Multi-Core Architectures and
Shared Resource Management
Lecture 1.2: Cache Management

Prof. Onur Mutlu
http://www.ece.cmu.edu/~omutlu
ohur@cmu.edu
Bogazici University
June 7, 2013

SAFARI CarnegieMellon

l.ast Lecture

Parallel Computer Architecture Basics
o Amdahl’s Law
o Bottlenecks in the Parallel Portion (3 fundamental ones)

Why Multi-Core? Alternatives, shortcomings, tradeoffs.

Evolution of Symmetric Multi-Core Systems
o Sun NiagaraX, IBM PowerX, Runahead Execution

Asymmetric Multi-Core Systems
o Accelerated Critical Sections
o Bottleneck Identification and Scheduling

What Will You Learn?

Tentative, Aggressive Schedule
o Lecture 1: Why multi-core? Basics, alternatives, tradeoffs

Symmetric versus asymmetric multi-core systems
o Lecture 2: Shared cache design for multi-cores

(if time permits) Interconnect design for multi-cores
o Lecture 3: Data parallelism and GPUs (if time permits)

(if time permits) Prefetcher design and management

Agenda for Today and Beyond

Wrap up Asymmetric Multi-Core Systems
o Handling Private Data Locality
o Asymmetry Everywhere

Cache design for multi-core systems
Interconnect design for multi-core systems
Prefetcher design for multi-core systems

Data Parallelism and GPUs

Readings for Lecture June 6 (Lecture 1.1)

Required — Symmetric and Asymmetric Multi-Core Systems

o Mutlu et al., “Runahead Execution: An Alternative to Very Large Instruction
Windows for Out-of-order Processors,” HPCA 2003, IEEE Micro 2003.

o Suleman et al., “Accelerating Critical Section Execution with Asymmetric
Multi-Core Architectures,” ASPLOS 2009, IEEE Micro 2010.

o Suleman et al., “Data Marshaling for Multi-Core Architectures,” ISCA 2010,
IEEE Micro 2011.

o Joao et al., "Bottleneck Identification and Scheduling for Multithreaded
Applications,” ASPLOS 2012.

o Joao et al., “Utility-Based Acceleration of Multithreaded Applications on
Asymmetric CMPs,” ISCA 2013.

Recommended

o Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

o Olukotun et al., “The Case for a Single-Chip Multiprocessor,” ASPLOS 1996.

o Mutlu et al., "Techniques for Efficient Processing in Runahead Execution
Engines,” ISCA 2005, IEEE Micro 2006.

Videos for Lecture June 6 (Lecture 1.1)

= Runahead Execution

o http://www.youtube.com/watch?
v=2z8YpjgXQJIA&list=PL5PHmM?2jkkXmidJOd59RE0g9iDnPDTG6I]J&index=28

= Multiprocessors

o Basics:
http://www.youtube.com/watch?
v=70zCK Magxfk&list=PL5PHM2ikkXmidJOd59RE0g9iDnPDTG6I]&index=31

a Correctness and Coherence:
http://www.youtube.com/watch?v=U-
VZKMgItDM&list=PL5PHmM2ikkXmidJOd59RE0q9iDnPDTG6I]&index=32

o Heterogeneous Multi-Core:
http://www.youtube.com/watch?
v=r6r2NJxj3kI&list=PL5PHmM2jkkXmidJOd59RE0g9iDnPDTG6I]&index=34

Readings for Lecture June 7 (Lecture 1.2)

Required — Caches in Multi-Core

Q

Q

Qureshi et al., "A Case for MLP-Aware Cache Replacement,” ISCA 2005.
Seshadri et al., “The Evicted-Address Filter: A Unified Mechanism to
Address both Cache Pollution and Thrashing,” PACT 2012.

Pekhimenko et al., “Base-Delta-Immediate Compression: Practical Data
Compression for On-Chip Caches,” PACT 2012.

Pekhimenko et al., “Linearly Compressed Pages: A Main Memory
Compression Framework with Low Complexity and Low Latency,” SAFARI
Technical Report 2013.

Recommended
o Qureshi et al., “Utility-Based Cache Partitioning: A Low-Overhead, High-

Performance, Runtime Mechanism to Partition Shared Caches,” MICRO
2006.

Videos for Lecture June7 (Lecture 1.2)

= Cache basics:

o http://www.youtube.com/watch?
v=TpMdBrM1hVc&list=PL5PHmM2jkkXmidJOd59RE0g9iDnPDTG
61J&index=23

= Advanced caches:

o http://www.youtube.com/watch?v=TboaFbjTd-
E&list=PL5PHmM2jkkXmidJOd59RE0g9iDnPDTG6IJ&index=24

Readings for Lecture June 10 (Lecture 1.3)

Required — Interconnects in Multi-Core

o Moscibroda and Mutlu, A Case for Bufferless Routing in On-Chip
Networks,” ISCA 2009.

o Fallin et al., "CHIPPER: A Low-Complexity Bufferless Deflection Router,”
HPCA 2011.

o Fallin et al., “"MinBD: Minimally-Buffered Deflection Routing for Energy-
Efficient Interconnect,” NOCS 2012.

o Das et al., "Application-Aware Prioritization Mechanisms for On-Chip
Networks,” MICRO 2009.

o Das et al., “"Aergia: Exploiting Packet Latency Slack in On-Chip
Networks,” ISCA 2010, IEEE Micro 2011.

Recommended

o Grot et al. “Preemptive Virtual Clock: A Flexible, Efficient, and Cost-
effective QOS Scheme for Networks-on-Chip,” MICRO 2009.

o Grot et al., “Kilo-NOC: A Heterogeneous Network-on-Chip Architecture

for Scalability and Service Guarantees,” ISCA 2011, IEEE Micro 2012.
9

Videos for Lecture June 10 (Lecture 1.3)

= Interconnects

a http://www.youtube.com/watch?
v=6XEpbFVgnf8&list=PL5PHM2jkkXmidJOd59RE0g9iDnPDTG61]
&index=33

= GPUs and SIMD processing

o Vector/array processing basics:
http://www.youtube.com/watch?v=f-
XL4BNRoBA&list=PL5PHM2jkkXmidJOd59RE0g9iDnPDTG6IJ&index=15

a GPUs versus other execution models:
http://www.youtube.com/watch?v=d|5TZ4-
0a00&list=PL5PHmM?2ikkXmidJOd59RE0g9iDnPDTG6I]&index=19

a GPUs in more detail:
http://www.youtube.com/watch?
v=vr5hbSkb1Eg&list=PL5PHmM2jkkXmidJOd59RE0g9iDnPDTG6I1]&index=20

10

Readings for Prefetching

Prefetching

o Srinath et al., “Feedback Directed Prefetching: Improving the
Performance and Bandwidth-Efficiency of Hardware Prefetchers,”
HPCA 2007.

a Ebrahimi et al., "Coordinated Control of Multiple Prefetchers in Multi-
Core Systems,” MICRO 20009.

o Ebrahimi et al., "Techniques for Bandwidth-Efficient Prefetching of
Linked Data Structures in Hybrid Prefetching Systems,” HPCA 2009.

o Ebrahimi et al., “"Prefetch-Aware Shared Resource Management for
Multi-Core Systems,” ISCA 2011.

o Lee et al., “"Prefetch-Aware DRAM Controllers,” MICRO 2008.

Recommended

o Lee et al., "Improving Memory Bank-Level Parallelism in the
Presence of Prefetching,” MICRO 20009.

11

Videos for Prefetching

= Prefetching

o http://www.youtube.com/watch?
v=ITKIWiINNIOc&list=PL5PHmM2jkkXmidJOd59RE0g9jDnPDTG61]
&index=29

o http://www.youtube.com/watch?
v=yapQavK6LUk&list=PL5PHM2jkkXmidJOd59RE0g9iDnPDTG6

[J&index=30

12

Readings for GPUs and SIMD
GPUs and SIMD processing

a

Narasiman et al., “Improving GPU Performance via Large
Warps and Two-Level Warp Scheduling,” MICRO 2011.

Jog et al., "OWL: Cooperative Thread Array Aware Scheduling

Techniques for Improving GPGPU Performance,” ASPLOS
2013.

Jog et al., “"Orchestrated Scheduling and Prefetching for
GPGPUs,” ISCA 2013.

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and
Computing Architecture,” IEEE Micro 2008.

Fung et al., "Dynamic Warp Formation and Scheduling for
Efficient GPU Control Flow,” MICRO 2007.

13

Videos for GPUs and SIMD

= GPUs and SIMD processing

o Vector/array processing basics:
http://www.youtube.com/watch?v=f-
XL4BNRoBAR&list=PL5PHmM2jkkXmidJOd59RE0g9iDnPDTG6I]&index=15

o GPUs versus other execution models:
http://www.youtube.com/watch?v=d|5TZ4-
0a00&list=PL5PHmM?2ikkXmidJOd59RE0g9iDnPDTG6I]&index=19

a GPUs in more detail:
http://www.youtube.com/watch?
v=vr5hbSkb1Eg&list=PL5PHmM?2jkkXmidJOd59RE0g9iDnPDTG6I]&index=
20

14

Online Lectures and More Information

= Online Computer Architecture Lectures

a http://www.youtube.com/playlist?
list=PL5PHmM2jkkXmidJOd59RE0g9iDNPDTG6I]

= Online Computer Architecture Courses
a Intro: http://www.ece.cmu.edu/~ece447/s13/doku.php
o Advanced: http://www.ece.cmu.edu/~ece740/f11/doku.php
o Advanced: http://www.ece.cmu.edu/~ece742/doku.php

= Recent Research Papers
a http://users.ece.cmu.edu/~omutlu/projects.htm

o http://scholar.google.com/citations?
user=7/XyGUGKAAAAJ&hl=en

15

Asymmetric Multi-Core Systems
Continued

16

Handling Private Data Locality:
Data Marshaling

M. Aater Suleman, Onur Mutlu, Jose A. Joao, Khubaib, and Yale N. Patt,
"Data Marshaling for Multi-core Architectures”

Proceedings of the 37th International Symposium on Computer Architecture (ISCA),
pages 441-450, Saint-Malo, France, June 2010.

17

Staged Execution Model (I)

Goal: speed up a program by dividing it up into pieces
Idea
o Split program code into segments

o Run each segment on the core best-suited to run it
o Each core assigned a work-queue, storing segments to be run

Benefits

o Accelerates segments/critical-paths using specialized/heterogeneous cores
o Exploits inter-segment parallelism

o Improves locality of within-segment data

Examples

o Accelerated critical sections, Bottleneck identification and scheduling
o Producer-consumer pipeline parallelism

o Task parallelism (Cilk, Intel TBB, Apple Grand Central Dispatch)

o Special-purpose cores and functional units

SAFARI 18

Staged Execution Model (11

SAFARI

19

Staged Execution Model (11I)

Split code into segments

Segment SO

Segment S1

Segment S2

SAFARI

20

Staged Execution Model (IV)

| | |

Instances Instances Instances
of SO of S1 of S2

Work-queues

SAFARI

21

Staged Execution Model: Segment Spawning

Core 0 Core 1 Core 2

SAFARI 2

Staged Execution Model: Two Examples

Accelerated Critical Sections [Suleman et al., ASPLOS 2009]

o Idea: Ship critical sections to a large core in an asymmetric CMP
Segment 0: Non-critical section
Segment 1: Critical section

o Benefit: Faster execution of critical section, reduced serialization,
improved lock and shared data locality

Producer-Consumer Pipeline Parallelism

o Idea: Split a loop iteration into multiple “pipeline stages” where
one stage consumes data produced by the next stage - each
stage runs on a different core

Segment N: Stage N
o Benefit: Stage-level parallelism, better locality > faster execution

SAFARI 23

Problem: Locality of Inter-segment Data

Core 0 Core 1 Core 2

S0

Transfer Y
Cache Miss

Transfer Z
Cache Miss

SAFARI 24

Problem: Locality of Inter-segment Data

= Accelerated Critical Sections [Suleman et al., ASPLOS 2010]
o Idea: Ship critical sections to a large core in an ACMP

o Problem: Ciritical section incurs a cache miss when it touches data
produced in the non-critical section (i.e., thread private data)

= Producer-Consumer Pipeline Parallelism

a Idea: Split a loop iteration into multiple “pipeline stages” - each
stage runs on a different core

o Problem: A stage incurs a cache miss when it touches data
produced by the previous stage

= Performance of Staged Execution limited by inter-segment
cache misses

SAFARI 25

What if We

Fliminated All Inter-segment Misses?

1.25

1.2

1.1

1.05

0.95

Performance Potential

0.85

0.8

ACS

Pipeline

SAFARI

26

Terminology

Core 0 Core 1 Core 2

Inter-segment data: Cache
block written by one segment
and consumed by the next
segment

S0

Generator instruction:
The last instruction to write to an
inter-segment cache block in a segment

SAFARI 27

Key Observation and Idea

Observation: Set of generator instructions is stable over
execution time and across input sets

Idea:
o Identify the generator instructions
o Record cache blocks produced by generator instructions

o Proactively send such cache blocks to the next segment’ s core
before initiating the next segment

Suleman et al., “Data Marshaling for Multi-Core
Architectures,” ISCA 2010, IEEE Micro Top Picks 2011.

SAFARI 28

Data Marshaling

Compiler/Profiler
4)
1. Identify generator
instructions
2. Insert marshal
instructions
\§ J

SAFARI

Binary containing
generator prefixes &
marshal Instructions

Hardware

-

o

1. Record generator-

~

produced addresses

2. Marshal recorded

blocks to next core

J

29

Data Marshaling

Compiler/Profiler

. ldentify generator
instructions

. Insert marshal
instructions

J

SAFARI

Binary containing
generator prefixes &
marshal Instructions

Hardware

-~

\

1.

Record generator-

~

produced addresses

2. Marshal recorded

blocks to next core

J

30

Profiling Algorithm

Inter-segment data

Mark as Generator
Instruction

SAFARI

31

Marshal Instructions

When to send (Marshal)
Where to send (C1)

SAFARI 32

DM Support/Cost

Profiler/Compiler: Generators, marshal instructions
ISA: Generator prefix, marshal instructions
Library/Hardware: Bind next segment ID to a physical core

Hardware

o Marshal Buffer
Stores physical addresses of cache blocks to be marshaled
16 entries enough for almost all workloads - 96 bytes per core

o Ability to execute generator prefixes and marshal instructions
o Ability to push data to another cache

SAFARI 33

DM: Advantages, Disadvantages

Advantages
o Timely data transfer: Push data to core before needed

o Can marshal any arbitrary sequence of lines: Identifies
generators, not patterns

o Low hardware cost: Profiler marks generators, no need for
hardware to find them

Disadvantages
o Requires profiler and ISA support

o Not always accurate (generator set is conservative): Pollution
at remote core, wasted bandwidth on interconnect

Not a large problem as number of inter-segment blocks is small

SAFARI 34

Accelerated Critical Sections with DM

- N
- I
Large Core
Small Core 0
\ N\ /
Marshal
Buffer -
Cache Hit!

Critical
Section

SAFARI

35

Accelerated Critical Sections: Methodology

Workloads: 12 critical section intensive applications
o Data mining kernels, sorting, database, web, networking
o Different training and simulation input sets

Multi-core x86 simulator
o 1 large and 28 small cores
o Aggressive stream prefetcher employed at each core

Details:

o Large core: 2GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage
o Small core: 2GHz, in-order, 2-wide, 5-stage

o Private 32 KB L1, private 256KB L2, 8MB shared L3

o On-chip interconnect: Bi-directional ring, 5-cycle hop latency

SAFARI 36

DM on Accelerated Critical Sections: Results

168 170

)

00000000

4444444

SS9V 19A0 dnpoaadg

37

SAFARI

Pipeline Parallelism

Core 0

Marshal

Cache Hit!

/

Core 1

~

Buffer

SAFARI

38

Pipeline Parallelism: Methodology

Workloads: 9 applications with pipeline parallelism
o Financial, compression, multimedia, encoding/decoding
o Different training and simulation input sets

Multi-core x86 simulator

o 32-core CMP: 2GHz, in-order, 2-wide, 5-stage

o Aggressive stream prefetcher employed at each core

o Private 32 KB L1, private 256KB L2, 8MB shared L3

o On-chip interconnect: Bi-directional ring, 5-cycle hop latency

SAFARI 39

DM on Pipeline Parallelism: Results

160
140 -
120 -
100 -
80 A
60 -
40
20 A

Speedup over Baseline

SAFARI 40

DM Coverage, Accuracy, Timeliness

100 1
90 -
80 -
70 -
60 -
50 +
40 -
30 -
20
10 A

Percentage

ACS

E Coverage
B Accuracy
B Timeliness

Pipeline

= High coverage of inter-segment misses in a timely manner
= Medium accuracy does not impact performance
a Only 5.0 and 6.8 cache blocks marshaled for average segment

SAFARI

41

Scaling Results

DM performance improvement increases with
o More cores

o Higher interconnect latency

o Larger private L2 caches

Why?

o Inter-segment data misses become a larger bottleneck
o More cores - More communication

o Higher latency - Longer stalls due to communication
o Larger L2 cache > Communication misses remain

SAFARI 42

Other Applications of Data Marshaling

Can be applied to other Staged Execution models
o Task parallelism models
Cilk, Intel TBB, Apple Grand Central Dispatch

o Special-purpose remote functional units
o Computation spreading [Chakraborty et al., ASPLOS’ 06]
o Thread motion/migration [e.g., Rangan et al., ISCA’ 09]

Can be an enabler for more aggressive SE models

o Lowers the cost of data migration
an important overhead in remote execution of code segments

o Remote execution of finer-grained tasks can become more
feasible - finer-grained parallelization in multi-cores

SAFARI

43

Data Marshaling Summary

Inter-segment data transfers between cores limit the benefit
of promising Staged Execution (SE) models

Data Marshaling is a hardware/software cooperative solution:
detect inter-segment data generator instructions and push
their data to next segment’ s core

o Significantly reduces cache misses for inter-segment data

o Low cost, high-coverage, timely for arbitrary address sequences

o Achieves most of the potential of eliminating such misses

Applicable to several existing Staged Execution models
o Accelerated Critical Sections: 9% performance benefit
o Pipeline Parallelism: 16% performance benefit

Can enable new models—> very fine-grained remote execution

SAFARI 44

A Case tor
Asymmetry Everywhere

Onur Mutlu,

"Asymmetry Everywhere (with Automatic Resource Management)"
CRA Workshop on Advancing Computer Architecture Research: Popular
Parallel Programming, San Diego, CA, February 2010.

Position paper

45

The Setting

Hardware resources are shared among many threads/apps
in @ many-core based system

o Cores, caches, interconnects, memory, disks, power, lifetime,

Management of these resources is a very difficult task
o When optimizing parallel/multiprogrammed workloads
o Threads interact unpredictably/unfairly in shared resources

Power/energy is arguably the most valuable shared resource
o Main limiter to efficiency and performance

SAFARI 46

Shield the Programmer from Shared Resources

Writing even sequential software is hard enough

o Optimizing code for a complex shared-resource parallel system
will be a nightmare for most programmers

Programmer should not worry about
(hardware) resource management

o What should be executed where with what resources

Future cloud computer architectures should be designed to
o Minimize programmer effort to optimize (parallel) programs

o Maximize runtime system’s effectiveness in automatic
shared resource management

SAFARI 47

Shared Resource Management: Goals

Future many-core systems should manage power and
performance automatically across threads/applications

Minimize energy/power consumption

While satisfying performance/SLA requirements
o Provide predictability and Quality of Service
Minimize programmer effort

o In creating optimized parallel programs

Asymmetry and configurability in system resources essential
to achieve these goals

SAFARI 48

Asymmetry Enables Customization

c c c c c2
C1
c c c c c3
c c c c c4 | ca | ca | ca
c c c c cs | ¢s | 5 | ¢
Symmetric Asymmetric

Symmetric: One size fits all
o Energy and performance suboptimal for different phase behaviors

Asymmetric: Enables tradeoffs and customization

o Processing requirements vary across applications and phases
o Execute code on best-fit resources (minimal energy, adequate perf.)

SAFARI 49

Thought Experiment: Asymmetry Everywhere

Design each hardware resource with asymmetric,
(re-)configurable, partitionable components

o Different power/performance/reliability characteristics
o To fit different computation/access/communication patterns

Asymmetric / configurable
cores and accelerators

High—power
High perf.

““““““ Asymmetric / partitionable

Power/performance R 111111 | memory hierarchies
optimized for L L
each access pattern | Lo R
L

e T T r T T T 1T T T N\ . ., .
| N Asymmetric / partitionable

| |
L 1 S N S N S R S J interconnect

Different technologies

Power characteristics Asymmetrlc main memories

SAFARI 50

Thought Experiment: Asymmetry Everywhere

Design the runtime system (HW & SW) to automatically choose
the best-fit components for each workload/phase

o Satisfy performance/SLA with minimal energy
o Dynamically stitch together the “best-fit” chip for each phase

Asymmetric / configurable
cores and accelerators

High—power
High perf.

R Coroon o Asymmetric / partitionable
Power/performance R 111111 | memory hierarchies

optimized for B REREREEEN
each access pattern | Lo R
EEREREEEN

e T T r T T T 1T T T N\ . ., .
| N Asymmetric / partitionable

| |
\ 1 1 Lt) interconnect

Different technologies

Power characteristics Asymmetric main memories

SAFARI 51

Thought |

Axperiment: Asymmetry Everywhere

Morph software components to match asymmetric HW
components

o Multiple versions for different resource characteristics

optimized for
each access pattern

Asymmetric / configurable
High—power cores and accelerators
High perf.
Coroon o Asymmetric / partitionable
Power/performance 11010101 | memory hierarchies

-~

.

wwwwwwwwww Asymmetric / partitionable

““““““ J interconnect

Different technologies
Power characteristics

SAFARI

Asymmetric main memories

52

Many Research and Design Questions

How to design asymmetric components?
o Fixed, partitionable, reconfigurable components?
o What types of asymmetry? Access patterns, technologies?

What monitoring to perform cooperatively in HW/SW?
o Automatically discover phase/task requirements

How to design feedback/control loop between components and
runtime system software?

How to design the runtime to automatically manage resources?
o Track task behavior, pick “best-fit” components for the entire workload

SAFARI 53

Exploiting Asymmetry: Simple Examples

High—power

High perf.

Power/performance
optimized for
each access pattern

s

(&

Different technologies
Power characteristics

Asymmetric / configurable
cores and accelerators

Asymmetric / partitionable
memory hierarchies

| Asymmetric / partitionable

Iinterconnect

Asymmetric main memories

= Execute critical/serial sections on high-power, high-performance
cores/resources [Suleman+ ASPLOS'09, ISCA’10, Top Picks'10'11, Joao+ ASPLOS'12]

= Programmer can write less optimized, but more likely correct programs

SAFARI

54

Exploiting Asymmetry: Simple Examples

High—power

High perf.

Power/performance
optimized for

each access pattern

s

(&

Different technologies
Power characteristics

Asymmetric / configurable
cores and accelerators

Asymmetric / partitionable
memory hierarchies

| Asymmetric / partitionable

Iinterconnect

Asymmetric main memories

Execute streaming “memory phases” on streaming-optimized

cores and memory hierarchies

More efficient and higher performance than general purpose hierarchy

SAFARI

55

Exploiting Asymmetry: Simple Examples

Asymmetric / configurable
High—power cores and accelerators
High perf.

Asymmetric / partitionable
Power/performance memory hierarchies

optimized for
each access pattern

s

| Asymmetric / partitionable
interconnect

(&

Different technologies

Power characteristics Asymmetric main memories

= Partition memory controller and on-chip network bandwidth

asymmetrically among threads [Kim+ HPCA 2010, MICRO 2010, Top Picks
2011] [Nychis+ HotNets 2010] [Das+ MICRO 2009, ISCA 2010, Top Picks 2011]

= Higher performance and energy-efficiency than symmetric/free-for-all

SAFARI 56

Exploiting Asymmetry: Simple Examples

High—power

Asymmetric / configurable

cores and accelerators

High perf.

Power/performance
optimized for
each access pattern

Asymmetric / partitionable
memory hierarchies

s

(&

oo Asymmetric / partitionable
........... interconnect

.

Different technologies
Power characteristics

D Asymmetric main memories

Have multiple different memory scheduling policies; apply them

to different sets of threads based on thread behavior [Kim+ MICRO
2010, Top Picks 2011] [Ausavarungnirun, ISCA 2012]

Higher performance and fairness than a homogeneous policy

SAFARI

57

Exploiting Asymmetry: Simple Examples

Asymmetric / configurable
cores and accelerators

High—power
High perf.

uuuuuuuuuu Asymmetric / partitionable

Power/performance | L memory hierarchies
optimized for C P U """""""

each access pattern DRAM PCM : : : : : : : : : :
DRAM Ctrl _ Ctrl Phase Change Memory (or Tech. X)

partitionable

aln memories

= Build main memory with different technologies with different
characteristics (energy, latency, wear, bandwidth) [Meza+ IEEE caL'12]

= Map pages/applications to the best-fit memory resource
= Higher performance and energy-efficiency than single-level memory

SAFARI 58

(

Vector Machine Organization (CRAY-1)

MEMORY]

VECTOR REGISTERS
V7

ﬂ

Il

|

!
|

|
|

IIIIIII

]

m

fﬂir =

| SCALAR REGISTERS

8

3 Y

INSTRUCTION BUFFERS

e v m= =& mw m-

ADDRESS REGISTERS

-H-
'
- Maltizl
Acd
' ADDRESS
ll

FUNCTIONAL UNITS

CRAY-1
Russell, “The CRAY-1

computer system,”
CACM 1978.

Scalar and vector modes

8 64-element vector
registers

64 bits per element

16 memory banks

8 64-bit scalar registers
8 24-bit address registers

59

Research in Asymmetric Multi-Core

How to Design Asymmetric Cores
o Static
o Dynamic
Can you fuse in-order cores easily to build an Oo0 core?
o How to create asymmetry

How to divide the program to best take advantage of
asymmetry?

o Explicit vs. transparent

How to match arbitrary program phases to the best-fitting
core?

How to minimize code/data migration overhead?
How to satisfy shared resource requirements of different cores?
SAFARI 60

Related Ongoing/Future Work

Dynamically asymmetric cores
Memory system design for asymmetric cores

Asymmetric memory systems
o Phase Change Memory (or Technology X) + DRAM
o Hierarchies optimized for different access patterns

Asymmetric on-chip interconnects
o Interconnects optimized for different application requirements

Asymmetric resource management algorithms
o E.g., network congestion control

Interaction of multiprogrammed multithreaded workloads

SAFARI 61

Summary: Asymmetric Design

Applications and phases have varying performance requirements

Designs evaluated on multiple metrics/constraints: energy,
performance, reliability, fairness, ...

One-size-fits-all design cannot satisfy all requirements and metrics:
cannot get the best of all worlds

Asymmetry in design enables tradeoffs: can get the best of all
worlds

o Asymmetry in core microarch. - Accelerated Critical Sections, BIS, DM
- Good parallel performance + Good serialized performance

o Asymmetry in memory scheduling - Thread Cluster Memory Scheduling
- Good throughput + good fairness

o Asymmetry in main memory - Best of multiple technologies

Simple asymmetric designs can be effective and low-cost
SAFARI 62

Further Read

ing

SAFARI

63

Shared Resource Design for
Multi-Core Systems

The Multi-Core System: A Shared Resource View

Shared Memory
Shared Shared
Memory Memory
Shared Control Control
Interconnect
\
\
@) N
= =
Qo [<V]
= =
o (¢
=7)
M (<
\% =
= = 5
<) = S
- =] EEEEER
2 .
Shared
Storage
Shared Shared
Memory Memory
Control Control
Shared Memory
65

SAFARI

Resource Sharing Concept

Idea: Instead of dedicating a hardware resource to a
hardware context, allow multiple contexts to use it

o Example resources: functional units, pipeline, caches, buses,
memory

Why?

+ Resource sharing improves utilization/efficiency - throughput

o When a resource is left idle by one thread, another thread can
use it; no need to replicate shared data

+ Reduces communication latency

o For example, shared data kept in the same cache in SMT
Processors

+ Compatible with the shared memory model

066

Resource Sharing Disadvantages

Resource sharing results in contention for resources
o When the resource is not idle, another thread cannot use it

o If space is occupied by one thread, another thread needs to re-
occupy it

- Sometimes reduces each or some thread’ s performance
- Thread performance can be worse than when it is run alone

- Eliminates performance isolation - inconsistent performance
across runs

- Thread performance depends on co-executing threads
- Uncontrolled (free-for-all) sharing degrades QoS
- Causes unfairness, starvation

Need to efficiently and fairly utilize shared resources
67

Need for QoS and Shared Resource Mgmt.

Why is unpredictable performance (or lack of QoS) bad?

Makes programmer’ s life difficult

o An optimized program can get low performance (and
performance varies widely depending on co-runners)

Causes discomfort to user

o An important program can starve
o Examples from shared software resources

Makes system management difficult

o How do we enforce a Service Level Agreement when hardware
resources are sharing is uncontrollable?

68

Resource Sharing vs. Partitioning

Sharing improves throughput
o Better utilization of space

Partitioning provides performance isolation (predictable
performance)

o Dedicated space

Can we get the benefits of both?

Idea: Design shared resources such that they are efficiently
utilized, controllable and partitionable

o No wasted resource + QoS mechanisms for threads

69

Shared Hardware Resources

Memory subsystem (in both MT and CMP)
o Non-private caches

o Interconnects

o Memory controllers, buses, banks

I/O subsystem (in both MT and CMP)
a I/O, DMA controllers
o Ethernet controllers

Processor (in MT)
o Pipeline resources
o L1 caches

70

Multi-core Issues in Caching

How does the cache hierarchy change in a multi-core system?
Private cache: Cache belongs to one core (a shared block can be in

multiple caches)
Shared cache: Cache is shared by multiple cores

—~

CORE 1

CORE 3

A 4

L2
CACHE

L2
CACHE

\ DRAM MEMORY CONTROLLER

\

/

CORE 2

L2

CACHE

DRAM MEMORY CONTROLLER

71

Shared Caches Between Cores

Advantages:
o High effective capacity
o Dynamic partitioning of available cache space
No fragmentation due to static partitioning
o Easier to maintain coherence (a cache block is in a single location)
o Shared data and locks do not ping pong between caches

Disadvantages

o Slower access

o Cores incur conflict misses due to other cores’ accesses
Misses due to inter-core interference
Some cores can destroy the hit rate of other cores

o Guaranteeing a minimum level of service (or fairness) to each core is harder
(how much space, how much bandwidth?)

72

Shared Caches: How to Share?

Free-for-all sharing

o Placement/replacement policies are the same as a single core
system (usually LRU or pseudo-LRU)

o Not thread/application aware

o An incoming block evicts a block regardless of which threads
the blocks belong to

Problems
o Inefficient utilization of cache: LRU is not the best policy

o A cache-unfriendly application can destroy the performance of
a cache friendly application

o Not all applications benefit equally from the same amount of
cache: free-for-all might prioritize those that do not benefit

o Reduced performance, reduced fairness
73

Controlled Cache Sharing

Utility based cache partitioning

o Qureshi and Patt, “Utility-Based Cache Partitioning: A Low-Overhead, High-
Performance, Runtime Mechanism to Partition Shared Caches,” MICRO

2006.

o Suh et al., “A New Memory Monitoring Scheme for Memory-Aware
Scheduling and Partitioning,” HPCA 2002.

Fair cache partitioning

o Kim et al., “Fair Cache Sharing and Partitioning in a Chip Multiprocessor
Architecture,” PACT 2004.

Shared/private mixed cache mechanisms

o Qureshi, “Adaptive Spill-Receive for Robust High-Performance Caching in
CMPs,” HPCA 2009.

o Hardavellas et al., “Reactive NUCA: Near-Optimal Block Placement and
Replication in Distributed Caches,” ISCA 2009.

74

Efficient Cache Utilization

Qureshi et al., “A Case for MLP-Aware Cache Replacement,” ISCA
2005.

Seshadri et al., “The Evicted-Address Filter: A Unified Mechanism to
Address both Cache Pollution and Thrashing,” PACT 2012.

Pekhimenko et al., “Base-Delta-Immediate Compression: Practical
Data Compression for On-Chip Caches,” PACT 2012.

Pekhimenko et al., “Linearly Compressed Pages: A Main Memory
Compression Framework with Low Complexity and Low Latency,”
SAFARI Technical Report 2013.

75

MILP-Aware Cache Replacement

Moinuddin K. Qureshi, Daniel N. Lynch, Onur Mutlu, and Yale N. Patt,
"A Case for MLP-Aware Cache Replacement”
Proceedings of the 33rd International Symposium on Computer Architecture

(ISCA), pages 167-177, Boston, MA, June 2006. Slides (ppt)

76

Memory Level Parallelism (MLP)

isolated miss parallel miss

B 7
c ;

A 4

, time

Memory Level Parallelism (MLP) means generating and
servicing multiple memory accesses in parallel [Glew’ 98]

Several techniques to improve MLP (e.g., out-of-order execution,
runahead execution)

MLP varies. Some misses are isolated and some parallel

How does this affect cache replacement?

77

Traditional Cache Replacement Policies

Traditional cache replacement policies try to reduce miss
count

Implicit assumption: Reducing miss count reduces memory-
related stall time

Misses with varying cost/MLP breaks this assumption!

Eliminating an isolated miss helps performance more than
eliminating a parallel miss

Eliminating a higher-latency miss could help performance
more than eliminating a lower-latency miss

78

An Example

P4 P3 P2 Pi A{Pl P2 P3 P4 @

Misses to blocks P1, P2, P3, P4 can be parallel
Misses to blocks S1, S2, and S3 are isolated

Two replacement algorithms:
1. Minimizes miss count (Belady’ s OPT)
2. Reduces isolated misses (MLP-Aware)

For a fully associative cache containing 4 blocks

79

£)

)

Fewest Misses = Best Performance

P4 |51Caghes3 p1 53 P P4|S1(S2 (53 4| P3|PIP4|P3 (P2 |S3
P4 P3 P2 PlHP] P2 P3 P4J
Hit/Miss HHHM HHHH M M M

Ti Misses=4
ime TSI [T T O oiis=a

Belady’ s OPT replacement

Hit/Miss H M M M HMMM H H H

Time DSR2 Misses=6
cycles

Stalls=2
MLP-Aware replacement

80

Motivation

[MLP varies. Some misses more costly than others

[MLP-aware replacement can improve performance by
reducing costly misses

81

Outline

1 Introduction

d MLP-Aware Cache Replacement
= Model for Computing Cost
= Repeatability of Cost
= A Cost-Sensitive Replacement Policy

 Practical Hybrid Replacement
= Tournament Selection
= Dynamic Set Sampling
= Sampling Based Adaptive Replacement

d Summary

82

Computing MLP-Based Cost

A Cost of miss is number of cycles the miss stalls the processor
[Easy to compute for isolated miss

O Divide each stall cycle equally among all parallel misses

1 1| A

1 ” B
s 1 |C

t0 1 213 t4 t5 time

83

A First-Order Model

O Miss Status Holding Register (MSHR) tracks all in flight
misses

1 Add a field mlp-cost to each MSHR entry

Q Every cycle for each demand entry in MSHR

mip-cost += (1/N)

N = Number of demand misses in MSHR

84

Machine Configuration

 Processor
= aggressive, out-of-order, 128-entry instruction window

A L2 Cache
= 1MB, 16-way, LRU replacement, 32 entry MSHR

d Memory
= 400 cycle bank access, 32 banks

d Bus
= Roundtrip delay of 11 bus cycles (44 processor cycles)

85

Distribution of MLP-Based Cost

mct-base 50 ammp-base

50 mgrid-base

40 40

20

20 |

All L2 Misses

10

10 |

0

NN N\ INEPAN]

QO @ PP P P&

Cost varies. Does ipfepeghfigang¥en cache block?

86

Repeatability of Cost

A An isolated miss can be parallel miss next time
A Can current cost be used to estimate future cost ?

A Let § = difference in cost for successive miss to a block

= Small § =» cost repeats
= Large § =» cost varies significantly

87

% of All Delta V alues

Repeatability of Cost

100 -
90 -

80 -

70

60 —

H B
. B
30+ wess Delta = 120+
ool . s 59 < Delta < 120
- w Delta < 60

10

0 -

N

O In general § is small = repeatable cost

NEEEEENEN
X

d When § is large (e.g. parser, mgrid) = performance loss

88

The Framew

ork

MEMORY

MSHR
Cost

Calculation ccL

Logic f_,

L2 CACHE

Cost-Aware

mzx >0

Repl Engine

Quantization of Cost

Computed mip-based
cost is quantized to a
3-bit value

ICACHE | DCACHE

PROCESSOR

89

Design of MLP-Aware Replacement policy

A LRU considers only recency and no cost
Victim-LRU = min { Recency (i) }

[Decisions based only on cost and no recency hurt
performance. Cache stores useless high cost blocks

A A Linear (LIN) function that considers recency and cost

Victim-LIN = min { Recency (i) + S*cost (i) }

S = significance of cost. Recency(i) = position in LRU stack
cost(i) = quantized cost

90

Results for the LIN policy

(%) 1PC improvement over baseline (LRU)

25

/\
\ N\

= LIN(2)

w LIN(L) H

= [IN(3) |
/\ = L IN(4)

-25
-30 .
& > & & 3 & 1 > - ~ & S >
> & & K Qb& & Q?*‘ 00? so'\}Q Q,§" “\ﬁ.\ N &

Performance loss for parser and mgrid due to large 6

91

Effect of LIN policy on Cost

ammp-base

50

mct-base

50

40

0

30

20

10

0

INJAN \Q/Q\% '\,@ ,\)® r\J‘OQ @9 &be
50 ammp-lin | 50 ﬁf—lin ‘
40 Miss += 4% 40 Miss -=11%
“ IPC += 4% “ IPC +=22%

20

10

0

20

10

0
g Q Q D
K QO PP P

mgrid-base

50

40

30

20

10

0
D @ P EP PSP
50 mgrid-lin]

40 Miss += 30%
IPC -=33%

30

92

Outline

1 Introduction

d MLP-Aware Cache Replacement

= Model for Computing Cost
= Repeatability of Cost
= A Cost-Sensitive Replacement Policy

Q Practical Hybrid Replacement

= Tournament Selection
= Dynamic Set Sampling
= Sampling Based Adaptive Replacement

d Summary

93

Tournament Selection (TSEL) of
Replacement Policies for a Single Set

ATD-LIN SCTR ATD-LRU
SETA @4 SETA
SE%‘A If MSB of SCTR is 1, MTD
VTD uses LIN else MTD use LRU
ATD-LIN |ATD-LRU | Saturating Counter (SCTR)
HIT HIT Unchanged
MISS MISS Unchanged
HIT MISS += Cost of Miss in ATD-LRU
MISS HIT -= Cost of Miss in ATD-LIN

94

Extending TSEL to All Sets

Implementing TSEL on a per-set basis is expensive
Counter overhead can be reduced by using a global counter

ATD-LIN ATD-LRU
Set A Set A
Set B Set B
Set C xsm% Set C
SetD Set D
Set E Set E
Set F / \ Set F
Set G Set G
SetH Policy for All Set H

Sets In MTD

95

Dynamic Set Sampling

Not all sets are required to decide the best policy
Have the ATD entries only for few sets.

ATD-LIN ATD-LRU
Set A Set A
Set B Set B
Set C \SCTE‘/ Set C
Set D Set D
Set E Set E
Set F / Set F
Set G Set G
Set H Policy for All Set H

Sets In MTD

Sets that have ATD entries (B, E, G) are called leader sets

96

Dynamic Set Sampling

How many sets are required to choose best performing policy?

[Bounds using analytical model and simulation (in paper)
[DSS with 32 leader sets performs similar to having all sets

A Last-level cache typically contains 1000s of sets, thus ATD
entries are required for only 2%-3% of the sets

ATD overhead can further be reduced by using MTD to
always simulate one of the policies (say LIN)

97

Sampling Based Adaptive Replacement (SBAR)

MTD

Set A

Set B ATD-LRU

SetC | SCTR Set B

Set D Set E

Set E Set G

Set F

Set G

Set H Leader sets

Decide policy only for
follower sets Follower sets

The storage overhead of SBAR is less than 2KB
(0.2% of the baseline 1MB cache)

98

Results for SBAR

\
/

D

= | 1IN
== SEAR

1 B
.

U
-

Ul o s o w
~l | .I. .I.. 7_ 7.

(NYT) 2unaseq Jaao juatdsoadun HJT (25)

99

SBAR adaptation to phases

200
%’ 1.50 j /\ “
(v
caumavirs
Eloo o SBAR, ™ \eee

0.75 —»— [LRU

e~ LIN
0.50

| 1 1] 1 | 1 1 1] 1
0 25 50 75 100 125 150 175 200 225 250
Instructions (Million)

SBAR selects the best policy for each phase of ammp

100

Outline

L Introduction

O MLP-Aware Cache Replacement

= Model for Computing Cost
= Repeatability of Cost
= A Cost-Sensitive Replacement Policy

 Practical Hybrid Replacement
= Tournament Selection
= Dynamic Set Sampling
= Sampling Based Adaptive Replacement

d Summary

101

Summary

A MLP varies. Some misses are more costly than others
 MLP-aware cache replacement can reduce costly misses

d Proposed a runtime mechanism to compute MLP-Based
cost and the LIN policy for MLP-aware cache replacement

 SBAR allows dynamic selection between LIN and LRU with
low hardware overhead

d Dynamic set sampling used in SBAR also enables other
cache related optimizations

102

The Evicted-Address Filter

Vivek Seshadri, Onur Mutlu, Michael A. Kozuch, and Todd C. Mowry,
"The Evicted-Address Filter: A Unified Mechanism to Address Both
Cache Pollution and Thrashing"

Proceedings of the
21st ACM International Conference on Parallel Architectures and Compilation
Technigues (PACT), Minneapolis, MN, September 2012. Slides (pptx)

103

Executive Summary

Two problems degrade cache performance

— Pollution and thrashing

— Prior works don’t address both problems concurrently
Goal: A mechanism to address both problems

EAF-Cache

— Keep track of recently evicted block addresses in EAF
— Insert low reuse with low priority to mitigate pollution
— Clear EAF periodically to mitigate thrashing

— Low complexity implementation using Bloom filter

EAF-Cache outperforms five prior approaches that
address pollution or thrashing o

Cache Utilization is Important

I(_arge Iatency)/

Core Core
Last-Level

Cache

(‘r)rn

Core Core

N

Increasing contention

Effective cache utilization is important

105

Reuse Behavior of Cache Blocks

Different blocks have different reuse behavior

Access Sequence:
BECBEE ERMENERNE EEE

I High-reuse block I Low-reuse block

106

Cache Pollution

Problem: Low-reuse blocks evict high-reuse blocks

Cache

LRU Policy IIIIIIIE EEE

MRU

Prior work: Predict reuse behavior of missed blocks.
Insert low-reuse blocks at LRU position.

EEGEEECE
MRU LRU

107

Cache Thrashing

Problem: High-reuse blocks evict each other

Cache

wroy [DEGEEEEENEEE

Cache

Prior work: Insert at MRU position with a very low
probability (Bimodal insertion policy)

A fraction of
working set n
MRU LRU

stays in cache

108

Shortcomings of Prior Works

Prior works do not address both pollution and
thrashing concurrently

Prior Work on Cache Pollution

No control on the number of blocks inserted with high
priority into the cache

Prior Work on Cache Thrashing

No mechanism to distinguish high-reuse blocks
from low-reuse blocks

Our goal: Design a mechanism to address both
pollution and thrashing concurrently

D9

Outline

* Background and Motivation

e Evicted-Address Filter
— Reuse Prediction
— Thrash Resistance

* Final Design
* Advantages and Disadvantages

 Evaluation

 Conclusion

110

Reuse Prediction

High reuse
% Missed- bIockI <

Low reuse

Keep track of the reuse behavior of every cache
block in the system

Impractical
1. High storage overhead
2. Look-up latency

111

Prior Work on Reuse Prediction

Use program counter or memory region
information.

2. Learn group
behavior

PC1 PC2 PC1 PC2 PC 1 H
48 4 <2 -

1. Same group 4 same reuse behavior
2. No control over number of high-reuse blocks

1. Group Blocks 3. Predict reuse

112

Our Approach: Per-block Prediction

Use recency of eviction to predict reuse

\ . >Time
v \ Accessed soon
Time of eviction after eviction Accessed long time
T | after eviction
I
\ >Time

113

Evicted-Address Filter (EAF)

Evicted-block address EAF
\ (Addresses of recently evicted blocks)
Cache
MRU LRU
l< Y nEar? —° >l
High Reuse T Low Reuse

]
% Missed-block address

114

Naive Implementation: Full Address Tags

Recently
EAF evicted address

Need not be
100% accurate

1. Large storage overhead
2. Associative lookups — High energy

115

Low-Cost Implementation: Bloom Filter

EAF

Need not be
100% accurate

Implement EAF using a Bloom Filter
Low storage overhead + energy

N

116

Bloom Filter

Compact representatlon of a set
May remove

1. Bit vector % Fallﬁﬁl'?l%g'gﬁdresses
2. Set of hash fundtions l

H1 H2

nﬂnﬂnnnnénnnngnﬁ

H1 H2

Inserted Elements: @ @

117

EAF using a Bloom Filter
EAF ® Clear

when full
Insert Bloom Filter _

: motve X
FIFO4ddress
address hen Tl

Evicted-block

Test
Missed-block address

@R ve X
If pfesent

Bloom-filter EAF: 4x reduction in storage overhead,
1.47% compared to cache size g

Outline

* Background and Motivation

e Evicted-Address Filter
— Reuse Prediction
— Thrash Resistance

* Final Design
* Advantages and Disadvantages

 Evaluation

 Conclusion

119

Large Working Set: 2 Cases

@ Cache < Working set < Cache + EAF

__
OCODCEGE ECER

@ Cache + EAF < Working Set

B
BREEERDE RODCEGEE EEB |

Large Working Set: Case 1

Cache < Working set < Cache + EAF

Cache

clBlAlLIKD I H IIII!
sequence: BEREEGERNORNNEEEE

EAF Naive: % & % % X %X X X X X X X X X X X

121

Large Working Set: Case 1

Cache < Working set < Cache + EAF

Cache | I
EEEDBDOE EEEDEEEE- v cnow:

~____—Not presentin the EAF
sequence: BEEEEREENNGNRERE

EAF Naive: % X X X X X X X X X X X X X X X
EAF BF: XXXXXXXXX

Bloom-filter based EAF mitigates thrashing

122

Large Working Set: Case 2

Cache + EAF < Working Set

Cache | I
SOECERDE CANCEGEE EEE

Problem: All blocks are predicted to have low reuse

Allow a fraction of the working set to stay in the
cache

Use Bimodal Insertion Policy for low reuse

blocks. Insert few of them at the MRU position

Outline

* Background and Motivation

e Evicted-Address Filter
— Reuse Prediction
— Thrash Resistance

* Final Design

* Advantages and Disadvantages
* Evaluation

 Conclusion

124

EAF-Cache: Final Design

@ Cache eviction
Insert address into filter

Increment counter

Bloom Filter
Cache

Q Counter reaches max
Clear filter and counter

Q Cache miss
Test if address is present in filter

Yes, insert at MRU. No, insert with BIP

125

Outline

* Background and Motivation

e Evicted-Address Filter
— Reuse Prediction
— Thrash Resistance

* Final Design

* Advantages and Disadvantages

 Evaluation

 Conclusion

126

EAF: Advantages

Cache eviction
>

Bloom Filter
Cache

>
Cache miss

1. Simple to implement
2. Easy to design and verify

3. Works with other techniques (replacement policy)

127

EAF: Disadvantage

Cache

In PAF?

% besbadcassess

Problem: For an LRU-friendly application, EAF
incurs one additional miss for most blocks

Dueling-EAF: set dueling between EAF and LRU

128

Outline

* Background and Motivation

e Evicted-Address Filter
— Reuse Prediction
— Thrash Resistance

* Final Design

* Advantages and Disadvantages

 Evaluation

 Conclusion

129

Methodology

e Simulated System
— In-order cores, single issue, 4 GHz
— 32 KB L1 cache, 256 KB L2 cache (private)
— Shared L3 cache (1MB to 16 MB)
— Memory: 150 cycle row hit, 400 cycle row conflict

e Benchmarks
— SPEC 2000, SPEC 2006, TPC-C, 3 TPC-H, Apache

* Multi-programmed workloads
— Varying memory intensity and cache sensitivity

* Metrics
— 4 different metrics for performance and fairness
— Present weighted speedup

130

Comparison with Prior Works

Addressing Cache Pollution
Run-time Bypassing (RTB) —Johnson+ ISCA’97
- Memory region based reuse prediction

Single-usage Block Prediction (SU) — Piquet+ ACSAC'07
Signature-based Hit Prediction (SHIP) — Wu+ MICRO’11

- Program counter based reuse prediction

Miss Classification Table (MCT) — Collins+ MICRO’99
- One most recently evicted block

- No control on number of blocks inserted with high
priority = Thrashing

131

Comparison with Prior Works

Addressing Cache Thrashing

TA-DIP — Qureshi+ ISCA’07, Jaleel+ PACT’08
TA-DRRIP —Jaleel+ ISCA’10

- Use set dueling to determine thrashing applications

- No mechanism to filter low-reuse blocks = Pollution

132

Results — Summary

25%

)
)
X

15%

[EEY
o
N

5%

Performance Improvement over LRU

0%

B TA-DIP B TA-DRRIP B RTB B MCT
B SHIP O EAF B D-EAF
1-Core 2-Core 4-Core

133

4-Core: Performance

Weighted Speedup Improvement over

LRU

60%

50%

40%

30%

20%

10%

0%

-10%

—LRU
EAF
—SHIP

Workload Number (135 workloads)

134

Effect of Cache Size

25%

20%

15%

over LRU

10%

5%

Weighted Speedup Improvement

0%

B SHIP O EAF B D-EAF

2-Core

i

S8MB | 16MB

4-Core

135

Effect of EAF Size

30%

25%

N
o
X

(BN
95 o
X X

o
X

Weighted Speedup Improvement Over LRU

=#-1 Core 2 Core =/ Core

-

0

0.2 0.4 0.6 0.8 1 1.2 1.4

Addresses in EAF / # Blocks in Cache

1.6

136

Other Results in Paper

 EAF orthogonal to replacement policies
— LRU, RRIP —Jaleel+ ISCA’10

* Performance improvement of EAF increases with
increasing memory latency

* EAF performs well on four different metrics
— Performance and fairness

e Alternative EAF-based designs perform comparably

— Segmented EAF
— Decoupled-clear EAF

137

Conclusion

e Cache utilization is critical for system performance
— Pollution and thrashing degrade cache performance
— Prior works don’t address both problems concurrently

 EAF-Cache
— Keep track of recently evicted block addresses in EAF
— Insert low reuse with low priority to mitigate pollution
— Clear EAF periodically and use BIP to mitigate thrashing
— Low complexity implementation using Bloom filter

 EAF-Cache outperforms five prior approaches that address
pollution or thrashing

138

Base-Delta-Immediate
Cache Compression

Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Philip B. Gibbons, Michael
A. Kozuch, and Todd C. Mowry,
"Base-Delta-Immediate Compression: Practical Data Compression
for On-Chip Caches”

Proceedings of the
21st ACM International Conference on Parallel Architectures and Compilation
Technigues (PACT), Minneapolis, MN, September 2012. Slides (pptx)

139

Executive Summary
* Off-chip memory latency is high

— Large caches can help, but at significant cost

 Compressing data in cache enables larger cache at low
cost

* Problem: Decompression is on the execution critical path

* Goal: Design a new compression scheme that has
1. low decompression latency, 2. low cost, 3. high compression ratio

* Observation: Many cache lines have low dynamic range
data

* Key Idea: Encode cachelines as a base + multiple differences

e Solution: Base-Delta-Immediate compression with low
decompression latency and high compression ratio

— Outperforms three state-of-the-art compression mechanisms

140

Motivation for Cache Compression
Significant redundancy in data:

0x00000000 | 0x0000000B | 0x00000003 | 000000004 | ..

How can we exploit this redundancy?
— Cache compression helps

— Provides effect of a larger cache without
making it physically larger

141

Background on Cache Compression

W
Cache

Uncompressed Presston Compressed

* Key requirements:
— Fast (low decompression latency)
— Simple (avoid complex hardware changes)
— Effective (good compression ratio)

142

Shortcomings of Prior Work

Compression Decompression | Complexity | Compression
Mechanisms Latency Ratio

143

Shortcomings of Prior Work

Compression Decompression | Complexity | Compression
Mechanisms Latency Ratio

144

Shortcomings of Prior Work

Compression Decompression | Complexity | Compression
Mechanisms Latency Ratio

m——

145

Shortcomings of Prior Work

Compression Decompression | Complexity | Compression
Mechanisms Latency Ratio

x
x x v
x x /v v
v v v

146

Outline

* Key Idea & Our Mechanism
* Evaluation

 Conclusion

147

Key Data Patterns in Real Applications

Zero Values: initialization, sparse matrices, NULL pointers

0x00000000 | 0x00000000 | 0x00000000 | 000000000 | ...

Repeated Values: common initial values, adjacent pixels

0XO0000OFF | 0x000000FE | 0x000000FF | 0x000000FF | ..

Narrow Values: small values stored in a big data type

0x00000000 | 0x0000000B | 000000003 | 0x00000004 | ..

Other Patterns: pointers to the same memory region

0xC04039€0 | 0xC04039€8 | 0xC04039D0 | 0xC04039D8| ..

148

How Common Are These Patterns?

SPEC2006, databases, web workloads, 2MB L2 cache

“Other Patterns” include Narrow Values

= 100%
s W Zero
O 80%
© ¥ Repeated Values
g 60% — —
o Other Patterns
O 40%
Q
S 20% .
8 o)
0% ||_|-_|_.| |I_V_-||
Y N N X D N = ¥ X O “ Y4 4= J)]
CEET P35 Fcsegi8ed82seze ¥
< w2882 8E838 £ 33z O
> " E o= Loy ¥ < .cggq% <
= S SO
43% of the cache lines belong to key patterns 149

Key Data Patterns in Real Applications

Low Dynamic Range:

Differences between values are significantly
smaller than the values themselves

150

Key Idea: Base+Delta (B+A) Encoding

< 4 bytes J

32-byte Uncompressed Cache Line

12-byte

Compressed Cache Line

I\
VI

v' Fast Decompression: v’ Simple Hardware:

vector addition arithmetic and comparison

v’ Effective: good compression ratio
151

Can We Do Better?

* Uncompressible cache line (with a single base):

0x00000000 | 0x09A40178 | 000000008 | Ox09A4A838 | ..

* Key idea:
Use more bases, e.g., two instead of one
* Pro:
— More cache lines can be compressed
* Cons:

— Unclear how to find these bases efficiently
— Higher overhead (due to additional bases)

152

B+A with Multiple Arbitrary Bases

2.2

w1l m2 W3 ®m4 =8 10 16

N

=
00

Compression Ratio
= =
I o))

=
N

1 —

GeoMean

v’ 2 bases — the best option based on evaluations
53

How to Find Two Bases Efficiently?

1. First base - first element in the cache line

v’ Base+Delta part

2. Second base - implicit base of 0

v Immediate part

Advantages over 2 arbitrary bases:
— Better compression ratio
— Simpler compression logic

Base-Delta-Immediate (BAl) Compression
154

B+A (with two arbitrary bases) vs. BAI

M B+A (2 bases)

B BAI

~N
~

— -

opey uoissaidwo)

Ueo|A\ 09D

dldd4sweo
dwsnaz

ywqos3s
x9|dos
223

INQVsh1ded
9yody
Jejse
ywqgoue|ex
¢dizq
ayoede
ddisuwo

cYada
394¥79¢\Y
Jow
3uals
soewo.3
PESIISI|
wniuenbqi
LTYod)
exuiyds
Jawwy
JAMm

wq|

Average compression ratio is close, but BAl is simpler

155

BAlI Implementation

* Decompressor Design
— Low latency

* Compressor Design

— Low cost and complexity

 BAI Cache Organization

— Modest complexity

BAlI Decompressor Design

Compressed Cache Line

B lajafafa

By Bg| By| By
0 0 0 0 Vector addition
0 1 2 3

Uncompressed Cache Line

157

BAlI Compressor Design

32-byte Uncompressed Cache Line

8-byte B, || 8-byte B, || 8-byte B, || 4-byte B, || 4-byte B, || 2-byte B, Zero Rep.
1-byte A || 2-byte A || 4-byte A || 1-byte A || 2-byte A || 1-byte A U Values
CU CU CU CU CU CU CU

0/‘
(

\.

CFlag &

CCL CCL

CFlag &

CCL

Compression Flag "~
& Compressed 1

Cache

R

CFlag &

CFlag &
CCL

Compression Selection Logic (based on compr. size)

CFlag &
CCL

ine . .
.---Compressed Cache Line

CFlag &
CCL

CFlag &/ CFlag &

CCL

158

BAlI Compression Unit: 8-byte B, 1-byte A

32-byte Uncompressed Cache Line
< 8 bytes 5|

Within 1-byte Within 1-byte Within 1-byte Within 1-byte
range’? range’? range’? range’?

Yes No

159

BAI Cache Organlzatlon

Tag,

Way, Way, Way, Way,

BAIl: 4-way cache with 8-byte segmented data

8 bytes
Tag Storage:
Set,

Set

Set; Tag,

Way, Way, Way, Way,

| v Twice as gy tagip|2catiudtiptb eatjaicen2 baBroactte | 1

o | 311> GO 'NABC|ING

n

Qualitative Comparison with Prior Work

e Zero-based designs
— ZCA [Dusser+, ICS’09]: zero-content augmented cache
— ZVC [Islam+, PACT'09]: zero-value cancelling
— Limited applicability (only zero values)

* FVC [vang+ MicrO’00]: frequent value compression
— High decompression latency and complexity

* Pattern-based compression designs

— FPC [Alameldeen+, ISCA’04]: frequent pattern compression
e High decompression latency (5 cycles) and complexity

— C-pack [Chen+, T-VLSI Systems’10]: practical implementation of
FPC-like algorithm

* High decompression latency (8 cycles)

161

Outline

e Evaluation

 Conclusion

162

Methodology

 Simulator

— Xx86 event-driven simulator based on Simics [Magnusson
+, Computer’02]

e Workloads

— SPEC2006 benchmarks, TPC, Apache web server

— 1 -4 core simulations for 1 billion representative
Instructions

* System Parameters
— L1/L2/L3 cache latencies from CACTI [Thoziyoor+, ISCA’08]

— 4GHz, x86 in-order core, 512kB - 16MB L2, simple
memory model (300-cycle latency for row-misses)

BAIl vs. Prior Work

SPEC2006, databases, web workloads, 2MB L2

Compression Ratio

Uea|\ 035

1.53

dldd4swe95
dwsnaz

ywqo3
x9|dos
oJo:

INQVshioed
9yody
Jejse
ywgaue|ex
¢dizq
ayoede
ddiysuwo
cYady
32479¢\Y
Jow

3uals
soewo.J3
PESIISI|
wniuenbqi
LTYody
exulyds
Jawwy

Jm

wq|

[
N N O SN
N 1 = —

opey uoissaidwo)

BFVC EFPC BAI

WZCA

BAIl achieves the highest compression ratio

164

Single-Core: IPC and MPKI

M Baseline (no compr.)
B BAI

M Baseline (no compr.)

1.5

1.4

Normalized IPC

Normalized MPKI

L2 cache size L2 cache size

BAIl achieves the performance of a 2X-size cache

Performance improves due to the decrease in MPKI

165

Multi-Core Workloads

* Application classification based on

Compressibility: effective cache size increase
(Low Compr. (LC) < 1.40, High Compr. (HC) >= 1.40)

Sensitivity: performance gain with more cache
(Low Sens. (LS) < 1.10, High Sens. (HS) >=1.10; 512kB -> 2MB)

* Three classes of applications:
— LCLS, HCLS, HCHS, no LCHS applications

* For 2-core - random mixes of each possible class pairs
(20 each, 120 total workloads)

Multi-Core: Weighted Speedup

1.20

Normalized Weighted Speedup

L1ZCA OFVC BFPC

1.05 -

1.00 -

0.95

Low Sensitivity

I Ba) leasb @ngnep phigrBiainis seR sHivegblaen dhsvs)

performance improves 167

Other Results in Paper

IPC comparison against upper bounds
— BAIl almost achieves performance of the 2X-size cache

Sensitivity study of having more than 2X tags
— Up to 1.98 average compression ratio

Effect on bandwidth consumption
— 2.31X decrease on average

Detailed quantitative comparison with prior work

Cost analysis of the proposed changes
— 2.3% L2 cache area increase

Conclusion

A new Base-Delta-Immediate compression mechanism

Key insight: many cache lines can be efficiently
represented using base + delta encoding

Key properties:
— Low latency decompression

— Simple hardware implementation
— High compression ratio with high coverage

Improves cache hit ratio and performance of both single-
core and multi-core workloads

— Outperforms state-of-the-art cache compression techniques:
FVC and FPC

169

Linearly Compressed Pages

Gennady Pekhimenko, Vivek Seshadri, Yoongu Kim, Hongyi Xin, Onur Mutlu,
Michael A. Kozuch, Phillip B. Gibbons, and Todd C. Mowry,
"Linearly Compressed Pages: A Main Memory Compression
Framework with Low Complexity and Low Latency"”

SAFARI Technical Report, TR-SAFARI-2012-005, Carnegie Mellon University,
September 2012.

170

Executive Summary

" Main memory is a limited shared resource
= Observation: Significant data redundancy
" |dea: Compress data in main memory

" Problem: How to avoid latency increase?
= Solution: Linearly Compressed Pages (LCP):
fixed-size cache line granularity compression
1. Increases capacity (69% on average)
2. Decreases bandwidth consumption (46%)
3. Improves overall performance (9.5%)

171

Challenges in Main Memory Compression

1. Address Computation
2. Mapping and Fragmentation

3. Physically Tagged Caches

Address Computation

> Cache Line (64B)

ppeompressedl o | nj b | o |t

Page i
Address Offset 54 128 (N- i)*64

Compressed
P oy L],

Page | |

Address Offset O ? ? p

173

Mapping and Fragmentation

Virtual Page
(4kB) :
\ ‘ ‘ ‘ - Virtual
Address
Physical
' N Address

\ I

Physical Page ~-_ ‘.
(? kB) “Fragmentation

174

Physically Tagged Caches

Virtual
_—~ Address

Address Translation

Physical
_______ Address

L2 Cache
Lines

175

Shortcomings of Prior Work

Compression | Access | Decompression | Complexity | Compression
Mechanisms | Latency | Latency Ratio

IBM MXT
[IBM J.R.D. '01]

176

Shortcomings of Prior Work

Compression | Access | Decompression | Complexity | Compression
Mechanisms | Latency | Latency Ratio

IBM MXT
[IBM J.R.D. '01]

Robust Main
Memory

Compression X v X v
[ISCA’05]

177

Shortcomings of Prior Work

Compression | Access | Decompression | Complexity | Compression
Mechanisms | Latency | Latency Ratio

IBM MXT
[IBM J.R.D. '01]

Robust Main
Memory

Compression X v X v
[ISCA’05]

LCP:

Our Proposal v v v v

178

Linearly Compressed Pages (LCP): Key Idea

Uncompressed Page (4kB: 64*64B)

Compressed Data
(1kB)

Exception
Storage

Metadata
(64B):
? (compressible)

179

LCP Overview

 Page Table entry extension
— compression type and size
— extended physical base address

* Operating System management support
— 4 memory pools (512B, 1kB, 2kB, 4kB)

* Changes to cache tagging logic
— physical page base address + cache line index
(within a page)
 Handling page overflows
 Compression algorithms: BDI jpacT12], FPC [isca’04]

LCP Optimizations
 Metadata cache

— Avoids additional requests to metadata
* Memory bandwidth reduction:

— 1] Lrenster

e Zero pages and zero cache lines
— Handled separately in TLB (1-bit) and in metadata
(1-bit per cache line)
* Integration with cache compression
— BDIl and FPC

181

Methodology

e Simulator

— X86 event-driven simulators
e Simics-based [Magnusson+, computero2] for CPU

e Multi2Sim [ubal+, pAcT’12] fOor GPU

e Workloads

— SPEC2006 benchmarks, TPC, Apache web server,
GPGPU applications

* System Parameters
— L1/L2/L3 cache latencies from CACTI [Thoziyoor+, ISCA’08]
— 512kB - 16MB L2, simple memory model

Compression Ratio Comparison
SPEC2006, databases, web workloads, 2MB L2 cache

W Zero Page W FPC
83> ¥ LCP (BDI) ® LCP (BDI+FPC-fixed)
T B MXT w1z
c 2.60
25
)]
()]
Q 2
£
€15
)

=
|

GeoMean

LCP-based frameworks achieve competitive
average compression ratios with prior work o

Bandwidth Consumption Decrease
SPEC2006, databases, web workloads, 2MB L2 cache

M FPC-cache ™ BDI-cache
® FPC-memory ™ (None, LCP-BDI)
_ = (FPC, FPC) (BDI, LCP-BDI)
¥ (BDI, LCP-BDI+FPC-fixed)
a 1.2
(a8 1 0.92 0.89
o © 08 -
E .g 06 - 0.55 (s
© 0.4
v g 0.2
o 0
< GeoMean

LCP frameworks significantly reduce bandwidth (46%)

Performance Improvement

LCP-BDI | (BDI, LCP-BDI) | (BDI, LCP-BDI+FPC-fixed)

6.1% 9.5% 9.3%
2 13.9% 23.7% 23.6%
4 10.7% 22.6% 22.5%

LCP frameworks significantly improve performance

185

Conclusion

* A new main memory compression framework
called LCP (Linearly Compressed Pages)

— Key idea: fixed size for compressed cache lines within
a page and fixed compression algorithm per page

e LCP evaluation:
— Increases capacity (69% on average)
— Decreases bandwidth consumption (46%)
— Improves overall performance (9.5%)
— Decreases energy of the off-chip bus (37%)

Controlled Shared Caching

Controlled Cache Sharing

Utility based cache partitioning

o Qureshi and Patt, “Utility-Based Cache Partitioning: A Low-Overhead, High-
Performance, Runtime Mechanism to Partition Shared Caches,” MICRO

2006.

o Suh et al., “A New Memory Monitoring Scheme for Memory-Aware
Scheduling and Partitioning,” HPCA 2002.

Fair cache partitioning

o Kim et al., “Fair Cache Sharing and Partitioning in a Chip Multiprocessor
Architecture,” PACT 2004.

Shared/private mixed cache mechanisms

o Qureshi, “Adaptive Spill-Receive for Robust High-Performance Caching in
CMPs,” HPCA 2009.

o Hardavellas et al., “Reactive NUCA: Near-Optimal Block Placement and
Replication in Distributed Caches,” ISCA 2009.

188

Utility Based Shared Cache Partitioning

Goal: Maximize system throughput

Observation: Not all threads/applications benefit equally from
caching - simple LRU replacement not good for system
throughput

Idea: Allocate more cache space to applications that obtain the
most benefit from more space

The high-level idea can be applied to other shared resources as
well.

Qureshi and Patt, “Utility-Based Cache Partitioning: A Low-
Overhead, High-Performance, Runtime Mechanism to Partition
Shared Caches,” MICRO 2006.

Suh et al., “A New Memory Monitoring Scheme for Memory-
Aware Scheduling and Partitioning,” HPCA 2002.

189

Marginal Utility of a Cache Way

‘ Utility U_° = Misses with a ways - Misses with b ways

29

20 -
L8 -
L6 -
L4 -

12 4

Low Ulility
High Utility
Saturating Utility

Misses per 1000 instructions

0 2 4 6 8 10 12 14 16
Num ways from 16-way 1MB L2

190

Utility Based Shared Cache Partitioning Motivation

50
g as % —=—equake ||
a —e— vpr
= 40 1\ P
c 35 S
o | N TrEe

o 20

S

- L4+

o 1 il et

O LRU |-

2 10

7))

o 035

b

- 0'0 1 | | | | | L L L | 1 |
= 01 4 56 7 80 10111213141516

23
Num ways from 16-way 1MB L2

191

Utility Based Cache Partitioning (111

Three components:
O Utility Monitors (UMON) per core
4 Partitioning Algorithm (PA)

Main Memory

1 Replacement support to enforce partitions

192

Utlity Monitors
For each core, simulate LRU policy using ATD

Hit counters in ATD to count hits per recency position

LRU is a stack algorithm: hit counts =>» utility
E.g. hits(2 ways) = HO+H1

(MRU)HO H1 H2...H15(LRU)
MTD €
Set A Set A
Set B Set B
SetC ATD Set C
Set D Set D
Set E Set E
Set F Set F
Set G Set G
Set H Set H

193

Utlity Monitors

HIT COUNTER | Value
coumsns CTRPOS 0 30
CTR POS 1 20
A CTRPOS2 | 15
pirectory | MRU | | LRU | CTRPOS3 | 10
- MISSES =25

more recent

S : -
Z i1 2 3 4

Num. ways per set

(a)

(b)

Figure 4. (a) Hit counters for each recency position. (b) Example
of how utility information can be tracked with stack property.

194

Dynamic Set Sampling
o Extra tags incur hardware and power overhead
2 Dynamic Set Sampling reduces overhead [Qureshi, ISCA'06]

0 32 sets sufficient (analytical bounds)
o Storage < 2kB/UMON

(MRU)HO H1 H2...H15(LRU)

MTD

Set A

Set C

Set D Set D
_SetE | Set E

Set F t
~setc | UMGE PSS)

Set H Set H

195

Partitioning Algorithm

Evaluate all possible partitions and select the best

With a ways to corel and (16-a) ways to core2:

Hits,,e; = (Hy+ H, + ... + H_,) ---- from UMON1
Hits .o = (Hy + H; + ... + Hy¢..{) ---- from UMON2

Select a that maximizes (HitS_,.; + HitS er)

Partitioning done once every 5 million cycles

196

Way Partitioning

Way partitioning support: [Suh+ HPCA’ 02, lyer ICS’ 04]
1. Each line has core-id bits

2. On a miss, count ways_occupied in set by miss-causing app

Yes No

Victim is the LRU line Victim is the LRU line
from other app from miss-causing app

197

Performance Metrics
Three metrics for performance:

Weighted Speedup (default metric)

=> perf = IPC,/SingleIPC; + IPC,/SingleIPC,
=>» correlates with reduction in execution time

Throughput
=> perf = IPC, + IPC,
=» can be unfair to low-IPC application

Hmean-fairness
=> perf = hmean(IPC,/SingleIPC,, IPC,/SingleIPC,)
=» balances fairness and performance

198

(NN NN (NN SN SN SN SN S m.vh " \\W..\Nu

), A
_—— 7 7l
e —), /)

Zer @
KA

= Halt-and-Half

=UCP

=LRU

[[[N S Y [T [S i —

(s2302 om} 3m) dnpaadg pajy3ap \&uO

Weighted Speedup Results for UCP
I
I
I
&
‘Q_\\

199

IPC Results for UCP

3.00 53 354351
J.
2.75 = [PC-Benchmark1
v 250 - TP :
<y 7/ \ . IPC B¢|1¢I1111ark2
c:)‘ . / (a)I.RU (b) UCP
2, L.75 [
2 150
§ 1.25- D
= L1.00-
4
% 0.754
= 0.50-
0.25~
0.00- "
SN DD IAIND A INN S LAINAEAE I R0
R L N g S NN
N GO T S E RN F LR R
CRIH N TP THF VS RS YS

UCP improves average throughput by 17%

200

Any Problems with UCP So Far?

- Scalability
- Non-convex curves?

Time complexity of partitioning low for two cores
(number of possible partitions & number of ways)

Possible partitions increase exponentially with cores

For a 32-way cache, possible partitions:
o 4 cores > 6545
o 8 cores 2 15.4 million

Problem NP hard - need scalable partitioning algorithm
201

Greedy Algorithm [Stone+ ToC ~ 92]

= GA allocates 1 block to the app that has the max utility for
one block. Repeat till all blocks allocated

= Optimal partitioning when utility curves are convex

= Pathological behavior
for non-convex curves

(g9

Misses Per 1000 Instructions

0

I | ' 1 | ' 1 I
02 4 6 8101214161820222426283032
Num. ways allocated from a 32-way 2MB cache
(Remaining ways arce turned off)

202

Problem with Greedy Algorithm

In each iteration, the
utility for 1 block:

U(A) = 10 misses
U(B) = 0 misses

Misses

All blocks assigned to
A, even if B has same
miss reduction with
Blocks assigned fewer blocks

Problem: GA considers benefit only from the immediate
block. Hence, it fails to exploit large gains from looking ahead

203

Lookahead Algorithm

Marginal Utility (MU) = Utility per cache resource
o MU = Up/(b-a)

GA considers MU for 1 block. LA considers MU for all
possible allocations

Select the app that has the max value for MU.
Allocate it as many blocks required to get max MU

Repeat till all blocks assigned

204

Lookahead Algorithm Example

Misses

lteration 1:

MU(A) = 10/1 block
MU(B) = 80/3 blocks

B gets 3 blocks

Next five iterations:
MU(A) = 10/1 block
o 1 2 3 4 5 6 7 8 MU(B)=O
Blocks assigned Agets 1 block

Result: A gets 5 blocks and B gets 3 blocks (Optimal)

Time complexity ® ways?/2 (512 ops for 32-ways)

205

UCP Results

Four cores sharing a 2MB 32-way L2

4.0
i mm| RU

38 === JCP(Greedy)
3.6+ = | JCP(Lookahead
3.4 == JCP(EvalAll)

Weighted Speedup (with four cores)

Mix1 Mix2 Mix3 Mix4

(gap-applu-apsi-gzp) (swm-glg-mesa-prl) (mcf-applu-art-vrtx) (mcf-art-egk-wupw)

LA performs similar to EvalAll, with low time-complexity

206

Utlity Based Cache Partitioning

Advantages over LRU
+ Improves system throughput
+ Better utilizes the shared cache

Disadvantages
- Fairness, QoS?

Limitations

- Scalability: Partitioning limited to ways. What if you have
numWays < numApps?

- Scalability: How is utility computed in a distributed cache?
- What if past behavior is not a good predictor of utility?

207

Fair Shared Cache Partitioning

Goal: Equalize the slowdowns of multiple threads sharing
the cache

Idea: Dynamically estimate slowdowns due to sharing and
assign cache blocks to balance slowdowns

Approximate slowdown with change in miss rate
+ Simple

- Not accurate. Why?

Kim et al., “Fair Cache Sharing and Partitioning in a Chip
Multiprocessor Architecture,” PACT 2004.

208

Problem with Shared Caches

7

 } L §

209

Problem with Shared Caches

Processor Core 1 t2— [Processor Core 2 J
| |

L1$
i |

L2 $

210

Problem with Shared Caches

 }

[t2’s throughput is significantly reduced due to unfair cache sharing.

211

Problem with Shared Caches

10

8

gap's
Normalized

Cache Misses *

gzip(alone) gziptapplu gziptapsi gziptart gziptswim

1.2
1

gzip's 0.8

Normalized 0.6
IPC 04

0.2

0

R |

gzip(alone) gziptapplu gzip+apsi gziptart gzip+swim

212

Fairness Metrics

e Uniform slowdown
T _shared, T _shared,

T _alone, B T _alone,
e Minimize:
— Ideally: MY =‘Xi - X |, where X, = _shared,
T _alone,
j Mi hared,
M =‘Xi _Xj where X, = lbjS_S ared,
Miss _alone,
j MissRate shared,
M;J =‘Xl-—Xj,WhereXl. _ ISsRate snared,

MissRate _alone,

213

Block-Granularity Partitioning

e Modified LRU cache replacement policy
— G. Suh, et. al., HPCA 2002

P2 Miss q

Current Partition

P1:448B
P2: 576B

Target Partition

P1:384B

P2: 640B

LRU

214

Block-Granularity Partitioning

e Modified LRU cache replacement policy
— G. Suh, et. al., HPCA 2002

Current Partition Target Partition
P1: 448B P1: 384B
P2: 576B P2: 640B

LRU

P2 Miss mmm) ”

Current Partition : Target Partition
P1: 384B P1: 384B
P2: 640B P2: 640B

LRU

215

Dynamic Fair Caching Algorithm

MissRate alone
Ex) Optimizing P1:
M3 metric
P2:
MissRate shared
P1:
P2:
| |
A ‘ Repartitioning '

Target Partition interval

P1:

P2:

216

Dynamic Fair Caching Algorithm

MissRate alone

. (0]
1st Interval P20
P2: 5%
MissRate shared
P1:20%
P2:15%
| |
A ‘ Repartitioning

Target Partition interval

P1:256KB

P2:256KB

217

Dynamic Fair Caching Algorithm

MissRate alone
P1:20%

Repartition!

P2: 5%
4)

MissRate sharefl Evaluate M3
P1:20% / 20%

P1:20% P2: 15% / 5%

P2:15% J
|
A 1 Repartitioning
Target Partition interval

\
P1:298KB ” Partition
granularity:
P2:230KB 64KB

218

Dynamic Fair Caching Algorithm

MissRate alone
P1:20%

2nd |nterval

P2: 5%

MissRate shared MissRate shared
P1:20% P1:20%

P2:15% P2:16%
| |

A ‘ Repartitioning

Target Partition interval

P1:192KB

P2:320KB

219

Dynamic Fair Caching Algorithm

MissRate alone

Repartition!

MissRate shared

P1:20%

P2:15%

P1:20%

P2: 5%

MissRate shared

[
Evaluate M3

P1:20%

P2:10%

P1:20% /20%
P2: 10% / 5%

J

Z—

4\

Target Partition

P1:198KB

P2:3230KB

220

interval

Repartitioning

Dynamic Fair Caching Algorithm

MissRate alone
P1:20%

31 |nterval

P2: 5%

MissRate shared MissRate shared
P1:20% P1:26%

P2:10% P2: 8%

A Repartitioning

Target Partition interval

P1:128KB

P2:384KB

221

Dynamic Fair Caching Algorithm

MissRate alone 4
Repartition! P1:20% Do Rollback if:
. P2: A<T qipack
P2: 5% A=IVIRoId'I\/”:znew
_
MissRate shared MissRate shared
P1:20% P1:25%
P2:10% P2: 9%
| |
| |

Repartitioning :
interval A

Target Partition
P1:198KB /

P2:330KB

222

Dynamic Fair Caching Results

2

Normalized 1.5 *‘

Combined 1
0 1 1 1 1

apsi+art gziptart swimtgzip treet+mcf AVGIS8
B PLRU O FairM1Dyn O FairM3Dyn B FairM4Dyn

1.5

Normalized 1
Fairness
M1 0.5
0 1 1

apsit+art gziptart swimtgzip treetmcf AVG18

= Improves both fairness and throughput

223

Ettect of Partitioning Interval

B 10K O20K EH40K B 80K B 10K 020K E40K H 80K
1.16 0.8
1.15
0.6
Normalized 1-14 Normalized
Combined Fairness ().4
IPC 113 Ml
1.12 0.2
1.11 0
AVGIS AVGI8

= Fine-grained partitioning is important for both fairness and
throughput

224

Benetits of Fair Caching

Problems of unfair cache sharing

o Sub-optimal throughput

o Thread starvation

o Priority inversion

o Thread-mix dependent performance

Benefits of fair caching

o Better fairness

o Better throughput

o Fair caching likely simplifies OS scheduler design

225

Advantages/Disadvantages of the Approach

Advantages
+ No (reduced) starvation
+ Better average throughput

Disadvantages

- Scalable to many cores?

- Is this the best (or a good) fairness metric?

- Does this provide performance isolation in cache?

- Alone miss rate estimation can be incorrect (estimation interval
different from enforcement interval)

226

Software-Based Shared Cache Management

Assume no hardware support (demand based cache sharing, i.e.
LRU replacement)

How can the OS best utilize the cache?

Cache sharing aware thread scheduling

o Schedule workloads that “play nicely” together in the cache
E.g., working sets together fit in the cache

Requires static/dynamic profiling of application behavior

Fedorova et al., “Improving Performance Isolation on Chip
Multiprocessors via an Operating System Scheduler,” PACT 2007.

Cache sharing aware page coloring
o Dynamically monitor miss rate over an interval and change
virtual to physical mapping to minimize miss rate

Try out different partitions
227

OS Based Cache Partitioning

Lin et al., “Gaining Insights into Multi-Core Cache Partitioning: Bridging
the Gap between Simulation and Real Systems,” HPCA 2008.

Cho and Jin, “Managing Distributed, Shared L2 Caches through OS-
Level Page Allocation,” MICRO 2006.

Static cache partitioning

o Predetermines the amount of cache blocks allocated to each
program at the beginning of its execution

o Divides shared cache to multiple regions and partitions cache
regions through OS page address mapping

Dynamic cache partitioning
o Adjusts cache quota among processes dynamically
o Page re-coloring

o Dynamically changes processes’ cache usage through OS page

address re-mapping
228

Page Coloring

= Physical memory divided into colors
= Colors map to different cache sets

o Ensure two threads are allocated
pages of different colors

Thread A <

Thread B <

229

Page Coloring

Virtual address

OS control

Physical address #physical page numt

page offset

virtual page number

Address translation

A 4

A 4

Page offset

Cache address

Cache tag

Block offse

page color bits

Static Cache Partitioning using Page Coloring

Physical pages are grouped to page bins
...................... according to their page color Physically indexed cache

Dynamic Cache Partitioning via Page Re-Coloring

gCs

by their colors.

_

alL

ked lists

JCS arc

evenly distributed into all the lists (colors) to

aVv

id

hot

<

pO

nts

»

L

»

Ll

»
>

—

page color table

= Page re-coloring:

o Allocate page in new color
o Copy memory contents

o Free old page

Dynamic Partitioning in Dual Core

Yes

Experimental Environment

Dell PowerEdge1950

o Two-way SMP, Intel dual-core Xeon 5160
o Shared 4MB L2 cache, 16-way

o 8GB Fully Buffered DIMM

Red Hat Enterprise Linux 4.0

o 2.6.20.3 kernel

o Performance counter tools from HP (Pfmon)
o Divide L2 cache into 16 colors

Performance — Static & Dynamic

O Static

B Dynamic

® Aim to minimize combined miss rate

* For RG-type, and some RY-type:

® Static partitioning outperforms dynamic partitioning

* For RR- and RY-type, and some RY-type

° Dynamic partitioning outperforms static partitioning

OO
& o~ [~

Average

Software vs. Hardware Cache Management

Software advantages
+ No need to change hardware
+ Easier to upgrade/change algorithm (not burned into hardware)

Disadvantages
- Less flexible: large granularity (page-based instead of way/block)

- Limited page colors - reduced performance per application
(limited physical memory space!), reduced flexibility

- Changing partition size has high overhead - page mapping
changes

- Adaptivity is slow: hardware can adapt every cycle (possibly)

- Not enough information exposed to software (e.g., number of
misses due to inter-thread conflict)

236

Private/Shared Caching

Example: Adaptive spill/receive caching

Goal: Achieve the benefits of private caches (low latency,
performance isolation) while sharing cache capacity across
cores

Idea: Start with a private cache design (for performance
isolation), but dynamically steal space from other cores that
do not need all their private caches

a Some caches can spill their data to other cores’ caches
dynamically

Qureshi, “Adaptive Spill-Receive for Robust High-
Performance Caching in CMPs,” HPCA 20009.

237

Revisiting Private Caches on CMP

Private caches avoid the need for shared interconnect
++ fast latency, tiled design, performance isolation

S E—

F

1$ | ID$
Core A

—

S E—

F

1$ | ID$
Core B

—

T

*

1$

D9

Core C

g —

*

1$ | ID$
Core D

—

Memory

Problem: When one core needs more cache and other core
has spare cache, private-cache CMPs cannot share capacity

238

Cache Line Spilling

Spill evicted line from one cache to neighbor cache
- Co-operative caching (CC) [chang+ ISCA’ 06]

Spill

NNV RN

Cache A Cache B Cache C Cache D

‘\—/

Problem with CC:
1. Performance depends on the parameter (spill probability)
2. All caches spill as well as receive =» Limited improvement

Goal: Robust High-Performance Capacity Sharing with Negligible Overhead

239

Spill-Recetve Architecture

Each Cache is either a Spiller or Receiver but not both

- Lines from spiller cache are spilled to one of the receivers
- Evicted lines from receiver cache are discarded

Cache A Cache B Cache C Cache D

S/R =1 S/R =0 S/R =1 S/R =0
(Spiller cache) (Receiver cache) (Spiller cache) (Receiver cache)

What is the best N-bit binary string that maximizes the performance of Spill
Receive Architecture =» Dynamic Spill Receive (DSR)

240

Dynamic Spill-Receive via * Set Dueling

Divide the cache in three:
— Spiller sets
— Receiver sets

— Follower sets (winner of spiller, Spiller-sets
receiver)

Receiver-sets

n-bit PSEL counter
misses to spiller-sets: PSEL--
misses to receiver-set: PSEL++

MSB of PSEL decides policy for Follower Sets
Follower sets:
— MSB = 0, Use spill
— MSB =1, Use receive

monitor =» choose = apply
(using a single counter)

241

Dynamic Spill-Recetve Architecture

Each cache learns whether it should act as a spiller or receiver

Cache A Cache B Cache C Cache D
Set X -

[]
AlwaysSpill

[]
AlwaysRecv

SetY -

Miss in Set X

in any cache PSEL A PSEL B PSEL C PSEL D
Miss in Set

in any cache ‘

Decides policy for all sets of Cache A (except X and Y)

242

Experimental Setup

o Baseline Study:
4-core CMP with in-order cores
Private Cache Hierarchy: 16KB L1, 1MB L2
10 cycle latency for local hits, 40 cycles for remote hits

o Benchmarks:
6 benchmarks that have extra cache: “Givers” (G)
6 benchmarks that benefit from more cache: “Takers” (T)
All 4-thread combinations of 12 benchmarks: 495 total

Five types of workloads: G3T1 G1T3

GO0T4

243

Results for Throughput

1.25
B Shared (LRU)

12 1 W CC (Best)
1154 EDSR
B StaticBest

0.9

0.85 -

Normalized Throughput over NoSpill

o
el
Ji

Gmean-64TO0 Gmean-63T1 Gmean-62T2 Gmean-61T3 6Gmean-60T4 Avg (All 495)

On average, DSR improves throughput by 18%, co-operative caching by 7%
DSR provides 90% of the benefit of knowing the best decisions a priori

* DSR implemented with 32 dedicated sets and 10 bit PSEL counters

244

Results for Weighted Speedup

w
o~
1

w
n
|

n
oo
1

B Shared (LRU)

M Baseline(NoSpill)
O DSR

B CC(Best)

n
o~
|

Weighted Speedup

n
S
|

n
n
1

n
L

Gmean-6G4TO Gmean-G3T1 Gmean-62T2 Gmean-G1T3 Gmean-G0T4 Avg (All 495)

On average, DSR improves weighted speedup by 13%

245

Results for Hmean Speedup

0.9 H

M Baseline NoSpill
M DSR /-\

B CC(Best)

0.8 1

0.7 A

0.6 -

0.5 1

0.4 1

0.3 -

Gmean-G4TO Gmean-G3T1 Gmean-62T2 Gmean-G1T3 Gmean-6G0T4 Avg All(495)

On average, DSR improves Hmean Fairness from 0.58 to 0.78

246

DSR vs. Faster Shared Cache

1.30
128
126
1.24
122
1.20
118
116
114

Throughput Normalized to NoSpill

112 B Shared (Same latency as private)
110 B DSR (O cycle remote hit)

1:82 B DSR (10 cycle remote hit)

104 B DSR (40 cycle remote hit)

1.02]]

1.00
Gmean-G4T0 Gmean-G3T1 Gmean-6G2T2 Gmean-G1T3 Gmean-60T4 Avg All(495)

DSR (with 40 cycle extra for remote hits) performs similar to
shared cache with zero latency overhead and crossbar interconnect

247

Scalability of DSR

100 workloads (8/16 SPEC benchmarks chosen randomly)

DSR improves average throughput by 19% for both systems
(No performance degradation for any of the workloads)

248

Quality of Service with DSR

For 1 % of the 495x4 =1980 apps, DSR causes IPC loss of > 5%

In some cases, important to ensure that performance does not
degrade compared to dedicated private cache = QoS

DSR can ensure QoS: change PSEL counters by weight of miss:

AMiss = MissesWithDSR — MissesWithNoSpill

Estimated by Spiller Sets

Weight of Miss = 1 + Max(0, f(AMiss))

Calculate weight every 4M cycles. Needs 3 counters per core

Over time, AMiss —0, if DSR is causing more misses.

249

IPC of QoS-Aware DSR

For Category: G0T4 r*‘*’f"
- DSR

% QoS Aware DSR

N
N
N ()]
\

1.75

—_
(93]

1.25

IPC Normalized To NoSpill

-

0.75 h 1

1 6 11 16 2 26 31 36 41 46 51 56
15 worLIoads x 4 apps each = 60 apps

IPC curves for other categories almost overlap for the two schemes.
Avg. throughput improvement across all 495 workloads similar (17.5% vs. 18%)

250

Distributed Caches

P6 Tile

D$

P0 2\P1 2|P2 @|P3 &
-
P4 dP|P5 dpfP6 dplP7 A
P8 db|[P9 dD|[P1 1D
P123D PlseE P14%D Plsé'iz

FIGURE 1.

Typical tiled architecture. Tiles are interconnected
into a 2-D folded torus. Each tile contains a core, L1 instruction
and data caches, a shared-L2 cache slice, and a router/switch.

251

Caching for Parallel Applications

core core core core core care core ICO re
2 L2 L2 L2 L2 L4 L2
,d
V4
¥ 4
,’ core core COre€ core core core core core
¥V 4
cache L2 L2 L2 L2 L2 L2 L2 L2
slice
core core COre€ core core core core core
L2 L2 L2 L2 L2 L2 L2 L2
core core core core core core core core
L2 L2 L2 L2 L2 L2 L2 L2

» Data placement determines performance
» Goal: place data on chip close to where they are used

252

Shared Cache Management: Research Topics

Scalable partitioning algorithms
o Distributed caches have different tradeoffs
Configurable partitioning algorithms

o Many metrics may need to be optimized at different times or
at the same time

o It is not only about overall performance

Ability to have high capacity AND high locality (fast access)
Within vs. across-application prioritization

Holistic design

o How to manage caches, NoC, and memory controllers
together?

Cache coherence in shared/private distributed caches

253

