
Onur Mutlu

omutlu@gmail.com

https://people.inf.ethz.ch/omutlu

4 October 2018

HNEP 2018 Keynote

Processing Data Where It Makes Sense 

in Modern Computing Systems:

Enabling In-Memory Computation

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu


The Main Memory System

◼ Main memory is a critical component of all computing 
systems: server, mobile, embedded, desktop, sensor

◼ Main memory system must scale (in size, technology, 
efficiency, cost, and management algorithms) to maintain 
performance growth and technology scaling benefits
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Memory System: A Shared Resource View

5

Storage

Most of the system is dedicated to storing and moving data 



State of the Main Memory System

◼ Recent technology, architecture, and application trends

❑ lead to new requirements

❑ exacerbate old requirements

◼ DRAM and memory controllers, as we know them today, 
are (will be) unlikely to satisfy all requirements

◼ Some emerging non-volatile memory technologies (e.g., 
PCM) enable new opportunities: memory+storage merging

◼ We need to rethink the main memory system

❑ to fix DRAM issues and enable emerging technologies 

❑ to satisfy all requirements
6



Major Trends Affecting Main Memory (I)

◼ Need for main memory capacity, bandwidth, QoS increasing 

◼ Main memory energy/power is a key system design concern

◼ DRAM technology scaling is ending 
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Major Trends Affecting Main Memory (II)

◼ Need for main memory capacity, bandwidth, QoS increasing 

❑ Multi-core: increasing number of cores/agents

❑ Data-intensive applications: increasing demand/hunger for data

❑ Consolidation: cloud computing, GPUs, mobile, heterogeneity

◼ Main memory energy/power is a key system design concern

◼ DRAM technology scaling is ending 
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Example: The Memory Capacity Gap

◼ Memory capacity per core expected to drop by 30% every two years

◼ Trends worse for memory bandwidth per core!
9

Core count doubling ~ every 2 years 

DRAM DIMM capacity doubling ~ every 3 years

Lim et al., ISCA 2009
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DRAM Latency Is Critical for Performance

In-Memory Data Analytics 
[Clapp+ (Intel), IISWC’15;  

Awan+, BDCloud’15]

Datacenter Workloads 
[Kanev+ (Google), ISCA’15]

In-memory Databases 
[Mao+, EuroSys’12; 

Clapp+ (Intel), IISWC’15]

Graph/Tree Processing 
[Xu+, IISWC’12; Umuroglu+, FPL’15]
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In-Memory Data Analytics 
[Clapp+ (Intel), IISWC’15;  

Awan+, BDCloud’15]

Datacenter Workloads 
[Kanev+ (Google), ISCA’15]

In-memory Databases 
[Mao+, EuroSys’12; 

Clapp+ (Intel), IISWC’15]

Graph/Tree Processing 
[Xu+, IISWC’12; Umuroglu+, FPL’15]

Long memory latency → performance 

bottleneck



Major Trends Affecting Main Memory (III)

◼ Need for main memory capacity, bandwidth, QoS increasing 

◼ Main memory energy/power is a key system design concern

❑ ~40-50% energy spent in off-chip memory hierarchy [Lefurgy, 

IEEE Computer’03] >40% power in DRAM [Ware, HPCA’10][Paul,ISCA’15]

❑ DRAM consumes power even when not used (periodic refresh)

◼ DRAM technology scaling is ending 
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Major Trends Affecting Main Memory (IV)

◼ Need for main memory capacity, bandwidth, QoS increasing 

◼ Main memory energy/power is a key system design concern

◼ DRAM technology scaling is ending 

❑ ITRS projects DRAM will not scale easily below X nm 

❑ Scaling has provided many benefits: 

◼ higher capacity (density), lower cost, lower energy

14



Major Trends Affecting Main Memory (V)

◼ DRAM scaling has already become increasingly difficult

❑ Increasing cell leakage current, reduced cell reliability, 
increasing manufacturing difficulties [Kim+ ISCA 2014],

[Liu+ ISCA 2013], [Mutlu IMW 2013], [Mutlu DATE 2017]

❑ Difficult to significantly improve capacity, energy

◼ Emerging memory technologies are promising

3D-Stacked DRAM higher bandwidth smaller capacity

Reduced-Latency DRAM
(e.g., RLDRAM, TL-DRAM)

lower latency higher cost

Low-Power DRAM
(e.g., LPDDR3, LPDDR4)

lower power
higher latency

higher cost

Non-Volatile Memory (NVM) 
(e.g., PCM, STTRAM, ReRAM, 
3D Xpoint)

larger capacity
higher latency

higher dynamic power 
lower endurance
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Major Trends Affecting Main Memory (V)

◼ DRAM scaling has already become increasingly difficult

❑ Increasing cell leakage current, reduced cell reliability, 
increasing manufacturing difficulties [Kim+ ISCA 2014],

[Liu+ ISCA 2013], [Mutlu IMW 2013], [Mutlu DATE 2017]

❑ Difficult to significantly improve capacity, energy

◼ Emerging memory technologies are promising

3D-Stacked DRAM higher bandwidth smaller capacity

Reduced-Latency DRAM
(e.g., RL/TL-DRAM, FLY-RAM)

lower latency higher cost

Low-Power DRAM
(e.g., LPDDR3, LPDDR4, Voltron)

lower power
higher latency

higher cost

Non-Volatile Memory (NVM) 
(e.g., PCM, STTRAM, ReRAM, 3D 
Xpoint)

larger capacity
higher latency

higher dynamic power 
lower endurance
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Major Trend: Hybrid Main Memory

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best 
Paper Award.

CPU
DRAM
Ctrl

Fast, durable
Small, 

leaky, volatile, 
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM 
Ctrl

DRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement 
to achieve the best of multiple technologies



Foreshadowing

Main Memory Needs 

Intelligent Controllers
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Industry Is Writing Papers About It, Too
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Call for Intelligent Memory Controllers

20



Agenda

◼ Major Trends Affecting Main Memory

◼ The Need for Intelligent Memory Controllers

❑ Bottom Up: Push from Circuits and Devices

❑ Top Down: Pull from Systems and Applications

◼ Processing in Memory: Two Directions

❑ Minimally Changing Memory Chips

❑ Exploiting 3D-Stacked Memory

◼ How to Enable Adoption of Processing in Memory

◼ Conclusion

21



Maslow’s (Human) Hierarchy of Needs

◼ We need to start with reliability and security…

22

Maslow, “A Theory of Human Motivation,” 
Psychological Review, 1943. 

Source: https://www.simplypsychology.org/maslow.html

Maslow, “A Theory of Human Motivation,” 
Psychological Review, 1943. 

Maslow, “Motivation and Personality,”
Book, 1954-1970.

Source: By User:Factoryjoe - Mazlow's Hierarchy of Needs.svg, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=7964065



How Reliable/Secure/Safe is This Bridge?

23Source: http://www.technologystudent.com/struct1/tacom1.png



Collapse of the “Galloping Gertie”

24Source: AP



How Secure Are These People?

25Source: https://s-media-cache-ak0.pinimg.com/originals/48/09/54/4809543a9c7700246a0cf8acdae27abf.jpg

Security is about preventing unforeseen consequences



The DRAM Scaling Problem

◼ DRAM stores charge in a capacitor (charge-based memory)

❑ Capacitor must be large enough for reliable sensing

❑ Access transistor should be large enough for low leakage and high 
retention time

❑ Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

◼ DRAM capacity, cost, and energy/power hard to scale

26



As Memory Scales, It Becomes Unreliable

◼ Data from all of Facebook’s servers worldwide
◼ Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers,” DSN’15.
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Large-Scale Failure Analysis of DRAM Chips

◼ Analysis and modeling of memory errors found in all of 
Facebook’s server fleet

◼ Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"Revisiting Memory Errors in Large-Scale Production Data 
Centers: Analysis and Modeling of New Trends from the Field"
Proceedings of the 45th Annual IEEE/IFIP International Conference on 
Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June 
2015. 
[Slides (pptx) (pdf)] [DRAM Error Model] 
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http://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15.pdf
http://2015.dsn.org/
http://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15-talk.pdf
https://www.ece.cmu.edu/~safari/tools/memerr/index.html


Infrastructures to Understand Such Issues

29

An Experimental Study of Data Retention 
Behavior in Modern DRAM Devices: 
Implications for Retention Time Profiling 
Mechanisms (Liu et al., ISCA 2013)

The Efficacy of Error Mitigation Techniques 
for DRAM Retention Failures: A 
Comparative Experimental Study
(Khan et al., SIGMETRICS 2014)

Flipping Bits in Memory Without Accessing 
Them: An Experimental Study of DRAM 
Disturbance Errors (Kim et al., ISCA 2014)

Adaptive-Latency DRAM: Optimizing DRAM 
Timing for the Common-Case (Lee et al., 
HPCA 2015)

AVATAR: A Variable-Retention-Time (VRT) 
Aware Refresh for DRAM Systems (Qureshi
et al., DSN 2015)

http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_sigmetrics14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15.pdf


Infrastructures to Understand Such Issues

30Kim+, “Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

HeaterFPGAs FPGAs



SoftMC: Open Source DRAM Infrastructure

◼ Hasan Hassan et al., “SoftMC: A 
Flexible and Practical Open-
Source Infrastructure for 
Enabling Experimental DRAM 
Studies,” HPCA 2017.

◼ Flexible

◼ Easy to Use (C++ API)

◼ Open-source 

github.com/CMU-SAFARI/SoftMC 

31

https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf


SoftMC

◼ https://github.com/CMU-SAFARI/SoftMC

32

https://github.com/CMU-SAFARI/SoftMC


Data Retention in Memory [Liu et al., ISCA 2013]

◼ Retention Time Profile of DRAM looks like this:

33

Location dependent
Stored value pattern dependent

Time dependent



A Curious Discovery [Kim et al., ISCA 2014]

One can 

predictably induce errors 

in most DRAM memory chips

34



DRAM RowHammer

A simple hardware failure mechanism 

can create a widespread 

system security vulnerability

35



Row of Cells

Row
Row
Row
Row

Wordline

VLOWVHIGH
Victim Row

Victim Row

Hammered Row

Repeatedly reading a row enough times (before memory gets 
refreshed) induces disturbance errors in adjacent rows in most 
real DRAM chips you can buy today

OpenedClosed
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Modern DRAM is Prone to Disturbance Errors

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM 
Disturbance Errors, (Kim et al., ISCA 2014)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
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Most DRAM Modules Are Vulnerable

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM 
Disturbance Errors, (Kim et al., ISCA 2014)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
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Recent DRAM Is More Vulnerable
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First
Appearance

Recent DRAM Is More Vulnerable



40

All modules from 2012–2013 are vulnerable

First
Appearance

Recent DRAM Is More Vulnerable



CPU

loop:

mov (X), %eax

mov (Y), %ebx

clflush (X)  

clflush (Y)

mfence

jmp loop

Download from: https://github.com/CMU-SAFARI/rowhammer

DRAM Module

A Simple Program Can Induce Many Errors

Y

X

https://github.com/CMU-SAFARI/rowhammer
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DRAM Module
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Y

X1. Avoid cache hits
– Flush X from cache

2. Avoid row hits to X
– Read Y in another row

https://github.com/CMU-SAFARI/rowhammer
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A real reliability & security issue 

CPU Architecture Errors Access-Rate

Intel Haswell (2013) 22.9K 12.3M/sec

Intel Ivy Bridge (2012) 20.7K 11.7M/sec

Intel Sandy Bridge (2011) 16.1K 11.6M/sec

AMD Piledriver (2012) 59 6.1M/sec

46Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of 
DRAM Disturbance Errors,” ISCA 2014.

Observed Errors in Real Systems



One Can Take Over an Otherwise-Secure System

47

Exploiting the DRAM rowhammer bug to 
gain kernel privileges (Seaborn, 2015)

Flipping Bits in Memory Without Accessing Them: 
An Experimental Study of DRAM Disturbance Errors
(Kim et al., ISCA 2014)

http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf


RowHammer Security Attack Example
◼ “Rowhammer” is a problem with some recent DRAM devices in which 

repeatedly accessing a row of memory can cause bit flips in adjacent rows 
(Kim et al., ISCA 2014). 

❑ Flipping Bits in Memory Without Accessing Them: An Experimental Study of 
DRAM Disturbance Errors (Kim et al., ISCA 2014)

◼ We tested a selection of laptops and found that a subset of them 
exhibited the problem. 

◼ We built two working privilege escalation exploits that use this effect. 

❑ Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn+, 2015)

◼ One exploit uses rowhammer-induced bit flips to gain kernel privileges on 
x86-64 Linux when run as an unprivileged userland process. 

◼ When run on a machine vulnerable to the rowhammer problem, the 
process was able to induce bit flips in page table entries (PTEs). 

◼ It was able to use this to gain write access to its own page table, and 
hence gain read-write access to all of physical memory.

48
Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn & Dullien, 2015)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html


Security Implications

49



Security Implications
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More Security Implications (I)

51
Source: https://lab.dsst.io/32c3-slides/7197.html

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript (DIMVA’16)

“We can gain unrestricted access to systems of website visitors.”

https://lab.dsst.io/32c3-slides/7197.html


More Security Implications (II)

52
Source: https://fossbytes.com/drammer-rowhammer-attack-android-root-devices/

Drammer: Deterministic Rowhammer
Attacks on Mobile Platforms, CCS’16 

“Can gain control of a smart phone deterministically”



More Security Implications (III)

◼ Using an integrated GPU in a mobile system to remotely 
escalate privilege via the WebGL interface 

53



More Security Implications (IV)

◼ Rowhammer over RDMA (I)

54



More Security Implications (V)

◼ Rowhammer over RDMA (II)

55



More Security Implications?

56



Apple’s Patch for RowHammer

◼ https://support.apple.com/en-gb/HT204934

HP, Lenovo, and other vendors released similar patches

https://support.apple.com/en-gb/HT204934


Our Solution to RowHammer

• PARA: Probabilistic Adjacent Row Activation

• Key Idea
– After closing a row, we activate (i.e., refresh) one of 

its neighbors with a low probability: p = 0.005

• Reliability Guarantee
– When p=0.005, errors in one year: 9.4×10-14

– By adjusting the value of p, we can vary the strength 
of protection against errors

58



Advantages of PARA
• PARA refreshes rows infrequently

– Low power

– Low performance-overhead

• Average slowdown: 0.20% (for 29 benchmarks)

• Maximum slowdown: 0.75%

• PARA is stateless
– Low cost

– Low complexity

• PARA is an effective and low-overhead solution 
to prevent disturbance errors

59



Probabilistic Activation in Real Life (I)

60https://twitter.com/isislovecruft/status/1021939922754723841

https://twitter.com/isislovecruft/status/1021939922754723841


Probabilistic Activation in Real Life (II)

61https://twitter.com/isislovecruft/status/1021939922754723841

https://twitter.com/isislovecruft/status/1021939922754723841


More on RowHammer Analysis

62

◼ Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
"Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors"
Proceedings of the 41st International Symposium on Computer 
Architecture (ISCA), Minneapolis, MN, June 2014. 
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code 
and Data]

https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_isca14.pdf
http://cag.engr.uconn.edu/isca2014/
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_talk_isca14.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_talk_isca14.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pdf
https://github.com/CMU-SAFARI/rowhammer


Future of Memory Reliability

63https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf

◼ Onur Mutlu,
"The RowHammer Problem and Other Issues We May Face as 
Memory Becomes Denser"
Invited Paper in Proceedings of the Design, Automation, and Test in 
Europe Conference (DATE), Lausanne, Switzerland, March 2017. 
[Slides (pptx) (pdf)] 

https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pdf


Industry Is Writing Papers About It, Too

64



Call for Intelligent Memory Controllers

65



Aside: Intelligent Controller for NAND Flash

USB Jack

Virtex-II Pro

(USB controller)

Virtex-V FPGA

(NAND Controller)

HAPS-52 Mother Board

USB Daughter Board

NAND Daughter Board

1x-nm

NAND Flash

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.

[DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014, 
HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017, 
PIEEE 2017, HPCA 2018, SIGMETRICS 2018]



Aside: Intelligent Controller for NAND Flash

67

https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

https://arxiv.org/pdf/1706.08642
https://arxiv.org/pdf/1706.08642


Takeaway

Main Memory Needs 

Intelligent Controllers

68



Agenda

◼ Major Trends Affecting Main Memory

◼ The Need for Intelligent Memory Controllers

❑ Bottom Up: Push from Circuits and Devices

❑ Top Down: Pull from Systems and Applications 

◼ Processing in Memory: Two Directions

❑ Minimally Changing Memory Chips

❑ Exploiting 3D-Stacked Memory

◼ How to Enable Adoption of Processing in Memory

◼ Conclusion
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Three Key Systems Trends

1. Data access is a major bottleneck
❑ Applications are increasingly data hungry

2. Energy consumption is a key limiter

3. Data movement energy dominates compute
❑ Especially true for off-chip to on-chip movement

70



The Need for More Memory Performance

In-Memory Data Analytics 
[Clapp+ (Intel), IISWC’15;  

Awan+, BDCloud’15]

Datacenter Workloads 
[Kanev+ (Google), ISCA’15]

In-memory Databases 
[Mao+, EuroSys’12; 

Clapp+ (Intel), IISWC’15]

Graph/Tree Processing 
[Xu+, IISWC’12; Umuroglu+, FPL’15]



Do We Want This?

72Source: V. Milutinovic



Or This?

73Source: V. Milutinovic



Maslow’s (Human) Hierarchy of Needs, Revisited

74

Maslow, “A Theory of Human Motivation,” 
Psychological Review, 1943. 

Everlasting energy

Source: https://www.simplypsychology.org/maslow.html

Maslow, “A Theory of Human Motivation,” 
Psychological Review, 1943. 

Maslow, “Motivation and Personality,”
Book, 1954-1970.



Challenge and Opportunity for Future

High Performance,

Energy Efficient,

Sustainable

75



The Problem

Data access is the major performance and energy bottleneck

Our current

design principles 

cause great energy waste
(and great performance loss)

76



The Problem

Processing of data 

is performed 

far away from the data

77



A Computing System

◼ Three key components

◼ Computation 

◼ Communication

◼ Storage/memory

78

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Image source: https://lbsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/



A Computing System

◼ Three key components

◼ Computation 

◼ Communication

◼ Storage/memory

79

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Image source: https://lbsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/



Today’s Computing Systems

◼ Are overwhelmingly processor centric

◼ All data processed in the processor → at great system cost

◼ Processor is heavily optimized and is considered the master

◼ Data storage units are dumb and are largely unoptimized
(except for some that are on the processor die)

80



Yet …

◼ “It’s the Memory, Stupid!” (Richard Sites, MPR, 1996)

Mutlu+, “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.



The Performance Perspective

◼ Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
"Runahead Execution: An Alternative to Very Large Instruction 
Windows for Out-of-order Processors"
Proceedings of the 9th International Symposium on High-Performance 
Computer Architecture (HPCA), pages 129-140, Anaheim, CA, February 
2003. Slides (pdf)

82

https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
http://www.cs.arizona.edu/hpca9/
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03_talk.pdf


The Performance Perspective (Today)

◼ All of Google’s Data Center Workloads (2015): 

83Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.



The Performance Perspective (Today)

◼ All of Google’s Data Center Workloads (2015): 

84Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.



Perils of Processor-Centric Design

◼ Grossly-imbalanced systems

❑ Processing done only in one place

❑ Everything else just stores and moves data: data moves a lot

→ Energy inefficient 

→ Low performance

→ Complex

◼ Overly complex and bloated processor (and accelerators)

❑ To tolerate data access from memory

❑ Complex hierarchies and mechanisms 

→ Energy inefficient 

→ Low performance

→ Complex
85



Perils of Processor-Centric Design

86

Most of the system is dedicated to storing and moving data 



The Energy Perspective

87

Dally, HiPEAC 2015



Data Movement vs. Computation Energy

88

Dally, HiPEAC 2015

A memory access consumes ~1000X 
the energy of a complex addition 



Data Movement vs. Computation Energy

◼ Data movement is a major system energy bottleneck

❑ Comprises 41% of mobile system energy during web browsing [2]

❑ Costs ~115 times as much energy as an ADD operation [1, 2]

89

[1]: Reducing data Movement Energy via Online Data Clustering and Encoding (MICRO’16)

[2]: Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms (IISWC’14)



Energy Waste in Mobile Devices
◼ Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul 

Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming 
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.
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62.7% of the total system energy 
is spent on data movement

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/


We Do Not Want to Move Data!

91

Dally, HiPEAC 2015

A memory access consumes ~1000X 
the energy of a complex addition 



We Need A Paradigm Shift To …

◼ Enable computation with minimal data movement

◼ Compute where it makes sense (where data resides)

◼ Make computing architectures more data-centric

92



Goal: Processing Inside Memory

◼ Many questions … How do we design the:

❑ compute-capable memory & controllers?

❑ processor chip and in-memory units?

❑ software and hardware interfaces?

❑ system software and languages?

❑ algorithms?

Cache

Processor
Core

Interconnect

Memory
Database

Graphs

Media 
Query

Results

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons



Why In-Memory Computation Today?

◼ Push from Technology

❑ DRAM Scaling at jeopardy 

→ Controllers close to DRAM

→ Industry open to new memory architectures

◼ Pull from Systems and Applications

❑ Data access is a major system and application bottleneck

❑ Systems are energy limited

❑ Data movement much more energy-hungry than computation

94

Dally, HiPEAC 2015



Agenda

◼ Major Trends Affecting Main Memory

◼ The Need for Intelligent Memory Controllers

❑ Bottom Up: Push from Circuits and Devices

❑ Top Down: Pull from Systems and Applications 

◼ Processing in Memory: Two Directions

❑ Minimally Changing Memory Chips

❑ Exploiting 3D-Stacked Memory

◼ How to Enable Adoption of Processing in Memory

◼ Conclusion
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Processing in Memory:

Two Approaches

1. Minimally changing memory chips

2. Exploiting 3D-stacked memory
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Approach 1: Minimally Changing DRAM

◼ DRAM has great capability to perform bulk data movement and 
computation internally with small changes

❑ Can exploit internal connectivity to move data

❑ Can exploit analog computation capability

❑ …

◼ Examples: RowClone, In-DRAM AND/OR, Gather/Scatter DRAM
❑ RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data

(Seshadri et al., MICRO 2013)

❑ Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)

❑ Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial 
Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015)

❑ "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity 
DRAM Technology” (Seshadri et al., MICRO 2017)
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http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
https://users.ece.cmu.edu/~omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf


Starting Simple: Data Copy and Initialization

98

Forking

00000

00000

00000

Zero initialization
(e.g., security)

VM Cloning
Deduplication

Checkpointing

Page Migration

Many more

memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ ISCA’15]



Today’s Systems: Bulk Data Copy

Memory

MCL3L2L1CPU

1) High latency

2) High bandwidth utilization

3) Cache pollution

4) Unwanted data movement

991046ns, 3.6uJ    (for 4KB page copy via DMA)



Future Systems: In-Memory Copy

Memory

MCL3L2L1CPU

1) Low latency

2) Low bandwidth utilization

3) No cache pollution

4) No unwanted data movement

1001046ns, 3.6uJ → 90ns, 0.04uJ



RowClone: In-DRAM Row Copy

Row Buffer (4 Kbytes)

Data Bus

8 bits

DRAM subarray

4 Kbytes

Step 1: Activate row A

Transfer 
row

Step 2: Activate row B

Transfer
row

Negligible HW cost
Idea: Two consecutive ACTivates



RowClone: Latency and Energy Savings
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Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and 
Initialization of Bulk Data,” MICRO 2013.



More on RowClone

◼ Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata
Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A. 
Kozuch, Phillip B. Gibbons, and Todd C. Mowry,
"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and 
Initialization"
Proceedings of the 46th International Symposium on Microarchitecture
(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning Session 
Slides (pptx) (pdf)] [Poster (pptx) (pdf)] 
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http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://www.microarch.org/micro46/
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pdf


Memory as an Accelerator

CPU
core

CPU
core

CPU
core

CPU
core

mini-CPU
core

video
core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

LLC

Memory Controller
Specialized

compute-capability
in memory

Memoryimaging
core

Memory Bus

Memory similar to a “conventional” accelerator



In-Memory Bulk Bitwise Operations

◼ We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ

◼ At low cost

◼ Using analog computation capability of DRAM

❑ Idea: activating multiple rows performs computation

◼ 30-60X performance and energy improvement

❑ Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations 
Using Commodity DRAM Technology,” MICRO 2017.

◼ New memory technologies enable even more opportunities

❑ Memristors, resistive RAM, phase change mem, STT-MRAM, …

❑ Can operate on data with minimal movement
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In-DRAM AND/OR: Triple Row Activation
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½VDD

½VDD

dis

A

B

C

Final State
AB + BC + AC

½VDD+δ

C(A + B) + 
~C(AB)en

0

VDD

Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015.



In-DRAM NOT: Dual Contact Cell

107

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

Idea: 
Feed the 

negated value 
in the sense amplifier

into a special row



Performance: In-DRAM Bitwise Operations
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Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.



Energy of In-DRAM Bitwise Operations
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Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.



Ambit vs. DDR3: Performance and 

Energy
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32X 35X

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.



Bulk Bitwise Operations in Workloads

[1] Li and Patel, BitWeaving, SIGMOD 2013

[2] Goodwin+, BitFunnel, SIGIR 2017



Example Data Structure: Bitmap Index

◼ Alternative to B-tree and its variants

◼ Efficient for performing range queries and joins

◼ Many bitwise operations to perform a query
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Performance: Bitmap Index on Ambit
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Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.



Performance: BitWeaving on Ambit
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Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.



More on In-DRAM Bulk AND/OR

◼ Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk 
Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and 
Todd C. Mowry,
"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015. 
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http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://www.computer.org/web/cal


More on Ambit

◼ Vivek Seshadri et al., “Ambit: In-Memory Accelerator 
for Bulk Bitwise Operations Using Commodity DRAM 
Technology,” MICRO 2017.
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https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf


Challenge and Opportunity for Future

Computing Architectures

with 

Minimal Data Movement

117



Challenge: Intelligent Memory Device

Does memory

have to be

dumb?
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Agenda

◼ Major Trends Affecting Main Memory

◼ The Need for Intelligent Memory Controllers

❑ Bottom Up: Push from Circuits and Devices

❑ Top Down: Pull from Systems and Applications 

◼ Processing in Memory: Two Directions

❑ Minimally Changing Memory Chips

❑ Exploiting 3D-Stacked Memory

◼ How to Enable Adoption of Processing in Memory

◼ Conclusion
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Processing in Memory:

Two Approaches

1. Minimally changing memory chips

2. Exploiting 3D-stacked memory

120



Opportunity: 3D-Stacked Logic+Memory

121

Logic

Memory

Other “True 3D” technologies
under development



DRAM Landscape (circa 2015)

122

Kim+, “Ramulator: A Flexible and Extensible DRAM Simulator”, IEEE CAL 2015.



Two Key Questions in 3D-Stacked PIM

◼ How can we accelerate important applications if we use         
3D-stacked memory as a coarse-grained accelerator?

❑ what is the architecture and programming model?

❑ what are the mechanisms for acceleration?

◼ What is the minimal processing-in-memory support we can 
provide?

❑ without changing the system significantly

❑ while achieving significant benefits
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Graph Processing

124

◼ Large graphs are everywhere (circa 2015)

◼ Scalable large-scale graph processing is challenging

36 Million 
Wikipedia Pages

1.4 Billion
Facebook Users

300 Million
Twitter Users

30 Billion
Instagram Photos

+42%

0 1 2 3 4

128…

32 Cores

Speedup



Key Bottlenecks in Graph Processing
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for (v: graph.vertices) {

for (w: v.successors) {

w.next_rank += weight * v.rank;

}

}

weight * v.rank

v

w

&w

1. Frequent random memory accesses

2. Little amount of computation

w.rank

w.next_rank

w.edges

…



Tesseract System for Graph Processing
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Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Logic

Memory

Tesseract System for Graph Processing
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Logic

Memory

Tesseract System for Graph Processing
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Communications In Tesseract (I)
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Communications In Tesseract (II)
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Communications In Tesseract (III)
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Remote Function Call (Non-Blocking)
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Evaluated Systems
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Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Tesseract Graph Processing Performance

+56% +25%
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Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

On five graph processing algorithms



Tesseract Graph Processing Performance
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Tesseract Graph Processing System Energy
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HMC-OoO Tesseract with Prefetching

Memory Layers Logic Layers Cores

> 8X Energy Reduction

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



More on Tesseract

◼ Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, 
and Kiyoung Choi,
"A Scalable Processing-in-Memory Accelerator for 
Parallel Graph Processing"
Proceedings of the 42nd International Symposium on 
Computer Architecture (ISCA), Portland, OR, June 2015. 
[Slides (pdf)] [Lightning Session Slides (pdf)]
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http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-lightning-talk.pdf


PIM on Mobile Devices

◼ Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata
Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki 
Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data 
Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural 
Support for Programming Languages and Operating 
Systems (ASPLOS), Williamsburg, VA, USA, March 2018.
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https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/


Google Workloads

for Consumer Devices:

Mitigating Data Movement Bottlenecks

Amirali Boroumand

Saugata Ghose,  Youngsok Kim, Rachata Ausavarungnirun,

Eric Shiu, RahulThakur, Daehyun Kim, Aki Kuusela,

Allan Knies, Parthasarathy Ranganathan, Onur Mutlu



Consumer Devices

140

Consumer devices are everywhere!

Energy consumption is

a first-class concern in consumer devices



Popular Google Consumer Workloads
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Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning 

framework

Video Playback

Google’s video codec

Video Capture

Google’s video codec
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Energy Cost of Data Movement

Data Movement

1st key observation:  62.7% of the total system 

energy is spent on data movement

Potential solution: move computation close to data

Challenge: limited area and energy budget

Processing-In-Memory (PIM)

SoC

DRAML2L1
CPU

CPU
CPU

CPU

Compute 

Unit 



Using PIM to Reduce Data Movement

5

2nd key observation: a significant fraction of the

data movement often comes from simple functions

PIM 

Core

PIM 

Accelerator
PIM 

Accelerator
PIM 

Accelerator

We can design lightweight logic to implement

these simple functions in memory

Small embedded

low-power core

Small fixed-function 

accelerators

Offloading to PIM logic reduces energy and improves 

performance, on average, by 55.4% and 54.2%



Workload Analysis
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Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning 

framework

Video Playback

Google’s video codec

Video Capture

Google’s video codec



TensorFlow Mobile

34

57.3% of the inference energy is spent on

data movement

54.4% of the data movement energy comes from 

packing/unpacking and quantization

Inference Prediction



Packing

36

Reorders elements of matrices to minimize 

cache misses during matrix multiplication

Up to 40% of the

inference energy and 31% of

inference execution time 

Packing’s data movement 

accounts for up to 

35.3% of the inference energy

Packing
Matrix Packed Matrix

A simple data reorganization process

that requires simple arithmetic 



Quantization

36

Converts 32-bit floating point to 8-bit integers to improve 

inference execution time and energy consumption 

Up to 16.8% of the 

inference energy

and 16.1% of 

inference execution time 

Majority of quantization

energy comes from 

data movement

Quantization
floating point integer

A simple data conversion operation that requires 

shift, addition, and multiplication operations



Quantization

37

Converts 32-bit floating point to 8-bit integers to improve 

inference execution time and energy consumption 

Up to 16.8% of the 

inference energy

and 16.1% of 

inference execution time 

Majority of quantization

energy comes from 

data movement

Quantization
floating point integer

A simple data conversion operation that requires 

shift, addition, and multiplication operations

Based on our analysis, we conclude that:
• Both functions are good candidates for PIM execution 

• It is feasible to implement them in PIM logic



Evaluation Methodology 

• System Configuration (gem5 Simulator)

– SoC:  4 OoO cores, 8-wide issue, 64 kB L1cache,

2MB L2 cache

– PIM Core: 1 core per vault, 1-wide issue, 4-wide SIMD, 

32kB L1 cache

– 3D-Stacked Memory: 2GB cube, 16 vaults per cube

• Internal Bandwidth: 256GB/S 

• Off-Chip Channel Bandwidth: 32 GB/s

– Baseline Memory: LPDDR3, 2GB, FR-FCFS scheduler

• We study each target in isolation and emulate each 

separately and run them in our simulator
40



Normalized Energy 
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PIM core and PIM accelerator reduces

energy consumption on average by 49.1% and 55.4%

77.7% and 82.6% of energy reduction for texture tiling 

and packing comes from eliminating data movement
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Normalized Runtime
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Google Workloads

for Consumer Devices:

Mitigating Data Movement Bottlenecks

Amirali Boroumand
Saugata Ghose,  Youngsok Kim, Rachata Ausavarungnirun,

Eric Shiu, RahulThakur, Daehyun Kim, Aki Kuusela,

Allan Knies, Parthasarathy Ranganathan, Onur Mutlu

ASPLOS 2018



More on PIM for Mobile Devices
◼ Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul 

Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming 
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.
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62.7% of the total system energy 
is spent on data movement

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/


Truly Distributed GPU Processing with PIM?

Logic layer 
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(memory stack) SM (Streaming Multiprocessor)



Accelerating GPU Execution with PIM (I)

◼ Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike 
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling 
Programmer-Transparent Near-Data Processing in GPU 
Systems"
Proceedings of the 43rd International Symposium on Computer 
Architecture (ISCA), Seoul, South Korea, June 2016. 
[Slides (pptx) (pdf)] 
[Lightning Session Slides (pptx) (pdf)] 
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https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf


Accelerating GPU Execution with PIM (II)

◼ Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K. 
Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities"
Proceedings of the 25th International Conference on Parallel 
Architectures and Compilation Techniques (PACT), Haifa, Israel, 
September 2016.
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https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
http://pactconf.org/


Accelerating Linked Data Structures

◼ Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali 
Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory: 
Challenges, Mechanisms, Evaluation"
Proceedings of the 34th IEEE International Conference on Computer 
Design (ICCD), Phoenix, AZ, USA, October 2016. 
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https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
http://www.iccd-conf.com/


Accelerating Dependent Cache Misses

◼ Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,
"Accelerating Dependent Cache Misses with an Enhanced 
Memory Controller"
Proceedings of the 43rd International Symposium on Computer 
Architecture (ISCA), Seoul, South Korea, June 2016. 
[Slides (pptx) (pdf)] 
[Lightning Session Slides (pptx) (pdf)] 
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https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pdf


Two Key Questions in 3D-Stacked PIM

◼ How can we accelerate important applications if we use         
3D-stacked memory as a coarse-grained accelerator?

❑ what is the architecture and programming model?

❑ what are the mechanisms for acceleration?

◼ What is the minimal processing-in-memory support we can 
provide?

❑ without changing the system significantly

❑ while achieving significant benefits
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PEI: PIM-Enabled Instructions (Ideas)
◼ Goal: Develop mechanisms to get the most out of near-data 

processing with minimal cost, minimal changes to the system, no 
changes to the programming model

◼ Key Idea 1: Expose each PIM operation as a cache-coherent, 
virtually-addressed host processor instruction (called PEI) that 
operates on only a single cache block
❑ e.g., __pim_add(&w.next_rank, value) → pim.add r1, (r2)

❑ No changes sequential execution/programming model

❑ No changes to virtual memory

❑ Minimal changes to cache coherence

❑ No need for data mapping: Each PEI restricted to a single memory module

◼ Key Idea 2: Dynamically decide where to execute a PEI (i.e., the 
host processor or PIM accelerator) based on simple locality 
characteristics and simple hardware predictors

❑ Execute each operation at the location that provides the best performance
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Simple PIM Operations as ISA Extensions (II)

161

Main Memory

w.next_rankw.next_rank

for (v: graph.vertices) {

value = weight * v.rank;

for (w: v.successors) {

w.next_rank += value;

}

}
Host Processor

w.next_rankw.next_rank

64 bytes in
64 bytes out

Conventional Architecture



Simple PIM Operations as ISA Extensions (III)
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Main Memory

w.next_rankw.next_rank

Host Processor

value

8 bytes in
0 bytes out

In-Memory Addition

for (v: graph.vertices) {

value = weight * v.rank;

for (w: v.successors) {

__pim_add(&w.next_rank, value);

}

}

pim.add r1, (r2)



PEI: PIM-Enabled Instructions (Example)
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◼ Executed either in memory or in the processor: dynamic decision

❑ Low-cost locality monitoring for a single instruction

◼ Cache-coherent, virtually-addressed, single cache block only

◼ Atomic between different PEIs

◼ Not atomic with normal instructions (use pfence for ordering)

for (v: graph.vertices) {

value = weight * v.rank;

for (w: v.successors) {

__pim_add(&w.next_rank, value);

}

}

pfence();

pim.add r1, (r2)

pfence



Example (Abstract) PEI uArchitecture
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PEI: Initial Evaluation Results

◼ Initial evaluations with 10 emerging data-intensive workloads

❑ Large-scale graph processing

❑ In-memory data analytics

❑ Machine learning and data mining

❑ Three input sets (small, medium, large)                                                  
for each workload to analyze the impact                                            
of data locality

◼ Pin-based cycle-level x86-64 simulation

◼ Performance Improvement and Energy Reduction: 

◼ 47% average speedup with large input data sets

◼ 32% speedup with small input data sets

◼ 25% avg. energy reduction in a single node with large input data sets
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Simpler PIM: PIM-Enabled Instructions

◼ Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,
"PIM-Enabled Instructions: A Low-Overhead, 
Locality-Aware Processing-in-Memory Architecture"
Proceedings of the 42nd International Symposium on 
Computer Architecture (ISCA), Portland, OR, June 2015. 
[Slides (pdf)] [Lightning Session Slides (pdf)]  

http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-lightning-talk.pdf


Automatic Code and Data Mapping

◼ Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike 
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling 
Programmer-Transparent Near-Data Processing in GPU 
Systems"
Proceedings of the 43rd International Symposium on Computer 
Architecture (ISCA), Seoul, South Korea, June 2016. 
[Slides (pptx) (pdf)] 
[Lightning Session Slides (pptx) (pdf)] 
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https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf


Automatic Offloading of Critical Code

◼ Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,
"Accelerating Dependent Cache Misses with an Enhanced 
Memory Controller"
Proceedings of the 43rd International Symposium on Computer 
Architecture (ISCA), Seoul, South Korea, June 2016. 
[Slides (pptx) (pdf)] 
[Lightning Session Slides (pptx) (pdf)] 
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https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pdf


Automatic Offloading of Prefetch Mechanisms

◼ Milad Hashemi, Onur Mutlu, and Yale N. Patt,
"Continuous Runahead: Transparent Hardware Acceleration for 
Memory Intensive Workloads"
Proceedings of the 49th International Symposium on 
Microarchitecture (MICRO), Taipei, Taiwan, October 2016.
[Slides (pptx) (pdf)] [Lightning Session Slides (pdf)] [Poster (pptx) (pdf)]

169

https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16.pdf
http://www.microarch.org/micro49/
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-lightning-session-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pdf


Efficient Automatic Data Coherence Support

◼ Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, 
Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism 
for Processing-in-Memory"
IEEE Computer Architecture Letters (CAL), June 2016.
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https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
http://www.computer.org/web/cal


Challenge and Opportunity for Future

Fundamentally

Energy-Efficient

(Data-Centric)

Computing Architectures
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Challenge and Opportunity for Future

Fundamentally

High-Performance

(Data-Centric)

Computing Architectures
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Challenge and Opportunity for Future

Computing Architectures

with 

Minimal Data Movement
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Agenda

◼ Major Trends Affecting Main Memory

◼ The Need for Intelligent Memory Controllers

❑ Bottom Up: Push from Circuits and Devices

❑ Top Down: Pull from Systems and Applications

◼ Processing in Memory: Two Directions

❑ Minimally Changing Memory Chips

❑ Exploiting 3D-Stacked Memory

◼ How to Enable Adoption of Processing in Memory

◼ Conclusion
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Eliminating the Adoption Barriers

How to Enable Adoption 
of Processing in Memory
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Barriers to Adoption of PIM

1. Functionality of and applications for PIM

2. Ease of programming (interfaces and compiler/HW support)

3. System support: coherence & virtual memory

4. Runtime systems for adaptive scheduling, data mapping, 
access/sharing control

5. Infrastructures to assess benefits and feasibility
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We Need to Revisit the Entire Stack

177

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons



Open Problems: PIM Adoption

Saugata Ghose, Kevin Hsieh, Amirali Boroumand, Rachata Ausavarungnirun, Onur Mutlu,
"Enabling the Adoption of Processing-in-Memory: Challenges, Mechanisms, 
Future Research Directions"
Invited Book Chapter, to appear in 2018.
[Preliminary arxiv.org version]

178https://arxiv.org/pdf/1802.00320.pdf

https://people.inf.ethz.ch/omutlu/acaces2018.html
https://arxiv.org/pdf/1802.00320.pdf
https://arxiv.org/pdf/1802.00320.pdf


Key Challenge 1: Code Mapping

Logic layer 

SM

Crossbar switch

Vault 

Ctrl

…. Vault 

Ctrl

Logic layer

?

Main GPU

3D-stacked memory

(memory stack)

• Challenge 1: Which operations should be executed 
in memory vs. in CPU?

?
SM (Streaming Multiprocessor)



Key Challenge 2: Data Mapping

Logic layer 

SM

Crossbar switch

Vault 

Ctrl

…. Vault 

Ctrl

Logic layer

Main GPU

3D-stacked memory

(memory stack)

• Challenge 2: How should data be mapped to 
different 3D memory stacks? 

SM (Streaming Multiprocessor)



How to Do the Code and Data Mapping?

◼ Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike 
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling 
Programmer-Transparent Near-Data Processing in GPU 
Systems"
Proceedings of the 43rd International Symposium on Computer 
Architecture (ISCA), Seoul, South Korea, June 2016. 
[Slides (pptx) (pdf)] 
[Lightning Session Slides (pptx) (pdf)] 
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https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf


How to Schedule Code?

◼ Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K. 
Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities"
Proceedings of the 25th International Conference on Parallel 
Architectures and Compilation Techniques (PACT), Haifa, Israel, 
September 2016.

182

https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
http://pactconf.org/


Challenge: Coherence for Hybrid CPU-PIM Apps
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Traditional

coherence

No coherence

overhead



How to Maintain Coherence?

◼ Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, 
Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism 
for Processing-in-Memory"
IEEE Computer Architecture Letters (CAL), June 2016.
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https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
http://www.computer.org/web/cal


How to Support Virtual Memory?

◼ Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali 
Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory: 
Challenges, Mechanisms, Evaluation"
Proceedings of the 34th IEEE International Conference on Computer 
Design (ICCD), Phoenix, AZ, USA, October 2016. 
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https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
http://www.iccd-conf.com/


How to Design Data Structures for PIM?

◼ Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu,
"Concurrent Data Structures for Near-Memory Computing"
Proceedings of the 29th ACM Symposium on Parallelism in Algorithms 
and Architectures (SPAA), Washington, DC, USA, July 2017.
[Slides (pptx) (pdf)]
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https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17.pdf
https://spaa.acm.org/
https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17-talk.pdf


Simulation Infrastructures for PIM

◼ Ramulator extended for PIM

❑ Flexible and extensible DRAM simulator

❑ Can model many different memory standards and proposals

❑ Kim+, “Ramulator: A Flexible and Extensible DRAM 
Simulator”, IEEE CAL 2015.

❑ https://github.com/CMU-SAFARI/ramulator
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https://github.com/CMU-SAFARI/ramulator


An FPGA-based Test-bed for PIM?

◼ Hasan Hassan et al., SoftMC: A 
Flexible and Practical Open-
Source Infrastructure for 
Enabling Experimental DRAM 
Studies HPCA 2017.

◼ Flexible

◼ Easy to Use (C++ API)

◼ Open-source 

github.com/CMU-SAFARI/SoftMC 
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https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf


Simulation Infrastructures for PIM (in SSDs) 

◼ Arash Tavakkol, Juan Gomez-Luna, Mohammad Sadrosadati, 
Saugata Ghose, and Onur Mutlu,
"MQSim: A Framework for Enabling Realistic Studies of 
Modern Multi-Queue SSD Devices"
Proceedings of the 16th USENIX Conference on File and Storage 
Technologies (FAST), Oakland, CA, USA, February 2018.
[Slides (pptx) (pdf)]
[Source Code]
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https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18.pdf
https://www.usenix.org/conference/fast18
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pdf
https://github.com/CMU-SAFARI/MQSim


New Applications and Use Cases for PIM

◼ Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, 
Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using 
Processing-in-Memory Technologies"
BMC Genomics, 2018.
Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC), 
Yokohama, Japan, January 2018.
arxiv.org Version (pdf)
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http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
https://arxiv.org/pdf/1711.01177.pdf


Genome Read In-Memory (GRIM) Filter: 
Fast Seed Location Filtering in DNA Read Mapping 

using Processing-in-Memory Technologies

Jeremie Kim, 

Damla Senol, Hongyi Xin, Donghyuk Lee, 

Saugata Ghose, Mohammed Alser, Hasan Hassan, 

Oguz Ergin, Can Alkan, and Onur Mutlu



Executive Summary

◼ Genome Read Mapping is a very important problem and is the first 
step in many types of genomic analysis

❑ Could lead to improved health care, medicine, quality of life

◼ Read mapping is an approximate string matching problem

❑ Find the best fit of 100 character strings into a 3 billion character dictionary

❑ Alignment is currently the best method for determining the similarity between 
two strings, but is very expensive

◼ We propose an in-memory processing algorithm GRIM-Filter for 
accelerating read mapping, by reducing the number of required 
alignments

◼ We implement GRIM-Filter using in-memory processing within 3D-
stacked memory and show up to 3.7x speedup.
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Google Workloads

for Consumer Devices:

Mitigating Data Movement Bottlenecks

Amirali Boroumand

Saugata Ghose,  Youngsok Kim, Rachata Ausavarungnirun,

Eric Shiu, RahulThakur, Daehyun Kim, Aki Kuusela,

Allan Knies, Parthasarathy Ranganathan, Onur Mutlu



Open Problems: PIM Adoption

Saugata Ghose, Kevin Hsieh, Amirali Boroumand, Rachata Ausavarungnirun, Onur Mutlu,
"Enabling the Adoption of Processing-in-Memory: Challenges, Mechanisms, 
Future Research Directions"
Invited Book Chapter, to appear in 2018.
[Preliminary arxiv.org version]

194https://arxiv.org/pdf/1802.00320.pdf

https://people.inf.ethz.ch/omutlu/acaces2018.html
https://arxiv.org/pdf/1802.00320.pdf
https://arxiv.org/pdf/1802.00320.pdf


Enabling the Paradigm Shift



Computer Architecture Today

◼ You can revolutionize the way computers are built, if you 
understand both the hardware and the software (and 
change each accordingly)

◼ You can invent new paradigms for computation, 
communication, and storage

◼ Recommended book: Thomas Kuhn, “The Structure of 
Scientific Revolutions” (1962)

❑ Pre-paradigm science: no clear consensus in the field

❑ Normal science: dominant theory used to explain/improve 
things (business as usual); exceptions considered anomalies

❑ Revolutionary science: underlying assumptions re-examined
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Computer Architecture Today

◼ You can revolutionize the way computers are built, if you 
understand both the hardware and the software (and 
change each accordingly)

◼ You can invent new paradigms for computation, 
communication, and storage

◼ Recommended book: Thomas Kuhn, “The Structure of 
Scientific Revolutions” (1962)

❑ Pre-paradigm science: no clear consensus in the field

❑ Normal science: dominant theory used to explain/improve 
things (business as usual); exceptions considered anomalies

❑ Revolutionary science: underlying assumptions re-examined
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Agenda

◼ Major Trends Affecting Main Memory

◼ The Need for Intelligent Memory Controllers

❑ Bottom Up: Push from Circuits and Devices

❑ Top Down: Pull from Systems and Applications

◼ Processing in Memory: Two Directions

❑ Minimally Changing Memory Chips

❑ Exploiting 3D-Stacked Memory

◼ How to Enable Adoption of Processing in Memory

◼ Conclusion
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Four Key Directions

◼ Fundamentally Secure/Reliable/Safe Architectures

◼ Fundamentally Energy-Efficient Architectures

❑ Memory-centric (Data-centric) Architectures

◼ Fundamentally Low-Latency Architectures

◼ Architectures for Genomics, Medicine, Health
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Maslow’s Hierarchy of Needs, A Third Time
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Speed

Speed

Speed

Speed

Speed

Source: https://www.simplypsychology.org/maslow.html

Maslow, “A Theory of Human Motivation,” 
Psychological Review, 1943. 

Maslow, “Motivation and Personality,”
Book, 1954-1970.



Challenge and Opportunity for Future

Fundamentally

Energy-Efficient

(Data-Centric)

Computing Architectures
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Challenge and Opportunity for Future

Fundamentally

Low-Latency

(Data-Centric)

Computing Architectures
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Challenge and Opportunity for Future

Computing Architectures

with 

Minimal Data Movement
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One Important Takeaway

Main Memory Needs 

Intelligent Controllers
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Concluding Remarks
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A Quote from A Famous Architect

◼ “architecture […] based upon principle, and not upon 
precedent”
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Precedent-Based Design?

◼ “architecture […] based upon principle, and not upon 
precedent”
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Principled Design

◼ “architecture […] based upon principle, and not upon 
precedent”
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The Overarching Principle
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Another Example: Precedent-Based Design

211Source: http://cookiemagik.deviantart.com/art/Train-station-207266944



Principled Design

212Source: By Toni_V, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=4087256



Another Principled Design

213Source: By Martín Gómez Tagle - Lisbon, Portugal, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=13764903

Source: http://www.arcspace.com/exhibitions/unsorted/santiago-calatrava/



Another Principled Design

214Source: De Galván - Puente del Alamillo.jpg on Enciclopedia.us.es, GFDL, https://commons.wikimedia.org/w/index.php?curid=15026095



Principle Applied to Another Structure

215
Source: https://www.dezeen.com/2016/08/29/santiago-calatrava-oculus-world-trade-center-transportation-hub-new-york-photographs-hufton-crow/
Source: By 準建築人手札網站 Forgemind ArchiMedia - Flickr: IMG_2489.JPG, CC BY 2.0, 
https://commons.wikimedia.org/w/index.php?curid=31493356, https://en.wikipedia.org/wiki/Santiago_Calatrava

https://commons.wikimedia.org/w/index.php?curid=31493356


The Overarching Principle
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Overarching Principle for Computing?

217Source: http://spectrum.ieee.org/image/MjYzMzAyMg.jpeg



Concluding Remarks

◼ It is time to design principled system architectures to solve 
the memory problem

◼ Design complete systems to be balanced, high-performance, 
and energy-efficient, i.e., data-centric (or memory-centric)

◼ Enable computation capability inside and close to memory

◼ This can

❑ Lead to orders-of-magnitude improvements 

❑ Enable new applications & computing platforms

❑ Enable better understanding of nature

❑ …
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The Future of Processing in Memory is Bright

◼ Regardless of challenges 

❑ in underlying technology and overlying problems/requirements 

219

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons

Can enable:

- Orders of magnitude 
improvements

- New applications and 
computing systems

Yet, we have to

- Think across the stack

- Design enabling systems



If In Doubt, See Other Doubtful Technologies

◼ A very “doubtful” emerging technology 

❑ for at least two decades

220
https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

https://arxiv.org/pdf/1706.08642
https://arxiv.org/pdf/1706.08642


For Some Open Problems, See

Saugata Ghose, Kevin Hsieh, Amirali Boroumand, Rachata Ausavarungnirun, Onur Mutlu,
"Enabling the Adoption of Processing-in-Memory: Challenges, Mechanisms, 
Future Research Directions"
Invited Book Chapter, to appear in 2018.
[Preliminary arxiv.org version]

221https://arxiv.org/pdf/1802.00320.pdf

https://people.inf.ethz.ch/omutlu/acaces2018.html
https://arxiv.org/pdf/1802.00320.pdf
https://arxiv.org/pdf/1802.00320.pdf


Accelerated Memory Course (~6.5 hours)

◼ ACACES 2018 

❑ Memory Systems and Memory-Centric Computing Systems

❑ Taught by Onur Mutlu July 9-13, 2018

❑ ~6.5 hours of lectures

◼ Website for the Course including Videos, Slides, Papers

❑ https://people.inf.ethz.ch/omutlu/acaces2018.html

❑ https://www.youtube.com/playlist?list=PL5Q2soXY2Zi-
HXxomthrpDpMJm05P6J9x

◼ All Papers are at:

❑ https://people.inf.ethz.ch/omutlu/projects.htm

❑ Final lecture notes and readings (for all topics)
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Onur Mutlu

omutlu@gmail.com

https://people.inf.ethz.ch/omutlu

4 October 2018

HNEP 2018 Keynote

Processing Data Where It Makes Sense 

in Modern Computing Systems:

Enabling In-Memory Computation

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu


Slides Not Covered 

But Could Be Useful
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Readings, Videos, Reference Materials



Accelerated Memory Course (~6.5 hours)

◼ ACACES 2018 

❑ Memory Systems and Memory-Centric Computing Systems

❑ Taught by Onur Mutlu July 9-13, 2018

❑ ~6.5 hours of lectures

◼ Website for the Course including Videos, Slides, Papers

❑ https://people.inf.ethz.ch/omutlu/acaces2018.html

❑ https://www.youtube.com/playlist?list=PL5Q2soXY2Zi-
HXxomthrpDpMJm05P6J9x

◼ All Papers are at:

❑ https://people.inf.ethz.ch/omutlu/projects.htm

❑ Final lecture notes and readings (for all topics)
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Reference Overview Paper I

Saugata Ghose, Kevin Hsieh, Amirali Boroumand, Rachata Ausavarungnirun, Onur Mutlu,
"Enabling the Adoption of Processing-in-Memory: Challenges, Mechanisms, 
Future Research Directions"
Invited Book Chapter, to appear in 2018.
[Preliminary arxiv.org version]
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Reference Overview Paper II

◼ Onur Mutlu and Lavanya Subramanian,
"Research Problems and Opportunities in Memory 
Systems"
Invited Article in Supercomputing Frontiers and Innovations
(SUPERFRI), 2014/2015. 

https://people.inf.ethz.ch/omutlu/pub/memory-systems-research_superfri14.pdf

https://people.inf.ethz.ch/omutlu/pub/memory-systems-research_superfri14.pdf
http://superfri.org/superfri
https://people.inf.ethz.ch/omutlu/pub/memory-systems-research_superfri14.pdf


Reference Overview Paper III

https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf

◼ Onur Mutlu,
"The RowHammer Problem and Other Issues We May Face as 
Memory Becomes Denser"
Invited Paper in Proceedings of the Design, Automation, and Test in 
Europe Conference (DATE), Lausanne, Switzerland, March 2017. 
[Slides (pptx) (pdf)] 

https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pdf


Reference Overview Paper IV

◼ Onur Mutlu,
"Memory Scaling: A Systems Architecture 
Perspective"
Technical talk at MemCon 2013 (MEMCON), Santa Clara, 
CA, August 2013. [Slides (pptx) (pdf)]
[Video] [Coverage on StorageSearch] 

https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf

https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf
http://www.memcon.com/
https://people.inf.ethz.ch/omutlu/pub/mutlu_memory-scaling_memcon13_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/mutlu_memory-scaling_memcon13_talk.pdf
http://www.memcon.com/video1.aspx?vfile=2708052590001&federated_f9=61773537001&videoPlayer=999&playerID=61773537001&w=520&h=442&oheight=550
http://www.storagesearch.com/ram-new-thinking.html
https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf


Reference Overview Paper V
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https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

https://arxiv.org/pdf/1706.08642
https://arxiv.org/pdf/1706.08642


Related Videos and Course Materials (I)

◼ Undergraduate Computer Architecture Course Lecture 
Videos (2015, 2014, 2013)

◼ Undergraduate Computer Architecture Course 
Materials (2015, 2014, 2013)

◼ Graduate Computer Architecture Course Lecture 
Videos (2017, 2015, 2013)

◼ Graduate Computer Architecture Course 
Materials (2017, 2015, 2013)

◼ Parallel Computer Architecture Course Materials
(Lecture Videos)
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https://www.youtube.com/playlist?list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq
https://www.youtube.com/watch?v=zLP_X4wyHbY&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq
https://www.youtube.com/playlist?list=PL5PHm2jkkXmgFdD9x7RsjQC4a8KQjmUkQ
https://www.youtube.com/watch?v=BJ87rZCGWU0&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ
http://www.archive.ece.cmu.edu/~ece447/s15/doku.php?id=schedule
http://www.archive.ece.cmu.edu/~ece447/s15/doku.php?id=schedule
http://www.archive.ece.cmu.edu/~ece447/s14/doku.php?id=schedule
http://www.archive.ece.cmu.edu/~ece447/s13/doku.php?id=schedule
https://www.youtube.com/playlist?list=PL5Q2soXY2Zi9OhoVQBXYFIZywZXCPl4M_
https://www.youtube.com/playlist?list=PL5Q2soXY2Zi9OhoVQBXYFIZywZXCPl4M_
https://www.youtube.com/playlist?list=PL5PHm2jkkXmgVhh8CHAu9N76TShJqfYDt
https://www.youtube.com/playlist?list=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D
https://safari.ethz.ch/architecture/fall2017/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2017/doku.php?id=schedule
http://www.ece.cmu.edu/~ece740/f15/doku.php?id=schedule
http://www.ece.cmu.edu/~ece740/f13/doku.php?id=schedule
http://www.ece.cmu.edu/~ece742/f12/doku.php?id=lectures
https://www.youtube.com/playlist?feature=edit_ok&list=PLSEZzvupP7hNjq3Tuv2hiE5VvR-WRYoW4


Related Videos and Course Materials (II)

◼ Freshman Digital Circuits and Computer Architecture 
Course Lecture Videos (2018, 2017)

◼ Freshman Digital Circuits and Computer Architecture 
Course Materials (2018)

◼ Memory Systems Short Course Materials

(Lecture Video on Main Memory and DRAM Basics)

233

https://www.youtube.com/playlist?list=PL5Q2soXY2Zi-IXWTT7xoNYpst5-zdZQ6y
https://www.youtube.com/playlist?list=PL5Q2soXY2Zi_QedyPWtRmFUJ2F8DdYP7l
https://www.youtube.com/playlist?list=PL5Q2soXY2Zi-IXWTT7xoNYpst5-zdZQ6y
https://safari.ethz.ch/digitaltechnik/spring2018/doku.php?id=schedule
https://safari.ethz.ch/digitaltechnik/spring2018/doku.php?id=schedule
http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html
https://www.youtube.com/watch?v=ZLCy3pG7Rc0


Some Open Source Tools (I)
◼ Rowhammer – Program to Induce RowHammer Errors

❑ https://github.com/CMU-SAFARI/rowhammer

◼ Ramulator – Fast and Extensible DRAM Simulator

❑ https://github.com/CMU-SAFARI/ramulator

◼ MemSim – Simple Memory Simulator

❑ https://github.com/CMU-SAFARI/memsim

◼ NOCulator – Flexible Network-on-Chip Simulator

❑ https://github.com/CMU-SAFARI/NOCulator

◼ SoftMC – FPGA-Based DRAM Testing Infrastructure

❑ https://github.com/CMU-SAFARI/SoftMC

◼ Other open-source software from my group

❑ https://github.com/CMU-SAFARI/

❑ http://www.ece.cmu.edu/~safari/tools.html
234

https://github.com/CMU-SAFARI/rowhammer
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/memsim
https://github.com/CMU-SAFARI/NOCulator
https://github.com/CMU-SAFARI/SoftMC
https://github.com/CMU-SAFARI/
http://www.ece.cmu.edu/~safari/tools.html


Some Open Source Tools (II)
◼ MQSim – A Fast Modern SSD Simulator 

❑ https://github.com/CMU-SAFARI/MQSim

◼ Mosaic – GPU Simulator Supporting Concurrent Applications

❑ https://github.com/CMU-SAFARI/Mosaic

◼ IMPICA – Processing in 3D-Stacked Memory Simulator

❑ https://github.com/CMU-SAFARI/IMPICA

◼ SMLA – Detailed 3D-Stacked Memory Simulator

❑ https://github.com/CMU-SAFARI/SMLA

◼ HWASim – Simulator for Heterogeneous CPU-HWA Systems

❑ https://github.com/CMU-SAFARI/HWASim

◼ Other open-source software from my group

❑ https://github.com/CMU-SAFARI/

❑ http://www.ece.cmu.edu/~safari/tools.html
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https://github.com/CMU-SAFARI/MQSim
https://github.com/CMU-SAFARI/Mosaic
https://github.com/CMU-SAFARI/IMPICA
https://github.com/CMU-SAFARI/SMLA
https://github.com/CMU-SAFARI/HWASim
https://github.com/CMU-SAFARI/
http://www.ece.cmu.edu/~safari/tools.html


More Open Source Tools (III)

◼ A lot more open-source software from my group

❑ https://github.com/CMU-SAFARI/

❑ http://www.ece.cmu.edu/~safari/tools.html
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Referenced Papers

◼ All are available at

https://people.inf.ethz.ch/omutlu/projects.htm

http://scholar.google.com/citations?user=7XyGUGkAAAAJ&hl=en

https://people.inf.ethz.ch/omutlu/acaces2018.html
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Ramulator: A Fast and Extensible 

DRAM Simulator 

[IEEE Comp Arch Letters’15]
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Ramulator Motivation

◼ DRAM and Memory Controller landscape is changing

◼ Many new and upcoming standards

◼ Many new controller designs

◼ A fast and easy-to-extend simulator is very much needed
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Ramulator

◼ Provides out-of-the box support for many DRAM standards:

❑ DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, plus new 
proposals (SALP, AL-DRAM, TLDRAM, RowClone, and SARP)

◼ ~2.5X faster than fastest open-source simulator

◼ Modular and extensible to different standards

240



Case Study: Comparison of DRAM Standards

241

Across 22 
workloads, 
simple CPU 
model



Ramulator Paper and Source Code

◼ Yoongu Kim, Weikun Yang, and Onur Mutlu,
"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters (CAL), March 2015. 
[Source Code] 

◼ Source code is released under the liberal MIT License

❑ https://github.com/CMU-SAFARI/ramulator
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http://users.ece.cmu.edu/~omutlu/pub/ramulator_dram_simulator-ieee-cal15.pdf
http://www.computer.org/web/cal
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator


Tesseract: Extra Slides

243



Communications In Tesseract (I)
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Communications In Tesseract (II)
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Communications In Tesseract (III)
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Remote Function Call (Non-Blocking)
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Effect of Bandwidth & Programming Model
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Reducing Memory Latency
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A Closer Look …
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Chang+, “Understanding Latency Variation in Modern DRAM Chips: Experimental 
Characterization, Analysis, and Optimization",” SIGMETRICS 2016.

https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf


DRAM Latency Is Critical for Performance

In-Memory Data Analytics 
[Clapp+ (Intel), IISWC’15;  

Awan+, BDCloud’15]

Datacenter Workloads 
[Kanev+ (Google), ISCA’15]

In-memory Databases 
[Mao+, EuroSys’12; 

Clapp+ (Intel), IISWC’15]

Graph/Tree Processing 
[Xu+, IISWC’12; Umuroglu+, FPL’15]



DRAM Latency Is Critical for Performance

In-Memory Data Analytics 
[Clapp+ (Intel), IISWC’15;  

Awan+, BDCloud’15]

Datacenter Workloads 
[Kanev+ (Google), ISCA’15]

In-memory Databases 
[Mao+, EuroSys’12; 

Clapp+ (Intel), IISWC’15]

Graph/Tree Processing 
[Xu+, IISWC’12; Umuroglu+, FPL’15]

Long memory latency → performance 

bottleneck



Why the Long Latency?

◼ Design of DRAM uArchitecture

❑ Goal: Maximize capacity/area, not minimize latency

◼ “One size fits all” approach to latency specification

❑ Same latency parameters for all temperatures

❑ Same latency parameters for all DRAM chips (e.g., rows)

❑ Same latency parameters for all parts of a DRAM chip

❑ Same latency parameters for all supply voltage levels

❑ Same latency parameters for all application data 

❑ …
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Latency Variation in Memory Chips

255

HighLow

DRAM Latency

DRAM BDRAM A DRAM C

Slow cells

Heterogeneous manufacturing & operating conditions → 
latency variation in timing parameters



DRAM Characterization Infrastructure

256Kim+, “Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

HeaterFPGAs FPGAs



DRAM Characterization Infrastructure

◼ Hasan Hassan et al., SoftMC: A 
Flexible and Practical Open-
Source Infrastructure for 
Enabling Experimental DRAM 
Studies, HPCA 2017.

◼ Flexible

◼ Easy to Use (C++ API)

◼ Open-source 

github.com/CMU-SAFARI/SoftMC 
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SoftMC: Open Source DRAM Infrastructure

◼ https://github.com/CMU-SAFARI/SoftMC
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https://github.com/CMU-SAFARI/SoftMC


Tackling the Fixed Latency Mindset

◼ Reliable operation latency is actually very heterogeneous

❑ Across temperatures, chips, parts of a chip, voltage levels, …

◼ Idea: Dynamically find out and use the lowest latency one 
can reliably access a memory location with

❑ Adaptive-Latency DRAM [HPCA 2015]

❑ Flexible-Latency DRAM [SIGMETRICS 2016]

❑ Design-Induced Variation-Aware DRAM [SIGMETRICS 2017]

❑ Voltron [SIGMETRICS 2017]

❑ ...

◼ We would like to find sources of latency heterogeneity and 
exploit them to minimize latency
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Adaptive-Latency DRAM

• Key idea
– Optimize DRAM timing parameters online

• Two components
– DRAM manufacturer provides multiple sets of 

reliable DRAM timing parameters at different 
temperatures for each DIMM

– System monitors DRAM temperature & uses 
appropriate DRAM timing parameters

reliable DRAM timing parameters

DRAM temperature

Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 
2015.



261

Latency Reduction Summary of 115 DIMMs

• Latency reduction for read & write (55°C)
– Read Latency: 32.7%

– Write Latency: 55.1%

• Latency reduction for each timing 
parameter (55°C) 
– Sensing: 17.3%

– Restore: 37.3% (read), 54.8% (write)

– Precharge: 35.2%

Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 
2015.
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AL-DRAM: Real System Evaluation

• System
– CPU: AMD 4386 ( 8 Cores, 3.1GHz, 8MB LLC)

– DRAM: 4GByte DDR3-1600 (800Mhz Clock)

– OS: Linux

– Storage: 128GByte SSD

• Workload
– 35 applications from SPEC, STREAM, Parsec, 

Memcached, Apache, GUPS
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Reducing Latency Also Reduces Energy

◼ AL-DRAM reduces DRAM power consumption by 5.8%

◼ Major reason: reduction in row activation time
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More on Adaptive-Latency DRAM

◼ Donghyuk Lee, Yoongu Kim, Gennady Pekhimenko, Samira Khan, 
Vivek Seshadri, Kevin Chang, and Onur Mutlu,
"Adaptive-Latency DRAM: Optimizing DRAM Timing for 
the Common-Case"
Proceedings of the 21st International Symposium on High-
Performance Computer Architecture (HPCA), Bay Area, CA, 
February 2015. 
[Slides (pptx) (pdf)] [Full data sets] 
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http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://darksilicon.org/hpca/
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Heterogeneous Latency within A Chip
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Chang+, “Understanding Latency Variation in Modern DRAM Chips: Experimental 
Characterization, Analysis, and Optimization",” SIGMETRICS 2016.

https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf


Analysis of Latency Variation in DRAM Chips

◼ Kevin Chang, Abhijith Kashyap, Hasan Hassan, Samira Khan, Kevin Hsieh, 
Donghyuk Lee, Saugata Ghose, Gennady Pekhimenko, Tianshi Li, and 
Onur Mutlu,
"Understanding Latency Variation in Modern DRAM Chips: 
Experimental Characterization, Analysis, and Optimization"
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Antibes Juan-Les-Pins, 
France, June 2016. 
[Slides (pptx) (pdf)] 
[Source Code] 
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https://users.ece.cmu.edu/~omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
http://www.sigmetrics.org/sigmetrics2016/
https://users.ece.cmu.edu/~omutlu/pub/understanding-latency-variation-in-DRAM-chips_kevinchang_sigmetrics16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/understanding-latency-variation-in-DRAM-chips_kevinchang_sigmetrics16-talk.pdf
https://github.com/CMU-SAFARI/DRAM-Latency-Variation-Study
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DIVA Online Profiling

inherently slow

Profile only slow regions to determine min. latency
→Dynamic & low cost latency optimization
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inherently slow

DIVA Online Profiling
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→ Reliably reduce DRAM latency
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DIVA-DRAM Reduces Latency
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Design-Induced Latency Variation in DRAM

◼ Donghyuk Lee, Samira Khan, Lavanya Subramanian, Saugata Ghose, 
Rachata Ausavarungnirun, Gennady Pekhimenko, Vivek Seshadri, and 
Onur Mutlu,
"Design-Induced Latency Variation in Modern DRAM Chips: 
Characterization, Analysis, and Latency Reduction Mechanisms"
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL, 
USA, June 2017. 
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https://people.inf.ethz.ch/omutlu/pub/DIVA-low-latency-DRAM_sigmetrics17-paper.pdf
http://www.sigmetrics.org/sigmetrics2017/


Voltron: Exploiting the 

Voltage-Latency-Reliability 

Relationship
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Executive Summary

• DRAM (memory) power is significant in today’s systems

– Existing low-voltage DRAM reduces voltage conservatively

• Goal: Understand and exploit the reliability and latency behavior of 

real DRAM chips under aggressive reduced-voltage operation

• Key experimental observations:

– Huge voltage margin -- Errors occur beyond some voltage

– Errors exhibit spatial locality

– Higher operation latency mitigates voltage-induced errors

• Voltron: A new DRAM energy reduction mechanism 

– Reduce DRAM voltage without introducing errors 

– Use a regression model to select voltage that does not degrade 

performance beyond a chosen target → 7.3% system energy reduction
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Analysis of Latency-Voltage in DRAM Chips

◼ Kevin Chang, A. Giray Yaglikci, Saugata Ghose, Aditya Agrawal, Niladrish
Chatterjee, Abhijith Kashyap, Donghyuk Lee, Mike O'Connor, Hasan 
Hassan, and Onur Mutlu,
"Understanding Reduced-Voltage Operation in Modern DRAM 
Devices: Experimental Characterization, Analysis, and 
Mechanisms"
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL, 
USA, June 2017. 
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https://people.inf.ethz.ch/omutlu/pub/Voltron-reduced-voltage-DRAM-sigmetrics17-paper.pdf
http://www.sigmetrics.org/sigmetrics2017/


And, What If …

◼ … we can sacrifice reliability of some data to access it with 
even lower latency?
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The DRAM Latency PUF: 
Quickly Evaluating Physical Unclonable Functions 

by Exploiting the Latency-Reliability Tradeoff 
in Modern Commodity DRAM Devices

Jeremie S. Kim Minesh Patel  

Hasan Hassan   Onur Mutlu
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Motivation

• A PUF is function that generates a signature 
unique to a given device 

• Used in a Challenge-Response Protocol
- Each device generates a unique PUF response 

depending the inputs

- A trusted server authenticates a device if it 
generates the expected PUF response
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DRAM Latency Characterization of 
223 LPDDR4 DRAM Devices

• Latency failures come from accessing 
DRAM with reduced timing parameters.

• Key Observations:
1. A cell’s latency failure probability is 

determined by random process variation

2. Latency failure patterns are repeatable and 
unique to a device



281/8

R
o

w
 D

ec
o

d
er

DRAM Latency PUF Key Idea

High % chance to fail 
with reduced tRCD

Low % chance to fail 
with reduced tRCD

SASASASASASASA



282/8

DRAM Accesses and Failures
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The DRAM Latency PUF Evaluation

• We generate PUF responses using latency
errors in a region of DRAM

• The latency error patterns satisfy PUF 
requirements

• The DRAM Latency PUF generates PUF 
responses in 88.2ms
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Results

• We are orders of magnitude faster than 
prior DRAM PUFs!



The DRAM Latency PUF: 
Quickly Evaluating Physical Unclonable Functions 

by Exploiting the Latency-Reliability Tradeoff 
in Modern Commodity DRAM Devices

Jeremie S. Kim Minesh Patel  

Hasan Hassan   Onur Mutlu

QR Code for the paper
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18.pdf

HPCA 2018



DRAM Latency PUFs

◼ Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu,
"The DRAM Latency PUF: Quickly Evaluating Physical Unclonable 
Functions by Exploiting the Latency-Reliability Tradeoff in 
Modern DRAM Devices"
Proceedings of the 24th International Symposium on High-Performance 
Computer Architecture (HPCA), Vienna, Austria, February 2018.
[Lightning Talk Video]
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]
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https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18.pdf
https://hpca2018.ece.ucsb.edu/
https://www.youtube.com/watch?v=Xw0laEEDmsM&feature=youtu.be
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_talk.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_lightning-talk.pdf


Tiered Latency DRAM

288



289

DRAM Latency = Subarray Latency + I/O Latency

What Causes the Long Latency?
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Why is the Subarray So Slow?
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Trade-Off: Area (Die Size) vs. Latency
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Trade-Off: Area (Die Size) vs. Latency
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Short Bitline

Low Latency 

Approximating the Best of Both Worlds
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Approximating the Best of Both Worlds

Low Latency 

Our Proposal

Small Area 
Long Bitline
Small Area 

Long Bitline

High Latency

Short Bitline

Low Latency 

Short Bitline

Large Area

Tiered-Latency DRAM

Low Latency

Small area 
using long 

bitline



295

0%

50%

100%

150%

0%

50%

100%

150%

Commodity DRAM vs. TL-DRAM [HPCA 2013] 
La

te
n

cy

P
o

w
e

r

–56%

+23%

–51%

+49%

• DRAM Latency (tRC) • DRAM Power

• DRAM Area Overhead
~3%: mainly due to the isolation transistors

TL-DRAM
Commodity 

DRAM

Near       Far Commodity 
DRAM

Near       Far

TL-DRAM

(52.5ns)



296

Trade-Off: Area (Die-Area) vs. Latency
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Leveraging Tiered-Latency DRAM 

• TL-DRAM is a substrate that can be leveraged by 
the hardware and/or software

• Many potential uses
1. Use near segment as hardware-managed inclusive

cache to far segment

2. Use near segment as hardware-managed exclusive
cache to far segment

3. Profile-based page mapping by operating system

4. Simply replace DRAM with TL-DRAM 

Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.
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Challenge and Opportunity for Future

Fundamentally

Low Latency

Computing Architectures
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Ramulator: A Fast and Extensible 

DRAM Simulator 

[IEEE Comp Arch Letters’15]
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Ramulator Motivation

◼ DRAM and Memory Controller landscape is changing

◼ Many new and upcoming standards

◼ Many new controller designs

◼ A fast and easy-to-extend simulator is very much needed

301



Ramulator

◼ Provides out-of-the box support for many DRAM standards:

❑ DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, plus new 
proposals (SALP, AL-DRAM, TLDRAM, RowClone, and SARP)

◼ ~2.5X faster than fastest open-source simulator

◼ Modular and extensible to different standards
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Case Study: Comparison of DRAM Standards

303

Across 22 
workloads, 
simple CPU 
model



Ramulator Paper and Source Code

◼ Yoongu Kim, Weikun Yang, and Onur Mutlu,
"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters (CAL), March 2015. 
[Source Code] 

◼ Source code is released under the liberal MIT License

❑ https://github.com/CMU-SAFARI/ramulator
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http://users.ece.cmu.edu/~omutlu/pub/ramulator_dram_simulator-ieee-cal15.pdf
http://www.computer.org/web/cal
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator


A Deeper Dive into 

DRAM Reliability Issues
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There are Two Other Solution Directions

◼ New Technologies: Replace or (more likely) augment DRAM 
with a different technology

❑ Non-volatile memories

◼ Embracing Un-reliability:

Design memories with different reliability

and store data intelligently across them

◼ …

306

Fundamental solutions to security 
require co-design across the hierarchy

Micro-architecture
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• ECC protected
• Well-tested chips

• NoECC or Parity
• Less-tested chips
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On Microsoft’s Web Search workload
Reduces server hardware cost by 4.7 %
Achieves single server availability target of 99.90 %



More on Heterogeneous-Reliability Memory

◼ Yixin Luo, Sriram Govindan, Bikash Sharma, Mark Santaniello, Justin Meza, Aman
Kansal, Jie Liu, Badriddine Khessib, Kushagra Vaid, and Onur Mutlu,
"Characterizing Application Memory Error Vulnerability to Optimize 
Data Center Cost via Heterogeneous-Reliability Memory"
Proceedings of the 44th Annual IEEE/IFIP International Conference on 
Dependable Systems and Networks (DSN), Atlanta, GA, June 2014. [Summary] 
[Slides (pptx) (pdf)] [Coverage on ZDNet] 
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http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_dsn14.pdf
http://2014.dsn.org/
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory_dsn14-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_luo_dsn14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_luo_dsn14-talk.pdf
http://www.zdnet.com/how-good-does-memory-need-to-be-7000031853/


Root Causes of Disturbance Errors

• Cause 1: Electromagnetic coupling
– Toggling the wordline voltage briefly increases the 

voltage of adjacent wordlines

– Slightly opens adjacent rows → Charge leakage

• Cause 2: Conductive bridges

• Cause 3: Hot-carrier injection

Confirmed by at least one manufacturer
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1. Most Modules Are at Risk

2. Errors vs. Vintage

3. Error = Charge Loss

4. Adjacency: Aggressor & Victim

5. Sensitivity Studies

6. Other Results in Paper

7. Solution Space

310

RowHammer Characterization Results

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM 
Disturbance Errors, (Kim et al., ISCA 2014)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf


4. Adjacency: Aggressor & Victim

Most aggressors & victims are adjacent
311

Note: For three modules with the most errors (only first bank)
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Note: For three modules with the most errors (only first bank)
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❶ Access Interval (Aggressor)



Note: Using three modules with the most errors (only first bank)

More frequent refreshes → Fewer errors

~7x frequent

6
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m
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❷ Refresh Interval



RowStripe

~RowStripe

❸ Data Pattern
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6. Other Results (in Paper)
• Victim Cells ≠ Weak Cells (i.e., leaky cells)

– Almost no overlap between them

• Errors not strongly affected by temperature
– Default temperature: 50°C

– At 30°C and 70°C, number of errors changes <15%

• Errors are repeatable
– Across ten iterations of testing, >70% of victim cells 

had errors in every iteration
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6. Other Results (in Paper) cont’d
• As many as 4 errors per cache-line

– Simple ECC (e.g., SECDED) cannot prevent all errors

• Number of cells & rows affected by aggressor
– Victims cells per aggressor:  ≤110

– Victims rows per aggressor:  ≤9

• Cells affected by two aggressors on either side
– Very small fraction of victim cells (<100) have an 

error when either one of the aggressors is toggled
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Some Potential Solutions

317

Cost• Make better DRAM chips

Cost, Power• Sophisticated ECC

Power, Performance• Refresh frequently

Cost, Power, Complexity• Access counters 



Naive Solutions

❶ Throttle accesses to same row
– Limit access-interval: ≥500ns

– Limit number of accesses: ≤128K (=64ms/500ns)

❷ Refresh more frequently
– Shorten refresh-interval by ~7x

Both naive solutions introduce significant 
overhead in performance and power
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Apple’s Patch for RowHammer

◼ https://support.apple.com/en-gb/HT204934

HP and Lenovo released similar patches

https://support.apple.com/en-gb/HT204934


Our Solution to RowHammer

• PARA: Probabilistic Adjacent Row Activation

• Key Idea
– After closing a row, we activate (i.e., refresh) one of 

its neighbors with a low probability: p = 0.005

• Reliability Guarantee
– When p=0.005, errors in one year: 9.4×10-14

– By adjusting the value of p, we can vary the strength 
of protection against errors
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Advantages of PARA
• PARA refreshes rows infrequently

– Low power

– Low performance-overhead

• Average slowdown: 0.20% (for 29 benchmarks)

• Maximum slowdown: 0.75%

• PARA is stateless
– Low cost

– Low complexity

• PARA is an effective and low-overhead solution 
to prevent disturbance errors
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Requirements for PARA
• If implemented in DRAM chip

– Enough slack in timing parameters

– Plenty of slack today: 
• Lee et al., “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common Case,” HPCA 

2015.

• Chang et al., “Understanding Latency Variation in Modern DRAM Chips,” SIGMETRICS 2016.

• Lee et al., “Design-Induced Latency Variation in Modern DRAM Chips,” SIGMETRICS 2017.

• Chang et al., “Understanding Reduced-Voltage Operation in Modern DRAM Devices,” 
SIGMETRICS 2017.

• If implemented in memory controller
– Better coordination between memory controller and 

DRAM

– Memory controller should know which rows are 
physically adjacent
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More on RowHammer Analysis

323

◼ Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
"Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors"
Proceedings of the 41st International Symposium on Computer 
Architecture (ISCA), Minneapolis, MN, June 2014. 
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code 
and Data]

https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_isca14.pdf
http://cag.engr.uconn.edu/isca2014/
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_talk_isca14.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_talk_isca14.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pdf
https://github.com/CMU-SAFARI/rowhammer


Retrospective on RowHammer & Future

324https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf

◼ Onur Mutlu,
"The RowHammer Problem and Other Issues We May Face as 
Memory Becomes Denser"
Invited Paper in Proceedings of the Design, Automation, and Test in 
Europe Conference (DATE), Lausanne, Switzerland, March 2017. 
[Slides (pptx) (pdf)] 

https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pdf


Challenge and Opportunity for Future

Fundamentally

Secure, Reliable, Safe

Computing Architectures

325



Future of Main Memory

◼ DRAM is becoming less reliable → more vulnerable
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Large-Scale Failure Analysis of DRAM Chips

◼ Analysis and modeling of memory errors found in all of 
Facebook’s server fleet

◼ Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"Revisiting Memory Errors in Large-Scale Production Data 
Centers: Analysis and Modeling of New Trends from the Field"
Proceedings of the 45th Annual IEEE/IFIP International Conference on 
Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June 
2015. 
[Slides (pptx) (pdf)] [DRAM Error Model] 
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http://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15.pdf
http://2015.dsn.org/
http://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15-talk.pdf
https://www.ece.cmu.edu/~safari/tools/memerr/index.html


DRAM Reliability Reducing



Aside: SSD Error Analysis in the Field

◼ First large-scale field study of flash memory errors

◼ Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"A Large-Scale Study of Flash Memory Errors in the Field"
Proceedings of the ACM International Conference on 
Measurement and Modeling of Computer Systems
(SIGMETRICS), Portland, OR, June 2015. 
[Slides (pptx) (pdf)] [Coverage at ZDNet]
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http://users.ece.cmu.edu/~omutlu/pub/flash-memory-failures-in-the-field-at-facebook_sigmetrics15.pdf
http://www.sigmetrics.org/sigmetrics2015/
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-failures-in-the-field-at-facebook_sigmetrics15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-failures-in-the-field-at-facebook_sigmetrics15-talk.pdf
http://www.zdnet.com/article/facebooks-ssd-experience/


Future of Main Memory

◼ DRAM is becoming less reliable → more vulnerable

◼ Due to difficulties in DRAM scaling, other problems may 
also appear (or they may be going unnoticed)

◼ Some errors may already be slipping into the field

❑ Read disturb errors (Rowhammer)

❑ Retention errors

❑ Read errors, write errors

❑ …

◼ These errors can also pose security vulnerabilities
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DRAM Data Retention Time Failures

◼ Determining the data retention time of a cell/row is getting 
more difficult

◼ Retention failures may already be slipping into the field
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◼ Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu,
"An Experimental Study of Data Retention Behavior in Modern DRAM 
Devices: Implications for Retention Time Profiling Mechanisms"
Proceedings of the 40th International Symposium on Computer Architecture
(ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt) Slides (pdf)
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Analysis of Retention Failures [ISCA’13]

http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://isca2013.eew.technion.ac.il/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca13_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca13_talk.pdf


Two Challenges to Retention Time Profiling

◼ Data Pattern Dependence (DPD) of retention time

◼ Variable Retention Time (VRT) phenomenon
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Two Challenges to Retention Time Profiling

◼ Challenge 1: Data Pattern Dependence (DPD)

❑ Retention time of a DRAM cell depends on its value and the 
values of cells nearby it

❑ When a row is activated, all bitlines are perturbed simultaneously
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◼ Electrical noise on the bitline affects reliable sensing of a DRAM cell

◼ The magnitude of this noise is affected by values of nearby cells via

❑ Bitline-bitline coupling → electrical coupling between adjacent bitlines

❑ Bitline-wordline coupling → electrical coupling between each bitline and 

the activated wordline

Data Pattern Dependence
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◼ Electrical noise on the bitline affects reliable sensing of a DRAM cell

◼ The magnitude of this noise is affected by values of nearby cells via

❑ Bitline-bitline coupling → electrical coupling between adjacent bitlines

❑ Bitline-wordline coupling → electrical coupling between each bitline and 

the activated wordline

◼ Retention time of a cell depends on data patterns stored in 
nearby cells 

→ need to find the worst data pattern to find worst-case retention time

→ this pattern is location dependent

Data Pattern Dependence
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Two Challenges to Retention Time Profiling

◼ Challenge 2: Variable Retention Time (VRT)

❑ Retention time of a DRAM cell changes randomly over time       

◼ a cell alternates between multiple retention time states

❑ Leakage current of a cell changes sporadically due to a charge 
trap in the gate oxide of the DRAM cell access transistor

❑ When the trap becomes occupied, charge leaks more readily 
from the transistor’s drain, leading to a short retention time

◼ Called Trap-Assisted Gate-Induced Drain Leakage

❑ This process appears to be a random process [Kim+ IEEE TED’11]

❑ Worst-case retention time depends on a random process 

→ need to find the worst case despite this
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Modern DRAM Retention Time Distribution

338

Newer device families have more weak cells than older ones
Likely a result of technology scaling

OLDER

NEWER

OLDER

NEWER



An Example VRT Cell
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A cell from E 2Gb chip family



Variable Retention Time
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A 2Gb chip family

Min ret time = Max ret time

Expected if no VRT

Most failing cells 

exhibit VRT

Many failing cells jump from 

very high retention time to very low



More on DRAM Retention Analysis

◼ Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu,
"An Experimental Study of Data Retention Behavior in Modern DRAM 
Devices: Implications for Retention Time Profiling Mechanisms"
Proceedings of the 40th International Symposium on Computer Architecture
(ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt) Slides (pdf)
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http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://isca2013.eew.technion.ac.il/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca13_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca13_talk.pdf


Industry Is Writing Papers About It, Too
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Industry Is Writing Papers About It, Too
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◼ Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa Alameldeen, Chris Wilkerson, 
and Onur Mutlu,
"The Efficacy of Error Mitigation Techniques for DRAM Retention 
Failures: A Comparative Experimental Study"
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Austin, TX, June 2014. [Slides 
(pptx) (pdf)] [Poster (pptx) (pdf)] [Full data sets] 
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Mitigation of Retention Issues [SIGMETRICS’14]

http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_sigmetrics14.pdf
http://www.sigmetrics.org/sigmetrics2014/
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_khan_sigmetrics14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_khan_sigmetrics14-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_khan_sigmetrics14-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_khan_sigmetrics14-poster.pdf
http://www.ece.cmu.edu/~safari/tools/dram-sigmetrics2014-fulldata.html


Handling Data-Dependent Failures [DSN’16]

345

◼ Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa Alameldeen, Chris Wilkerson, 
and Onur Mutlu,
"The Efficacy of Error Mitigation Techniques for DRAM Retention 
Failures: A Comparative Experimental Study"
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Austin, TX, June 2014. [Slides 
(pptx) (pdf)] [Poster (pptx) (pdf)] [Full data sets] 

http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_sigmetrics14.pdf
http://www.sigmetrics.org/sigmetrics2014/
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_khan_sigmetrics14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_khan_sigmetrics14-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_khan_sigmetrics14-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_khan_sigmetrics14-poster.pdf
http://www.ece.cmu.edu/~safari/tools/dram-sigmetrics2014-fulldata.html


Handling Data-Dependent Failures [CAL’16]
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◼ Samira Khan, Chris Wilkerson, Donghyuk Lee, Alaa R. Alameldeen, and Onur 
Mutlu,
"A Case for Memory Content-Based Detection and Mitigation of Data-
Dependent Failures in DRAM"
IEEE Computer Architecture Letters (CAL), November 2016. 

https://people.inf.ethz.ch/omutlu/pub/MEMCON-content-based-DRAM-failure-detection_ieee-cal16.pdf
http://www.computer.org/web/cal


◼ Moinuddin Qureshi, Dae Hyun Kim, Samira Khan, Prashant Nair, and 
Onur Mutlu,
"AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for 
DRAM Systems"
Proceedings of the 45th Annual IEEE/IFIP International Conference on 
Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June 
2015. 
[Slides (pptx) (pdf)] 
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Handling Variable Retention Time [DSN’15]

http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15.pdf
http://2015.dsn.org/
http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15-talk.pdf


Handling Both DPD and VRT [ISCA’17]
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◼ Minesh Patel, Jeremie S. Kim, and Onur Mutlu,
"The Reach Profiler (REAPER): Enabling the Mitigation of DRAM 
Retention Failures via Profiling at Aggressive Conditions"
Proceedings of the 44th International Symposium on Computer Architecture
(ISCA), Toronto, Canada, June 2017. 

◼ First experimental analysis of (mobile) LPDDR4 chips

◼ Analyzes the complex tradeoff space of retention time profiling

◼ Key idea: enable fast and robust profiling at higher refresh intervals & temp.

https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17.pdf
http://isca17.ece.utoronto.ca/doku.php


Summary: Memory Reliability and Security

◼ Memory reliability is reducing

◼ Reliability issues open up security vulnerabilities

❑ Very hard to defend against

◼ Rowhammer is an example 

❑ Its implications on system security research are tremendous & exciting

◼ Good news: We have a lot more to do.

◼ Understand: Solid methodologies for failure modeling and discovery

❑ Modeling based on real device data – small scale and large scale

◼ Architect: Principled co-architecting of system and memory

❑ Good partitioning of duties across the stack

◼ Design & Test: Principled electronic design, automation, testing

❑ High coverage and good interaction with system reliability methods
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If Time Permits: NAND Flash Vulnerabilities

◼ Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu,
"Error Characterization, Mitigation, and Recovery in Flash Memory Based 
Solid State Drives"
to appear in Proceedings of the IEEE, 2017. 

Cai+, “Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis,” DATE 2012.

Cai+, “Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory Lifetime,” ICCD 
2012.

Cai+, “Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization, Analysis and Modeling,” DATE 
2013.

Cai+, “Error Analysis and Retention-Aware Error Management for NAND Flash Memory,” Intel Technology Journal 2013.

Cai+, “Program Interference in MLC NAND Flash Memory: Characterization, Modeling, and Mitigation,” ICCD 2013.

Cai+, “Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories,” SIGMETRICS 2014.

Cai+,”Data Retention in MLC NAND Flash Memory: Characterization, Optimization and Recovery,” HPCA 2015.

Cai+, “Read Disturb Errors in MLC NAND Flash Memory: Characterization and Mitigation,” DSN 2015. 

Luo+, “WARM: Improving NAND Flash Memory Lifetime with Write-hotness Aware Retention Management,” MSST 
2015.

Meza+, “A Large-Scale Study of Flash Memory Errors in the Field,” SIGMETRICS 2015.

Luo+, “Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory,” IEEE 
JSAC 2016.

Cai+, “Vulnerabilities in MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and Mitigation 
Techniques,” HPCA 2017.

Fukami+, “Improving the Reliability of Chip-Off Forensic Analysis of NAND Flash Memory Devices,” DFRWS EU 2017. 

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.

http://proceedingsoftheieee.ieee.org/


Overview Paper on Flash Reliability

◼ Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and 
Onur Mutlu,
"Error Characterization, Mitigation, and Recovery in 
Flash Memory Based Solid State Drives"
to appear in Proceedings of the IEEE, 2017.
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http://proceedingsoftheieee.ieee.org/


Challenge and Opportunity for Future

Fundamentally

Secure, Reliable, Safe

Computing Architectures
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NAND Flash Memory

Reliability and Security
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Upcoming Overview Paper

◼ Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and 
Onur Mutlu,
"Error Characterization, Mitigation, and Recovery in 
Flash Memory Based Solid State Drives"
to appear in Proceedings of the IEEE, 2017.
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http://proceedingsoftheieee.ieee.org/


Evolution of NAND Flash Memory

◼ Flash memory is widening its range of applications

❑ Portable consumer devices, laptop PCs and enterprise servers

Seaung Suk Lee, “Emerging Challenges in NAND Flash Technology”, Flash Summit 2011 (Hynix)

CMOS scaling

More bits per Cell
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Flash Challenges: Reliability and Endurance

E. Grochowski et al., “Future technology challenges for NAND flash and HDD products”, 

Flash Memory Summit 2012

▪ P/E cycles 
(required)

▪ P/E cycles 
(provided)

A few thousand

Writing 

the full capacity 

of the drive 

10 times per day 

for 5 years 

(STEC)

> 50k P/E cycles

356



NAND Flash Memory is Increasingly Noisy

Noisy NANDWrite Read
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Future NAND Flash-based Storage Architecture

Memory

Signal 

Processing

Error

Correction

Raw Bit 

Error Rate

Uncorrectable 

BER < 10-15

Noisy
HighLower
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Build reliable error models for NAND flash memory 

Design efficient reliability mechanisms based on the model

Our Goals:

Better



NAND Flash Error Model

Noisy NANDWrite Read

Experimentally characterize and model dominant errors

▪ Neighbor page 
prog/read (c-to-c 
interference)

▪ Retention
▪ Erase block

▪ Program page

Write Read

Cai et al., “Threshold voltage 

distribution in MLC NAND Flash 

Memory: Characterization, Analysis, 

and Modeling”, DATE 2013

Cai et al., “Vulnerabilities in MLC 

NAND Flash Memory Programming: 

Experimental Analysis, Exploits, and 

Mitigation Techniques”, HPCA 2017

Cai et al., “Flash Correct-and-Refresh: 

Retention-aware error management for 

increased flash memory lifetime”, ICCD 2012
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Cai et al., “Program Interference in MLC 

NAND Flash Memory: Characterization, 

Modeling, and Mitigation”, ICCD 2013

Cai et al., “Neighbor-Cell Assisted Error 

Correction in MLC NAND Flash 

Memories”, SIGMETRICS 2014

Cai et al., “Read Disturb Errors in MLC 

NAND Flash Memory: Characterization 

and Mitigation”, DSN 2015

Cai et al., “Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis””, DATE 2012

Cai et al., “Error Analysis and Retention-
Aware Error Management for NAND Flash 
Memory, ITJ 2013

Cai et al., “Data Retention in MLC NAND 
Flash Memory: Characterization, 
Optimization and Recovery" , HPCA 2015

Luo et al., “Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory”, JSAC 2016



Our Goals and Approach

◼ Goals:

❑ Understand error mechanisms and develop reliable predictive 
models for MLC NAND flash memory errors

❑ Develop efficient error management techniques to mitigate 
errors and improve flash reliability and endurance

◼ Approach:

❑ Solid experimental analyses of errors in real MLC NAND flash 
memory → drive the understanding and models

❑ Understanding, models, and creativity → drive the new 

techniques
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Experimental Testing Platform
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USB Jack

Virtex-II Pro

(USB controller)

Virtex-V FPGA

(NAND Controller)

HAPS-52 Mother Board

USB Daughter Board

NAND Daughter Board

1x-nm

NAND Flash

[DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014, 
HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017]

Cai et al., FPGA-based Solid-State Drive prototyping platform, FCCM 2011.



NAND Flash Error Types

◼ Four types of errors [Cai+, DATE 2012]

◼ Caused by common flash operations

❑ Read errors

❑ Erase errors

❑ Program (interference) errors

◼ Caused by flash cell losing charge over time

❑ Retention errors

◼ Whether an error happens depends on required retention time

◼ Especially problematic in MLC flash because threshold voltage 
window to determine stored value is smaller
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retention errors

◼ Raw bit error rate increases exponentially with P/E cycles

◼ Retention errors are dominant (>99% for 1-year ret. time)

◼ Retention errors increase with retention time requirement

Observations: Flash Error Analysis

363

P/E Cycles

Cai et al., Error Patterns in MLC NAND Flash Memory, DATE 2012.



More on Flash Error Analysis

◼ Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai,
"Error Patterns in MLC NAND Flash Memory: 
Measurement, Characterization, and Analysis"
Proceedings of the Design, Automation, and Test in Europe 
Conference (DATE), Dresden, Germany, March 2012. Slides 
(ppt)
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http://users.ece.cmu.edu/~omutlu/pub/flash-error-patterns_date12.pdf
http://www.date-conference.com/
http://users.ece.cmu.edu/~omutlu/pub/cai_date12_talk.ppt


Solution to Retention Errors

◼ Refresh periodically

◼ Change the period based on P/E cycle wearout

❑ Refresh more often at higher P/E cycles

◼ Use a combination of in-place and remapping-based refresh
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One Issue: Read Disturb in Flash Memory

◼ All scaled memories are prone to read disturb errors

366



NAND Flash Memory Background

Flash Memory

Page 1

Page 0

Page 2

Page 255

…
…

Page 257

Page 256

Page 258

Page 511

…
…

……

Page M+1

Page M

Page M+2

Page M+255

…
…

Flash 
Controller
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Block 0 Block 1 Block N

Read
Pass
Pass

…

Pass



Sense Amplifiers

Flash Cell Array

Block X

Page Y

Sense Amplifiers

368

Row

C
o
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m
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Flash Cell

Floating 
Gate

Gate

Drain

Source

Floating Gate Transistor
(Flash Cell)

Vth = 
2.5 V
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Flash Read

Vread = 2.5 V Vth = 
3 V

Vth = 
2 V

1 0

Vread = 2.5 V
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Gate



Flash Pass-Through

Vpass = 5 V Vth = 
2 V

1

Vpass = 5 V
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Gate

1

Vth = 
3 V



Read from Flash Cell Array

3.0V 3.8V 3.9V 4.8V

3.5V 2.9V 2.4V 2.1V

2.2V 4.3V 4.6V 1.8V

3.5V 2.3V 1.9V 4.3V

Vread = 2.5 V

Vpass = 5.0 V

Vpass = 5.0 V

Vpass = 5.0 V

1 100Correct values 
for page 2: 372

Page 1

Page 2

Page 3

Page 4

Pass (5V)

Read (2.5V)

Pass (5V)

Pass (5V)



Read Disturb Problem: “Weak Programming” Effect

3.0V 3.8V 3.9V 4.8V

3.5V 2.9V 2.4V 2.1V

2.2V 4.3V 4.6V 1.8V

3.5V 2.3V 1.9V 4.3V

Repeatedly read page 3 (or any page other than page 2) 373

Read (2.5V)

Pass (5V)

Pass (5V)

Pass (5V)

Page 1

Page 2

Page 3

Page 4



Vread = 2.5 V

Vpass = 5.0 V

Vpass = 5.0 V

Vpass = 5.0 V

0 100

Read Disturb Problem: “Weak Programming” Effect

High pass-through voltage induces “weak-programming” effect

3.0V 3.8V 3.9V 4.8V

3.5V 2.9V 2.1V

2.2V 4.3V 4.6V 1.8V

3.5V 2.3V 1.9V 4.3V

Incorrect values 
from page 2: 
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2.4V2.6V

Page 1

Page 2

Page 3

Page 4



Executive Summary
• Read disturb errors limit flash memory lifetime today
– Apply a high pass-through voltage (Vpass) to multiple pages on a read

– Repeated application of Vpass can alter stored values in unread pages

• We characterize read disturb on real NAND flash chips
– Slightly lowering Vpass greatly reduces read disturb errors

– Some flash cells are more prone to read disturb

• Technique 1: Mitigate read disturb errors online
– Vpass Tuning dynamically finds and applies a lowered Vpass per block

– Flash memory lifetime improves by 21%

• Technique 2: Recover after failure to prevent data loss
– Read Disturb Oriented Error Recovery (RDR) selectively corrects 

cells more susceptible to read disturb errors

– Reduces raw bit error rate (RBER) by up to 36%
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More on Flash Read Disturb Errors

◼ Yu Cai, Yixin Luo, Saugata Ghose, Erich F. Haratsch, Ken Mai, 
and Onur Mutlu,
"Read Disturb Errors in MLC NAND Flash Memory: 
Characterization and Mitigation"
Proceedings of the 45th Annual IEEE/IFIP International 
Conference on Dependable Systems and Networks (DSN), Rio de 
Janeiro, Brazil, June 2015. 
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http://users.ece.cmu.edu/~omutlu/pub/flash-read-disturb-errors_dsn15.pdf
http://2015.dsn.org/


Large-Scale Flash SSD Error Analysis

◼ First large-scale field study of flash memory errors

◼ Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"A Large-Scale Study of Flash Memory Errors in the Field"
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Portland, OR, June 
2015. 
[Slides (pptx) (pdf)] [Coverage at ZDNet] [Coverage on The Register] 
[Coverage on TechSpot] [Coverage on The Tech Report] 
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http://users.ece.cmu.edu/~omutlu/pub/flash-memory-failures-in-the-field-at-facebook_sigmetrics15.pdf
http://www.sigmetrics.org/sigmetrics2015/
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-failures-in-the-field-at-facebook_sigmetrics15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-failures-in-the-field-at-facebook_sigmetrics15-talk.pdf
http://www.zdnet.com/article/facebooks-ssd-experience/
http://www.theregister.co.uk/2015/06/22/facebook_reveals_ssd_failure_rate_trough/
http://www.techspot.com/news/61090-researchers-publish-first-large-scale-field-ssd-reliability.html
http://techreport.com/news/28519/facebook-ssd-reliability-study-shows-early-burnouts


Another Time: NAND Flash Vulnerabilities

◼ Onur Mutlu,
"Error Analysis and Management for MLC NAND Flash Memory"
Technical talk at Flash Memory Summit 2014 (FMS), Santa Clara, CA, August 
2014. Slides (ppt) (pdf)

Cai+, “Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis,” DATE 2012.

Cai+, “Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory Lifetime,” ICCD 
2012.

Cai+, “Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization, Analysis and Modeling,” DATE 
2013.

Cai+, “Error Analysis and Retention-Aware Error Management for NAND Flash Memory,” Intel Technology Journal 2013.

Cai+, “Program Interference in MLC NAND Flash Memory: Characterization, Modeling, and Mitigation,” ICCD 2013.

Cai+, “Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories,” SIGMETRICS 2014.

Cai+,”Data Retention in MLC NAND Flash Memory: Characterization, Optimization and Recovery,” HPCA 2015.

Cai+, “Read Disturb Errors in MLC NAND Flash Memory: Characterization and Mitigation,” DSN 2015. 

Luo+, “WARM: Improving NAND Flash Memory Lifetime with Write-hotness Aware Retention Management,” MSST 
2015.

Meza+, “A Large-Scale Study of Flash Memory Errors in the Field,” SIGMETRICS 2015.

Luo+, “Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory,” IEEE 
JSAC 2016.

Cai+, “Vulnerabilities in MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and Mitigation 
Techniques,” HPCA 2017.

Fukami+, “Improving the Reliability of Chip-Off Forensic Analysis of NAND Flash Memory Devices,” DFRWS EU 2017. 
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http://users.ece.cmu.edu/~omutlu/pub/flash-memory-errors_mutlu_fms14-talk.pdf
http://www.flashmemorysummit.com/
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-errors_mutlu_fms14-talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-errors_mutlu_fms14-talk.pdf


Flash Memory Programming Vulnerabilities
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◼ Yu Cai, Saugata Ghose, Yixin Luo, Ken Mai, Onur Mutlu, and Erich F. 
Haratsch,
"Vulnerabilities in MLC NAND Flash Memory Programming: 
Experimental Analysis, Exploits, and Mitigation Techniques"
Proceedings of the 23rd International Symposium on High-Performance 
Computer Architecture (HPCA) Industrial Session, Austin, TX, USA, 
February 2017. 
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] 

https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities_hpca17.pdf
https://hpca2017.org/
https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities_hpca17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities_hpca17-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities_hpca17-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities_hpca17-lightning-talk.pdf


Other Works on Flash Memory
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NAND Flash Error Model

Noisy NANDWrite Read

Experimentally characterize and model dominant errors

▪ Neighbor page 
prog/read (c-to-c 
interference)

▪ Retention
▪ Erase block

▪ Program page

Write Read

Cai et al., “Threshold voltage 

distribution in MLC NAND Flash 

Memory: Characterization, Analysis, 

and Modeling”, DATE 2013

Cai et al., “Vulnerabilities in MLC 

NAND Flash Memory Programming: 

Experimental Analysis, Exploits, and 

Mitigation Techniques”, HPCA 2017

Cai et al., “Flash Correct-and-Refresh: 

Retention-aware error management for 

increased flash memory lifetime”, ICCD 2012
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Cai et al., “Program Interference in MLC 

NAND Flash Memory: Characterization, 

Modeling, and Mitigation”, ICCD 2013

Cai et al., “Neighbor-Cell Assisted Error 

Correction in MLC NAND Flash 

Memories”, SIGMETRICS 2014

Cai et al., “Read Disturb Errors in MLC 

NAND Flash Memory: Characterization 

and Mitigation”, DSN 2015

Cai et al., “Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis””, DATE 2012

Cai et al., “Error Analysis and Retention-
Aware Error Management for NAND Flash 
Memory, ITJ 2013

Cai et al., “Data Retention in MLC NAND 
Flash Memory: Characterization, 
Optimization and Recovery" , HPCA 2015

Luo et al., “Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory”, JSAC 2016



Threshold Voltage Distribution

◼ Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai,
"Threshold Voltage Distribution in MLC NAND Flash 
Memory: Characterization, Analysis and Modeling"
Proceedings of the Design, Automation, and Test in Europe 
Conference (DATE), Grenoble, France, March 2013. Slides 
(ppt)
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http://users.ece.cmu.edu/~omutlu/pub/flash-memory-voltage-characterization_date13.pdf
http://www.date-conference.com/
http://users.ece.cmu.edu/~omutlu/pub/cai_date13_talk.ppt


Program Interference and Vref Prediction

◼ Yu Cai, Onur Mutlu, Erich F. Haratsch, and Ken Mai,
"Program Interference in MLC NAND Flash Memory: 
Characterization, Modeling, and Mitigation"
Proceedings of the 31st IEEE International Conference on 
Computer Design (ICCD), Asheville, NC, October 2013. 
Slides (pptx) (pdf) Lightning Session Slides (pdf)
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http://users.ece.cmu.edu/~omutlu/pub/flash-programming-interference_iccd13.pdf
http://www.iccd-conf.com/
http://users.ece.cmu.edu/~omutlu/pub/cai_iccd13_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/cai_iccd13_talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/cai_iccd13_lightning-talk.pdf


Neighbor-Assisted Error Correction

◼ Yu Cai, Gulay Yalcin, Onur Mutlu, Eric Haratsch, Osman Unsal, 
Adrian Cristal, and Ken Mai,
"Neighbor-Cell Assisted Error Correction for MLC NAND 
Flash Memories"
Proceedings of the ACM International Conference on 
Measurement and Modeling of Computer Systems 
(SIGMETRICS), Austin, TX, June 2014. Slides (ppt) (pdf)
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Data Retention

◼ Yu Cai, Yixin Luo, Erich F. Haratsch, Ken Mai, and Onur Mutlu,
"Data Retention in MLC NAND Flash Memory: Characterization, 
Optimization and Recovery"
Proceedings of the 21st International Symposium on High-Performance 
Computer Architecture (HPCA), Bay Area, CA, February 2015. 
[Slides (pptx) (pdf)] 
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SSD Error Analysis in the Field

◼ First large-scale field study of flash memory errors

◼ Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"A Large-Scale Study of Flash Memory Errors in the Field"
Proceedings of the ACM International Conference on 
Measurement and Modeling of Computer Systems
(SIGMETRICS), Portland, OR, June 2015. 
[Slides (pptx) (pdf)] [Coverage at ZDNet] [Coverage on The 
Register] [Coverage on TechSpot] [Coverage on The Tech 
Report] 
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http://www.sigmetrics.org/sigmetrics2015/
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-failures-in-the-field-at-facebook_sigmetrics15-talk.pptx
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http://www.techspot.com/news/61090-researchers-publish-first-large-scale-field-ssd-reliability.html
http://techreport.com/news/28519/facebook-ssd-reliability-study-shows-early-burnouts


Flash Memory Programming Vulnerabilities
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◼ Yu Cai, Saugata Ghose, Yixin Luo, Ken Mai, Onur Mutlu, and Erich F. 
Haratsch,
"Vulnerabilities in MLC NAND Flash Memory Programming: 
Experimental Analysis, Exploits, and Mitigation Techniques"
Proceedings of the 23rd International Symposium on High-Performance 
Computer Architecture (HPCA) Industrial Session, Austin, TX, USA, 
February 2017. 
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] 

https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities_hpca17.pdf
https://hpca2017.org/
https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities_hpca17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities_hpca17-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities_hpca17-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities_hpca17-lightning-talk.pdf


Accurate and Online Channel Modeling

388

◼ Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu,
"Enabling Accurate and Practical Online Flash Channel Modeling 
for Modern MLC NAND Flash Memory"
to appear in IEEE Journal on Selected Areas in Communications (JSAC), 
2016. 

https://people.inf.ethz.ch/omutlu/pub/online-nand-flash-memory-channel-model_jsac16.pdf
http://www.comsoc.org/jsac


More on DRAM Refresh
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Tackling Refresh: Solutions

◼ Parallelize refreshes with accesses [Chang+ HPCA’14]

◼ Eliminate unnecessary refreshes [Liu+ ISCA’12]

❑ Exploit device characteristics 

❑ Exploit data and application characteristics

◼ Reduce refresh rate and detect+correct errors that occur 
[Khan+ SIGMETRICS’14]

◼ Understand retention time behavior in DRAM [Liu+ ISCA’13]
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Summary: Refresh-Access Parallelization

• DRAM refresh interferes with memory accesses
– Degrades system performance and energy efficiency

– Becomes exacerbated as DRAM density increases

• Goal: Serve memory accesses in parallel with refreshes to 
reduce refresh interference on demand requests

• Our mechanisms:
– 1. Enable more parallelization between refreshes and accesses across 

different banks with new per-bank refresh scheduling algorithms

– 2. Enable serving accesses concurrently with refreshes in the same bank 
by exploiting parallelism across DRAM subarrays

• Improve system performance and energy efficiency for a wide 
variety of different workloads and DRAM densities
– 20.2% and 9.0% for 8-core systems using 32Gb DRAM at low cost

– Very close to the ideal scheme without refreshes
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Chang+, “Improving DRAM Performance by Parallelizing Refreshes with Accesses,” HPCA 2014.



Refresh Penalty

Processor

M
em

o
ry

 
C

o
n

tr
o

lle
r

392
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Refresh delays requests by 100s of ns



Time

Per-bank refresh in mobile DRAM (LPDDRx)

Existing Refresh Modes
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Time

All-bank refresh in commodity DRAM (DDRx)

Bank 7

Bank 1
Bank 0

…

Bank 7

Bank 1
Bank 0

…

Refresh

Round-robin order

Per-bank refresh allows accesses to other 
banks while a bank is refreshing



Shortcomings of Per-Bank Refresh

• Problem 1: Refreshes to different banks are scheduled 
in a strict round-robin order 

– The static ordering is hardwired into DRAM chips

– Refreshes busy banks with many queued requests when 
other banks are idle

• Key idea: Schedule per-bank refreshes to idle banks 
opportunistically in a dynamic order 
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Our First Approach: DARP

• Dynamic Access-Refresh Parallelization (DARP)

– An improved scheduling policy for per-bank refreshes

– Exploits refresh scheduling flexibility in DDR DRAM

• Component 1: Out-of-order per-bank refresh

– Avoids poor static scheduling decisions

– Dynamically issues per-bank refreshes to idle banks

• Component 2: Write-Refresh Parallelization

– Avoids refresh interference on latency-critical reads

– Parallelizes refreshes with a batch of writes
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Shortcomings of Per-Bank Refresh

• Problem 2: Banks that are being refreshed cannot 
concurrently serve memory requests
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Time
Bank 0RD

Delayed by refresh

Per-Bank Refresh



Shortcomings of Per-Bank Refresh

• Problem 2: Refreshing banks cannot concurrently serve 
memory requests

• Key idea: Exploit subarrays within a bank to parallelize 
refreshes and accesses across subarrays
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Time Bank 0
Subarray 1

Subarray 0

RD

Subarray Refresh Time

Parallelize



Methodology

• 100 workloads: SPEC CPU2006, STREAM, TPC-C/H, random access

• System performance metric: Weighted speedup
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Comparison Points

• All-bank refresh [DDR3, LPDDR3, …]

• Per-bank refresh [LPDDR3]

• Elastic refresh [Stuecheli et al., MICRO ‘10]:
– Postpones refreshes by a time delay based on the predicted 

rank idle time to avoid interference on memory requests

– Proposed to schedule all-bank refreshes without exploiting 
per-bank refreshes

– Cannot parallelize refreshes and accesses within a rank

• Ideal (no refresh)
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7.9% 12.3% 20.2%

1. Both DARP & SARP provide performance gains and 
combining them (DSARP) improves even more
2. Consistent system performance improvement across 
DRAM densities (within 0.9%, 1.2%, and 3.8% of ideal)



Energy Efficiency
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More Information on Refresh-Access Parallelization

◼ Kevin Chang, Donghyuk Lee, Zeshan Chishti, Alaa Alameldeen, Chris 
Wilkerson, Yoongu Kim, and Onur Mutlu,
"Improving DRAM Performance by Parallelizing Refreshes with 
Accesses"
Proceedings of the 20th International Symposium on High-Performance 
Computer Architecture (HPCA), Orlando, FL, February 2014. 
[Summary] [Slides (pptx) (pdf)] 
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Tackling Refresh: Solutions

◼ Parallelize refreshes with accesses [Chang+ HPCA’14]

◼ Eliminate unnecessary refreshes [Liu+ ISCA’12]

❑ Exploit device characteristics 

❑ Exploit data and application characteristics

◼ Reduce refresh rate and detect+correct errors that occur 
[Khan+ SIGMETRICS’14]

◼ Understand retention time behavior in DRAM [Liu+ ISCA’13]
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Most Refreshes Are Unnecessary

◼ Retention Time Profile of DRAM looks like this:
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1. Profiling: Profile the retention time of all DRAM rows

2. Binning: Store rows into bins by retention time

→ use Bloom Filters for efficient and scalable storage

3. Refreshing: Memory controller refreshes rows in different 
bins at different rates

→ probe Bloom Filters to determine refresh rate of a row

405

1.25KB storage in controller for 32GB DRAM memory

Can reduce refreshes by ~75% 
→ reduces energy consumption and improves performance

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

RAIDR: Eliminating Unnecessary Refreshes



RAIDR: Baseline Design

406

Refresh control is in DRAM in today’s auto-refresh systems

RAIDR can be implemented in either the controller or DRAM



RAIDR in Memory Controller: Option 1

407

Overhead of RAIDR in DRAM controller:
1.25 KB Bloom Filters, 3 counters, additional commands    
issued for per-row refresh (all accounted for in evaluations)



RAIDR in DRAM Chip: Option 2

408

Overhead of RAIDR in DRAM chip:
Per-chip overhead: 20B Bloom Filters, 1 counter (4 Gbit chip)

Total overhead: 1.25KB Bloom Filters, 64 counters (32 GB DRAM)



RAIDR: Results and Takeaways
◼ System: 32GB DRAM, 8-core; SPEC, TPC-C, TPC-H workloads

◼ RAIDR hardware cost: 1.25 kB (2 Bloom filters)

◼ Refresh reduction: 74.6%

◼ Dynamic DRAM energy reduction: 16%

◼ Idle DRAM power reduction: 20%

◼ Performance improvement: 9%

◼ Benefits increase as DRAM scales in density
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DRAM Device Capacity Scaling: Performance

410

RAIDR performance benefits increase with DRAM chip capacity

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.



DRAM Device Capacity Scaling: Energy

411

RAIDR energy benefits increase with DRAM chip capacity

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.



RAIDR: Eliminating Unnecessary Refreshes

◼ Observation: Most DRAM rows can be refreshed much less often 
without losing data [Kim+, EDL’09][Liu+ ISCA’13]

◼ Key idea: Refresh rows containing weak cells 

more frequently, other rows less frequently

1. Profiling: Profile retention time of all rows

2. Binning: Store rows into bins by retention time in memory controller

Efficient storage with Bloom Filters (only 1.25KB for 32GB memory)

3. Refreshing: Memory controller refreshes rows in different bins at 
different rates

◼ Results: 8-core, 32GB, SPEC, TPC-C, TPC-H

❑ 74.6% refresh reduction @ 1.25KB storage

❑ ~16%/20% DRAM dynamic/idle power reduction

❑ ~9% performance improvement 

❑ Benefits increase with DRAM capacity
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Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.



More on RAIDR

◼ Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu,
"RAIDR: Retention-Aware Intelligent DRAM Refresh"
Proceedings of the 39th International Symposium on 
Computer Architecture (ISCA), Portland, OR, June 2012. 
Slides (pdf)
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Tackling Refresh: Solutions

◼ Parallelize refreshes with accesses [Chang+ HPCA’14]

◼ Eliminate unnecessary refreshes [Liu+ ISCA’12]

❑ Exploit device characteristics 

❑ Exploit data and application characteristics

◼ Reduce refresh rate and detect+correct errors that occur 
[Khan+ SIGMETRICS’14]

◼ Understand retention time behavior in DRAM [Liu+ ISCA’13]
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Motivation: Understanding Retention

◼ Past works require accurate and reliable measurement of 
retention time of each DRAM row

❑ To maintain data integrity while reducing refreshes

◼ Assumption: worst-case retention time of each row can be 
determined and stays the same at a given temperature

❑ Some works propose writing all 1’s and 0’s to a row, and 
measuring the time before data corruption

◼ Question:

❑ Can we reliably and accurately determine retention times of all 
DRAM rows?
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Two Challenges to Retention Time Profiling

◼ Data Pattern Dependence (DPD) of retention time

◼ Variable Retention Time (VRT) phenomenon

416



An Example VRT Cell

417

A cell from E 2Gb chip family



VRT: Implications on Profiling Mechanisms

◼ Problem 1: There does not seem to be a way of 
determining if a cell exhibits VRT without actually observing 
a cell exhibiting VRT

❑ VRT is a memoryless random process [Kim+ JJAP 2010]

◼ Problem 2: VRT complicates retention time profiling by 
DRAM manufacturers

❑ Exposure to very high temperatures can induce VRT in cells that 
were not previously susceptible 

→ can happen during soldering of DRAM chips

→ manufacturer’s retention time profile may not be accurate

◼ One option for future work: Use ECC to continuously profile 
DRAM online while aggressively reducing refresh rate

❑ Need to keep ECC overhead in check

418



More on DRAM Retention Analysis

◼ Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu,
"An Experimental Study of Data Retention Behavior in Modern DRAM 
Devices: Implications for Retention Time Profiling Mechanisms"
Proceedings of the 40th International Symposium on Computer Architecture
(ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt) Slides (pdf)
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Tackling Refresh: Solutions

◼ Parallelize refreshes with accesses [Chang+ HPCA’14]

◼ Eliminate unnecessary refreshes [Liu+ ISCA’12]

❑ Exploit device characteristics 

❑ Exploit data and application characteristics

◼ Reduce refresh rate and detect+correct errors that occur 
[Khan+ SIGMETRICS’14]

◼ Understand retention time behavior in DRAM [Liu+ ISCA’13]
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Key Observations:
• Testing alone cannot detect all possible failures

• Combination of ECC and other mitigation 
techniques is much more effective

– But degrades performance

• Testing can help to reduce the ECC strength

– Even when starting with a higher strength ECC

Towards an Online Profiling System

Khan+, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative 
Experimental Study,” SIGMETRICS 2014.



Run tests periodically after a short interval 
at smaller regions of memory 

Towards an Online Profiling System

Initially Protect DRAM 
with Strong ECC 1

Periodically Test
Parts of DRAM 2

Test

Test

Test

Mitigate errors and
reduce ECC 3



More on Online Profiling of DRAM

◼ Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa Alameldeen, Chris Wilkerson, 
and Onur Mutlu,
"The Efficacy of Error Mitigation Techniques for DRAM Retention 
Failures: A Comparative Experimental Study"
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Austin, TX, June 2014. [Slides 
(pptx) (pdf)] [Poster (pptx) (pdf)] [Full data sets] 
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How Do We Make RAIDR Work in the 

Presence of the VRT Phenomenon?



Making RAIDR Work w/ Online Profiling & ECC

◼ Moinuddin Qureshi, Dae Hyun Kim, Samira Khan, Prashant Nair, and 
Onur Mutlu,
"AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for 
DRAM Systems"
Proceedings of the 45th Annual IEEE/IFIP International Conference on 
Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June 
2015. 
[Slides (pptx) (pdf)] 
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AVATAR

Insight: Avoid retention failures ➔ Upgrade row on ECC error

Observation: Rate of VRT >> Rate of soft error (50x-2500x)
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RESULTS: REFRESH SAVINGS
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AVATAR

No VRT

AVATAR reduces refresh by 60%-70%, similar to multi rate 
refresh but with VRT tolerance

Retention Testing Once a Year can revert refresh saving from 
60% to 70%



SPEEDUP
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Making RAIDR Work w/ Online Profiling & ECC

◼ Moinuddin Qureshi, Dae Hyun Kim, Samira Khan, Prashant Nair, and 
Onur Mutlu,
"AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for 
DRAM Systems"
Proceedings of the 45th Annual IEEE/IFIP International Conference on 
Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June 
2015. 
[Slides (pptx) (pdf)] 
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DRAM Refresh: Summary and Conclusions

◼ DRAM refresh is a critical challenge 

❑ in scaling DRAM technology efficiently to higher capacities

◼ Discussed several promising solution directions

❑ Parallelize refreshes with accesses [Chang+ HPCA’14]

❑ Eliminate unnecessary refreshes [Liu+ ISCA’12]

❑ Reduce refresh rate and detect+correct errors that occur [Khan+ 

SIGMETRICS’14]

◼ Examined properties of retention time behavior [Liu+ ISCA’13]

❑ Enable realistic VRT-Aware refresh techniques [Qureshi+ DSN’15]

◼ Many avenues for overcoming DRAM refresh challenges

❑ Handling DPD/VRT phenomena 

❑ Enabling online retention time profiling and error mitigation

❑ Exploiting application behavior
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Google Workloads

for Consumer Devices:

Mitigating Data Movement Bottlenecks

Amirali Boroumand

Saugata Ghose,  Youngsok Kim, Rachata Ausavarungnirun,

Eric Shiu, RahulThakur, Daehyun Kim, Aki Kuusela,

Allan Knies, Parthasarathy Ranganathan, Onur Mutlu



Consumer Devices
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Consumer devices are everywhere!

Energy consumption is

a first-class concern in consumer devices



Popular Google Consumer Workloads
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Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning 

framework

Video Playback

Google’s video codec

Video Capture

Google’s video codec
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Energy Cost of Data Movement

Data Movement

1st key observation:  62.7% of the 

total system energy is spent on data movement

Potential solution: move computation close to data

Challenge: limited area and energy budget

Processing-in-Memory (PIM)

SoC

DRAML2L1
CPU

CPU
CPU

CPU

Compute 

Unit 



Using PIM to Reduce Data Movement

5

2nd key observation: a significant fraction of 

data movement often comes from simple functions

PIM 

Core

PIM 

Accelerator
PIM 

Accelerator
PIM 

Accelerator

We can design lightweight logic to 

implement these simple functions in memory

Small embedded

low-power core

Small fixed-function 

accelerators

Offloading to PIM logic reduces energy by 55.4%

and improves performance by 54.2% on average



Goals
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1

2

Understand the data movement related 

bottlenecks in modern consumer workloads

Analyze opportunities to mitigate data movement 

by using processing-in-memory (PIM)

Design PIM logic that can maximize energy 

efficiency given the limited area and energy 

budget in consumer devices

3



Outline

• Introduction

• Background

• Analysis Methodology

• Workload Analysis

• Evaluation

• Conclusion
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Potential Solution to Address Data Movement 

• Processing-in-Memory (PIM) 

– A potential solution to reduce data movement

– Idea: move computation close to data

• Enabled by recent advances in 3D-stacked memory

8

Reduces data movement

Exploits large in-memory bandwidth

Exploits shorter access latency to memory



Outline

• Introduction

• Background

• Analysis Methodology

• Workload Analysis

• Evaluation

• Conclusion
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Workload Analysis Methodology

• Workload Characterization

– Chromebook with an

Intel Celeron SoC and 2GB of DRAM

– Extensively use performance counters within SoC

• Energy Model

– Sum of the energy consumption within the CPU, 

all caches, off-chip interconnects, and DRAM

442
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PIM Logic Implementation

11

SoC

DRAM
Logic Layer

PIM Core
PIM 

Accelerator
PIM 

Accelerator
PIM 

Accelerator N

Customized embedded 

general-purpose core

256-bit SIMD unit 

No aggressive ILP techniques

Small fixed-function 

accelerators

Multiple copies of customized 

in-memory logic unit



Workload Analysis
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Chrome
Google’s web browser

TensorFlow
Google’s machine learning 

framework

Video Playback

Google’s video codec

Video Capture

Google’s video Codec
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TensorFlow
Google’s machine learning 

framework

Video Playback

Google’s video codec

Video Capture

Google’s video codec

Workload Analysis

Chrome
Google’s web browser



How Chrome Renders a Web Page
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How Chrome Renders a Web Page
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HTML

CSS

HTML 

Parser

CSS 
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Render 

Tree
Layout
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Browser Analysis

• To satisfy user experience, the browser must 

provide:

– Fast loading of webpages

– Smooth scrolling of webpages

– Quick switching between browser tabs

• We focus on two important user interactions:

1)  Page Scrolling 

2)   Tab Switching

– Both include page loading

16



Scrolling
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What Does Happen During Scrolling?
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to minimize cache misses 

during compositing, the graphics driver 

reorganizes the bitmaps

rasterization uses color blitters

to convert the basic primitives

into bitmaps
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Scrolling Energy Analysis

19

0%
20%
40%
60%
80%

100%

Fr
ac

ti
o

n
 o

f
To

ta
l E

n
e

rg
y

Texture Tiling Color Blitting Other

Google
Docs

Gmail Google
Calendar

Word-
Press

Twitter Ani-
mation

AVG

41.9% of page scrolling energy is spent on

texture tiling and color blitting



A significant portion of

total data movement comes from

texture tiling and color blitting

Scrolling a Google Docs Web Page
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data movement

37.7% of total system energy 
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Scrolling a Google Docs Web Page

A significant portion of

total data movement comes from

texture tiling and color blitting
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77% of total energy 

consumption goes to 

data movement

37.7% of total system energy 
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Can we use PIM to mitigate the data movement cost

for texture tiling and color blitting?



Can We Use PIM for Texture Tiling?
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Can We Implement Texture Tiling in PIM Logic?
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Requires simple primitives: memcopy, bitwise 

operations, and simple arithmetic operations

PIM Core
PIM 

Accelerator

Texture 

Tiling

Linear Bitmap Tiled Texture

9.4% of the area 

available for PIM logic
7.1% of the area 

available for PIM logic

PIM core and PIM accelerator are feasible to 

implement in-memory Texture Tiling



Color Blitting Analysis
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Color blitting is a good candidate 

for PIM execution 

It is feasible to implement color blitting

in PIM core and PIM accelerator

Generates a large amount of data movement

Requires low-cost operations:

Memset, simple arithmetic, and shift operations

Accounts for 19.1% of the total system energy during scrolling



Scrolling Wrap Up
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Texture tiling and color blitting account for

a significant portion (41.9%) of energy consumption

37.7% of total system energy goes to

data movement generated by these functions

Both functions can benefit significantly 

from PIM execution

Both functions are feasible to implement 

as PIM logic

1

2



Tab Switching
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What Happens During Tab Switching?

• Chrome employs a multi-process architecture

– Each tab is a separate process

• Main operations during tab switching:

– Context switch

– Load the new page

27

Chrome Process

…

Tab 1 

Process 

Tab 2

Process 

Tab N

Process 



Memory Consumption

• Primary concerns during tab switching:

– How fast a new tab loads and becomes interactive

– Memory consumption

28

CPU

DRAM

Inactive Tab

CompressionDecompression

Chrome uses compression to

reduce each tab’s memory footprint

ZRAM

Compressed Tab



Data Movement Study

• To study data movement during tab switching, 

we emulate a user switching through 50 tabs

29

Compression and decompression

contribute to18.1% of the total system energy

19.6 GB of data moves between

CPU and ZRAM2

1

We make two key observations:



Can We Use PIM to Mitigate the Cost?
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Tab Switching Wrap Up
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A large amount of data movement happens 

during tab switching as Chrome attempts to 

compress and decompress tabs

2

Both functions can benefit from PIM execution 

and can be implemented as PIM logic
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Chrome
Google’s web browser

TensorFlow
Google’s machine learning 

framework

Video Playback

Google’s video codec

Video Capture

Google’s video codec

Workload Analysis
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Chrome
Google’s web browser

TensorFlow
Google’s machine learning 

framework

Video Playback

Google’s video codec

Video Capture

Google’s video codec

Workload Analysis



TensorFlow Mobile
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57.3% of the inference energy is spent on

data movement

54.4% of the data movement energy comes from 

packing/unpacking and quantization

Inference Prediction



Packing

36

Reorders elements of matrices to minimize 

cache misses during matrix multiplication

Up to 40% of the

inference energy and 31% of

inference execution time 

Packing’s data movement 

accounts for up to 

35.3% of the inference energy

Packing
Matrix Packed Matrix

A simple data reorganization process

that requires simple arithmetic 



Quantization

36

Converts 32-bit floating point to 8-bit integers to improve 

inference execution time and energy consumption 

Up to 16.8% of the 

inference energy

and 16.1% of 

inference execution time 

Majority of quantization

energy comes from 

data movement

Quantization
floating point integer

A simple data conversion operation that requires 

shift, addition, and multiplication operations



Quantization

37

Converts 32-bit floating point to 8-bit integers to improve 

inference execution time and energy consumption 

Up to 16.8% of the 

inference energy

and 16.1% of 

inference execution time 

Majority of quantization

energy comes from 

data movement

Quantization
floating point integer

A simple data conversion operation that requires 

shift, addition, and multiplication operations

Based on our analysis, we conclude that:
• Both functions are good candidates for PIM execution 

• It is feasible to implement them in PIM logic



Video Playback and Capture
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Compressed 

video VP9 
Decoder

Display
Captured 

video
VP9 

Encoder

Compressed

video

Majority of energy is spent on data movement

Majority of data movement comes from 

simple functions in decoding and encoding pipelines



Outline

• Introduction

• Background

• Analysis Methodology

• Workload Analysis

• Evaluation

• Conclusion
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Evaluation Methodology 

• System Configuration (gem5 Simulator)

– SoC:  4 OoO cores, 8-wide issue, 64 kB L1cache,

2MB L2 cache

– PIM Core: 1 core per vault, 1-wide issue, 4-wide SIMD, 

32kB L1 cache

– 3D-Stacked Memory: 2GB cube, 16 vaults per cube

• Internal Bandwidth: 256GB/S 

• Off-Chip Channel Bandwidth: 32 GB/s

– Baseline Memory: LPDDR3, 2GB, FR-FCFS scheduler

• We study each target in isolation and emulate each 

separately and run them in our simulator
40



Normalized Energy 
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Normalized Runtime
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Conclusion
• Energy consumption is a major challenge in consumer devices

• We conduct an in-depth analysis of popular Google 

consumer workloads

– 62.7% of the total system energy is spent on data movement

– Most of the data movement comes from simple functions that 

consist of simple operations

• We use PIM to reduce data movement cost 

– We design lightweight logic to implement

simple operations in DRAM

– Reduces total energy by 55.4% on average 

– Reduces execution time by 54.2% on average 
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Google Workloads
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A Motivating Detour:

Genome Sequence Analysis

477



Our Dream

◼ An embedded device that can perform comprehensive 
genome analysis in real time (within a minute)

❑ Which of these DNAs does this DNA segment match with?

❑ What is the likely genetic disposition of this patient to this 
drug?

❑ . . . 
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What Is a Genome Made Of?
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Cell
Nucleus

The discovery of DNA’s double-helical structure (Watson+, 1953) 
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human chromosome #12
from HeLa’s cell

DNA Under Electron Microscope



DNA Sequencing

◼ Goal: 

❑ Find the complete sequence of A, C, G, T’s in DNA.

◼ Challenge: 

❑ There is no machine that takes long DNA as an input, and gives 
the complete sequence as output

❑ All sequencing machines chop DNA into pieces and identify 
relatively small pieces (but not how they fit together)
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Untangling Yarn Balls & DNA Sequencing
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Genome Sequencers

… and more! All produce data with 
different properties.

Roche/454

Illumina HiSeq2000

Ion Torrent PGM
Ion Torrent Proton

AB SOLiD

Oxford Nanopore GridION

Oxford Nanopore MinION

Complete
Genomics

Illumina MiSeq

Pacific Biosciences RS
Illumina 
NovaSeq
6000



Genome 
Analysis
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Genome Sequence Alignment: Example

485Source: By Aaron E. Darling, István Miklós, Mark A. Ragan - Figure 1 from Darling AE, Miklós I, Ragan MA (2008). 
"Dynamics of Genome Rearrangement in Bacterial Populations". PLOS Genetics. DOI:10.1371/journal.pgen.1000128., CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=30550950

https://commons.wikimedia.org/w/index.php?curid=30550950
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(0.6%)

Bottlenecked in Mapping!!



Hash Table Based Read Mappers

◼ + Guaranteed to find all mappings → sensitive

◼ + Can tolerate up to e errors
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http://mrfast.sourceforge.net/

Alkan+, "Personalized copy number and segmental duplication 
maps using next-generation sequencing”, Nature Genetics 2009.

http://mrfast.sourceforge.net/


candidate alignment 
locations (CAL)

4%

Read Alignment
(Edit-distance comp)

93%

SAM printing
3%

Read Mapping Execution Time Breakdown 



Idea

Filter fast before you align

Minimize costly 

“approximate string comparisons”
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Our First Filter: Pure Software Approach

◼ Download source code and try for yourself

❑ Download link to FastHASH
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http://mrfast.sourceforge.net/


Shifted Hamming Distance: SIMD Acceleration
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Xin+, "Shifted Hamming Distance: A Fast and Accurate SIMD-friendly Filter 
to Accelerate Alignment Verification in Read Mapping”, Bioinformatics 2015.
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FPGA-Based Alignment Filtering

◼ Mohammed Alser, Hasan Hassan, Hongyi Xin, Oguz Ergin, Onur 
Mutlu, and Can Alkan
"GateKeeper: A New Hardware Architecture for 
Accelerating Pre-Alignment in DNA Short Read Mapping"
Bioinformatics, [published online, May 31], 2017.
[Source Code]
[Online link at Bioinformatics Journal]
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https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf
http://bioinformatics.oxfordjournals.org/
https://github.com/BilkentCompGen/GateKeeper
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx342


DNA Read Mapping & Filtering

◼ Problem: Heavily bottlenecked by Data Movement

◼ GateKeeper FPGA performance limited by DRAM bandwidth 
[Alser+, Bioinformatics 2017]

◼ Ditto for SHD on SIMD [Xin+, Bioinformatics 2015]

◼ Solution: Processing-in-memory can alleviate the bottleneck

◼ However, we need to design mapping & filtering algorithms 
to fit processing-in-memory
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In-Memory DNA Sequence Analysis

◼ Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, 
Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using 
Processing-in-Memory Technologies"
BMC Genomics, 2018.
Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC), 
Yokohama, Japan, January 2018.
arxiv.org Version (pdf)
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http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
https://arxiv.org/pdf/1711.01177.pdf


Alser et al., “GateKeeper: A New Hardware Architecture for Accelerating Pre-Alignment in DNA 
Short Read Mapping,” Bioinformatics 2017.
Kim et al., “Genome Read In-Memory (GRIM) Filter,” BMC Genomics 2018.

Quick Note: Key Principles and Results

◼ Two key principles:

❑ Exploit the structure of the genome to minimize computation

❑ Morph and exploit the structure of the underlying hardware to 
maximize performance and efficiency

◼ Algorithm-architecture co-design for DNA read mapping

❑ Speeds up read mapping by ~200X (sometimes more)

❑ Improves accuracy of read mapping in the presence of errors
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Xin et al., “Accelerating Read Mapping with FastHASH,” BMC Genomics 2013.

Xin et al., “Shifted Hamming Distance: A Fast and Accurate SIMD-friendly Filter to Accelerate 
Alignment Verification in Read Mapping,” Bioinformatics 2015.



New Genome Sequencing Technologies
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Senol Cali+, “Nanopore Sequencing Technology and Tools for Genome 
Assembly: Computational Analysis of the Current State, Bottlenecks 
and Future Directions,” Briefings in Bioinformatics, 2018.
[Preliminary arxiv.org version]

Oxford Nanopore MinION

https://arxiv.org/pdf/1711.08774.pdf


Nanopore Genome Assembly Pipeline

498
Senol Cali+, “Nanopore Sequencing Technology and Tools for Genome 
Assembly,” Briefings in Bioinformatics, 2018.



More on Genome Analysis: Another Talk
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Recall Our Dream

◼ An embedded device that can perform comprehensive 
genome analysis in real time (within a minute)

◼ Still a long ways to go

❑ Energy efficiency

❑ Performance (latency)

❑ Security

❑ Huge memory bottleneck
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End of Backup Slides
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Brief Self Introduction

◼ Onur Mutlu

❑ Full Professor @ ETH Zurich CS, since September 2015

❑ Strecker Professor @ Carnegie Mellon University ECE/CS, 2009-2016, 2016-…

❑ PhD from UT-Austin, worked at Google, VMware, Microsoft Research, Intel, AMD

❑ https://people.inf.ethz.ch/omutlu/

❑ omutlu@gmail.com (Best way to reach me)

❑ https://people.inf.ethz.ch/omutlu/projects.htm

◼ Research and Teaching in:

❑ Computer architecture, computer systems, hardware security, bioinformatics

❑ Memory and storage systems

❑ Hardware security, safety, predictability

❑ Fault tolerance

❑ Hardware/software cooperation

❑ Architectures for bioinformatics, health, medicine

❑ … 
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https://people.inf.ethz.ch/omutlu/
mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu/projects.htm


Research Focus: Computer architecture, HW/SW, bioinformatics, security

• Memory and storage (DRAM, flash, emerging), interconnects

• Heterogeneous & parallel systems, GPUs, systems for data analytics

• System/architecture interaction, new execution models, new interfaces

• Hardware security, energy efficiency, fault tolerance, performance 

• Genome sequence analysis & assembly algorithms and architectures

• Biologically inspired systems & system design for bio/medicine

Graphics and Vision Processing

Heterogeneous

Processors and 

Accelerators

Hybrid Main Memory

Persistent Memory/Storage

Broad research 
spanning apps, systems, logic
with architecture at the center

Current Research Focus Areas



Four Key Directions

◼ Fundamentally Secure/Reliable/Safe Architectures

◼ Fundamentally Energy-Efficient Architectures

❑ Memory-centric (Data-centric) Architectures

◼ Fundamentally Low-Latency Architectures

◼ Architectures for Genomics, Medicine, Health
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