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Problem

Computing
IS Bottlenecked by Data

SAFARI



Data 1s Key for Al, ML, Genomics, ...

Important workloads are all data intensive

They require rapid and efficient processing of large amounts
of data

Data is increasing
o We can generate more than we can process
o We need to perform more sophisticated analyses on more data

SAFARI 3



Huge Demand for Performance & Efficiency

Exponential Growth of Neural Networks aa

Memory and compute requirements 1800x more compute
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Huge Demand for Performance & Efficiency

development of new
sequencing technologies

Oxford Nanopore MinION
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Challenge and Opportunity for Future

High Performance,
Energy Efficient,
Sustainable
(All at the Same Tlme)

SAFARI



The Problem

Data access is the major performance and energy bottleneck

Our current
design principles
cause great energy waste

(and great performance loss)
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Today’s Computing Systems

= Processor centric

= All data processed in the processor = at great system cost
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Perils of Processor-Centric Design
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Most of the system is dedicated to storing and moving data

Yet, system is still bottlenecked by memory & storage



Processor-Centric System Performance

= All of Google’s Data Center Workloads (2015):
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Data Movement vs. Computation Energy

mEnergy (pJ) =e=ADD (int) Relative Cost
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Data Movement vs. Computation Energy
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Energy Waste in Mobile Devices

Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul
Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

62.7% of the total system energy
Is spent on data movement

Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand* Saugata Ghose’ Youngsok Kim?
Rachata Ausavarungnirun!  Eric Shiv>  Rahul Thakur’>  Daehyun Kim*?
Aki Kuusela®>  Allan Knies®  Parthasarathy Ranganathan®  Onur Mutlu”!
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Energy Waste in Accelerators

Amirali Boroumand, Saugata Ghose, Berkin Akin, Ravi Narayanaswami, Geraldo F. Oliveira,
Xiaoyu Ma, Eric Shiu, and Onur Mutlu,

"Google Neural Network Models for Edge Devices: Analyzing and Mitigating Machine
Learning Inference Bottlenecks"

Proceedings of the 30th International Conference on Parallel Architectures and Compilation
Technigues (PACT), Virtual, September 2021.

[Slides (pptx) (pdf)]

[Talk Video (14 minutes)]

> 90% of the total system energy
Is spent on memory in large ML models

Google Neural Network Models for Edge Devices:
Analyzing and Mitigating Machine Learning Inference Bottlenecks

Amirali Boroumand '™ Saugata Ghose* Berkin Akin® Ravi Narayanaswami®
Geraldo E Oliveira® Xiaoyu Ma?® Eric Shiu® Onur Mutlu*7

T Carnegie Mellon Univ. ®Stanford Univ. *Univ. of Illinois Urbana-Champaign YGoogle *ETH Ziirich
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Example Energy Breakdowns
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>90% energy spent on off-chip interconnect and DRAM
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Fundamental Problem

Processing of data
IS performed
far away from the data

SAFARI
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We Need A Paradigm Shift To ...

Enable computation with minimal data movement

Compute where it makes sense (where data resides)

Make computing architectures more data-centric

17



Process Data Where It Makes Sense

Sensors

Apple M1 Ultra System (2022)

https://www.gsmarena.com/apple_announces_m1_ultra_with_20core_cpu_and_64core_gpu-news-53481.php



Goal: Processing Inside Memory/Storage

Many questions ... How do we design the:

O
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Memory/Storage

Processor

Interconnect

Database

Graphs

ML model

Media

Results

Problem

Program/Language

compute-capable memory & controllers?

System Software

processors & communication units?

SW/HW Interface

software & hardware interfaces?

Micro-architecture

system software, compilers, languages?

algorithms & theoretical foundations?

Logic

Electrons




An Overview Paper

A Modern Primer on Processing in Memory

Onur Mutlu®®, Saugata Ghose®™°, Juan Gémez-Luna?, Rachata Ausavarungnirun®

SAFARI Research Group

ETH Ziirich
bCarnegie Mellon University
¢University of Illinois at Urbana-Champaign
4King Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,

"A Modern Primer on Processing in Memory"

Invited Book Chapter in Emerqging Computing: From Devices to Systems -
Looking Beyond Moore and Von Neumann, Springer, to be published in 2021.

SAFARI https:/ /arxiv.org/pdf/2012.03112.pdf 20
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Processing 1n Storage:

Two Types

1. Processing near Storage Devices
2. Processing using Storage Devices




Processing-in-Memory: Two Types

Two main approaches for Processing-in-Memory:

1 Processing-Near-Memory: Computation logic is added to the
same die as memory or to the logic layer of 3D-stacked memory

2 Processing-Using-Memory: uses the operational principles of
memory cells & circuitry to perform computation
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Processing-in-Memory Landscape Today
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SAFARI And, many other experimental chips and startups 23



Processing-in-Memory Landscape Today

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 22, NO. 1, JANUARY-JUNE

Computational CXL-Memory Solution for
Accelerating Memory-Intensive Applications

Joonseop Sim ', Soohong Ahn*, Taeyoung Ahn ",
Seungyong Lee ', Myunghyun Rhee, Jooyoung Kim *“,
Kwangsik Shin, Donguk Moon ",

Euiseok Kim, and Kyoung Park

Abstract—CXL interface is the up-to-date technology that enables effective
memory expansion by providing a memory-sharing protocol in configuring
heterogeneous devices. However, its limited physical bandwidth can be a
significant bottleneck for emerging data-intensive applications. In this work, we
propose a novel CXL-based memory disaggregation architecture with a real-world
prototype demonstration, which overcomes the bandwidth limitation of the CXL
interface using near-data processing. The experimental results demonstrate that
our design achieves up to 1.9x better performance/power efficiency than the '
existing CPU system. k

Index Terms—Compute express link (CXL), near-data-processing (NDP)

Host CPG o5

\
€

DMRAM » l\

SA F A Rl Fig. 6. FPGA prototype of proposed CMS card.



Processing-in-Memory Landscape Today

Samsung Processing in Memory
Technology at Hot Chips 2023

By Patrick Kennedy - August 28, 2023 L]

il nfofa]o

SAMSUNG

CXL-PNM

. Industry’s 1st CXL-PNM (Processi

Samsung PIM PNM For Transformer Based AI HC35_Page_24

S A FA RI https://www.servethehome.com/samsung-processing-in-memory-technology-at-hot-chips-2023/ 25
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Opportunity: 3D-Stacked Logic+Memory

Hybrid Memory Cube

Logic

Other “True 3D" technologies
under development

SAFARI 26



Tesseract System for Graph Processing

Interconnected set of 3D-stacked memory+logic chips with simple cores
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SAFAR/ Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Evaluated Systems

DDR3-000 = HMC-000  HMC-MC | Tesseract
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Tesseract Graph Processing Performance

. >13X Performance Improvement

" On five graph processing algorithms 13.8x

11.6x

12
10 9.0x

Speedup
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+56%  125%

, == [l e
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LP LP-MTP

N

SAFAR/ Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Tesseract Graph Processing System Energy

B Memory Layers M Logic Layers [ Cores
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0.2 > 8X Energy Reduction

HMC-000 Tesseract with Prefetching

SAFARI| Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



More on Tesseract

= Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and
Kiyoung Choi,
"A Scalable Processing-in-Memory Accelerator for Parallel
Graph Processing”
Proceedings of the 42nd International Symposium on Computer
Architecture (ISCA), Portland, OR, June 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]
Top Picks Honorable Mention by ITEEE Micro.
Selected to the ISCA-50 25-Year Retrospective Issue
covering 1996-2020 in 2023 (Retrospective (pdf) Full

Issue).

A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing

Junwhan Ahn  Sungpack Hong® Sungjoo Yoo Onur Mutlu' Kiyoung Choi

junwhan@snu.ac.kr, sungpack.hong @oracle.com, sungjoo.yoo @ gmail.com, onur@cmu.edu, kchoi@snu.ac.kr

Seoul National University YOracle Labs fCarnegie Mellon University
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A Short Retrospective @ 50 Years of ISCA

Retrospective: A Scalable Processing-in-Memory Accelerator
for Parallel Graph Processing

Junwhan Ahn'

Sungpack Hong!
YGoogle DeepMind

*Oracle Labs

Abstract—Our ISCA 2015 paper&l] provides a new pro-
ﬁrammable and system
esign that can accelerate key &ta—intensnve applications, with
a focus on gra);h processing workloads. Our major idea was to
completely rethink the system, including the programming model,
data_parfitioning mechanisms, system support, instruction set
architecture, along with near-memory execution units and their
oommunlcution architecture, such that an important workload
can be accelerated at a maximum level using a distributed
system of well-connected near-memory accelerators. We built
our accelerator system, Tessemcti using 3D-stacked memories
with logic layers, where each logic layer conlams general-purpose
processing cores and cores communicate with each other using a
message-passing programming model. Cores could be specialized
for graph processing (or any other application to be accelerated)
To our knowledge, our paper was the first to completely design

a near-memory accelerator system from scratch such that it is
both generally programmable and specifically customizable to
accelerate important applications, with a case study on majo;

Sung]oo YooV

Kiyoung ChoiV

Onur Mutlu®
VSeoul National University

SETH Ziirich

analytics/processing, a key workload at the time and today.
However, our design principles are not limited to graph
processing and the system we built is customizable to other
workloads as well, e.g., machine learning, genome analysis.

5. Memory-capacity-proportional performance, i.e., pro-
cessing capability should proportionally grow (i.e., scale)
as memory capacity increases and vice versa. This enables
scaling of data-intensive workloads that need both memory
and compute.

6. Exploit new technology (3D stacking) that enables tight
integration of memory and logic and helps multiple above prin-
ciples (e.g., enables customizable near-memory acceleration
capability in the logic layer of a 3D-stacked memory chip).

7. Good communication and scaling capability to support
scalability to large dataset sizes and to enable memory-
capacny proporuonal performnnce To this end, we provided
between n cores

ation mex

graph processing workloads. Ensuing work in
industry showed that similar approaches to s dslem design can
greatly benefit both graph processing workloads and other
Tppl.lcauons, such as machine learning, for which ideas from
sseract seem to have been influential.

This short retrospective provides a brief analysis of our ISCA
2015 paper and its impact. We briefly describe the major ideas
and contributions of the work, discuss later works that built on
it or were influenced by it, and make some educated guesses on
what the future may bring on PIM and accelerator systems.

I. BACKGROUND, APPROACH & MINDSET

We started our research when 3D-stacked memories
(e.g., [2-4]) were viable and seemed to have promise for build-
ing effective and practical processing-near-memory systems.
Such near-memory systems could lead to improvements, but
there was little to no research that examined how an accelerator
could be completely (re-)designed using such near-memory
technology, from its hardware architecture to its programming
model and software system, and what the performance and
energy benefits could be of such a re-design. We set out to
answer these questions in our ISCA 2015 paper [1].

‘We followed several major principles to design our acceler-
ator from the ground up. We believe these principles are still
important: a major contribution and influence of our work was
in putting all of these together in a cohesive full-system design
and demonstrating the large performance and energy benefits
that can be obtained from such a design. We see a similar
approach in many modern large-scale accelerator systems in
machine leamning today (e.g., [5-9]). Our principles are:

1. Near-memory execution to enable/exploit the high data
access bandwidth modern workloads (e.g., graph processing)
need and to reduce data movement and access latency.

2. General programmability so that the system can be easily
adopted, extended, and customized for many workloads.

3. Maximal acceleration capability to maximize the per-
formance and energy benefits. We set ourselves free from
backward compatibility and cost constraints. We aimed to
completely re-design the system stack. Our goal was to explore
the maximal performance and energy efficiency benefits we
can gain from a near-memory accelerator if we had complete
freedom to change things as much as we needed. We contrast
this approach to the minimal intrusion approach we also
explored in a separate ISCA 2015 paper [10].

4. Customizable to specific workloads, such that we can
maximize acceleration benefits. Our focus workload was graph

and careful]y interconnected small accelerator chips to form a
large distributed system of accelerator chips.

8. Maximal and efficient use of memory bandwidth to supply
the high-bandwidth data access that modern workloads need.
To t}us end, we introduced new, specialized mechanisms for

and a progr model that helps leverage
app]lcauon semantics for hardware optimization.

II. CONTRIBUTIONS AND INFLUENCE

We believe the major contributions of our work were 1)
complete rethinking of how an accelerator system should be
designed to enable maximal acceleration capability, and 2) the
design and analysis of such an accelerator with this mindset
and using the aforementioned principles to demonstrate its
effectiveness in an important class of workloads.

One can find examples of our approach in modern large-
scale machine learning (ML) accelerators, which are perhaps
the most successful incarnation of scalable near-memory ex-
ecution architectures. ML infrastructure today (e.g., [5-9])
consists of accelerator chips, each containing compute units
and high-bandwidth memory tightly packaged together, and
features scale-up capability enabled by connecting thousands
of such chips with high-bandwidth interconnection links. The
system-wide rethinking that was done to enable such accel-
erators and many of the principles used in such accelerators
resemble our ISCA 2015 paper’s approach.

The “memory-capacity-proportional performance” principle
we explored in the paper shares similarities with how ML
workloads are scaled up today. Similar to how we carefully
sharded graphs across our accelerator chips to greatly im-
prove effective memory bandwidth in our paper, today’s ML
workloads are sharded across a large number of accelera-
tors by leveraging data/model parallelism and optimizing the
placement to balance communication overheads and compute
scalability [11, 12]. With the advent of large generative models
requiring high memory bandwidth for fast training and infer-
ence, the scaling behavior where capacity and bandwidth are
scaled together has become an essential architectural property
to support modern data-intensive workloads.

The “maximal acceleration capability” principle we used
in Tesseract provides much larger performance and energy
improvements and better customization than the “minimalist™
approach that our other ISCA 2015 paper on PIM-Enabled
Instructions [10] explored: “minimally change” an existing

system to incorporate (near-memory) acceleration capability
to ease programming and keep costs low. So far, the industry
has more widely adopted the maximal approach to overcome
the pressing scaling bottlenecks of major workloads. The key
enabler that bridges the prc bility gap b the
maximal approach favoring large performance & energy bene-
fits and the minimal approach favonng ease of programming is
compilation techni These lower well-defined
high-level constructs into lower-level pnmmves [12,13]; our
ISCA 2015 papers [1,10] and a follow-up work [14] explore
them lightly. We believe that a good programming model that
enables large benefits coupled with support for it across the
entire system stack (including compilers & hardware) will
continue to be important for effective near-memory system
and accelerator designs [14]. We also believe that the maximal
versus minimal approaches that are initially explored in our
two ISCA 2015 papers is a useful way of exploring emerg-
ing technologies (e.g., near-memory accelerators) to better
understand the tradeoffs of system designs that exploit such
technologies.

III. INFLUENCE ON LATER WORKS

Our paper was at the beginning of a proliferation of scalable
near-memory processing systems designed to accelerate key
applications (see [15] for many works on the topic). Tesseract
has inspired many near-memory system ideas (e.g., [16-28])
and served as the de facto comparison point for such systems,
including near-memory graph processing accelerators that built
on Tesseract and 1mproved various aspects of Tesseract. Since
ors that use high-bandwidth mem-
ory (e.g., [5, 29]) and industrial PIM prototypes (e.g., [30-41])
are now in the market, near-memory processing is no longer
an “eccentric” architecture it used to be when Tesseract was
originally published.

Graph processing & analytics workloads remain as an
important and growing class of applications in various forms,
ranging from large-scale industrial graph analysis engines
(e.g., [42]) to graph neural networks [43]. Our focus on large-
scale graph processing in our ISCA 2015 paper increased
attention to this domain in the computer architecture com-
munity, resulting in subsequent research on efficient hardware
architectures for graph processing (e.g., [44-46]).

IV. SUMMARY AND FUTURE OUTLOOK

We believe that our ISCA 2015 paper’s principled re-
thinking of system design to accelerate an important class
of data-intensive workloads provided significant value and
enabled/influenced a large body of follow-on works and ideas.
We expect that such rethinking of system design for key
workloads, especially with a focus on “maximal acceleration
capability,” will continue to be critical as pressing technology
and application scaling challenges increasingly require us to
think differently to substantially improve performance and
energy (as well as other metrics). We believe the principles
exploited in Tesseract are fundamental and they will remain
useful and likely become even more important as systems
become more constrained due to the continuously-increasing
memory access and computation demands of future workloads.
We also project that as hardware substrates for near-memory
acceleration (e.g., 3D stacking, in-DRAM computation, NVM-
based PIM, processing using memory [15]) evolve and mature,
systems will take advantage of them even more, likely using
principles similar to those used in the design of Tesseract.
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We Need Faster & Scalable Genome Analysis

Understanding genetic variations,
species, evolution, ... abundance of microbes in a sample

20-0

o, -

Rapid surveillance of disease outbreaks Developing personalized medicine

SAFARI And, many, many other applications ... 3



Genome Sequence Analysis

. first key step in genome sequence analysis

- Aligns reads to potential matching locations in the reference genome

- For each matching location, the alignment step finds the degree of
similarity (alignment score)

Reference Genome
...GCCCATATGGTTAAGCTTCCATGGAAATGGGCTTTCGCTTCCACAATG...

V

Differences Differences
[GCTTCCAGAATG

* Calculating the ahgn@ﬁ-‘@ﬁ%ﬁ%@—%quwes compu%nﬁ%%ﬁenswe

approximate string matcB&R4aS A s account for differences between

reads and the reference genome due to:

- Sequencing errors
- Genetic variation

SAFARI
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Genome Sequence Analysis

‘I Data Movement from Storage

Alignment
Computation
Storage Main Unit
System Memory Cache (CPU or
Accelerator)
x Computation overhead
x Data movement overhead

SAFARI 37



Compute-Centric Accelerators

Heuristics Accelerators Filters

S W Y

Computation
Storage Main Unit
System Memory Cache (CPU or

Accelerator)

\/ Computation overhead

x Data movement overhead
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Key Idea: In-Storage Filtering

Y Filter reads that do not require alignment
inside the storage system

MECGTTCCTTGGCAl Computation

[AAICCTTTGGGTCCA] Main Cache Unit
GAATGGGGCCA

188 e Memory (CPU or
[GCTTCCAGAATG| Accelerator)

Filtered Reads

Exactly-matching reads
Do not need expensive approximate string matching during alignment

Non-matching reads
Do not have potential matching locations and can skip alignment

SAFARI 39



GenStore

* Key idea: Filter reads that do not require alignment inside the
storage system

* Challenges
- Different behavior across read mapping workloads
- Limited hardware resources in the SSD

( Host System )
Reads that need
substantial processing
p A
Flash GenStore || | In-SSD DRAM
NAND| |NAND||cyrig|| A FiL [ rep
Die#1 Die#4 . I.L Core Mappings
Flash r GenStore |
NAND | |NAND (||Ctrl.#N ACC Acc Metadata
=y B SSD Controller

-
SAFARI



Filtering Opportunities

* Sequencing machines produce one of two kinds of reads
- Short reads: highly accurate and short

- Long reads: less accurate and long
Reads that do not require the expensive alignment step:

[Exactly-matching reads ]_

Do not need expensive approximate string matching during alignment

* Low sequencing error rates (short reads) combined with
* Low genetic variation

[Non-matching reads ]_

Do not have potential matching locations, so they skip alignment

* High sequencing error rates (long reads) or
* High genetic variation (short or long reads)

SAFARI 41



GenStore

GenStore-EM for Exactly-Matching Reads

GenStore-NM for Non-Matching Reads

SAFARI 42



GenStore

Y Filter reads that do not require alignment
inside the storage system

Computation
GenStore-Enabled i Unit
Storage M Cache CPU
System emory ( or
Accelerator)
\/ Computation overhead
\/ Data movement overhead

GenStore provides significant speedup (1.4x - 33.6x) and

energy reduction (3.9x - 29.2x) at low cost
SAFARI 43



Performance — GenStore-EM

With the Software Mapper

With the Hardware Mapper

'O 200 ¢ O = 2

4 BEI BEl BEINE 3

2 100 — N i o .k I n ﬁ

.; 50 C 2 ; I

8 o l l l o l l

ﬁ Base‘ GS Base‘ GS Base‘ GS Base‘ GS Base‘ GS Base GS
SSD-L SSD-M SSD-H SSD-L SSD-M SSD-H

2.1x - 2.5x speedup compared to the software Base

1.5x = 3.3x speedup compared to the hardware Base

On average 3.92x energy reduction
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Performance — GenStore-NM

p—
= O
= O O

Exec. time [sec]
Log scale
o
[y

With the Software Mapper

With the Hardware Mapper

i < 4+ A°>§
o~ S )

I paay N IN
Base‘ GS Base‘ GS Base‘ GS
SSD-L SSD-M SSD-H

<
19.2x

X

«Q

I I ]
I

X

«Q

I I ]
I

Base| GS
SSD-L

Base| GS
SSD-M

Base| GS
SSD-H

22.4x - 27.9x speedup compared to the software Base

6.8x —19.2x speedup compared to the hardware Base

SAFARI

On average 27.2x energy reduction
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Area and Power Consumption

* Based on Synthesis of GenStore accelerators using the Synopsys
Design Compiler @ 65nm technology node

Logic unit ‘ # of instances ‘ Area[mm?2] | Power [ mW]
Comparator 1 per SSD 0.0007 0.14
K -mer Window 2 per channel 0.0018 0.27
Hash Accelerator 2 per SSD 0.008 1.8
Location Buffer 1 per channel 0.00725 0.37375
Chaining Buffer 1 per channel 0.008 0.95
Chaining PE 1 per channel 0.004 0.98
Control 1 per SSD 0.0002 0.11
l Total for an 8-channel SSD - 0.2 26.6 l

Only 0.006% of a 14nm Intel Processor, less than 9.5% of the three
ARM processors in a SATA SSD controller

SAFARI 46
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Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid
Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata
Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu,
"GenStore: A High-Performance and Enerqy-Efficient In-Storage Computing
System for Genome Sequence Analysis"

Proceedings of the 27/th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Virtual, February-March
2022.

[Lightning Talk Slides (pptx) (pdf)]

[Lightning Talk Video (90 seconds)]
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for Genome Sequence Analysis
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Tight Integration ot Genome Analysis Tasks

Haiyu Mao, Mohammed Alser, Mohammad Sadrosadati, Can Firtina, Akanksha Baranwal,
Damla Senol Cali, Aditya Manglik, Nour Almadhoun Alserr, and Onur Mutlu,

"GenPIP: In-Memory Acceleration of Genome Analysis via Tight Integration of
Basecalling and Read Mapping"

Proceedings of the 55th International Symposium on Microarchitecture (MICRO),
Chicago, IL, USA, October 2022.

[Slides (pptx) (pdf)]

[Longer Lecture Slides (pptx) (pdf)]

[Lecture Video (25 minutes)]

[arXiv version]

GenPIP: In-Memory Acceleration of Genome Analysis
via Tight Integration of Basecalling and Read Mapping
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Accelerating Sequence-to-Graph Mapping

Damla Senol Cali, Konstantinos Kanellopoulos, Joel Lindegger, Zulal Bingol, Gurpreet S.
Kalsi, Ziyi Zuo, Can Firtina, Meryem Banu Cavlak, Jeremie Kim, Nika MansouriGhiasi,
Gagandeep Singh, Juan Gomez-Luna, Nour Almadhoun Alserr, Mohammed Alser,
Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,

"SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph
and Sequence-to-Sequence Mapping"

Proceedings of the 49th International Symposium on Computer Architecture (ISCA), New
York, June 2022.

[arXiv version]
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Nika Mansouri Ghiasi, Mohammad Sadrosadati, Harun Mustafa, Arvid Gollwitzer,
Can Firtina, Julien Eudine, Haiyu Mao, Joel Lindegger, Meryem Banu Cavlak,
Mohammed Alser, Jisung Park, and Onur Mutlu,

"MeglS: High-Performance and Low-Cost Metagenomic Analysis with

In-Storage Processing”
Proceedings of the 51st Annual International Symposium on Computer

Architecture (ISCA), Buenos Aires, Argentina, July 2024.
[Slides (pptx) (pdf)]
[arXiv version]
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MeglS

High-Performance, Energy-Efficient, and Low-Cost

Metagenomic Analysis with In-Storage Processing
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What is Metagenomics?

* Metagenomics: Study of genome sequences of diverse organisms
within a shared environment (e.qg., blood, ocean, soil)

* Overcomes the limitations of traditional genomics
- Bypasses the need for analyzing individual species in isolation

SAFARI 52



What is Metagenomics?

* Metagenomics: Study of genome sequences of diverse organisms

within a shared environment (e.qg., blood, ocean, soil)

C

Has led to groundbreaking advances

* Precision medicine

* Understanding microbial diversity of an environment

* Discovering early warnings of communicable diseases

SAFARI
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Metagenomic Analysis

Preparation CTCAT
of Input Queries TCATG

*/ V. cholerae

Metagenomic sample
with species that

are not known in advance Presence/Absence SARS-CoV-2

¥
'\*E. coli

‘ ° O

Identification

ol
g

Abundance
A large database Estimation

containing information
on many species

SAFARI (e.g.,> 100 TBs in emerging databases)



Challenges of In-Storage Processing

No metagenomic analysis tool can run in-storage due to SSD limits

- Long latency of NAND flash chips

- Limited DRAM capacity inside the SSD

- Limited DRAM bandwidth inside the SSD

SAFARI

( )
L — SSD SSD DRAM
a Cores Controller
a o ‘
») || Cntrl O Cntrl |
Channel#1 Channel#N
\_ J
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MeglS: Metagenomics In-Storage

* First in-storage system for end-to-end metagenomic analysis

* Idea: Cooperative in-storage processing for metagenomic analysis

- Hardware/software co-design between

aﬁ

Host System

SAFARI

/MegIS-EnabIed SSD |

SSD
L Cores Controller
\;(Iintrl o CntrII:|
Channel#a Channel#N

SSD DRAM

Standard
Metadata
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MeglS’s Steps
Step 1

Preparation
of Input Queries

Metagenomic sample
with species that
are not known in advance Presence/Absence

. . SARS-CoV-2
Identification

*/ V. cholerae

E. coli
% . °

Abundance
A large database Estimation

containing information
on many species
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MeglS Hardware-Software Co-Design

SAFARI

/MegIS-EnabIed SSD |

SSD

L Cores Controller
\;(Iintrl Cntrl |
Channel#1 Channel#N

SSD DRAM

Standard
Metadata
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MeglS Hardware-Software Co-Design

Task partitioning and mapping

* Each step executes

in its most suitable system

QQ

SAFARI

/MegIS-EnabIed SSD |

~

FTL : SSD SSD DRAM
Cores Controller Standard
a ™| Metadata
\;(Iintrl o CntrII:|
Channel#a Channel#N
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MeglS Hardware-Software Co-Design

Data/computation flow coordination
* Reduce communication overhead
* Reduce #writes to flash chips

~

-
(&
7 ' SSD SSD DRAM
£ Dl FIL Cores 1
@ —) o Controller Standard
< O % a ™| Metadata
: :
+ Cntrl a Cntrl
% — 31 ;I :I|:
=)
% Channel#1 Channel#N
N\

SAFARI
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MeglS Hardware-Software Co-Design

p—
&

(MegIS-EnabIed SSD |

\

— SSD
L Cores Controller
\;(Iintrl o Cntrl |
Channel#a Channel#N

SSD DRAM

Standard
Metadata

Storage-aware algorithms

* Enable efficient
access patterns to the SSD

SAFARI
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MeglS Hardware-Software Co-Design

—)
E—

Host System

SAFARI
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A : SSD DRAM
ik FTL Cores I C StSD”

b ontrotier 11 standard

o [ ACC a ACC || Metadata

()

5 | Cntrl a Cntrl

0

o

% Channel#1 Channel#N

\ J

Lightweight in-storage accelerators
* Minimize SRAM/DRAM buffer spaces

needed inside the SSD
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MeglS Hardware-Software Co-Design

~

-
A
il Megls o= SSD SSD DRAM

QEJ N FTL Cores Controller Standard

2 ) O |

2 B ACC a ACC Metadata

2 L ;

= 0 || Cntrl a Cntrl

% — 5 L4 MeglS
o - - Metadata
% Channel#1 Channel#N

. ) -

Data mapping scheme and Flash Translation Layer (FTL)
* Specialize to the characteristics of metagenomic analysis
* Leverage the SSD’s full internal bandwidth
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Evaluation Methodology Overview

Performance, Energy, and Power Analysis

Hardware Components Software Components

* Synthesized Verilog model for the in-storage accelerators Measure on a real system:
« MQSim [Tavakkol+, FAST'28] for SSD’s internal operations * AMD® EPYC® CPU with

128 physical
» Ramulator [Kim+, CAL'15] for SSD's internal DRAM physicalcores
- 1-TB DRAM

Baseline Comparison Points

* Performance-optimized software, Kraken2 [Genome Biology’19]
* Accuracy-optimized software, Metalign [Genome Biology’20]
e PIM hardware-accelerated tool (using processing-in-memory), Sieve [ISCA21]

SSD Configurations
* SSD-C: with SATA3 interface (0.5 GB/s sequential read bandwidth)

* SSD-P:with PCle Gen4 interface (7 GB/s sequential read bandwidth)
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Speedup over Software (with Cost-Optimized SSD)

Performance-Optimized Il Accuracy-Optimized O MegqlS O
7
6 [ SSD-C -
a 5 I
) B (o]
T 40 i
2 3r , l
w 2 i
1 i
o M— | - | BN ||
Low Med High GMean
Sample Genetic Diversity
MeglS provides significant speedup over both
Performance-Optimized and baselines
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Speedup over Software (with Performance-Optimized SSD)

Performance-Optimized Il Accuracy-Optimized O MegqlS O

7

6 L SSD-P
s S|
b 4 T T
v 3 r X X
o s ] Q 5
w 2 I

o | .

s TSRS EERNNN SRR

Low Med High GMean

Sample Genetic Diversity

MeglS provides significant speedup over both

Performance-Optimized and Accuracy-Optimized baselines

MeglS improves performance on both

cost-optimized and performance-optimized SSDs
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Speedup over the PIM Hardware Baseline

PIM O MeglS B PIM [ MeglS B
6 . 3 ;
- SSD-C : - SSD-P i
R VN - i
o4 [ 2 i
=) i i
T & ; o’ﬁl
a2 [ N 1 f 7
»n I E - I E
0 1 | [ | | - 0 | | |
Low Med High GMean Low Med High GMean
Sample Genetic Diversity Sample Genetic Diversity

MeglS provides significant speedup over the PIM baseline
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Reduction in Energy Consumption

* On average across different input sets and SSDs Same
————e . / accuracy

[

© = N W ~ U1 O
T

GeoMean Energy Reduction
(Higher is Better)

Perf-Opt PIM MegIS

MeglS provides significant energy reduction over

the Performance-Optimized, Accuracy-Optimized, and PIM baselines
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Accuracy, Area, and Power
Accuracy

* Same accuracy as the accuracy-optimized baseline

* Significantly higher accuracy than the performance-optimized and
PIM baselines

- 4.6 —5.2x higher F1 score
- 3—-24% lower L1 norm error

Area and Power

Total for an 8-channel SSD:

* Area: 0.04 mm?

* Power: 7.658 mW

(Only 1.7% of the area and 4.6% of the power consumption

of three ARM Cortex R4 cores in an SSD controller)
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System Cost-Efficiency

* Cost-optimized system ($): With SSD-C and 64-GB DRAM
* Performance-optimized system ($$$): With SSD-P and 1-TB DRAM
20

=
(0]

|
—
.9X —!
—>
—

GMean Speedup
=
o

—
-
j«— 19.9x
wz.ﬂ
| «—7.2x

Perf-Opt ($) Acc-Opt(s) Perf-Opt ($$%) Acc-Opt ($$%) MeglIS (%)

MeglS outperforms the baselines

even when running on a much less costly system
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System Cost-Efficiency

MeglS improves system cost-efficiency

and makes accurate metagenomics more accessible

for wider adoption

SAFARI
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More in the Paper

MeglS: High-Performance, Energy-Efficient, and Low-Cost
Metagenomic Analysis with In-Storage Processing

Nika Mansouri Ghiasi’ Mohammad Sadrosadati® Harun Mustafa' Arvid Gollwitzer!
Can Firtina' Julien Eudine! Haiyu Mao! Joél Lindegger! Meryem Banu Cavlak!
Mohammed Alser' Jisung Park? Onur Mutlu'

'ETH Ziirich 2POSTECH

https://arxiv.org/abs/2406.19113

SAFARI
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More to Come...




Processing 1n Storage:

Two Types

1. Processing near Storage Devices
2. Processing using Storage Devices




In-Flash Bulk Bitwise Execution

Jisung Park, Roknoddin Azizi, Geraldo F. Oliveira, Mohammad Sadrosadati, Rakesh
Nadig, David Novo, Juan Gémez-Luna, Myungsuk Kim, and Onur Mutlu,
"Flash-Cosmos: In-Flash Bulk Bitwise Operations Using Inherent
Computation Capability of NAND Flash Memory"

Proceedings of the 55th International Symposium on Microarchitecture (MICRO),
Chicago, IL, USA, October 2022.

[Slides (pptx) (pdf)]

[Longer Lecture Slides (pptx) (pdf)]

[Lecture Video (44 minutes)]

[arXiv version]

Flash-Cosmos: In-Flash Bulk Bitwise Operations Using
Inherent Computation Capability of NAND Flash Memory

Jisung Park®V Roknoddin Azizi® Geraldo F. Oliveira® Mohammad Sadrosadati®
Rakesh Nadig® David Novo' Juan Gémez-Luna® Myungsuk Kim*¥ Onur Mutlu®

SETH Ziirich VPOSTECH  TLIRMM, Univ. Montpellier, CNRS  *Kyungpook National University

SAFARI httQS:[ [arxiv.org[ Edf[ 2209.05566.Qdf 75


https://arxiv.org/pdf/2209.05566.pdf
https://arxiv.org/pdf/2209.05566.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/FlashCosmos_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/FlashCosmos_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/FlashCosmos_SSD-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/FlashCosmos_SSD-lecture-slides.pdf
https://www.youtube.com/watch?v=ioPERTy7bz4
https://arxiv.org/abs/2209.05566
https://arxiv.org/pdf/2209.05566.pdf

In-Storage Processing (ISP)

= Uses in-storage compute units (embedded cores or FPGA) to send

only the computation results

Memory bandwidth:
~40 GB/s

( )

CPU/GPU Main
Memory
$ (SRAM) (DRAM)
Storage 1/0 bandwidth:
~8 GB/s
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In-Storage Processing (ISP)

= Uses in-storage compute units (embedded cores or FPGA) to send

only the computation results

Memory bandwidth:
~40 GB/s

( )

CPU/GPU Main

Memory
(DRAM)

$ (SRAM)

Storage 1/0 bandwidth:
~8GB/s
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In-Storage Processing (ISP)

= Uses in-storage compute units (embedded cores or FPGA) to send

only the computation results

Memory bandwidth:
~40 GB/s

Results only

r ) - D

CPU/GPU Main
Memory

$ (SRAM) _ (DRAM) |
Storage 1/0 bandwidth:

~8GB/s

4 Storage A
(NAND Flash-Based SSD)
-
Compute
Units :

\

processing
\_ 9

ISP can mitigate data movement overhead
by reducing SSD-external data movement
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In-Storage Processing (ISP)

= Uses in-storage compute units (embedded cores or FPGA) to send
only the computation results

Memory bandwidth: 4 Storage A
~ 40 GB/s (NAND Flash-Based SSD)
Results only
r ) e D -
CPU/GPU Main In-Storage
Memory Compute
$ (SRAM) s (DRAM) ) i Units
In-storage
Storage 1/0 bandwidth: processing
~8 GB/s \_ Y,

SSD-internal bandwidth
becomes the new bottleneck in ISP
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In-Flash Processing (IFP)

= Performs computation inside NAND flash chips

Memory bandwidth:

~ 40 GB/s

( )

CPU/GPU

$ (SRAM)

Results only

/

.

A -
Main
Memory

(DRAM)
J

Storage 1/0 bandwidth:

SAFARI

~ 8 GB/s

-

Storage
(NAND Flash-Based SSD)

In-Storage
Compute
Units

o

In-flash processing

)

SSD internal I/0 bandwidth: ~ 10 GB/s




In-Flash Processing (IFP)

= Performs computation inside NAND flash chips

Memory bandwidth: 4 Storage
~40 GB/s (NAND Flash Based SSD)
Results only p
r ) e D -

CPU/GPU  — In-Storage

Memory Compute
$ (SRAM) L (DRAM) ) g Units

Storage 1/0 bandwidth:
~8 GB/s \_ __In-flash processing

~

)

SSD internal I/0 bandwidth: ~ 10 GB/s

IFP fundamentally mitigates data movement
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Our Proposal: Flash-Cosmos

= Flash-Cosmos enables
« Computation on multiple operands with a single sensing operation
« Accurate computation results by eliminating raw bit errors in stored data

Operand 0,

Operand O,

Operand O3

Simultaneous sensing

Operand O3,

SAFARI



Key Ideas of Flash-Cosmos

SAFARI

Multi-Wordline Sensing (MWS)
to enable in-flash bulk bitwise operations
via a single sensing operation

Enhanced SLC-Mode Programming (ESP)
to eliminate raw bit errors in stored data
(and thus in computation results)




Multi-Wordline Sensing (MWS): Bitwise AND

" Intra-Block MWS:
Simultaneously activates multiple WLs in the same block
- Bitwise AND of the stored data in the WLs

BL, BL, BL., BL,

\_ Blocky
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Multi-Wordline Sensing (MWS): Bitwise AND

" Intra-Block MWS:

Simultaneously activates multiple WLs in the same block
- Bitwise AND of the stored data in the WLs

Non-Target Cells:
Operate
as resistors

SAFARI
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Multi-Wordline Sensing (MWS): Bitwise AND

* Intra-Block MWS:
Simultaneously activates multiple WLs in the same block

- Bitwise AND of the stored data in the WLs
. BL, BL, BL,

-
Target Cells:

Operate J L=

as resistors (1)

BL
\1% ;
or open switches (0) | WL,— %
v

W

\_ g
-
WL;— §
Non-Target Cells:
Operate < WL, ?
as resistors :
v v
~ (Result: 0 0 0 1
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Multi-Wordline Sensing (MWS): Bitwise AND

= Intra-Block MWS:
Simultaneously activates multiple WLs in the same block
- Bitwise AND of the stored data in the WLs

BL,

N
A bitline reads as ‘1" only when all the target cells store ‘1’
- Equivalent to the bitwise AND of all the target cells

AW ‘W\/—J\Nv—‘

SAFARI



Multi-Wordline Sensing (MWS): Bitwise AND

" Intra-Block MWS:
Simultaneously activates multiple WLs in the same block
- Bitwise AND of the stored data in the WLs

BL, BL, BL., BL,

WLl_ ; — — % — —

Target Cells:
Operate < WL,— —1 —1 1 .

as resistors (1)

!

v

or open switches (0)

WL,

=

N

|

|
<-0_o—-A\\—o_o—o

\Result: 0 0 0 0
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Multi-Wordline Sensing (MWS): Bitwise AND

= Intra-Block MWS:
Simultaneously activates multiple WLs in the same block
- Bitwise AND of the stored data in the WLs

BL,

{A bitline reads as ‘1’ only when all the target cells store ’1K>é

- Equivalent to the bitwise AND of all the target cells J-
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Multi-Wordline Sensing (MWS): Bitwise AND

Flash-Cosmos (

bitwise AND of mu

via a sing

ntra-Block MWS) enables
tiple pages in the same block

e sensing operation
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Multi-Wordline Sensing (MWS): Bitwise OR

= Inter-Block MWS:
Simultaneously activates multiple WLs in different blocks
- Bitwise OR of the stored data in the WLs

BL, BL, BL., BL,

. mttods (D@D

s, (DO HO
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Multi-Wordline Sensing (MWS): Bitwise OR

* Inter-Block MWS:
Simultaneously activates multiple WLs in different blocks
- Bitwise OR of the stored data in the WLs

BL, BL, BL, BL,
, —_—
WL, in Block, é T % V
SN N
WL, in Block; —— % % k JK
| VLY
Result: 1 1 1 0
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Multi-Wordline Sensing (MWS): Bitwise OR

= [nter-Block MWS:

Simultaneously activates multiple WLs in different blocks

- Bitwise OR of the stored data in the WLs

BL,

A bitline reads as ‘0’ only when all the target cells store
- Equivalent to the bitwise OR of all the target cells

OI

X

SAFARI
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Multi-Wordline Sensing (MWS): Bitwise OR

* Inter-Block MWS:
Simultaneously activates multiple WLs in different blocks
- Bitwise OR of the stored data in the WLs

wuma £ (H ST 67
w1 S £

Result: 1 1
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Multi-Wordline Sensing (MWS): Bitwise OR

= [nter-Block MWS:

Simultaneously activates multiple WLs in different blocks

- Bitwise OR of the stored data in the WLs

BL,

A bitline reads as ‘0’ only when all the target cells store
- Equivalent to the bitwise OR of all the target cells

N

>

D

SAFARI
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Multi-Wordline Sensing (MWS): Bitwise OR

Flash-Cosmos (Inter-Block MWS) enables
bitwise OR of multiple pages in different blocks
via a single sensing operation

SAFARI




Other Types of Bitwise Operations

Flash-Cosmos also enables
other types of bitwise operations

(NOT/NAND/NOR/XOR/XNOR)
leveraging existing features of NAND flash memory

Flash-Cosmos: In-Flash Bulk Bitwise Operations Using
Inherent Computation Capability of NAND Flash Memory

Jisung Park®V Roknoddin Azizi® Geraldo F. Oliveira® Mohammad Sadrosadati®
Rakesh Nadig® David Novo' Juan Gémez-Luna® Myungsuk Kim* Onur Mutlu®

SETH Ziirich  VPOSTECH  TLIRMM, Univ. Montpellier, CNRS ~ *Kyungpook National University
[=] S [w]

_-:_.I'I':lr- i e
&S

https://arxiv.org/abs/2209.05566.pdf
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Key Ideas

= | to eliminate raw bit errors in stored data

O Enhanced SLC-Mode Programming (ESP)
pre (and thus in computation results)

SAFARI



Enhanced SLC-Mode Programming (ESP)

= Goal: eliminate raw bit errors in stored data (and computation results)

= Key ideas
* Programs only a single bit per cell (SLC-mode programming)
o Trades storage density for reliable computation
* Performs more precise programming of the cells
o Trades programming latency for reliable computaion

Maximizes the reliability margin
between the different states of flash cells

SAFARI



Enhanced SLC-Mode Programming (ESP)

Flash-Cosmos (ESP) enables
reliable in-flash computation
by trading storage density & programming latency

Storage & latency overheads affect
only data used in in-flash computation

SAFARI




Evaluation Methodology

» Real-device characterization
* To validate the feasibility and reliability of Flash-Cosmos
« Using 160 48-WL-layer 3D Triple-Level Cell NAND flash chips
o 3,686,400 tested wordlines
» Under worst-case operating conditions
o Under a 1-year retention time at 10K P/E cycles
o Worst-case data patterns

= System-level evaluation
* Using the state-of-the-art SSD simulator (MQSim [Tavakkol+, FAST'18])
* Three real-world applications
o Bitmap Indices (BMI): Bitwise AND of up to ~ 1,000 operands
o Image Segmentation (IMS): Bitwise AND of 3 operands
o K-clique Star Listing (KCS): Bitwise OR of up to 32 operands
* Baselines
o Outside-Storage Processing (OSP): A multi-core CPU (Intel i7-11700K)
o In-Storage Processing (ISP): An in-storage hardware accelerator
o ParaBit [Gao+, MICRO'21]: State-of-the-art in-flash processing mechanism

SAFARI



Results: Real-Device Characterization

No changes to the cell array
of commodity NAND flash chips

Can have many operands
(AND: up to 48, OR: up to 4)
with small increase in sensing latency (< 10%)

ESP significantly improves
the reliability of computation results
(no observed bit error in the tested flash cells)

SAFARI




Results: Performance & Energy

B ISP [OParaBit [JFlash-Cosmos

% 103 §104
(@) .35_(_))( glogr 70x
5 102 f o ¥
= 1] 10 1]
"g 101 3 §101 1.6)(
3 2.5x b>ﬁ ] 1
S
9] 1 v | ﬂ ,g 1 | i
- BMI IMS KCS AVG

BMI IMS KCS AVG

Flash-Cosmos provides significant performance &
energy benefits over all the baselines

The larger the number of operands,
the higher the performance & energy benefits
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In-Flash Bulk Bitwise Execution

Jisung Park, Roknoddin Azizi, Geraldo F. Oliveira, Mohammad Sadrosadati, Rakesh
Nadig, David Novo, Juan Gémez-Luna, Myungsuk Kim, and Onur Mutlu,
"Flash-Cosmos: In-Flash Bulk Bitwise Operations Using Inherent
Computation Capability of NAND Flash Memory"

Proceedings of the 55th International Symposium on Microarchitecture (MICRO),
Chicago, IL, USA, October 2022.

[Slides (pptx) (pdf)]

[Longer Lecture Slides (pptx) (pdf)]

[Lecture Video (44 minutes)]

[arXiv version]

Flash-Cosmos: In-Flash Bulk Bitwise Operations Using
Inherent Computation Capability of NAND Flash Memory

Jisung Park®V Roknoddin Azizi® Geraldo F. Oliveira® Mohammad Sadrosadati®
Rakesh Nadig® David Novo' Juan Gémez-Luna® Myungsuk Kim*¥ Onur Mutlu®

SETH Ziirich VPOSTECH  TLIRMM, Univ. Montpellier, CNRS  *Kyungpook National University
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More to Come...




Concluding Remarks




Challenge and Opportunity for Future

Fundamentally
Energy-Efficient
(Data-Centric)

Computing Architectures




Challenge and Opportunity for Future

Fundamentally
High-Performance
(Data-Centric)
Computing Architectures




Challenge and Opportunity for Future

Computing Architectures
with
Minimal Data Movement

SAFARI



We Need to Revisit the Entire Stack

= With a storage-centric mindset

System Software
SW/HW Interface

We can get there step by step

SAFARI 1o
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An Overview Paper

A Modern Primer on Processing in Memory

Onur Mutlu®®, Saugata Ghose®™°, Juan Gémez-Luna?, Rachata Ausavarungnirun®

SAFARI Research Group

ETH Ziirich
bCarnegie Mellon University
¢University of Illinois at Urbana-Champaign
4King Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,

"A Modern Primer on Processing in Memory"

Invited Book Chapter in Emerqging Computing: From Devices to Systems -
Looking Beyond Moore and Von Neumann, Springer, to be published in 2021.

SAFARI https:/ /arxiv.org/pdf/2012.03112.pdf 1z


https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21-extended.pdf
https://people.inf.ethz.ch/omutlu/projects.htm
https://people.inf.ethz.ch/omutlu/projects.htm
https://arxiv.org/pdf/2012.03112.pdf

Referenced Papers, Talks, Artifacts

= All are available at

https://people.inf.ethz.ch/omutlu/projects.htm

https://www.youtube.com/onurmutlulectures

https://github.com/CMU-SAFARI1/

SAFARI 13
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Open Source Tools: SAFARI GitHub

SAFARI Research Group at ETH Zurich and Carnegie Mellon University

SAFARI Site for source code and tools distribution from SAFARI Research Group at ETH Zurich and Carnegie Mellon University.

SAFARI Research Group

A2 440 followers @ ETH Zurich and Carnegie Mellon U... V4 https://safari.ethz.ch/ [ omutlu@gmail.com

() Overview [ Repositories 80 f] Projects &) Packages R People 13

& ramulator | Public B prim-benchmarks | Public

A Fast and Extensible DRAM Simulator, with built-in support for PrIM (Processing-In-Memory benchmarks) is the first benchmark suite
modeling many different DRAM technologies including DDRx, LPDDRX, for a real-world processing-in-memory (PIM) architecture. PrIM is
GDDRx, WIOx, HBMXx, and various academic proposals. Described in developed to evaluate, analyze, and characterize the first publ...

the...

@®c++ w583 %209 ®Cc w137 %50

& MQSim | Public ] rowhammer  Public

MQSim is a fast and accurate simulator modeling the performance of Source code for testing the Row Hammer error mechanism in DRAM
modern multi-queue (MQ) SSDs as well as traditional SATA based devices. Described in the ISCA 2014 paper by Kim et al. at

SSDs. MQSim faithfully models new high-bandwidth protocol http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_iscal4.pdf.
implement...

@cC++ w277 %149 ®c w217 %a2

& SoftMC | Public B Pythia | Public

SoftMC is an experimental FPGA-based memory controller design that A customizable hardware prefetching framework using online

can be used to develop tests for DDR3 SODIMMSs using a C++ based reinforcement learning as described in the MICRO 2021 paper by Bera
API. The design, the interface, and its capabilities and limitatio... et al. (https://arxiv.org/pdf/2109.12021.pdf).

O® verilog Y127 % 28 ®@c++ W7 %36

https: / /github.com/CMU-SAFARI/ 114
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SAFARI Newsletter June 2023 Edition

= https://safari.ethz.ch/safari-newsletter-june-2023/
SAFARI

SAFAR!| Research Group

Think Big, Aim High

mz‘:jriCh View in your browser
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SAFARI Newsletter July 2024 Edition

= https://safari.ethz.ch/safari-newsletter-july-2024/
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PIM Tutorial November 2024 Edition

MICRO 2024 - Tutorial on Overview of PIM | PIM taxonomy
B B PIM in memory & storage

Memory-Centric Computing Systems SN

Saturday, November 2"9, Austin, Texas, USA PUM for bulk bitwise operations

Programming techniques & tools
Organizers: Geraldo F. Oliveira, Dr. Mohammad Sadrosadati,
Ataberk Olgun, Professor Onur Mutlu

Program: https://events.safari.ethz.ch/micro24-memorycentric-tutorial/ Resear ch Fhallenges &
opportunities

Infrastructures for PIM Research

fber 2.- November ;2024 %

ot

g NG e s e e T
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- : . [ T euans . A :

https://www.youtube.com/watch?v=KV2MXvcBgb0
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Storage-Centric Computing

Enabling
Fundamentally-Efficient Computers

Onur Mutlu
omutlu@gmail.com
https://people.inf.ethz.ch/omutlu
1 December 2024

CCF China Storage Keynote Talk
SAFARI ETHzurich
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Processing in Memoty:

Two Types

1. Processing near Memory
2. Processing using Memory




Processing using DRAM

We can support
o Bulk bitwise AND, OR, NOT, MAJ

o Bulk bitwise COPY and INIT/ZERO
o True Random Number Generation; Physical Unclonable Functions

o More complex computation using Lookup Tables
At low cost

Using analog computation capability of DRAM

o Idea: activating (multiple) rows performs computation
Even in commodity off-the-shelf DRAM chips!

30X-257X performance and energy improvements

Seshadri+"RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” MICRO 2013.

Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM"”, IEEE CAL 2015.

Seshadri+, “"Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology,” MICRO 2017.

Hajinazar+, "SIMDRAM: A Framework for Bit-Serial SIMD Processing using DRAM,” ASPLOS 2021.

Oliveira+, "MIMDRAM: An End-to-End Processing-Using-DRAM System for High-Throughput, Energy-Efficient and Programmer-Transparent
Multiple-Instruction Multiple-Data Processing,” HPCA 2024.
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In-DRAM Acceleration of Database Queries

‘select count(*) from T where cl <= val <= c2’

13 _ ROW count (r) _ D 1m . 2m D 4m . 8m ..................................

Speedup offered by Ambit

16 24
Number of Bits per Column (b)

Figure 11: Speedup offered by Ambit over baseline CPU with
SIMD for BitWeaving

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.
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Real Processing Using Memory Prototype

End-to-end RowClone & TRNG using off-the-shelf DRAM chips
Idea: Violate DRAM timing parameters to mimic RowClone

PiDRAM: A Holistic End-to-end FPGA-based Framework
for Processing-in-DRAM

Ataberk Olgun®™  Juan Gémez Luna®  Konstantinos Kanellopoulos®  Behzad Salami®”
Hasan Hassan®  Oguz ErginT  Onur Mutlu®

SETH Zdrich fTOBB ETU "BSC

https://arxiv.org/pdf/2111.00082.pdf

https://github.com/cmu-safari/pidram
https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s
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Real Processing-using-Memory Prototype

https://arxiv.org/pdf/2111.00082.pdf

https://github.com/cmu-safari/pidram
https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s
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Real Proce

ssing-using-Memory Prototype

README.md Va

Building a PiDRAM Prototype

To build PIDRAM's prototype on Xilinx ZC706 boards, developers need to use the two sub-projects in this
directory. fpga-zynq is a repository branched off of UCB-BAR's fpga-zynq repository. We use fpga-zynq to
generate rocket chip designs that support end-to-end DRAM PuM execution. controller-hardware is where we
keep the main Vivado project and Verilog sources for PIDRAM's memory controller and the top level system
design.

Rebuilding Steps

1. Navigate into fpga-zynq and read the README file to understand the overall workflow of the repository
o Follow the readme in fpga-zyng/rocket-chip/riscv-tools to install dependencies

2. Create the Verilog source of the rocket chip design using the ZynqCopyFPGAConfig
o Navigate into zc706, then run make rocket CONFIG=ZynqCopyFPGAConfig —j<number of cores>

3. Copy the generated Verilog file (should be under zc706/src) and overwrite the same file in controller-
hardware/source/hd1/impl/rocket-chip

4. Open the Vivado project in controller-hardware/Vivado_Project using Vivado 2016.2

5. Generate a bitstream

6. Copy the bitstream (system_top.bit) to fpga-zynq/zc706

7.Use the ./build_script.sh to generate the new boot.bin under fpga-images-zc706 , you can use this file

to program the FPGA using the SD-Card
o For details, follow the relevant instructions in fpga-zynq/README.md

You can run programs compiled with the RISC-V Toolchain supplied within the fpga-zynq repository. To install the
toolchain, follow the instructions under fpga-zynq/rocket-chip/riscv-tools .

Generating DDR3 Controller IP sources

We cannot provide the sources for the Xilinx PHY IP we use in PIDRAM's memory controller due to licensing
issues. We describe here how to regenerate them using Vivado 2016.2. First, you need to generate the IP RTL files:

1- Open IP Catalog
2- Find "Memory Interface Generator (MIG 7 Series)" IP and double click

https://arxiv.org/pdf/2111.00082.pdf
https://github.com/cmu-safari/pidram

https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s
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Microbenchmark Copy/Initialization Throughput
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In-DRAM Copy and Initialization

improve throughput by 119x and 89x
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More on PiIDRAM

= Ataberk Olgun, Juan Gomez Luna, Konstantinos Kanellopoulos, Behzad Salami,
Hasan Hassan, Oguz Ergin, and Onur Mutlu,
"PiDRAM: A Holistic End-to-end FPGA-based Framework for
Processing-in-DRAM"
ACM Transactions on Architecture and Code Optimization (TACO), March 2023.
[arXiv version]
Presented at the 18th HIPEAC Conference, Toulouse, France, January 2023.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Lecture Video (40 minutes)]
[PIDRAM Source Code]

PiDRAM: A Holistic End-to-end FPGA-based Framework
for Processing-in-DRAM

Ataberk Olgun® Juan Gémez Luna® Konstantinos Kanellopoulos® Behzad Salami®
Hasan Hassan® Oguz Ergin' Onur Mutlu®

SETH Ziirich T TOBB University of Economics and Technology
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https://people.inf.ethz.ch/omutlu/pub/PiDRAM_taco23.pdf
https://people.inf.ethz.ch/omutlu/pub/PiDRAM_taco23.pdf
http://taco.acm.org/
https://arxiv.org/abs/2111.00082
https://www.hipeac.net/2023/toulouse/
https://people.inf.ethz.ch/omutlu/pub/PiDRAM_hipeac23-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/PiDRAM_hipeac23-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/PiDRAM_comparch22-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/PiDRAM_comparch22-lecture-slides.pdf
https://www.youtube.com/watch?v=JyWxkeQA0W8
https://github.com/CMU-SAFARI/PiDRAM

DRAM Chips Are Already (Quite) Capable!

Appears at HPCA 2024  https://arxiv.or

df/2402.18736.pdf

Functionally-Complete Boolean Logic in Real DRAM Chips:
Experimental Characterization and Analysis

Ismail Emir Yiiksel

Yahya Can Tugrul

Ataberk Olgun F. Nisa Bostanc1  A. Giray Yaglikct

Geraldo F. Oliveira Haocong Luo Juan GOmez-Luna Mohammad Sadrosadati  Onur Mutlu

SAFARI

ETH Ziirich

We experimentally demonstrate that COTS DRAM chips are
capable of performing 1) functionally-complete Boolean opera-
tions: NOT, NAND, and NOR and 2) many-input (i.e., more than
two-input) AND and OR operations. We present an extensive
characterization of new bulk bitwise operations in 256 off-the-
shelf modern DDR4 DRAM chips. We evaluate the reliability of
these operations using a metric called success rate: the fraction
of correctly performed bitwise operations. Among our 19 new
observations, we highlight four major results. First, we can
perform the NOT operation on COTS DRAM chips with 98.37%
success rate on average. Second, we can perform up to 16-input
NAND, NOR, AND, and OR operations on COTS DRAM chips
with high reliability (e.g., 16-input NAND, NOR, AND, and
OR with average success rate of 94.94%, 95.87%, 94.94%,
and 95.85%, respectively). Third, data pattern only slightly
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The Capability of COTS DRAM Chips

We demonstrate that COTS DRAM chips:

1 Can copy one row into up to 31 other rows
with >99.98% success rate

2 Can perform NOT operation
with up to 32 output operands

3 Can perform up to 16-input
AND, NAND, OR, and NOR operations
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Eliminating the Adoption Barriers

How to Enable Adoption
of Processing in Memory

SAFARI



Potential Barriers to Adoption of PIM

1. Applications & software for PIM
2. Ease of programming (interfaces and compiler/HW support)

3. System and security support: coherence, synchronization,
virtual memory, isolation, communication interfaces, ...

4. Runtime and compilation systems for adaptive scheduling,
data mapping, access/sharing control, ...

5. Infrastructures to assess benefits and feasibility

All can be solved with change of mindset
SAFARI 132




We Need to Revisit the Entire Stack

= With a memory-centric mindset

System Software
SW/HW Interface

We can get there step by step
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Concluding Remarks

= We must design systems to be balanced, high-performance,
energy-efficient (all at the same time) - intelligent systems

o Data-centric, data-driven, data-aware

= Enable computation capability inside and close to memory

= This can

o Lead to orders-of-magnitude improvements

o Enable new applications & computing platforms
o Enable better understanding of nature
a

= Future of truly memory-centric computing is bright

o We need to do research & design across the computing stack
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We Need to Revisit the Entire Stack

= With a data-centric mindset

System Software
SW/HW Interface

We can get there step by step
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