
Onur Mutlu

omutlu@gmail.com

https://people.inf.ethz.ch/omutlu

23 March 2018

DATE Emerging Memory Workshop Keynote Talk

Processing Data Where It Makes Sense

in Modern Computing Systems:

Enabling In-Memory Computation

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

Research Focus: Computer architecture, HW/SW, bioinformatics, security

• Memory and storage (DRAM, flash, emerging), interconnects

• Heterogeneous & parallel systems, GPUs, systems for data analytics

• System/architecture interaction, new execution models, new interfaces

• Hardware security, energy efficiency, fault tolerance, performance

• Genome sequence analysis & assembly algorithms and architectures

• Biologically inspired systems & system design for bio/medicine

Graphics and Vision Processing

Heterogeneous

Processors and

Accelerators

Hybrid Main Memory

Persistent Memory/Storage

Broad research
spanning apps, systems, logic
with architecture at the center

Current Research Focus Areas

Four Key Directions

 Fundamentally Secure/Reliable/Safe Architectures

 Fundamentally Energy-Efficient Architectures

 Memory-centric (Data-centric) Architectures

 Fundamentally Low-Latency Architectures

 Architectures for Genomics, Medicine, Health

3

In-Memory DNA Sequence Analysis

 Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose,
Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using
Processing-in-Memory Technologies"
to appear in BMC Genomics, 2018.
to also appear in Proceedings of the 16th Asia Pacific Bioinformatics
Conference (APBC), Yokohama, Japan, January 2018.
arxiv.org Version (pdf)

4

http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
http://apbc2018.bio.keio.ac.jp/
https://arxiv.org/pdf/1711.01177.pdf

New Genome Sequencing Technologies

5

Senol Cali+, “Nanopore Sequencing Technology and Tools for Genome
Assembly: Computational Analysis of the Current State, Bottlenecks
and Future Directions,” to appear in Briefings in Bioinformatics, 2018.
[Preliminary arxiv.org version]

https://arxiv.org/pdf/1711.08774.pdf

Memory & Storage

6

The Main Memory System

 Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

 Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits

7

Processors

and caches
Main Memory Storage (SSD/HDD)

The Main Memory System

 Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

 Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits

8

Main Memory Storage (SSD/HDD) FPGAs

The Main Memory System

 Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

 Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits

9

Main Memory Storage (SSD/HDD) GPUs

Memory System: A Shared Resource View

10

Storage

Most of the system is dedicated to storing and moving data

State of the Main Memory System

 Recent technology, architecture, and application trends

 lead to new requirements

 exacerbate old requirements

 DRAM and memory controllers, as we know them today,
are (will be) unlikely to satisfy all requirements

 Some emerging non-volatile memory technologies (e.g.,
PCM) enable new opportunities: memory+storage merging

 We need to rethink the main memory system

 to fix DRAM issues and enable emerging technologies

 to satisfy all requirements

11

Major Trends Affecting Main Memory (I)

 Need for main memory capacity, bandwidth, QoS increasing

 Main memory energy/power is a key system design concern

 DRAM technology scaling is ending

12

Major Trends Affecting Main Memory (II)

 Need for main memory capacity, bandwidth, QoS increasing

 Multi-core: increasing number of cores/agents

 Data-intensive applications: increasing demand/hunger for data

 Consolidation: cloud computing, GPUs, mobile, heterogeneity

 Main memory energy/power is a key system design concern

 DRAM technology scaling is ending

13

Example: The Memory Capacity Gap

 Memory capacity per core expected to drop by 30% every two years

 Trends worse for memory bandwidth per core!
14

Core count doubling ~ every 2 years

DRAM DIMM capacity doubling ~ every 3 years

Lim et al., ISCA 2009

1

10

100

1999 2003 2006 2008 2011 2013 2014 2015 2016 2017

D
R

A
M

 I
m

p
ro

ve
m

en
t

(l
o
g)

Capacity Bandwidth Latency

Example: Capacity, Bandwidth & Latency

128x

20x

1.3x

Memory latency remains almost constant

DRAM Latency Is Critical for Performance

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15;
 Awan+, BDCloud’15]

Datacenter Workloads
[Kanev+ (Google), ISCA’15]

In-memory Databases
[Mao+, EuroSys’12;
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing
[Xu+, IISWC’12; Umuroglu+, FPL’15]

DRAM Latency Is Critical for Performance

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15;
 Awan+, BDCloud’15]

Datacenter Workloads
[Kanev+ (Google), ISCA’15]

In-memory Databases
[Mao+, EuroSys’12;
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing
[Xu+, IISWC’12; Umuroglu+, FPL’15]

Long memory latency → performance bottleneck

Major Trends Affecting Main Memory (III)

 Need for main memory capacity, bandwidth, QoS increasing

 Main memory energy/power is a key system design concern

 ~40-50% energy spent in off-chip memory hierarchy [Lefurgy,

IEEE Computer’03] >40% power in DRAM [Ware, HPCA’10][Paul,ISCA’15]

 DRAM consumes power even when not used (periodic refresh)

 DRAM technology scaling is ending

18

Major Trends Affecting Main Memory (IV)

 Need for main memory capacity, bandwidth, QoS increasing

 Main memory energy/power is a key system design concern

 DRAM technology scaling is ending

 ITRS projects DRAM will not scale easily below X nm

 Scaling has provided many benefits:

 higher capacity (density), lower cost, lower energy

19

Major Trends Affecting Main Memory (V)
 DRAM scaling has already become increasingly difficult

 Increasing cell leakage current, reduced cell reliability,
increasing manufacturing difficulties [Kim+ ISCA 2014],

[Liu+ ISCA 2013], [Mutlu IMW 2013], [Mutlu DATE 2017]

 Difficult to significantly improve capacity, energy

 Emerging memory technologies are promising

 3D-Stacked DRAM higher bandwidth smaller capacity

Reduced-Latency DRAM
(e.g., RLDRAM, TL-DRAM)

lower latency higher cost

Low-Power DRAM
(e.g., LPDDR3, LPDDR4)

lower power
higher latency

higher cost

Non-Volatile Memory (NVM)
(e.g., PCM, STTRAM, ReRAM,
3D Xpoint)

larger capacity
higher latency

higher dynamic power
lower endurance

20

Major Trends Affecting Main Memory (V)
 DRAM scaling has already become increasingly difficult

 Increasing cell leakage current, reduced cell reliability,
increasing manufacturing difficulties [Kim+ ISCA 2014],

[Liu+ ISCA 2013], [Mutlu IMW 2013], [Mutlu DATE 2017]

 Difficult to significantly improve capacity, energy

 Emerging memory technologies are promising

 3D-Stacked DRAM higher bandwidth smaller capacity

Reduced-Latency DRAM
(e.g., RL/TL-DRAM, FLY-RAM)

lower latency higher cost

Low-Power DRAM
(e.g., LPDDR3, LPDDR4, Voltron)

lower power
higher latency

higher cost

Non-Volatile Memory (NVM)
(e.g., PCM, STTRAM, ReRAM, 3D
Xpoint)

larger capacity
higher latency

higher dynamic power
lower endurance

21

Major Trend: Hybrid Main Memory

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
Yoon+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best
Paper Award.

CPU
DRAM
Ctrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
Ctrl

DRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

Foreshadowing

Main Memory Needs

Intelligent Controllers

23

Industry Is Writing Papers About It, Too

24

Call for Intelligent Memory Controllers

25

Agenda

 Major Trends Affecting Main Memory

 The Need for Intelligent Memory Controllers

 Bottom Up: Push from Circuits and Devices

 Top Down: Pull from Systems and Applications

 Processing in Memory: Two Directions

 Minimally Changing Memory Chips

 Exploiting 3D-Stacked Memory

 How to Enable Adoption of Processing in Memory

 Conclusion

26

Maslow’s (Human) Hierarchy of Needs

 We need to start with reliability and security…

27

Maslow, “A Theory of Human Motivation,”
Psychological Review, 1943.

Source: https://www.simplypsychology.org/maslow.html

Maslow, “A Theory of Human Motivation,”
Psychological Review, 1943.

Maslow, “Motivation and Personality,”
Book, 1954-1970.

The DRAM Scaling Problem

 DRAM stores charge in a capacitor (charge-based memory)

 Capacitor must be large enough for reliable sensing

 Access transistor should be large enough for low leakage and high
retention time

 Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

 DRAM capacity, cost, and energy/power hard to scale

28

As Memory Scales, It Becomes Unreliable
 Data from all of Facebook’s servers worldwide
 Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers,” DSN’15.

29

Large-Scale Failure Analysis of DRAM Chips

 Analysis and modeling of memory errors found in all of
Facebook’s server fleet

 Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"Revisiting Memory Errors in Large-Scale Production Data
Centers: Analysis and Modeling of New Trends from the Field"
Proceedings of the 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June
2015.
[Slides (pptx) (pdf)] [DRAM Error Model]

30

http://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15.pdf
http://2015.dsn.org/
http://2015.dsn.org/
http://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15-talk.pdf
https://www.ece.cmu.edu/~safari/tools/memerr/index.html

Infrastructures to Understand Such Issues

31

An Experimental Study of Data Retention
Behavior in Modern DRAM Devices:
Implications for Retention Time Profiling
Mechanisms (Liu et al., ISCA 2013)

The Efficacy of Error Mitigation Techniques
for DRAM Retention Failures: A
Comparative Experimental Study
(Khan et al., SIGMETRICS 2014)

Flipping Bits in Memory Without Accessing
Them: An Experimental Study of DRAM
Disturbance Errors (Kim et al., ISCA 2014)

Adaptive-Latency DRAM: Optimizing DRAM
Timing for the Common-Case (Lee et al.,
HPCA 2015)

AVATAR: A Variable-Retention-Time (VRT)
Aware Refresh for DRAM Systems (Qureshi
et al., DSN 2015)

http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_sigmetrics14.pdf
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_sigmetrics14.pdf
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_sigmetrics14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15.pdf
http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15.pdf
http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15.pdf
http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15.pdf
http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15.pdf
http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15.pdf

Infrastructures to Understand Such Issues

32 Kim+, “Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

Heater FPGAs FPGAs

SoftMC: Open Source DRAM Infrastructure

 Hasan Hassan et al., “SoftMC: A
Flexible and Practical Open-
Source Infrastructure for
Enabling Experimental DRAM
Studies,” HPCA 2017.

 Flexible

 Easy to Use (C++ API)

 Open-source

 github.com/CMU-SAFARI/SoftMC

33

https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf
https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf
https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf
https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf
https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf
https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf

SoftMC

 https://github.com/CMU-SAFARI/SoftMC

34

https://github.com/CMU-SAFARI/SoftMC
https://github.com/CMU-SAFARI/SoftMC
https://github.com/CMU-SAFARI/SoftMC

Data Retention in Memory [Liu et al., ISCA 2013]

 Retention Time Profile of DRAM looks like this:

35

Location dependent
Stored value pattern dependent

Time dependent

A Curious Discovery [Kim et al., ISCA 2014]

One can

predictably induce errors

in most DRAM memory chips

36

DRAM RowHammer

A simple hardware failure mechanism

can create a widespread

system security vulnerability

37

 Row of Cells

 Row

 Row

 Row

 Row

 Wordline

 VLOW VHIGH

 Victim Row

 Victim Row

 Hammered Row

Repeatedly reading a row enough times (before memory gets

refreshed) induces disturbance errors in adjacent rows in most

real DRAM chips you can buy today

Opened Closed

38

Modern DRAM is Prone to Disturbance Errors

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM

Disturbance Errors, (Kim et al., ISCA 2014)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf

86%
(37/43)

83%
(45/54)

88%
(28/32)

A company B company C company

Up to

1.0×107

errors

Up to

2.7×106
errors

Up to

3.3×105

errors

39

Most DRAM Modules Are Vulnerable

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM

Disturbance Errors, (Kim et al., ISCA 2014)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf

40

Recent DRAM Is More Vulnerable

41

First
Appearance

Recent DRAM Is More Vulnerable

42

All modules from 2012–2013 are vulnerable

First
Appearance

Recent DRAM Is More Vulnerable

One Can Take Over an Otherwise-Secure System

43

Exploiting the DRAM rowhammer bug to
gain kernel privileges (Seaborn, 2015)

Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors
(Kim et al., ISCA 2014)

http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf

Security Implications

44

More Security Implications

45
Source: https://lab.dsst.io/32c3-slides/7197.html

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript (DIMVA’16)

“We can gain unrestricted access to systems of website visitors.”

https://lab.dsst.io/32c3-slides/7197.html
https://lab.dsst.io/32c3-slides/7197.html
https://lab.dsst.io/32c3-slides/7197.html

More Security Implications

46
Source: https://fossbytes.com/drammer-rowhammer-attack-android-root-devices/

Drammer: Deterministic Rowhammer
Attacks on Mobile Platforms, CCS’16

“Can gain control of a smart phone deterministically”

More Security Implications?

47

More on RowHammer Analysis

48

 Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
"Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors"
Proceedings of the 41st International Symposium on Computer
Architecture (ISCA), Minneapolis, MN, June 2014.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code
and Data]

https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_isca14.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_isca14.pdf
http://cag.engr.uconn.edu/isca2014/
http://cag.engr.uconn.edu/isca2014/
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_talk_isca14.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_talk_isca14.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pdf
https://github.com/CMU-SAFARI/rowhammer
https://github.com/CMU-SAFARI/rowhammer

Future of Memory Reliability

49 https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf

 Onur Mutlu,
"The RowHammer Problem and Other Issues We May Face as
Memory Becomes Denser"
Invited Paper in Proceedings of the Design, Automation, and Test in
Europe Conference (DATE), Lausanne, Switzerland, March 2017.
[Slides (pptx) (pdf)]

https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
http://www.date-conference.com/
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pdf

Call for Intelligent Memory Controllers

50

Aside: Intelligent Controller for NAND Flash

USB Jack

Virtex-II Pro

(USB controller)

Virtex-V FPGA

(NAND Controller)

HAPS-52 Mother Board

USB Daughter Board

NAND Daughter Board

1x-nm

NAND Flash

[DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014,
HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017, PIEEE’17]

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.

Aside: Intelligent Controller for NAND Flash

52

https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

https://arxiv.org/pdf/1706.08642
https://arxiv.org/pdf/1706.08642

Takeaway

Main Memory Needs

Intelligent Controllers

53

Agenda

 Major Trends Affecting Main Memory

 The Need for Intelligent Memory Controllers

 Bottom Up: Push from Circuits and Devices

 Top Down: Pull from Systems and Applications

 Processing in Memory: Two Directions

 Minimally Changing Memory Chips

 Exploiting 3D-Stacked Memory

 How to Enable Adoption of Processing in Memory

 Conclusion

54

Three Key Systems Trends

1. Data access is a major bottleneck
 Applications are increasingly data hungry

2. Energy consumption is a key limiter

3. Data movement energy dominates compute
 Especially true for off-chip to on-chip movement

55

The Need for More Memory Performance

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15;
 Awan+, BDCloud’15]

Datacenter Workloads
[Kanev+ (Google), ISCA’15]

In-memory Databases
[Mao+, EuroSys’12;
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing
[Xu+, IISWC’12; Umuroglu+, FPL’15]

The Performance Perspective (1996-2005)

 “It’s the Memory, Stupid!” (Richard Sites, MPR, 1996)

Mutlu+, “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.

The Performance Perspective

 Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
"Runahead Execution: An Alternative to Very Large Instruction
Windows for Out-of-order Processors"
Proceedings of the 9th International Symposium on High-Performance
Computer Architecture (HPCA), pages 129-140, Anaheim, CA, February
2003. Slides (pdf)

58

https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
http://www.cs.arizona.edu/hpca9/
http://www.cs.arizona.edu/hpca9/
http://www.cs.arizona.edu/hpca9/
http://www.cs.arizona.edu/hpca9/
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03_talk.pdf

The Performance Perspective (Today)

 All of Google’s Data Center Workloads (2015):

59 Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.

The Performance Perspective (Today)

 All of Google’s Data Center Workloads (2015):

60 Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.

The Energy Perspective

61

Dally, HiPEAC 2015

Data Movement vs. Computation Energy

62

Dally, HiPEAC 2015

A memory access consumes ~1000X
the energy of a complex addition

Data Movement vs. Computation Energy

 Data movement is a major system energy bottleneck

 Comprises 41% of mobile system energy during web browsing [2]

 Costs ~115 times as much energy as an ADD operation [1, 2]

63

[ϭ]: ReduĐiŶg data MoǀeŵeŶt EŶergy ǀia OŶliŶe Data ClusteriŶg aŶd EŶĐodiŶg ;MICRO’ϭ6Ϳ

[Ϯ]: QuaŶtifyiŶg the eŶergy Đost of data ŵoǀeŵeŶt for eŵergiŶg sŵart phoŶe ǁorkloads oŶ ŵoďile platforŵs ;IISWC’ϭ4Ϳ

Challenge and Opportunity for Future

High Performance

and

Energy Efficient

64

Maslow’s (Human) Hierarchy of Needs, Revisited

65

Maslow, “A Theory of Human Motivation,”
Psychological Review, 1943.

Everlasting energy

Source: https://www.simplypsychology.org/maslow.html

Maslow, “A Theory of Human Motivation,”
Psychological Review, 1943.

Maslow, “Motivation and Personality,”
Book, 1954-1970.

The Problem

Data access is the major performance and energy bottleneck

Our current

design principles

cause great energy waste
(and great performance loss)

66

The Problem

Processing of data

is performed

far away from the data

67

A Computing System

 Three key components

 Computation

 Communication

 Storage/memory

68

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Image source: https://lbsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/

A Computing System

 Three key components

 Computation

 Communication

 Storage/memory

69

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Image source: https://lbsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/

Today’s Computing Systems
 Are overwhelmingly processor centric

 All data processed in the processor  at great system cost

 Processor is heavily optimized and is considered the master

 Data storage units are dumb and are largely unoptimized
(except for some that are on the processor die)

70

Yet …

 “It’s the Memory, Stupid!” (Richard Sites, MPR, 1996)

Mutlu+, “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.

Perils of Processor-Centric Design

 Grossly-imbalanced systems

 Processing done only in one place

 Everything else just stores and moves data: data moves a lot

 Energy inefficient

 Low performance

 Complex

 Overly complex and bloated processor (and accelerators)

 To tolerate data access from memory

 Complex hierarchies and mechanisms

 Energy inefficient

 Low performance

 Complex

 72

Perils of Processor-Centric Design

73

Most of the system is dedicated to storing and moving data

We Do Not Want to Move Data!

74

Dally, HiPEAC 2015

A memory access consumes ~1000X
the energy of a complex addition

Energy Waste in Mobile Devices
 Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul

Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

75

62.7% of the total system energy
is spent on data movement

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/
https://www.asplos2018.org/

We Need A Paradigm Shift To …

 Enable computation with minimal data movement

 Compute where it makes sense (where data resides)

 Make computing architectures more data-centric

76

Goal: Processing Inside Memory

 Many questions … How do we design the:

 compute-capable memory & controllers?

 processor chip?

 software and hardware interfaces?

 system software and languages?

 algorithms?

Cache

Processor
Core

 Interconnect

 Memory
Database

Graphs

Media

Query

Results

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons

Why In-Memory Computation Today?

 Push from Technology

 DRAM Scaling at jeopardy

  Controllers close to DRAM

  Industry open to new memory architectures

 Pull from Systems and Applications

 Data access is a major system and application bottleneck

 Systems are energy limited

 Data movement much more energy-hungry than computation

78

Dally, HiPEAC 2015

Agenda

 Major Trends Affecting Main Memory

 The Need for Intelligent Memory Controllers

 Bottom Up: Push from Circuits and Devices

 Top Down: Pull from Systems and Applications

 Processing in Memory: Two Directions

 Minimally Changing Memory Chips

 Exploiting 3D-Stacked Memory

 How to Enable Adoption of Processing in Memory

 Conclusion

79

Processing in Memory:

 Two Approaches

1. Minimally changing memory chips

2. Exploiting 3D-stacked memory

80

Approach 1: Minimally Changing DRAM

 DRAM has great capability to perform bulk data movement and
computation internally with small changes

 Can exploit internal connectivity to move data

 Can exploit analog computation capability

 …

 Examples: RowClone, In-DRAM AND/OR, Gather/Scatter DRAM
 RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data

(Seshadri et al., MICRO 2013)

 Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)

 Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial
Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015)

 "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity
DRAM Technology” (Seshadri et al., MICRO 2017)

81

http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
https://users.ece.cmu.edu/~omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
https://users.ece.cmu.edu/~omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
https://users.ece.cmu.edu/~omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
https://users.ece.cmu.edu/~omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
https://users.ece.cmu.edu/~omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
https://users.ece.cmu.edu/~omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
https://users.ece.cmu.edu/~omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
https://users.ece.cmu.edu/~omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf

Starting Simple: Data Copy and Initialization

82

Forking

00000

00000

00000

Zero initialization
(e.g., security)

VM Cloning
Deduplication

Checkpointing

Page Migration

Many more

memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ ISCA’15]

Today’s Systems: Bulk Data Copy

Memory

MC L3 L2 L1 CPU

1) High latency

2) High bandwidth utilization

3) Cache pollution

4) Unwanted data movement

83
1046ns, 3.6uJ (for 4KB page copy via DMA)

Future Systems: In-Memory Copy

Memory

MC L3 L2 L1 CPU

1) Low latency

2) Low bandwidth utilization

3) No cache pollution

4) No unwanted data movement

84
1046ns, 3.6uJ  90ns, 0.04uJ

RowClone: In-DRAM Row Copy

Row Buffer (4 Kbytes)

Data Bus

8 bits

DRAM subarray

4 Kbytes

Step 1: Activate row A

Transfer
row

Step 2: Activate row B

Transfer
row

Negligible HW cost
 Idea: Two consecutive ACTivates

RowClone: Latency and Energy Savings

0

0,2

0,4

0,6

0,8

1

1,2

Latency Energy

N
o

rm
a

li
ze

d
 S

a
v

in
g

s

Baseline Intra-Subarray

Inter-Bank Inter-Subarray

11.6x 74x

86
Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and
Initialization of Bulk Data,” MICRO 2013.

More on RowClone

 Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata
Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A.
Kozuch, Phillip B. Gibbons, and Todd C. Mowry,
"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and
Initialization"
Proceedings of the 46th International Symposium on Microarchitecture
(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning Session
Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

87

http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://www.microarch.org/micro46/
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pdf

Memory as an Accelerator

CPU
core

CPU
core

CPU
core

CPU
core

mini-CPU
core

video
core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

LLC

Memory Controller
Specialized

compute-capability
in memory

Memory imaging
core

Memory Bus

Memory similar to a “conventional” accelerator

In-Memory Bulk Bitwise Operations

 We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ

 At low cost

 Using analog computation capability of DRAM

 Idea: activating multiple rows performs computation

 30-60X performance and energy improvement

 Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology,” MICRO 2017.

 New memory technologies enable even more opportunities

 Memristors, resistive RAM, phase change mem, STT-MRAM, …

 Can operate on data with minimal movement

89

In-DRAM AND/OR: Triple Row Activation

90

½VDD

½VDD

dis

A

B

C

Final State

AB + BC + AC

½VDD+δ

C(A + B) +

~C(AB) en

0

VDD

Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015.

In-DRAM NOT: Dual Contact Cell

91

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

Idea:
Feed the

negated value
in the sense amplifier

into a special row

Performance: In-DRAM Bitwise Operations

92

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

Energy of In-DRAM Bitwise Operations

93

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

Ambit vs. DDR3: Performance and

Energy

94

0

10

20

30

40

50

60

70

not and/or nand/nor xor/xnor mean

Performance Improvement

Energy Reduction

32X 35X

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

Bulk Bitwise Operations in Workloads

[1] Li and Patel, BitWeaving, SIGMOD 2013

[2] Goodwin+, BitFunnel, SIGIR 2017

Example Data Structure: Bitmap Index

 Alternative to B-tree and its variants

 Efficient for performing range queries and joins

 Many bitwise operations to perform a query

B
it

m
a

p
 1

B
it

m
a

p
 2

B
it

m
a

p
 4

B
it

m
a

p
 3

age < 18 18 < age < 25 25 < age < 60 age > 60

Performance: Bitmap Index on Ambit

97

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

Performance: BitWeaving on Ambit

98

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

More on In-DRAM Bulk AND/OR

 Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk
Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and
Todd C. Mowry,
"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015.

99

http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://www.computer.org/web/cal

More on Ambit

 Vivek Seshadri et al., “Ambit: In-Memory Accelerator
for Bulk Bitwise Operations Using Commodity DRAM
Technology,” MICRO 2017.

100

https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf

Challenge and Opportunity for Future

Computing Architectures

with

Minimal Data Movement

101

Challenge: Intelligent Memory Device

Does memory

have to be

dumb?

102

Agenda

 Major Trends Affecting Main Memory

 The Need for Intelligent Memory Controllers

 Bottom Up: Push from Circuits and Devices

 Top Down: Pull from Systems and Applications

 Processing in Memory: Two Directions

 Minimally Changing Memory Chips

 Exploiting 3D-Stacked Memory

 How to Enable Adoption of Processing in Memory

 Conclusion

103

Opportunity: 3D-Stacked Logic+Memory

104

Logic

Memory

Other “True 3D” technologies
under development

DRAM Landscape (circa 2015)

105

Kim+, “Ramulator: A Flexible and Extensible DRAM Simulator”, IEEE CAL 2015.

Two Key Questions in 3D-Stacked PIM

 How can we accelerate important applications if we use
3D-stacked memory as a coarse-grained accelerator?

 what is the architecture and programming model?

 what are the mechanisms for acceleration?

 What is the minimal processing-in-memory support we can
provide?

 without changing the system significantly

 while achieving significant benefits

106

Graph Processing

107

 Large graphs are everywhere (circa 2015)

 Scalable large-scale graph processing is challenging

36 Million
Wikipedia Pages

1.4 Billion
Facebook Users

300 Million
Twitter Users

30 Billion
Instagram Photos

+42%

0 1 2 3 4

128…

32 Cores

Speedup

Key Bottlenecks in Graph Processing

108

for (v: graph.vertices) {

 for (w: v.successors) {

 w.next_rank += weight * v.rank;

 }

}

weight * v.rank

v

w

&w

1. Frequent random memory accesses

2. Little amount of computation

w.rank

w.next_rank

w.edges

…

Tesseract System for Graph Processing

Crossbar Network

…

…

…

…

D
R

A
M

 C
o

n
tro

lle
r

NI

In-Order Core

Message Queue

PF Buffer

MTP

LP

Host Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Interconnected set of 3D-stacked memory+logic chips with simple cores

Logic

Memory

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Logic

Memory

Tesseract System for Graph Processing

110

Crossbar Network

…

…

…

…

D
R

A
M

 C
o

n
tro

lle
r

NI

In-Order Core

Message Queue

PF Buffer

MTP

LP

Host Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Communications via

Remote Function Calls

Logic

Memory

Tesseract System for Graph Processing

111

Crossbar Network

…

…

…

…

D
R

A
M

 C
o

n
tro

lle
r

NI

In-Order Core

Message Queue

PF Buffer

MTP

LP

Host Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Prefetching

Evaluated Systems

HMC-MC

128

In-Order

2GHz

128

In-Order

2GHz

128

In-Order

2GHz

128

In-Order

2GHz

102.4GB/s 640GB/s 640GB/s 8TB/s

HMC-OoO

8 OoO

4GHz

8 OoO

4GHz

8 OoO

4GHz

8 OoO

4GHz

8 OoO

4GHz

8 OoO

4GHz

8 OoO

4GHz

8 OoO

4GHz

DDR3-OoO Tesseract

32

Tesseract

Cores

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Tesseract Graph Processing Performance

+56% +25%

9.0x

11.6x

13.8x

0

2

4

6

8

10

12

14

16

DDR3-OoO HMC-OoO HMC-MC Tesseract Tesseract-

LP

Tesseract-

LP-MTP

S
p

e
e

d
u

p

>13X Performance Improvement

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

On five graph processing algorithms

Tesseract Graph Processing Performance

114

+56% +25%

9.0x

11.6x

13.8x

0

2

4

6

8

10

12

14

16

DDR3-OoO HMC-OoO HMC-MC Tesseract Tesseract-

LP

Tesseract-

LP-MTP

S
p

e
e

d
u

p

80GB/s 190GB/s 243GB/s

1.3TB/s

2.2TB/s

2.9TB/s

0

0,5

1

1,5

2

2,5

3

3,5

DDR3-OoO HMC-OoO HMC-MC Tesseract Tesseract-

LP

Tesseract-

LP-MTP

M
e

m
o

ry
 B

a
n

d
w

id
th

 (
T

B
/s

)

Memory Bandwidth Consumption

Tesseract Graph Processing System Energy

0

0,2

0,4

0,6

0,8

1

1,2

HMC-OoO Tesseract with Prefetching

Memory Layers Logic Layers Cores

> 8X Energy Reduction

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

More on Tesseract

 Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu,
and Kiyoung Choi,
"A Scalable Processing-in-Memory Accelerator for
Parallel Graph Processing"
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

116

http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-lightning-talk.pdf

PIM on Mobile Devices

 Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata
Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki
Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data
Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

117

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/
https://www.asplos2018.org/
https://www.asplos2018.org/

Truly Distributed GPU Processing with PIM?

Logic layer
SM

Crossbar switch

Vault
Ctrl

…. Vault
Ctrl

Logic layer

Main GPU

3D-stacked memory
(memory stack) SM (Streaming Multiprocessor)

Accelerating GPU Execution with PIM (I)

 Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems"
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

119

https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf

Accelerating GPU Execution with PIM (II)

 Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.
Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities"
Proceedings of the 25th International Conference on Parallel
Architectures and Compilation Techniques (PACT), Haifa, Israel,
September 2016.

120

https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
http://pactconf.org/
http://pactconf.org/

Two Key Questions in 3D-Stacked PIM

 How can we accelerate important applications if we use
3D-stacked memory as a coarse-grained accelerator?

 what is the architecture and programming model?

 what are the mechanisms for acceleration?

 What is the minimal processing-in-memory support we can
provide?

 without changing the system significantly

 while achieving significant benefits

121

Simpler PIM: PIM-Enabled Instructions

 Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,
"PIM-Enabled Instructions: A Low-Overhead,
Locality-Aware Processing-in-Memory Architecture"
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-lightning-talk.pdf

Automatic Code and Data Mapping

 Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems"
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

123

https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf

Challenge and Opportunity for Future

Fundamentally

Energy-Efficient

(Data-Centric)

Computing Architectures
124

Challenge and Opportunity for Future

Fundamentally

Low-Latency

(Data-Centric)

Computing Architectures
125

Agenda

 Major Trends Affecting Main Memory

 The Need for Intelligent Memory Controllers

 Bottom Up: Push from Circuits and Devices

 Top Down: Pull from Systems and Applications

 Processing in Memory: Two Directions

 Minimally Changing Memory Chips

 Exploiting 3D-Stacked Memory

 How to Enable Adoption of Processing in Memory

 Conclusion

126

Eliminating the Adoption Barriers

How to Enable Adoption
of Processing in Memory

127

Barriers to Adoption of PIM

1. Functionality of and applications for PIM

2. Ease of programming (interfaces and compiler/HW support)

3. System support: coherence & virtual memory

4. Runtime systems for adaptive scheduling, data mapping,
access/sharing control

5. Infrastructures to assess benefits and feasibility

128

We Need to Revisit the Entire Stack

129

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons

Key Challenge 1: Code Mapping

Logic layer
SM

Crossbar switch

Vault
Ctrl

…. Vault
Ctrl

Logic layer

?

Main GPU

3D-stacked memory
(memory stack)

• Challenge 1: Which operations should be executed
in memory vs. in CPU?

?
SM (Streaming Multiprocessor)

Key Challenge 2: Data Mapping

Logic layer
SM

Crossbar switch

Vault
Ctrl

…. Vault
Ctrl

Logic layer

Main GPU

3D-stacked memory
(memory stack)

• Challenge 2: How should data be mapped to
different 3D memory stacks?

SM (Streaming Multiprocessor)

How to Do the Code and Data Mapping?

 Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems"
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

132

https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf

How to Schedule Code?

 Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.
Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities"
Proceedings of the 25th International Conference on Parallel
Architectures and Compilation Techniques (PACT), Haifa, Israel,
September 2016.

133

https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
http://pactconf.org/
http://pactconf.org/

Challenge: Coherence for Hybrid CPU-PIM Apps

134

Traditional

coherence

No coherence

overhead

How to Maintain Coherence?

 Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism
for Processing-in-Memory"
IEEE Computer Architecture Letters (CAL), June 2016.

135

https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
http://www.computer.org/web/cal

How to Support Virtual Memory?

 Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation"
Proceedings of the 34th IEEE International Conference on Computer
Design (ICCD), Phoenix, AZ, USA, October 2016.

136

https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
http://www.iccd-conf.com/
http://www.iccd-conf.com/

How to Design Data Structures for PIM?

 Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu,
"Concurrent Data Structures for Near-Memory Computing"
Proceedings of the 29th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), Washington, DC, USA, July 2017.
[Slides (pptx) (pdf)]

137

https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17.pdf
https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17.pdf
https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17.pdf
https://spaa.acm.org/
https://spaa.acm.org/
https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17-talk.pdf

Simulation Infrastructures for PIM

 Ramulator extended for PIM

 Flexible and extensible DRAM simulator

 Can model many different memory standards and proposals

 Kim+, “Ramulator: A Flexible and Extensible DRAM
Simulator”, IEEE CAL 2015.

 https://github.com/CMU-SAFARI/ramulator

138

https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator

An FPGA-based Test-bed for PIM?

 Hasan Hassan et al., SoftMC: A
Flexible and Practical Open-
Source Infrastructure for
Enabling Experimental DRAM
Studies HPCA 2017.

 Flexible

 Easy to Use (C++ API)

 Open-source

 github.com/CMU-SAFARI/SoftMC

139

https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf
https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf
https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf
https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf
https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf
https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf

Genome Read Mapping in PIM

140

Goals

 Understand the primitives, architectures, and benefits of
PIM by carefully examining many important workloads

 Develop a common workload suite for PIM research

141

Genome Read In-Memory (GRIM) Filter:
Fast Location Filtering in DNA Read Mapping

with Emerging Memory Technologies

Jeremie Kim,

Damla Senol, Hongyi Xin, Donghyuk Lee,

Saugata Ghose, Mohammed Alser, Hasan Hassan,

Oguz Ergin, Can Alkan, and Onur Mutlu

Executive Summary

 Genome Read Mapping is a very important problem and is the first
step in many types of genomic analysis

 Could lead to improved health care, medicine, quality of life

 Read mapping is an approximate string matching problem

 Find the best fit of 100 character strings into a 3 billion character dictionary

 Alignment is currently the best method for determining the similarity between
two strings, but is very expensive

 We propose an in-memory processing algorithm GRIM-Filter for
accelerating read mapping, by reducing the number of required
alignments

 We implement GRIM-Filter using in-memory processing within 3D-
stacked memory and show up to 3.7x speedup.

143

GRIM-Filter in 3D-stacked DRAM

 The layout of bit vectors in a bank enables filtering many bins in parallel

 Customized logic for accumulation and comparison per genome segment

 Low area overhead, simple implementation

144

GRIM-Filter Performance

145

Time (x1000
seconds)

1.8x-3.7x performance benefit across real data sets

Benchmarks and their Execution Times

GRIM-Filter False Positive Rate

146

False Positive
Rate (%)

5.6x-6.4x False Positive reduction across real data sets

Benchmarks and their False Positive Rates

Conclusions

 We propose an in memory filter algorithm to accelerate end-
to-end genome read mapping by reducing the number of
required alignments

 Compared to the previous best filter

 We observed 1.8x-3.7x speedup

 We observed 5.6x-6.4x fewer false positives

 GRIM-Filter is a universal filter that can be applied to any
genome read mapper

147

PIM-Based DNA Sequence Analysis

 Jeremie Kim, Damla Senol, Hongyi Xin, Donghyuk Lee, Mohammed
Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"Genome Read In-Memory (GRIM) Filter: Fast Location Filtering
in DNA Read Mapping Using Emerging Memory Technologies"
Pacific Symposium on Biocomputing (PSB) Poster Session, Hawaii,
January 2017.
[Poster (pdf) (pptx)] [Abstract (pdf)]

 To Appear in APBC 2018 and BMC Genomics 2018.

148

https://people.inf.ethz.ch/omutlu/pub/GRIM-genome-read-in-memory-filter_psb17-abstract.pdf
https://people.inf.ethz.ch/omutlu/pub/GRIM-genome-read-in-memory-filter_psb17-abstract.pdf
https://people.inf.ethz.ch/omutlu/pub/GRIM-genome-read-in-memory-filter_psb17-abstract.pdf
https://people.inf.ethz.ch/omutlu/pub/GRIM-genome-read-in-memory-filter_psb17-abstract.pdf
http://psb.stanford.edu/
https://people.inf.ethz.ch/omutlu/pub/GRIM-genome-read-in-memory-filter_psb17-poster.pdf
https://people.inf.ethz.ch/omutlu/pub/GRIM-genome-read-in-memory-filter_psb17-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/GRIM-genome-read-in-memory-filter_psb17-abstract.pdf

Agenda

 Major Trends Affecting Main Memory

 The Need for Intelligent Memory Controllers

 Bottom Up: Push from Circuits and Devices

 Top Down: Pull from Systems and Applications

 Processing in Memory: Two Directions

 Minimally Changing Memory Chips

 Exploiting 3D-Stacked Memory

 How to Enable Adoption of Processing in Memory

 Conclusion

149

Maslow’s Hierarchy of Needs, A Third Time

150

Speed

Speed

Speed

Speed

Speed

Source: https://www.simplypsychology.org/maslow.html

Maslow, “A Theory of Human Motivation,”
Psychological Review, 1943.

Maslow, “Motivation and Personality,”
Book, 1954-1970.

Challenge and Opportunity for Future

Fundamentally

Energy-Efficient

(Data-Centric)

Computing Architectures
151

Challenge and Opportunity for Future

Fundamentally

Low-Latency

(Data-Centric)

Computing Architectures
152

 Concluding Remarks

153

A Quote from A Famous Architect

 “architecture […] based upon principle, and not upon
precedent”

154

Precedent-Based Design?

 “architecture […] based upon principle, and not upon
precedent”

155

Principled Design

 “architecture […] based upon principle, and not upon
precedent”

156

157

The Overarching Principle

158

Another Example: Precedent-Based Design

159 Source: http://cookiemagik.deviantart.com/art/Train-station-207266944

Principled Design

160 Source: By Toni_V, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=4087256

Another Principled Design

161 Source: By Martín Gómez Tagle - Lisbon, Portugal, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=13764903

Source: http://www.arcspace.com/exhibitions/unsorted/santiago-calatrava/

Principle Applied to Another Structure

162
Source: https://www.dezeen.com/2016/08/29/santiago-calatrava-oculus-world-trade-center-transportation-hub-new-york-photographs-hufton-crow/
Source: By 準建築人手札網站 Forgemind ArchiMedia - Flickr: IMG_2489.JPG, CC BY 2.0,
https://commons.wikimedia.org/w/index.php?curid=31493356, https://en.wikipedia.org/wiki/Santiago_Calatrava

https://commons.wikimedia.org/w/index.php?curid=31493356

The Overarching Principle

163

Overarching Principle for Computing?

164 Source: http://spectrum.ieee.org/image/MjYzMzAyMg.jpeg

Concluding Remarks

 It is time to design principled system architectures to solve
the memory problem

 Design complete systems to be balanced, high-performance,
and energy-efficient, i.e., data-centric (or memory-centric)

 Enable computation capability inside and close to memory

 This can

 Lead to orders-of-magnitude improvements

 Enable new applications & computing platforms

 Enable better understanding of nature

 …

165

The Future of Processing in Memory is Bright

 Regardless of challenges

 in underlying technology and overlying problems/requirements

166

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons

Can enable:

- Orders of magnitude
improvements

- New applications and
computing systems

Yet, we have to

- Think across the stack

- Design enabling systems

If In Doubt, See Other Doubtful Technologies

 A very “doubtful” emerging technology
 for at least two decades

167
https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

https://arxiv.org/pdf/1706.08642
https://arxiv.org/pdf/1706.08642

Onur Mutlu

omutlu@gmail.com

https://people.inf.ethz.ch/omutlu

23 March 2018

DATE Emerging Memory Workshop Keynote Talk

Processing Data Where It Makes Sense

in Modern Computing Systems:

Enabling In-Memory Computation

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

Acknowledgments

 My current and past students and postdocs

 Rachata Ausavarungnirun, Abhishek Bhowmick, Amirali
Boroumand, Rui Cai, Yu Cai, Kevin Chang, Saugata Ghose, Kevin
Hsieh, Tyler Huberty, Ben Jaiyen, Samira Khan, Jeremie Kim,
Yoongu Kim, Yang Li, Jamie Liu, Lavanya Subramanian,
Donghyuk Lee, Yixin Luo, Justin Meza, Gennady Pekhimenko,
Vivek Seshadri, Lavanya Subramanian, Nandita Vijaykumar,
HanBin Yoon, Jishen Zhao, …

 My collaborators

 Can Alkan, Chita Das, Phil Gibbons, Sriram Govindan, Norm
Jouppi, Mahmut Kandemir, Mike Kozuch, Konrad Lai, Ken Mai,
Todd Mowry, Yale Patt, Moinuddin Qureshi, Partha Ranganathan,
Bikash Sharma, Kushagra Vaid, Chris Wilkerson, …

169

Funding Acknowledgments

 NSF

 GSRC

 SRC

 CyLab

 AMD, Google, Facebook, HP Labs, Huawei, IBM, Intel,
Microsoft, Nvidia, Oracle, Qualcomm, Rambus, Samsung,
Seagate, VMware

170

Some Open Source Tools
 Rowhammer

 https://github.com/CMU-SAFARI/rowhammer

 Ramulator – Fast and Extensible DRAM Simulator

 https://github.com/CMU-SAFARI/ramulator

 MemSim

 https://github.com/CMU-SAFARI/memsim

 NOCulator

 https://github.com/CMU-SAFARI/NOCulator

 DRAM Error Model

 http://www.ece.cmu.edu/~safari/tools/memerr/index.html

 Other open-source software from my group

 https://github.com/CMU-SAFARI/

 http://www.ece.cmu.edu/~safari/tools.html
171

https://github.com/CMU-SAFARI/rowhammer
https://github.com/CMU-SAFARI/rowhammer
https://github.com/CMU-SAFARI/rowhammer
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/memsim
https://github.com/CMU-SAFARI/memsim
https://github.com/CMU-SAFARI/memsim
https://github.com/CMU-SAFARI/NOCulator
https://github.com/CMU-SAFARI/NOCulator
https://github.com/CMU-SAFARI/NOCulator
http://www.ece.cmu.edu/~safari/tools/memerr/index.html
https://github.com/CMU-SAFARI/
https://github.com/CMU-SAFARI/
https://github.com/CMU-SAFARI/
http://www.ece.cmu.edu/~safari/tools.html

Tesseract: Extra Slides

172

Communications In Tesseract (I)

173

Communications In Tesseract (II)

174

Communications In Tesseract (III)

175

Remote Function Call (Non-Blocking)

176

Effect of Bandwidth & Programming Model

177

2.3x

3.0x

6.5x

0

1

2

3

4

5

6

7

HMC-MC HMC-MC +

PIM BW

Tesseract +

Conventional BW

Tesseract

S
p

e
e

d
u

p

HMC-MC Bandwidth (640GB/s) Tesseract Bandwidth (8TB/s)

Bandwidth

Programming Model

(No Prefetching)

Reducing Memory Latency

178

1

10

100

1999 2003 2006 2008 2011 2013 2014 2015 2016 2017

D
R

A
M

 I
m

p
ro

ve
m

en
t

(l
o
g)

Capacity Bandwidth Latency

Main Memory Latency Lags Behind

128x

20x

1.3x

Memory latency remains almost constant

A Closer Look …

180

Chang+, “Understanding Latency Variation in Modern DRAM Chips: Experimental
Characterization, Analysis, and Optimization",” SIGMETRICS 2016.

https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf

DRAM Latency Is Critical for Performance

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15;
 Awan+, BDCloud’15]

Datacenter Workloads
[Kanev+ (Google), ISCA’15]

In-memory Databases
[Mao+, EuroSys’12;
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing
[Xu+, IISWC’12; Umuroglu+, FPL’15]

DRAM Latency Is Critical for Performance

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15;
 Awan+, BDCloud’15]

Datacenter Workloads
[Kanev+ (Google), ISCA’15]

In-memory Databases
[Mao+, EuroSys’12;
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing
[Xu+, IISWC’12; Umuroglu+, FPL’15]

Long memory latency → performance bottleneck

Why the Long Latency?

 Design of DRAM uArchitecture

 Goal: Maximize capacity/area, not minimize latency

 “One size fits all” approach to latency specification

 Same latency parameters for all temperatures

 Same latency parameters for all DRAM chips (e.g., rows)

 Same latency parameters for all parts of a DRAM chip

 Same latency parameters for all supply voltage levels

 Same latency parameters for all application data

 …

183

Latency Variation in Memory Chips

184

High Low

DRAM Latency

DRAM B DRAM A DRAM C

Slow cells

Heterogeneous manufacturing & operating conditions →
 latency variation in timing parameters

DRAM Characterization Infrastructure

185 Kim+, “Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

Heater FPGAs FPGAs

DRAM Characterization Infrastructure

 Hasan Hassan et al., SoftMC: A
Flexible and Practical Open-
Source Infrastructure for
Enabling Experimental DRAM
Studies, HPCA 2017.

 Flexible

 Easy to Use (C++ API)

 Open-source

 github.com/CMU-SAFARI/SoftMC

186

https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf
https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf
https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf
https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf
https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf
https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf

SoftMC: Open Source DRAM Infrastructure

 https://github.com/CMU-SAFARI/SoftMC

187

https://github.com/CMU-SAFARI/SoftMC
https://github.com/CMU-SAFARI/SoftMC
https://github.com/CMU-SAFARI/SoftMC

Tackling the Fixed Latency Mindset

 Reliable operation latency is actually very heterogeneous

 Across temperatures, chips, parts of a chip, voltage levels, …

 Idea: Dynamically find out and use the lowest latency one
can reliably access a memory location with

 Adaptive-Latency DRAM [HPCA 2015]

 Flexible-Latency DRAM [SIGMETRICS 2016]

 Design-Induced Variation-Aware DRAM [SIGMETRICS 2017]

 Voltron [SIGMETRICS 2017]

 ...

 We would like to find sources of latency heterogeneity and
exploit them to minimize latency

 188

189

Adaptive-Latency DRAM

• Key idea

– Optimize DRAM timing parameters online

• Two components

– DRAM manufacturer provides multiple sets of

reliable DRAM timing parameters at different

temperatures for each DIMM

– System monitors DRAM temperature & uses

appropriate DRAM timing parameters

reliable DRAM timing parameters

DRAM temperature

Lee+, ͞Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,͟ HPCA
2015.

190

Latency Reduction Summary of 115 DIMMs

• Latency reduction for read & write (55°C)

– Read Latency: 32.7%

– Write Latency: 55.1%

• Latency reduction for each timing

parameter (55°C)

– Sensing: 17.3%

– Restore: 37.3% (read), 54.8% (write)

– Precharge: 35.2%

Lee+, ͞Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,͟ HPCA
2015.

191

AL-DRAM: Real System Evaluation

• System

– CPU: AMD 4386 (8 Cores, 3.1GHz, 8MB LLC)

– DRAM: 4GByte DDR3-1600 (800Mhz Clock)

– OS: Linux

– Storage: 128GByte SSD

• Workload

– 35 applications from SPEC, STREAM, Parsec,

Memcached, Apache, GUPS

192

0%

5%

10%

15%

20%

25%
so

p
le

x

m
cf

m
il
c

li
b

q

lb
m

g
e

m
s

co
p

y

s.
cl

u
st

e
r

g
u

p
s

n
o

n
-i

n
te

n
si

v
e

in
te

n
si

v
e

a
ll
-w

o
rk

lo
a

d
s

Single Core Multi Core

0%

5%

10%

15%

20%

25%
so

p
le

x

m
cf

m
il
c

li
b

q

lb
m

g
e

m
s

co
p

y

s.
cl

u
st

e
r

g
u

p
s

n
o

n
-i

n
te

n
si

v
e

in
te

n
si

v
e

a
ll
-w

o
rk

lo
a

d
s

Single Core Multi Core

1.4%

6.7%

0%

5%

10%

15%

20%

25%
so

p
le

x

m
cf

m
il
c

li
b

q

lb
m

g
e

m
s

co
p

y

s.
cl

u
st

e
r

g
u

p
s

n
o

n
-i

n
te

n
si

v
e

in
te

n
si

v
e

a
ll
-w

o
rk

lo
a

d
s

Single Core Multi Core

5.0%

AL-DRAM: Single-Core Evaluation

AL-DRAM improves single-core performance

on a real system

P
e

rf
o

rm
a

n
ce

 I
m

p
ro

ve
m

e
n

t Average

Improvement

a
ll
-3

5
-w

o
rk

lo
a

d

193

0%

5%

10%

15%

20%

25%
so

p
le

x

m
cf

m
il
c

li
b

q

lb
m

g
e

m
s

co
p

y

s.
cl

u
st

e
r

g
u

p
s

n
o

n
-i

n
te

n
si

v
e

in
te

n
si

v
e

a
ll
-w

o
rk

lo
a

d
s

Single Core Multi Core

0%

5%

10%

15%

20%

25%
so

p
le

x

m
cf

m
il
c

li
b

q

lb
m

g
e

m
s

co
p

y

s.
cl

u
st

e
r

g
u

p
s

n
o

n
-i

n
te

n
si

v
e

in
te

n
si

v
e

a
ll
-w

o
rk

lo
a

d
s

Single Core Multi Core

0%

5%

10%

15%

20%

25%
so

p
le

x

m
cf

m
il
c

li
b

q

lb
m

g
e

m
s

co
p

y

s.
cl

u
st

e
r

g
u

p
s

n
o

n
-i

n
te

n
si

v
e

in
te

n
si

v
e

a
ll
-w

o
rk

lo
a

d
s

Single Core Multi Core

14.0%

2.9%

0%

5%

10%

15%

20%

25%
so

p
le

x

m
cf

m
il
c

li
b

q

lb
m

g
e

m
s

co
p

y

s.
cl

u
st

e
r

g
u

p
s

n
o

n
-i

n
te

n
si

v
e

in
te

n
si

v
e

a
ll
-w

o
rk

lo
a

d
s

Single Core Multi Core

10.4%

AL-DRAM: Multi-Core Evaluation

AL-DRAM provides higher performance on

multi-programmed & multi-threaded workloads

P
e

rf
o

rm
a

n
ce

 I
m

p
ro

ve
m

e
n

t Average

Improvement

a
ll
-3

5
-w

o
rk

lo
a

d

Reducing Latency Also Reduces Energy

 AL-DRAM reduces DRAM power consumption by 5.8%

 Major reason: reduction in row activation time

194

More on Adaptive-Latency DRAM

 Donghyuk Lee, Yoongu Kim, Gennady Pekhimenko, Samira Khan,
Vivek Seshadri, Kevin Chang, and Onur Mutlu,
"Adaptive-Latency DRAM: Optimizing DRAM Timing for
the Common-Case"
Proceedings of the 21st International Symposium on High-
Performance Computer Architecture (HPCA), Bay Area, CA,
February 2015.
[Slides (pptx) (pdf)] [Full data sets]

195

http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://darksilicon.org/hpca/
http://darksilicon.org/hpca/
http://darksilicon.org/hpca/
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_donghyuk_hpca15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_donghyuk_hpca15-talk.pdf
http://www.ece.cmu.edu/~safari/tools/aldram-hpca2015-fulldata.html

Heterogeneous Latency within A Chip

196

0,9

0,95

1

1,05

1,1

1,15

1,2

1,25
N

o
rm

a
li
z
e
d

 P
e
rf

o
rm

a
n

c
e

40 Workloads

Baseline (DDR3)

FLY-DRAM (D1)

FLY-DRAM (D2)

FLY-DRAM (D3)

Upper Bound

17.6%
19.5%

19.7%

13.3%

Chang+, “Understanding Latency Variation in Modern DRAM Chips: Experimental
Characterization, Analysis, and Optimization",” SIGMETRICS 2016.

https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf

Analysis of Latency Variation in DRAM Chips

 Kevin Chang, Abhijith Kashyap, Hasan Hassan, Samira Khan, Kevin Hsieh,
Donghyuk Lee, Saugata Ghose, Gennady Pekhimenko, Tianshi Li, and
Onur Mutlu,
"Understanding Latency Variation in Modern DRAM Chips:
Experimental Characterization, Analysis, and Optimization"
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Antibes Juan-Les-Pins,
France, June 2016.
[Slides (pptx) (pdf)]
[Source Code]

197

https://users.ece.cmu.edu/~omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
https://users.ece.cmu.edu/~omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
http://www.sigmetrics.org/sigmetrics2016/
http://www.sigmetrics.org/sigmetrics2016/
https://users.ece.cmu.edu/~omutlu/pub/understanding-latency-variation-in-DRAM-chips_kevinchang_sigmetrics16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/understanding-latency-variation-in-DRAM-chips_kevinchang_sigmetrics16-talk.pdf
https://github.com/CMU-SAFARI/DRAM-Latency-Variation-Study

198

Inherently fast

inherently slow

What Is Design-Induced Variation?
slow fast

slo
w

fa

st

Systematic variation in cell access times

caused by the physical organization of DRAM

sense amplifiers

w
o

rd
lin

e
 d

rive
rs

across row

distance from
sense amplifier

across column

distance from
wordline driver

199

DIVA Online Profiling

inherently slow

Profile only slow regions to determine min. latency
 Dynamic & low cost latency optimization

sense amplifier

w
o

rd
lin

e
 d

rive
r

Design-Induced-Variation-Aware

200

inherently slow

DIVA Online Profiling

slow cells

design-induced
variation

process
variation

localized error random error

online profiling error-correcting
code

Combine error-correcting codes & online profiling
 Reliably reduce DRAM latency

sense amplifier

w
o

rd
lin

e
 d

rive
r

Design-Induced-Variation-Aware

201

DIVA-DRAM Reduces Latency
Read Write

31,2%

25,5%

35,1% 34,6%
36,6% 35,8%

0%

10%

20%

30%

40%

50%

55°C 85°C 55°C 85°C 55°C 85°C

AL-DRAM AVA Profiling AVA Profiling

+ Shuffling

La
te

n
cy

 R
e

d
u

ct
io

n

DIVA DIVA

36,6%

27,5%

39,4% 38,7%
41,3% 40,3%

0%

10%

20%

30%

40%

50%

55°C 85°C 55°C 85°C 55°C 85°C

AL-DRAM AVA Profiling AVA Profiling

+ Shuffling

DIVA DIVA

DIVA-DRAM reduces latency more aggressively
and uses ECC to correct random slow cells

Design-Induced Latency Variation in DRAM

 Donghyuk Lee, Samira Khan, Lavanya Subramanian, Saugata Ghose,
Rachata Ausavarungnirun, Gennady Pekhimenko, Vivek Seshadri, and
Onur Mutlu,
"Design-Induced Latency Variation in Modern DRAM Chips:
Characterization, Analysis, and Latency Reduction Mechanisms"
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL,
USA, June 2017.

202

https://people.inf.ethz.ch/omutlu/pub/DIVA-low-latency-DRAM_sigmetrics17-paper.pdf
https://people.inf.ethz.ch/omutlu/pub/DIVA-low-latency-DRAM_sigmetrics17-paper.pdf
https://people.inf.ethz.ch/omutlu/pub/DIVA-low-latency-DRAM_sigmetrics17-paper.pdf
https://people.inf.ethz.ch/omutlu/pub/DIVA-low-latency-DRAM_sigmetrics17-paper.pdf
http://www.sigmetrics.org/sigmetrics2017/
http://www.sigmetrics.org/sigmetrics2017/

Voltron: Exploiting the

 Voltage-Latency-Reliability

 Relationship

203

Executive Summary

• DRAM (memory) power is significant in today’s systems
– Existing low-voltage DRAM reduces voltage conservatively

• Goal: Understand and exploit the reliability and latency behavior of
real DRAM chips under aggressive reduced-voltage operation

• Key experimental observations:

– Huge voltage margin -- Errors occur beyond some voltage

– Errors exhibit spatial locality

– Higher operation latency mitigates voltage-induced errors

• Voltron: A new DRAM energy reduction mechanism

– Reduce DRAM voltage without introducing errors

– Use a regression model to select voltage that does not degrade
performance beyond a chosen target  7.3% system energy reduction

 204

Analysis of Latency-Voltage in DRAM Chips

 Kevin Chang, A. Giray Yaglikci, Saugata Ghose, Aditya Agrawal, Niladrish
Chatterjee, Abhijith Kashyap, Donghyuk Lee, Mike O'Connor, Hasan
Hassan, and Onur Mutlu,
"Understanding Reduced-Voltage Operation in Modern DRAM
Devices: Experimental Characterization, Analysis, and
Mechanisms"
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL,
USA, June 2017.

205

https://people.inf.ethz.ch/omutlu/pub/Voltron-reduced-voltage-DRAM-sigmetrics17-paper.pdf
https://people.inf.ethz.ch/omutlu/pub/Voltron-reduced-voltage-DRAM-sigmetrics17-paper.pdf
https://people.inf.ethz.ch/omutlu/pub/Voltron-reduced-voltage-DRAM-sigmetrics17-paper.pdf
https://people.inf.ethz.ch/omutlu/pub/Voltron-reduced-voltage-DRAM-sigmetrics17-paper.pdf
https://people.inf.ethz.ch/omutlu/pub/Voltron-reduced-voltage-DRAM-sigmetrics17-paper.pdf
http://www.sigmetrics.org/sigmetrics2017/
http://www.sigmetrics.org/sigmetrics2017/

And, What If …

 … we can sacrifice reliability of some data to access it with
even lower latency?

206

Tiered Latency DRAM

207

208

DRAM Latency = Subarray Latency + I/O Latency

 What Causes the Long Latency?
DRAM Chip

channel

cell array

I/O

DRAM Chip

channel

I/O

subarray

DRAM Latency = Subarray Latency + I/O Latency

Dominant
S

u
b

a
rr

a
y

I/

O

209

 Why is the Subarray So Slow?

Subarray

ro
w

 d
e

co
d

e
r

sense amplifier

ca
p

a
ci

to
r

access
transistor

wordline

b
it

li
n

e

Cell

large sense amplifier

b
it

li
n

e
:

5
1

2
 c

e
ll

s

cell

• Long bitline

– Amortizes sense amplifier cost  Small area

– Large bitline capacitance  High latency & power

se
n

se
 a

m
p

li
fi

e
r

ro
w

 d
e

co
d

e
r

210

 Trade-Off: Area (Die Size) vs. Latency

Faster

Smaller

Short Bitline

Long Bitline

Trade-Off: Area vs. Latency

211

 Trade-Off: Area (Die Size) vs. Latency

0

1

2

3

4

0 10 20 30 40 50 60 70

N
o

rm
a

li
ze

d
 D

R
A

M
 A

re
a

Latency (ns)

64

32

128

256 512 cells/bitline

Commodity

DRAM

Long Bitline

C
h

e
a

p
e

r

Faster

Fancy DRAM

Short Bitline

212

Short Bitline

Low Latency

 Approximating the Best of Both Worlds

Long Bitline

Small Area

Long Bitline

Low Latency

Short Bitline Our Proposal

Small Area

Short Bitline  Fast

Need
Isolation

Add Isolation
Transistors

High Latency

Large Area

213

 Approximating the Best of Both Worlds

Low Latency

Our Proposal

Small Area

Long Bitline

Small Area

Long Bitline

High Latency

Short Bitline

Low Latency

Short Bitline

Large Area

Tiered-Latency DRAM

Low Latency

Small area

using long

bitline

214

0%

50%

100%

150%

0%

50%

100%

150%

 Commodity DRAM vs. TL-DRAM [HPCA 2013]
La

te
n

cy

P
o

w
e

r

–56%

+23%

–51%

+49%

• DRAM Latency (tRC) • DRAM Power

• DRAM Area Overhead

~3%: mainly due to the isolation transistors

TL-DRAM
Commodity

DRAM

Near Far
Commodity

DRAM

Near Far

TL-DRAM

 (52.5ns)

215

 Trade-Off: Area (Die-Area) vs. Latency

0

1

2

3

4

0 10 20 30 40 50 60 70

N
o

rm
a

li
ze

d
 D

R
A

M
 A

re
a

Latency (ns)

64

32

128
256 512 cells/bitline

C
h

e
a

p
e

r

Faster

Near Segment Far Segment

216

 Leveraging Tiered-Latency DRAM

• TL-DRAM is a substrate that can be leveraged by
the hardware and/or software

• Many potential uses

1. Use near segment as hardware-managed inclusive
cache to far segment

2. Use near segment as hardware-managed exclusive
cache to far segment

3. Profile-based page mapping by operating system

4. Simply replace DRAM with TL-DRAM

Lee+, ͞Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,͟ HPCA ϮϬϭϯ.

217

0%

20%

40%

60%

80%

100%

120%

1 (1-ch) 2 (2-ch) 4 (4-ch)
0%

20%

40%

60%

80%

100%

120%

1 (1-ch) 2 (2-ch) 4 (4-ch)

 Performance & Power Consumption

11.5%

N
o

rm
a

li
ze

d
 P

e
rf

o
rm

a
n

ce

Core-Count (Channel)
N

o
rm

a
li

ze
d

 P
o

w
e

r
Core-Count (Channel)

10.7%

12.4%

 –23%

–24%

–26%

Using near segment as a cache improves

performance and reduces power consumption

Lee+, ͞Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,͟ HPCA ϮϬϭϯ.

Challenge and Opportunity for Future

Fundamentally

Low Latency

Computing Architectures

218

Ramulator: A Fast and Extensible

DRAM Simulator

 [IEEE Comp Arch Letters’15]

219

Ramulator Motivation

 DRAM and Memory Controller landscape is changing

 Many new and upcoming standards

 Many new controller designs

 A fast and easy-to-extend simulator is very much needed

220

Ramulator

 Provides out-of-the box support for many DRAM standards:

 DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, plus new
proposals (SALP, AL-DRAM, TLDRAM, RowClone, and SARP)

 ~2.5X faster than fastest open-source simulator

 Modular and extensible to different standards

221

Case Study: Comparison of DRAM Standards

222

Across 22
workloads,
simple CPU
model

Ramulator Paper and Source Code

 Yoongu Kim, Weikun Yang, and Onur Mutlu,
"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters (CAL), March 2015.
[Source Code]

 Source code is released under the liberal MIT License

 https://github.com/CMU-SAFARI/ramulator

223

http://users.ece.cmu.edu/~omutlu/pub/ramulator_dram_simulator-ieee-cal15.pdf
http://www.computer.org/web/cal
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator

End of Backup Slides

224

Brief Self Introduction

 Onur Mutlu

 Full Professor @ ETH Zurich CS, since September 2015 (officially May 2016)

 Strecker Professor @ Carnegie Mellon University ECE/CS, 2009-2016, 2016-…

 PhD from UT-Austin, worked at Google, VMware, Microsoft Research, Intel, AMD

 https://people.inf.ethz.ch/omutlu/

 omutlu@gmail.com (Best way to reach me)

 https://people.inf.ethz.ch/omutlu/projects.htm

 Research and Teaching in:

 Computer architecture, computer systems, security, bioinformatics

 Memory and storage systems

 Hardware security

 Fault tolerance

 Hardware/software cooperation

 …

 225

https://people.inf.ethz.ch/omutlu/
mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu/projects.htm

