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Future Computing Architectures 
 



Why Do We Do Computing? 

2 



Answer 

To Solve Problems 

3 



Answer Reworded 

To Gain Insight 

4 Hamming, “Numerical Methods for Scientists and Engineers,” 1962. 



Answer Extended 

 

To Enable  
a Better Life & Future 

5 



How Does a Computer  
Solve Problems? 

6 



Answer 

Orchestrating Electrons 

7 

In today’s dominant technologies 



How Do Problems  
 Get Solved by Electrons? 

8 



The Transformation Hierarchy 

9 

Micro-architecture 

SW/HW Interface 
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Problem 

Logic 
 Devices 
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Electrons 

Computer Architecture 
(narrow view) 

Computer Architecture 
(expanded view) 



Computer Architecture 

!  is the science and art of designing computing platforms 
(hardware, interface, system SW, and programming model) 

!  to achieve a set of design goals 
"  E.g., highest performance on earth on workloads X, Y, Z 
"  E.g., longest battery life at a form factor that fits in your 

pocket with cost < $$$ CHF 
"  E.g., best average performance across all known workloads at 

the best performance/cost ratio 
"  … 

"  Designing a supercomputer is different from designing a 
smartphone # But, many fundamental principles are similar 
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Different Platforms, Different Goals 

11 
Source:	h*p://www.sia-online.org	(semiconductor	industry	associa;on)	



Different Platforms, Different Goals 

12 
Source:	h*ps://iq.intel.com/5-awesome-uses-for-drone-technology/	



Different Platforms, Different Goals 

13 Source:	h*ps://taxistartup.com/wp-content/uploads/2015/03/UK-Self-Driving-Cars.jpg	



Different Platforms, Different Goals 

14 Source:	h*p://sm.pcmag.com/pcmag_uk/photo/g/google-self-driving-car-the-guts/google-self-driving-car-the-guts_dwx8.jpg	



Different Platforms, Different Goals 

15 
Source:	h*p://datacentervoice.com/wp-content/uploads/2015/10/data-center.jpg	



Different Platforms, Different Goals 

16 Source:	h*ps://fossbytes.com/wp-content/uploads/2015/06/Supercomputer-TIANHE2-china.jpg	



Different Platforms, Different Goals 

17 

Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA 2017. 



Axiom 
To achieve the highest energy efficiency and performance: 

 

we must take the expanded view 
of computer architecture 

18 

Micro-architecture 

SW/HW Interface 

Program/Language 

Algorithm 

Problem 

Logic 
 Devices 

System Software 

Electrons 

Co-design across the hierarchy: 
Algorithms to devices 

Specialize as much as possible 
within the design goals 



What Kind of a Future  
    Do We Want? 

19 



20 Source:	h*p://www.technologystudent.com/struct1/tacom1.png	



21 Source:	AP	



22 Source:	AP	 Source:	h*p://www.sea*lepi.com/science/ar;cle/A-Tacoma-Narrows-Galloping-Ger;e-bridge-6617030.php	



23 
Source:	h*ps://s-media-cache-ak0.pinimg.com/originals/48/09/54/4809543a9c7700246a0cf8acdae27abf.jpg	



Challenge and Opportunity for Future 

Reliable, Secure, Safe 

24 



25 
Source:	V.	Milu;novic	
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Source:	V.	Milu;novic	



Challenge and Opportunity for Future 

Sustainable 
and 

Energy Efficient 
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28 
Source:	h*ps://farm9.sta;cflickr.com/8571/16376102935_8628150df8_o.jpg		



29 Source:	h*ps://blogs-images.forbes.com/jimgorzelany/files/2015/10/China-G4-backup-this-oct-reuters.jpg	



30 Source:	h*p://spectrum.ieee.org/image/MjYzMzAyMg.jpeg	



Challenge and Opportunity for Future 

High Performance 
 

(to solve  
the toughest & all problems) 

31 



32 Source:	Jane	Ades,	NHGRI	



33 Source:	By	Aaron	E.	Darling,	István	Miklós,	Mark	A.	Ragan	-	Figure	1	from	Darling	AE,	Miklós	I,	Ragan	MA	(2008).		
"Dynamics	of	Genome	Rearrangement	in	Bacterial	Popula;ons".	PLOS	Gene;cs.	DOI:10.1371/journal.pgen.1000128.,	CC	BY	2.5,	h*ps://commons.wikimedia.org/w/index.php?curid=30550950		



Challenge and Opportunity for Future 

Personalized and Private 
 

(in every aspect of life:  
health, medicine,  

spaces, devices, robotics, …) 
34 



This Lecture is About … 

!  Questioning what limits us in designing the 
best computing architectures for the future 

 

!  Providing directions for fundamentally better 
designs 

 

!  Advocating principled approaches 

35 



Increasingly Demanding Applications 

 

Dream 
 

and, they will come 

36 

As applications push boundaries, computing platforms will become increasingly strained. 



Maslow’s (Human) Hierarchy of Needs 

 
 
 
 
 
 
 
 
 
!  We need to start with reliability and security… 

37 

Maslow, “A Theory of Human Motivation,”  
Psychological Review, 1943.  

Source:	h*ps://www.simplypsychology.org/maslow.html	



Three Key Issues in Future Platforms 

!  Fundamentally Secure/Reliable/Safe Architectures 

!  Fundamentally Energy-Efficient Architectures 
"  Memory-centric (Data-centric) Architectures 

!  Architectures for Genomics, Medicine, Health 

38 



39 Source:	h*p://www.technologystudent.com/struct1/tacom1.png	



40 Source:	AP	



41 
Source:	h*ps://s-media-cache-ak0.pinimg.com/originals/48/09/54/4809543a9c7700246a0cf8acdae27abf.jpg	

Security is about preventing unforeseen consequences 



The Problem 

We do not seem to have  
design principles for  

(guaranteeing)  
reliability and security 

42 



Focus is on Data Storage Systems (Memory) 

43 

Processors 
and caches 

Main Memory Storage (SSD/HDD) FPGAs GPUs 
 
 

!  Memory is a critical component of all computing systems: 
server, mobile, embedded, desktop, sensor, … 

!  Main memory system must scale (in size, technology, 
efficiency, cost, and management algorithms) to maintain 
performance growth and technology scaling benefits 



As Memory Scales, It Becomes Unreliable 
!  Data from all of Facebook’s servers worldwide 
!  Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers,” DSN’15. 

44 

Intuition: quadratic increase 
in 

capacity 



The DRAM Scaling Problem 
!  DRAM stores charge in a capacitor (charge-based memory) 

"  Capacitor must be large enough for reliable sensing 
"  Access transistor should be large enough for long data retention time 

 

!  As DRAM cell becomes smaller, it becomes more vulnerable 
 

45 



Infrastructure to Understand Such Issues 

46 Kim+, “Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors,” ISCA 2014. 

Temperature 
Controller 

 

PC 

Heater FPGAs FPGAs 



A Curious Discovery [Kim et al., ISCA 2014] 

 

One can  
predictably induce errors  

in most DRAM memory chips 

47 



DRAM RowHammer 

A simple hardware failure mechanism  
can create a widespread  

system security vulnerability 

48 



 Row of Cells

 Row

 Row

 Row

 Row


 Wordline


 VLOW
 VHIGH

 Vic2m Row


 Vic2m Row

 Hammered Row


Repeatedly reading a row enough 2mes (before memory gets 
refreshed) induces disturbance errors in adjacent rows in 
most real DRAM chips you can buy today


Opened
Closed
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Modern DRAM is Prone to Disturbance Errors 

Flipping	Bits	in	Memory	Without	Accessing	Them:	An	Experimental	Study	of	DRAM	
Disturbance	Errors, (Kim	et	al.,	ISCA	2014)	



86%

(37/43)


83%

(45/54)


88%

(28/32)


A company
 B company
 C company


Up to

1.0×107 �

errors 


Up to

2.7×106�

errors 


Up to

3.3×105 �

errors 
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Most DRAM Modules Are Vulnerable 

Flipping	Bits	in	Memory	Without	Accessing	Them:	An	Experimental	Study	of	DRAM	
Disturbance	Errors, (Kim	et	al.,	ISCA	2014)	
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All modules from 2012–2013 are vulnerable


First

Appearance


Recent DRAM Is More Vulnerable 



CPU


loop: 
  mov (X), %eax 
  mov (Y), %ebx 
  clflush (X)   
  clflush (Y) 
  mfence 
  jmp loop 

Download	from:	h*ps://github.com/CMU-SAFARI/rowhammer		

DRAM Module


A Simple Program Can Induce Many Errors 

Y 

X 
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loop: 
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  mov (Y), %ebx 
  clflush (X)   
  clflush (Y) 
  mfence 
  jmp loop 

Download	from:	h*ps://github.com/CMU-SAFARI/rowhammer		

DRAM Module


A Simple Program Can Induce Many Errors 
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CPU


loop: 
  mov (X), %eax 
  mov (Y), %ebx 
  clflush (X)   
  clflush (Y) 
  mfence 
  jmp loop 

Download	from:	h*ps://github.com/CMU-SAFARI/rowhammer		

DRAM Module


A Simple Program Can Induce Many Errors 

 


 


Y 

X 



CPU


 


 


loop: 
  mov (X), %eax 
  mov (Y), %ebx 
  clflush (X)   
  clflush (Y) 
  mfence 
  jmp loop 

Y 

X 

Download	from:	h*ps://github.com/CMU-SAFARI/rowhammer		

DRAM Module


A Simple Program Can Induce Many Errors 
















A real reliability & security issue 


CPU Architecture
 Errors Access-Rate


Intel Haswell (2013)
 22.9K	 12.3M/sec	

Intel Ivy Bridge (2012)
 20.7K	 11.7M/sec	

Intel Sandy Bridge (2011)
 16.1K	 11.6M/sec	

AMD Piledriver (2012)
 59	 6.1M/sec	

56
Kim+, “Flipping	Bits	in	Memory	Without	Accessing	Them:	An	Experimental	Study	of	
DRAM	Disturbance	Errors,” ISCA 2014. 

Observed Errors in Real Systems 



One Can Take Over an Otherwise-Secure System 

57 

Exploiting the DRAM rowhammer bug to 
gain kernel privileges  (Seaborn+, 2015) 

Flipping Bits in Memory Without Accessing Them: 
An Experimental Study of DRAM Disturbance Errors 
(Kim et al., ISCA 2014) 



RowHammer Security Attack Example 
!  “Rowhammer” is a problem with some recent DRAM devices in which 

repeatedly accessing a row of memory can cause bit flips in adjacent rows 
(Kim et al., ISCA 2014).  
"  Flipping Bits in Memory Without Accessing Them: An Experimental Study of 

DRAM Disturbance Errors (Kim et al., ISCA 2014) 

!  We tested a selection of laptops and found that a subset of them 
exhibited the problem.  

!  We built two working privilege escalation exploits that use this effect.  
"  Exploiting the DRAM rowhammer bug to gain kernel privileges  (Seaborn+, 2015) 

!  One exploit uses rowhammer-induced bit flips to gain kernel privileges 
on x86-64 Linux when run as an unprivileged userland process.  

!  When run on a machine vulnerable to the rowhammer problem, the 
process was able to induce bit flips in page table entries (PTEs).  

!  It was able to use this to gain write access to its own page table, and 
hence gain read-write access to all of physical memory. 

58 Exploiting the DRAM rowhammer bug to gain kernel privileges  (Seaborn & Dullien, 2015) 
 



Security Implications 

59 



More Security Implications 

60 Source: https://lab.dsst.io/32c3-slides/7197.html  

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript (DIMVA’16) 

“We can gain unrestricted access to systems of website visitors.” 



More Security Implications 

61 Source: https://fossbytes.com/drammer-rowhammer-attack-android-root-devices/ 

Drammer: Deterministic Rowhammer 
Attacks on Mobile Platforms, CCS’16  

“Can gain control of a smart phone deterministically” 



More Security Implications? 

62 



Apple’s Patch for RowHammer 
!  https://support.apple.com/en-gb/HT204934  

HP, Lenovo, and other vendors released similar patches 



Better Solution Directions: Principled Designs 

 
 

Design fundamentally secure 
computing architectures  

 
Predict and prevent such safety issues 

 

64 



How Do We Keep Memory Secure? 

!  Understand: Methodologies for failure modeling and discovery 
"  Modeling and prediction based on real (device) data  

 
!  Architect: Principled co-architecting of system and memory 

"  Good partitioning of duties across the stack 

!  Design & Test: Principled design, automation, testing 
"  High coverage and good interaction with system reliability methods 

 
65 



66 Kim+, “Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors,” ISCA 2014. 

Temperature 
Controller 

 

PC 

Heater FPGAs FPGAs 

Understand and Model with Experiments (DRAM) 



Understand and Model with Experiments (Flash) 

67 

USB Jack 

Virtex-II Pro 
(USB controller) 

Virtex-V FPGA 
(NAND Controller) 

HAPS-52 Mother Board 

USB Daughter Board 

NAND Daughter Board 

1x-nm 
NAND Flash 

[DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014, 
HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017] 



There are Two Other Other Solutions 
!  New Technologies: Replace or (more likely) augment DRAM 

with a different technology 
"  Non-volatile memories 

!  Embracing Un-reliability:  
    Design memories with different reliability 
    and store data intelligently across them 
 
 
!  … 

68 

Fundamental	solu-ons	to	security	
require	co-design	across	the	hierarchy	

Micro-architecture 

SW/HW Interface 

Program/Language 

Algorithm 

Problem 

Logic 
 Devices 

System Software 

Electrons 



Challenge and Opportunity for Future 

Fundamentally 
Secure, Reliable, Safe 

Computing Architectures 

69 



Three Key Issues in Future Platforms 

!  Fundamentally Secure/Reliable/Safe Architectures 

!  Fundamentally Energy-Efficient Architectures 
"  Memory-centric (Data-centric) Architectures 

!  Architectures for Genomics, Medicine, Health 

70 



71 Source:	V.	Milu;novic	



Maslow’s (Human) Hierarchy of Needs, Revisited 

 
 
 
 
 
 
 
 
 
!  We need to start with reliability and security… 

72 

Maslow, “A Theory of Human Motivation,”  
Psychological Review, 1943.  

Everlasting battery life  



Challenge and Opportunity for Future 

Sustainable 
and 

Energy Efficient 

73 



The Problem 

Data access is the major performance and energy bottleneck 

 

Our current 
design principles  

cause great energy waste 

74 



The Problem 

Processing of data  
is performed  

far away from the data 

75 



A Computing System 
!  Three key components 
!  Computation  
!  Communication 
!  Storage/memory 

76 

Burks, Goldstein, von Neumann, “Preliminary discussion of the 
logical design of an electronic computing instrument,” 1946. 



Today’s Computing Systems 
!  Are overwhelmingly processor centric 
!  All data processed in the processor # at great system cost 
!  Processor is heavily optimized and is considered the master 
!  Data storage units are dumb slaves and are largely 

unoptimized (except for some that are on the processor die) 

77 



Yet … 
!  “It’s the Memory, Stupid!” (Richard Sites, MPR, 1996) 

78 



Perils of Processor-Centric Design 

!  Grossly-imbalanced systems 
"  Processing done only in one place 
"  Everything else just stores and moves data: data moves a lot 
# Energy inefficient  
# Low performance 
# Complex 

 
!  Overly complex and bloated processor (and accelerators) 

"  To tolerate data access from memory 
"  Complex hierarchies and mechanisms  
# Energy inefficient  
# Low performance 
# Complex 

79 



Perils of Processor-Centric Design 

80 



Three Key Systems Trends 

1. Data access is a major bottleneck 
"  Applications are increasingly data hungry 

2. Energy consumption is a key limiter 

3. Data movement energy dominates compute 
"  Especially true for off-chip to on-chip movement 
 

81 



Data Movement vs. Computation Energy 

82 

Dally, HiPEAC 2015 

A memory access consumes ~1000X  
the energy of a complex addition  



We Need A Paradigm Shift To … 

!  Enable computation with minimal data movement 

!  Compute where it makes sense (where data resides) 

!  Make computing architectures more data-centric 

83 



Goal: In-Memory Computation Engine 

 

!  Many questions … How do we design the: 
"  compute-capable memory? 
"  processor chip? 
"  software interface? 
"  system software and languages? 
"  algorithms? 

Cache 

Processor 
Core 

 Interconnect 

 Memory 
Database 
 
Graphs 
 
Media   

Query 

Results 

Micro-architecture 

SW/HW Interface 

Program/Language 

Algorithm 

Problem 

Logic 
 Devices 

System Software 

Electrons 



Starting Simple: Data Copy and Initialization 

85 

Forking 

00000
00000
00000 

Zero initialization 
(e.g., security) 

VM Cloning 
Deduplication 

Checkpointing 

Page Migration 

Many more 

memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ ISCA’15] 



Today’s Systems: Bulk Data Copy 

Memory 
	
 
	
 
	
 
 

MC L3 L2 L1 CPU 

1)	High	latency	

2)	High	bandwidth	u;liza;on	

3)	Cache	pollu;on	

4)	Unwanted	data	movement	

86	1046ns,	3.6uJ				(for	4KB	page	copy	via	DMA)	



Future Systems: In-Memory Copy 

Memory 
	
 
	
 
	
 
 

MC L3 L2 L1 CPU 

1)	Low	latency	

2)	Low	bandwidth	u;liza;on	

3)	No	cache	pollu;on	

4)	No	unwanted	data	movement	

87	1046ns,	3.6uJ	90ns,	0.04uJ	



RowClone: In-DRAM Row Copy 

Row Buffer (4 Kbytes) 

Data Bus 

8 bits 

DRAM subarray 

4 Kbytes 

Step 1: Activate row A 

Transfer 
row 

Step 2: Activate row B 

 
Transfer 
row 

Negligible HW cost 



RowClone: Latency and Energy Savings 

0	

0.2	

0.4	
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1	

1.2	

Latency	 Energy	

N
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m
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	S
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gs
	

Baseline	 Intra-Subarray	
Inter-Bank	 Inter-Subarray	

11.6x	 74x	

89	
Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and 
Initialization of Bulk Data,” MICRO 2013. 



(Truly) In-Memory Computation 
!  Similarly, we can support in-DRAM AND, OR, NOT  
!  At low cost 
!  Using analog behavior of memory 
!  30-60X performance and energy improvement 

!  New memory technologies enable even more opportunities 
"  Memristors, resistive RAM, phase change memory 
"  Can operate on data with minimal movement 

90 



Another Example: In-Memory Graph Processing 

91 

!  Large graphs are everywhere (circa 2015) 

 

!  Scalable large-scale graph processing is challenging	

36 Million  
Wikipedia Pages 

1.4 Billion 
Facebook Users 

300 Million 
Twitter Users 

30 Billion 
Instagram Photos 

+42% 

0 1 2 3 4 

128 
Cores 

32 Cores 

Speedup 



Key Bottlenecks in Graph Processing 

92 

for	(v:	graph.ver;ces)	{	
				for	(w:	v.successors)	{	
								w.next_rank	+=	weight	*	v.rank;	
				}	
}	

weight * v.rank	

v�

w�

&w�

1. Frequent random memory accesses	

2. Little amount of computation	

w.rank	

w.next_rank	

w.edges	

…	



Tesseract System for Graph Processing 
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Crossbar	Network�

…	
…	

…	
…	

DRAM
	Controller�

NI�

In-Order	Core�

Message	Queue�

PF	Buffer�

MTP�

LP�

Host	Processor�

Memory-Mapped 
Accelerator Interface 

(Noncacheable, Physically Addressed)	

Interconnected set of 3D-stacked memory+logic chips with simple cores 

Logic 

Memory 



Logic 

Memory 

Tesseract System for Graph Processing 
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Crossbar	Network�
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Host	Processor�

Memory-Mapped 
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(Noncacheable, Physically Addressed)	
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Remote	Func;on	Calls�



Logic 

Memory 

Tesseract System for Graph Processing 
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Crossbar	Network�
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DRAM
	Controller�

NI�

In-Order	Core�

Message	Queue�

PF	Buffer�

MTP�

LP�

Host	Processor�

Memory-Mapped 
Accelerator Interface 

(Noncacheable, Physically Addressed)	

Prefetching�



Evaluated Systems 

96 

HMC-MC	

128	
In-Order	
2GHz�

128	
In-Order	
2GHz�

128	
In-Order	
2GHz�

128	
In-Order	
2GHz�

102.4GB/s	 640GB/s	 640GB/s	 8TB/s	

HMC-OoO	

8	OoO	
4GHz�

8	OoO	
4GHz�

8	OoO	
4GHz�

8	OoO	
4GHz�

8	OoO	
4GHz�

8	OoO	
4GHz�

8	OoO	
4GHz�

8	OoO	
4GHz�

DDR3-OoO	 Tesseract	

32	
Tesseract	
Cores�

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015. 



Tesseract Graph Processing Performance 
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+56%	 +25%	

9.0x	

11.6x	
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>13X Performance Improvement	

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015. 

On five graph processing algorithms 



Tesseract Graph Processing Performance 
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Tesseract Graph Processing Energy 
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0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

HMC-OoO	 Tesseract	with	Prefetching	

Memory	Layers	 Logic	Layers	 Cores	

> 8X Energy Reduction	

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015. 



Challenge and Opportunity for Future 

Fundamentally 
Energy-Efficient 
(Data-Centric) 

Computing Architectures 
100 



Three Key Issues in Future Platforms 

!  Fundamentally Secure/Reliable/Safe Architectures 

!  Fundamentally Energy-Efficient Architectures 
"  Memory-centric (Data-centric) Architectures 

!  Architectures for Genomics, Medicine, Health 

101 



Genome Sequence Alignment 

102 Source:	By	Aaron	E.	Darling,	István	Miklós,	Mark	A.	Ragan	-	Figure	1	from	Darling	AE,	Miklós	I,	Ragan	MA	(2008).		
"Dynamics	of	Genome	Rearrangement	in	Bacterial	Popula;ons".	PLOS	Gene;cs.	DOI:10.1371/journal.pgen.1000128.,	CC	BY	2.5,	h*ps://commons.wikimedia.org/w/index.php?curid=30550950		
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1

3 4

2Sequencing Mapping 

Variant Calling Scientific Discovery 

Alignment Verification

Read Mapping

Short Reads (>1000 gigabases) 
Produced by an HTS instrument

1 2

3

High Throughput Sequencing

Reference Genome 
(>3 gigabases)

e.g. Smith-Waterman alignment algorithm

Quadratic-time dynamic 
programming algorithms

300 M 
bases/min 

GAGTCAGAATTTGAC  
GAGTCAGAATTTGAC  GAGTCAGAATTTGAC  

GAGTCAGAATTTGAC  

GAGTCAGAATTTGAC  

GAGTCAGAATTTGAC  

GAGTCAGAATTTGAC  

GAGTCAGAATTTGAC  

Illumina HiSeq4000   

2 M 
bases/min 

on average 

(0.6%) 

Genome 
Analysis Bottlenecked in Mapping! 



Total Processing Time Breakdown  

104 

candidate 
alignment 

locations (CAL) 
4% 

Dynamic 
Programming 

Algorithm 
93% 

SAM printing 
3% 
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x1012 
mappings 

x103 
mappings 

High Speed, Low Accuracy 
Medium Speed, Medium Accuracy 

Low Speed & High Accuracy 

Novel Filter 
Algorithm 

st 1 
FPGA-based 

Alignment Filter. 

An Example Solution: GateKeeper 



Some Key Principles and Results 
!  Two key principles: 

"  Exploit the structure of the genome to minimize computation 
"  Morph and exploit the structure of the underlying hardware to 

maximize performance and efficiency 

 
!  Algorithm-architecture co-design for DNA read mapping 

"  Improves performance by 20-100X 
"  Improves accuracy of alignment in the presence of errors 
"  Leads to a much more comprehensive read mapper 

106 

Xin et al., “Accelerating Read Mapping with FastHASH,” BMC Genomics 2013. 
Xin et al., “Shifted Hamming Distance: A Fast and Accurate SIMD-friendly Filter to Accelerate  
Alignment Verification in Read Mapping,” Bioinformatics 2015. 
Alser et al., “GateKeeper: A New Hardware Architecture for Accelerating Pre-Alignment in DNA  
Short Read Mapping,” arxiv 2016. 
Kim et al., “Genome Read In-Memory (GRIM) Filter,” PSB 2017. 
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A Quote from A Famous Architect 
!  “architecture […] based upon principle, and not upon 

precedent” 
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Another Example: Precedent-Based Design 

109 Source: http://cookiemagik.deviantart.com/art/Train-station-207266944 



Principled Design 

110 Source: By Toni_V, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=4087256 



Principle Applied to Another Structure 

111 
Source: https://www.dezeen.com/2016/08/29/santiago-calatrava-oculus-world-trade-center-transportation-hub-new-york-photographs-hufton-crow/ 
Source: By 準建築人手札網站 Forgemind ArchiMedia - Flickr: IMG_2489.JPG, CC BY 2.0,  
https://commons.wikimedia.org/w/index.php?curid=31493356, https://en.wikipedia.org/wiki/Santiago_Calatrava 



Concluding Remarks 

!  It is time to design principled computing architectures to 
achieve the highest security, performance, and efficiency 

!  Discover design principles for fundamentally secure and 
reliable computer architectures 

!  Design complete systems to be balanced, i.e., data-centric 
(or memory-centric) 

!  The expanded view of computer architecture can 
"  Lead to orders-of-magnitude improvements  
"  Enable new applications & computing platforms 
"  … 
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The Future is Very Bright 

!  Regardless of challenges  
"  in underlying technology and overlying problems/requirements  
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