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Research Focus: Computer architecture, HW/SW, bioinformatics, security 

• Memory and storage (DRAM, flash, emerging), interconnects 

• Heterogeneous & parallel systems, GPUs, systems for data analytics 

• System/architecture interaction, new execution models, new interfaces 

• Hardware security, energy efficiency, fault tolerance, performance  

• Genome sequence analysis & assembly algorithms and architectures 

• Biologically inspired systems & system design for bio/medicine 

Graphics and Vision Processing 

Heterogeneous 

Processors and  

Accelerators 

Hybrid Main Memory 

Persistent Memory/Storage 

Broad research  
spanning apps, systems, logic 
with architecture at the center 

Current Research Focus Areas 



Four Key Directions 

 Fundamentally Secure/Reliable/Safe Architectures 

 

 

 Fundamentally Energy-Efficient Architectures 

 Memory-centric (Data-centric) Architectures 

 

 

 Fundamentally Low-Latency Architectures 

 

 

 Architectures for Genomics, Medicine, Health 
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In-Memory DNA Sequence Analysis 

 Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, 
Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu, 
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using 
Processing-in-Memory Technologies" 
to appear in BMC Genomics, 2018.  
to also appear in Proceedings of the 16th Asia Pacific Bioinformatics 
Conference (APBC), Yokohama, Japan, January 2018.  
arxiv.org Version (pdf) 
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http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
http://apbc2018.bio.keio.ac.jp/
https://arxiv.org/pdf/1711.01177.pdf


New Genome Sequencing Technologies 
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Senol Cali+, “Nanopore Sequencing Technology and Tools for Genome  
Assembly: Computational Analysis of the Current State, Bottlenecks  
and Future Directions,”  to appear in Briefings in Bioinformatics, 2018. 
[Preliminary arxiv.org version] 
 
 

https://arxiv.org/pdf/1711.08774.pdf


Memory & Storage 
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The Main Memory System 

 

 

 

 

 

 
 

 Main memory is a critical component of all computing 
systems: server, mobile, embedded, desktop, sensor 

 

 Main memory system must scale (in size, technology, 
efficiency, cost, and management algorithms) to maintain 
performance growth and technology scaling benefits 
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Processors 

and caches 
Main Memory Storage (SSD/HDD) 



The Main Memory System 

 

 

 

 

 

 
 

 Main memory is a critical component of all computing 
systems: server, mobile, embedded, desktop, sensor 

 

 Main memory system must scale (in size, technology, 
efficiency, cost, and management algorithms) to maintain 
performance growth and technology scaling benefits 
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Main Memory Storage (SSD/HDD) FPGAs 



The Main Memory System 

 

 

 

 

 

 
 

 Main memory is a critical component of all computing 
systems: server, mobile, embedded, desktop, sensor 

 

 Main memory system must scale (in size, technology, 
efficiency, cost, and management algorithms) to maintain 
performance growth and technology scaling benefits 
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Main Memory Storage (SSD/HDD) GPUs 



Memory System: A Shared Resource View 
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Storage 

Most of the system is dedicated to storing and moving data  



State of the Main Memory System 

 Recent technology, architecture, and application trends 

 lead to new requirements 

 exacerbate old requirements 

 

 DRAM and memory controllers, as we know them today, 
are (will be) unlikely to satisfy all requirements 

 

 Some emerging non-volatile memory technologies (e.g., 
PCM) enable new opportunities: memory+storage merging 

 

 We need to rethink the main memory system 

 to fix DRAM issues and enable emerging technologies  

 to satisfy all requirements 

 

 

11 



Major Trends Affecting Main Memory (I) 

 Need for main memory capacity, bandwidth, QoS increasing  

 

 

 

 

 Main memory energy/power is a key system design concern 

 

 

 

 DRAM technology scaling is ending  
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Major Trends Affecting Main Memory (II) 

 Need for main memory capacity, bandwidth, QoS increasing  

 Multi-core: increasing number of cores/agents 

 Data-intensive applications: increasing demand/hunger for data 

 Consolidation: cloud computing, GPUs, mobile, heterogeneity 

 

 

 Main memory energy/power is a key system design concern 

 

 

 

 DRAM technology scaling is ending  
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Example: The Memory Capacity Gap 

 

 

 

 

 

 

 

 

 

 
 

 Memory capacity per core expected to drop by 30% every two years 

 Trends worse for memory bandwidth per core! 
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Core count doubling ~ every 2 years  

DRAM DIMM capacity doubling ~ every 3 years 

Lim et al., ISCA 2009 
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Capacity Bandwidth Latency

Example: Capacity, Bandwidth & Latency 

128x 

20x 

1.3x 

Memory latency remains almost constant 



DRAM Latency Is Critical for Performance 

In-Memory Data Analytics  
[Clapp+ (Intel), IISWC’15;   
 Awan+, BDCloud’15] 

Datacenter Workloads  
[Kanev+ (Google), ISCA’15] 

In-memory Databases  
[Mao+, EuroSys’12;  
Clapp+ (Intel), IISWC’15] 

Graph/Tree Processing  
[Xu+, IISWC’12; Umuroglu+, FPL’15] 



DRAM Latency Is Critical for Performance 

In-Memory Data Analytics  
[Clapp+ (Intel), IISWC’15;   
 Awan+, BDCloud’15] 

Datacenter Workloads  
[Kanev+ (Google), ISCA’15] 

In-memory Databases  
[Mao+, EuroSys’12;  
Clapp+ (Intel), IISWC’15] 

Graph/Tree Processing  
[Xu+, IISWC’12; Umuroglu+, FPL’15] 

Long memory latency → performance bottleneck 



Major Trends Affecting Main Memory (III) 

 Need for main memory capacity, bandwidth, QoS increasing  

 

 

 

 Main memory energy/power is a key system design concern 

 ~40-50% energy spent in off-chip memory hierarchy [Lefurgy, 

IEEE Computer’03] >40% power in DRAM [Ware, HPCA’10][Paul,ISCA’15] 

 DRAM consumes power even when not used (periodic refresh) 

 

 DRAM technology scaling is ending  
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Major Trends Affecting Main Memory (IV) 

 Need for main memory capacity, bandwidth, QoS increasing  

 

 

 

 

 Main memory energy/power is a key system design concern 

 

 

 DRAM technology scaling is ending  

 ITRS projects DRAM will not scale easily below X nm  

 Scaling has provided many benefits:  

 higher capacity (density), lower cost, lower energy 
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Major Trends Affecting Main Memory (V) 
 DRAM scaling has already become increasingly difficult 

 Increasing cell leakage current, reduced cell reliability, 
increasing manufacturing difficulties [Kim+ ISCA 2014], 

[Liu+ ISCA 2013], [Mutlu IMW 2013], [Mutlu DATE 2017] 

 Difficult to significantly improve capacity, energy 

 Emerging memory technologies are promising 

 3D-Stacked DRAM higher bandwidth smaller capacity 

Reduced-Latency DRAM 
(e.g., RLDRAM, TL-DRAM) 

lower latency higher cost 

Low-Power DRAM 
(e.g., LPDDR3, LPDDR4) 

lower power 
higher latency 

higher cost 

Non-Volatile Memory (NVM) 
(e.g., PCM, STTRAM, ReRAM, 
3D Xpoint) 

larger capacity 
higher latency 

higher dynamic power 
lower endurance 
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Major Trends Affecting Main Memory (V) 
 DRAM scaling has already become increasingly difficult 

 Increasing cell leakage current, reduced cell reliability, 
increasing manufacturing difficulties [Kim+ ISCA 2014], 

[Liu+ ISCA 2013], [Mutlu IMW 2013], [Mutlu DATE 2017] 

 Difficult to significantly improve capacity, energy 

 Emerging memory technologies are promising 

 3D-Stacked DRAM higher bandwidth smaller capacity 

Reduced-Latency DRAM 
(e.g., RL/TL-DRAM, FLY-RAM) 

lower latency higher cost 

Low-Power DRAM 
(e.g., LPDDR3, LPDDR4, Voltron) 

lower power 
higher latency 

higher cost 

Non-Volatile Memory (NVM) 
(e.g., PCM, STTRAM, ReRAM, 3D 
Xpoint) 

larger capacity 
higher latency 

higher dynamic power 
lower endurance 
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Major Trend: Hybrid Main Memory 

 

 

 

 

 

 

 

 

 

 
Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012. 
Yoon+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best 
Paper Award. 

 

 

CPU 
DRAM
Ctrl 

Fast, durable 
Small,  

leaky, volatile,  
high-cost 

Large, non-volatile, low-cost 
Slow, wears out, high active energy 

PCM 
Ctrl 

DRAM Phase Change Memory (or Tech. X) 

Hardware/software manage data allocation and movement  
to achieve the best of multiple technologies 



Foreshadowing 

Main Memory Needs  

Intelligent Controllers 
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Industry Is Writing Papers About It, Too 

24 



Call for Intelligent Memory Controllers 
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Agenda 

 Major Trends Affecting Main Memory 

 The Need for Intelligent Memory Controllers 

 Bottom Up: Push from Circuits and Devices 

 Top Down: Pull from Systems and Applications  

 Processing in Memory: Two Directions 

 Minimally Changing Memory Chips 

 Exploiting 3D-Stacked Memory 

 How to Enable Adoption of Processing in Memory 

 Conclusion 
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Maslow’s (Human) Hierarchy of Needs 

 

 

 

 

 

 

 

 

 

 

 We need to start with reliability and security… 
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Maslow, “A Theory of Human Motivation,”  
Psychological Review, 1943.  

Source: https://www.simplypsychology.org/maslow.html 

Maslow, “A Theory of Human Motivation,”  
Psychological Review, 1943.  
 
Maslow, “Motivation and Personality,” 
Book, 1954-1970. 



The DRAM Scaling Problem 

 DRAM stores charge in a capacitor (charge-based memory) 

 Capacitor must be large enough for reliable sensing 

 Access transistor should be large enough for low leakage and high 
retention time 

 Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009] 

 

 

 

 

 

 

 

 

 DRAM capacity, cost, and energy/power hard to scale 
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As Memory Scales, It Becomes Unreliable 
 Data from all of Facebook’s servers worldwide 
 Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers,” DSN’15. 
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Large-Scale Failure Analysis of DRAM Chips 

 Analysis and modeling of memory errors found in all of 
Facebook’s server fleet 
 

 Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu, 
"Revisiting Memory Errors in Large-Scale Production Data 
Centers: Analysis and Modeling of New Trends from the Field"  
Proceedings of the 45th Annual IEEE/IFIP International Conference on 
Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June 
2015.  
[Slides (pptx) (pdf)] [DRAM Error Model]  
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http://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15.pdf
http://2015.dsn.org/
http://2015.dsn.org/
http://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15-talk.pdf
https://www.ece.cmu.edu/~safari/tools/memerr/index.html


Infrastructures to Understand Such Issues 
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An Experimental Study of Data Retention 
Behavior in Modern DRAM Devices: 
Implications for Retention Time Profiling 
Mechanisms (Liu et al., ISCA 2013) 
 
The Efficacy of Error Mitigation Techniques 
for DRAM Retention Failures: A 
Comparative Experimental Study  
(Khan et al., SIGMETRICS 2014) 

Flipping Bits in Memory Without Accessing 
Them: An Experimental Study of DRAM 
Disturbance Errors (Kim et al., ISCA 2014) 
 
Adaptive-Latency DRAM: Optimizing DRAM 
Timing for the Common-Case (Lee et al., 
HPCA 2015) 
 
AVATAR: A Variable-Retention-Time (VRT) 
Aware Refresh for DRAM Systems (Qureshi 
et al., DSN 2015) 

http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_sigmetrics14.pdf
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_sigmetrics14.pdf
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_sigmetrics14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15.pdf
http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15.pdf
http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15.pdf
http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15.pdf
http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15.pdf
http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15.pdf


Infrastructures to Understand Such Issues 

32 Kim+, “Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors,” ISCA 2014. 

Temperature 
Controller 

 

PC 

Heater FPGAs FPGAs 



SoftMC: Open Source DRAM Infrastructure 

 Hasan Hassan et al., “SoftMC: A 
Flexible and Practical Open-
Source Infrastructure for 
Enabling Experimental DRAM 
Studies,” HPCA 2017. 

 

 

 Flexible 

 Easy to Use (C++ API) 

 Open-source  

    github.com/CMU-SAFARI/SoftMC  
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https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf
https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf
https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf
https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf
https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf
https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf


SoftMC 

 https://github.com/CMU-SAFARI/SoftMC  
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https://github.com/CMU-SAFARI/SoftMC
https://github.com/CMU-SAFARI/SoftMC
https://github.com/CMU-SAFARI/SoftMC


Data Retention in Memory [Liu et al., ISCA 2013] 

 Retention Time Profile of DRAM looks like this: 
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Location dependent 
Stored value pattern dependent 

Time dependent 



A Curious Discovery [Kim et al., ISCA 2014] 

 

 

One can  

predictably induce errors  

in most DRAM memory chips 
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DRAM RowHammer 

A simple hardware failure mechanism  

can create a widespread  

system security vulnerability 
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 Row of Cells 

 Row 

 Row 

 Row 

 Row 

 Wordline 

 VLOW  VHIGH 

 Victim Row 

 Victim Row 

 Hammered Row 

Repeatedly reading a row enough times (before memory gets 

refreshed) induces disturbance errors in adjacent rows in most 

real DRAM chips you can buy today 

Opened Closed 
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Modern DRAM is Prone to Disturbance Errors 

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM 

Disturbance Errors, (Kim et al., ISCA 2014) 

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf


86% 
(37/43) 

83% 
(45/54) 

88% 
(28/32) 

A company B company C company 

Up to 

1.0×107  

errors  

Up to 

2.7×106 
errors  

Up to 

3.3×105  

errors  
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Most DRAM Modules Are Vulnerable 

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM 

Disturbance Errors, (Kim et al., ISCA 2014) 

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf


40 

Recent DRAM Is More Vulnerable 



41 

First 
Appearance 

Recent DRAM Is More Vulnerable 



42 

All modules from 2012–2013 are vulnerable 

First 
Appearance 

Recent DRAM Is More Vulnerable 



One Can Take Over an Otherwise-Secure System 
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Exploiting the DRAM rowhammer bug to 
gain kernel privileges  (Seaborn, 2015) 

Flipping Bits in Memory Without Accessing Them: 
An Experimental Study of DRAM Disturbance Errors 
(Kim et al., ISCA 2014) 

http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf


Security Implications 

44 



More Security Implications 

45 
Source: https://lab.dsst.io/32c3-slides/7197.html  

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript (DIMVA’16) 

“We can gain unrestricted access to systems of website visitors.” 

https://lab.dsst.io/32c3-slides/7197.html
https://lab.dsst.io/32c3-slides/7197.html
https://lab.dsst.io/32c3-slides/7197.html


More Security Implications 

46 
Source: https://fossbytes.com/drammer-rowhammer-attack-android-root-devices/ 

Drammer: Deterministic Rowhammer 
Attacks on Mobile Platforms, CCS’16  

“Can gain control of a smart phone deterministically” 



More Security Implications? 
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More on RowHammer Analysis 
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 Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk 
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu, 
"Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors" 
Proceedings of the 41st International Symposium on Computer 
Architecture (ISCA), Minneapolis, MN, June 2014.  
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code 
and Data] 

https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_isca14.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_isca14.pdf
http://cag.engr.uconn.edu/isca2014/
http://cag.engr.uconn.edu/isca2014/
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_talk_isca14.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_talk_isca14.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pdf
https://github.com/CMU-SAFARI/rowhammer
https://github.com/CMU-SAFARI/rowhammer


Future of Memory Reliability 

49 https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf  

 

 Onur Mutlu, 
"The RowHammer Problem and Other Issues We May Face as 
Memory Becomes Denser"  
Invited Paper in Proceedings of the Design, Automation, and Test in 
Europe Conference (DATE), Lausanne, Switzerland, March 2017.  
[Slides (pptx) (pdf)]  

https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
http://www.date-conference.com/
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pdf


Call for Intelligent Memory Controllers 
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Aside: Intelligent Controller for NAND Flash 

USB Jack 

Virtex-II Pro 

(USB controller) 

Virtex-V FPGA 

(NAND Controller) 

HAPS-52 Mother Board 

USB Daughter Board 

NAND Daughter Board 

1x-nm 

NAND Flash 

[DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014, 
HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017, PIEEE’17] 

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017. 



Aside: Intelligent Controller for NAND Flash 
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https://arxiv.org/pdf/1706.08642   

Proceedings of the IEEE, Sept. 2017 

https://arxiv.org/pdf/1706.08642
https://arxiv.org/pdf/1706.08642


Takeaway 

Main Memory Needs  

Intelligent Controllers 
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Agenda 

 Major Trends Affecting Main Memory 

 The Need for Intelligent Memory Controllers 

 Bottom Up: Push from Circuits and Devices 

 Top Down: Pull from Systems and Applications  

 Processing in Memory: Two Directions 

 Minimally Changing Memory Chips 

 Exploiting 3D-Stacked Memory 

 How to Enable Adoption of Processing in Memory 

 Conclusion 
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Three Key Systems Trends 

1. Data access is a major bottleneck 
 Applications are increasingly data hungry 

 

 

2. Energy consumption is a key limiter 
 

 

3. Data movement energy dominates compute 
 Especially true for off-chip to on-chip movement 
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The Need for More Memory Performance 

In-Memory Data Analytics  
[Clapp+ (Intel), IISWC’15;   
 Awan+, BDCloud’15] 

Datacenter Workloads  
[Kanev+ (Google), ISCA’15] 

In-memory Databases  
[Mao+, EuroSys’12;  
Clapp+ (Intel), IISWC’15] 

Graph/Tree Processing  
[Xu+, IISWC’12; Umuroglu+, FPL’15] 



The Performance Perspective (1996-2005) 

 “It’s the Memory, Stupid!” (Richard Sites, MPR, 1996) 

Mutlu+, “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003. 



The Performance Perspective 
 

 Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,  
"Runahead Execution: An Alternative to Very Large Instruction 
Windows for Out-of-order Processors" 
Proceedings of the 9th International Symposium on High-Performance 
Computer Architecture (HPCA), pages 129-140, Anaheim, CA, February 
2003. Slides (pdf)  
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https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
http://www.cs.arizona.edu/hpca9/
http://www.cs.arizona.edu/hpca9/
http://www.cs.arizona.edu/hpca9/
http://www.cs.arizona.edu/hpca9/
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03_talk.pdf


The Performance Perspective (Today) 

 All of Google’s Data Center Workloads (2015):  

59 Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015. 



The Performance Perspective (Today) 

 All of Google’s Data Center Workloads (2015):  

60 Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015. 



The Energy Perspective 

61 

Dally, HiPEAC 2015 



Data Movement vs. Computation Energy 

62 

Dally, HiPEAC 2015 

A memory access consumes ~1000X  
the energy of a complex addition  



Data Movement vs. Computation Energy 

 Data movement is a major system energy bottleneck 

 Comprises 41% of mobile system energy during web browsing [2] 

 Costs ~115 times as much energy as an ADD operation [1, 2] 
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[ϭ]: ReduĐiŶg data MoǀeŵeŶt EŶergy ǀia OŶliŶe Data ClusteriŶg aŶd EŶĐodiŶg ;MICRO’ϭ6Ϳ 

[Ϯ]: QuaŶtifyiŶg the eŶergy Đost of data ŵoǀeŵeŶt for eŵergiŶg sŵart phoŶe ǁorkloads oŶ ŵoďile platforŵs ;IISWC’ϭ4Ϳ 



Challenge and Opportunity for Future 

High Performance 

and 

Energy Efficient 
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Maslow’s (Human) Hierarchy of Needs, Revisited 
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Maslow, “A Theory of Human Motivation,”  
Psychological Review, 1943.  

Everlasting energy 

Source: https://www.simplypsychology.org/maslow.html 

Maslow, “A Theory of Human Motivation,”  
Psychological Review, 1943.  
 
Maslow, “Motivation and Personality,” 
Book, 1954-1970. 



The Problem 

Data access is the major performance and energy bottleneck 
 

 

Our current 

design principles  

cause great energy waste 
(and great performance loss) 
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The Problem 

Processing of data  

is performed  

far away from the data 

67 



A Computing System 

 Three key components 

 Computation  

 Communication 

 Storage/memory 

68 

Burks, Goldstein, von Neumann, “Preliminary discussion of the 
logical design of an electronic computing instrument,” 1946. 

Image source: https://lbsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/ 



A Computing System 

 Three key components 

 Computation  

 Communication 

 Storage/memory 
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Burks, Goldstein, von Neumann, “Preliminary discussion of the 
logical design of an electronic computing instrument,” 1946. 

Image source: https://lbsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/ 



Today’s Computing Systems 
 Are overwhelmingly processor centric 

 All data processed in the processor  at great system cost 

 Processor is heavily optimized and is considered the master 

 Data storage units are dumb and are largely unoptimized 
(except for some that are on the processor die) 
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Yet … 

 “It’s the Memory, Stupid!” (Richard Sites, MPR, 1996) 

Mutlu+, “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003. 



Perils of Processor-Centric Design 
 

 Grossly-imbalanced systems 

 Processing done only in one place 

 Everything else just stores and moves data: data moves a lot 

 Energy inefficient  

 Low performance 

 Complex 

 

 Overly complex and bloated processor (and accelerators) 

 To tolerate data access from memory 

 Complex hierarchies and mechanisms  

 Energy inefficient  

 Low performance 

 Complex 
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Perils of Processor-Centric Design 
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Most of the system is dedicated to storing and moving data  



We Do Not Want to Move Data! 
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Dally, HiPEAC 2015 

A memory access consumes ~1000X  
the energy of a complex addition  



Energy Waste in Mobile Devices 
 Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul 

Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu, 
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"  
Proceedings of the 23rd International Conference on Architectural Support for Programming 
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018. 
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62.7% of the total system energy  
is spent on data movement 

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/
https://www.asplos2018.org/


We Need A Paradigm Shift To … 

 

 Enable computation with minimal data movement 

 

 

 Compute where it makes sense (where data resides) 

 

 

 Make computing architectures more data-centric 
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Goal: Processing Inside Memory 

 

 

 

 

 

 

 

 Many questions … How do we design the: 

 compute-capable memory & controllers? 

 processor chip? 

 software and hardware interfaces? 

 system software and languages? 

 algorithms? 

Cache 

Processor 
Core 

 Interconnect 

 Memory 
Database 
 
Graphs 
 
Media   

Query 

Results 

Micro-architecture 

SW/HW Interface 

Program/Language 

Algorithm 

Problem 

Logic 
 
Devices 

System Software 

Electrons 



Why In-Memory Computation Today? 

 Push from Technology 

 DRAM Scaling at jeopardy  

    Controllers close to DRAM 

    Industry open to new memory architectures 

 

 

 

 Pull from Systems and Applications 

 Data access is a major system and application bottleneck 

 Systems are energy limited 

 Data movement much more energy-hungry than computation 
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Dally, HiPEAC 2015 



Agenda 

 Major Trends Affecting Main Memory 

 The Need for Intelligent Memory Controllers 

 Bottom Up: Push from Circuits and Devices 

 Top Down: Pull from Systems and Applications  

 Processing in Memory: Two Directions 

 Minimally Changing Memory Chips 

 Exploiting 3D-Stacked Memory 

 How to Enable Adoption of Processing in Memory 

 Conclusion 
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Processing in Memory: 

  Two Approaches 

1. Minimally changing memory chips 

2. Exploiting 3D-stacked memory 

80 



Approach 1: Minimally Changing DRAM 

 DRAM has great capability to perform bulk data movement and 
computation internally with small changes 

 Can exploit internal connectivity to move data 

 Can exploit analog computation capability 

 … 

 

 Examples: RowClone, In-DRAM AND/OR, Gather/Scatter DRAM 
 RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data 

(Seshadri et al., MICRO 2013) 

 Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015) 

 Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial 
Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015) 

 "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity 
DRAM Technology” (Seshadri et al., MICRO 2017) 
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http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
https://users.ece.cmu.edu/~omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
https://users.ece.cmu.edu/~omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
https://users.ece.cmu.edu/~omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
https://users.ece.cmu.edu/~omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
https://users.ece.cmu.edu/~omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
https://users.ece.cmu.edu/~omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
https://users.ece.cmu.edu/~omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
https://users.ece.cmu.edu/~omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf


Starting Simple: Data Copy and Initialization 

82 

Forking 

00000

00000

00000 

Zero initialization 
(e.g., security) 

VM Cloning 
Deduplication 

Checkpointing 

Page Migration 

Many more 

memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ ISCA’15] 



Today’s Systems: Bulk Data Copy 

Memory 

 

 
 

 
 

 

 

MC L3 L2 L1 CPU 

1) High latency 

2) High bandwidth utilization 

3) Cache pollution 

4) Unwanted data movement 
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1046ns, 3.6uJ    (for 4KB page copy via DMA) 



Future Systems: In-Memory Copy 

Memory 

 

 
 

 
 

 

 

MC L3 L2 L1 CPU 

1) Low latency 

2) Low bandwidth utilization 

3) No cache pollution 

4) No unwanted data movement 

84 
1046ns, 3.6uJ    90ns, 0.04uJ 



RowClone: In-DRAM Row Copy 

Row Buffer (4 Kbytes) 

Data Bus 

8 bits 

DRAM subarray 

4 Kbytes 

Step 1: Activate row A 

Transfer 
row 

Step 2: Activate row B 

 
Transfer 
row 

Negligible HW cost 
   Idea: Two consecutive ACTivates 



RowClone: Latency and Energy Savings 
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86 
Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and 
Initialization of Bulk Data,” MICRO 2013. 



More on RowClone 

 Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata 
Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A. 
Kozuch, Phillip B. Gibbons, and Todd C. Mowry, 
"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and 
Initialization" 
Proceedings of the 46th International Symposium on Microarchitecture 
(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning Session 
Slides (pptx) (pdf)] [Poster (pptx) (pdf)]  
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http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://www.microarch.org/micro46/
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pdf


Memory as an Accelerator 

CPU 
core 

CPU 
core 

CPU 
core 

CPU 
core 
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video 
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GPU 
(throughput) 

core 

GPU 
(throughput) 

core 

GPU 
(throughput) 

core 

GPU 
(throughput) 

core 

LLC 

Memory Controller 
Specialized 

compute-capability 
in memory 

Memory imaging 
core 

Memory Bus 

Memory similar to a “conventional” accelerator 



In-Memory Bulk Bitwise Operations 

 We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ 

 At low cost 

 Using analog computation capability of DRAM 

 Idea: activating multiple rows performs computation 

 30-60X performance and energy improvement 

 Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations 
Using Commodity DRAM Technology,” MICRO 2017. 

 

 

 New memory technologies enable even more opportunities 

 Memristors, resistive RAM, phase change mem, STT-MRAM, … 

 Can operate on data with minimal movement 
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In-DRAM AND/OR: Triple Row Activation 
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Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015. 



In-DRAM NOT: Dual Contact Cell 
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Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017. 

Idea:  
Feed the  

negated value  
in the sense amplifier 

into a special row 



Performance: In-DRAM Bitwise Operations 
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Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017. 



Energy of In-DRAM Bitwise Operations 
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Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017. 



Ambit vs. DDR3: Performance and 

Energy 
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Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017. 



Bulk Bitwise Operations in Workloads 

[1] Li and Patel, BitWeaving, SIGMOD 2013 

[2] Goodwin+, BitFunnel, SIGIR 2017 



Example Data Structure: Bitmap Index 

 Alternative to B-tree and its variants 

 Efficient for performing range queries and joins 

 Many bitwise operations to perform a query 
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Performance: Bitmap Index on Ambit 
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Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017. 



Performance: BitWeaving on Ambit 
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Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017. 



More on In-DRAM Bulk AND/OR 

 Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk 
Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and 
Todd C. Mowry, 
"Fast Bulk Bitwise AND and OR in DRAM" 
IEEE Computer Architecture Letters (CAL), April 2015.  
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http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://www.computer.org/web/cal


More on Ambit 

 Vivek Seshadri et al., “Ambit: In-Memory Accelerator 
for Bulk Bitwise Operations Using Commodity DRAM 
Technology,” MICRO 2017. 
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https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
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Challenge and Opportunity for Future 

Computing Architectures 

with  

Minimal Data Movement 
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Challenge: Intelligent Memory Device 

 

Does memory 

have to be 

dumb? 
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Agenda 

 Major Trends Affecting Main Memory 

 The Need for Intelligent Memory Controllers 

 Bottom Up: Push from Circuits and Devices 

 Top Down: Pull from Systems and Applications  

 Processing in Memory: Two Directions 

 Minimally Changing Memory Chips 

 Exploiting 3D-Stacked Memory 

 How to Enable Adoption of Processing in Memory 

 Conclusion 
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Opportunity: 3D-Stacked Logic+Memory 
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Logic 

Memory 

Other “True 3D” technologies 
under development 



DRAM Landscape (circa 2015) 
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Kim+, “Ramulator: A Flexible and Extensible DRAM Simulator”, IEEE CAL 2015. 



Two Key Questions in 3D-Stacked PIM 

 How can we accelerate important applications if we use         
3D-stacked memory as a coarse-grained accelerator? 

 what is the architecture and programming model? 

 what are the mechanisms for acceleration? 

 

 

 What is the minimal processing-in-memory support we can 
provide? 

 without changing the system significantly 

 while achieving significant benefits 
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Graph Processing 
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 Large graphs are everywhere (circa 2015) 
 

 

 

 

 

 

 Scalable large-scale graph processing is challenging 

36 Million  
Wikipedia Pages 

1.4 Billion 
Facebook Users 

300 Million 
Twitter Users 

30 Billion 
Instagram Photos 

+42% 

0 1 2 3 4

128…

32 Cores

Speedup 



Key Bottlenecks in Graph Processing 
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for (v: graph.vertices) { 

    for (w: v.successors) { 

        w.next_rank += weight * v.rank; 

    } 

} 

weight * v.rank 

v 

w 

&w 

1. Frequent random memory accesses 

2. Little amount of computation 

w.rank 

w.next_rank 

w.edges 

… 



Tesseract System for Graph Processing 
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Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015. 



Logic 

Memory 

Tesseract System for Graph Processing 
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Logic 

Memory 

Tesseract System for Graph Processing 
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Evaluated Systems 
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Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015. 



Tesseract Graph Processing Performance 

+56% +25% 
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>13X Performance Improvement 

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015. 

On five graph processing algorithms 



Tesseract Graph Processing Performance 
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Tesseract Graph Processing System Energy 
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HMC-OoO Tesseract with Prefetching

Memory Layers Logic Layers Cores

> 8X Energy Reduction 

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015. 



More on Tesseract 

 Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, 
and Kiyoung Choi, 
"A Scalable Processing-in-Memory Accelerator for 
Parallel Graph Processing" 
Proceedings of the 42nd International Symposium on 
Computer Architecture (ISCA), Portland, OR, June 2015.  
[Slides (pdf)] [Lightning Session Slides (pdf)] 
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PIM on Mobile Devices 

 Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata 
Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki 
Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu, 
"Google Workloads for Consumer Devices: Mitigating Data 
Movement Bottlenecks"  
Proceedings of the 23rd International Conference on Architectural 
Support for Programming Languages and Operating 
Systems (ASPLOS), Williamsburg, VA, USA, March 2018. 
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Truly Distributed GPU Processing with PIM? 

Logic layer 
SM 

Crossbar switch 

Vault 
Ctrl 

…. Vault 
Ctrl 

Logic layer 

Main GPU 

3D-stacked memory 
(memory stack) SM (Streaming Multiprocessor) 



Accelerating GPU Execution with PIM (I) 

 Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike 
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler, 
"Transparent Offloading and Mapping (TOM): Enabling 
Programmer-Transparent Near-Data Processing in GPU 
Systems" 
Proceedings of the 43rd International Symposium on Computer 
Architecture (ISCA), Seoul, South Korea, June 2016.  
[Slides (pptx) (pdf)]  
[Lightning Session Slides (pptx) (pdf)]  
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Accelerating GPU Execution with PIM (II) 

 Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K. 
Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das, 
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities" 
Proceedings of the 25th International Conference on Parallel 
Architectures and Compilation Techniques (PACT), Haifa, Israel, 
September 2016. 
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Two Key Questions in 3D-Stacked PIM 

 How can we accelerate important applications if we use         
3D-stacked memory as a coarse-grained accelerator? 

 what is the architecture and programming model? 

 what are the mechanisms for acceleration? 

 

 

 What is the minimal processing-in-memory support we can 
provide? 

 without changing the system significantly 

 while achieving significant benefits 
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Simpler PIM: PIM-Enabled Instructions 

 Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi, 
"PIM-Enabled Instructions: A Low-Overhead, 
Locality-Aware Processing-in-Memory Architecture" 
Proceedings of the 42nd International Symposium on 
Computer Architecture (ISCA), Portland, OR, June 2015.  
[Slides (pdf)] [Lightning Session Slides (pdf)]   
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Automatic Code and Data Mapping  

 Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike 
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler, 
"Transparent Offloading and Mapping (TOM): Enabling 
Programmer-Transparent Near-Data Processing in GPU 
Systems" 
Proceedings of the 43rd International Symposium on Computer 
Architecture (ISCA), Seoul, South Korea, June 2016.  
[Slides (pptx) (pdf)]  
[Lightning Session Slides (pptx) (pdf)]  
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Challenge and Opportunity for Future 

Fundamentally 

Energy-Efficient 

(Data-Centric) 

Computing Architectures 
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Challenge and Opportunity for Future 

Fundamentally 

Low-Latency 

(Data-Centric) 

Computing Architectures 
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Agenda 

 Major Trends Affecting Main Memory 

 The Need for Intelligent Memory Controllers 

 Bottom Up: Push from Circuits and Devices 

 Top Down: Pull from Systems and Applications  

 Processing in Memory: Two Directions 

 Minimally Changing Memory Chips 

 Exploiting 3D-Stacked Memory 

 How to Enable Adoption of Processing in Memory 

 Conclusion 
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Eliminating the Adoption Barriers 

 

How to Enable Adoption 
of Processing in Memory 
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Barriers to Adoption of PIM 

1. Functionality of and applications for PIM 

 

2. Ease of programming (interfaces and compiler/HW support) 

 

3. System support: coherence & virtual memory 

 

4. Runtime systems for adaptive scheduling, data mapping, 
access/sharing control 

 

5. Infrastructures to assess benefits and feasibility 
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We Need to Revisit the Entire Stack 
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Micro-architecture 

SW/HW Interface 

Program/Language 

Algorithm 

Problem 

Logic 
 
Devices 

System Software 

Electrons 



Key Challenge 1: Code Mapping 

Logic layer 
SM 

Crossbar switch 

Vault 
Ctrl 

…. Vault 
Ctrl 

Logic layer 

? 

Main GPU 

3D-stacked memory 
(memory stack) 

• Challenge 1: Which operations should be executed 
in memory vs. in CPU? 

 

? 
SM (Streaming Multiprocessor) 



Key Challenge 2: Data Mapping 

Logic layer 
SM 

Crossbar switch 

Vault 
Ctrl 

…. Vault 
Ctrl 

Logic layer 

Main GPU 

3D-stacked memory 
(memory stack) 

• Challenge 2: How should data be mapped to 
different 3D memory stacks?  

 

SM (Streaming Multiprocessor) 



How to Do the Code and Data Mapping? 

 Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike 
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler, 
"Transparent Offloading and Mapping (TOM): Enabling 
Programmer-Transparent Near-Data Processing in GPU 
Systems" 
Proceedings of the 43rd International Symposium on Computer 
Architecture (ISCA), Seoul, South Korea, June 2016.  
[Slides (pptx) (pdf)]  
[Lightning Session Slides (pptx) (pdf)]  
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How to Schedule Code? 

 Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K. 
Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das, 
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities" 
Proceedings of the 25th International Conference on Parallel 
Architectures and Compilation Techniques (PACT), Haifa, Israel, 
September 2016. 
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Challenge: Coherence for Hybrid CPU-PIM Apps 

134 

Traditional 

coherence 

No coherence 

overhead 



How to Maintain Coherence? 

 Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan 
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, 
Hongzhong Zheng, and Onur Mutlu, 
"LazyPIM: An Efficient Cache Coherence Mechanism 
for Processing-in-Memory" 
IEEE Computer Architecture Letters (CAL), June 2016. 
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How to Support Virtual Memory? 

 Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali 
Boroumand, Saugata Ghose, and Onur Mutlu, 
"Accelerating Pointer Chasing in 3D-Stacked Memory: 
Challenges, Mechanisms, Evaluation" 
Proceedings of the 34th IEEE International Conference on Computer 
Design (ICCD), Phoenix, AZ, USA, October 2016.  
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How to Design Data Structures for PIM? 

 Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu, 
"Concurrent Data Structures for Near-Memory Computing" 
Proceedings of the 29th ACM Symposium on Parallelism in Algorithms 
and Architectures (SPAA), Washington, DC, USA, July 2017.  
[Slides (pptx) (pdf)]  
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Simulation Infrastructures for PIM 

 Ramulator extended for PIM 

 Flexible and extensible DRAM simulator 

 Can model many different memory standards and proposals 

 Kim+, “Ramulator: A Flexible and Extensible DRAM 
Simulator”, IEEE CAL 2015. 

 https://github.com/CMU-SAFARI/ramulator  
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An FPGA-based Test-bed for PIM? 

 Hasan Hassan et al., SoftMC: A 
Flexible and Practical Open-
Source Infrastructure for 
Enabling Experimental DRAM 
Studies HPCA 2017. 

 

 

 Flexible 

 Easy to Use (C++ API) 

 Open-source  

    github.com/CMU-SAFARI/SoftMC  
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Genome Read Mapping in PIM 
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Goals 

 Understand the primitives, architectures, and benefits of 
PIM by carefully examining many important workloads 

 

 Develop a common workload suite for PIM research 

141 



Genome Read In-Memory (GRIM) Filter:  
Fast Location Filtering in DNA Read Mapping  

with Emerging Memory Technologies 

Jeremie Kim,  

Damla Senol, Hongyi Xin, Donghyuk Lee,  

Saugata Ghose, Mohammed Alser, Hasan Hassan,  

Oguz Ergin, Can Alkan, and Onur Mutlu 



Executive Summary 

 Genome Read Mapping is a very important problem and is the first 
step in many types of genomic analysis 

 Could lead to improved health care, medicine, quality of life 

 

 Read mapping is an approximate string matching problem 

 Find the best fit of 100 character strings into a 3 billion character dictionary 

 Alignment is currently the best method for determining the similarity between 
two strings, but is very expensive 

 

 We propose an in-memory processing algorithm GRIM-Filter for 
accelerating read mapping, by reducing the number of required 
alignments 

 

 We implement GRIM-Filter using in-memory processing within 3D-
stacked memory and show up to 3.7x speedup. 
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GRIM-Filter in 3D-stacked DRAM 

 The layout of bit vectors in a bank enables filtering many bins in parallel 

 Customized logic for accumulation and comparison per genome segment 

 Low area overhead, simple implementation 
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GRIM-Filter Performance 
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Time (x1000 
seconds) 

1.8x-3.7x performance benefit across real data sets 

 

 

Benchmarks and their Execution Times 



GRIM-Filter False Positive Rate 
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False Positive 
Rate (%) 

5.6x-6.4x False Positive reduction across real data sets 

Benchmarks and their False Positive Rates 



Conclusions 

 We propose an in memory filter algorithm to accelerate end-
to-end genome read mapping by reducing the number of 
required alignments 

 

 Compared to the previous best filter 

 We observed 1.8x-3.7x speedup 

 We observed 5.6x-6.4x fewer false positives 

 

 GRIM-Filter is a universal filter that can be applied to any 
genome read mapper  
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PIM-Based DNA Sequence Analysis 

 Jeremie Kim, Damla Senol, Hongyi Xin, Donghyuk Lee, Mohammed 
Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu, 
"Genome Read In-Memory (GRIM) Filter: Fast Location Filtering 
in DNA Read Mapping Using Emerging Memory Technologies"  
Pacific Symposium on Biocomputing (PSB) Poster Session, Hawaii, 
January 2017.  
[Poster (pdf) (pptx)] [Abstract (pdf)] 

 To Appear in APBC 2018 and BMC Genomics 2018. 
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 Major Trends Affecting Main Memory 
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Maslow’s Hierarchy of Needs, A Third Time 
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Speed 

Speed 

Speed 

Speed 

Speed 

Source: https://www.simplypsychology.org/maslow.html 

Maslow, “A Theory of Human Motivation,”  
Psychological Review, 1943.  
 
Maslow, “Motivation and Personality,” 
Book, 1954-1970. 



Challenge and Opportunity for Future 

Fundamentally 

Energy-Efficient 

(Data-Centric) 

Computing Architectures 
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Challenge and Opportunity for Future 

Fundamentally 

Low-Latency 

(Data-Centric) 

Computing Architectures 
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 Concluding Remarks 
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A Quote from A Famous Architect 

 “architecture […] based upon principle, and not upon 
precedent” 
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Precedent-Based Design? 

 “architecture […] based upon principle, and not upon 
precedent” 
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Principled Design 

 “architecture […] based upon principle, and not upon 
precedent” 
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The Overarching Principle 
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Another Example: Precedent-Based Design 

159 Source: http://cookiemagik.deviantart.com/art/Train-station-207266944 



Principled Design 

160 Source: By Toni_V, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=4087256 



Another Principled Design 

161 Source: By Martín Gómez Tagle - Lisbon, Portugal, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=13764903 

Source: http://www.arcspace.com/exhibitions/unsorted/santiago-calatrava/ 



Principle Applied to Another Structure 
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Source: https://www.dezeen.com/2016/08/29/santiago-calatrava-oculus-world-trade-center-transportation-hub-new-york-photographs-hufton-crow/ 
Source: By 準建築人手札網站 Forgemind ArchiMedia - Flickr: IMG_2489.JPG, CC BY 2.0,  
https://commons.wikimedia.org/w/index.php?curid=31493356, https://en.wikipedia.org/wiki/Santiago_Calatrava 
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The Overarching Principle 
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Overarching Principle for Computing? 

164 Source: http://spectrum.ieee.org/image/MjYzMzAyMg.jpeg 



Concluding Remarks 

 It is time to design principled system architectures to solve 
the memory problem 

 

 Design complete systems to be balanced, high-performance, 
and energy-efficient, i.e., data-centric (or memory-centric) 

 

 Enable computation capability inside and close to memory 

 

 This can 

 Lead to orders-of-magnitude improvements  

 Enable new applications & computing platforms 

 Enable better understanding of nature 

 … 
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The Future of Processing in Memory is Bright 

 Regardless of challenges  

 in underlying technology and overlying problems/requirements  
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Micro-architecture 

SW/HW Interface 

Program/Language 

Algorithm 

Problem 

Logic 
 
Devices 

System Software 

Electrons 

Can enable: 
 
- Orders of magnitude  
improvements 
 
- New applications and  
computing systems 

Yet, we have to 
 
- Think across the stack 
 
- Design enabling systems 
 



If In Doubt, See Other Doubtful Technologies 

 A very “doubtful” emerging technology  
 for at least two decades 
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https://arxiv.org/pdf/1706.08642   

Proceedings of the IEEE, Sept. 2017 

https://arxiv.org/pdf/1706.08642
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Some Open Source Tools 
 Rowhammer  

 https://github.com/CMU-SAFARI/rowhammer  

 Ramulator – Fast and Extensible DRAM Simulator 

 https://github.com/CMU-SAFARI/ramulator  

 MemSim  

 https://github.com/CMU-SAFARI/memsim  

 NOCulator 

 https://github.com/CMU-SAFARI/NOCulator  

 DRAM Error Model 

 http://www.ece.cmu.edu/~safari/tools/memerr/index.html  
 

 Other open-source software from my group 

 https://github.com/CMU-SAFARI/  

 http://www.ece.cmu.edu/~safari/tools.html  
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Tesseract: Extra Slides 
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Communications In Tesseract (I) 

 

173 



Communications In Tesseract (II) 
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Communications In Tesseract (III) 
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Remote Function Call (Non-Blocking) 
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Effect of Bandwidth & Programming Model 
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Reducing Memory Latency 
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Capacity Bandwidth Latency

Main Memory Latency Lags Behind 

128x 

20x 

1.3x 

Memory latency remains almost constant 



A Closer Look … 
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Chang+, “Understanding Latency Variation in Modern DRAM Chips: Experimental  
Characterization, Analysis, and Optimization",” SIGMETRICS 2016. 

https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf


DRAM Latency Is Critical for Performance 

In-Memory Data Analytics  
[Clapp+ (Intel), IISWC’15;   
 Awan+, BDCloud’15] 

Datacenter Workloads  
[Kanev+ (Google), ISCA’15] 

In-memory Databases  
[Mao+, EuroSys’12;  
Clapp+ (Intel), IISWC’15] 

Graph/Tree Processing  
[Xu+, IISWC’12; Umuroglu+, FPL’15] 



DRAM Latency Is Critical for Performance 

In-Memory Data Analytics  
[Clapp+ (Intel), IISWC’15;   
 Awan+, BDCloud’15] 

Datacenter Workloads  
[Kanev+ (Google), ISCA’15] 

In-memory Databases  
[Mao+, EuroSys’12;  
Clapp+ (Intel), IISWC’15] 

Graph/Tree Processing  
[Xu+, IISWC’12; Umuroglu+, FPL’15] 

Long memory latency → performance bottleneck 



Why the Long Latency? 

 Design of DRAM uArchitecture 

 Goal: Maximize capacity/area, not minimize latency 

 

 “One size fits all” approach to latency specification 

 Same latency parameters for all temperatures 

 Same latency parameters for all DRAM chips (e.g., rows) 

 Same latency parameters for all parts of a DRAM chip 

 Same latency parameters for all supply voltage levels 

 Same latency parameters for all application data  

 … 
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Latency Variation in Memory Chips 

184 

High Low 

DRAM Latency 

DRAM B DRAM A DRAM C 

Slow cells 

Heterogeneous manufacturing & operating conditions →  
 latency variation in timing parameters 



DRAM Characterization Infrastructure 

185 Kim+, “Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors,” ISCA 2014. 

Temperature 
Controller 

 

PC 

Heater FPGAs FPGAs 



DRAM Characterization Infrastructure 

 Hasan Hassan et al., SoftMC: A 
Flexible and Practical Open-
Source Infrastructure for 
Enabling Experimental DRAM 
Studies, HPCA 2017. 

 

 

 Flexible 

 Easy to Use (C++ API) 

 Open-source  

    github.com/CMU-SAFARI/SoftMC  
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SoftMC: Open Source DRAM Infrastructure 

 https://github.com/CMU-SAFARI/SoftMC  
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Tackling the Fixed Latency Mindset 

 Reliable operation latency is actually very heterogeneous 

 Across temperatures, chips, parts of a chip, voltage levels, … 

 

 Idea: Dynamically find out and use the lowest latency one 
can reliably access a memory location with 

 Adaptive-Latency DRAM [HPCA 2015] 

 Flexible-Latency DRAM [SIGMETRICS 2016] 

 Design-Induced Variation-Aware DRAM [SIGMETRICS 2017] 

 Voltron [SIGMETRICS 2017] 

 ... 

 

 We would like to find sources of latency heterogeneity and 
exploit them to minimize latency 
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Adaptive-Latency DRAM 

• Key idea 

– Optimize DRAM timing parameters online 
 

• Two components 

– DRAM manufacturer provides multiple sets of 

reliable DRAM timing parameters at different 

temperatures for each DIMM 

– System monitors DRAM temperature & uses 

appropriate DRAM timing parameters 

reliable DRAM timing parameters 

DRAM temperature 

Lee+, ͞Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,͟  HPCA 
2015. 
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Latency Reduction Summary of 115 DIMMs 

• Latency reduction for read & write (55°C) 

– Read Latency: 32.7% 

– Write Latency: 55.1% 

• Latency reduction for each timing 

parameter (55°C)  

– Sensing: 17.3% 

– Restore: 37.3% (read), 54.8% (write) 

– Precharge: 35.2%  

Lee+, ͞Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,͟  HPCA 
2015. 
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AL-DRAM: Real System Evaluation 

• System 

– CPU: AMD 4386 ( 8 Cores, 3.1GHz, 8MB LLC) 

– DRAM: 4GByte DDR3-1600 (800Mhz Clock) 

– OS: Linux 

– Storage: 128GByte SSD 

• Workload 

– 35 applications from SPEC, STREAM, Parsec, 

Memcached, Apache, GUPS 
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Reducing Latency Also Reduces Energy 

 AL-DRAM reduces DRAM power consumption by 5.8% 

 

 Major reason: reduction in row activation time 
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More on Adaptive-Latency DRAM 

 Donghyuk Lee, Yoongu Kim, Gennady Pekhimenko, Samira Khan, 
Vivek Seshadri, Kevin Chang, and Onur Mutlu, 
"Adaptive-Latency DRAM: Optimizing DRAM Timing for 
the Common-Case"  
Proceedings of the 21st International Symposium on High-
Performance Computer Architecture (HPCA), Bay Area, CA, 
February 2015.  
[Slides (pptx) (pdf)] [Full data sets]  
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Heterogeneous Latency within A Chip 
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Chang+, “Understanding Latency Variation in Modern DRAM Chips: Experimental  
Characterization, Analysis, and Optimization",” SIGMETRICS 2016. 

https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
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Analysis of Latency Variation in DRAM Chips 

 Kevin Chang, Abhijith Kashyap, Hasan Hassan, Samira Khan, Kevin Hsieh, 
Donghyuk Lee, Saugata Ghose, Gennady Pekhimenko, Tianshi Li, and 
Onur Mutlu, 
"Understanding Latency Variation in Modern DRAM Chips: 
Experimental Characterization, Analysis, and Optimization"  
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Antibes Juan-Les-Pins, 
France, June 2016.  
[Slides (pptx) (pdf)]  
[Source Code]  
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https://users.ece.cmu.edu/~omutlu/pub/understanding-latency-variation-in-DRAM-chips_kevinchang_sigmetrics16-talk.pdf
https://github.com/CMU-SAFARI/DRAM-Latency-Variation-Study
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DIVA Online Profiling 

inherently slow 

Profile only slow regions to determine min. latency 
 Dynamic & low cost latency optimization 
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DIVA Online Profiling 

slow cells   

design-induced 
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process 
variation 

localized error random error 

online profiling error-correcting 
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Combine error-correcting codes & online profiling 
 Reliably reduce DRAM latency 
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DIVA-DRAM Reduces Latency 
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Design-Induced Latency Variation in DRAM 

 Donghyuk Lee, Samira Khan, Lavanya Subramanian, Saugata Ghose, 
Rachata Ausavarungnirun, Gennady Pekhimenko, Vivek Seshadri, and 
Onur Mutlu, 
"Design-Induced Latency Variation in Modern DRAM Chips: 
Characterization, Analysis, and Latency Reduction Mechanisms"  
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL, 
USA, June 2017.  
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Voltron: Exploiting the  

 Voltage-Latency-Reliability 

     Relationship 
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Executive Summary 

• DRAM (memory) power is significant in today’s systems 
– Existing low-voltage DRAM reduces voltage conservatively 

 

• Goal: Understand and exploit the reliability and latency behavior of 
real DRAM chips under aggressive reduced-voltage operation 
 

• Key experimental observations: 

– Huge voltage margin -- Errors occur beyond some voltage 

– Errors exhibit spatial locality 

– Higher operation latency mitigates voltage-induced errors 
 

• Voltron: A new DRAM energy reduction mechanism  

– Reduce DRAM voltage without introducing errors  

– Use a regression model to select voltage that does not degrade 
performance beyond a chosen target  7.3% system energy reduction 
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Analysis of Latency-Voltage in DRAM Chips 

 Kevin Chang, A. Giray Yaglikci, Saugata Ghose, Aditya Agrawal, Niladrish 
Chatterjee, Abhijith Kashyap, Donghyuk Lee, Mike O'Connor, Hasan 
Hassan, and Onur Mutlu, 
"Understanding Reduced-Voltage Operation in Modern DRAM 
Devices: Experimental Characterization, Analysis, and 
Mechanisms"  
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL, 
USA, June 2017.  
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And, What If … 

 … we can sacrifice reliability of some data to access it with 
even lower latency? 
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Tiered Latency DRAM 
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DRAM Latency = Subarray Latency + I/O Latency 

   What Causes the Long Latency? 
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   Why is the Subarray So Slow? 
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   Trade-Off: Area (Die Size) vs. Latency 
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   Trade-Off: Area (Die Size) vs. Latency 
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Short Bitline 

Low Latency  

   Approximating the Best of Both Worlds 
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   Approximating the Best of Both Worlds 
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   Trade-Off: Area (Die-Area) vs. Latency 
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   Leveraging Tiered-Latency DRAM  

• TL-DRAM is a substrate that can be leveraged by 
the hardware and/or software 
 

• Many potential uses 

1. Use near segment as hardware-managed inclusive 
cache to far segment 

2. Use near segment as hardware-managed exclusive 
cache to far segment 

3. Profile-based page mapping by operating system 

4. Simply replace DRAM with TL-DRAM   

 

Lee+, ͞Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,͟  HPCA ϮϬϭϯ. 
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performance and reduces power consumption 

Lee+, ͞Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,͟  HPCA ϮϬϭϯ. 



Challenge and Opportunity for Future 

Fundamentally 

Low Latency 

Computing Architectures 
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Ramulator: A Fast and Extensible 

DRAM Simulator  

 [IEEE Comp Arch Letters’15] 
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Ramulator Motivation 

 DRAM and Memory Controller landscape is changing 

 Many new and upcoming standards 

 Many new controller designs 

 A fast and easy-to-extend simulator is very much needed 
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Ramulator  

 Provides out-of-the box support for many DRAM standards: 

 DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, plus new 
proposals (SALP, AL-DRAM, TLDRAM, RowClone, and SARP) 

 ~2.5X faster than fastest open-source simulator 

 Modular and extensible to different standards 
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Case Study: Comparison of DRAM Standards 
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Across 22 
workloads, 
simple CPU 
model 



Ramulator Paper and Source Code 

 Yoongu Kim, Weikun Yang, and Onur Mutlu, 
"Ramulator: A Fast and Extensible DRAM Simulator" 
IEEE Computer Architecture Letters (CAL), March 2015.  
[Source Code]  

 

 Source code is released under the liberal MIT License 

 https://github.com/CMU-SAFARI/ramulator  
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http://users.ece.cmu.edu/~omutlu/pub/ramulator_dram_simulator-ieee-cal15.pdf
http://www.computer.org/web/cal
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator
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Brief Self Introduction 

 Onur Mutlu 

 Full Professor @ ETH Zurich CS, since September 2015 (officially May 2016) 

 Strecker Professor @ Carnegie Mellon University ECE/CS, 2009-2016, 2016-… 

 PhD from UT-Austin, worked at Google, VMware, Microsoft Research, Intel, AMD 

 https://people.inf.ethz.ch/omutlu/ 

 omutlu@gmail.com (Best way to reach me) 

 https://people.inf.ethz.ch/omutlu/projects.htm  
 

 

 Research and Teaching in: 

 Computer architecture, computer systems, security, bioinformatics 

 Memory and storage systems 

 Hardware security  

 Fault tolerance 

 Hardware/software cooperation 

 …  
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