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The Problem

Computing
IS Bottlenecked by Data
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Data 1s Key for Al, ML, Genomics, ...

Important workloads are all data intensive

They require rapid and efficient processing of large amounts
of data

Data is increasing
o We can generate more than we can process
o We need to perform more sophisticated analyses on more data
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Data 1s Key for Modern Workloads

In-memory Databases Graph/Tree Processing
[Mao+, EuroSys’12; [Xu+, ISWC’12; Umuroglu+, FPL’15]
Clapp+ (Intel), ISWC’ 5]

et N
Spark

In-Memory Data Analytics Datacenter Workloads
[Clapp+ (Intel), ISWC'I5; [Kanev+ (Google), ISCA’15]
Awan+, BDCloud’15]

SAFARI



Huge Demand for Performance & Efficiency

Exponential Growth of Neural Networks aa

Memory and compute requirements 1800x more compute
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Data Overwhelms Modern Machines

In-memory Databases Graph/Tree Processing

Data — performance & energy bottleneck

APACHE

Spark

In-Memory Data Analytics Datacenter Workloads
[Clappt (Intel), ISWC’I5; [Kanev+ (Google), ISCA’|5]
Awan+, BDCloud’ | 5]
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Data 1s Key for Modern Workloads

@ T

Chrome TensorFlow Mobile
Google’s web browser Google’s machine learning
framework
VP9 VP9
@ O VouTube © O Voulube
Video Playback Video Capture
Google’s video codec Google’s video codec
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Data Overwhelms Modern Machines

.F

Chrome TensorFlow Mobile

Data — performance & energy bottleneck

@ O VouTube @ O YouTube
Video Playback Video Capture
Google’s video codec Google’s video codec
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Data Movement Overwhelms Modern Machines

Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul
Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

62.7% of the total system energy
Is spent on data movement

Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand* Saugata Ghose’ Youngsok Kim?
Rachata Ausavarungnirun!  Eric Shiv>  Rahul Thakur’>  Daehyun Kim*?
Aki Kuusela®>  Allan Knies®  Parthasarathy Ranganathan®  Onur Mutlu”!
SAFARI )


https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/
https://www.asplos2018.org/

Data Movement Overwhelms Accelerators

Amirali Boroumand, Saugata Ghose, Berkin Akin, Ravi Narayanaswami, Geraldo F. Oliveira,
Xiaoyu Ma, Eric Shiu, and Onur Mutlu,

"Google Neural Network Models for Edge Devices: Analyzing and Mitigating Machine
Learning Inference Bottlenecks"

Proceedings of the 30th International Conference on Parallel Architectures and Compilation
Technigues (PACT), Virtual, September 2021.

[Slides (pptx) (pdf)]

[Talk Video (14 minutes)]

> 90% of the total system energy
Is spent on memory in large ML models

Google Neural Network Models for Edge Devices:
Analyzing and Mitigating Machine Learning Inference Bottlenecks

Amirali Boroumand '™ Saugata Ghose* Berkin Akin® Ravi Narayanaswami®
Geraldo E Oliveira® Xiaoyu Ma?® Eric Shiu® Onur Mutlu*7

T Carnegie Mellon Univ. ®Stanford Univ. *Univ. of Illinois Urbana-Champaign YGoogle *ETH Ziirich
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https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21.pdf
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21.pdf
http://pactconf.org/
http://pactconf.org/
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21-talk.pdf
https://www.youtube.com/watch?v=A5gxjDbLRAs&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=178

Axiom

An Intelligent Architecture
Handles Data Well
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How to Handle Data Well

Ensure data does not overwhelm the components

o via intelligent algorithms, architectures & system designs:
algorithm-architecture-devices

Take advantage of vast amounts of data and metadata
o to improve architectural & system-level decisions

Understand and exploit properties of (different) data
o to improve algorithms & architectures in various metrics
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Corollaries: Computing Systems Today ...

= Are processor-centric vs. data-centric

= Make designer-dictated decisions vs. data-driven

= Make component-based myopic decisions vs. data-aware
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Fundamentally Better Architectures

Data-centric

Data-driven

Data-aware

SAFARI
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We Need to Revisit the Entire Stack

SW/HW Interface

We can get there step by step

SAFARI
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A Blueprint for Fundamentally Better Architectures

= Onur Mutluy,

'Intelligent Architectures for Intelligent Computing Systems"
Invited Paper in Proceedings of the Design, Automation, and Test in
Europe Conference (DATE), Virtual, February 2021.

Slides (pptx) (pdf)]

[IEDM Tutorial Slides (pptx) (pdf)]

[Short DATE Talk Video (11 minutes)]

[Longer IEDM Tutorial Video (1 hr 51 minutes)]

Intelligent Architectures for Intelligent Computing Systems

Onur Mutlu
ETH Zurich

omutlu@gmail.com
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https://people.inf.ethz.ch/omutlu/pub/intelligent-architectures-for-intelligent-computingsystems-invited_paper_DATE21.pdf
http://www.date-conference.com/
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-DATE-InvitedTalk-IntelligentArchitecturesForIntelligentComputingSystems-January-22-2021.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-DATE-InvitedTalk-IntelligentArchitecturesForIntelligentComputingSystems-January-22-2021.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://www.youtube.com/watch?v=eAZZGDlsDAY
https://www.youtube.com/watch?v=H3sEaINPBOE

Data-Driven (Selt-Optimizing)
Architectures




System Architecture Design Today

Human-driven
o Humans design the policies (how to do things)

Many (too) simple, short-sighted policies all over the system
No automatic data-driven policy learning

(Almost) no learning: cannot take lessons from past actions

Can we design
fundamentally intelligent architectures?

SAFARI 18



An Intelligent Architecture

Data-driven
o Machine learns the “best” policies (how to do things)

Sophisticated, workload-driven, changing, far-sighted policies
Automatic data-driven policy learning

All controllers are intelligent data-driven agents

We need to rethink design
(of all controllers)

SAFARI 19



Selt-Optimizing Memory Controllers

= Engin Ipek, Onur Mutlu, José F. Martinez, and Rich Caruana,
"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach”
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA ), pages 39-50, Beijing, China, June 2008.
Selected to the ISCA-50 25-Year Retrospective Issue covering 1996-
2020 in 2023 (Retrospective (pdf) Full Issue).

Self-Optimizing Memory Controllers: A Reinforcement Learning Approach

Engin Ipek'2  Onur Mutlu?  José F. Martinez!  Rich Caruana!

1Cornell University, Ithaca, NY 14850 USA
2 Microsoft Research, Redmond, WA 98052 USA
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http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/
https://sites.coecis.cornell.edu/isca50retrospective/files/2023/06/Retrospective__RL.pdf
https://sites.coecis.cornell.edu/isca50retrospective/

Selt-Optimizing Memory Prefetchers

Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu,
"Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, October 2021.
[Slides (pptx) (pdf)]

[Short Talk Slides (pptx) (pdf)]

[Lightning Talk Slides (pptx) (pdf)]

[Talk Video (20 minutes)]

[Lightning Talk Video (1.5 minutes)]

[Pythia Source Code (Officially Artifact Evaluated with All Badges)]

[arXiv version]

Officially artifact evaluated as available, reusable and reproducible.

Pythia: A Customizable Hardware Prefetching Framework
Using Online Reinforcement Learning
Rahul Bera!  Konstantinos Kanellopoulos! ~ Anant V. Nori?  Taha Shahroodi*!

Sreenivas Subramoney®  Onur Mutlu!
IETH Ziirich  ?Processor Architecture Research Labs, Intel Labs  3TU Delft

https://arxiv.orq/pdf/2109.12021.pdf 21


https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=7
https://www.youtube.com/watch?v=kzL22FTz0vc&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=2
https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/abs/2109.12021
https://arxiv.org/pdf/2109.12021.pdf

Learning-Based Off-Chip LLoad Predictors

Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk Olgun,
Mohammad Sadrosadati, and Onur Mutlu,
"Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load

Prediction”

Proceedings of the 55th International Symposium on Microarchitecture (MICRO), Chicago, IL, USA,
October 2022.

[Slides (pptx) (pdf)]

[Longer Lecture Slides (pptx) (pdf)]

[Talk Video (12 minutes)]

[Lecture Video (25 minutes)]

[arXiv version]

[Source Code (Officially Artifact Evaluated with All Badges)]

Officially artifact evaluated as available, reusable and reproducible.

Best paper award at MICRO 2022.

Hermes: Accelerating Long-Latency Load Requests
via Perceptron-Based Off-Chip Load Prediction

Rahul Bera!  Konstantinos Kanellopoulos!  Shankar Balachandran?  David Novo?
Ataberk Olgun' = Mohammad Sadrosadati’  Onur Mutlu!

'ETH Ziirich  2Intel Processor Architecture Research Lab 3LIRMM, Univ. Montpellier, CNRS

https://arxiv.orq/pdf/2209.00188.pdf 22


https://arxiv.org/pdf/2209.00188.pdf
https://arxiv.org/pdf/2209.00188.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pdf
https://www.youtube.com/watch?v=afGc1pWr-_Y
https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s
https://arxiv.org/abs/2209.00188
https://github.com/CMU-SAFARI/Hermes
https://arxiv.org/pdf/2209.00188.pdf

Selt-Optimizing Hybrid SSD Controllers

Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar,
David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu,
"Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage
Systems Using Online Reinforcement Learning"”

Proceedings of the 49th International Symposium on Computer

Architecture (ISCA), New York, June 2022.

[Slides (pptx) (pdf)]

[arXiv version]

[Sibyl Source Code]

[Talk Video (16 minutes)]

Sibyl: Adaptive and Extensible Data Placement in
Hybrid Storage Systems Using Online Reinforcement Learning

Gagandeep Singh!  Rakesh Nadig!  Jisung Park! = Rahul Bera! = Nastaran Hajinazar!
David Novo®  Juan Gémez-Luna'  Sander Stuijk?*  Henk Corporaal®  Onur Mutlu!

1ETH Ziirich 2Eindhoven University of Technology SLIRMM, Univ. Montpellier, CNRS

https: //arxiv.orq/pdf/2205.07394.pdf 23



https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
http://iscaconf.org/isca2022/
http://iscaconf.org/isca2022/
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pdf
https://arxiv.org/pdf/2205.07394.pdf
https://github.com/CMU-SAFARI/Sibyl
https://www.youtube.com/watch?v=5-WedkiB000
https://arxiv.org/pdf/2205.07394.pdf

Selt Optimizing
Memory Controllers




Selt-Optimizing Memory Controllers

= Engin Ipek, Onur Mutlu, José F. Martinez, and Rich Caruana,
"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach”
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA ), pages 39-50, Beijing, China, June 2008.
Selected to the ISCA-50 25-Year Retrospective Issue covering 1996-
2020 in 2023 (Retrospective (pdf) Full Issue).

Self-Optimizing Memory Controllers: A Reinforcement Learning Approach

Engin Ipek'2  Onur Mutlu?  José F. Martinez!  Rich Caruana!

1Cornell University, Ithaca, NY 14850 USA
2 Microsoft Research, Redmond, WA 98052 USA
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http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/
https://sites.coecis.cornell.edu/isca50retrospective/files/2023/06/Retrospective__RL.pdf
https://sites.coecis.cornell.edu/isca50retrospective/

DRAM Controllers Ditticult to Design

Need to obey DRAM timing constraints for correctness
o There are many (50+) timing constraints in DRAM

o tWTR: Minimum number of cycles to wait before issuing a read
command after a write command is issued

o tRC: Minimum number of cycles between the issuing of two
consecutive activate commands to the same bank

a ...

Need to keep track of many resources to prevent conflicts
o Channels, banks, ranks, data bus, address bus, row buffers

Neec
Neec

Neec

to handle DRAM refresh
to manage power consumption
to optimize performance & QOS (in the presence of constraints)

o Reordering is not simple
o Fairness and QoS needs complicates the scheduling problem

26



Many DRAM Timing Constraints

Latency | Symbol | DRAM cyeles H Latency | Symbol | DRAM cycles |

Precharge ‘RP 11 Activate to read/write ‘RCD 11

Read column address strobe CL 11 Write column address strobe CWL 8
Additive AL 0 Activate to activate ‘RC 39

Activate to precharge ‘RAS 28 Read to precharge ‘RTP 6

Burst length ‘BL 4 Column address strobe to column address strobe | ‘CC D 4

Activate to activate (different bank) | * RRD 6 Four activate windows ‘FAW 24
Write to read ‘WTR 6 Write recovery ‘WR 12

Table 4. DDR3 1600 DRAM timing specifications

= From Lee et al., “DRAM-Aware Last-Level Cache Writeback: Reducing

Write-Caused Interference in Memory Systems,” HPS Technical Report,
April 2010.
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More on DRAM Operation

= Kim et al., “A Case for Exploiting Subarray-Level Parallelism
(SALP) in DRAM,"” ISCA 2012.

= Lee et al., "Tiered-Latency DRAM: A Low Latency and Low
Cost DRAM Architecture,” HPCA 2013.

Q .| Q
® & & Gi & Table 2. Timing Constraints (DDR3-1066) [43]
< &« Q < <
< tRC > | Phase Commands Name Value
——tRAS—— | < tRP—| ACT  READ
; time -
Subarray —[ 1. Activation Ore 1. Activation — 1 ACT — WRITE CRCD 15ns
| |
Peripheral & <tRCD- G ! <tRCD~> 770 time ACT — PRE tRAS 37.5ns
I/O-Circuitry READ — data tCL 15ns
«—tCL— | <tCL—> ! time 2  WRITE — data tCWL 11.25ns
Bus data >
' ! : data burst tBL 7.5ns
, 'tBLY tBL, 3 PRE— ACT tRP  15ns
<—first access latency—> | i TRC
second access latency | 1&3 ACT — ACT (tRAS+tRP) 52.5ns

Figure 5. Three Phases of DRAM Access
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Why So Many Timing Constraints? (1)

< Activating (tRAS=35ns) > Precharging

Precharged <« tRCD=15ns » <«—— READ/WRITE Allowed —> <« tRP=15ns —»
0 V V 0
"wa}Zﬁj}{é@_Q_ B —= T A B I @_0_ B
g S

N Q|S | ACTIVATE 2 PRECHARGE QO Q

al alE a N

O :&:5— 0 0O : — 0 &

oo

Figure 4. DRAM bank operation: Steps involved in serving a memory request [17] (Vpp >Vpp)

Category RowCmd<+»RowCmd RowCmd<+ColCmd ColCmd<+ColCmd ColCmd—DATA
Name tRC tRAS tH P tRCD tRTP tWR* tCCD tRTWT tWTR* CL CWL
Commands A—A A—P P—A A—-R/W R—P W*—=P R(W)—-R(W) R—-W W*=R R—DATA W-DATA
Scope Bank Bank Bank Bank Bank Bank Channel Rank Rank Bank Bank
Value (ns) ~50 ~35 13-15 13-15 ~1.5 5-7.5 11-15 ~7.5 13-15 10-15
A: ACTIVATE- P: PRECHARGE- R: READ- W: WRITE * Goes into effect after the last write data, not from the WRITE command

1 Not explicitly specified by the JEDEC DDR3 standard [18]. Defined as a function of other timing constraints.
Table 1. Summary of DDR3-SDRAM timing constraints (derived from Micron’s 2Gb DDR3-SDRAM datasheet [33])

Kim et al., “"A Case for Exploiting Subarray-Level Parallelism (SALP) in DRAM,” ISCA 2012.
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Why So Many Timing Constraints? (II)

T Q| .
® : @
I o:: a
0.75Vpp Voo
G £ £
g T Z —>7 T 2 —>7

Threshold Restored
1 "
1.2. Sensing & Amplification ]
I

L |
1. Activation 3. Precharging

<«————tRCD (151’15)%:
€ tRAS (37.5ns) > ¢é—tRP (15ns)—>
< tRC (52.5ns) >
Figure 6. Charge Flow Between the Cell Capacitor (C'¢), Bitline Parasitic Capacitor (Cp), and the Sense-Amplifier (Cp =~ 3.5Cc [39])

——————————

|
|
|
Quiescent |
|
|
|

Fully Half
Charged Charged

Table 2. Timing Constraints (DDR3-1066) [43]

Phase Commands Name Value
— ACT =2 READ =y pep 15ms
Lee et al., "Tiered-Latency DRAM: A Low Latency 1 ACT — WRITE

and Low Cost DRAM Architecture,” HPCA 2013. ACT—PRE  tRAS  37.5ns

READ — data tCL 15ns
2  WRITE — data tCWL 11.25ns

data burst tBL 7.5ns

3 PRE — ACT tRP 15ns

1&3 ACT — ACT LRC 52.5ns

(tRAS+tRP)




DRAM Controller Design Is Becoming More Ditficult

CPU CPU
GPU
y v
DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

= Heterogeneous agents: CPUs, GPUs, and HWAs
= Main memory interference between CPUs, GPUs, HWAs
= Many timing constraints for various memory types

= Many goals at the same time: performance, fairness, QoS,
energy efficiency, ...

31



Reality and Dream

Reality: It is difficult to design a policy that maximizes
performance, QoS, energy-efficiency, ...

o Too many things to think about
o Continuously changing workload and system behavior

Dream: Wouldn't it be nice if the DRAM controller
automatically found a good scheduling policy on its own?

32



Memory Controller: Performance Function

Resolves memory contention
..................... by scheduling requests

Controller E

llllllllllllllllllllll

How to schedule requests to maximize system performance?

SAFARI 33



Selt-Optimizing DRAM Controllers

Problem: DRAM controllers are difficult to design

o It is difficult for human designers to design a policy that can adapt
itself very well to different workloads and different system conditions

Idea: A memory controller that adapts its scheduling policy to
workload behavior and system conditions using machine learning.

Observation: Reinforcement learning maps nicely to memory
control.

Design: Memory controller is a reinforcement learning agent

o It dynamically and continuously learns and employs the best
scheduling policy to maximize long-term performance.

Ipek+, “Self Optimizing Memory Controllers: A Reinforcement Learning Approach,” ISCA 2008.



Selt-Optimizing DRAM Controllers

’ | ENVIRONMENT

<+— Reward r(t)
<+— State s(t)

Goal: Learn to choose actions to maximize ro + yri + y2r, + ... (0 <y < 1)

Action a(t+1) Agent

Figure 2: (a) Intelligent agent based on reinforcement learning
principles;


http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/

Selt-Optimizing DRAM Controllers

Dynamically adapt the memory scheduling policy via
interaction with the system at runtime

o Associate system states and actions (commands) with long term
reward values: each action at a given state leads to a learned reward

o Schedule command with highest estimated long-term reward value in
each state

o Continuously update reward values for <state, action> pairs based on
feedback from system

>| SYSTEM

Data Bus

Scheduled DRAM Utilization (t)
Command (t+1) Scheduler State

Attributes (1)
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Selt-Optimizing DRAM Controllers

= Engin Ipek, Onur Mutlu, José F. Martinez, and Rich Caruana,
"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach”
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA ), pages 39-50, Beijing, China, June 2008.

State \ ACtiO/n\
/ / Command 2

Transaction Queue
l ‘ | ‘ ‘ ‘ \ ‘ \ <:> Address
-
-~ ~
-~ ~ -
- o B \ —

Valid |Bank | Row | Col | Data | "aaue™ Rewal\rc/

Figure 4: High-level overview of an RL-based scheduler.

DRAM



http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

States, Actions, Rewards

¥ Reward function * State attributes ® Actions
e +1 for scheduling e Number of reads, e Activate
Read and Write writes, and load o Writ
commands MISSes in rite

e 0 at all other transaction queue o

times e Number of pending o
writes and ROB

Goal is to maximize heads waiting for

long-term

data bus referenced row °

utilization ® Request’s relative °
ROB order

Read - load miss

Read - store miss
Precharge - pending
Precharge - preemptive
NOP
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Performance Results

g 2%
318
Y 140
g 1.20
3 1.00
a 0.80
3 0.60
B 0.40
.% ART CG EQUAKE FFT MG OCEAN RADIX SCALPARC SWIM  G-MEAN

M In-Order MW FR-FCFS mRL M Optimistic

Figure 7: Performance comparison of in-order, FR-FCFS, RL-based, and optimistic memory controllers

Large, robust performance improvements
over many human-designed policies

BEREBREN

Speedup over
1-Channel FR-FCFS
O Bt

ART CG EQUAKE FFT MG OCEAN RADIX SCALPARC SWIM G-MEAN

M FR-FCFS - 1 Channel " RL-1 Channel M FR-FCFS -2 Channels MRL - 2 Channels

Figure 15: Performance comparison of FR-FCFS and RL-based memory controllers on systems with 6.4GB/s and 12.8GB/s peak
DRAM bandwidth
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Selt Optimizing DRAM Controllers

+ Continuous learning in the presence of changing environment

+ Reduced designer burden in finding a good scheduling policy.
Designer specifies:

1) What system variables might be useful
2) What target to optimize, but not how to optimize it

-- How to specify different objectives? (e.g., fairness, QoS, ...)
-- Hardware complexity?

-- Design mindset and flow

40



Selt-Optimizing Memory Controllers

= Engin Ipek, Onur Mutlu, José F. Martinez, and Rich Caruana,
"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach”
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA ), pages 39-50, Beijing, China, June 2008.
Selected to the ISCA-50 25-Year Retrospective Issue covering 1996-
2020 in 2023 (Retrospective (pdf) Full Issue).

Self-Optimizing Memory Controllers: A Reinforcement Learning Approach

Engin Ipek'2  Onur Mutlu?  José F. Martinez!  Rich Caruana!

1Cornell University, Ithaca, NY 14850 USA
2 Microsoft Research, Redmond, WA 98052 USA
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Selt-Optimizing Memory Prefetchers

Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu,
"Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, October 2021.
[Slides (pptx) (pdf)]
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[Lightning Talk Slides (pptx) (pdf)]
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[Pythia Source Code (Officially Artifact Evaluated with All Badges)]

[arXiv version]

Officially artifact evaluated as available, reusable and reproducible.
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Executive Summary

* Background: Prefetchers predict addresses of future memory requests by associating
memory access patterns with pieces of program and system information (called feature)

* Problem: Three key shortcomings of prior prefetchers:
Predict mainly using a single program feature

Lack inherent system awareness (e.g., memory bandwidth usage)

Lack in-silicon customizability

: Design a prefetching framework that:
Learns from and

Can be to use different features and/or prefetching objectives

* Contribution: Pythia, which formulates prefetching as reinforcement learning problem
- Takes adaptive prefetch decisions using multiple features and system-level feedback
- Can be customized in silicon for target workloads via simple configuration registers
- Proposes a realistic and practical implementation of RL algorithm in hardware

* Key Results:
- Evaluated using a wide range of workloads from SPEC CPU, PARSEC, Ligra, Cloudsuite
- Outperforms best prefetcher by 3.4%, 7.7% and 17% in 1/4/bw-constrained cores
- Customizing Pythia leads to up to 7.8% more performance over basic Pythia across Ligra workloads

SAFARI https://github.com/CMU-SAFARI/Pythia 45
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Talk Outline

Key Shortcomings of Prior Prefetchers
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Prefetching Basics

* Predicts addresses of long-latency memory requests and
fetches data before the program demands it

* Associates access patterns from past memory requests
with program context or system information

Program Feature - Access Pattern

 Example program features
- Program counter (PC)

Page number

Page offset

Cacheline delta

Or a combination of these attributes
SAFARI 47



Key Shortcomings in Prior Prefetchers

* We observe three key shortcomings that significantly
limit performance benefits of prior prefetchers

1 Predict mainly using a single program feature

2 Lack inherent system awareness

Lack in-silicon customizability

SAFARI 48



(1) Single-Feature Prefetch Prediction

* Provides good performance gains mainly on workloads
where the feature-to-pattern correlation exists

0% f—— — — |

I : I 1

5 50% i | : :
o ' 15.4% OSPP f4Bingo M Pythia | | o -
g 340% _E ? : i 4.6% E
S 2 30% |l % ] :
s 7 ¥ :
e S 20% i / 5.5% Lo l
ST G I B :
= 10% ! é 3.5% /l: ! !
o LD ~7ZR | 7| 71 |

: 482.sphinx3-417B PARSEC-Canneal PARSEC-Facesim’I i459.GemsFDTD-7658 :
“"""""/"_';" """"""""" ;')' """ ’

Bingo 1) performs better SPP ) performs better
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(1) Single-Feature Prefetch Prediction

Relying on a single feature for prediction leaves

significant performance improvement on table

SA FA Rl [1] Bakshalipour et al., HPCA’19 [2] Kim et al., MICRO’16 50



(2) Lack of Inherent System Awareness

e Little understanding of undesirable effects (e.g.,
memory bandwidth usage, cache pollution, ...)
- Performance loss in resource-constrained configurations
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(2) Lack of Inherent System Awareness

Prefetchers often lose performance due to lack

of inherent system awareness




(3) Lack of In-silicon Customizability

* Feature statically selected at design time
- Rigid hardware designed specifically to exploit that feature

* No way to change program feature and/or change
prefetcher’s objective in silicon
- Cannot adapt to a wide range of workload demands

Design from scratch Verify Fabricate

SAFARI 53



Our Goal

\_

A prefetching framework that can:

1.Learn to prefetch using and
information

2.Be easily customized in silicon to use different
features and/or change prefetcher’s objectives

)

SAFARI
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Our Proposal

Formulates prefetching as a
reinforcement learning problem

Pythia is named after the oracle of Delphi, who is known for her accurate prophecies

SA F A R I https://en.wikipedia.org/wiki/Pythia
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Talk Outline

Formulating Prefetching as Reinforcement Learning
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Basics of Reinforcement Learning (RL)

* Algorithmic approach to learn to take an action in a
given situation to maximize a numerical reward

| Agent \

[ Environment ]

* Agent stores Q-values for every state-action pair
- Expected return for taking an action in a state

- Given a state, selects action that provides Q-value
SAFARI 57



Formulating Prefetching as RL
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What is State?

e k-dimensional vector of features
S = {45, 9% - - P}
 Feature = control-flow + data-flow

A+offset (0)

Memory Subsystem

* Control-flow examples
- PC
- Branch PC
- Last-3 PCs, ...

* Data-flow examples

Cacheline address

Physical page number

Delta between two cacheline addresses
Last 4 deltas, ...

SAFARI 59
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What is State?

ch from address

offset (0)

Example of a state information

S = {PC+Delta, Sequence of last-4 deltas}

I_T 1

Feature-1 (¢,) Feature-2 (¢,)
PC Cacheline Delta Seq. of last-4 deltas
(Control-flow info.) (Data-flow info.) (Data-flow info.)

SAFARI 60



What is Action?

Given a demand access to address A
the action is to select prefetch offset “O”

: 127 actions in the range [-63, +63]
- For a machine with 4KB page and 64B cacheline

* Upper and lower limits ensure prefetches do not cross
physical page boundary

* A zero offset means no prefetch is generated

* We further prune action-space by design-space exploration

SAFARI 61



What is Reward?

* Defines the objective of Pythia

* Encapsulates two metrics:

- Prefetch usefulness (e.g., accurate, late, out-of-page, ...)

- System-level feedback (e.g., mem. b/w usage, cache
pollution, energy, ...)

* We demonstrate Pythia with
as the system-level feedback in the paper

SAFARI 62



What is Reward?

* Seven distinct reward levels

- Accurate and timely (Rxq)
- Accurate but late (Ry)
- Loss of coverage (R)
- Inaccurate
* With low memory b/w usage (R\-L)
* With high memory b/w usage (R\-H)
- No-prefetch
* With low memory b/w usage (Ryp-L)
* With high memory b/w usage(Ryp-H)

* Values are set at design time via automatic design-
space exploration

- Can be further in silicon for higher performance
SAFARI 63



Steering Pythia’s Objective via Reward Values

* Example reward configuration for
- Generating accurate prefetches

- Making prefetch decisions
-14 8 -4 -2 +12  +20
Rin-H Rn-L Ryp-L Ryp-H RaL Rat

AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate;
H = High mem. b/w; L = Low mem. b/w

1 Highly prefers to generate accurate prefetches

r

\

2 Prefers not to prefetch if memory bandwidth usage is low

7
\

@Strongly prefers not to prefetch if memory bandwidth usage is high

SAFARI
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Steering Pythia’s Objective via Reward Values

* Customizing reward values to make Pythia conservative
towards prefetching

-22  -20 +12  +20

&
S | | | | |

RlN-H RlN-L RAL RAT

AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate;
H = High mem. b/w; L = Low mem. b/w

ﬂ Highly prefers to generate accurate prefetches

2 Otherwise prefers not to prefetch

SAFARI
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Steering Pythia’s Objective via Reward Values

Strict Pythia configuration

Bandwidth-sensitive

Server-class processors
P workloads

SAFARI
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Talk Outline

Pythia: Overview
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Pythia Overview

: Records Q-values for all state-action pairs
 Evaluation Queue: A FIFO queue of recently-taken actions

Find the Action with max Q-Value

a Al1|AlzlAl3| a

Look up 1 |

Generate
II:)(emand . \;State Qvstore |1 prefetch ( Memory ]
equest ector 52 - i
9 2 [Viax L Hierarchy
> S4
Q-Value Store
6 Evict EQ entry and (QVStore)
update QVStore
—[ Evaluation Queue (EQ) |- 9

) Insert prefetch action &

i' T State-Action pair in EQ
Set filled bit a

Assign reward to

corresponding EQ entry

Prefetch Fill

SAFARI



Architecting QVStore

Find the Action with max Q-Value
I I |

Lookup ["ME— T T 1 Generate
State Qvstore 1 W1 1 1 prefeich
I 1 I I I ekttt
Vector g g 1 E1 71
= 1
S = {PC+Delta, E1 I
Sequence of last-4 deltas} Q-Value Store
(QVStore)

SAFARI



Architecting the QVStore

{ Fast prefetch prediction J
[ Fast retrieval of Q-values from QVStore J

U

[ Efficient storage organization of Q-values in QVStore ]

SAFARI 70



Organization of QVStore

* A monolithic two-dimensional table?
- Indexed by state and action values

 State-space increases exponentially with #bits

S = {PC+Delta, Sequence of last-4 deltas}

32b + 7b + 4x7b = 67 bits
127 actions

A6 A7 A8 A9 ____,

Al A2 A3 A4 A5

257 states

71
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Organization of QVStore

* We partition QVStore into k vaults

- Each vault corresponds to one feature and stores the Q-
values of feature-action pairs

To retrieve Q(S,A) for

each action

e Query each vaultin

Vault, parallel with feature
and action

* Retrieve feature-action
O-value from each vault

e Compute MAX of all
feature-action Q-values

Vault1

MAX ensures the Q(S,A) is driven by the

constituent feature that has highest Q(¢,A)

SAFARI



Organization of QVStore

* We further partition each vault into multiple planes
- Each plane stores a partial Q-value of a feature-action pair

To retrieve Q(¢,A)
for each action

* Query
with hashed

feature and action

from each
plane
 Compute SUM of all partial
feature-action Q-values

SAFARI

Action (A)

———————————————————————
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Organization of QVStore

1. Enables sharing of partial Q-values between similar
feature values, shortens prefetcher training time

2. Reduces chances of sharing partial Q-values
across widely different feature values

SAFARI 74



More in the Paper

* Pipelined search operation for QVStore
* Reward assignment and

* Automatic design-space exploration
- Feature types

- Actions
- Reward and Hyperparameter values

SAFARI
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More in the Paper

Pythia: A Customizable Hardware Prefetching Framework
Using Online Reinforcement Learning

Rahul Bera!  Konstantinos Kanellopoulos! =~ Anant V. Nori*  Taha Shahroodi®
Sreenivas Subramoney?  Onur Mutlu!

IETH Ziirich  ?Processor Architecture Research Labs, Intel Labs  3TU Delft

https://arxiv.or df/2109.12021.pdf

SAFARI
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Talk Outline

Evaluation of Pythia and Key Results
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Simulation Methodology

* Champsim |1 trace-driven simulator

* 150 single-core memory-intensive workload traces
- SPEC CPU2006 and CPU2017
- PARSEC 2.1
- Ligra
- Cloudsuite

* Homogeneous and heterogeneous multi-core mixes

* Five state-of-the-art prefetchers
- SPP

Bingo

MLOP

SPP+DSPatch

SPP+PPF

SAFARI


https://github.com/ChampSim/ChampSim

Basic Pythia Configuration

* Derived from automatic design-space exploration

e State: 2 features
- PC+Delta
- Sequence of last-4 deltas

* Actions: 16 prefetch offsets
- Ranging between -6 to +32. Including O.

* Rewards:
= RAT = +20; RAL - +12; RNP_H=_2; RNP_L=_4;
= R|N‘H='14; R|N‘L='8; RCL=_12

SAFARI
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List of Evaluated Features

Table 3: List of program control-flow and data-flow compo-
nents used to derive the list of features for exploration

Control-flow Component Data-flow Component

(1) Load cacheline address
(2) Page number

(1) PC of load request (3) Page offset

(2) PC-path (XOR-ed last-3 PCs) (4) Load address delta

(3) PC XOR-ed branch-PC (5) Sequence of last-4 offsets

(4) None (6) Sequence of last-4 deltas
(7) Offset XOR-ed with delta
(8) None

SAFARI A



Basic Pythia Configuration

Table 2: Basic Pythia configuration derived from our auto-
mated design-space exploration

Features PC+Delta, Sequence of last-4 deltas

Prefetch Action List {-6,-3,-1,0,1,3,4,5,10,11,12,16,22,23,30,32}

Ra1=20, Rar=12, Rcp=-12, R;IN=—14,
L _ H _ L _

RIN__S’ :RNP__Z’ RNP__4

Hyperparameters o = 0.0065, y = 0.556, € = 0.002

Reward Level Values

SAFARI A



Performance with Varying Core Count
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Performance with Varying Core Count

1. Pythia consistently provides the highest
performance in all core configurations

2. Pythia’s gain increases with core count

SAFARI 83



Performance with Varying DRAM Bandwidth
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Performance with Varying DRAM Bandwidth

Pythia outperforms prior best prefetchers for

a wide range of DRAM bandwidth configurations
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Performance Improvement via Customization

e Reward value customization

e Strict Pythia configuration
- Increase the rewards for no prefetching
- Decrease the rewards for inaccurate prefetching

-22 -20 +1 +2 +12 +20

<l | | | | |
N 1 I I I 1

Rin-H Rin-L Rne-L Ryp-H RaL Rat

AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate;
H = High mem. b/w; L = Low mem. b/w

e Strict Pythia is more conservative in generating
prefetch requests than the basic Pythia

* Evaluate on all Ligra graph processing workloads
SAFARI
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Performance Improvement via Customization
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Performance Improvement via Customization

Pythia can extract even higher performance

via customization without changing hardware
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Pythia’s Overhead

e 25.5 KB of total metadata storage per core
- Only simple tables

* We also model functionally-accurate Pythia with full
complexity in Chisel 4 HDL

1.03% area overhead

0.4% power overhead

V Satisfies prediction latency

of a desktop-class 4-core Skylake processor (Xeon D2132IT, 60W)
SAFAR' [4] https://www.chisel-lang.org 89
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More in the Paper

* Performance comparison with unseen traces
- Pythia provides equally high performance benefits

 Comparison against multi-level prefetchers
- Pythia outperforms prior best multi-level prefetchers

e Understanding Pythia’s learning with
- We reason towards of Pythia’s decision

towards different features and
hyperparameter values

* Detailed single-core and four-core performance

SAFARI



Performance on Previously-Unseen Workloads

* Evaluated with 500 traces from value prediction
championship

- No prefetcher has been trained on these traces

OSPP @Bingo #MLOP mPythia OSPP @Bingo #WMLOP mPythia

o 16 a 15
=) | S S
8 g L5 (a) SIngIe_Core $ g 14 - (b) four-core @@
ss14y vl B o o
n N o a 134 T
c © 134 M/ c 5
© 2 S~-124 il IR 0000
Q QL) 1.2 1 A | (e am E ()]
53 111 g 8 11+ IEI H ”””
& 1 | Eom E-A | © T s H

Crypto INT FP Server GEOMEAN Crypto INT Server GEOMEAN

Pythia outperforms MLOP and Bingo by
8.3% and 3.5% in single-core

And 9.7% and 5.4% in four-core
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More in the Paper

Pythia: A Customizable Hardware Prefetching Framework
Using Online Reinforcement Learning
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Pythia is Open Source

https://github.com/CMU-SAFARI/Pythia

* MICRO’21 artifact evaluated
* Champsim source code + Chisel modeling code

* All traces used for evaluation

& CMU-SAFARI/Pythia « public

<> Code © lIssues

¥ master ~ ¥ 1branch © 5 tags

a rahulbera Github pages documentation

branch
config

docs
experiments
inc
prefetcher
replacement
scripts
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.gitignore
CITATION.cff

LICENSE

[ i
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Updated LICENSE
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Executive Summary

* Background: Prefetchers predict addresses of future memory requests by associating
memory access patterns with pieces of program and system information (called feature)

* Problem: Three key shortcomings of prior prefetchers:
Predict mainly using a single program feature

Lack inherent system awareness (e.g., memory bandwidth usage)

Lack in-silicon customizability

: Design a prefetching framework that:
Learns from and

Can be to use different features and/or prefetching objectives

* Contribution: Pythia, which formulates prefetching as reinforcement learning problem
- Takes adaptive prefetch decisions using multiple features and system-level feedback
- Can be customized in silicon for target workloads via simple configuration registers
- Proposes a realistic and practical implementation of RL algorithm in hardware

* Key Results:
- Evaluated using a wide range of workloads from SPEC CPU, PARSEC, Ligra, Cloudsuite
- Outperforms best prefetcher by 3.4%, 7.7% and 17% in 1/4/bw-constrained cores
- Customizing Pythia leads to up to 7.8% more performance over basic Pythia across Ligra workloads

SAFARI https://github.com/CMU-SAFARI/Pythia 95
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Pythia Discussion

* FAQs

- Why RL?
- What about large page?
- What’s the prefetch degree?

- Can customization happen during
workload execution?

- Can runtime mixing create problem?

e Simulation and Methodology

- Basic Pythia configuration

- System parameters
- Configuration of prefetchers
- Evaluated workloads

- Feature selection

SAFARI

* Detailed Design

Reward structure

Design overview

QVStore Organization

* More Results

Comparison against other adaptive
prefetchers

Comparison against Context prefetcher
Feature combination sensitivity
Hyperparameter sensitivity
Comparison with multi-level prefetchers
Performance in unseen workloads
Single-core s-curve

Four-core s-curve

Detailed performance analysis

Benefit of bandwidth awareness

Case study

Customizing rewards

Customizing features
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The Key Problem

Long-latency off-chip load requests

) 4

Often stall processor by
blocking instruction retirement from
Reorder Buffer (ROB)

¥

Limit performance
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Traditional Solutions

i\

Employ sophisticated prefetchers

Increase size of on-chip caches
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Key Observation 1

Many loads still go off-chip

50%
50% still go off-chip even with

successfully prefetched a state-of-the-art prefetcher

70% of the off-chip loads
block the ROB

# off-chip loads without any prefetcher
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Key Observation 2 <\
4

On-chip cache access latency
significantly contributes to off-chip load latency

L1 | L2 LLC Main Memory

¥

Saved cycles

40% of the stalls can be eliminated by removing

on-chip cache access latency from critical path

SAFARI 106



Caches are Getting Bigger and Slower...
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Our Goal

Improve processor performance
by removing on-chip cache access latency
from the critical path of off-chip loads
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Predicts which load requests
are likely to go off-chip

Starts fetching data directly from main memory
while concurrently accessing the cache hierarchy

SAFARI 8



Key Contribution
\\/

A1 V4 :
7 Hermes employs the first

perceptron-based off-chip load predictor

@,

That predicts which loads are likely to go off-chip

@ By learning from
multiple program context information
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Hermes Overview

Core

Latency tolerance limit of ROB

.

Processor is stalled

»

L1

L2

LLC

Main Memory

[ Main Memory

Off-Chip

SAFARI
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Hermes Overview
c Predict off-chip load predictor

Perceptron-based

Issue a
Hermes

request L1 | L2 LLC Main Memory

.~

e Wait L1| L2 LLC
ai _ : Saved stall cycles
Main Memory, « g

Off-Chip |
Main Memory
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Designing the Off-Chip Load Predictor

POPET provides

both higher accuracy and higher performance
than predictors inspired from these previous works

Learning from program behavior

Correlate different program features with off-chip loads

@ Low storage overhead @ Low design complexity




POPET: Perceptron-Based Off-Chip Predictor

* Multi-feature hashed perceptron model 1! |
- Each feature has its own weight table —
* Stores correlation between feature value and off-chip prediction

Feature, Table,
Table,

(e.g., PC+ offset)

Ceature Tobie,
Table,

Weight

Tabley,

SAFAR’ [1] D. Tarjan and K. Skadron, "Merging Path and Gshare Indexing in Perceptron Branch Prediction,” TACO, 2005 114




Predicting using POPET

* Usessimple table lookups, addition, and comparison

il
il
1l
Weight [l

3 Table,

E (e.g., PC+ offset)

=l Ox7ffe0+12

&

C + Weight

S v

= 3 I Table, \

¥ o

S QL :

-~ . .

S :

2, :

+

S

S Weight

X Table,

et
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Training POPET

* Usessimple increment or decrement of feature weights

off-chip

z L Shouldn’t be activated

Cumulative weight < 7,
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Features Used in Hermes

Table 1: The initial set of program features used for automated
feature selection. @ represents a bitwise XOR operation.

Features without control-flow Features with control-flow

information information

8. Load PC
1. Load virtual address 9. PC & load virtual address
2. Virtual page number 10. PC & virtual page number
3. Cacheline offset in page 11. PC & cacheline offset
4. First access 12. PC + first access
5. Cacheline offset + first access 13. PC & byte offset
6. Byte offset in cacheline 14. PC & word offset
7. Word offset in cacheline 15. Last-4 load PCs

16. Last-4 PCs

Table 2: POPET configuration parameters

Selected features

PC & cacheline offset

PC & byte offset

PC + first access

Cacheline offset + first access
Last-4 load PCs

SAFARI Threshold values Toact = —18, Ty = —35, Tp = 40
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Simulation Methodology

* ChampSim trace driven simulator

* 110 single-core memory-intensive traces
- SPECCPU 2006 and 2017
- PARSEC 2.1
- Ligra
- Real-world applications

* 220 eight-core memory-intensive trace mixes

Off-Chip Predictors

LLC Prefetchers

* Pythia * History-based: HMP

* Bingo * Tracking-based: Address Tag-

* MLOP Tracking based Predictor (TTP)
* SPP + Perceptron filter

e SMS * Ideal Off-chip Predictor
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Latency Configuration

* Cache round-trip latency

PO_PET * L1-D: 5 cycles
e L2:15cycles
@ e LLC:55 cycles
Issue
Hermes
t :
e * Hermes request issue latency
(incurred after address translation)
Depends on
© wait * Interconnect between POPET and MC
MC |<

| »*: |

0 cycles \ 24 cycles
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Single-Core Performance Improvement

1.35
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Geomean speedup
over the No-prefetching system

Harmace alana nraviidac naarlhy

Hermes provides nearly 90% performance benefit of

Ideal Hermes that has an ideal off-chip load predictor
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Increase in Main Memory Requests

For every 1% performance benefit,

Increase in main memory requests

Pythia 2%

Hermes on top of Pythia 1%

Hermes alone 0.5%

Hermes is more bandwidth-efficient

than even an efficient prefetcher like Pythia
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Performance with Varying Memory Bandwidth

1-3 7 Pythia+Hermes

1.25 - —\/ -O
1.2 - /O/

1.15 -
/
L o O 2

1.05 -

Geomean speedup
over the No-prefetching system

0.95

O
Co)

Hermes+Pythia outperforms Pythia

across all bandwidth configurations



Performance with Varying Baseline Prefetcher

O Prefetcher-only B Prefetcher + Hermes

=
s

Ing system
[
N
Un
I

-
N

Hermes consistently improves performance
on top of a wide range of baseline prefetchers

overthe N
[
@)
Un
|

R

Pythia Bingo SPP MLOP SMS
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Effect of Cache Hierarchy Access Latency

Hermes can provide even higher performance benefit in
future processors with bigger and slower on-chip caches

SAFARI



Effect of ROB Size
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Effect of LLC Size
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Accuracy and Coverage with Different Prefetchers

100%

mmAccuracy O-Coverage

90% -
80% -
70% -
60% -

50% -

POPET's accuracy and coverage increases significantly
in absence of a data prefetcher
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Overhead of Hermes

o 4 KB storage overhead
O 1.5% power overhead*

*On top of an Intel Alder Lake-like performance-core 2! configuration

SA FA Rl [2] https://www.anandtech.com/show/16881/a-deep-dive-into-intels-alder-lake-microarchitectures/3 129



More in the Paper

Performance sensitivity to:

- Cache hierarchy access latency
Hermes request issue latency
Activation threshold
ROB size (in extended version on arXiv)
LLC size (in extended version on arXiv)

Accuracy, coverage, and performance analysis against HMP and TTP

Understanding usefulness of each program feature

Effect on stall cycle reduction

analysis on an system
SAFARI 130
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More in the Paper

Hermes: Accelerating Long-Latency Load Requests
via Perceptron-Based Off-Chip Load Prediction

Rahul Bera!  Konstantinos Kanellopoulos®

Ataberk Olgun?

Mohammad Sadrosadati!

Shankar Balachandran?  David Novo?®

Onur Mutlu!

'ETH Ziirich ?Intel Processor Architecture Research Lab  3LIRMM, Univ. Montpellier, CNRS

Long-latency load requests continue to limit the performance
of modern high-performance processors. To increase the latency
tolerance of a processor, architects have primarily relied on two
key techniques: sophisticated data prefetchers and large on-chip
caches. In this work, we show that: (1) even a sophisticated state-
of-the-art prefetcher can only predict half of the off-chip load
requests on average across a wide range of workloads, and (2)
due to the increasing size and complexity of on-chip caches, a
large fraction of the latency of an off-chip load request is spent
accessing the on-chip cache hierarchy to solely determine that it
needs to go off-chip.

The goal of this work is to accelerate off-chip load requests
by removing the on-chip cache access latency from their critical
path. To this end, we propose a new technique called Hermes,
whose key idea is to: (1) accurately predict which load requests

off-chip main memory (i.e., an off-chip load) often stalls the pro-
cessor core by blocking the instruction retirement from the re-
order buffer (ROB), thus limiting the core’s performance [88, 91,
92]. To increase the latency tolerance of a core, computer archi-
tects primarily rely on two key techniques. First, they employ
increasingly sophisticated hardware prefetchers that can learn
complex memory address patterns and fetch data required by
future load requests before the core demands them [28, 32,
33, 35, 75]. Second, they significantly scale up the size of the
on-chip cache hierarchy with each new generation of proces-
sors [10, 11, 16].

Key problem. Despite recent advances in processor core
design, we observe two key trends in new processor designs
that leave a significant opportunity for performance improve-
ment on the table. First, even a sophisticated state-of-the-art

https://arxiv.org/pdf/2209.00188.pdf
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To Summarize...



Summary

Hermes enables off-chip load prediction,
a different form of speculation than
employed by prefetchers

Off-chip load prediction can be applied by itself
or combined with load address prediction
to provide performance improvement

SAFARI 133



Summary

Hermes employs the first

perceptron-based off-chip load predictor

X d

High accuracy | High coverage Low storage
overhead
(77%) (74%)
) ) (4KB/core)
(A AN

High performance improvement

over best prior baseline
(5.4%)

High performance
per bandwidth




Hermes is Open Sourced

All workload traces

13 prefetchers @ 9 off-chip predictors

e Stride [Fu+, MICRO'92]

o Streamer [Chen and Baer, IEEE TC'95] Predictor type  Description

e SMS [Somogyi+, ISCA'06] Base Always NO

« AMPM [IShii*‘: |CSI09] Basic Simple confidence counter-based threshold

* Sandbox [PUQSIey+’ HPCA'1 4] Random Random Hit-miss predictor with a given positive probability
* BOP [MiChaUd’ HPCA" 6] HMP-Local Hit-miss predictor [Yoaz+, ISCA'99] with local prediction

« SPP [Kim+, MICRO'16]

. . HMP-GShare Hit-miss predictor with GShare prediction
Bingo [Bakshalipour+, HPCA'19]

« SPP+PPF [Bhatia+, ISCA'19] HMP-GSkew Hit-miss predictor with GSkew prediction

e DSPatch [Bera +, MICRO'1 9] HMP-Ensemble  Hit-miss predictor with all three types combined
o MLOP [Shakerinava+, DPC-3'19] TP Tag-tracking based predictor

¢ |PCP [Pakalapati+, ISCA'20] Perc Perceptron-based OCP used in this paper

Pythia [Bera+, MICRO'21]

SAFARI  https://github.com/CMU-SAFARI/Hermes 135
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Easy To Define Your Own Off-Chip Predictor

» Just extend the OffchipPredBase class

class OffchipPredBase

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

SAFARI

{

public:

};

uint32_t cpu;

string type;

uinté4_t seed;

uint8_t dram_bw; // current DRAM bandwidth bucket

OffchipPredBase(uint32_t _cpu, string _type, uinté4_t _seed) : cpu(_cpu), type(_type), seed(_seed)
{
srand(seed);
dram_bw = 0;
}
~0ffchipPredBase() {}
void update_dram_bw(uint8_t _dram_bw) { dram_bw = _dram_bw; }

virtual void print_config();

virtual void dump_stats();

virtual void reset_stats();

virtual void train(ooo_model_instr xarch_instr, uint32_t data_index, LSQ_ENTRY xlg_entry);
virtual bool predict(ooo_model_instr *arch_instr, uint32_t data_index, LSQ_ENTRY xlqg_entry);

#endif /x OFFCHIP_PRED_BASE_H */
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Easy To Define Your Own Off-Chip Predictor

» Define yourown train( ) and predict () functions

19 void OffchipPredBase::train(ooo_model_instr s*arch_instr, uint32_t data_index, LSQ_ENTRY xlg_entry)
20 A

21 // nothing to train

22 }

23

24 bool OffchipPredBase::predict(ooo_model_instr xarch_instr, uint32_t data_index, LSQ_ENTRY x1lq_entry)
25 {

26 // predict randomly

27 // return (rand() % 2) ? true : false;
28 return false;

29 }

* Get statistics like accuracy (stat name precision) and
coverage (stat name recall) out of the box

Core_0O_offchip_pred_true_pos 2358716
Core_0O_offchip_pred_false_pos 276883
Core_0O_offchip_pred_false_neg 132145

Core_0O_offchip_pred_precision 89.49
Core_0O_offchip_pred_recall 94.69
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Off-Chip Prediction Can Further Enable...

Prioritizing loads that are likely go off-chip
in cache queues and on-chip network routing

Better instruction scheduling
of data-dependent instructions

Other ideas to improve performance and
fairness in multi-core system design...

SAFARI 138
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Hermes Discussion

« FAQs  More Results

- What are the selected set of program features? - Percentage of off-chip requests

- Can you provide some intuition on why these - Re_c!ucltion Ln stall cycles by reducing the
features work? critical path

- Fraction of off-chip load requests
- Accuracy and coverage of POPET
- Effect of different features
- Are all features required?
- 1Cperformance
- 1Cperformance line graph
- 1Cperformance against prior predictors
- Effect onstall cycles
* Simulation Methodology - 8C performance
- System parameters - Sensitivity:
* Hermes request issue latency
* (Cache hierarchy access latency
* Activation threshold
* ROBsize
* LLCsize
- Power overhead
- Accuracy without prefetcher

- Main memory request overhead with
different prefetchers

SAFARI 140

-  What happens in case of a misprediction?

-  What's the performance headroom for off-chip
prediction?

- Do vyou see a variance of different features in final
prediction accuracy?

- Evaluated workloads
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Executive Summary

e Background: A hybrid storage system (HSS) uses multiple different storage devices to
provide high and scalable storage capacity at high performance

* Problem: Two key shortcomings of prior data placement policies:
- Lack of adaptivity to:
* Workload changes
* Changes in device types and configurations

- Lack of extensibility to more devices

: Design a data placement technique that provides:
, by to the

to incorporate a wide range of hybrid storage configurations

e Contribution: Sibyl, the first reinforcement learning-based data placement technique in
hybrid storage systems that:

- Provides adaptivity to changing workload demands and underlying device characteristics
- Can easily extend to any number of storage devices
- Provides ease of design and implementation that requires only a small computation overhead

* Key Results: Evaluate on real systems using a wide range of workloads

- Sibyl improves performance by 21.6% compared to the best previous data placement technique in
dual-HSS configuration

- In a tri-HSS configuration, Sibyl outperforms the state-of-the-art-policy policy by 48.2%
- Sibyl achieves 80% of the performance of an oracle policy with storage overhead of only 124.4 KiB
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Talk Outline

Key Shortcomings of Prior Data Placement Techniques
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Hybrid Storage System Basics
Address Space (Application/File System View)

{ Logical Pages J
B EEnenens

Read T_ Write
/l'[‘ Storage Management Layer ?
Read I ]-_Write Write\
F ———"——Ipromotion || 1 5

: i ™ INTEL® OPTANE™ § —_— o

Eviction || Ol %

I_\ ________ / _! k@‘r o~ @4/
K Fast Device Slow Device /

Hybrid Storage System
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Hybrid Storage System Basics

Performance of a hybrid storage system
highly depends on the ability of the
storage management layer
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Key Shortcomings in Prior Techniques

We observe two key shortcomings that significantly
limit the performance benefits of prior techniques

1. Lack of adaptivity to:
a) Workload changes
b) Changes in device types and configuration

2. Lack of extensibility to more devices
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Lack of Adaptivity (1/2)
Workload Changes

Prior data placement techniques consider only a few

workload characteristics that are statically tuned
[ cpe [ RNN-HSS [ Oracle

4
_| 41.1%

W

N

-

Request Latency

Normalized Average

)
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Lack of Adaptivity (2/2)

Changes in Device Types and Configurations

Do not consider underlying storage device
characteristics (e.g., changes in the level asymmetry in

read/write latencies, garbage collection)

[1Slow-Only ] CDE I RNN-HSS Bl Oracle  [1Slow-Only ] CDE B RNN-HSS [l Oracle

> —

© U 2 _

- 3—@ /\

gg) 100 !I I

554

3% 501 ]

N UV

.(_; q?.)-l_._. | | —t j

% &)0 Q 1 (¢ ° - Q 1 (€]

2 v 3 J$ Y Ty
‘o‘(\/ Q((\/ 09( -, o 66~1 -, > ‘\((\/ Q((\/ 09( -, o 60“ >

HSS Configuration 1 HSS Configuration 2
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Lack of Extensibility (1/2)

Rigid techniques that require significant effort to
accommodate more than two devices

Change in storage configuration

\% ‘;l /’ \’,f"\"’!-/: | FTINNA\ N \
.58 h

) INTEL” OPTANE™ §

\_ Dual-HSS Y,
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Lack of Extensibility (2/2)

Rigid techniques that require significant effort to
accommodate more than two devices

Change in storage configuration Design a new policy

\_ Tri-HSS
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Our Goal

e
A data-placement mechanism

that can provide:

1.Adaptivity, by continuously learning and
adapting to the application and underlying
device characteristics

2.Easy extensibility to incorporate a wide
range of hybrid storage configurations

\_

)

SAFARI
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Our Proposal

Sibyl

Formulates data placement in
hybrid storage systems as a
reinforcement learning problem

Sibyl is an oracle that makes accurate prophecies
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Talk Outline

Formulating Data Placement as Reinforcement Learning
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Basics of Reinforcement Learning (RL)

| Agent l

[ Environment ]

Agent learns to take an action in a given state
to maximize a numerical reward
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Formulating Data Placement as RL

>[ Agent }
1
State (S,) Reward (R,.,) Action (A,)

{ Environment ]<

>[ Sibyl }
1

Features of the Request latency Select storage device to

current request (of last served request)  place the current page
and system I

‘ ( Hybrid Storage }

L System
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Sibyl ]—‘
A

Request latency  Select storage
(of last served device to place
request) the current page

1
Hybrid Storage
System

the current

What is State?

e Limited number of state features: -

- Reduce the implementation overhead
- RL agent is more sensitive to reward

 6-dimensional vector of state features

O; = (sizes, typey, intry, cnty, capy, curry)

* We quantize the state representation into bins to
reduce storage overhead
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Selected State Attributes

Table 1: State features used by Sibyl

Feature || Description # of bins | Encoding (bits)
size; Size of the requested page (in pages) 8 8
type; Type of the current request (read/write) 2 4
intr; Access interval of the requested page 64 8
cnt,; Access count of the requested page 64 8
cap; Remaining capacity in the fast storage device 8 8
curr; Current placement of the requested page (fast/slow) 2 4
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° 7 | ;r
What is Reward: o

the current )
device to place

request and
the current page

* Defines the objective of Sibyl system

Hybrid Storage
System

e We formulate the reward as a function of the
request latency

* Encapsulates three key aspects:

- Internal state of the device (e.g., read/write latencies, the
latency of garbage collection, queuing delays, ...)

- Throughput
- Evictions

* More details in the paper
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Reward Function

SAFARI

Reward. After every data placement decision at time-step* ¢, Sibyl
gets a reward from the environment at time-step ¢ + 1 that acts as a
feedback to Sibyl’s previous action. To achieve Sibyl’s performance
goal, we craft the reward function R as follows:
1 if no eviction of a page from the
Rt Iz fast storage to the slow storage (1)
max (0, - — Rp)  in case of eviction

where L; and R, represent the last served request latency and
eviction penalty, respectively. If the fast storage is running out of
free space, there might be evictions in the background from the fast

4In HSS, a time-step is defined as a new storage request.

storage to the slow storage. Therefore, we add an eviction penalty

(Rp) to guide Sibyl to place only performance-critical pages in the
fast storage. We empirically select Ry to be equal to 0.001XLe (Le

is the time spent in evicting pages from the fast storage to the slow

storage), which prevents the agent from aggressively placing all
requests into the fast storage device.
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What is Action?

* At every new page request, the

action is to select a storage device

Features of Request lateney . Js
the current .
(of last served  \device to plage

request and request) .
O !
system I e currentpage

Hybrid Storage
System

e Action can be easily extended to any number of

storage devices

* Sibyl learns to proactively evict or promote a page

SAFARI
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Talk Outline

Sibyl: Overview
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Sibyl Execution

e

RL Training

Thread

N /
A 1

State, Reward, '\ \
and Action |

N

Periodic Policy

Information | Weight Update
Storage 4 ~
Request RL Decision
ﬁ
(from OS) Thread

SAFARI

. Y,
\ Sibyl /

Asynchronous
Execution

Data

— Placement

Decision
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Sibyl Design: Overview

g Trainin — RL Training\
Networ | Training } Batch Thread
YO Dataset
Periodic Policy
\_ Weight Update J
/ RL Decision
4 X ) Thread

Experience Buffer
(in host DRAM)

State %8 ={ Max\ Action

Storage Inference Sib .
yl Policy
Request [|Observation \_Network ~ . ] Reward ( C I‘IV t
St C
(from OS)||  vector { HSS J :LExpgrignces]

K State /
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RL Decision Thread

-~

RL Decision
Thread

s )
. %8 :{ Max \ Action

Storage Inference Sib .

yl Policy
Request ||[Observation p L LTl . . ] Reward ( 0
(from OS)I|  vector [ HSS :LExggrlilgﬁtces]

)
K State /

Experience Buffer
(in host DRAM)
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RL Decision Thread

/ RL Decisioh

Thread

State

Storage
Request ||Observation
(from OS) Vector

\_ stote /
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RL Decision Thread

\_

State

4 )
%8 » Max Action
\_ :Gg%t;vegrie Sibyl PoIicy/

o

RL Decision

Thread
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RL Decision Thread

/ RL Decisioh

Thread
Storage
Request [[Observation
Reward
(from OS){ Vector} { HSS } {Exggrlilgﬁf:es]
K State /
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RL Decision Thread

/ RL Decisioh

Experience Buffer Thread
(in host DRAM)

Storage
Request [[Observation
Reward
(from OS){ Vector} { HSS } {Exggrlilgﬁf:es]
K State /
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RL Training Thread

/

\_

R
Experience Buffer W
(in host DRAM)

SAFARI

Trainin — RL Training\
Networ %@ | Training } Batch Thread
YO Dataset
Periodic Policy
\_ Weight Update J
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Periodic Weight Transfer

~

i RL Training

Trainin —
Networ: Training } Batch Thread
HAAPO [ Dataset

|

|

I |

Periodic Policy :
\_ Weight Update | I J

|

i

|

|

|

|

RL Decision
Thread

-

~
%8 ::{ Max \ Action

1
Storage Inference I . .

1 Sibyl Policy
Request ||[Observation \{_N_e:\ilirlj_.f - ) ] Reward ( C |‘|'
(from OS)I|  vector { HSS J :LExpgrigﬁE:eS]

K State /

Experience Buffer
(in host DRAM)

State

S
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Training and Inference Networks

* Training and inference
networks allow parallel

. ‘ Probabilility distribution
EXECUtlon of the actions

(place data in the fast or
the slow storage)

Fully-connected
layer
(30 neurons)

e Observation vector as
the input

t swish
._|activation
Fully-connected
layer
(20 neurons)

. Observation vector
* Produces pro babil Ity <size; type; intr; cnt, cap; curre

distribution of Q-values
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RL-Based Data Placement Algorithm

SAFARI

Algorithm‘l Sibyl’s reinforcement learning-based data placement
algorithm

3 0o =t Ov e

Intialize: the experience buffer EB to capacity egp
Intialize: the training network with random weights @

Intialize: the inference network with random weights 6
Intialize: the observation vector Oy=0O(s;) with storage request sj={req;}, and

host and storage features

10:

12:

13:
14:

15:
16:
17:

18:

6

19:

for all storage requests do

if (rand() < €) then > with probability €, perform exploration
random action ag
else > with probability 1-€, perform exploitation
ar = argmaxqQt (a) » select action with the highest Q; value from inference network
execute ay > place the requested page to fast or slow storage
if no eviction then
ry « ﬁ > reward, given no eviction of a page from fast to slow storage
else
ry < max(0o, Lt -Rp) > reward with an eviction penalty in case of an eviction

store experience (O¢,as,ry, O(t+1)) in EB
if (num requests in EB==egpg) then b train training network when EB is full
sample random batches of experiences from EB, which are in format

i Aj, T, O(j+1)) > where O; represents an observation at a time instant j from EB

Perform stochastic gradient descent > update the training network weights

00 > copy the training network weights to the inference network

175



Hyperparamete

r Tuning

Table 2: Hyper-parameters considered for tuning

Hyper-parameter Design Space Chosen Value
Discount factor (y) 0-1 0.9

Learning rate () le7® = 1é° le™?
Exploration rate (€) 0-1 0.001

Batch size 64-256 128

Experience buffer size (egg) 10-10000 1000

o & n0.65
o 0.65 = 8
5 o 90.60
o0 0.60- e
o= 5 50-551%
+0.55- a
<=4 @ £0.50
Q £0.50 =D
NG5~ © 30.45 (b)
© > o g9
g 504 S £0.40-
| -
S £040_ Z ._ '/‘) l/ l/’5 I,’l« I/‘\
= 0 01 05 09 095 1 e e Y BEF §E
Discount Factor (y) Learning Rate (a)
= _—
0 10.65
35 o—o—¢
890.60-
£ !
% 5055
©Sos0+— N\
=+
© 20.45
£ .go 40
g |_ § T T T 1 T T
a5 3l D Py’ D eQ
e Wi LB e Je .

Exploration Rate (&)

Figure 14: Sensitivity of Sibyl throughput to: (a) the discount
factor (y), (b) the learning rate (), (c) the exploration rate (¢),

SAFARI

averaged across 14 workloads (normalized to Fast-Only)
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Talk Outline

Evaluation of Sibyl and Key Results
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Evaluation Methodology (1/3)

* Real system with various HSS configurations
- Dual-hybrid and tri-hybrid systems

AMD Ryzen7 ),
2700G CPU In %
\ T

\“.

Intel Optane )=
SSD P4800X

I\ Y 'A }'u.

7 Seagate HDD ° —

@®

ST1000DM010 |5

/\ X

intelssD ~ ADATA -
=SU630 SSD |||
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Evaluation Methodology (2/3)
Cost-Oriented HSS Configuration

) INTEL OPTANE” ¢

High-end SSD Low-end HDD

Performance-Oriented HSS Configuration

) INTEL OPTANE™ ¢

,,®
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Evaluation Methodology (3/3)

18 different workloads from:
- MSR Cambridge and Filebench Suites

* Four state-of-the-art data placement baselines:

- CbE Heuristic-based
Hps :> euristic-base
- Archivist

Learning-based
- RNN-HSS
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Performance Analysis
Cost-Oriented HSS Configuration

[1Slow-Only ] CDE [] HPS [ Archivist [ RNN-HSS [ Sibyl [ Oracle

‘: l‘\’ s220 - )
High-end SSD  Low-end HDD
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D >,
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Q +
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Performance Analysis
Cost-Oriented HSS Configuration

High-end SSD Low-énd HBD}

/ ¢ \
)
=

[] Sibyl @ Oracle

o 200
O >,
C 2150
Z
S 8100
ﬁg 50 — N I
c 2
£5 o
o
=2 %> 0 5% .0 .7 .S 00‘&01‘&\‘0
s &9 7 L0V L0 .0V ﬂ/ s‘ N k07 7N 0
W7 @077 IO T e,(" RS i o e v

Sibyl consistently outperforms all the baselines
for all the workloads
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Performance Analysis {

. .
 High-endSSD ~ Mid-end SSD

Performance-Oriented HSS Configuration

[]Slow-Only 1 CDE  [] HPS [ Archivist [ RNN-HSS [ Sibyl Il Oracle

9)

N
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Performance Analysis

High-endSSD  Mid-end SSD

Performance-Oriented HSS Configuration

/ _“‘_Mf' N\

[ Sibyl [ Oracle

9)

N

Normalized Average
Request Latency
o ? N
\ss
‘&

OV

%» O 5% .0 .7% .HD 0 \) ’L S
s A9 ™7 .oV .oV oM / ‘\' / ( s N 0

Sibyl provides 21.6% performance improvement by
dynamically adapting its data placement policy
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High-endSSD  Mid-end SSD

Performance-Oriented HSS Configuration

Performance Analysis { J}

[]Slow-Only 1 CDE  [] HPS [ Archivist [ RNN-HSS [ Sibyl Il Oracle
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Request Latency
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Performance Analysis

= erarures

=

 High-endSSD ~ Mid-end SSD

Sibyl achieves 80% of the performance
of an oracle policy that has

complete knowledge of future access patterns

SAFARI
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Performance on Tri-HSS gz

_ High-endSSD  Mid-end SSD Low-end HDD

Extending Sibyl for more devices:
1. Add a new action
2. Add the remaining capacity of the new device as a
state feature

- Heu r-iStiCTrl -hybrid

o 10

c 3

Qg

LT 5

- -

2 !

s O

= ((\/ 9/ 0/ \/ \/ \/ ﬂ/ ﬂ ‘\./ Q/ (/ \'s 2 @“Q
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Performance on Tri-HSS mmm= -

] ] ) Zm“ - /]
High-end SSD  Mid-end SSD Low-end HDD

Extending Sibyl for more devices:
1. Add a new action
2. Add the remaining capacity of the new device as a
state feature

=
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Request Latency
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Performance on Tri-HSS

H/gh-end SSD M/d-end SSD Low-end HDDJ

Sibyl outperforms the state-of-the-art

data placement policy by
48.2% in a real tri-hybrid system

Sibyl reduces the system architect's burden
by providing ease of extensibility
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Sibyl’s Overhead

* 124.4 KiB of total storage cost
- Experience buffer, inference and training network

* 40-bit metadata overhead per page for state features

* Inference latency of ~¥10ns

* Training latency of ~2us

V Small area overhead
V Small inference overhead

V Satisfies prediction latency
SAFARI 190



More in the Paper (1/3)

* Throughput (IOPS) evaluation

- Sibyl provides high IOPS compared to baseline policies because it
indirectly captures throughput (size/latency)

* Evaluation on unseen workloads
- Sibyl can effectively adapt its policy to highly dynamic workloads

* Evaluation on mixed workloads

- Sibyl provides equally-high performance benefits as in single
workloads
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More in the Paper (2/3)

* Evaluation using different features

- Sibyl autonomously decides which features are important to
maximize the performance

e Evaluation with different hyperparameter values

* Sensitivity to fast storage capacity
- Sibyl provides scalability by dynamically adapting its policy to
available storage size

of Sibyl's decision making
for different workload characteristics and
device configurations
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More in the Paper (3/3)

Sibyl: Adaptive and Extensible Data Placement in
Hybrid Storage Systems Using Online Reinforcement Learning
Gagandeep Singh! = Rakesh Nadig!  Jisung Park! = Rahul Bera! = Nastaran Hajinazar!
David Novo®  Juan Gémez-Luna'  Sander Stuijk*  Henk Corporaal®  Onur Mutlu'
'ETH Ziirich Eindhoven University of Technology SLIRMM, Univ. Montpellier, CNRS

https://arxiv.org/pdf/2205.07394.pdf

https://github.com/CMU-SAFARI/Sibyl
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https://github.com/CMU-SAFARI/Sibyl

Talk Outline

Conclusion
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Conclusion

* We introduced Sibyl, the first reinforcement learning-
based data placement technique in hybrid storage
systems that provides

- Adaptivity
- Easily extensibility
- Ease of design and implementation

*We evaluated Sibyl on real systems using many
different workloads

- Sibyl improves performance by 21.6% compared to the best prior
data placement policy in a dual-HSS configuration

- In a tri-HSS configuration, Sibyl outperforms the state-of-the-art-
data placement policy by 48.2%

- Sibyl achieves of an oracle policy with a
storage overhead of only
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- M
Sibyl "~
Adaptive and Extensible Data Placement
in Hybrid Storage Systems
Using Online Reinforcement Learning

Gagandeep Singh, Rakesh Nadig, Jisung Park,
Rahul Bera, Nastaran Hajinazar, David Novo,
Juan Gémez Luna, Sander Stuijk, Henk Corporaal,
Onur Mutlu
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ISCA 2022 Paper, Slides, Videos

Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar,
David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu,
"Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage
Systems Using Online Reinforcement Learning"”

Proceedings of the 49th International Symposium on Computer

Architecture (ISCA), New York, June 2022.

[Slides (pptx) (pdf)]

[arXiv version]

[Sibyl Source Code]

[Talk Video (16 minutes)]

Sibyl: Adaptive and Extensible Data Placement in
Hybrid Storage Systems Using Online Reinforcement Learning

Gagandeep Singh!  Rakesh Nadig!  Jisung Park! = Rahul Bera! = Nastaran Hajinazar!
David Novo®  Juan Gémez-Luna'  Sander Stuijk?*  Henk Corporaal®  Onur Mutlu!
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SSD Course (Spring 2023)

Bk

Ds).C

= A die (or chip) contains multiple (e.g., 2 — 4) planes

Spring 2023 Edition:

|

o https://safari.ethz.ch/projects and seminars/spring2023/
doku.php?id=modern ssds

= Fall 2022 Edition:

o https://safari.ethz.ch/projects and seminars/fall2022/do
ku.php?id=modern ssds

= Youtube Livestream (Spring 2023):

o https://www.youtube.com/watch?v=4VTwOMmsnJY&list

=PL5Q2s0XY2Zi 8gOM5Icpp8hB2SHtmM4z57&pp=iAQB
= Youtube Livestream (Fall 2022):

o https://www.youtube.com/watch?v=hqglrd-
Uj0aU&list=PL50Q2s0XY2Zi9BJhenUg4JI5bwhAMpAp13&p
p=iAQB

= Project course

Taken by Bachelor's/Master’s students
SSD Basics and Advanced Topics
Hands-on research exploration

Many research readings

0o 0O 0 O

e

___ Row/Column Decoders ____

21-nm 2D NAND Flash Die

¢« Planes share decoders:

limits internal parallelism

Watch on [ YouTube

Fall 2022 Meetings/Schedule

https:

www.voutube.com/onurmutlulectures

Week Date
w1 06.10
w2 12.10
w3 19.10
wa 26.10
w5 02.11
we 09.11
w7 231
wa 30.1
we 14.12
W10 | 04.01.2023
wn 11.01
w12 | 25.01

(only operations @ the
same WL offset)

Livestream Meeting Learning
Materials
M1: P&S Course Presentation = Required
o POF gu PPT Recommended
Youl D) Live M2: Basics of NAND Flash- Required
Based SSDs Recommended
aaPDF ma PPT
Yol Live M3: NAND Flash Read/Write | Required
Operations Recommended
@ PDF maPPT
Youl D) Live M4: Processing inside NAND Required
Flash Recommended
aaPDF mPPT
Youl ) Live MS: Advanced NAND Flash Required
Commands & Mapping Recommended
auPDF zaPPT
Youlll Live MB6: Processing inside Storage | Required
@ PDF @ PPT Recommended
Youl ) Live M7: Address Mapping & Required
Garbage Collection Recommended
@ PDF maPPT
Youl ) Live M8: Introduction to MQSim Required
aa PDF @ PPT Recommended
Youl ) Live M9: Fine-Grained Mapping and = Required
Multi-Plane Operation-Aware Recommended
Block Management
aaPDF maPPT
Yl Premiere | M10a: NAND Flash Basics
a@aPDF maPPT
M10b: Reducing Solid-State
Drive Read Latency by
Optimizing Read-Retry
anPDF ma PPT aaPaper
M10c: Evanesco: Architectural = Required
Support for Efficient Data Recommended
Sanitization in Modern Flash-
Based Storage Systems
e PDF ga PPT gqnPaper
M10d: DeepSketch: A New Required
Machine Leaming-Based Recommended
Reference Search Technique
for Post-Deduplication Delta
Compression
aaPDF ma PPT gnPaper
Youf[) Live M11: FLIN: Enabling Faimess | Required
and Enhancing Performance in
Modern NVMe Solid State
Drives
&miPDF miPPT
Yol Premiere = M12: Flash Memory and Solid- | Recommended

State Drives
aaPDF maPPT
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Reward Assighment to EQ Entry

* Every action gets inserted into EQ

* Reward is assigned to each EQ entry before or during the
eviction

* During EQ insertion: for actions

- Not to prefetch
- Out-of-page prefetch
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Reward Assighment to EQ Entry

* Every action gets inserted into EQ

* Reward is assigned to each EQ entry before or during the
eviction

* During EQ insertion: for actions

- Not to prefetch
- Out-of-page prefetch
* During EQ residency:

- In case address of a demand matches with address in EQ
(signifies accurate prefetch)
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Reward Assighment to EQ Entry

* Every action gets inserted into EQ

* Reward is assigned to each EQ entry before or during the
eviction

* During EQ insertion: for actions
- Not to prefetch
- Out-of-page prefetch
* During EQ residency:
- In case address of a demand matches with address in EQ
(signifies accurate prefetch)
* During EQ eviction:
- In case no reward is assigned till eviction
(signifies inaccurate prefetch)

SAFARI 204
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Performance S-curve: Single-core
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Performance S-curve: Four-core
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FAQs



Pythia Discussion

* FAQs

- Why RL?
- What about large page?
- What’s the prefetch degree?

- Can customization happen during
workload execution?

- Can runtime mixing create problem?

e Simulation and Methodology

- Basic Pythia configuration

- System parameters
- Configuration of prefetchers
- Evaluated workloads

- Feature selection

SAFARI

* Detailed Design

Reward structure

Design overview

QVStore Organization

* More Results

Comparison against other adaptive
prefetchers

Comparison against Context prefetcher
Feature combination sensitivity
Hyperparameter sensitivity
Comparison with multi-level prefetchers
Performance in unseen workloads
Single-core s-curve

Four-core s-curve

Detailed performance analysis

Benefit of bandwidth awareness

Case study

Customizing rewards

Customizing features
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Why RL? Why Not Supervised Learning?

* Determining the benefits of prefetching (i.e., whether a
decision was good for performance or not) is not easy

- Depends on a complex set of metrics
* Coverage, accuracy, timeliness
 Effects on system: b/w usage, pollution, cross-application interference, ...

- Dynamically-changing environmental conditions change the
benefit

(might not receive
feedback at all for inaccurate prefetches!)

* Differs from classification tasks (e.g., branch prediction)
- Performance strongly correlates mainly to accuracy

- Does not depend on environment
- Bounded feedback delay

SAFARI A 209



What About Large Pages?

e Pythia’s framework can be easily extended to incorporate
additional prefetch actions (i.e., possible prefetch offsets
for the page size)

* To decrease the storage overhead
via automatic design-space exploration
to retrieve Q-values

SAFARI A 210



What is the Prefetch Degree? Is It Managed by
the RL Agent?

* Pythia employs a simple degree selector, separate from
the RL agent

- If the agent has selected the same prefetch action (O) multiple
times in a row, Pythia increases the degree (A+20, A+30, ...)

- At most degree 4

* Future works on managing degree by the RL agent

SAFARI A



Can the Customization Be Done While the
Workload is Running?

* Certainly.

* Pythia, being an online learning technique, will
autonomously adapt (and optimize) its policy to use the
new program features or the modified reward values

SAFARI Y VAP



Can Runtime Workload Mix Create an Issue?

* We implement the bandwidth usage feedback using a
counter in the memory controller. Thus Pythia already has
a global view of the memory bandwidth usage that
incorporates all workloads running on a multi-core system

* We evaluate a diverse set (300 of each category) of four-
core, eight-core, twelve-core random workload mixes

* Based on our evaluation, we observe that Pythia
dynamically adapts itself to varying workload demands

SAFARI Do



How does Pythia Compare Against Other Adaptive

Prefetching Solutions?

* We compare Pythia against IBM POWER7: prefetcher

- Adaptively selects prefetcher degree/configuration by
monitoring program IPC

Geomean speedup

SAFARI

over baseline

Geomean speedup

over baseline

1.5

1.4 +
1.3 -
1.2 4
1.1 4

1.5

141 CPOWER7  m Pythia

1.3 -

1.2 -

i 1
1 . . —

SPECO6

SPEC17 PARSEC Lig

ra Cloudsuite GEOMEAN
(a) single-core

1

& POWER?

B Pythia

11

SPECO6

s B | HI m

SPEC17

PARSEC Ligra
(b) four-core

CIoud suite

Mix

GEOMEAN

Y AL



How Does Pythia Compare Against the Context
Prefetcher?

* Pythia widely differs from the Context Prefetcher (CP): in
all three aspects: state, action, and reward. The key
differences are:

- CP does not consider system-level feedback

- CP models the agent as a contextual bandit which takes myopic
prefetch decisions as compared to Pythia

- CP requires compiler support to extract software-level features

(b) four-core

(a) single-core 1
@ CP-HW ® Pythia B CP-HW ® Pythia
i 1.3 -
_ 1.2 - b
i N | I i
,_l- T 1 T T T T ,_|. T T :

SPECO6 SPEC17 PARSEC Ligra CI udsuite  GEOMEAN SPECO6 SPEC17  PARSEC Ligra Cloudsuite Mix GEOMEAN

Geomean speedup
over baseline
Ll
= = N w H O
|
Geomean speedup
over baseline

Pythia outperforms CP-HW by 5.3% in single-core and

7.6% in four-core system
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How Pythia’s Performance Changes With
Various State Definitions You Have Swept?

* In total we evaluate state defined as any-one, any-two,
and any-three combinations of 32 features

1.23 72% 1.23 33%
—Speedup —Coverage —Speedup —Overprediction
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Experiment number Experiment number

Performance gain ranges from 20.7% to 22.4%

Coverage ranges from 66.2% to 71.5%

Overprediction ranges from 26.7% to 32.2%
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Is Pythia Sensitive to Hyperparameters?

* Not setting hyperparameters can significantly impact the
overall performance improvement

1.23
£ 2
% § 1.22
(O]
© ‘v 1.21
S a
8 8 1.2
3 S 1.19
3 3
s o 1.18
©
3 v 1.17 S
&
1.04 ‘ ‘ Y 116 ‘ ‘ ‘ ‘ ‘
1.E-6 1.E-5 1.E-4 1.E-3 1.E-2 1.E-1 1.E+0 1.6 1.E5 1.E4 1.E-3 1.E-2 1.E1 1.E+0
values values

Changing € from 0.002 to 1.0 drops perf. by 16%

Changing a from 0.0065 to 1.0 drops perf. by 5.4%
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How Does Pythia Compare Against Commercial
Multi-level Prefetchers?
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Pythia outperforms IPCP ; by 14.2% on average in 150-MTPS

DRAM MTPS (in log scale)
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Does Pythia Perform Equally Well for Unseen
Workloads?

* Evaluated with 500 traces from value prediction
championship

- No prefetcher has been trained on these traces

OSPP @Bingo #MLOP mPythia OSPP @Bingo #WMLOP mPythia

o 16 a 15
=) | B S
2 2 157 (a)single-core 2144 (b)fourcore /M 0000000
sg 41+ Atre =R %134 e m -
"n un g .
c © 13 4 AT - C 5
© 2 S~-124 il IR 0000
1<% QL) 1.2 e A I e E (O]
AR g5 il H *****
§°" ] o (A & lm_ |l

Crypto INT FP Server GEOMEAN Crypto INT Server GEOMEAN

Pythia outperforms MLOP and Bingo by
8.3% and 3.5% in single-core

And 9.7% and 5.4% in four-core
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Basic Pythia Configuration

Table 2: Basic Pythia configuration derived from our auto-
mated design-space exploration

Features PC+Delta, Sequence of last-4 deltas

Prefetch Action List {-6,-3,-1,0,1,3,4,5,10,11,12,16,22,23,30,32}

Ra1=20, Rar=12, Rcp=-12, R;IN=—14,
L _ H _ L _

RIN__S’ :RNP__Z’ RNP__4

Hyperparameters o = 0.0065, y = 0.556, € = 0.002

Reward Level Values
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System Parameters

Table 5: Simulated system parameters

Core 1-12 cores, 4-wide O00, 256-entry ROB, 72/56-entry LQ/SQ
Branch Pred. Perceptron-based [69], 20-cycle misprediction penalty

L1/1L2 Private, 32KB/256KB, 64B line, 8 way, LRU, 16/32 MSHRs, 4-
Caches cycle/14-cycle round-trip latency

T 2MB/core, 64B line, 16 way, SHiP [133], 64 MSHRs per LLC Bank,

34-cycle round-trip latency

Main Memory

1C: Single channel, 1 rank/channel; 4C: Dual channel, 2
ranks/channel; 8C: Quad channel, 2 ranks/channel;

8 banks/rank, 2400 MTPS, 64b data-bus/channel, 2KB row buffer-
/bank, tRCD=15ns, tRP=15ns, tCAS=12.5ns
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Configuration of Prefetchers

Table 7: Configuration of evaluated prefetchers

SPP [78] 256-entry ST, 512-entry 4-way PT, 8-entry GHR || 6.2 KB
Bingo [27] 2KB region, 64/128/4K-entry FT/AT/PHT 46 KB
MLOP [111] 128-entry AMT, 500-update, 16-degree 8 KB
DSPatch [30] Same configuration as in [30] 3.6 KB
PPF [32] Same configuration as in [32] 39.3 KB
Pythia 2 features, 2 vaults, 3 planes, 16 actions 25.5 KB
SAFARI B



Evaluated Workloads

Table 6: Workloads used for evaluation

Suite # Workloads # Traces Example Workloads

SPECO06 16 28 gce, mcf, cactusADM, lbm, ...

SPEC17 12 18 gce, mcf, pop2, fotonik3d, ...

PARSEC 5 11 canneal, facesim, raytrace, ...

Ligra 13 40 BFS, PageRank, Bellman-ford, ...

Cloudsuite 4 53 cassandra, cloud9, nutch, ...
SAFARI D



List of Evaluated Features

Table 3: List of program control-flow and data-flow compo-
nents used to derive the list of features for exploration

Control-flow Component Data-flow Component

(1) Load cacheline address
(2) Page number

(1) PC of load request (3) Page offset

(2) PC-path (XOR-ed last-3 PCs) (4) Load address delta

(3) PC XOR-ed branch-PC (5) Sequence of last-4 offsets

(4) None (6) Sequence of last-4 deltas
(7) Offset XOR-ed with delta
(8) None
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Performance S-curve: Single-core
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Performance S-curve: Four-core
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Single-core Coverage & Overprediction
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Detailed Performance
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Benefit of Bandwidth Awareness

0%

-1%

-2%

-3%

basic Pythia

-4%

Performance normalized to

-5%

SAFARI

| ' | I S I 55 (R I 5555555
_0.4% -0.3% -0.2% -0.2%
-1.2%
2 59 [0 Memory BW-oblivious Pythia
4.6%
150 300 600 1200 2400 4800 9600

DRAM MTPS (in log scale)




Case Study
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Figure 13: Q-value curves of PC+Delta feature values (a)
0x436a81+0 and (b) 0x4377c5+0 in 459 . GemsFDTD-1320B.
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Customizing Rewards
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Figure 14: Performance and main memory bandwidth usage
of prefetchers in Ligra-CC.
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Figure 15: Performance of the basic and strict Pythia config-
urations on the Ligra workload suite.
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Customizing Features
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Figure 16: Performance of the basic and feature-optimized
Pythia on the SPEC CPU2006 suite.
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Hermes Discussion

« FAQs  More Results

- What are the selected set of program features? - Percentage of off-chip requests

- Can you provide some intuition on why these - Re_c!ucltion Ln stall cycles by reducing the
features work? critical path

- Fraction of off-chip load requests
- Accuracy and coverage of POPET
- Effect of different features
- Are all features required?
- 1Cperformance
- 1Cperformance line graph
- 1Cperformance against prior predictors
- Effect onstall cycles
* Simulation Methodology - 8C performance
- System parameters - Sensitivity:
* Hermes request issue latency
* (Cache hierarchy access latency
* Activation threshold
* ROBsize
* LLCsize
- Power overhead
- Accuracy without prefetcher

- Main memory request overhead with
different prefetchers

SAFARI 234

-  What happens in case of a misprediction?

-  What's the performance headroom for off-chip
prediction?

- Do vyou see a variance of different features in final
prediction accuracy?

- Evaluated workloads




HERMES BACKUP



Initial Set of Program Features

Features without control-flow Features with control-flow

information information

8. Load PC
1. Load virtual address 9. PC & load virtual address
2. Virtual page number 10. PC @ virtual page number
3. Cacheline offset in page 11. PC & cacheline offset
4. First access 12. PC + first access
5. Cacheline offset + first access 13. PC @ byte offset
6. Byte offset in cacheline 14. PC @ word offset
7. Word offset in cacheline 15. Last-4 load PCs

16. Last-4 PCs
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Selected Set of Program Features

A binary hint that

Five features represents whether or not a
cacheblock has been

« PC @ cacheline offset recently touched

« PC @ byte offset
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When A Feature Works/Does Not Work?

Trace: 462.libguantum-1343B PC: 0x401442

Without prefetcher With a simple stride prefetcher

* PC + first access e Cacheline offset + first access
e Cacheline offset + first access

4\
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What Happens in case of a Misprediction?

* Two cases of mispredictions:

* Predicted on-chip but actually goes off-chip
- Loss of performance improvement opportunity

No need for misprediction detection and recovery

* Predicted off-chip but actually is on-chip

- Memory controller forwards the data to LLC if and only if
a load to the same address have already missed LLC and
arrived at the memory controller

No need for misprediction detection and recovery
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Performance Headroom of Off-Chip Prediction

1.35
= mIdeal Hermes
.f'_."': 13 - 1.29
& (@ O Pythia (baseli
-§ £‘°125 | ythia (baseline) 8.3%1
= m Pythia + Ideal Hermes 1.20
a8 1.2 A
£ 1.16
g 8 115 -
1
& v 1.1 - I
& 1.05 A
>
o
1 T T T T T T
SPECo6 SPEC17 PARSEC Ligra CvpP GEOMEAN
. 1.35 (b)
g 5 1.29 1.29 O Prefetcher-only  m Prefetcher + Ideal Hermes
o )
_§- 201.25 5 8'3/01 9-4%I 1.23 1.24
O 1.20
a8 12 1.19 s.z%I 1o.9%I 1.19
c 'S 114
LK 3 1.13
g 2115 13.3%
8 Z 11
il - 1.06
+1.05
>
o
1

Pythia Bingo SPP MLOP SMS

SAFARI 240



System Parameters

Table 4: Simulated system parameters

1 and 8 cores, 6-wide fetch/execute/commit, 512-entry ROB,
Core 128/72-entry LQ/SQ, Perceptron branch predictor [61] with
17-cycle misprediction penalty

L1/1L2 Private, 48KB/1.25MB, 64B line, 12/20-way, 16/48 MSHRSs,
Caches LRU, 5/15-cycle round-trip latency [25]

3MB/core, 64B line, 12 way, 64 MSHRs/slice, SHiP [122],

LLC 55-cycle round-trip latency [24, 25], Pythia prefetcher [32]

1C: 1 channel, 1 rank per channel; 8C: 4 channels, 2 ranks
Main per channel; 8 banks per rank, DDR4-3200 MTPS, 64b data-
Memory  bus per channel, 2KB row buffer per bank, tRCD=12.5ns,
tRP=12.5ns, tCAS=12.5ns

Hermes Hermes-O/P: 6/18-cycle Hermes request issue latency

(1
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Evaluated Workloads

Table 5: Workloads used for evaluation

Suite = #Workloads #Traces Example Workloads

SPECO6 14 22 gce, mcf, cactusADM, lbm, ...
SPEC17 11 23 gce, mcf, pop2, fotonik3d, ...
PARSEC 4 12 canneal, facesim, raytrace, ...
Ligra 11 20 BFS, PageRank, Radii, ...

CVP 33 33 integer, floating-point, server, ...

(1
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Not All Off-Chip Loads are Prefetched

Observation

25~

IDdIAI) suolldnJaisul oy 4ad sassiw J77
o LN o
N i i LN o

elyiAd

3uiydisjaud-oN

AVG

e1Ad

i

3uiyosiajauid-oN

CVP

ely3Ad

MPKI

duiyoiaiaud-oN

Ligra

e1Ad

3uiyoiajauid-oN

PARSEC

eI1LAd

duiyoiaiaud-oN

SPEC17

EmBlocking CINon-blocking

e1Ad

|i|imi

3uiydiajauid-oN

SPECO6

100%

75%
25%
0%

50%

w91sAs 3uiyolayald-oN ay1 ul
speo| diyos-4Jo JO uolydel

d
()
-
@)
)
L
Y
()]
| -
Q.
)
(@)
C
.-_m
(Up)
Q
|
O
Up)
K%
O
O
(D)
C
e
(U
@)
(=)
S
o
LN
>
| -
O
Q
=z




Not All Off-Chip Loads are Prefetched

Observation
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Observation: With Large Cache Comes Longer Latency

* On-chip cache access latency significantly contributes to
the latency of an off-chip load
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Observation: With Large Cache Comes Longer Latency

* On-chip cache access latency significantly contributes to
the latency of an off-chip load
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40% of stall cycles caused by an off-chip load can be eliminated
by removing on-chip cache access latency from its critical path
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What Fraction of Load Requests Goes Off-Chip?
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Off-Chip Prediction Quality: Defining Metrics

Accuracy Coverage |
® p N O
Predicted off-chip Actual off-chip

Predicted and actual off-chip
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Off-Chip Prediction Quality: Analysis

Accuracy |
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Off-Chip Prediction Quality: Analysis

POPET provides off-chip predictions with
high-accuracy and high-coverage



Effect of Different Features

809
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Pc@® last-4load pc@byte PC+first Cacheline 142 142+3 1+2+3+4 All (POPET)
cacheline PCs(2)  offset(s) access(4) offset+first
offset (1) access (5)

Combination of features provides both higher
accuracy and higher coverage than any individual feature
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Are All Features Required? (1)
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No single feature individually provides

highest prediction accuracy across all workloads
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Are All Features Required? (2)

——PC@®cacheline offset —=—Last-4load PCs —=—PC®byte offset PC+firstaccess —e—Cacheline offset + first access
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Single-Core Performance
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Single-Core Performance Line Graph
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Single-Core Performance Against Prior Predictors

O Pythia (baseline) &@Pythia+ Hermes-HMP & Pythia+ Hermes-TTP mPythia + Hermes-POPET m Pythia + Ideal Hermes
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POPET provides higher performance benefit
than prior predictors

Hermes with POPET achieves nearly 90% performance
improvement of the Ideal Hermes
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Effect on Stall Cycles

60%

[ SPECo6 @ SPEC17 @ PARSEC O Ligra @ CVP

50%

40%

ip loads

= 30%

20%

due to off-ch

10%

% reduction of stall cycles

0%

-10%

Hermes reduces off-chip load induced stall cycles

on average by 16.2% (up-to 51.8%)
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Eight-Core Performance
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Hermes in combination with Pythia

outperforms Pythia alone by 5.1% on average
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Effect of Hermes Request Issue Latency

Hermes in combination with Pythia outperforms Pythia

alone even with a 24-cycle Hermes request issue latency
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Effect of Cache Hierarchy Access Latency

Hermes can provide even higher performance benefit in
future processors with bigger and slower on-chip caches
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Effect of Activation Threshold
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Power Overhead
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Effect of ROB Size
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Effect of LLC Size
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Accuracy and Coverage with Different Prefetchers
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POPET's accuracy and coverage increases significantly
in absence of a data prefetcher
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Increase in Main Memory Requests
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Performance on Unseen Workloads

[OSlow-Only  [OArchivist BRNN-HSS [Sibyl [Oracle
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H&M (H&L) HSS configuration, Sibyl outperforms RNN-
HSS and Archivist by 46.1% (54.6%) and 8.5% (44.1%),

respectively
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Performance Analysis

Performance-Oriented HSS Configuration
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Baseline policies are ineffective for many
workloads even when compared to Slow-Only
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Performance on Mixed Workloads
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Performance on Mixed Workloads
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Performance on Mixed Workloads
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Performance With Different Features
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Sibyl autonomously decides which features are
important to maximize the performance of the running
workload
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Sensitivity to Fast Storage Capacity
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Explainability Analysis
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Training and Inference Network

* Training and inference
networks allow parallel

. ‘ Probabilility distribution
EXECUtlon of the actions

(place data in the fast or
the slow storage)

Fully-connected
layer
(30 neurons)

e Observation vector as
the input

t swish
._|activation
Fully-connected
layer
(20 neurons)

. Observation vector
* Produces pro babil Ity <size; type; intr; cnt, cap; curre

distribution of Q-values
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