
Onur Mutlu
omutlu@gmail.com

https://people.inf.ethz.ch/omutlu
19 December 2023

IBM Research

Machine Learning Driven
Memory and Storage Systems

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

The Problem

Computing
is Bottlenecked by Data

2

Data is Key for AI, ML, Genomics, …

n Important workloads are all data intensive

n They require rapid and efficient processing of large amounts
of data

n Data is increasing
q We can generate more than we can process
q We need to perform more sophisticated analyses on more data

3

Data is Key for Modern Workloads

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15;
 Awan+, BDCloud’15]

Datacenter Workloads
[Kanev+ (Google), ISCA’15]

In-memory Databases
[Mao+, EuroSys’12;
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing
[Xu+, IISWC’12; Umuroglu+, FPL’15]

Huge Demand for Performance & Efficiency

5Source: https://youtu.be/Bh13Idwcb0Q?t=283

Data Overwhelms Modern Machines

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15;
 Awan+, BDCloud’15]

Datacenter Workloads
[Kanev+ (Google), ISCA’15]

In-memory Databases
[Mao+, EuroSys’12;
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing
[Xu+, IISWC’12; Umuroglu+, FPL’15]

Data → performance & energy bottleneck

Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning

framework

Video Playback
Google’s video codec

Video Capture
Google’s video codec

Data is Key for Modern Workloads

Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning

framework

Video Playback
Google’s video codec

Video Capture
Google’s video codec

Data Overwhelms Modern Machines

Data → performance & energy bottleneck

n Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul
Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

9

62.7% of the total system energy
is spent on data movement

Data Movement Overwhelms Modern Machines

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/
https://www.asplos2018.org/

Data Movement Overwhelms Accelerators
n Amirali Boroumand, Saugata Ghose, Berkin Akin, Ravi Narayanaswami, Geraldo F. Oliveira,

Xiaoyu Ma, Eric Shiu, and Onur Mutlu,
"Google Neural Network Models for Edge Devices: Analyzing and Mitigating Machine
Learning Inference Bottlenecks"
Proceedings of the 30th International Conference on Parallel Architectures and Compilation
Techniques (PACT), Virtual, September 2021.
[Slides (pptx) (pdf)]
[Talk Video (14 minutes)]

10

> 90% of the total system energy
is spent on memory in large ML models

https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21.pdf
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21.pdf
http://pactconf.org/
http://pactconf.org/
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21-talk.pdf
https://www.youtube.com/watch?v=A5gxjDbLRAs&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=178

Axiom

An Intelligent Architecture
Handles Data Well

11

How to Handle Data Well

n Ensure data does not overwhelm the components
q via intelligent algorithms, architectures & system designs:

algorithm-architecture-devices

n Take advantage of vast amounts of data and metadata
q to improve architectural & system-level decisions

n Understand and exploit properties of (different) data
q to improve algorithms & architectures in various metrics

12

Corollaries: Computing Systems Today …
n Are processor-centric vs. data-centric

n Make designer-dictated decisions vs. data-driven

n Make component-based myopic decisions vs. data-aware

13

Fundamentally Better Architectures

Data-centric

Data-driven

Data-aware
14

We Need to Revisit the Entire Stack

15

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

We can get there step by step

A Blueprint for Fundamentally Better Architectures

n Onur Mutlu,
"Intelligent Architectures for Intelligent Computing Systems"
Invited Paper in Proceedings of the Design, Automation, and Test in
Europe Conference (DATE), Virtual, February 2021.
[Slides (pptx) (pdf)]
[IEDM Tutorial Slides (pptx) (pdf)]
[Short DATE Talk Video (11 minutes)]
[Longer IEDM Tutorial Video (1 hr 51 minutes)]

16

https://people.inf.ethz.ch/omutlu/pub/intelligent-architectures-for-intelligent-computingsystems-invited_paper_DATE21.pdf
http://www.date-conference.com/
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-DATE-InvitedTalk-IntelligentArchitecturesForIntelligentComputingSystems-January-22-2021.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-DATE-InvitedTalk-IntelligentArchitecturesForIntelligentComputingSystems-January-22-2021.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://www.youtube.com/watch?v=eAZZGDlsDAY
https://www.youtube.com/watch?v=H3sEaINPBOE

Data-Driven (Self-Optimizing)
Architectures

17

System Architecture Design Today

n Human-driven
q Humans design the policies (how to do things)

n Many (too) simple, short-sighted policies all over the system

n No automatic data-driven policy learning

n (Almost) no learning: cannot take lessons from past actions

18

Can we design
fundamentally intelligent architectures?

An Intelligent Architecture

n Data-driven
q Machine learns the “best” policies (how to do things)

n Sophisticated, workload-driven, changing, far-sighted policies

n Automatic data-driven policy learning

n All controllers are intelligent data-driven agents

19

We need to rethink design
(of all controllers)

Self-Optimizing Memory Controllers
n Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,

"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.
Selected to the ISCA-50 25-Year Retrospective Issue covering 1996-
2020 in 2023 (Retrospective (pdf) Full Issue).

20

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/
https://sites.coecis.cornell.edu/isca50retrospective/files/2023/06/Retrospective__RL.pdf
https://sites.coecis.cornell.edu/isca50retrospective/

Self-Optimizing Memory Prefetchers

21

Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu,
"Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, October 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (20 minutes)]
[Lightning Talk Video (1.5 minutes)]
[Pythia Source Code (Officially Artifact Evaluated with All Badges)]
[arXiv version]
Officially artifact evaluated as available, reusable and reproducible.

https://arxiv.org/pdf/2109.12021.pdf

https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=7
https://www.youtube.com/watch?v=kzL22FTz0vc&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=2
https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/abs/2109.12021
https://arxiv.org/pdf/2109.12021.pdf

Learning-Based Off-Chip Load Predictors
n Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk Olgun,

Mohammad Sadrosadati, and Onur Mutlu,
"Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load
Prediction"
Proceedings of the 55th International Symposium on Microarchitecture (MICRO), Chicago, IL, USA,
October 2022.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Talk Video (12 minutes)]
[Lecture Video (25 minutes)]
[arXiv version]
[Source Code (Officially Artifact Evaluated with All Badges)]
Officially artifact evaluated as available, reusable and reproducible.
Best paper award at MICRO 2022.

22https://arxiv.org/pdf/2209.00188.pdf

https://arxiv.org/pdf/2209.00188.pdf
https://arxiv.org/pdf/2209.00188.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pdf
https://www.youtube.com/watch?v=afGc1pWr-_Y
https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s
https://arxiv.org/abs/2209.00188
https://github.com/CMU-SAFARI/Hermes
https://arxiv.org/pdf/2209.00188.pdf

Self-Optimizing Hybrid SSD Controllers
Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar,
David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu,
"Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage
Systems Using Online Reinforcement Learning"
Proceedings of the 49th International Symposium on Computer
Architecture (ISCA), New York, June 2022.
[Slides (pptx) (pdf)]
[arXiv version]
[Sibyl Source Code]
[Talk Video (16 minutes)]

23https://arxiv.org/pdf/2205.07394.pdf

https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
http://iscaconf.org/isca2022/
http://iscaconf.org/isca2022/
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pdf
https://arxiv.org/pdf/2205.07394.pdf
https://github.com/CMU-SAFARI/Sibyl
https://www.youtube.com/watch?v=5-WedkiB000
https://arxiv.org/pdf/2205.07394.pdf

Self Optimizing
Memory Controllers

24

Self-Optimizing Memory Controllers
n Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,

"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.
Selected to the ISCA-50 25-Year Retrospective Issue covering 1996-
2020 in 2023 (Retrospective (pdf) Full Issue).

25

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/
https://sites.coecis.cornell.edu/isca50retrospective/files/2023/06/Retrospective__RL.pdf
https://sites.coecis.cornell.edu/isca50retrospective/

DRAM Controllers Difficult to Design
n Need to obey DRAM timing constraints for correctness

q There are many (50+) timing constraints in DRAM
q tWTR: Minimum number of cycles to wait before issuing a read

command after a write command is issued
q tRC: Minimum number of cycles between the issuing of two

consecutive activate commands to the same bank
q …

n Need to keep track of many resources to prevent conflicts
q Channels, banks, ranks, data bus, address bus, row buffers

n Need to handle DRAM refresh
n Need to manage power consumption
n Need to optimize performance & QoS (in the presence of constraints)

q Reordering is not simple
q Fairness and QoS needs complicates the scheduling problem

26

Many DRAM Timing Constraints

n From Lee et al., “DRAM-Aware Last-Level Cache Writeback: Reducing
Write-Caused Interference in Memory Systems,” HPS Technical Report,
April 2010.

27

More on DRAM Operation
n Kim et al., “A Case for Exploiting Subarray-Level Parallelism

(SALP) in DRAM,” ISCA 2012.
n Lee et al., “Tiered-Latency DRAM: A Low Latency and Low

Cost DRAM Architecture,” HPCA 2013.

28

Why So Many Timing Constraints? (I)

29

Kim et al., “A Case for Exploiting Subarray-Level Parallelism (SALP) in DRAM,” ISCA 2012.

Why So Many Timing Constraints? (II)

30

Lee et al., “Tiered-Latency DRAM: A Low Latency
and Low Cost DRAM Architecture,” HPCA 2013.

DRAM Controller Design Is Becoming More Difficult

n Heterogeneous agents: CPUs, GPUs, and HWAs
n Main memory interference between CPUs, GPUs, HWAs
n Many timing constraints for various memory types
n Many goals at the same time: performance, fairness, QoS,

energy efficiency, …
31

CPU CPU CPU CPU

Shared Cache

GPU
HWA HWA

DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

Reality and Dream
n Reality: It is difficult to design a policy that maximizes

performance, QoS, energy-efficiency, …
q Too many things to think about
q Continuously changing workload and system behavior

n Dream: Wouldn’t it be nice if the DRAM controller
automatically found a good scheduling policy on its own?

32

Memory Controller: Performance Function

How to schedule requests to maximize system performance?

33

Memory
Controller

Core Core

Core Core
Memory

Resolves memory contention
by scheduling requests

Ipek+, “Self Optimizing Memory Controllers: A Reinforcement Learning Approach,” ISCA 2008.

Self-Optimizing DRAM Controllers
n Problem: DRAM controllers are difficult to design

q It is difficult for human designers to design a policy that can adapt
itself very well to different workloads and different system conditions

n Idea: A memory controller that adapts its scheduling policy to
workload behavior and system conditions using machine learning.

n Observation: Reinforcement learning maps nicely to memory
control.

n Design: Memory controller is a reinforcement learning agent
q It dynamically and continuously learns and employs the best

scheduling policy to maximize long-term performance.

Self-Optimizing DRAM Controllers
n Engin Ipek, Onur Mutlu, José F. Martínez, and Rich

Caruana,
"Self Optimizing Memory Controllers: A
Reinforcement Learning Approach"
Proceedings of the 35th International Symposium on
Computer Architecture (ISCA), pages 39-50, Beijing,
China, June 2008.

35

Goal: Learn to choose actions to maximize r0 + gr1 + g2r2 + … (0 £ g < 1)

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/

Self-Optimizing DRAM Controllers
n Dynamically adapt the memory scheduling policy via

interaction with the system at runtime
q Associate system states and actions (commands) with long term

reward values: each action at a given state leads to a learned reward
q Schedule command with highest estimated long-term reward value in

each state
q Continuously update reward values for <state, action> pairs based on

feedback from system

36

Self-Optimizing DRAM Controllers
n Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,

"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.

37

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

States, Actions, Rewards

38

❖ Reward function

• +1 for scheduling
Read and Write
commands

• 0 at all other
times

Goal is to maximize
long-term
data bus
utilization

❖ State attributes

• Number of reads,
writes, and load
misses in
transaction queue

• Number of pending
writes and ROB
heads waiting for
referenced row

• Request’s relative
ROB order

❖ Actions

• Activate

• Write

• Read - load miss

• Read - store miss

• Precharge - pending

• Precharge - preemptive

• NOP

Performance Results

39

Large, robust performance improvements
over many human-designed policies

Self Optimizing DRAM Controllers
+ Continuous learning in the presence of changing environment

+ Reduced designer burden in finding a good scheduling policy.
Designer specifies:
 1) What system variables might be useful
 2) What target to optimize, but not how to optimize it

-- How to specify different objectives? (e.g., fairness, QoS, …)

-- Hardware complexity?

-- Design mindset and flow

40

Self-Optimizing Memory Controllers
n Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,

"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.
Selected to the ISCA-50 25-Year Retrospective Issue covering 1996-
2020 in 2023 (Retrospective (pdf) Full Issue).

41

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/
https://sites.coecis.cornell.edu/isca50retrospective/files/2023/06/Retrospective__RL.pdf
https://sites.coecis.cornell.edu/isca50retrospective/

Pythia: Prefetching using
Reinforcement Learning

42

Self-Optimizing Memory Prefetchers

43

Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu,
"Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, October 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (20 minutes)]
[Lightning Talk Video (1.5 minutes)]
[Pythia Source Code (Officially Artifact Evaluated with All Badges)]
[arXiv version]
Officially artifact evaluated as available, reusable and reproducible.

https://arxiv.org/pdf/2109.12021.pdf

https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=7
https://www.youtube.com/watch?v=kzL22FTz0vc&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=2
https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/abs/2109.12021
https://arxiv.org/pdf/2109.12021.pdf

Rahul Bera, Konstantinos Kanellopoulos, Anant V. Nori,
Taha Shahroodi, Sreenivas Subramoney, Onur Mutlu

Pythia
A Customizable Hardware Prefetching Framework

Using Online Reinforcement Learning

https://github.com/CMU-SAFARI/Pythia

https://arxiv.org/pdf/2109.12021.pdf

https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/pdf/2109.12021.pdf

45

Executive Summary

https://github.com/CMU-SAFARI/Pythia

• Background: Prefetchers predict addresses of future memory requests by associating
memory access patterns with pieces of program and system information (called feature)

• Problem: Three key shortcomings of prior prefetchers:
- Predict mainly using a single program feature
- Lack inherent system awareness (e.g., memory bandwidth usage)
- Lack in-silicon customizability

• Goal: Design a prefetching framework that:
- Learns from multiple features and inherent system-level feedback
- Can be customized in silicon to use different features and/or prefetching objectives

• Contribution: Pythia, which formulates prefetching as reinforcement learning problem
- Takes adaptive prefetch decisions using multiple features and system-level feedback
- Can be customized in silicon for target workloads via simple configuration registers
- Proposes a realistic and practical implementation of RL algorithm in hardware

• Key Results:
- Evaluated using a wide range of workloads from SPEC CPU, PARSEC, Ligra, Cloudsuite
- Outperforms best prefetcher by 3.4%, 7.7% and 17% in 1/4/bw-constrained cores
- Customizing Pythia leads to up to 7.8% more performance over basic Pythia across Ligra workloads

https://github.com/CMU-SAFARI/Pythia

46

Talk Outline
Key Shortcomings of Prior Prefetchers

Formulating Prefetching as Reinforcement Learning

Pythia: Overview

Evaluation of Pythia and Key Results

Conclusion

47

Prefetching Basics
• Predicts addresses of long-latency memory requests and

fetches data before the program demands it

• Associates access patterns from past memory requests
with program context or system information

• Example program features
- Program counter (PC)
- Page number
- Page offset
- Cacheline delta
- …
- Or a combination of these attributes

Program context à Access PatternProgram Feature

48

Key Shortcomings in Prior Prefetchers
• We observe three key shortcomings that significantly

limit performance benefits of prior prefetchers

Predict mainly using a single program feature

Lack inherent system awareness

Lack in-silicon customizability

1
2
3

49

(1) Single-Feature Prefetch Prediction
• Provides good performance gains mainly on workloads

where the feature-to-pattern correlation exists

[1] Bakshalipour et al., HPCA’19 [2] Kim et al., MICRO’16

0%

10%

20%

30%

40%

50%

60%

482.sphinx3-417B PARSEC-Canneal PARSEC-Facesim 459.GemsFDTD-765B

IP
C

im
pr

ov
em

en
t o

ve
r

ba
se

lin
e

(%
)

SPP Bingo Pythia15.4%

3.5%

5.5%

4.6%

Bingo [1] performs better SPP [2] performs better

50

(1) Single-Feature Prefetch Prediction
• Provides good performance gains mainly on workloads

where the feature-to-pattern correlation exists

[1] Bakshalipour et al., HPCA’19 [2] Kim et al., MICRO’16

0%

10%

20%

30%

40%

50%

60%

482.sphinx3-417B PARSEC-Canneal PARSEC-Facesim 459.GemsFDTD-765B

IP
C

im
pr

ov
em

en
t o

ve
r

ba
se

lin
e

(%
)

SPP Bingo Pythia15.4%

3.5%

5.5%

4.6%

Bingo [1] performs better SPP [2] performs better

Relying on a single feature for prediction leaves
significant performance improvement on table

51

(2) Lack of Inherent System Awareness
• Little understanding of undesirable effects (e.g.,

memory bandwidth usage, cache pollution, …)
- Performance loss in resource-constrained configurations

0%

50%

100%

150%

200%

250%

SPP Bingo Pythia SPP Bingo Pythia

Ligra-CC PARSEC-Canneal

Fr
ac

tio
n

of
 L

LC
 m

iss
es Covered Uncovered Overpredicted

-4%

-2%
0%
2%
4%

6%
8%

10%

Ligra-CC PARSEC-Canneal

IP
C

im
pr

ov
em

en
t

ov
er

 b
as

el
in

e
(%

)

SPP Bingo Pythia
368% 574%

Similar coverage Lower overpredictions Yet, lower performance

52

(2) Lack of Inherent System Awareness
• Little understanding of undesirable effects (e.g.,

memory bandwidth usage, cache pollution, …)
- Performance loss in resource-constrained configurations

0%

50%

100%

150%

200%

250%

SPP Bingo Pythia SPP Bingo Pythia

Ligra-CC PARSEC-Canneal

Fr
ac

tio
n

of
 L

LC
 m

iss
es Covered Uncovered Overpredicted

-4%

-2%
0%
2%
4%

6%
8%

10%

Ligra-CC PARSEC-Canneal

IP
C

im
pr

ov
em

en
t

ov
er

 b
as

el
in

e
(%

)

SPP Bingo Pythia
368% 574%

Similar coverage Lower overpredictions Yet, lower performance

Prefetchers often lose performance due to lack
of inherent system awareness

53

(3) Lack of In-silicon Customizability
• Feature statically selected at design time

- Rigid hardware designed specifically to exploit that feature

• No way to change program feature and/or change
prefetcher’s objective in silicon
- Cannot adapt to a wide range of workload demands

Design from scratch Verify Fabricate

54

Our Goal

A prefetching framework that can:

1.Learn to prefetch using multiple features and
inherent system-level feedback information

2.Be easily customized in silicon to use different
features and/or change prefetcher’s objectives

55

Our Proposal

Pythia
Formulates prefetching as a

reinforcement learning problem

Pythia is named after the oracle of Delphi, who is known for her accurate prophecies
https://en.wikipedia.org/wiki/Pythia

56

Talk Outline
Key Shortcomings of Prior Prefetchers

Formulating Prefetching as Reinforcement Learning

Pythia: Overview

Evaluation of Pythia and Key Results

Conclusion

57

Basics of Reinforcement Learning (RL)
• Algorithmic approach to learn to take an action in a

given situation to maximize a numerical reward

• Agent stores Q-values for every state-action pair
- Expected return for taking an action in a state
- Given a state, selects action that provides highest Q-value

Agent

Environment

State (St)State (St) Action (At)Action (At)Reward (Rt+1)Reward (Rt+1)

58

Formulating Prefetching as RL
Agent

Environment

State (St)State (St) Action (At)Action (At)Reward (Rt+1)Reward (Rt+1)

Prefetcher

Processor &
Memory Subsystem

Reward
Prefetch from address

A+offset (O)

Features of memory
request to address A

(e.g., PC)

59

What is State?
• k-dimensional vector of features

• Feature = control-flow + data-flow

• Control-flow examples
- PC
- Branch PC
- Last-3 PCs, …

• Data-flow examples
- Cacheline address
- Physical page number
- Delta between two cacheline addresses
- Last 4 deltas, …

60

What is State?

S = {PC+Delta, Sequence of last-4 deltas}

Example of a state information

Feature-1 (ɸ1) Feature-2 (ɸ2)

PC
(Control-flow info.)

Cacheline Delta
(Data-flow info.)

Seq. of last-4 deltas
(Data-flow info.)

61

What is Action?
Given a demand access to address A
the action is to select prefetch offset “O”

• Action-space: 127 actions in the range [-63, +63]
- For a machine with 4KB page and 64B cacheline

• Upper and lower limits ensure prefetches do not cross
physical page boundary

• A zero offset means no prefetch is generated

• We further prune action-space by design-space exploration

62

What is Reward?
• Defines the objective of Pythia

• Encapsulates two metrics:
- Prefetch usefulness (e.g., accurate, late, out-of-page, …)
- System-level feedback (e.g., mem. b/w usage, cache

pollution, energy, …)

• We demonstrate Pythia with memory bandwidth
usage as the system-level feedback in the paper

63

What is Reward?
• Seven distinct reward levels

- Accurate and timely (RAT)
- Accurate but late (RAL)
- Loss of coverage (RCL)
- Inaccurate

• With low memory b/w usage (RIN-L)
• With high memory b/w usage (RIN-H)

- No-prefetch
• With low memory b/w usage (RNP-L)
• With high memory b/w usage(RNP-H)

• Values are set at design time via automatic design-
space exploration
- Can be customized further in silicon for higher performance

64

Steering Pythia’s Objective via Reward Values
• Example reward configuration for

- Generating accurate prefetches
- Making bandwidth-aware prefetch decisions

+20+12-2-4-8-14

RATRALRNP-HRNP-LRIN-LRIN-H
AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate;

H = High mem. b/w; L = Low mem. b/w

Highly prefers to generate accurate prefetches

Prefers not to prefetch if memory bandwidth usage is low

Strongly prefers not to prefetch if memory bandwidth usage is high

65

Steering Pythia’s Objective via Reward Values
• Customizing reward values to make Pythia conservative

towards prefetching

+20+12+2+1-20-22

RATRALRNP-HRNP-LRIN-LRIN-H
AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate;

H = High mem. b/w; L = Low mem. b/w

Highly prefers to generate accurate prefetches

Otherwise prefers not to prefetch

66

Steering Pythia’s Objective via Reward Values
• Customizing reward values to make Pythia conservative

towards prefetching

+20+12+4+2-20-22

RATRALRNP-HRNP-LRIN-LRIN-H
AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate;

H = High mem. b/w; L = Low mem. b/w

Highly prefers to generate accurate prefetches

Otherwise prefers not to prefetchServer-class processors
Bandwidth-sensitive

workloads

Strict Pythia configuration

67

Talk Outline
Key Shortcomings of Prior Prefetchers

Formulating Prefetching as Reinforcement Learning

Pythia: Overview

Evaluation of Pythia and Key Results

Conclusion

68

Pythia Overview
• Q-Value Store: Records Q-values for all state-action pairs
• Evaluation Queue: A FIFO queue of recently-taken actions

Evaluation Queue (EQ)

Demand
Request

1
Assign reward to

corresponding EQ entry

Look up
QVStoreState

Vector

Q-Value Store
(QVStore)

2

3

5
Insert prefetch action &
State-Action pair in EQ

6

Prefetch Fill

A1 A2 A3

Memory
Hierarchy

Generate
prefetch

Evict EQ entry and
update QVStore

4

Find the Action with max Q-Value

7

S1
S2
S3
S4

Set filled bit

Max

69

Architecting QVStore

S = {PC+Delta,
Sequence of last-4 deltas}

+1 +2 +3

Q-Value Store
(QVStore)

…

70

Architecting the QVStore

S = {PC+Delta,
Sequence of last-4 deltas}

+1 +2 +3

Q-Value Store
(QVStore)

…

Fast retrieval of Q-values from QVStore

Efficient storage organization of Q-values in QVStore

Fast prefetch prediction

71

Organization of QVStore
• A monolithic two-dimensional table?

- Indexed by state and action values
• State-space increases exponentially with #bits

S = {PC+Delta, Sequence of last-4 deltas}

32b 7b 4x7b = 67 bits+ +

A1 A2 A3 A4 A5 A6 A7 A8 A9
S1
S2
S3
S4
S5
S6
S7

Design complexity Access latency

127 actions

26
7 s

ta
te

s

72

Organization of QVStore
• We partition QVStore into k vaults [k = number of features in state]

- Each vault corresponds to one feature and stores the Q-
values of feature-action pairs

… Vaultk

MAX

(a)

Vault1 Vault2

State-action Q-value

Plane1

Shift

+ #

+

Feature Index

φ1
Sφ
1
S φ2

Sφ
2
S φk

Sφ
k
S

Program
feature

Q(φ1
S , A)Q(φ1
S , A) Q(φ2

S , A)Q(φ2
S , A) Q(φk

S , A)Q(φk
S , A)

Feature-action Q-value

Q(S,A)Q(S,A)
φk
Sφ
k
S

Q(φk
S , A)Q(φk
S , A)

Feature-action Q-value

φk
Sφ
k
S

Index
Generation

Index
Generation

Index
Generation

Action (A)Action (A) Action (A)Action (A)
(b)

(c)

• Query each vault in
parallel with feature
and action

• Retrieve feature-action
Q-value from each vault

• Compute MAX of all
feature-action Q-values

MAX ensures the Q(S,A) is driven by the
constituent feature that has highest Q(ɸ,A)

To retrieve Q(S,A) for
each action

73

Organization of QVStore
• We further partition each vault into multiple planes

- Each plane stores a partial Q-value of a feature-action pair

… Vaultk

MAX

(a)

Vault1 Vault2

State-action Q-value

Plane1

Shift

+ #

+

Feature Index

φ1
Sφ
1
S φ2

Sφ
2
S φk

Sφ
k
S

Program
feature

Q(φ1
S , A)Q(φ1
S , A) Q(φ2

S , A)Q(φ2
S , A) Q(φk

S , A)Q(φk
S , A)

Feature-action Q-value

Q(S,A)Q(S,A)
φk
Sφ
k
S

Q(φk
S , A)Q(φk
S , A)

Feature-action Q-value

φk
Sφ
k
S

Index
Generation

Index
Generation

Index
Generation

Action (A)Action (A) Action (A)Action (A)
(b)

(c)

• Query each plane in
parallel with hashed
feature and action

• Retrieve partial feature-
action Q-value from each
plane

• Compute SUM of all partial
feature-action Q-values

To retrieve Q(ɸ,A)
for each action

74

Organization of QVStore
• We further partition each vault into multiple planes

- Each plane stores a partial Q-value of a feature-action pair

… Vaultk

MAX

(a)

Vault1 Vault2

State-action Q-value

Plane1

Shift

+ #

+

Feature Index

φ1
Sφ
1
S φ2

Sφ
2
S φk

Sφ
k
S

Program
feature

Q(φ1
S , A)Q(φ1
S , A) Q(φ2

S , A)Q(φ2
S , A) Q(φk

S , A)Q(φk
S , A)

Feature-action Q-value

Q(S,A)Q(S,A)
φk
Sφ
k
S

Q(φk
S , A)Q(φk
S , A)

Feature-action Q-value

φk
Sφ
k
S

Index
Generation

Index
Generation

Index
Generation

Action (A)Action (A) Action (A)Action (A)
(b)

(c)

• Query each plane in
parallel with hashed
feature and action

• Retrieve partial feature-
action Q-value from each
plane

• Compute SUM of all parital
feature-action Q-values

To retrieve Q(ɸ,A)
for each action

1. Enables sharing of partial Q-values between similar
feature values, shortens prefetcher training time

2. Reduces chances of sharing partial Q-values
across widely different feature values

75

More in the Paper
• Pipelined search operation for QVStore

• Reward assignment and QVStore update

• Automatic design-space exploration
- Feature types
- Actions
- Reward and Hyperparameter values

76

More in the Paper
• Pipelined search operation for QVStore

• Reward assignment and QVStore update

• Automatic design-space exploration
- Feature types
- Action
- Reward and Hyperparameter values

https://arxiv.org/pdf/2109.12021.pdf

https://arxiv.org/pdf/2109.12021.pdf

77

Talk Outline
Key Shortcomings of Prior Prefetchers

Formulating Prefetching as Reinforcement Learning

Pythia: Overview

Evaluation of Pythia and Key Results

Conclusion

78

Simulation Methodology
• Champsim [3] trace-driven simulator

• 150 single-core memory-intensive workload traces
- SPEC CPU2006 and CPU2017
- PARSEC 2.1
- Ligra
- Cloudsuite

• Homogeneous and heterogeneous multi-core mixes

• Five state-of-the-art prefetchers
- SPP [Kim+, MICRO’16]
- Bingo [Bakhshalipour+, HPCA’19]
- MLOP [Shakerinava+, 3rd Prefetching Championship, 2019]
- SPP+DSPatch [Bera+, MICRO’19]
- SPP+PPF [Bhatia+, ISCA’20]

[3] https://github.com/ChampSim/ChampSim

https://github.com/ChampSim/ChampSim

79

Basic Pythia Configuration
• Derived from automatic design-space exploration

• State: 2 features
- PC+Delta
- Sequence of last-4 deltas

• Actions: 16 prefetch offsets
- Ranging between -6 to +32. Including 0.

• Rewards:
- RAT = +20; RAL = +12; RNP-H=-2; RNP-L=-4;
- RIN-H=-14; RIN-L=-8; RCL=-12

80

List of Evaluated Features

81

Basic Pythia Configuration

82

1.1

1.15

1.2

1.25

1.3

1.35

0 2 4 6 8 10 12

Ge
om

ea
n

sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

Number of cores

Performance with Varying Core Count

Bingo
MLOP
SPP

Pythia

3.4% 7.7%

83

1.1

1.15

1.2

1.25

1.3

1.35

0 2 4 6 8 10 12

Ge
om

ea
n

sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

Number of cores

Performance with Varying Core Count

Bingo
MLOP
SPP

Pythia

3.4% 7.7%

1. Pythia consistently provides the highest
performance in all core configurations

2. Pythia’s gain increases with core count

84

0.8
0.85

0.9
0.95

1
1.05

1.1
1.15

1.2
1.25

100
200

400
800

1600
3200

6400
12800

Ge
om

ea
n

sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

DRAM MTPS (in log scale)

Performance with Varying DRAM Bandwidth

~Intel Xeon 6258R

~AMD EPYC Rome 7702P

~AMD Threadripper 3990x

SPP

Bingo
MLOP

Pythia

Baseline

3%

17%

85

0.8
0.85

0.9
0.95

1
1.05

1.1
1.15

1.2
1.25

100
200

400
800

1600
3200

6400
12800

Ge
om

ea
n

sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

DRAM MTPS (in log scale)

Performance with Varying DRAM Bandwidth

~Intel Xeon 6258R

~AMD EPYC Rome 7702P

~AMD Threadripper 3990x

SPP

Bingo
MLOP

Pythia

Baseline

3%

17%

Pythia outperforms prior best prefetchers for
a wide range of DRAM bandwidth configurations

86

Performance Improvement via Customization

• Reward value customization
• Strict Pythia configuration

- Increase the rewards for no prefetching
- Decrease the rewards for inaccurate prefetching

• Strict Pythia is more conservative in generating
prefetch requests than the basic Pythia
• Evaluate on all Ligra graph processing workloads

87

1.0

1.2

1.4

1.6

1.8

2.0

Page
Rank

Page
RankD

elta CC
BFS BC

GEO
MEA

N

IP
C

no
rm

al
ize

d
to

 n
o

pr
ef

et
ch

in
g

Basic Pythia Strict Pythia

Performance Improvement via Customization

3.1% 2.8% 3.4%

7.8%

5.2%

2%

88

1.0

1.2

1.4

1.6

1.8

2.0

Page
Rank

Page
RankD

elta CC
BFS BC

GEO
MEA

N

IP
C

no
rm

al
ize

d
to

 n
o

pr
ef

et
ch

in
g

Basic Pythia Strict Pythia

Performance Improvement via Customization

3.1% 2.8% 3.4%

7.8%

5.2%

2%Pythia can extract even higher performance
via customization without changing hardware

89

Pythia’s Overhead
• 25.5 KB of total metadata storage per core

- Only simple tables
• We also model functionally-accurate Pythia with full

complexity in Chisel [4] HDL

1.03% area overhead

Satisfies prediction latency

0.4% power overhead

of a desktop-class 4-core Skylake processor (Xeon D2132IT, 60W)
[4] https://www.chisel-lang.org

https://www.chisel-lang.org/

90

More in the Paper
• Performance comparison with unseen traces

- Pythia provides equally high performance benefits

• Comparison against multi-level prefetchers
- Pythia outperforms prior best multi-level prefetchers

• Understanding Pythia’s learning with a case study
- We reason towards the correctness of Pythia’s decision

• Performance sensitivity towards different features and
hyperparameter values

• Detailed single-core and four-core performance

91

Performance on Previously-Unseen Workloads
• Evaluated with 500 traces from value prediction

championship
- No prefetcher has been trained on these traces

1
1.1
1.2
1.3
1.4
1.5
1.6

Crypto INT FP Server GEOMEAN

Ge
om

ea
n

sp
ee

du
p

ov
er

 b
as

el
in

e

SPP Bingo MLOP Pythia

1
1.1
1.2
1.3
1.4
1.5

Crypto INT FP Server GEOMEAN

Ge
om

ea
n

sp
ee

du
p

ov
er

 b
as

el
in

e

SPP Bingo MLOP Pythia

(a) single-core (b) four-core

Pythia outperforms MLOP and Bingo by
8.3% and 3.5% in single-core

And 9.7% and 5.4% in four-core

92

More in the Paper
• Performance comparison with unseen traces

- Pythia provides equally high performance benefits

• Comparison against multi-level prefetchers
- Pythia outperforms prior best multi-level prefetchers

• Understanding Pythia’s learning with a case study
- We reason towards the correctness of Pythia’s decision

• Performance sensitivity towards different features
and hyperparameter values

• Detailed single-core and four-core performance

https://arxiv.org/pdf/2109.12021.pdf

https://arxiv.org/pdf/2109.12021.pdf

93

Pythia is Open Source
https://github.com/CMU-SAFARI/Pythia

• MICRO’21 artifact evaluated
• Champsim source code + Chisel modeling code
• All traces used for evaluation

https://github.com/CMU-SAFARI/Pythia

94

Talk Outline
Key Shortcomings of Prior Prefetchers

Formulating Prefetching as Reinforcement Learning

Pythia: Overview

Evaluation of Pythia and Key Results

Conclusion

95

Executive Summary

https://github.com/CMU-SAFARI/Pythia

• Background: Prefetchers predict addresses of future memory requests by associating
memory access patterns with pieces of program and system information (called feature)

• Problem: Three key shortcomings of prior prefetchers:
- Predict mainly using a single program feature
- Lack inherent system awareness (e.g., memory bandwidth usage)
- Lack in-silicon customizability

• Goal: Design a prefetching framework that:
- Learns from multiple features and inherent system-level feedback
- Can be customized in silicon to use different features and/or prefetching objectives

• Contribution: Pythia, which formulates prefetching as reinforcement learning problem
- Takes adaptive prefetch decisions using multiple features and system-level feedback
- Can be customized in silicon for target workloads via simple configuration registers
- Proposes a realistic and practical implementation of RL algorithm in hardware

• Key Results:
- Evaluated using a wide range of workloads from SPEC CPU, PARSEC, Ligra, Cloudsuite
- Outperforms best prefetcher by 3.4%, 7.7% and 17% in 1/4/bw-constrained cores
- Customizing Pythia leads to up to 7.8% more performance over basic Pythia across Ligra workloads

https://github.com/CMU-SAFARI/Pythia

Rahul Bera, Konstantinos Kanellopoulos, Anant V. Nori,
Taha Shahroodi, Sreenivas Subramoney, Onur Mutlu

Pythia
A Customizable Hardware Prefetching Framework

Using Online Reinforcement Learning

https://github.com/CMU-SAFARI/Pythia

https://arxiv.org/pdf/2109.12021.pdf

https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/pdf/2109.12021.pdf

97

Pythia Discussion
• FAQs

- Why RL?
- What about large page?
- What’s the prefetch degree?
- Can customization happen during

workload execution?
- Can runtime mixing create problem?

• Simulation and Methodology
- Basic Pythia configuration
- System parameters
- Configuration of prefetchers
- Evaluated workloads
- Feature selection

• Detailed Design
- Reward structure
- Design overview
- QVStore Organization

• More Results
- Comparison against other adaptive

prefetchers
- Comparison against Context prefetcher
- Feature combination sensitivity
- Hyperparameter sensitivity
- Comparison with multi-level prefetchers
- Performance in unseen workloads
- Single-core s-curve
- Four-core s-curve
- Detailed performance analysis
- Benefit of bandwidth awareness
- Case study
- Customizing rewards
- Customizing features

Self-Optimizing Memory Prefetchers

98

Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu,
"Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, October 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (20 minutes)]
[Lightning Talk Video (1.5 minutes)]
[Pythia Source Code (Officially Artifact Evaluated with All Badges)]
[arXiv version]
Officially artifact evaluated as available, reusable and reproducible.

https://arxiv.org/pdf/2109.12021.pdf

https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=7
https://www.youtube.com/watch?v=kzL22FTz0vc&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=2
https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/abs/2109.12021
https://arxiv.org/pdf/2109.12021.pdf

Hermes: Perceptron-Based
Off-Chip Load Prediction

99

Learning-Based Off-Chip Load Predictors
n Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk Olgun,

Mohammad Sadrosadati, and Onur Mutlu,
"Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load
Prediction"
Proceedings of the 55th International Symposium on Microarchitecture (MICRO), Chicago, IL, USA,
October 2022.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Talk Video (12 minutes)]
[Lecture Video (25 minutes)]
[arXiv version]
[Source Code (Officially Artifact Evaluated with All Badges)]
Officially artifact evaluated as available, reusable and reproducible.
Best paper award at MICRO 2022.

100https://arxiv.org/pdf/2209.00188.pdf

https://arxiv.org/pdf/2209.00188.pdf
https://arxiv.org/pdf/2209.00188.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pdf
https://www.youtube.com/watch?v=afGc1pWr-_Y
https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s
https://arxiv.org/abs/2209.00188
https://github.com/CMU-SAFARI/Hermes
https://arxiv.org/pdf/2209.00188.pdf

Hermes Talk Video

https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s

https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s

Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran,
David Novo, Ataberk Olgun, Mohammad Sadrosadati, Onur Mutlu

Accelerating Long-Latency Load Requests
via Perceptron-Based Off-Chip Load Prediction

https://github.com/CMU-SAFARI/Hermes

https://arxiv.org/pdf/2209.00188.pdf

https://github.com/CMU-SAFARI/Hermes
https://arxiv.org/pdf/2209.00188.pdf

103

The Key Problem

Long-latency off-chip load requests

Often stall processor by
blocking instruction retirement from

Reorder Buffer (ROB)

Limit performance

104

Traditional Solutions

Employ sophisticated prefetchers

Increase size of on-chip caches

105

Key Observation 1

50%
successfully prefetched

off-chip loads without any prefetcher

50%
still go off-chip even with

a state-of-the-art prefetcher

70% of the off-chip loads
block the ROB

Many loads still go off-chip

106

40% of the stalls can be eliminated by removing
on-chip cache access latency from critical path

Key Observation 2

On-chip cache access latency
significantly contributes to off-chip load latency

L1 L2 LLC Main Memory

Saved cycles

50% still go off-chip

L1 L2 LLC Main Memory

107

Caches are Getting Bigger and Slower…

Hardavellas+, “Database Servers on Chip Multiprocessors: Limitations and Opportunities”, CIDR, 2007

O
n-

ch
ip

 C
ac

he
 S

ize
 (K

B)

0

512

1024

1536

2048

2560

Sk
yla

ke
 (2

015)

Su
nny C

ove
 (2

019)

W
illo

w Cove
 (2

020)

Golden Cove
 P-co

re (2
021)

Rap
tor L

ake
 P-co

re (2
022)

L2
 S

ize
 (K

B)

11

12

13

14

15

16

17

Sk
yla

ke
 (2

015)

Su
nny C

ove
 (2

019)

W
illo

w Cove
 (2

020)

Golden Cove
 P-co

re (2
021)

Rap
tor L

ake
 P-co

re (2
022)

L2
 L

at
en

cy
 (p

ro
ce

ss
or

 c
yc

le
s)

108

Improve processor performance
by removing on-chip cache access latency

from the critical path of off-chip loads

Our Goal

Predicts which load requests
are likely to go off-chip

Starts fetching data directly from main memory
while concurrently accessing the cache hierarchy

110

Key Contribution

Hermes employs the first
perceptron-based off-chip load predictor

That predicts which loads are likely to go off-chip

By learning from
multiple program context information

111

Hermes Overview

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

L1 L2 LLC Main Memory

Baseline Processor is stalled

Latency tolerance limit of ROB

112

Hermes Overview

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

L1 L2 LLC Main Memory

POPET

L1 L2 LLC

Main Memory

Baseline

Hermes

Saved stall cycles

Processor is stalled

Latency tolerance limit of ROB

Predict

Issue a
Hermes
request

Wait

Train

Perceptron-based
off-chip load predictor

113

Designing the Off-Chip Load Predictor

Tracking cache contents

Learning from program behavior

Large metadata
§ Metadata size increases with cache hierarchy size

May need to track all cache operations
§ Gets complex depending on the cache hierarchy

configuration (e.g., inclusivity, bypassing,…)

Correlate different program features with off-chip loads

MissMap [Loh+, MICRO’11] for the DRAM cache,
D2D [Sembrant+, ISCA’14], D2M [Sembrant+, HPCA’17], LP [Jalili+, HPCA’22] for the cache hierarchy

History-based prediction
HMP [Yoaz+, ISCA’99] for the L1-D cache

Using branch-predictor-like hybrid predictor:
Global, Gshare, and GSkew

Low storage overhead Low design complexity

POPET provides
both higher accuracy and higher performance
than predictors inspired from these previous works

114

POPET: Perceptron-Based Off-Chip Predictor

• Multi-feature hashed perceptron model [1]
- Each feature has its own weight table
• Stores correlation between feature value and off-chip prediction

Feature1 #
Weight
Table1

hash

index

Feature2 #
Weight
Table2

hash

index

FeatureN #
Weight
TableN

hash

index

!

weight1

weight2

weightn

ActivationSum
weights

Predict to
go off-chip

.....

...

(e.g., PC + offset)

Stage 1 Stage 2 Stage 3

≥ τact≥ τact

[1] D. Tarjan and K. Skadron, “Merging Path and Gshare Indexing in Perceptron Branch Prediction,” TACO, 2005

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

POPET
Predict

Issue
Hermes
request

Wait

Train

115

Predicting using POPET

• Uses simple table lookups, addition, and comparison

Feature1 #
Weight
Table1

hash

index

Feature2 #
Weight
Table2

hash

index

FeatureN #
Weight
TableN

hash

index

!

weight1

weight2

weightn

ActivationSum
weights

Predict to
go off-chip

.....

...

(e.g., PC + offset)

Stage 1 Stage 2 Stage 3

≥ τact≥ τact

0x7ffe0+12

42 -4

12

3 3 >= -2

-5

Predict that
the load
would go
off-chip

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

POPET
Predict

Issue
Hermes
request

Wait

Train

Ex
tr

ac
t f

ea
tu

re
s f

ro
m

 th
e

lo
ad

re

qu
es

t

116

Training POPET

• Uses simple increment or decrement of feature weights

Feature1 #
Weight
Table1

hash

index

Feature2 #
Weight
Table2

hash

index

FeatureN #
Weight
TableN

hash

index

!

weight1

weight2

weightn

ActivationSum
weights

Predict to
go off-chip

.....

...

(e.g., PC + offset)

Stage 1 Stage 2 Stage 3

≥ τact≥ τact

0x7ffe0+12

42 -4

12

3 3 >= -2

-5

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

POPET
Predict

Issue
Hermes
request

Wait

Train

Predict that
the load
would go
off-chip

Shouldn’t be activated

Cumulative weight < 𝜏act

-1

-1

-1

117

Features Used in Hermes

Evaluation

119

Simulation Methodology
• ChampSim trace driven simulator

• 110 single-core memory-intensive traces
- SPEC CPU 2006 and 2017
- PARSEC 2.1
- Ligra
- Real-world applications

• 220 eight-core memory-intensive trace mixes

Off-Chip PredictorsLLC Prefetchers

• History-based: HMP [Yoaz+, ISCA’99]

• Tracking-based: Address Tag-
Tracking based Predictor (TTP)

• Ideal Off-chip Predictor

• Pythia [Bera+, MICRO’21]

• Bingo [Bakshalipour+, HPCA’19]

• MLOP [Shakerinava+, 3rd Prefetching Championship’19]

• SPP + Perceptron filter [Bhatia+, ISCA’20]

• SMS [Somogyi+, ISCA’06]

120

Latency Configuration

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

POPET

Issue
Hermes
request

Wait

• Cache round-trip latency
• L1-D: 5 cycles
• L2: 15 cycles
• LLC: 55 cycles

• Hermes request issue latency
(incurred after address translation)

 Depends on
• Interconnect between POPET and MC

0 cycles 24 cycles

6 cycles

121

Single-Core Performance Improvement

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

SPEC06 SPEC17 PARSEC Ligra CVP GEOMEAN

G
eo

m
ea

n
sp

ee
du

p
ov

er
 th

e
N

o-
pr

ef
et

ch
in

g
sy

st
em

Hermes Pythia Pythia + Hermes Pythia + Ideal Hermes

11.5%

20.3%
5.4%

Hermes alone provides nearly
50% performance benefits of Pythia

with only 1/5th storage overhead

Hermes on top of Pythia
outperforms Pythia alone in every workload category
Hermes provides nearly 90% performance benefit of

Ideal Hermes that has an ideal off-chip load predictor

122

Increase in Main Memory Requests

0%

10%

20%

30%

40%

50%

60%

70%

SPEC06 SPEC17 PARSEC Ligra CVP AVG

%
 in

cr
ea

se
 in

 m
ai

n
m

em
or

y
re

qu
es

ts
ov

er
 th

e
N

o-
pr

ef
et

ch
in

g
sy

st
em

Hermes Pythia Pythia + Hermes

5.5%

38.5%
5.9%

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

SPEC06 SPEC17 PARSEC Ligra CVP GEOMEAN

G
eo

m
ea

n
sp

ee
du

p
ov

er
 th

e
N

o-
pr

ef
et

ch
in

g
sy

st
em

Hermes Pythia Pythia + Hermes Pythia + Ideal Hermes

11.5%
20.3% 5.4%

For every 1% performance benefit,
increase in main memory requests

Pythia

Hermes on top of Pythia

Hermes alone

2%

1%

0.5%

Hermes is more bandwidth-efficient
than even an efficient prefetcher like Pythia

123

Performance with Varying Memory Bandwidth

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

200 400 800 1600 3200 6400 12800

G
eo

m
ea

n
sp

ee
du

p
ov

er
 th

e
N

o-
pr

ef
et

ch
in

g
sy

st
em

Main Memory Bandwidth (in MT/s)

~AMD Threadripper 3990x (Zen 2, 64C/4ch, 2020)

~AMD EPYC Rome 7702P (Zen 2, 64C/8ch, 2019)

~Intel Xeon 6258R
(Cascade Lake, 28C/6ch, 2020)

Pythia

Hermes

Pythia+Hermes

In bandwidth-constrained configurations,
Hermes alone outperforms Pythia
Hermes+Pythia outperforms Pythia

across all bandwidth configurations

Baseline

124

1

1.05

1.1

1.15

1.2

1.25

1.3

Pythia Bingo SPP MLOP SMS

G
eo

m
ea

n
sp

ee
du

p
ov

er
 th

e
N

o-
pr

ef
et

ch
in

g
sy

st
em

Prefetcher-only Prefetcher + Hermes

Performance with Varying Baseline Prefetcher

5.4% 6.2%

5.1% 7.6%

7.7%Hermes consistently improves performance
on top of a wide range of baseline prefetchers

125

Effect of Cache Hierarchy Access Latency

3.6%

6.2%

Hermes can provide even higher performance benefit in
future processors with bigger and slower on-chip caches

126

Effect of ROB Size

6.7%
5.3%

127

Effect of LLC Size

1.3%2.5%

128

Accuracy and Coverage with Different Prefetchers

POPET’s accuracy and coverage increases significantly
in absence of a data prefetcher

129

Overhead of Hermes

4 KB storage overhead

1.5% power overhead*

*On top of an Intel Alder Lake-like performance-core [2] configuration

[2] https://www.anandtech.com/show/16881/a-deep-dive-into-intels-alder-lake-microarchitectures/3

130

More in the Paper
• Performance sensitivity to:

- Cache hierarchy access latency
- Hermes request issue latency
- Activation threshold
- ROB size (in extended version on arXiv)
- LLC size (in extended version on arXiv)

• Accuracy, coverage, and performance analysis against HMP and TTP

• Understanding usefulness of each program feature

• Effect on stall cycle reduction

• Performance analysis on an eight-core system

131

More in the Paper
• Performance sensitivity to:

- Cache hierarchy access latency
- Hermes request issue latency
- Activation threshold
- ROB size (in extended version at arXiv)
- LLC size (in extended version at arXiv)

• Accuracy, coverage, and performance analysis against HMP and TTP

• Understanding usefulness of each program feature

• Effect on stall cycle reduction

• Performance analysis in eight-core system
https://arxiv.org/pdf/2209.00188.pdf

https://arxiv.org/pdf/2209.00188.pdf

To Summarize…

133

Summary

Hermes enables off-chip load prediction,
a different form of speculation than

load address prediction employed by prefetchers

Off-chip load prediction can be applied by itself
or combined with load address prediction

to provide performance improvement

134

Summary

Hermes employs the first
perceptron-based off-chip load predictor

High coverage
(74%)

High accuracy
(77%)

Low storage
overhead
(4KB/core)

High performance improvement
over best prior baseline

(5.4%)

High performance
per bandwidth

135

Hermes is Open Sourced

https://github.com/CMU-SAFARI/Hermes

All workload traces

13 prefetchers 9 off-chip predictors

https://github.com/CMU-SAFARI/Hermes

136

Easy To Define Your Own Off-Chip Predictor

• Just extend the OffchipPredBase class

137

Easy To Define Your Own Off-Chip Predictor

• Define your own train() and predict() functions

• Get statistics like accuracy (stat name precision) and
coverage (stat name recall) out of the box

138

Off-Chip Prediction Can Further Enable…

Prioritizing loads that are likely go off-chip
in cache queues and on-chip network routing

Better instruction scheduling
of data-dependent instructions

Other ideas to improve performance and
fairness in multi-core system design...

Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran,
David Novo, Ataberk Olgun, Mohammad Sadrosadati, Onur Mutlu

Accelerating Long-Latency Load Requests
via Perceptron-Based Off-Chip Load Prediction

https://github.com/CMU-SAFARI/Hermes

https://arxiv.org/pdf/2209.00188.pdf

https://github.com/CMU-SAFARI/Hermes
https://arxiv.org/pdf/2209.00188.pdf

140

Hermes Discussion
• FAQs

- What are the selected set of program features?
- Can you provide some intuition on why these

features work?
- What happens in case of a misprediction?
- What’s the performance headroom for off-chip

prediction?

- Do you see a variance of different features in final
prediction accuracy?

• Simulation Methodology
- System parameters
- Evaluated workloads

• More Results
- Percentage of off-chip requests
- Reduction in stall cycles by reducing the

critical path
- Fraction of off-chip load requests
- Accuracy and coverage of POPET
- Effect of different features
- Are all features required?
- 1C performance
- 1C performance line graph
- 1C performance against prior predictors
- Effect on stall cycles
- 8C performance
- Sensitivity:

• Hermes request issue latency
• Cache hierarchy access latency
• Activation threshold
• ROB size
• LLC size

- Power overhead
- Accuracy without prefetcher
- Main memory request overhead with

different prefetchers

Hermes Paper [MICRO 2022]
n Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk Olgun,

Mohammad Sadrosadati, and Onur Mutlu,
"Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load
Prediction"
Proceedings of the 55th International Symposium on Microarchitecture (MICRO), Chicago, IL, USA,
October 2022.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Talk Video (12 minutes)]
[Lecture Video (25 minutes)]
[arXiv version]
[Source Code (Officially Artifact Evaluated with All Badges)]
Officially artifact evaluated as available, reusable and reproducible.
Best paper award at MICRO 2022.

141https://arxiv.org/pdf/2209.00188.pdf

https://arxiv.org/pdf/2209.00188.pdf
https://arxiv.org/pdf/2209.00188.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pdf
https://www.youtube.com/watch?v=afGc1pWr-_Y
https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s
https://arxiv.org/abs/2209.00188
https://github.com/CMU-SAFARI/Hermes
https://arxiv.org/pdf/2209.00188.pdf

Sibyl: Reinforcement Learning based
Data Placement in Hybrid SSDs

142

Self-Optimizing Hybrid SSD Controllers
Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar,
David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu,
"Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage
Systems Using Online Reinforcement Learning"
Proceedings of the 49th International Symposium on Computer
Architecture (ISCA), New York, June 2022.
[Slides (pptx) (pdf)]
[arXiv version]
[Sibyl Source Code]
[Talk Video (16 minutes)]

143https://arxiv.org/pdf/2205.07394.pdf

https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
http://iscaconf.org/isca2022/
http://iscaconf.org/isca2022/
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pdf
https://arxiv.org/pdf/2205.07394.pdf
https://github.com/CMU-SAFARI/Sibyl
https://www.youtube.com/watch?v=5-WedkiB000
https://arxiv.org/pdf/2205.07394.pdf

Sibyl
Adaptive and Extensible Data Placement

in Hybrid Storage Systems
Using Online Reinforcement Learning

Gagandeep Singh, Rakesh Nadig, Jisung Park,
Rahul Bera, Nastaran Hajinazar, David Novo,

Juan Gómez Luna, Sander Stuijk, Henk Corporaal,
Onur Mutlu

144144

Executive Summary
• Background: A hybrid storage system (HSS) uses multiple different storage devices to

provide high and scalable storage capacity at high performance
• Problem: Two key shortcomings of prior data placement policies:

- Lack of adaptivity to:
• Workload changes
• Changes in device types and configurations

- Lack of extensibility to more devices

• Goal: Design a data placement technique that provides:
- Adaptivity, by continuously learning and adapting to the application and underlying device

characteristics
- Easy extensibility to incorporate a wide range of hybrid storage configurations

• Contribution: Sibyl, the first reinforcement learning-based data placement technique in
hybrid storage systems that:
- Provides adaptivity to changing workload demands and underlying device characteristics
- Can easily extend to any number of storage devices
- Provides ease of design and implementation that requires only a small computation overhead

• Key Results: Evaluate on real systems using a wide range of workloads
- Sibyl improves performance by 21.6% compared to the best previous data placement technique in

dual-HSS configuration
- In a tri-HSS configuration, Sibyl outperforms the state-of-the-art-policy policy by 48.2%
- Sibyl achieves 80% of the performance of an oracle policy with storage overhead of only 124.4 KiB

https://github.com/CMU-SAFARI/Sibyl 145

https://github.com/CMU-SAFARI/Sibyl

Talk Outline
Key Shortcomings of Prior Data Placement Techniques

Formulating Data Placement as Reinforcement Learning

Sibyl: Overview

Evaluation of Sibyl and Key Results

Conclusion

146

Storage Management Layer

Hybrid Storage System Basics

WriteRead

Read Write Read Write

Promotion

Eviction

Hybrid Storage System
Fast Device Slow Device

Address Space (Application/File System View)

147

Hybrid Storage System Basics

WriteRead

Read Write Read Write

Promotion

Eviction

Hybrid Storage System

Performance of a hybrid storage system
highly depends on the ability of the

storage management layer

148

Key Shortcomings in Prior Techniques
We observe two key shortcomings that significantly
limit the performance benefits of prior techniques

1. Lack of adaptivity to:
a) Workload changes
b) Changes in device types and configuration

2. Lack of extensibility to more devices

149

Lack of Adaptivity (1/2)
Workload Changes
Prior data placement techniques consider only a few
workload characteristics that are statically tuned

CDE RNN-HSS Oracle

41.1%

150

Lack of Adaptivity (2/2)
Changes in Device Types and Configurations
Do not consider underlying storage device
characteristics (e.g., changes in the level asymmetry in
read/write latencies, garbage collection)

HSS Configuration 1 HSS Configuration 2

Slow-Only CDE RNN-HSS Slow-Only CDE RNN-HSS OracleOracle

151

Lack of Extensibility (1/2)
Rigid techniques that require significant effort to
accommodate more than two devices

Change in storage configuration

Dual-HSS

152

Lack of Extensibility (2/2)
Rigid techniques that require significant effort to
accommodate more than two devices

Change in storage configuration Design a new policy

Tri-HSS

153

Our Goal

A data-placement mechanism
that can provide:

1.Adaptivity, by continuously learning and
adapting to the application and underlying

device characteristics
2.Easy extensibility to incorporate a wide

range of hybrid storage configurations

154

Our Proposal

Sibyl
Formulates data placement in

hybrid storage systems as a
reinforcement learning problem

Sibyl is an oracle that makes accurate prophecies
https://en.wikipedia.org/wiki/Sibyl 155

Talk Outline
Key Shortcomings of Prior Data Placement Techniques

Formulating Data Placement as Reinforcement Learning

Sibyl: Overview

Evaluation of Sibyl and Key Results

Conclusion

156

Basics of Reinforcement Learning (RL)

Agent learns to take an action in a given state
to maximize a numerical reward

Agent

Environment

State (St)State (St) Action (At)Action (At)Reward (Rt+1)Reward (Rt+1)

157

Formulating Data Placement as RL
Agent

Environment

State (St) Action (At)Reward (Rt+1)

Hybrid Storage
System

Sibyl

Features of the
current request

and system

Request latency
(of last served request)

Select storage device to
place the current page

158

What is State?
• Limited number of state features:

- Reduce the implementation overhead
- RL agent is more sensitive to reward

• 6-dimensional vector of state features

• We quantize the state representation into bins to
reduce storage overhead

159

Hybrid Storage
System

Sibyl

Features of
the current
request and
system

Request latency
(of last served
request)

Select storage
device to place
the current page

Selected State Attributes

160

What is Reward?
• Defines the objective of Sibyl

• We formulate the reward as a function of the
request latency

• Encapsulates three key aspects:
- Internal state of the device (e.g., read/write latencies, the

latency of garbage collection, queuing delays, …)
- Throughput
- Evictions

• More details in the paper
161

Hybrid Storage
System

Sibyl

Features of
the current
request and
system

Request latency
(of last served
request)

Select storage
device to place
the current page

Reward Function

162

What is Action?
• At every new page request, the

action is to select a storage device

• Action can be easily extended to any number of
storage devices

• Sibyl learns to proactively evict or promote a page

163

Hybrid Storage
System

Sibyl

Features of
the current
request and
system

Request latency
(of last served
request)

Select storage
device to place
the current page

Talk Outline
Key Shortcomings of Prior Data Placement Techniques

Formulating Data Placement as Reinforcement Learning

Sibyl: Overview

Evaluation of Sibyl and Key Results

Conclusion

164

RL Decision
Thread

Sibyl Execution

Storage
Request

(from OS)

RL Training
Thread

Periodic Policy
Weight Update

State, Reward,
and Action

Information

Data
Placement
Decision

Asynchronous
Execution

Sibyl

165

Sibyl Design: Overview

Inference
Network

Max

HSS Collect
Experiences

Experience Buffer
(in host DRAM)

Observation
Vector

Storage
Request

(from OS)

State

State

Action

Reward

RL Decision
Thread

Sibyl Policy

Periodic Weights
update 10

Training
Network

RL Training
ThreadBatchTraining

Dataset
Periodic Policy
Weight Update

166

RL Decision Thread

Inference
Network

Max

HSS Collect
Experiences

Experience Buffer
(in host DRAM)

Observation
Vector

Storage
Request

(from OS)

State

State

Action

Reward

RL Decision
Thread

Sibyl Policy

167

RL Decision Thread

Observation
Vector

Storage
Request

(from OS)

State

State

RL Decision
Thread

168

RL Decision Thread

Inference
Network

Max

HSS

State Action

RL Decision
Thread

Sibyl Policy

169

RL Decision Thread

HSS Collect
Experiences

Observation
Vector

Storage
Request

(from OS)

State

Reward

RL Decision
Thread

170

RL Decision Thread

HSS Collect
Experiences

Experience Buffer
(in host DRAM)

Observation
Vector

Storage
Request

(from OS)

State

Reward

RL Decision
Thread

171

RL Training Thread

Periodic Weights
update 10

RL Training
ThreadBatchTraining

Dataset

Experience Buffer
(in host DRAM)

RL Decision
Thread

Periodic Policy
Weight Update

Training
Network

172

Periodic Weight Transfer

Inference
Network

Max

HSS Collect
Experiences

Experience Buffer
(in host DRAM)

Observation
Vector

Storage
Request

(from OS)

State

State

Action

Reward

RL Decision
Thread

Sibyl Policy

Periodic Weights
update 10

Training
Network

Periodic Policy
Weight Update

RL Training
ThreadBatchTraining

Dataset

173

Training and Inference Networks
• Training and inference

networks allow parallel
execution

• Observation vector as
the input

• Produces probability
distribution of Q-values

174

RL-Based Data Placement Algorithm

175

Hyperparameter Tuning

176

Talk Outline
Key Shortcomings of Prior Data Placement Techniques

Formulating Data Placement as Reinforcement Learning

Sibyl: Overview

Evaluation of Sibyl and Key Results

Conclusion

177

Evaluation Methodology (1/3)
• Real system with various HSS configurations

- Dual-hybrid and tri-hybrid systems
AMD	Ryzen7	
2700G	CPU

Seagate	HDD	
ST1000DM010

Intel	Optane	
SSD	P4800X

Intel	SSD									
D3-S4510

ADATA	
SU630	SSD	

178

Evaluation Methodology (2/3)
Cost-Oriented HSS Configuration

High-end SSD Low-end HDD

Performance-Oriented HSS Configuration

High-end SSD Middle-end SSD 179

Evaluation Methodology (3/3)
• 18 different workloads from:

- MSR Cambridge and Filebench Suites

• Four state-of-the-art data placement baselines:
- CDE [Matsui+, Proc. IEEE’17]

- HPS [Meswani+, HPCA’15]

- Archivist [Ren+, ICCD’19]

- RNN-HSS [Doudali+, HPDC’19]

Heuristic-based

Learning-based

180

Performance Analysis
Cost-Oriented HSS Configuration

Slow-Only CDE HPS Archivist RNN-HSS Sibyl Oracle

High-end SSD Low-end HDD

181

Performance Analysis

Sibyl consistently outperforms all the baselines
for all the workloads

Cost-Oriented HSS Configuration
Slow-Only CDE HPS Archivist RNN-HSS Sibyl Oracle

High-end SSD Low-end HDD

182

Performance Analysis

RNN-HSS Sibyl OracleSlow-Only CDE HPS Archivist

Performance-Oriented HSS Configuration
High-end SSD Mid-end SSD

183

Performance Analysis

RNN-HSS Sibyl OracleSlow-Only CDE HPS Archivist

Performance-Oriented HSS Configuration

Sibyl provides 21.6% performance improvement by
dynamically adapting its data placement policy

High-end SSD Mid-end SSD

184

Performance Analysis

RNN-HSS Sibyl OracleSlow-Only CDE HPS Archivist

Performance-Oriented HSS Configuration
High-end SSD Mid-end SSD

185

Performance Analysis

RNN-HSS Sibyl OracleSlow-Only CDE HPS Archivist

Performance-Oriented HSS Configuration

Sibyl achieves 80% of the performance
of an oracle policy that has

complete knowledge of future access patterns

High-end SSD Mid-end SSD

186

Performance on Tri-HSS
Extending Sibyl for more devices:

SibylTri-hybridHeuristicTri-hybrid

High-end SSD Low-end HDDMid-end SSD

Extending Sibyl for more devices:
1. Add a new action
2. Add the remaining capacity of the new device as a

state feature

187

Performance on Tri-HSS

SibylTri-hybridHeuristicTri-hybrid

Extending Sibyl for more devices:
1. Add a new action
2. Add the remaining capacity of the new device as a

state feature

High-end SSD Low-end HDDMid-end SSD

188

Performance on Tri-HSS

SibylTri-hybridHeuristicTri-hybrid

Extending Sibyl for more devices:
1. Add a new action
2. Add the remaining capacity of the new device as a

state featureSibyl outperforms the state-of-the-art
data placement policy by

48.2% in a real tri-hybrid system

Sibyl reduces the system architect's burden
by providing ease of extensibility

High-end SSD Low-end HDDMid-end SSD

189

Sibyl’s Overhead
• 124.4 KiB of total storage cost

- Experience buffer, inference and training network

• 40-bit metadata overhead per page for state features

• Inference latency of ~10ns

• Training latency of ~2us

Small area overhead

Small inference overhead

Satisfies prediction latency
190

More in the Paper (1/3)
• Throughput (IOPS) evaluation

- Sibyl provides high IOPS compared to baseline policies because it
indirectly captures throughput (size/latency)

• Evaluation on unseen workloads
- Sibyl can effectively adapt its policy to highly dynamic workloads

• Evaluation on mixed workloads
- Sibyl provides equally-high performance benefits as in single

workloads

191

More in the Paper (2/3)
• Evaluation using different features

- Sibyl autonomously decides which features are important to
maximize the performance

• Evaluation with different hyperparameter values

• Sensitivity to fast storage capacity
- Sibyl provides scalability by dynamically adapting its policy to

available storage size

• Explainability analysis of Sibyl's decision making
- Explain Sibyl’s actions for different workload characteristics and

device configurations

192

More in the Paper (3/3)

https://arxiv.org/pdf/2205.07394.pdf

https://github.com/CMU-SAFARI/Sibyl
193

https://arxiv.org/pdf/2205.07394.pdf
https://github.com/CMU-SAFARI/Sibyl

Talk Outline
Key Shortcomings of Prior Data Placement Techniques

Formulating Data Placement as Reinforcement Learning

Sibyl: Overview

Evaluation of Sibyl and Key Results

Conclusion

194

Conclusion
• We introduced Sibyl, the first reinforcement learning-

based data placement technique in hybrid storage
systems that provides
- Adaptivity
- Easily extensibility
- Ease of design and implementation

•We evaluated Sibyl on real systems using many
different workloads
- Sibyl improves performance by 21.6% compared to the best prior

data placement policy in a dual-HSS configuration
- In a tri-HSS configuration, Sibyl outperforms the state-of-the-art-

data placement policy by 48.2%
- Sibyl achieves 80% of the performance of an oracle policy with a

storage overhead of only 124.4 KiB
https://github.com/CMU-SAFARI/Sibyl 195

https://github.com/CMU-SAFARI/Sibyl

Sibyl
Adaptive and Extensible Data Placement

in Hybrid Storage Systems
Using Online Reinforcement Learning

Gagandeep Singh, Rakesh Nadig, Jisung Park,
Rahul Bera, Nastaran Hajinazar, David Novo,

Juan Gómez Luna, Sander Stuijk, Henk Corporaal,
Onur Mutlu

196196

ISCA 2022 Paper, Slides, Videos
n Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar,

David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu,
"Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage
Systems Using Online Reinforcement Learning"
Proceedings of the 49th International Symposium on Computer
Architecture (ISCA), New York, June 2022.
[Slides (pptx) (pdf)]
[arXiv version]
[Sibyl Source Code]
[Talk Video (16 minutes)]

197https://arxiv.org/pdf/2205.07394.pdf

https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
http://iscaconf.org/isca2022/
http://iscaconf.org/isca2022/
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pdf
https://arxiv.org/pdf/2205.07394.pdf
https://github.com/CMU-SAFARI/Sibyl
https://www.youtube.com/watch?v=5-WedkiB000
https://arxiv.org/pdf/2205.07394.pdf

SSD Course (Spring 2023)
n Spring 2023 Edition:

q https://safari.ethz.ch/projects_and_seminars/spring2023/
doku.php?id=modern_ssds

n Fall 2022 Edition:
q https://safari.ethz.ch/projects_and_seminars/fall2022/do

ku.php?id=modern_ssds

n Youtube Livestream (Spring 2023):
q https://www.youtube.com/watch?v=4VTwOMmsnJY&list

=PL5Q2soXY2Zi_8qOM5Icpp8hB2SHtm4z57&pp=iAQB
n Youtube Livestream (Fall 2022):

q https://www.youtube.com/watch?v=hqLrd-
Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4JI5bwhAMpAp13&p
p=iAQB

n Project course
q Taken by Bachelor’s/Master’s students
q SSD Basics and Advanced Topics
q Hands-on research exploration
q Many research readings

198https://www.youtube.com/onurmutlulectures

https://safari.ethz.ch/projects_and_seminars/spring2023/doku.php?id=modern_ssds
https://safari.ethz.ch/projects_and_seminars/spring2023/doku.php?id=modern_ssds
https://safari.ethz.ch/projects_and_seminars/spring2023/doku.php?id=modern_ssds
https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=modern_ssds
https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=modern_ssds
https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=modern_ssds
https://www.youtube.com/watch?v=4VTwOMmsnJY&list=PL5Q2soXY2Zi_8qOM5Icpp8hB2SHtm4z57&pp=iAQB
https://www.youtube.com/watch?v=4VTwOMmsnJY&list=PL5Q2soXY2Zi_8qOM5Icpp8hB2SHtm4z57&pp=iAQB
https://www.youtube.com/watch?v=4VTwOMmsnJY&list=PL5Q2soXY2Zi_8qOM5Icpp8hB2SHtm4z57&pp=iAQB
https://www.youtube.com/watch?v=_q4rm71DsY4&list=PL5Q2soXY2Zi8vabcse1kL22DEcgMl2RAq
https://www.youtube.com/watch?v=hqLrd-Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4JI5bwhAMpAp13&pp=iAQB
https://www.youtube.com/watch?v=hqLrd-Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4JI5bwhAMpAp13&pp=iAQB
https://www.youtube.com/watch?v=hqLrd-Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4JI5bwhAMpAp13&pp=iAQB
https://www.youtube.com/watch?v=hqLrd-Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4JI5bwhAMpAp13&pp=iAQB
https://www.youtube.com/onurmutlulectures

Comp Arch (Fall 2021)
n Fall 2021 Edition:

q https://safari.ethz.ch/architecture/fall2021/doku.
php?id=schedule

n Fall 2020 Edition:
q https://safari.ethz.ch/architecture/fall2020/doku.

php?id=schedule

n Youtube Livestream (2021):
q https://www.youtube.com/watch?v=4yfkM_5EFg

o&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF
n Youtube Livestream (2020):

q https://www.youtube.com/watch?v=c3mPdZA-
Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN

n Master’s level course
q Taken by Bachelor’s/Masters/PhD students
q Cutting-edge research topics + fundamentals in

Computer Architecture
q 5 Simulator-based Lab Assignments
q Potential research exploration
q Many research readings

199https://www.youtube.com/onurmutlulectures

https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2020/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2020/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2020/doku.php?id=schedule
https://www.youtube.com/watch?v=4yfkM_5EFgo&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF
https://www.youtube.com/watch?v=4yfkM_5EFgo&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF
https://www.youtube.com/watch?v=4yfkM_5EFgo&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF
https://www.youtube.com/watch?v=c3mPdZA-Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN
https://www.youtube.com/watch?v=c3mPdZA-Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN
https://www.youtube.com/watch?v=c3mPdZA-Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN
https://www.youtube.com/onurmutlulectures

Onur Mutlu
omutlu@gmail.com

https://people.inf.ethz.ch/omutlu
19 December 2023

IBM Research

Machine Learning Driven
Memory and Storage Systems

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

PYTHIA BACKUP

202

Reward Assignment to EQ Entry
• Every action gets inserted into EQ
• Reward is assigned to each EQ entry before or during the

eviction

• During EQ insertion: for actions
- Not to prefetch
- Out-of-page prefetch

��
��
���������� ����

��	�
�
�������

�
�����������������

������������ �������!

���� ���
�
	���������

�����

��	
���������
��	������

�

�

�
���������������������#�
	����"����������������

�

�������������

�� �� ��

�������
����
����

��������
�������

������������!�����
��������
	����

�

���������������������� ��"
����

�

���
��
��
��
��

	�������������

203

Reward Assignment to EQ Entry
• Every action gets inserted into EQ
• Reward is assigned to each EQ entry before or during the

eviction

• During EQ insertion: for actions
- Not to prefetch
- Out-of-page prefetch

• During EQ residency:
- In case address of a demand matches with address in EQ

(signifies accurate prefetch)

��
��
���������� ����

��	�
�
�������

�
�����������������

������������ �������!

���� ���
�
	���������

�����

��	
���������
��	������

�

�

�
���������������������#�
	����"����������������

�

�������������

�� �� ��

�������
����
����

��������
�������

������������!�����
��������
	����

�

���������������������� ��"
����

�

���
��
��
��
��

	�������������

204

Reward Assignment to EQ Entry
• Every action gets inserted into EQ
• Reward is assigned to each EQ entry before or during the

eviction

• During EQ insertion: for actions
- Not to prefetch
- Out-of-page prefetch

• During EQ residency:
- In case address of a demand matches with address in EQ

(signifies accurate prefetch)

• During EQ eviction:
- In case no reward is assigned till eviction

(signifies inaccurate prefetch)

��
��
���������� ����

��	�
�
�������

�
�����������������

������������ �������!

���� ���
�
	���������

�����

��	
���������
��	������

�

�

�
���������������������#�
	����"����������������

�

�������������

�� �� ��

�������
����
����

��������
�������

������������!�����
��������
	����

�

���������������������� ��"
����

�

���
��
��
��
��

	�������������

205

Performance S-curve: Single-core

0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

12
1

12
7

13
3

13
9

14
5

Sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

Workload number

SPP Bingo MLOP Pythia

623.xalancbmk_s-592B

603.bwaves_s-2931B

462.libquantum

streamcluster

429.mcf

BFSCC-22B

pagerank-51B

fluidanimate-9500M

206

Performance S-curve: Four-core

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

20
1

21
1

22
1

23
1

24
1

25
1

26
1

Sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

Workload number

SPP Bingo MLOP Pythia

429.mcf-184B

pagerank

462.libquantum-1343B

437.leslie3d-271B

Mix-59

raytrace-23.75B

Mix-240

FAQs

208

Pythia Discussion
• FAQs

- Why RL?
- What about large page?
- What’s the prefetch degree?
- Can customization happen during

workload execution?
- Can runtime mixing create problem?

• Simulation and Methodology
- Basic Pythia configuration
- System parameters
- Configuration of prefetchers
- Evaluated workloads
- Feature selection

• Detailed Design
- Reward structure
- Design overview
- QVStore Organization

• More Results
- Comparison against other adaptive

prefetchers
- Comparison against Context prefetcher
- Feature combination sensitivity
- Hyperparameter sensitivity
- Comparison with multi-level prefetchers
- Performance in unseen workloads
- Single-core s-curve
- Four-core s-curve
- Detailed performance analysis
- Benefit of bandwidth awareness
- Case study
- Customizing rewards
- Customizing features

209

Why RL? Why Not Supervised Learning?
• Determining the benefits of prefetching (i.e., whether a

decision was good for performance or not) is not easy
- Depends on a complex set of metrics

• Coverage, accuracy, timeliness
• Effects on system: b/w usage, pollution, cross-application interference, …

- Dynamically-changing environmental conditions change the
benefit

- Delayed feedback due to long latency (might not receive
feedback at all for inaccurate prefetches!)

• Differs from classification tasks (e.g., branch prediction)
- Performance strongly correlates mainly to accuracy
- Does not depend on environment
- Bounded feedback delay

210

What About Large Pages?
• Pythia’s framework can be easily extended to incorporate

additional prefetch actions (i.e., possible prefetch offsets
for the page size)

• To decrease the storage overhead
- Prune action space via automatic design-space exploration
- Hash action values to retrieve Q-values

211

What is the Prefetch Degree? Is It Managed by
the RL Agent?
• Pythia employs a simple degree selector, separate from

the RL agent
- If the agent has selected the same prefetch action (O) multiple

times in a row, Pythia increases the degree (A+2O, A+3O, …)
- At most degree 4

• Future works on managing degree by the RL agent

212

Can the Customization Be Done While the
Workload is Running?
• Certainly.
• Pythia, being an online learning technique, will

autonomously adapt (and optimize) its policy to use the
new program features or the modified reward values

213

Can Runtime Workload Mix Create an Issue?
• We implement the bandwidth usage feedback using a

counter in the memory controller. Thus Pythia already has
a global view of the memory bandwidth usage that
incorporates all workloads running on a multi-core system

• We evaluate a diverse set (300 of each category) of four-
core, eight-core, twelve-core random workload mixes
• Based on our evaluation, we observe that Pythia

dynamically adapts itself to varying workload demands

214

How does Pythia Compare Against Other Adaptive
Prefetching Solutions?
• We compare Pythia against IBM POWER7[5] prefetcher

- Adaptively selects prefetcher degree/configuration by
monitoring program IPC

1
1.1
1.2
1.3
1.4
1.5

SPEC06 SPEC17 PARSEC Ligra Cloudsuite GEOMEAN

Ge
om

ea
n

sp
ee

du
p

ov
er

 b
as

el
in

e

POWER7 Pythia

1
1.1
1.2
1.3
1.4
1.5

SPEC06 SPEC17 PARSEC Ligra Cloudsuite Mix GEOMEAN

Ge
om

ea
n

sp
ee

du
p

ov
er

 b
as

el
in

e

POWER7 Pythia

(a) single-core

(b) four-core

4.5%

6.4%

[5] Jimenez et al., TOPC’14

215

How Does Pythia Compare Against the Context
Prefetcher?
• Pythia widely differs from the Context Prefetcher (CP)[6] in

all three aspects: state, action, and reward. The key
differences are:
- CP does not consider system-level feedback
- CP models the agent as a contextual bandit which takes myopic

prefetch decisions as compared to Pythia
- CP requires compiler support to extract software-level features

1
1.1
1.2
1.3
1.4
1.5

SPEC06 SPEC17 PARSEC Ligra Cloudsuite GEOMEAN

Ge
om

ea
n

sp
ee

du
p

ov
er

 b
as

el
in

e

CP-HW Pythia

1
1.1
1.2
1.3
1.4
1.5

SPEC06 SPEC17 PARSEC Ligra Cloudsuite Mix GEOMEAN

Ge
om

ea
n

sp
ee

du
p

ov
er

 b
as

el
in

e

CP-HW Pythia
(a) single-core (b) four-core

Pythia outperforms CP-HW by 5.3% in single-core and
7.6% in four-core system

[6] Leeor et al., ISCA’15

216

How Pythia’s Performance Changes With
Various State Definitions You Have Swept?
• In total we evaluate state defined as any-one, any-two,

and any-three combinations of 32 features

65%

66%

67%

68%

69%

70%

71%

72%

1.2

1.205

1.21

1.215

1.22

1.225

1.23

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

Co
ve

ra
ge

 o
f P

yt
hi

a
(h

ig
he

r i
s b

et
te

r)

Sp
ee

du
p

ov
er

 b
as

el
in

e
(h

ig
he

r i
s b

et
te

r)

Experiment number

Speedup Coverage

25%

26%

27%

28%

29%

30%

31%

32%

33%

1.2

1.205

1.21

1.215

1.22

1.225

1.23

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5 O

ve
rp

re
di

ct
io

n
of

 P
yt

hi
a

(lo
w

er
 is

 b
et

te
r)

Sp
ee

du
p

ov
er

 b
as

el
in

e
(h

ig
he

r i
s b

et
te

r)
Experiment number

Speedup Overprediction

Performance gain ranges from 20.7% to 22.4%

Coverage ranges from 66.2% to 71.5%
Overprediction ranges from 26.7% to 32.2%

217

Is Pythia Sensitive to Hyperparameters?
• Not setting hyperparameters can significantly impact the

overall performance improvement

1.04

1.08

1.12

1.16

1.2

1.24

1.E-6 1.E-5 1.E-4 1.E-3 1.E-2 1.E-1 1.E+0

Sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

values

1.16

1.17

1.18

1.19

1.2

1.21

1.22

1.23

1.E-6 1.E-5 1.E-4 1.E-3 1.E-2 1.E-1 1.E+0
Sp

ee
du

p
ov

er
 n

o
pr

ef
et

ch
in

g

values

(a) Epsilon (!) (b) Alpha (")

Changing 𝜀 from 0.002 to 1.0 drops perf. by 16%

Changing 𝛼 from 0.0065 to 1.0 drops perf. by 5.4%

218

How Does Pythia Compare Against Commercial
Multi-level Prefetchers?

0.85
0.9

0.95
1

1.05
1.1

1.15
1.2

1.25

100
200

400
800

1600
3200

6400
12800

Ge
om

ea
n

sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

DRAM MTPS (in log scale)

Stride-L1+Streamer-L2

IPCP

Stride-L1+Pythia-L2

Pythia outperforms IPCP [7] by 14.2% on average in 150-MTPS

[6] Prakalapati et al., ISCA’20

219

Does Pythia Perform Equally Well for Unseen
Workloads?
• Evaluated with 500 traces from value prediction

championship
- No prefetcher has been trained on these traces

1
1.1
1.2
1.3
1.4
1.5
1.6

Crypto INT FP Server GEOMEAN

Ge
om

ea
n

sp
ee

du
p

ov
er

 b
as

el
in

e

SPP Bingo MLOP Pythia

1
1.1
1.2
1.3
1.4
1.5

Crypto INT FP Server GEOMEAN

Ge
om

ea
n

sp
ee

du
p

ov
er

 b
as

el
in

e

SPP Bingo MLOP Pythia

(a) single-core (b) four-core

Pythia outperforms MLOP and Bingo by
8.3% and 3.5% in single-core

And 9.7% and 5.4% in four-core

220

Basic Pythia Configuration

221

System Parameters

222

Configuration of Prefetchers

223

Evaluated Workloads

224

List of Evaluated Features

MORE RESULTS

226

Performance S-curve: Single-core

0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

12
1

12
7

13
3

13
9

14
5

Sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

Workload number

SPP Bingo MLOP Pythia

623.xalancbmk_s-592B

603.bwaves_s-2931B

462.libquantum

streamcluster

429.mcf

BFSCC-22B

pagerank-51B

fluidanimate-9500M

227

Performance S-curve: Four-core

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

20
1

21
1

22
1

23
1

24
1

25
1

26
1

Sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

Workload number

SPP Bingo MLOP Pythia

429.mcf-184B

pagerank

462.libquantum-1343B

437.leslie3d-271B

Mix-59

raytrace-23.75B

Mix-240

228

Single-core Coverage & Overprediction

0%
50%

100%
150%
200%
250%

SP
P

Bi
ng

o

M
LO

P

Py
th

ia

SP
P

Bi
ng

o

M
LO

P

Py
th

ia

SP
P

Bi
ng

o

M
LO

P

Py
th

ia

SP
P

Bi
ng

o

M
LO

P

Py
th

ia

SP
P

Bi
ng

o

M
LO

P

Py
th

ia

SP
P

Bi
ng

o

M
LO

P

Py
th

ia

SPEC06 SPEC17 PARSEC Ligra Cloudsuite AVG

Fr
ac

tio
n

of
 L

LC
 m

iss
es

Covered Uncovered Overpredicted

309% 315%

229

Detailed Performance

1
1.1
1.2
1.3
1.4
1.5

SP
EC

06

SP
EC

17

PARSE
C

Lig
ra

Cloudsuite

GEO
MEA

NGe
om

ea
n

sp
ee

du
p

ov
er

 b
as

el
in

e SPP Bingo MLOP Pythia

1.06

1.12

1.18

1.24

St
St

+S
St

+S
+B

St
+S

+B
+D

St
+S

+B
+D

+M
Py

th
iaGe

om
ea

n
sp

ee
du

p
ov

er
 b

as
el

in
e (a) (b)

1
1.1
1.2
1.3
1.4
1.5

SP
EC

06

SP
EC

17

PARSE
C

Lig
ra

Cloudsu
ite M

ix

GEO
M

EA
NG

eo
m

ea
n

sp
ee

du
p

ov
er

 b
as

el
in

e SPP Bingo MLOP Pythia

1
1.06
1.12
1.18
1.24

1.3

St
St

+S
St

+S
+B

St
+S

+B
+D

St
+S

+B
+D

+M
p

yt
h

iaG
eo

m
ea

n
sp

ee
du

p
ov

er
 b

as
el

in
e(a) (b)

230

Benefit of Bandwidth Awareness

-4.6%

-2.5%

-1.2%

-0.4% -0.3% -0.2% -0.2%

-5%

-4%

-3%

-2%

-1%

0%

150 300 600 1200 2400 4800 9600

Pe
rf

or
m

an
ce

 n
or

m
al

ize
d

to

ba
sic

 P
yt

hi
a

DRAM MTPS (in log scale)

Memory BW-oblivious Pythia

231

Case Study

232

Customizing Rewards

233

Customizing Features

234

Hermes Discussion
• FAQs

- What are the selected set of program features?
- Can you provide some intuition on why these

features work?
- What happens in case of a misprediction?
- What’s the performance headroom for off-chip

prediction?

- Do you see a variance of different features in final
prediction accuracy?

• Simulation Methodology
- System parameters
- Evaluated workloads

• More Results
- Percentage of off-chip requests
- Reduction in stall cycles by reducing the

critical path
- Fraction of off-chip load requests
- Accuracy and coverage of POPET
- Effect of different features
- Are all features required?
- 1C performance
- 1C performance line graph
- 1C performance against prior predictors
- Effect on stall cycles
- 8C performance
- Sensitivity:

• Hermes request issue latency
• Cache hierarchy access latency
• Activation threshold
• ROB size
• LLC size

- Power overhead
- Accuracy without prefetcher
- Main memory request overhead with

different prefetchers

HERMES BACKUP

236

Initial Set of Program Features

237

Selected Set of Program Features

Five features
A binary hint that
represents whether or not a
cacheblock has been
recently touched

238

When A Feature Works/Does Not Work?

Trace: 462.libquantum-1343B PC: 0x401442

Cacheline #42 Cacheline #43 ……

Without prefetcher

• PC + first access
• Cacheline offset + first access

With a simple stride prefetcher

• Cacheline offset + first access

239

What Happens in case of a Misprediction?

• Two cases of mispredictions:

• Predicted on-chip but actually goes off-chip
- Loss of performance improvement opportunity

• Predicted off-chip but actually is on-chip
- Memory controller forwards the data to LLC if and only if

a load to the same address have already missed LLC and
arrived at the memory controller

No need for misprediction detection and recovery

No need for misprediction detection and recovery

240

Performance Headroom of Off-Chip Prediction

241

System Parameters

242

Evaluated Workloads

243

Observation: Not All Off-Chip Loads are Prefetched

0

5

10

15

20

25

0%

25%

50%

75%

100%

No
-p

re
fe

tc
hi

ng

Py
th

ia

No
-p

re
fe

tc
hi

ng

Py
th

ia

No
-p

re
fe

tc
hi

ng

Py
th

ia

No
-p

re
fe

tc
hi

ng

Py
th

ia

No
-p

re
fe

tc
hi

ng

Py
th

ia

No
-p

re
fe

tc
hi

ng

Py
th

ia

SPEC06 SPEC17 PARSEC Ligra CVP AVG

LL
C

m
iss

es
 p

er
 k

ilo
 in

st
ru

ct
io

ns
 (M

PK
I)

Fr
ac

tio
n

of
 o

ff-
ch

ip
 lo

ad
s

in
 th

e
N

o-
pr

ef
et

ch
in

g
sy

st
em

Blocking Non-blocking MPKI

50%

Nearly 50% of the loads are still not prefetched

244

Observation: Not All Off-Chip Loads are Prefetched

0

5

10

15

20

25

0%

25%

50%

75%

100%

No
-p

re
fe

tc
hi

ng

Py
th

ia

No
-p

re
fe

tc
hi

ng

Py
th

ia

No
-p

re
fe

tc
hi

ng

Py
th

ia

No
-p

re
fe

tc
hi

ng

Py
th

ia

No
-p

re
fe

tc
hi

ng

Py
th

ia

No
-p

re
fe

tc
hi

ng

Py
th

ia

SPEC06 SPEC17 PARSEC Ligra CVP AVG

LL
C

m
iss

es
 p

er
 k

ilo
 in

st
ru

ct
io

ns
 (M

PK
I)

Fr
ac

tio
n

of
 o

ff-
ch

ip
 lo

ad
s

in
 th

e
N

o-
pr

ef
et

ch
in

g
sy

st
em

Blocking Non-blocking MPKI

70% of these off-chip loads blocks ROB

245

Observation: With Large Cache Comes Longer Latency

• On-chip cache access latency significantly contributes to
the latency of an off-chip load

147.1

0
20
40
60
80

100
120
140
160
180

SPEC06 SPEC17 PARSEC Ligra CVP AVG

st

al
l c

yc
le

s d
ue

 to
 a

n
of

f-c
hi

p
lo

ad
bl

oc
ki

ng
 in

st
ru

ct
io

n
re

tir
em

en
t

fr
om

 R
O

B

58

On-chip cache hierarchy access latency

246

Observation: With Large Cache Comes Longer Latency

• On-chip cache access latency significantly contributes to
the latency of an off-chip load

147.1

0
20
40
60
80

100
120
140
160
180

SPEC06 SPEC17 PARSEC Ligra CVP AVG

st

al
l c

yc
le

s d
ue

 to
 a

n
of

f-c
hi

p
lo

ad
bl

oc
ki

ng
 in

st
ru

ct
io

n
re

tir
em

en
t

fr
om

 R
O

B

58

On-chip cache hierarchy access latency

40% of stall cycles caused by an off-chip load can be eliminated
by removing on-chip cache access latency from its critical path

247

What Fraction of Load Requests Goes Off-Chip?

248

Off-Chip Prediction Quality: Defining Metrics

Predicted off-chip Actual off-chip

Predicted and actual off-chip

Accuracy Coverage

249

Off-Chip Prediction Quality: Analysis

Accuracy

Coverage

0%
20%
40%
60%
80%

100%

SPEC06 SPEC17 PARSEC Ligra CVP AVG

A
cc

ur
ac

y
%

HMP TTP POPET

0%
20%
40%
60%
80%

100%

SPEC06 SPEC17 PARSEC Ligra CVP AVG

Co
ve

ra
ge

 %

HMP TTP POPET

47%

22%

16%

95%

77%

74%

250

Off-Chip Prediction Quality: Analysis

Accuracy

Coverage

0%
20%
40%
60%
80%

100%

SPEC06 SPEC17 PARSEC Ligra CVP AVG

A
cc

ur
ac

y
%

HMP TTP POPET

0%
20%
40%
60%
80%

100%

SPEC06 SPEC17 PARSEC Ligra CVP AVG

Co
ve

ra
ge

 %

HMP TTP POPET

47%

22%

16%

95%

77%

74%

POPET provides off-chip predictions with
high-accuracy and high-coverage

251

Effect of Different Features

Combination of features provides both higher
accuracy and higher coverage than any individual feature

252

Are All Features Required? (1)

No single feature individually provides
highest prediction accuracy across all workloads

253

Are All Features Required? (2)

No single feature individually provides
highest prediction coverage across all workloads

254

Single-Core Performance

Hermes in combination with Pythia
outperforms Pythia alone in every workload category

255

Single-Core Performance Line Graph

256

Single-Core Performance Against Prior Predictors

POPET provides higher performance benefit
than prior predictors

Hermes with POPET achieves nearly 90% performance
improvement of the Ideal Hermes

257

Effect on Stall Cycles

Hermes reduces off-chip load induced stall cycles
on average by 16.2% (up-to 51.8%)

258

Eight-Core Performance

Hermes in combination with Pythia
outperforms Pythia alone by 5.1% on average

259

Effect of Hermes Request Issue Latency

3.6%
5.7%

Hermes in combination with Pythia outperforms Pythia
alone even with a 24-cycle Hermes request issue latency

260

Effect of Cache Hierarchy Access Latency

3.6%

6.2%

Hermes can provide even higher performance benefit in
future processors with bigger and slower on-chip caches

261

Effect of Activation Threshold

With increase in activation threshold
1. Accuracy increases

2. Coverage decreases

262

Power Overhead

263

Effect of ROB Size

6.7%
5.3%

264

Effect of LLC Size

1.3%2.5%

265

Accuracy and Coverage with Different Prefetchers

POPET’s accuracy and coverage increases significantly
in absence of a data prefetcher

266

Increase in Main Memory Requests

SIBYL BACKUP

267267

Performance on Unseen Workloads

H&M (H&L) HSS configuration, Sibyl outperforms RNN-
HSS and Archivist by 46.1% (54.6%) and 8.5% (44.1%),
respectively

268

Performance Analysis

Sibyl Oracle

Baseline policies are ineffective for many
workloads even when compared to Slow-Only

RNN-HSSSlow-Only CDE HPS Archivist

Performance-Oriented HSS Configuration

269

Performance on Mixed Workloads
Slow-Only CDE HPS Archivist RNN-HSS SibylDef SibylOpt Oracle

Performance-Oriented Cost-Oriented

270

Performance on Mixed Workloads
Slow-Only CDE HPS Archivist RNN-HSS SibylDef SibylOpt Oracle

Performance-Oriented Cost-Oriented

SibylDef outperforms baseline data placement
techniques by up to 27.9%

271

Performance on Mixed Workloads
Slow-Only CDE HPS Archivist RNN-HSS SibylDef SibylOpt Oracle

Performance-Oriented Cost-Oriented

SibylDef outperforms baseline data placement
techniques by up to 27.9%

SibylOpt provides 7.2% higher average
performance than SibylDef

272

Performance With Different Features

Sibyl autonomously decides which features are
important to maximize the performance of the running
workload

273

Sensitivity to Fast Storage Capacity

274

Explainability Analysis

275

Training and Inference Network
• Training and inference

networks allow parallel
execution

• Observation vector as
the input

• Produces probability
distribution of Q-values

276

