. migration latency 
q  Migration latency usually hidden by waiting (good) 
q  Unless bottleneck not contended (bad, but likely not on critical path) 
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Evaluation Methodology 

n  Workloads: 8 critical section intensive, 2 barrier intensive 
and 2 pipeline-parallel applications 
q  Data mining kernels, scientific, database, web, networking, specjbb 

n  Cycle-level multi-core x86 simulator 
q  8 to 64 small-core-equivalent area, 0 to 3 large cores, SMT 
q  1 large core is area-equivalent to 4 small cores 

n  Details: 
q  Large core: 4GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage 
q  Small core: 4GHz, in-order, 2-wide, 5-stage 
q  Private 32KB L1, private 256KB L2, shared 8MB L3 
q  On-chip interconnect: Bi-directional ring, 2-cycle hop latency 
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BIS Comparison Points (Area-Equivalent) 
n  SCMP (Symmetric CMP) 

q  All small cores 

n  ACMP (Asymmetric CMP) 
q  Accelerates only Amdahl’s serial portions 
q  Our baseline 

n  ACS (Accelerated Critical Sections) 
q  Accelerates only critical sections and Amdahl’s serial portions 
q  Applicable to multithreaded workloads  

(iplookup, mysql, specjbb, sqlite, tsp, webcache, mg, ft) 

n  FDP (Feedback-Directed Pipelining) 
q  Accelerates only slowest pipeline stages 
q  Applicable to pipeline-parallel workloads (rank, pagemine) 
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BIS Performance Improvement 

149 

Optimal number of threads, 28 small cores, 1 large core 

n  BIS outperforms ACS/FDP by 15% and ACMP by 32% 
n  BIS improves scalability on 4 of the benchmarks 

barriers, which ACS  
cannot accelerate 

limiting bottlenecks change over time 
ACS FDP 



Why Does BIS Work? 
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n  Coverage: fraction of program critical path that is actually identified as bottlenecks 
q  39% (ACS/FDP) to 59% (BIS) 

n  Accuracy: identified bottlenecks on the critical path over total identified bottlenecks 
q  72% (ACS/FDP) to 73.5% (BIS) 

Fraction of execution time spent on predicted-important bottlenecks 

Actually critical 



BIS Scaling Results 
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Performance increases with: 
 
1) More small cores 

n  Contention due to bottlenecks 
increases 

n  Loss of parallel throughput due 
to large core reduces 

 

2) More large cores 
n  Can accelerate  

independent bottlenecks 
n  Without reducing parallel 

throughput (enough cores) 

2.4% 
6.2% 

15% 19% 



BIS Summary 
n  Serializing bottlenecks of different types limit performance of 

multithreaded applications: Importance changes over time 

n  BIS is a hardware/software cooperative solution:  
q  Dynamically identifies bottlenecks that cause the most thread waiting 

and accelerates them on large cores of an ACMP 
q  Applicable to critical sections, barriers, pipeline stages 

n  BIS improves application performance and scalability: 
q  Performance benefits increase with more cores 

n  Provides comprehensive fine-grained bottleneck acceleration 
with no programmer effort 

152 



Handling Private Data Locality: 
Data Marshaling 

M. Aater Suleman, Onur Mutlu, Jose A. Joao, Khubaib, and Yale N. Patt, 
"Data Marshaling for Multi-core Architectures" 

Proceedings of the 37th International Symposium on Computer Architecture (ISCA), 
pages 441-450, Saint-Malo, France, June 2010. 
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Staged Execution Model (I) 
n  Goal: speed up a program by dividing it up into pieces 
n  Idea 

q  Split program code into segments 
q  Run each segment on the core best-suited to run it 
q  Each core assigned a work-queue, storing segments to be run 

n  Benefits 
q  Accelerates segments/critical-paths using specialized/heterogeneous cores 
q  Exploits inter-segment parallelism 
q  Improves locality of within-segment data 

n  Examples 
q  Accelerated critical sections, Bottleneck identification and scheduling 
q  Producer-consumer pipeline parallelism 
q  Task parallelism (Cilk, Intel TBB, Apple Grand Central Dispatch) 
q  Special-purpose cores and functional units 
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Staged Execution Model (II) 

LOAD X 
STORE Y 
STORE Y 

 
LOAD Y 

…. 
STORE Z 

 
LOAD Z 

…. 
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Staged Execution Model (III) 

LOAD X 
STORE Y 
STORE Y 

LOAD Y 
…. 

STORE Z 

LOAD Z 
…. 

Segment S0 

Segment S1 

Segment S2 

Split code into segments 
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Staged Execution Model (IV) 

Core 0 Core 1 Core 2 

Work-queues 

Instances 
 of S0 

Instances 
 of S1 

Instances 
 of S2 
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LOAD X 
STORE Y 
STORE Y 

LOAD Y 
…. 

STORE Z 

LOAD Z 
…. 

Core 0 Core 1 Core 2 

S0 

S1 

S2 

Staged Execution Model: Segment Spawning 



Staged Execution Model: Two Examples 

n  Accelerated Critical Sections [Suleman et al., ASPLOS 2009] 
q  Idea: Ship critical sections to a large core in an asymmetric CMP 

n  Segment 0: Non-critical section 
n  Segment 1: Critical section 

q  Benefit: Faster execution of critical section, reduced serialization, 
improved lock and shared data locality 

n  Producer-Consumer Pipeline Parallelism 
q  Idea: Split a loop iteration into multiple “pipeline stages” where 

one stage consumes data produced by the next stage à each 
stage runs on a different core 
n  Segment N: Stage N 

q  Benefit: Stage-level parallelism, better locality à faster execution 
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Problem: Locality of Inter-segment Data 

LOAD X 
STORE Y 
STORE Y 

LOAD Y 
…. 

STORE Z 

LOAD Z 
…. 

Transfer Y 

Transfer Z 

S0 

S1 

S2 

Core 0 Core 1 Core 2 

Cache Miss 

Cache Miss 



Problem: Locality of Inter-segment Data 
n  Accelerated Critical Sections [Suleman et al., ASPLOS 2010] 

q  Idea: Ship critical sections to a large core in an ACMP 
q  Problem: Critical section incurs a cache miss when it touches data 

produced in the non-critical section (i.e., thread private data) 

n  Producer-Consumer Pipeline Parallelism 
q  Idea: Split a loop iteration into multiple “pipeline stages” à each 

stage runs on a different core 
q  Problem: A stage incurs a cache miss when it touches data 

produced by the previous stage 

n  Performance of Staged Execution limited by inter-segment 
cache misses 
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What if We Eliminated All Inter-segment Misses? 
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Terminology 

LOAD X 
STORE Y 
STORE Y 

LOAD Y 
…. 

STORE Z 

LOAD Z 
…. 

Transfer Y 

Transfer Z 

S0 

S1 

S2 

Inter-segment data: Cache 
block written by one segment 
and consumed by the next 
segment 

Generator instruction: 
The last instruction to write to an       
inter-segment cache block in a segment 

Core 0 Core 1 Core 2 



Key Observation and Idea 
n  Observation: Set of generator instructions is stable over 

execution time and across input sets 

n  Idea:  
q  Identify the generator instructions  
q  Record cache blocks produced by generator instructions 
q  Proactively send such cache blocks to the next segment’s core 

before initiating the next segment 

n  Suleman et al., “Data Marshaling for Multi-Core 
Architectures,” ISCA 2010, IEEE Micro Top Picks 2011. 
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Data Marshaling 

1.  Identify generator 
instructions 

2.  Insert marshal 
instructions 

1.  Record generator-                     
     produced addresses 
2.   Marshal recorded  
     blocks to next core Binary containing  

generator prefixes & 
marshal Instructions 

Compiler/Profiler Hardware 
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Data Marshaling 

1.  Identify generator 
instructions 

2.  Insert marshal 
instructions 

1.  Record generator-                     
     produced addresses 
2.   Marshal recorded  
     blocks to next core Binary containing  

generator prefixes & 
marshal Instructions 

Hardware 
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Compiler/Profiler 
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Profiling Algorithm 

LOAD X 
STORE Y 
STORE Y 

LOAD Y 
             …. 

STORE Z 

LOAD Z 
            …. 

Mark as Generator 
Instruction 

Inter-segment data 
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Marshal Instructions 

     LOAD X 
     STORE Y 
G: STORE Y 
     MARSHAL C1 

    LOAD Y 
         …. 
G:STORE Z 
    MARSHAL C2 

0x5: LOAD Z 
            …. 

When to send (Marshal) 

Where to send (C1) 



DM Support/Cost 
n  Profiler/Compiler: Generators, marshal instructions 
n  ISA: Generator prefix, marshal instructions 
n  Library/Hardware: Bind next segment ID to a physical core 

n  Hardware 
q  Marshal Buffer 

n  Stores physical addresses of cache blocks to be marshaled 
n  16 entries enough for almost all workloads à 96 bytes per core 

q  Ability to execute generator prefixes and marshal instructions 
q  Ability to push data to another cache 
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DM: Advantages, Disadvantages 
n  Advantages 

q  Timely data transfer: Push data to core before needed 
q  Can marshal any arbitrary sequence of lines: Identifies 

generators, not patterns 
q  Low hardware cost: Profiler marks generators, no need for 

hardware to find them 

n  Disadvantages 
q  Requires profiler and ISA support 
q  Not always accurate (generator set is conservative): Pollution 

at remote core, wasted bandwidth on interconnect 
n  Not a large problem as number of inter-segment blocks is small  
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Accelerated Critical Sections with DM 

Small Core 0 

Marshal 
Buffer 

Large Core 

     LOAD X 
     STORE Y 
G: STORE Y 
     CSCALL 

    LOAD Y 
         …. 
G:STORE Z 
    CSRET 

Cache Hit! 

L2  
Cache 

L2  
Cache Data Y 

Addr Y 

Critical 
Section 



Accelerated Critical Sections: Methodology 

n  Workloads: 12 critical section intensive applications 
q  Data mining kernels, sorting, database, web, networking 
q  Different training and simulation input sets 

n  Multi-core x86 simulator 
q  1 large and 28 small cores  
q  Aggressive stream prefetcher employed at each core 

n  Details: 
q  Large core: 2GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage 
q  Small core: 2GHz, in-order, 2-wide, 5-stage 
q  Private 32 KB L1, private 256KB L2, 8MB shared L3 
q  On-chip interconnect: Bi-directional ring, 5-cycle hop latency 
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DM on Accelerated Critical Sections: Results 
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Pipeline Parallelism 

Core 0 

Marshal 
Buffer 

Core 1 

     LOAD X 
     STORE Y 
G: STORE Y 
     MARSHAL C1 

    LOAD Y 
         …. 
G:STORE Z 
    MARSHAL C2 

0x5: LOAD Z 
            …. 

Cache Hit! 

L2  
Cache 

L2  
Cache Data Y 

Addr Y 

S0 

S1 

S2 



Pipeline Parallelism: Methodology 

n  Workloads: 9 applications with pipeline parallelism  
q  Financial, compression, multimedia, encoding/decoding 
q  Different training and simulation input sets 

n  Multi-core x86 simulator 
q  32-core CMP: 2GHz, in-order, 2-wide, 5-stage 
q  Aggressive stream prefetcher employed at each core 

q  Private 32 KB L1, private 256KB L2, 8MB shared L3 
q  On-chip interconnect: Bi-directional ring, 5-cycle hop latency 
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DM on Pipeline Parallelism: Results 
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DM Coverage, Accuracy, Timeliness 

n  High coverage of inter-segment misses in a timely manner 
n  Medium accuracy does not impact performance 

q  Only 5.0 and 6.8 cache blocks marshaled for average segment 
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Scaling Results 

n  DM performance improvement increases with 
q  More cores 
q  Higher interconnect latency 
q  Larger private L2 caches 

n  Why? Inter-segment data misses become a larger bottleneck 
q  More cores à More communication 
q  Higher latency à Longer stalls due to communication 
q  Larger L2 cache à Communication misses remain  
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Other Applications of Data Marshaling 

n  Can be applied to other Staged Execution models 
q  Task parallelism models 

n  Cilk, Intel TBB, Apple Grand Central Dispatch 
q  Special-purpose remote functional units 
q  Computation spreading [Chakraborty et al., ASPLOS’06] 

q  Thread motion/migration [e.g., Rangan et al., ISCA’09] 

 
n  Can be an enabler for more aggressive SE models 

q  Lowers the cost of data migration 
n  an important overhead in remote execution of code segments 

q  Remote execution of finer-grained tasks can become more 
feasible à finer-grained parallelization in multi-cores 



Data Marshaling Summary 
n  Inter-segment data transfers between cores limit the benefit 

of promising Staged Execution (SE) models 

n  Data Marshaling is a hardware/software cooperative solution: 
detect inter-segment data generator instructions and push 
their data to next segment’s core 
q  Significantly reduces cache misses for inter-segment data 
q  Low cost, high-coverage, timely for arbitrary address sequences 
q  Achieves most of the potential of eliminating such misses 

n  Applicable to several existing Staged Execution models 
q  Accelerated Critical Sections: 9% performance benefit 
q  Pipeline Parallelism: 16% performance benefit 

n  Can enable new modelsà very fine-grained remote execution 

180 



A Case for  
 Asymmetry Everywhere 

Onur Mutlu,  
"Asymmetry Everywhere (with Automatic Resource Management)" 

CRA Workshop on Advancing Computer Architecture Research: Popular 
Parallel Programming, San Diego, CA, February 2010.  

Position paper  
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The Setting 
n  Hardware resources are shared among many threads/apps 

in a many-core based system 
q  Cores, caches, interconnects, memory, disks, power, lifetime, 

… 

n  Management of these resources is a very difficult task 
q  When optimizing parallel/multiprogrammed workloads 
q  Threads interact unpredictably/unfairly in shared resources 

n  Power/energy is arguably the most valuable shared resource 
q  Main limiter to efficiency and performance 
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Shield the Programmer from Shared Resources 

n  Writing even sequential software is hard enough 
q  Optimizing code for a complex shared-resource parallel system 

will be a nightmare for most programmers 

n  Programmer should not worry about                   
(hardware) resource management 
q  What should be executed where with what resources 

n  Future cloud computer architectures should be designed to 
q  Minimize programmer effort to optimize (parallel) programs 
q  Maximize runtime system’s effectiveness in automatic     

shared resource management 
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Shared Resource Management: Goals 

n  Future many-core systems should manage power and 
performance automatically across threads/applications 

n  Minimize energy/power consumption 
n  While satisfying performance/SLA requirements 

q  Provide predictability and Quality of Service 
n  Minimize programmer effort 

q  In creating optimized parallel programs 
 

n  Asymmetry and configurability in system resources essential 
to achieve these goals  
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Asymmetry Enables Customization 

n  Symmetric: One size fits all 
q  Energy and performance suboptimal for different phase behaviors 

n  Asymmetric: Enables tradeoffs and customization 
q  Processing requirements vary across applications and phases 
q  Execute code on best-fit resources (minimal energy, adequate perf.) 
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Thought Experiment: Asymmetry Everywhere 

n  Design each hardware resource with asymmetric, 
(re-)configurable, partitionable components 
q  Different power/performance/reliability characteristics 
q  To fit different computation/access/communication patterns 
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Thought Experiment: Asymmetry Everywhere 
 

n  Design the runtime system (HW & SW) to automatically choose 
the best-fit components for each workload/phase 
q  Satisfy performance/SLA with minimal energy 
q  Dynamically stitch together the “best-fit” chip for each phase  
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Thought Experiment: Asymmetry Everywhere 
 

n  Morph software components to match asymmetric HW 
components  
q  Multiple versions for different resource characteristics 
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Many Research and Design Questions 
n  How to design asymmetric components? 

q  Fixed, partitionable, reconfigurable components? 
q  What types of asymmetry? Access patterns, technologies? 

n  What monitoring to perform cooperatively in HW/SW? 
q  Automatically discover phase/task requirements 

n  How to design feedback/control loop between components and 
runtime system software? 

n  How to design the runtime to automatically manage resources? 
q  Track task behavior, pick “best-fit” components for the entire workload 
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n  Execute critical/serial sections on high-power, high-performance 
cores/resources [Suleman+ ASPLOS’09, ISCA’10, Top Picks’10’11, Joao+ ASPLOS’12] 

n  Programmer can write less optimized, but more likely correct programs  
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n  Execute streaming “memory phases” on streaming-optimized 
cores and memory hierarchies 
n  More efficient and higher performance than general purpose hierarchy 
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n  Partition memory controller and on-chip network bandwidth 
asymmetrically among threads [Kim+ HPCA 2010, MICRO 2010, Top Picks 
2011] [Nychis+ HotNets 2010] [Das+ MICRO 2009, ISCA 2010, Top Picks 2011] 
n  Higher performance and energy-efficiency than symmetric/free-for-all 
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n  Have multiple different memory scheduling policies; apply them 
to different sets of threads based on thread behavior [Kim+ MICRO 
2010, Top Picks 2011] [Ausavarungnirun, ISCA 2012] 
n  Higher performance and fairness than a homogeneous policy 
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n  Build main memory with different technologies with different 
characteristics (energy, latency, wear, bandwidth) [Meza+ IEEE CAL’12] 

n  Map pages/applications to the best-fit memory resource 
n  Higher performance and energy-efficiency than single-level memory 

CPU 
DRAM
Ctrl 

Fast, durable 
Small,  

leaky, volatile,  
high-cost 

Large, non-volatile, low-cost 
Slow, wears out, high active energy 

PCM 
Ctrl DRAM Phase Change Memory (or Tech. X) 


