
Onur Mutlu
onur.mutlu@inf.ethz.ch

https://people.inf.ethz.ch/omutlu
May 15, 2017

ETH Zurich Inaugural Lecture

Future Computing Architectures

Why Do We Do Computing?

2

Answer

To Solve Problems

3

Answer Reworded

To Gain Insight

4 Hamming, “Numerical Methods for Scientists and Engineers,” 1962.

Answer Extended

To Enable
a Better Life & Future

5

How Does a Computer
Solve Problems?

6

Answer

Orchestrating Electrons

7

In today’s dominant technologies

How Do Problems
 Get Solved by Electrons?

8

The Transformation Hierarchy

9

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic
 Devices

System Software

Electrons

Computer Architecture
(narrow view)

Computer Architecture
(expanded view)

Computer Architecture

!  is the science and art of designing computing platforms
(hardware, interface, system SW, and programming model)

!  to achieve a set of design goals
"  E.g., highest performance on earth on workloads X, Y, Z
"  E.g., longest battery life at a form factor that fits in your

pocket with cost < $$$ CHF
"  E.g., best average performance across all known workloads at

the best performance/cost ratio
"  …

"  Designing a supercomputer is different from designing a
smartphone # But, many fundamental principles are similar

10

Different Platforms, Different Goals

11
Source:	h*p://www.sia-online.org	(semiconductor	industry	associa;on)	

Different Platforms, Different Goals

12
Source:	h*ps://iq.intel.com/5-awesome-uses-for-drone-technology/	

Different Platforms, Different Goals

13 Source:	h*ps://taxistartup.com/wp-content/uploads/2015/03/UK-Self-Driving-Cars.jpg	

Different Platforms, Different Goals

14 Source:	h*p://sm.pcmag.com/pcmag_uk/photo/g/google-self-driving-car-the-guts/google-self-driving-car-the-guts_dwx8.jpg	

Different Platforms, Different Goals

15
Source:	h*p://datacentervoice.com/wp-content/uploads/2015/10/data-center.jpg	

Different Platforms, Different Goals

16 Source:	h*ps://fossbytes.com/wp-content/uploads/2015/06/Supercomputer-TIANHE2-china.jpg	

Different Platforms, Different Goals

17

Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA 2017.

Axiom
To achieve the highest energy efficiency and performance:

we must take the expanded view
of computer architecture

18

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic
 Devices

System Software

Electrons

Co-design across the hierarchy:
Algorithms to devices

Specialize as much as possible
within the design goals

What Kind of a Future
 Do We Want?

19

20 Source:	h*p://www.technologystudent.com/struct1/tacom1.png	

21 Source:	AP	

22 Source:	AP	 Source:	h*p://www.sea*lepi.com/science/ar;cle/A-Tacoma-Narrows-Galloping-Ger;e-bridge-6617030.php	

23
Source:	h*ps://s-media-cache-ak0.pinimg.com/originals/48/09/54/4809543a9c7700246a0cf8acdae27abf.jpg	

Challenge and Opportunity for Future

Reliable, Secure, Safe

24

25
Source:	V.	Milu;novic	

26
Source:	V.	Milu;novic	

Challenge and Opportunity for Future

Sustainable
and

Energy Efficient

27

28
Source:	h*ps://farm9.sta;cflickr.com/8571/16376102935_8628150df8_o.jpg		

29 Source:	h*ps://blogs-images.forbes.com/jimgorzelany/files/2015/10/China-G4-backup-this-oct-reuters.jpg	

30 Source:	h*p://spectrum.ieee.org/image/MjYzMzAyMg.jpeg	

Challenge and Opportunity for Future

High Performance

(to solve
the toughest & all problems)

31

32 Source:	Jane	Ades,	NHGRI	

33 Source:	By	Aaron	E.	Darling,	István	Miklós,	Mark	A.	Ragan	-	Figure	1	from	Darling	AE,	Miklós	I,	Ragan	MA	(2008).		
"Dynamics	of	Genome	Rearrangement	in	Bacterial	Popula;ons".	PLOS	Gene;cs.	DOI:10.1371/journal.pgen.1000128.,	CC	BY	2.5,	h*ps://commons.wikimedia.org/w/index.php?curid=30550950		

Challenge and Opportunity for Future

Personalized and Private

(in every aspect of life:
health, medicine,

spaces, devices, robotics, …)
34

This Lecture is About …

!  Questioning what limits us in designing the
best computing architectures for the future

!  Providing directions for fundamentally better
designs

!  Advocating principled approaches

35

Increasingly Demanding Applications

Dream

and, they will come

36

As applications push boundaries, computing platforms will become increasingly strained.

Maslow’s (Human) Hierarchy of Needs

!  We need to start with reliability and security…

37

Maslow, “A Theory of Human Motivation,”
Psychological Review, 1943.

Source:	h*ps://www.simplypsychology.org/maslow.html	

Three Key Issues in Future Platforms

!  Fundamentally Secure/Reliable/Safe Architectures

!  Fundamentally Energy-Efficient Architectures
"  Memory-centric (Data-centric) Architectures

!  Architectures for Genomics, Medicine, Health

38

39 Source:	h*p://www.technologystudent.com/struct1/tacom1.png	

40 Source:	AP	

41
Source:	h*ps://s-media-cache-ak0.pinimg.com/originals/48/09/54/4809543a9c7700246a0cf8acdae27abf.jpg	

Security is about preventing unforeseen consequences

The Problem

We do not seem to have
design principles for

(guaranteeing)
reliability and security

42

Focus is on Data Storage Systems (Memory)

43

Processors
and caches

Main Memory Storage (SSD/HDD) FPGAs GPUs

!  Memory is a critical component of all computing systems:
server, mobile, embedded, desktop, sensor, …

!  Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits

As Memory Scales, It Becomes Unreliable
!  Data from all of Facebook’s servers worldwide
!  Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers,” DSN’15.

44

Intuition: quadratic increase
in

capacity

The DRAM Scaling Problem
!  DRAM stores charge in a capacitor (charge-based memory)

"  Capacitor must be large enough for reliable sensing
"  Access transistor should be large enough for long data retention time

!  As DRAM cell becomes smaller, it becomes more vulnerable

45

Infrastructure to Understand Such Issues

46 Kim+, “Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

Heater FPGAs FPGAs

A Curious Discovery [Kim et al., ISCA 2014]

One can
predictably induce errors

in most DRAM memory chips

47

DRAM RowHammer

A simple hardware failure mechanism
can create a widespread

system security vulnerability

48

 Row of Cells

 Row

 Row

 Row

 Row

 Wordline

 VLOW
 VHIGH

 Vic2m Row

 Vic2m Row

 Hammered Row

Repeatedly reading a row enough 2mes (before memory gets
refreshed) induces disturbance errors in adjacent rows in
most real DRAM chips you can buy today

Opened
Closed

49

Modern DRAM is Prone to Disturbance Errors

Flipping	Bits	in	Memory	Without	Accessing	Them:	An	Experimental	Study	of	DRAM	
Disturbance	Errors, (Kim	et	al.,	ISCA	2014)	

86%

(37/43)

83%

(45/54)

88%

(28/32)

A company
 B company
 C company

Up to

1.0×107 �

errors

Up to

2.7×106�

errors

Up to

3.3×105 �

errors

50

Most DRAM Modules Are Vulnerable

Flipping	Bits	in	Memory	Without	Accessing	Them:	An	Experimental	Study	of	DRAM	
Disturbance	Errors, (Kim	et	al.,	ISCA	2014)	

51

All modules from 2012–2013 are vulnerable

First

Appearance

Recent DRAM Is More Vulnerable

CPU

loop:
 mov (X), %eax
 mov (Y), %ebx
 clflush (X)
 clflush (Y)
 mfence
 jmp loop

Download	from:	h*ps://github.com/CMU-SAFARI/rowhammer		

DRAM Module

A Simple Program Can Induce Many Errors

Y

X

CPU

loop:
 mov (X), %eax
 mov (Y), %ebx
 clflush (X)
 clflush (Y)
 mfence
 jmp loop

Download	from:	h*ps://github.com/CMU-SAFARI/rowhammer		

DRAM Module

A Simple Program Can Induce Many Errors

Y

X

CPU

loop:
 mov (X), %eax
 mov (Y), %ebx
 clflush (X)
 clflush (Y)
 mfence
 jmp loop

Download	from:	h*ps://github.com/CMU-SAFARI/rowhammer		

DRAM Module

A Simple Program Can Induce Many Errors

Y

X

CPU

loop:
 mov (X), %eax
 mov (Y), %ebx
 clflush (X)
 clflush (Y)
 mfence
 jmp loop

Y

X

Download	from:	h*ps://github.com/CMU-SAFARI/rowhammer		

DRAM Module

A Simple Program Can Induce Many Errors

A real reliability & security issue

CPU Architecture
 Errors Access-Rate

Intel Haswell (2013)
 22.9K	 12.3M/sec	

Intel Ivy Bridge (2012)
 20.7K	 11.7M/sec	

Intel Sandy Bridge (2011)
 16.1K	 11.6M/sec	

AMD Piledriver (2012)
 59	 6.1M/sec	

56
Kim+, “Flipping	Bits	in	Memory	Without	Accessing	Them:	An	Experimental	Study	of	
DRAM	Disturbance	Errors,” ISCA 2014.

Observed Errors in Real Systems

One Can Take Over an Otherwise-Secure System

57

Exploiting the DRAM rowhammer bug to
gain kernel privileges (Seaborn+, 2015)

Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors
(Kim et al., ISCA 2014)

RowHammer Security Attack Example
!  “Rowhammer” is a problem with some recent DRAM devices in which

repeatedly accessing a row of memory can cause bit flips in adjacent rows
(Kim et al., ISCA 2014).
"  Flipping Bits in Memory Without Accessing Them: An Experimental Study of

DRAM Disturbance Errors (Kim et al., ISCA 2014)

!  We tested a selection of laptops and found that a subset of them
exhibited the problem.

!  We built two working privilege escalation exploits that use this effect.
"  Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn+, 2015)

!  One exploit uses rowhammer-induced bit flips to gain kernel privileges
on x86-64 Linux when run as an unprivileged userland process.

!  When run on a machine vulnerable to the rowhammer problem, the
process was able to induce bit flips in page table entries (PTEs).

!  It was able to use this to gain write access to its own page table, and
hence gain read-write access to all of physical memory.

58 Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn & Dullien, 2015)

Security Implications

59

More Security Implications

60 Source: https://lab.dsst.io/32c3-slides/7197.html

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript (DIMVA’16)

“We can gain unrestricted access to systems of website visitors.”

More Security Implications

61 Source: https://fossbytes.com/drammer-rowhammer-attack-android-root-devices/

Drammer: Deterministic Rowhammer
Attacks on Mobile Platforms, CCS’16

“Can gain control of a smart phone deterministically”

More Security Implications?

62

Apple’s Patch for RowHammer
!  https://support.apple.com/en-gb/HT204934

HP, Lenovo, and other vendors released similar patches

Better Solution Directions: Principled Designs

Design fundamentally secure
computing architectures

Predict and prevent such safety issues

64

How Do We Keep Memory Secure?

!  Understand: Methodologies for failure modeling and discovery
"  Modeling and prediction based on real (device) data

!  Architect: Principled co-architecting of system and memory

"  Good partitioning of duties across the stack

!  Design & Test: Principled design, automation, testing
"  High coverage and good interaction with system reliability methods

65

66 Kim+, “Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

Heater FPGAs FPGAs

Understand and Model with Experiments (DRAM)

Understand and Model with Experiments (Flash)

67

USB Jack

Virtex-II Pro
(USB controller)

Virtex-V FPGA
(NAND Controller)

HAPS-52 Mother Board

USB Daughter Board

NAND Daughter Board

1x-nm
NAND Flash

[DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014,
HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017]

There are Two Other Other Solutions
!  New Technologies: Replace or (more likely) augment DRAM

with a different technology
"  Non-volatile memories

!  Embracing Un-reliability:
 Design memories with different reliability
 and store data intelligently across them

!  …

68

Fundamental	solu-ons	to	security	
require	co-design	across	the	hierarchy	

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic
 Devices

System Software

Electrons

Challenge and Opportunity for Future

Fundamentally
Secure, Reliable, Safe

Computing Architectures

69

Three Key Issues in Future Platforms

!  Fundamentally Secure/Reliable/Safe Architectures

!  Fundamentally Energy-Efficient Architectures
"  Memory-centric (Data-centric) Architectures

!  Architectures for Genomics, Medicine, Health

70

71 Source:	V.	Milu;novic	

Maslow’s (Human) Hierarchy of Needs, Revisited

!  We need to start with reliability and security…

72

Maslow, “A Theory of Human Motivation,”
Psychological Review, 1943.

Everlasting battery life

Challenge and Opportunity for Future

Sustainable
and

Energy Efficient

73

The Problem

Data access is the major performance and energy bottleneck

Our current
design principles

cause great energy waste

74

The Problem

Processing of data
is performed

far away from the data

75

A Computing System
!  Three key components
!  Computation
!  Communication
!  Storage/memory

76

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Today’s Computing Systems
!  Are overwhelmingly processor centric
!  All data processed in the processor # at great system cost
!  Processor is heavily optimized and is considered the master
!  Data storage units are dumb slaves and are largely

unoptimized (except for some that are on the processor die)

77

Yet …
!  “It’s the Memory, Stupid!” (Richard Sites, MPR, 1996)

78

Perils of Processor-Centric Design

!  Grossly-imbalanced systems
"  Processing done only in one place
"  Everything else just stores and moves data: data moves a lot
Energy inefficient
Low performance
Complex

!  Overly complex and bloated processor (and accelerators)

"  To tolerate data access from memory
"  Complex hierarchies and mechanisms
Energy inefficient
Low performance
Complex

79

Perils of Processor-Centric Design

80

Three Key Systems Trends

1. Data access is a major bottleneck
"  Applications are increasingly data hungry

2. Energy consumption is a key limiter

3. Data movement energy dominates compute
"  Especially true for off-chip to on-chip movement

81

Data Movement vs. Computation Energy

82

Dally, HiPEAC 2015

A memory access consumes ~1000X
the energy of a complex addition

We Need A Paradigm Shift To …

!  Enable computation with minimal data movement

!  Compute where it makes sense (where data resides)

!  Make computing architectures more data-centric

83

Goal: In-Memory Computation Engine

!  Many questions … How do we design the:
"  compute-capable memory?
"  processor chip?
"  software interface?
"  system software and languages?
"  algorithms?

Cache

Processor
Core

 Interconnect

 Memory
Database

Graphs

Media

Query

Results

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic
 Devices

System Software

Electrons

Starting Simple: Data Copy and Initialization

85

Forking

00000
00000
00000

Zero initialization
(e.g., security)

VM Cloning
Deduplication

Checkpointing

Page Migration

Many more

memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ ISCA’15]

Today’s Systems: Bulk Data Copy

Memory
	

	

	

MC L3 L2 L1 CPU

1)	High	latency	

2)	High	bandwidth	u;liza;on	

3)	Cache	pollu;on	

4)	Unwanted	data	movement	

86	1046ns,	3.6uJ				(for	4KB	page	copy	via	DMA)	

Future Systems: In-Memory Copy

Memory
	

	

	

MC L3 L2 L1 CPU

1)	Low	latency	

2)	Low	bandwidth	u;liza;on	

3)	No	cache	pollu;on	

4)	No	unwanted	data	movement	

87	1046ns,	3.6uJ	90ns,	0.04uJ	

RowClone: In-DRAM Row Copy

Row Buffer (4 Kbytes)

Data Bus

8 bits

DRAM subarray

4 Kbytes

Step 1: Activate row A

Transfer
row

Step 2: Activate row B

Transfer
row

Negligible HW cost

RowClone: Latency and Energy Savings

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

Latency	 Energy	

N
or
m
al
iz
ed

	S
av
in
gs
	

Baseline	 Intra-Subarray	
Inter-Bank	 Inter-Subarray	

11.6x	 74x	

89	
Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and
Initialization of Bulk Data,” MICRO 2013.

(Truly) In-Memory Computation
!  Similarly, we can support in-DRAM AND, OR, NOT
!  At low cost
!  Using analog behavior of memory
!  30-60X performance and energy improvement

!  New memory technologies enable even more opportunities
"  Memristors, resistive RAM, phase change memory
"  Can operate on data with minimal movement

90

Another Example: In-Memory Graph Processing

91

!  Large graphs are everywhere (circa 2015)

!  Scalable large-scale graph processing is challenging	

36 Million
Wikipedia Pages

1.4 Billion
Facebook Users

300 Million
Twitter Users

30 Billion
Instagram Photos

+42%

0 1 2 3 4

128
Cores

32 Cores

Speedup

Key Bottlenecks in Graph Processing

92

for	(v:	graph.ver;ces)	{	
				for	(w:	v.successors)	{	
								w.next_rank	+=	weight	*	v.rank;	
				}	
}	

weight * v.rank	

v�

w�

&w�

1. Frequent random memory accesses	

2. Little amount of computation	

w.rank	

w.next_rank	

w.edges	

…	

Tesseract System for Graph Processing

93

Crossbar	Network�

…	
…	

…	
…	

DRAM
	Controller�

NI�

In-Order	Core�

Message	Queue�

PF	Buffer�

MTP�

LP�

Host	Processor�

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)	

Interconnected set of 3D-stacked memory+logic chips with simple cores

Logic

Memory

Logic

Memory

Tesseract System for Graph Processing

94

Crossbar	Network�

…	
…	

…	
…	

DRAM
	Controller�

NI�

In-Order	Core�

Message	Queue�

PF	Buffer�

MTP�

LP�

Host	Processor�

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)	

Communica;ons	via	
Remote	Func;on	Calls�

Logic

Memory

Tesseract System for Graph Processing

95

Crossbar	Network�

…	
…	

…	
…	

DRAM
	Controller�

NI�

In-Order	Core�

Message	Queue�

PF	Buffer�

MTP�

LP�

Host	Processor�

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)	

Prefetching�

Evaluated Systems

96

HMC-MC	

128	
In-Order	
2GHz�

128	
In-Order	
2GHz�

128	
In-Order	
2GHz�

128	
In-Order	
2GHz�

102.4GB/s	 640GB/s	 640GB/s	 8TB/s	

HMC-OoO	

8	OoO	
4GHz�

8	OoO	
4GHz�

8	OoO	
4GHz�

8	OoO	
4GHz�

8	OoO	
4GHz�

8	OoO	
4GHz�

8	OoO	
4GHz�

8	OoO	
4GHz�

DDR3-OoO	 Tesseract	

32	
Tesseract	
Cores�

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Tesseract Graph Processing Performance

97

+56%	 +25%	

9.0x	

11.6x	

13.8x	

0	

2	

4	

6	

8	

10	

12	

14	

16	

DDR3-OoO	HMC-OoO	 HMC-MC	 Tesseract	 Tesseract-	
LP	

Tesseract-	
LP-MTP	

Sp
ee
du

p�

>13X Performance Improvement	

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

On five graph processing algorithms

Tesseract Graph Processing Performance

98

+56%	 +25%	

9.0x	

11.6x	

13.8x	

0	

2	

4	

6	

8	

10	

12	

14	

16	

DDR3-OoO	HMC-OoO	 HMC-MC	 Tesseract	 Tesseract-	
LP	

Tesseract-	
LP-MTP	

Sp
ee
du

p�

80GB/s	 190GB/s	 243GB/s	

1.3TB/s	

2.2TB/s	

2.9TB/s	

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

DDR3-OoO	HMC-OoO	 HMC-MC	 Tesseract	 Tesseract-	
LP	

Tesseract-	
LP-MTP	

M
em

or
y	
Ba

nd
w
id
th
	(T

B/
s)
	

Memory	Bandwidth	Consump-on	

Tesseract Graph Processing Energy

99

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

HMC-OoO	 Tesseract	with	Prefetching	

Memory	Layers	 Logic	Layers	 Cores	

> 8X Energy Reduction	

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Challenge and Opportunity for Future

Fundamentally
Energy-Efficient
(Data-Centric)

Computing Architectures
100

Three Key Issues in Future Platforms

!  Fundamentally Secure/Reliable/Safe Architectures

!  Fundamentally Energy-Efficient Architectures
"  Memory-centric (Data-centric) Architectures

!  Architectures for Genomics, Medicine, Health

101

Genome Sequence Alignment

102 Source:	By	Aaron	E.	Darling,	István	Miklós,	Mark	A.	Ragan	-	Figure	1	from	Darling	AE,	Miklós	I,	Ragan	MA	(2008).		
"Dynamics	of	Genome	Rearrangement	in	Bacterial	Popula;ons".	PLOS	Gene;cs.	DOI:10.1371/journal.pgen.1000128.,	CC	BY	2.5,	h*ps://commons.wikimedia.org/w/index.php?curid=30550950		

103

1

3 4

2Sequencing Mapping

Variant Calling Scientific Discovery

Alignment Verification

Read Mapping

Short Reads (>1000 gigabases)
Produced by an HTS instrument

1 2

3

High Throughput Sequencing

Reference Genome
(>3 gigabases)

e.g. Smith-Waterman alignment algorithm

Quadratic-time dynamic
programming algorithms

300 M
bases/min

GAGTCAGAATTTGAC
GAGTCAGAATTTGAC GAGTCAGAATTTGAC

GAGTCAGAATTTGAC

GAGTCAGAATTTGAC

GAGTCAGAATTTGAC

GAGTCAGAATTTGAC

GAGTCAGAATTTGAC

Illumina HiSeq4000

2 M
bases/min

on average

(0.6%)

Genome
Analysis Bottlenecked in Mapping!

Total Processing Time Breakdown

104

candidate
alignment

locations (CAL)
4%

Dynamic
Programming

Algorithm
93%

SAM printing
3%

105

x1012
mappings

x103
mappings

High Speed, Low Accuracy
Medium Speed, Medium Accuracy

Low Speed & High Accuracy

Novel Filter
Algorithm

st 1
FPGA-based

Alignment Filter.

An Example Solution: GateKeeper

Some Key Principles and Results
!  Two key principles:

"  Exploit the structure of the genome to minimize computation
"  Morph and exploit the structure of the underlying hardware to

maximize performance and efficiency

!  Algorithm-architecture co-design for DNA read mapping

"  Improves performance by 20-100X
"  Improves accuracy of alignment in the presence of errors
"  Leads to a much more comprehensive read mapper

106

Xin et al., “Accelerating Read Mapping with FastHASH,” BMC Genomics 2013.
Xin et al., “Shifted Hamming Distance: A Fast and Accurate SIMD-friendly Filter to Accelerate
Alignment Verification in Read Mapping,” Bioinformatics 2015.
Alser et al., “GateKeeper: A New Hardware Architecture for Accelerating Pre-Alignment in DNA
Short Read Mapping,” arxiv 2016.
Kim et al., “Genome Read In-Memory (GRIM) Filter,” PSB 2017.

 Concluding Remarks

107

A Quote from A Famous Architect
!  “architecture […] based upon principle, and not upon

precedent”

108

Another Example: Precedent-Based Design

109 Source: http://cookiemagik.deviantart.com/art/Train-station-207266944

Principled Design

110 Source: By Toni_V, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=4087256

Principle Applied to Another Structure

111
Source: https://www.dezeen.com/2016/08/29/santiago-calatrava-oculus-world-trade-center-transportation-hub-new-york-photographs-hufton-crow/
Source: By 準建築人手札網站 Forgemind ArchiMedia - Flickr: IMG_2489.JPG, CC BY 2.0,
https://commons.wikimedia.org/w/index.php?curid=31493356, https://en.wikipedia.org/wiki/Santiago_Calatrava

Concluding Remarks

!  It is time to design principled computing architectures to
achieve the highest security, performance, and efficiency

!  Discover design principles for fundamentally secure and
reliable computer architectures

!  Design complete systems to be balanced, i.e., data-centric
(or memory-centric)

!  The expanded view of computer architecture can
"  Lead to orders-of-magnitude improvements
"  Enable new applications & computing platforms
"  …

112

The Future is Very Bright

!  Regardless of challenges
"  in underlying technology and overlying problems/requirements

113

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic
 Devices

System Software

Electrons

Onur Mutlu
onur.mutlu@inf.ethz.ch

https://people.inf.ethz.ch/omutlu
May 15, 2017

ETH Zurich Inaugural Lecture

Future Computing Architectures

Acknowledgments
!  My current and past students and postdocs

"  Mohammed Alser, Rachata Ausavarungnirun, Abhishek
Bhowmick, Amirali Boroumand, Rui Cai, Yu Cai, Kevin Chang,
Saugata Ghose, Kevin Hsieh, Tyler Huberty, Ben Jaiyen, Samira
Khan, Jeremie Kim, Yoongu Kim, Yang Li, Jamie Liu, Lavanya
Subramanian, Donghyuk Lee, Yixin Luo, Justin Meza, Gennady
Pekhimenko, Vivek Seshadri, Lavanya Subramanian, Nandita
Vijaykumar, Hongyi Xin, HanBin Yoon, Jishen Zhao, …

!  My collaborators
"  Junwhan Ahn, Can Alkan, Chita Das, Phil Gibbons, Sriram

Govindan, Norm Jouppi, Mahmut Kandemir, Mike Kozuch, Konrad
Lai, Ken Mai, Todd Mowry, Yale Patt, Moinuddin Qureshi, Partha
Ranganathan, Bikash Sharma, Kushagra Vaid, Chris Wilkerson, …

!  ETH Zurich, CMU, Microsoft Research, Intel, Google, VMware, AMD
115

Funding Acknowledgments
!  ETH Zurich
!  NSF
!  GSRC
!  SRC
!  CyLab
!  AMD, Google, Facebook, HP Labs, Huawei, IBM, Intel,

Microsoft, Nvidia, Oracle, Qualcomm, Rambus, Samsung,
Seagate, VMware

116

