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The Problem

Computing
is Bottlenecked by Data
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Data is Key for AI, ML, Genomics, …

n Important workloads are all data intensive

n They require rapid and efficient processing of large amounts 
of data

n Data is increasing
q We can generate more than we can process
q We need to perform more sophisticated analyses on more data
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Data is Key for Modern Workloads

In-Memory Data Analytics 
[Clapp+ (Intel), IISWC’15;  
 Awan+, BDCloud’15]

Datacenter Workloads 
[Kanev+ (Google), ISCA’15]

In-memory Databases 
[Mao+, EuroSys’12; 
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing 
[Xu+, IISWC’12; Umuroglu+, FPL’15]



Huge Demand for Performance & Efficiency

5Source: https://youtu.be/Bh13Idwcb0Q?t=283



Data Overwhelms Modern Machines 

In-Memory Data Analytics 
[Clapp+ (Intel), IISWC’15;  
 Awan+, BDCloud’15]

Datacenter Workloads 
[Kanev+ (Google), ISCA’15]

In-memory Databases 
[Mao+, EuroSys’12; 
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing 
[Xu+, IISWC’12; Umuroglu+, FPL’15]

Data → performance & energy bottleneck
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Data Overwhelms Modern Machines 

Data → performance & energy bottleneck



n Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul 
Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming 
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.
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62.7% of the total system energy 
is spent on data movement

Data Movement Overwhelms Modern Machines 

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/
https://www.asplos2018.org/


Data Movement Overwhelms Accelerators
n Amirali Boroumand, Saugata Ghose, Berkin Akin, Ravi Narayanaswami, Geraldo F. Oliveira, 

Xiaoyu Ma, Eric Shiu, and Onur Mutlu,
"Google Neural Network Models for Edge Devices: Analyzing and Mitigating Machine 
Learning Inference Bottlenecks"
Proceedings of the 30th International Conference on Parallel Architectures and Compilation 
Techniques (PACT), Virtual, September 2021.
[Slides (pptx) (pdf)]
[Talk Video (14 minutes)]
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> 90% of the total system energy 
is spent on memory in large ML models

https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21.pdf
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21.pdf
http://pactconf.org/
http://pactconf.org/
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21-talk.pdf
https://www.youtube.com/watch?v=A5gxjDbLRAs&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=178


Axiom

An Intelligent Architecture
Handles Data Well
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How to Handle Data Well

n Ensure data does not overwhelm the components
q via intelligent algorithms, architectures & system designs: 

algorithm-architecture-devices

n Take advantage of vast amounts of data and metadata
q to improve architectural & system-level decisions 

n Understand and exploit properties of (different) data
q to improve algorithms & architectures in various metrics
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Corollaries: Computing Systems Today …
n Are processor-centric vs. data-centric

n Make designer-dictated decisions vs. data-driven

n Make component-based myopic decisions vs. data-aware
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Fundamentally Better Architectures

Data-centric

Data-driven

Data-aware
14



We Need to Revisit the Entire Stack

15

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

We can get there step by step



A Blueprint for Fundamentally Better Architectures

n Onur Mutlu,
"Intelligent Architectures for Intelligent Computing Systems"
Invited Paper in Proceedings of the Design, Automation, and Test in 
Europe Conference (DATE), Virtual, February 2021.
[Slides (pptx) (pdf)]
[IEDM Tutorial Slides (pptx) (pdf)]
[Short DATE Talk Video (11 minutes)]
[Longer IEDM Tutorial Video (1 hr 51 minutes)]
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https://people.inf.ethz.ch/omutlu/pub/intelligent-architectures-for-intelligent-computingsystems-invited_paper_DATE21.pdf
http://www.date-conference.com/
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-DATE-InvitedTalk-IntelligentArchitecturesForIntelligentComputingSystems-January-22-2021.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-DATE-InvitedTalk-IntelligentArchitecturesForIntelligentComputingSystems-January-22-2021.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://www.youtube.com/watch?v=eAZZGDlsDAY
https://www.youtube.com/watch?v=H3sEaINPBOE


Data-Driven (Self-Optimizing) 
Architectures
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System Architecture Design Today

n Human-driven
q Humans design the policies (how to do things)

n Many (too) simple, short-sighted policies all over the system

n No automatic data-driven policy learning

n (Almost) no learning: cannot take lessons from past actions

18

Can we design 
fundamentally intelligent architectures?



An Intelligent Architecture

n Data-driven
q Machine learns the “best” policies (how to do things)

n Sophisticated, workload-driven, changing, far-sighted policies

n Automatic data-driven policy learning

n All controllers are intelligent data-driven agents

19

We need to rethink design 
(of all controllers)



Self-Optimizing Memory Controllers
n Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana, 

"Self Optimizing Memory Controllers: A Reinforcement Learning 
Approach"
Proceedings of the 35th International Symposium on Computer Architecture 
(ISCA), pages 39-50, Beijing, China, June 2008.                                
Selected to the ISCA-50 25-Year Retrospective Issue covering 1996-
2020 in 2023 (Retrospective (pdf) Full Issue).
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http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/
https://sites.coecis.cornell.edu/isca50retrospective/files/2023/06/Retrospective__RL.pdf
https://sites.coecis.cornell.edu/isca50retrospective/


Self-Optimizing Memory Prefetchers
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Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu,
"Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, October 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (20 minutes)]
[Lightning Talk Video (1.5 minutes)]
[Pythia Source Code (Officially Artifact Evaluated with All Badges)]
[arXiv version]
Officially artifact evaluated as available, reusable and reproducible.

https://arxiv.org/pdf/2109.12021.pdf 

https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=7
https://www.youtube.com/watch?v=kzL22FTz0vc&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=2
https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/abs/2109.12021
https://arxiv.org/pdf/2109.12021.pdf


Learning-Based Off-Chip Load Predictors
n Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk Olgun, 

Mohammad Sadrosadati, and Onur Mutlu,
"Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load 
Prediction"
Proceedings of the 55th International Symposium on Microarchitecture (MICRO), Chicago, IL, USA, 
October 2022.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Talk Video (12 minutes)]
[Lecture Video (25 minutes)]
[arXiv version]
[Source Code (Officially Artifact Evaluated with All Badges)]
Officially artifact evaluated as available, reusable and reproducible.
Best paper award at MICRO 2022.

22https://arxiv.org/pdf/2209.00188.pdf 

https://arxiv.org/pdf/2209.00188.pdf
https://arxiv.org/pdf/2209.00188.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pdf
https://www.youtube.com/watch?v=afGc1pWr-_Y
https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s
https://arxiv.org/abs/2209.00188
https://github.com/CMU-SAFARI/Hermes
https://arxiv.org/pdf/2209.00188.pdf


Self-Optimizing Hybrid SSD Controllers
Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar, 
David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu,
"Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage 
Systems Using Online Reinforcement Learning"
Proceedings of the 49th International Symposium on Computer 
Architecture (ISCA), New York, June 2022.
[Slides (pptx) (pdf)]
[arXiv version]
[Sibyl Source Code]
[Talk Video (16 minutes)]

23https://arxiv.org/pdf/2205.07394.pdf 

https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
http://iscaconf.org/isca2022/
http://iscaconf.org/isca2022/
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pdf
https://arxiv.org/pdf/2205.07394.pdf
https://github.com/CMU-SAFARI/Sibyl
https://www.youtube.com/watch?v=5-WedkiB000
https://arxiv.org/pdf/2205.07394.pdf


Self Optimizing 
Memory Controllers

24



Self-Optimizing Memory Controllers
n Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana, 

"Self Optimizing Memory Controllers: A Reinforcement Learning 
Approach"
Proceedings of the 35th International Symposium on Computer Architecture 
(ISCA), pages 39-50, Beijing, China, June 2008.                                
Selected to the ISCA-50 25-Year Retrospective Issue covering 1996-
2020 in 2023 (Retrospective (pdf) Full Issue).
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http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/
https://sites.coecis.cornell.edu/isca50retrospective/files/2023/06/Retrospective__RL.pdf
https://sites.coecis.cornell.edu/isca50retrospective/


DRAM Controllers Difficult to Design
n Need to obey DRAM timing constraints for correctness

q There are many (50+) timing constraints in DRAM
q tWTR: Minimum number of cycles to wait before issuing a read 

command after a write command is issued
q tRC: Minimum number of cycles between the issuing of two 

consecutive activate commands to the same bank
q …

n Need to keep track of many resources to prevent conflicts
q Channels, banks, ranks, data bus, address bus, row buffers

n Need to handle DRAM refresh
n Need to manage power consumption
n Need to optimize performance & QoS (in the presence of constraints)

q Reordering is not simple
q Fairness and QoS needs complicates the scheduling problem

26



Many DRAM Timing Constraints

n From Lee et al., “DRAM-Aware Last-Level Cache Writeback: Reducing 
Write-Caused Interference in Memory Systems,” HPS Technical Report, 
April 2010.
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More on DRAM Operation
n Kim et al., “A Case for Exploiting Subarray-Level Parallelism 

(SALP) in DRAM,” ISCA 2012.
n Lee et al., “Tiered-Latency DRAM: A Low Latency and Low 

Cost DRAM Architecture,” HPCA 2013.
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Why So Many Timing Constraints? (I)

29

Kim et al., “A Case for Exploiting Subarray-Level Parallelism (SALP) in DRAM,” ISCA 2012.



Why So Many Timing Constraints? (II)

30

Lee et al., “Tiered-Latency DRAM: A Low Latency 
and Low Cost DRAM Architecture,” HPCA 2013.



DRAM Controller Design Is Becoming More Difficult

n Heterogeneous agents: CPUs, GPUs, and HWAs 
n Main memory interference between CPUs, GPUs, HWAs
n Many timing constraints for various memory types
n Many goals at the same time: performance, fairness, QoS, 

energy efficiency, …
31

CPU CPU CPU CPU

Shared Cache

GPU
HWA HWA

DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories



Reality and Dream
n Reality: It is difficult to design a policy that maximizes 

performance, QoS, energy-efficiency, … 
q Too many things to think about
q Continuously changing workload and system behavior

n Dream: Wouldn’t it be nice if the DRAM controller 
automatically found a good scheduling policy on its own?

32



Memory Controller: Performance Function

How to schedule requests to maximize system performance?

33

Memory 
Controller

Core Core

Core Core
Memory

Resolves memory contention 
by scheduling requests



Ipek+, “Self Optimizing Memory Controllers: A Reinforcement Learning Approach,” ISCA 2008.

Self-Optimizing DRAM Controllers
n Problem: DRAM controllers are difficult to design

q It is difficult for human designers to design a policy that can adapt 
itself very well to different workloads and different system conditions

n Idea: A memory controller that adapts its scheduling policy to 
workload behavior and system conditions using machine learning.

n Observation: Reinforcement learning maps nicely to memory 
control.

n Design: Memory controller is a reinforcement learning agent
q It dynamically and continuously learns and employs the best 

scheduling policy to maximize long-term performance.



Self-Optimizing DRAM Controllers
n Engin Ipek, Onur Mutlu, José F. Martínez, and Rich 

Caruana, 
"Self Optimizing Memory Controllers: A 
Reinforcement Learning Approach"
Proceedings of the 35th International Symposium on 
Computer Architecture (ISCA), pages 39-50, Beijing, 
China, June 2008.

35

Goal: Learn to choose actions to maximize r0 + gr1 + g2r2 + … ( 0 £ g < 1) 

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/


Self-Optimizing DRAM Controllers
n Dynamically adapt the memory scheduling policy via 

interaction with the system at runtime 
q Associate system states and actions (commands) with long term 

reward values: each action at a given state leads to a learned reward
q Schedule command with highest estimated long-term reward value in 

each state
q Continuously update reward values for <state, action> pairs based on 

feedback from system
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Self-Optimizing DRAM Controllers
n Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana, 

"Self Optimizing Memory Controllers: A Reinforcement Learning 
Approach"
Proceedings of the 35th International Symposium on Computer Architecture 
(ISCA), pages 39-50, Beijing, China, June 2008.
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http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/


States, Actions, Rewards

38

❖ Reward function

• +1 for scheduling 
Read and Write 
commands

• 0 at all other 
times

Goal is to maximize 
long-term       
data bus 
utilization

 

❖ State attributes

• Number of reads, 
writes, and load 
misses in 
transaction queue

• Number of pending 
writes and ROB 
heads waiting for 
referenced row

• Request’s relative 
ROB order

 

❖ Actions

• Activate

• Write

• Read - load miss

• Read - store miss

• Precharge - pending

• Precharge - preemptive

• NOP

 



Performance Results

39

Large, robust performance improvements 
over many human-designed policies 



Self Optimizing DRAM Controllers
+ Continuous learning in the presence of changing environment

+ Reduced designer burden in finding a good scheduling policy. 
Designer specifies:
 1) What system variables might be useful
 2) What target to optimize, but not how to optimize it

-- How to specify different objectives? (e.g., fairness, QoS, …)

-- Hardware complexity?

-- Design mindset and flow
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Self-Optimizing Memory Controllers
n Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana, 

"Self Optimizing Memory Controllers: A Reinforcement Learning 
Approach"
Proceedings of the 35th International Symposium on Computer Architecture 
(ISCA), pages 39-50, Beijing, China, June 2008.                                
Selected to the ISCA-50 25-Year Retrospective Issue covering 1996-
2020 in 2023 (Retrospective (pdf) Full Issue).

41

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/
https://sites.coecis.cornell.edu/isca50retrospective/files/2023/06/Retrospective__RL.pdf
https://sites.coecis.cornell.edu/isca50retrospective/


Pythia: Prefetching using
Reinforcement Learning 

42



Self-Optimizing Memory Prefetchers

43

Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu,
"Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, October 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (20 minutes)]
[Lightning Talk Video (1.5 minutes)]
[Pythia Source Code (Officially Artifact Evaluated with All Badges)]
[arXiv version]
Officially artifact evaluated as available, reusable and reproducible.

https://arxiv.org/pdf/2109.12021.pdf 

https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=7
https://www.youtube.com/watch?v=kzL22FTz0vc&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=2
https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/abs/2109.12021
https://arxiv.org/pdf/2109.12021.pdf


Rahul Bera,  Konstantinos Kanellopoulos,  Anant V. Nori,
Taha Shahroodi,  Sreenivas Subramoney,  Onur Mutlu

Pythia
A Customizable Hardware Prefetching Framework 

Using Online Reinforcement Learning

https://github.com/CMU-SAFARI/Pythia

https://arxiv.org/pdf/2109.12021.pdf 

https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/pdf/2109.12021.pdf
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Executive Summary

https://github.com/CMU-SAFARI/Pythia

• Background: Prefetchers predict addresses of future memory requests by associating 
memory access patterns with pieces of program and system information (called feature)

• Problem: Three key shortcomings of prior prefetchers:
- Predict mainly using a single program feature
- Lack inherent system awareness (e.g., memory bandwidth usage)
- Lack in-silicon customizability

• Goal: Design a prefetching framework that:
- Learns from multiple features and inherent system-level feedback
- Can be customized in silicon to use different features and/or prefetching objectives

• Contribution: Pythia, which formulates prefetching as reinforcement learning problem
- Takes adaptive prefetch decisions using multiple features and system-level feedback
- Can be customized in silicon for target workloads via simple configuration registers
- Proposes a realistic and practical implementation of RL algorithm in hardware

• Key Results:
- Evaluated using a wide range of workloads from SPEC CPU, PARSEC, Ligra, Cloudsuite
- Outperforms best prefetcher by 3.4%, 7.7% and 17% in 1/4/bw-constrained cores
- Customizing Pythia leads to up to 7.8% more performance over basic Pythia across Ligra workloads

https://github.com/CMU-SAFARI/Pythia
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Talk Outline
Key Shortcomings of Prior Prefetchers

Formulating Prefetching as Reinforcement Learning

Pythia: Overview

Evaluation of Pythia and Key Results

Conclusion
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Prefetching Basics
• Predicts addresses of long-latency memory requests and 

fetches data before the program demands it

• Associates access patterns from past memory requests 
with program context or system information

• Example program features
- Program counter (PC)
- Page number
- Page offset
- Cacheline delta
- …
- Or a combination of these attributes

Program context à Access PatternProgram Feature
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Key Shortcomings in Prior Prefetchers
• We observe three key shortcomings that significantly 

limit performance benefits of prior prefetchers

Predict mainly using a single program feature

Lack inherent system awareness

Lack in-silicon customizability

1
2
3
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(1) Single-Feature Prefetch Prediction
• Provides good performance gains mainly on workloads 

where the feature-to-pattern correlation exists

[1] Bakshalipour et al., HPCA’19 [2] Kim et al., MICRO’16
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(1) Single-Feature Prefetch Prediction
• Provides good performance gains mainly on workloads 

where the feature-to-pattern correlation exists

[1] Bakshalipour et al., HPCA’19 [2] Kim et al., MICRO’16
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Relying on a single feature for prediction leaves 
significant performance improvement on table
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(2) Lack of Inherent System Awareness
• Little understanding of undesirable effects (e.g., 

memory bandwidth usage, cache pollution, …)
- Performance loss in resource-constrained configurations 
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(2) Lack of Inherent System Awareness
• Little understanding of undesirable effects (e.g., 

memory bandwidth usage, cache pollution, …)
- Performance loss in resource-constrained configurations 
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Prefetchers often lose performance due to lack 
of inherent system awareness
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(3) Lack of In-silicon Customizability
• Feature statically selected at design time

- Rigid hardware designed specifically to exploit that feature

• No way to change program feature and/or change 
prefetcher’s objective in silicon
- Cannot adapt to a wide range of workload demands

Design from scratch Verify Fabricate
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Our Goal

A prefetching framework that can:

1.Learn to prefetch using multiple features and 
inherent system-level feedback information

2.Be easily customized in silicon to use different 
features and/or change prefetcher’s objectives
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Our Proposal

Pythia
Formulates prefetching as a 

reinforcement learning problem

Pythia is named after the oracle of Delphi, who is known for her accurate prophecies
https://en.wikipedia.org/wiki/Pythia
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Basics of Reinforcement Learning (RL)
• Algorithmic approach to learn to take an action in a 

given situation to maximize a numerical reward

• Agent stores Q-values for every state-action pair
- Expected return for taking an action in a state
- Given a state, selects action that provides highest Q-value

Agent

Environment

State (St)State (St) Action (At)Action (At)Reward (Rt+1)Reward (Rt+1)
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Formulating Prefetching as RL
Agent

Environment

State (St)State (St) Action (At)Action (At)Reward (Rt+1)Reward (Rt+1)

Prefetcher

Processor & 
Memory Subsystem

Reward
Prefetch from address 

A+offset (O)

Features of memory 
request to address A 

(e.g., PC)
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What is State?
• k-dimensional vector of features

• Feature = control-flow + data-flow

• Control-flow examples
- PC
- Branch PC
- Last-3 PCs, …

• Data-flow examples
- Cacheline address
- Physical page number
- Delta between two cacheline addresses
- Last 4 deltas, …
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What is State?

S = {PC+Delta, Sequence of last-4 deltas}

Example of a state information

Feature-1 (ɸ1) Feature-2 (ɸ2)

PC
(Control-flow info.)

Cacheline Delta
(Data-flow info.)

Seq. of last-4 deltas
(Data-flow info.)
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What is Action?
Given a demand access to address A
the action is to select prefetch offset “O”

• Action-space: 127 actions in the range [-63, +63] 
- For a machine with 4KB page and 64B cacheline

• Upper and lower limits ensure prefetches do not cross 
physical page boundary

• A zero offset means no prefetch is generated

• We further prune action-space by design-space exploration
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What is Reward?
• Defines the objective of Pythia

• Encapsulates two metrics:
- Prefetch usefulness (e.g., accurate, late, out-of-page, …)
- System-level feedback (e.g., mem. b/w usage, cache 

pollution, energy, …)

• We demonstrate Pythia with memory bandwidth 
usage as the system-level feedback in the paper
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What is Reward?
• Seven distinct reward levels

- Accurate and timely (RAT)
- Accurate but late (RAL)
- Loss of coverage (RCL)
- Inaccurate

• With low memory b/w usage (RIN-L)
• With high memory b/w usage (RIN-H)

- No-prefetch
• With low memory b/w usage (RNP-L)
• With high memory b/w usage(RNP-H)

• Values are set at design time via automatic design-
space exploration
- Can be customized further in silicon for higher performance
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Steering Pythia’s Objective via Reward Values
• Example reward configuration for

- Generating accurate prefetches
- Making bandwidth-aware prefetch decisions

+20+12-2-4-8-14

RATRALRNP-HRNP-LRIN-LRIN-H
AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate;

H = High mem. b/w; L = Low mem. b/w

Highly prefers to generate accurate prefetches

Prefers not to prefetch if memory bandwidth usage is low

Strongly prefers not to prefetch if memory bandwidth usage is high
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Steering Pythia’s Objective via Reward Values
• Customizing reward values to make Pythia conservative 

towards prefetching

+20+12+2+1-20-22

RATRALRNP-HRNP-LRIN-LRIN-H
AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate;

H = High mem. b/w; L = Low mem. b/w

Highly prefers to generate accurate prefetches

Otherwise prefers not to prefetch
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Steering Pythia’s Objective via Reward Values
• Customizing reward values to make Pythia conservative 

towards prefetching

+20+12+4+2-20-22

RATRALRNP-HRNP-LRIN-LRIN-H
AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate;

H = High mem. b/w; L = Low mem. b/w

Highly prefers to generate accurate prefetches

Otherwise prefers not to prefetchServer-class processors
Bandwidth-sensitive 

workloads

Strict Pythia configuration
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Pythia Overview
• Q-Value Store: Records Q-values for all state-action pairs
• Evaluation Queue: A FIFO queue of recently-taken actions

Evaluation Queue (EQ)

Demand
Request

1
Assign reward to 

corresponding EQ entry

Look up 
QVStoreState

Vector

Q-Value Store
(QVStore)

2

3

5
Insert prefetch action & 
State-Action pair in EQ

6

Prefetch Fill 

A1 A2 A3

Memory 
Hierarchy

Generate
prefetch

Evict EQ entry and 
update QVStore

4

Find the Action with max Q-Value

7

S1
S2
S3
S4

Set filled bit

Max
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Architecting QVStore

S = {PC+Delta, 
Sequence of last-4 deltas}

+1 +2 +3

Q-Value Store
(QVStore)

…
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Architecting the QVStore

S = {PC+Delta, 
Sequence of last-4 deltas}

+1 +2 +3

Q-Value Store
(QVStore)

…

Fast retrieval of Q-values from QVStore

Efficient storage organization of Q-values in QVStore

Fast prefetch prediction
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Organization of QVStore
• A monolithic two-dimensional table?

- Indexed by state and action values
• State-space increases exponentially with #bits

S = {PC+Delta, Sequence of last-4 deltas}

32b 7b 4x7b = 67 bits+ +

A1 A2 A3 A4 A5 A6 A7 A8 A9
S1
S2
S3
S4
S5
S6
S7

Design complexity Access latency

127 actions

26
7  s

ta
te

s
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Organization of QVStore
• We partition QVStore into k vaults [k  = number of features in state]

- Each vault corresponds to one feature and stores the Q-
values of feature-action pairs

… Vaultk

MAX

(a)

Vault1 Vault2

State-action Q-value

Plane1

Shift

+ #

+

Feature Index

φ1
Sφ
1
S φ2

Sφ
2
S φk

Sφ
k
S

Program 
feature

Q(φ1
S , A)Q(φ1
S , A) Q(φ2

S , A)Q(φ2
S , A) Q(φk

S , A)Q(φk
S , A)

Feature-action Q-value

Q(S,A)Q(S,A)
φk
Sφ
k
S

Q(φk
S , A)Q(φk
S , A)

Feature-action Q-value

φk
Sφ
k
S

Index
Generation

Index
Generation

Index
Generation

Action (A)Action (A) Action (A)Action (A)
(b)

(c)

• Query each vault in 
parallel with feature 
and action

• Retrieve feature-action 
Q-value from each vault

• Compute MAX of all 
feature-action Q-values

MAX ensures the Q(S,A) is driven by the 
constituent feature that has highest Q(ɸ,A)

To retrieve Q(S,A) for 
each action
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Organization of QVStore
• We further partition each vault into multiple planes

- Each plane stores a partial Q-value of a feature-action pair

… Vaultk

MAX

(a)

Vault1 Vault2

State-action Q-value

Plane1

Shift

+ #

+

Feature Index

φ1
Sφ
1
S φ2

Sφ
2
S φk

Sφ
k
S

Program 
feature

Q(φ1
S , A)Q(φ1
S , A) Q(φ2

S , A)Q(φ2
S , A) Q(φk

S , A)Q(φk
S , A)

Feature-action Q-value

Q(S,A)Q(S,A)
φk
Sφ
k
S

Q(φk
S , A)Q(φk
S , A)

Feature-action Q-value

φk
Sφ
k
S

Index
Generation

Index
Generation

Index
Generation

Action (A)Action (A) Action (A)Action (A)
(b)

(c)

• Query each plane in 
parallel with hashed 
feature and action

• Retrieve partial feature-
action Q-value from each 
plane

• Compute SUM of all partial 
feature-action Q-values

To retrieve Q(ɸ,A) 
for each action
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Organization of QVStore
• We further partition each vault into  multiple planes

- Each plane stores a partial Q-value of a feature-action pair

… Vaultk

MAX

(a)

Vault1 Vault2

State-action Q-value

Plane1

Shift

+ #

+

Feature Index

φ1
Sφ
1
S φ2

Sφ
2
S φk

Sφ
k
S

Program 
feature

Q(φ1
S , A)Q(φ1
S , A) Q(φ2

S , A)Q(φ2
S , A) Q(φk

S , A)Q(φk
S , A)

Feature-action Q-value

Q(S,A)Q(S,A)
φk
Sφ
k
S

Q(φk
S , A)Q(φk
S , A)

Feature-action Q-value

φk
Sφ
k
S

Index
Generation

Index
Generation

Index
Generation

Action (A)Action (A) Action (A)Action (A)
(b)

(c)

• Query each plane in 
parallel with hashed 
feature and action

• Retrieve partial feature-
action Q-value from each 
plane

• Compute SUM of all parital 
feature-action Q-values

To retrieve Q(ɸ,A) 
for each action

1. Enables sharing of partial Q-values between similar 
feature values, shortens prefetcher training time

2. Reduces chances of sharing partial Q-values 
across widely different feature values
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More in the Paper
• Pipelined search operation for QVStore

• Reward assignment and QVStore update

• Automatic design-space exploration
- Feature types
- Actions
- Reward and Hyperparameter values
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More in the Paper
• Pipelined search operation for QVStore

• Reward assignment and QVStore update

• Automatic design-space exploration
- Feature types
- Action
- Reward and Hyperparameter values

https://arxiv.org/pdf/2109.12021.pdf 

https://arxiv.org/pdf/2109.12021.pdf
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Simulation Methodology
• Champsim [3] trace-driven simulator

• 150 single-core memory-intensive workload traces
- SPEC CPU2006 and CPU2017
- PARSEC 2.1
- Ligra
- Cloudsuite

• Homogeneous and heterogeneous multi-core mixes

• Five state-of-the-art prefetchers
- SPP [Kim+, MICRO’16]
- Bingo [Bakhshalipour+, HPCA’19]
- MLOP [Shakerinava+, 3rd Prefetching Championship, 2019]
- SPP+DSPatch [Bera+, MICRO’19]
- SPP+PPF [Bhatia+, ISCA’20]

[3] https://github.com/ChampSim/ChampSim

https://github.com/ChampSim/ChampSim
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Basic Pythia Configuration
• Derived from automatic design-space exploration

• State: 2 features
- PC+Delta
- Sequence of last-4 deltas

• Actions: 16 prefetch offsets
- Ranging between -6 to +32. Including 0.

• Rewards:
- RAT = +20; RAL = +12; RNP-H=-2; RNP-L=-4;
- RIN-H=-14; RIN-L=-8; RCL=-12
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List of Evaluated Features
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Basic Pythia Configuration
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1. Pythia consistently provides the highest 
performance in all core configurations

2. Pythia’s gain increases with core count
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Pythia outperforms prior best prefetchers for 
a wide range of DRAM bandwidth configurations
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Performance Improvement via Customization

• Reward value customization
• Strict Pythia configuration

- Increase the rewards for no prefetching
- Decrease the rewards for inaccurate prefetching

• Strict Pythia is more conservative in generating 
prefetch requests than the basic Pythia
• Evaluate on all Ligra graph processing workloads
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Pythia’s Overhead
• 25.5 KB of total metadata storage per core

- Only simple tables
• We also model functionally-accurate Pythia with full 

complexity in Chisel [4] HDL

1.03% area overhead

Satisfies prediction latency

0.4% power overhead

of a desktop-class 4-core Skylake processor (Xeon D2132IT, 60W)
[4] https://www.chisel-lang.org

https://www.chisel-lang.org/
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More in the Paper
• Performance comparison with unseen traces

- Pythia provides equally high performance benefits

• Comparison against multi-level prefetchers
- Pythia outperforms prior best multi-level prefetchers

• Understanding Pythia’s learning with a case study
- We reason towards the correctness of Pythia’s decision

• Performance sensitivity towards different features and 
hyperparameter values

• Detailed single-core and four-core performance
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Performance on Previously-Unseen Workloads
• Evaluated with 500 traces from value prediction 

championship
- No prefetcher has been trained on these traces
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Pythia outperforms MLOP and Bingo by 
8.3% and 3.5% in single-core

And 9.7% and 5.4% in four-core
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More in the Paper
• Performance comparison with unseen traces

- Pythia provides equally high performance benefits

• Comparison against multi-level prefetchers
- Pythia outperforms prior best multi-level prefetchers

• Understanding Pythia’s learning with a case study
- We reason towards the correctness of Pythia’s decision

• Performance sensitivity towards different features 
and hyperparameter values

• Detailed single-core and four-core performance

https://arxiv.org/pdf/2109.12021.pdf 

https://arxiv.org/pdf/2109.12021.pdf
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Pythia is Open Source
https://github.com/CMU-SAFARI/Pythia

• MICRO’21 artifact evaluated
• Champsim source code + Chisel modeling code
• All traces used for evaluation

https://github.com/CMU-SAFARI/Pythia
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Executive Summary

https://github.com/CMU-SAFARI/Pythia

• Background: Prefetchers predict addresses of future memory requests by associating 
memory access patterns with pieces of program and system information (called feature)

• Problem: Three key shortcomings of prior prefetchers:
- Predict mainly using a single program feature
- Lack inherent system awareness (e.g., memory bandwidth usage)
- Lack in-silicon customizability

• Goal: Design a prefetching framework that:
- Learns from multiple features and inherent system-level feedback
- Can be customized in silicon to use different features and/or prefetching objectives

• Contribution: Pythia, which formulates prefetching as reinforcement learning problem
- Takes adaptive prefetch decisions using multiple features and system-level feedback
- Can be customized in silicon for target workloads via simple configuration registers
- Proposes a realistic and practical implementation of RL algorithm in hardware

• Key Results:
- Evaluated using a wide range of workloads from SPEC CPU, PARSEC, Ligra, Cloudsuite
- Outperforms best prefetcher by 3.4%, 7.7% and 17% in 1/4/bw-constrained cores
- Customizing Pythia leads to up to 7.8% more performance over basic Pythia across Ligra workloads

https://github.com/CMU-SAFARI/Pythia


Rahul Bera,  Konstantinos Kanellopoulos,  Anant V. Nori,
Taha Shahroodi,  Sreenivas Subramoney,  Onur Mutlu

Pythia
A Customizable Hardware Prefetching Framework 

Using Online Reinforcement Learning

https://github.com/CMU-SAFARI/Pythia

https://arxiv.org/pdf/2109.12021.pdf 

https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/pdf/2109.12021.pdf
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Pythia Discussion
• FAQs

- Why RL?
- What about large page?
- What’s the prefetch degree?
- Can customization happen during 

workload execution?
- Can runtime mixing create problem?

• Simulation and Methodology
- Basic Pythia configuration
- System parameters
- Configuration of prefetchers
- Evaluated workloads
- Feature selection

• Detailed Design
- Reward structure
- Design overview
- QVStore Organization

• More Results
- Comparison against other adaptive 

prefetchers
- Comparison against Context prefetcher
- Feature combination sensitivity
- Hyperparameter sensitivity
- Comparison with multi-level prefetchers
- Performance in unseen workloads
- Single-core s-curve
- Four-core s-curve
- Detailed performance analysis
- Benefit of bandwidth awareness
- Case study
- Customizing rewards
- Customizing features
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Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu,
"Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, October 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (20 minutes)]
[Lightning Talk Video (1.5 minutes)]
[Pythia Source Code (Officially Artifact Evaluated with All Badges)]
[arXiv version]
Officially artifact evaluated as available, reusable and reproducible.

https://arxiv.org/pdf/2109.12021.pdf 

https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=7
https://www.youtube.com/watch?v=kzL22FTz0vc&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=2
https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/abs/2109.12021
https://arxiv.org/pdf/2109.12021.pdf
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Learning-Based Off-Chip Load Predictors
n Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk Olgun, 

Mohammad Sadrosadati, and Onur Mutlu,
"Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load 
Prediction"
Proceedings of the 55th International Symposium on Microarchitecture (MICRO), Chicago, IL, USA, 
October 2022.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Talk Video (12 minutes)]
[Lecture Video (25 minutes)]
[arXiv version]
[Source Code (Officially Artifact Evaluated with All Badges)]
Officially artifact evaluated as available, reusable and reproducible.
Best paper award at MICRO 2022.
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https://arxiv.org/pdf/2209.00188.pdf
https://arxiv.org/pdf/2209.00188.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pdf
https://www.youtube.com/watch?v=afGc1pWr-_Y
https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s
https://arxiv.org/abs/2209.00188
https://github.com/CMU-SAFARI/Hermes
https://arxiv.org/pdf/2209.00188.pdf


Hermes Talk Video

https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s 

https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s


Rahul Bera,  Konstantinos Kanellopoulos,  Shankar Balachandran,
David Novo,  Ataberk Olgun, Mohammad Sadrosadati,  Onur Mutlu

Accelerating Long-Latency Load Requests 
via Perceptron-Based Off-Chip Load Prediction

https://github.com/CMU-SAFARI/Hermes

https://arxiv.org/pdf/2209.00188.pdf 

https://github.com/CMU-SAFARI/Hermes
https://arxiv.org/pdf/2209.00188.pdf
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The Key Problem

Long-latency off-chip load requests

Often stall processor by 
blocking instruction retirement from 

Reorder Buffer (ROB)

Limit performance
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Traditional Solutions

Employ sophisticated prefetchers

Increase size of on-chip caches
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Key Observation 1

50% 
successfully prefetched

# off-chip loads without any prefetcher

50% 
still go off-chip even with 

a state-of-the-art prefetcher

70% of the off-chip loads 
block the ROB

Many loads still go off-chip 
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40% of the stalls can be eliminated by removing 
on-chip cache access latency from critical path

Key Observation 2

On-chip cache access latency 
significantly contributes to off-chip load latency

L1 L2 LLC Main Memory

Saved cycles

50% still go off-chip

L1 L2 LLC Main Memory
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Caches are Getting Bigger and Slower…

Hardavellas+, “Database Servers on Chip Multiprocessors: Limitations and Opportunities”, CIDR, 2007
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Improve processor performance 
by removing on-chip cache access latency 

from the critical path of off-chip loads

Our Goal



Predicts which load requests 
are likely to go off-chip

Starts fetching data directly from main memory 
while concurrently accessing the cache hierarchy
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Key Contribution

Hermes employs the first 
perceptron-based off-chip load predictor

That predicts which loads are likely to go off-chip

By learning from 
multiple program context information
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Hermes Overview

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

L1 L2 LLC Main Memory

Baseline Processor is stalled

Latency tolerance limit of ROB
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Hermes Overview

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

L1 L2 LLC Main Memory

POPET

L1 L2 LLC

Main Memory

Baseline

Hermes

Saved stall cycles

Processor is stalled

Latency tolerance limit of ROB

Predict

Issue a  
Hermes 
request

Wait

Train

Perceptron-based 
off-chip load predictor
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Designing the Off-Chip Load Predictor

Tracking cache contents

Learning from program behavior

Large metadata
§ Metadata size increases with cache hierarchy size

May need to track all cache operations
§ Gets complex depending on the cache hierarchy 

configuration (e.g., inclusivity, bypassing,…)

Correlate different program features with off-chip loads

MissMap [Loh+, MICRO’11] for the DRAM cache,
D2D [Sembrant+, ISCA’14], D2M [Sembrant+, HPCA’17], LP [Jalili+, HPCA’22] for the cache hierarchy

History-based prediction
HMP [Yoaz+, ISCA’99] for the L1-D cache

Using branch-predictor-like hybrid predictor:
Global, Gshare, and GSkew

Low storage overhead Low design complexity

POPET provides 
both higher accuracy and higher performance 
than predictors inspired from these previous works
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POPET: Perceptron-Based Off-Chip Predictor

• Multi-feature hashed perceptron model [1]
- Each feature has its own weight table
• Stores correlation between feature value and off-chip prediction

Feature1 #
Weight 
Table1

hash

index

Feature2 #
Weight 
Table2

hash

index

FeatureN #
Weight 
TableN

hash

index

!

weight1

weight2

weightn

ActivationSum 
weights

Predict to 
go off-chip

.....

...

(e.g., PC + offset)

Stage 1 Stage 2 Stage 3

≥ τact≥ τact

[1] D. Tarjan and K. Skadron, “Merging Path and Gshare Indexing in Perceptron Branch Prediction,” TACO, 2005

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

POPET
Predict

Issue 
Hermes 
request

Wait

Train
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Predicting using POPET

• Uses simple table lookups, addition, and comparison

Feature1 #
Weight 
Table1

hash

index

Feature2 #
Weight 
Table2

hash

index

FeatureN #
Weight 
TableN

hash

index

!

weight1

weight2

weightn

ActivationSum 
weights

Predict to 
go off-chip

.....

...

(e.g., PC + offset)

Stage 1 Stage 2 Stage 3

≥ τact≥ τact

0x7ffe0+12

42 -4

12

3 3 >= -2

-5

Predict that 
the load 
would go 
off-chip

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

POPET
Predict

Issue 
Hermes 
request

Wait

Train
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Training POPET

• Uses simple increment or decrement of feature weights

Feature1 #
Weight 
Table1

hash

index

Feature2 #
Weight 
Table2

hash

index

FeatureN #
Weight 
TableN

hash

index

!

weight1

weight2

weightn

ActivationSum 
weights

Predict to 
go off-chip

.....

...

(e.g., PC + offset)

Stage 1 Stage 2 Stage 3

≥ τact≥ τact

0x7ffe0+12

42 -4

12

3 3 >= -2

-5

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

POPET
Predict

Issue 
Hermes 
request

Wait

Train

Predict that 
the load 
would go 
off-chip

Shouldn’t be activated

Cumulative weight < 𝜏act

-1

-1

-1
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Features Used in Hermes



Evaluation
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Simulation Methodology
• ChampSim trace driven simulator

• 110 single-core memory-intensive traces
- SPEC CPU 2006 and 2017
- PARSEC 2.1
- Ligra
- Real-world applications

• 220 eight-core memory-intensive trace mixes

Off-Chip PredictorsLLC Prefetchers

• History-based: HMP [Yoaz+, ISCA’99]

• Tracking-based: Address Tag-
Tracking based Predictor (TTP)

• Ideal Off-chip Predictor

• Pythia [Bera+, MICRO’21]

• Bingo [Bakshalipour+, HPCA’19]

• MLOP [Shakerinava+, 3rd Prefetching Championship’19]

• SPP + Perceptron filter [Bhatia+, ISCA’20]

• SMS [Somogyi+, ISCA’06]
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Latency Configuration

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

POPET

Issue 
Hermes 
request

Wait

• Cache round-trip latency
• L1-D: 5 cycles
• L2: 15 cycles
• LLC: 55 cycles

• Hermes request issue latency 
(incurred after address translation)

      Depends on
• Interconnect between POPET and MC

0 cycles 24 cycles

6 cycles
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Single-Core Performance Improvement
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5.4%

Hermes alone provides nearly 
50% performance benefits of Pythia 

with only 1/5th storage overhead

Hermes on top of Pythia 
outperforms Pythia alone in every workload category 
Hermes provides nearly 90% performance benefit of 

Ideal Hermes that has an ideal off-chip load predictor
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Increase in Main Memory Requests
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11.5%
20.3% 5.4%

For every 1% performance benefit, 
increase in main memory requests 

Pythia

Hermes on top of Pythia

Hermes alone

2%

1%

0.5%

Hermes is more bandwidth-efficient
than even an efficient prefetcher like Pythia
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Performance with Varying Memory Bandwidth
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~AMD EPYC Rome 7702P (Zen 2, 64C/8ch, 2019)

~Intel Xeon 6258R 
(Cascade Lake, 28C/6ch, 2020)

Pythia

Hermes

Pythia+Hermes

In bandwidth-constrained configurations,
Hermes alone outperforms Pythia 
Hermes+Pythia outperforms Pythia 

across all bandwidth configurations

Baseline
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Prefetcher-only Prefetcher + Hermes

Performance with Varying Baseline Prefetcher

5.4% 6.2%

5.1% 7.6%

7.7%Hermes consistently improves performance 
on top of a wide range of baseline prefetchers
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Effect of Cache Hierarchy Access Latency

3.6%

6.2%

Hermes can provide even higher performance benefit in 
future processors with bigger and slower on-chip caches
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Effect of ROB Size

6.7%
5.3%
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Effect of LLC Size

1.3%2.5%
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Accuracy and Coverage with Different Prefetchers

POPET’s accuracy and coverage increases significantly 
in absence of a data prefetcher
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Overhead of Hermes

4 KB storage overhead

1.5% power overhead*

*On top of an Intel Alder Lake-like performance-core [2] configuration

[2] https://www.anandtech.com/show/16881/a-deep-dive-into-intels-alder-lake-microarchitectures/3
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More in the Paper 
• Performance sensitivity to:

- Cache hierarchy access latency
- Hermes request issue latency
- Activation threshold
- ROB size (in extended version on arXiv)
- LLC size (in extended version on arXiv)

• Accuracy, coverage, and performance analysis against HMP and TTP

• Understanding usefulness of each program feature

• Effect on stall cycle reduction

• Performance analysis on an eight-core system
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More in the Paper 
• Performance sensitivity to:

- Cache hierarchy access latency
- Hermes request issue latency
- Activation threshold
- ROB size (in extended version at arXiv)
- LLC size (in extended version at arXiv)

• Accuracy, coverage, and performance analysis against HMP and TTP

• Understanding usefulness of each program feature

• Effect on stall cycle reduction

• Performance analysis in eight-core system
https://arxiv.org/pdf/2209.00188.pdf 

https://arxiv.org/pdf/2209.00188.pdf


To Summarize…
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Summary

Hermes enables off-chip load prediction, 
a different form of speculation than

load address prediction employed by prefetchers

Off-chip load prediction can be applied by itself 
or combined with load address prediction 

to provide performance improvement
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Summary

Hermes employs the first 
perceptron-based off-chip load predictor

High coverage
(74%)

High accuracy
(77%)

Low storage 
overhead
(4KB/core)

High performance improvement 
over best prior baseline

(5.4%)

High performance 
per bandwidth
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Hermes is Open Sourced

https://github.com/CMU-SAFARI/Hermes

All workload traces

13 prefetchers 9 off-chip predictors

https://github.com/CMU-SAFARI/Hermes
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Easy To Define Your Own Off-Chip Predictor

• Just extend the OffchipPredBase class
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Easy To Define Your Own Off-Chip Predictor

• Define your own train() and predict() functions

• Get statistics like accuracy (stat name precision) and 
coverage (stat name recall) out of the box
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Off-Chip Prediction Can Further Enable…

Prioritizing loads that are likely go off-chip 
in cache queues and on-chip network routing

Better instruction scheduling 
of data-dependent instructions

Other ideas to improve performance and 
fairness in multi-core system design...



Rahul Bera,  Konstantinos Kanellopoulos,  Shankar Balachandran,
David Novo,  Ataberk Olgun, Mohammad Sadrosadati,  Onur Mutlu

Accelerating Long-Latency Load Requests 
via Perceptron-Based Off-Chip Load Prediction

https://github.com/CMU-SAFARI/Hermes

https://arxiv.org/pdf/2209.00188.pdf 

https://github.com/CMU-SAFARI/Hermes
https://arxiv.org/pdf/2209.00188.pdf
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Hermes Discussion
• FAQs

- What are the selected set of program features?
- Can you provide some intuition on why these 

features work?
- What happens in case of a misprediction?
- What’s the performance headroom for off-chip 

prediction?

- Do you see a variance of different features in final 
prediction accuracy?

• Simulation Methodology
- System parameters
- Evaluated workloads

• More Results
- Percentage of off-chip requests
- Reduction in stall cycles by reducing the 

critical path
- Fraction of off-chip load requests
- Accuracy and coverage of POPET
- Effect of different features
- Are all features required?
- 1C performance
- 1C performance line graph
- 1C performance against prior predictors
- Effect on stall cycles
- 8C performance
- Sensitivity:

• Hermes request issue latency
• Cache hierarchy access latency
• Activation threshold
• ROB size
• LLC size

- Power overhead
- Accuracy without prefetcher
- Main memory request overhead with 

different prefetchers



Hermes Paper [MICRO 2022]
n Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk Olgun, 

Mohammad Sadrosadati, and Onur Mutlu,
"Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load 
Prediction"
Proceedings of the 55th International Symposium on Microarchitecture (MICRO), Chicago, IL, USA, 
October 2022.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Talk Video (12 minutes)]
[Lecture Video (25 minutes)]
[arXiv version]
[Source Code (Officially Artifact Evaluated with All Badges)]
Officially artifact evaluated as available, reusable and reproducible.
Best paper award at MICRO 2022.

141https://arxiv.org/pdf/2209.00188.pdf 

https://arxiv.org/pdf/2209.00188.pdf
https://arxiv.org/pdf/2209.00188.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pdf
https://www.youtube.com/watch?v=afGc1pWr-_Y
https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s
https://arxiv.org/abs/2209.00188
https://github.com/CMU-SAFARI/Hermes
https://arxiv.org/pdf/2209.00188.pdf


Sibyl: Reinforcement Learning based
Data Placement in Hybrid SSDs
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Self-Optimizing Hybrid SSD Controllers
Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar, 
David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu,
"Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage 
Systems Using Online Reinforcement Learning"
Proceedings of the 49th International Symposium on Computer 
Architecture (ISCA), New York, June 2022.
[Slides (pptx) (pdf)]
[arXiv version]
[Sibyl Source Code]
[Talk Video (16 minutes)]
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https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
http://iscaconf.org/isca2022/
http://iscaconf.org/isca2022/
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pdf
https://arxiv.org/pdf/2205.07394.pdf
https://github.com/CMU-SAFARI/Sibyl
https://www.youtube.com/watch?v=5-WedkiB000
https://arxiv.org/pdf/2205.07394.pdf


Sibyl
Adaptive and Extensible Data Placement 

in Hybrid Storage Systems 
Using Online Reinforcement Learning

Gagandeep Singh, Rakesh Nadig, Jisung Park, 
Rahul Bera, Nastaran Hajinazar, David Novo, 

Juan Gómez Luna, Sander Stuijk, Henk Corporaal,  
Onur Mutlu
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Executive Summary
• Background: A hybrid storage system (HSS) uses multiple different storage devices to

provide high and scalable storage capacity at high performance
• Problem: Two key shortcomings of prior data placement policies:

- Lack of adaptivity to:
• Workload changes
• Changes in device types and configurations

- Lack of extensibility to more devices

• Goal: Design a data placement technique that provides:
- Adaptivity, by continuously learning and adapting to the application and underlying device

characteristics
- Easy extensibility to incorporate a wide range of hybrid storage configurations

• Contribution: Sibyl, the first reinforcement learning-based data placement technique in
hybrid storage systems that:
- Provides adaptivity to changing workload demands and underlying device characteristics
- Can easily extend to any number of storage devices
- Provides ease of design and implementation that requires only a small computation overhead

• Key Results: Evaluate on real systems using a wide range of workloads
- Sibyl improves performance by 21.6% compared to the best previous data placement technique in

dual-HSS configuration
- In a tri-HSS configuration, Sibyl outperforms the state-of-the-art-policy policy by 48.2%
- Sibyl achieves 80% of the performance of an oracle policy with storage overhead of only 124.4 KiB

https://github.com/CMU-SAFARI/Sibyl 145
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Storage Management Layer

Hybrid Storage System Basics

WriteRead

Read Write Read Write

Promotion

Eviction

Hybrid Storage System
Fast Device Slow Device

Address Space (Application/File System View) 
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Hybrid Storage System Basics

WriteRead

Read Write Read Write

Promotion

Eviction

Hybrid Storage System

Performance of a hybrid storage system 
highly depends on the ability of the 

storage management layer
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Key Shortcomings in Prior Techniques
We observe two key shortcomings that significantly 
limit the performance benefits of prior techniques

1. Lack of adaptivity to:
a) Workload changes
b) Changes in device types and configuration

2. Lack of extensibility to more devices 
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Lack of Adaptivity (1/2)
Workload Changes
Prior data placement techniques consider only a few
workload characteristics that are statically tuned

CDE RNN-HSS Oracle

41.1%
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Lack of Adaptivity (2/2)
Changes in Device Types and Configurations 
Do not consider underlying storage device 
characteristics (e.g., changes in the level asymmetry in 
read/write latencies, garbage collection)

HSS Configuration 1 HSS Configuration 2

Slow-Only CDE RNN-HSS Slow-Only CDE RNN-HSS OracleOracle
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Lack of Extensibility (1/2)
Rigid techniques that require significant effort to 
accommodate more than two devices

Change in storage configuration

Dual-HSS
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Lack of Extensibility (2/2)
Rigid techniques that require significant effort to 
accommodate more than two devices

Change in storage configuration Design a new policy

Tri-HSS
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Our Goal

A data-placement mechanism 
that can provide:

1.Adaptivity, by continuously learning and 
adapting to the application and underlying 

device characteristics
2.Easy extensibility to incorporate a wide 

range of hybrid storage configurations
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Our Proposal

Sibyl
Formulates data placement in 

hybrid storage systems as a 
reinforcement learning problem

Sibyl is an oracle that makes accurate prophecies
https://en.wikipedia.org/wiki/Sibyl 155
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Basics of Reinforcement Learning (RL)

Agent learns to take an action in a given state 
to maximize a numerical reward

Agent

Environment

State (St)State (St) Action (At)Action (At)Reward (Rt+1)Reward (Rt+1)
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Formulating Data Placement as RL
Agent

Environment

State (St) Action (At)Reward (Rt+1)

Hybrid Storage 
System

Sibyl

Features of the 
current request 

and system

Request latency
(of last served request)

Select storage device to 
place the current page
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What is State?
• Limited number of state features:

- Reduce the implementation overhead
- RL agent is more sensitive to reward

• 6-dimensional vector of state features

• We quantize the state representation into bins to 
reduce storage overhead

159

Hybrid Storage 
System

Sibyl

Features of 
the current 
request and 
system

Request latency
(of last served 
request)

Select storage 
device to place 
the current page



Selected State Attributes
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What is Reward?
• Defines the objective of Sibyl

• We formulate the reward as a function of the     
request latency

• Encapsulates three key aspects:
- Internal state of the device (e.g., read/write latencies, the 

latency of garbage collection, queuing delays, …)
- Throughput
- Evictions
 

• More details in the paper
161

Hybrid Storage 
System

Sibyl

Features of 
the current 
request and 
system

Request latency
(of last served 
request)

Select storage 
device to place 
the current page



Reward Function
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What is Action?
• At every new page request, the                                     

action is to select a storage device

• Action can be easily extended to any number of 
storage devices

• Sibyl learns to proactively evict or promote a page

163

Hybrid Storage 
System

Sibyl

Features of 
the current 
request and 
system

Request latency
(of last served 
request)

Select storage 
device to place 
the current page



Talk Outline
Key Shortcomings of Prior Data Placement Techniques

Formulating Data Placement as Reinforcement Learning

Sibyl: Overview

Evaluation of Sibyl and Key Results

Conclusion

164



RL Decision 
Thread

Sibyl Execution

Storage
Request

(from OS)

RL Training 
Thread

Periodic Policy
Weight Update

State, Reward, 
and Action 

Information

Data 
Placement 
Decision

Asynchronous 
Execution

Sibyl
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Sibyl Design: Overview

Inference 
Network

Max

HSS Collect
Experiences

Experience Buffer 
(in host DRAM)

Observation 
Vector

Storage
Request

(from OS)

State

State

Action

Reward

RL Decision 
Thread

Sibyl Policy

Periodic Weights 
update 10

Training 
Network

RL Training 
ThreadBatchTraining 

Dataset
Periodic Policy 
Weight Update
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RL Decision Thread

Inference 
Network

Max

HSS Collect
Experiences

Experience Buffer 
(in host DRAM)

Observation 
Vector

Storage
Request

(from OS)

State

State

Action

Reward

RL Decision 
Thread

Sibyl Policy
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RL Decision Thread

Observation 
Vector

Storage
Request

(from OS)

State

State

RL Decision 
Thread
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RL Decision Thread

Inference 
Network

Max

HSS

State Action

RL Decision 
Thread

Sibyl Policy
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RL Decision Thread

HSS Collect
Experiences

Observation 
Vector

Storage
Request

(from OS)

State

Reward

RL Decision 
Thread
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RL Decision Thread

HSS Collect
Experiences

Experience Buffer 
(in host DRAM)

Observation 
Vector

Storage
Request

(from OS)

State

Reward

RL Decision 
Thread
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RL Training Thread

Periodic Weights 
update 10

RL Training 
ThreadBatchTraining 

Dataset

Experience Buffer 
(in host DRAM)

RL Decision 
Thread

Periodic Policy 
Weight Update

Training 
Network
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Periodic Weight Transfer

Inference 
Network

Max

HSS Collect
Experiences

Experience Buffer 
(in host DRAM)

Observation 
Vector

Storage
Request

(from OS)

State

State

Action

Reward

RL Decision 
Thread

Sibyl Policy

Periodic Weights 
update 10

Training 
Network

Periodic Policy 
Weight Update

RL Training 
ThreadBatchTraining 

Dataset
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Training and Inference Networks
• Training and inference 

networks allow parallel 
execution 

• Observation vector as 
the input 

• Produces probability 
distribution of Q-values
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RL-Based Data Placement Algorithm
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Hyperparameter Tuning
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Evaluation Methodology (1/3)
• Real system with various HSS configurations

- Dual-hybrid and tri-hybrid systems
AMD	Ryzen7	
2700G	CPU

Seagate	HDD	
ST1000DM010

Intel	Optane	
SSD	P4800X

Intel	SSD									
D3-S4510

ADATA	
SU630	SSD	
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Evaluation Methodology (2/3)
Cost-Oriented HSS Configuration

High-end SSD Low-end HDD

Performance-Oriented HSS Configuration

High-end SSD Middle-end SSD 179



Evaluation Methodology (3/3)
• 18 different workloads from:

- MSR Cambridge and Filebench Suites

• Four state-of-the-art data placement baselines:
- CDE [Matsui+, Proc. IEEE’17] 

- HPS [Meswani+, HPCA’15]

- Archivist [Ren+, ICCD’19]

- RNN-HSS [Doudali+, HPDC’19]

Heuristic-based

Learning-based
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Performance Analysis
Cost-Oriented HSS Configuration

Slow-Only CDE HPS Archivist RNN-HSS Sibyl Oracle

High-end SSD Low-end HDD
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Performance Analysis

Sibyl consistently outperforms all the baselines 
for all the workloads

Cost-Oriented HSS Configuration
Slow-Only CDE HPS Archivist RNN-HSS Sibyl Oracle

High-end SSD Low-end HDD

182



Performance Analysis

RNN-HSS Sibyl OracleSlow-Only CDE HPS Archivist

Performance-Oriented HSS Configuration
High-end SSD Mid-end SSD
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Performance Analysis

RNN-HSS Sibyl OracleSlow-Only CDE HPS Archivist

Performance-Oriented HSS Configuration

Sibyl provides 21.6% performance improvement by 
dynamically adapting its data placement policy 

High-end SSD Mid-end SSD
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Performance Analysis

RNN-HSS Sibyl OracleSlow-Only CDE HPS Archivist

Performance-Oriented HSS Configuration
High-end SSD Mid-end SSD
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Performance Analysis

RNN-HSS Sibyl OracleSlow-Only CDE HPS Archivist

Performance-Oriented HSS Configuration

Sibyl achieves 80% of the performance 
of an oracle policy that has 

complete knowledge of future access patterns

High-end SSD Mid-end SSD
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Performance on Tri-HSS
Extending Sibyl for more devices:

SibylTri-hybridHeuristicTri-hybrid

High-end SSD Low-end HDDMid-end SSD

Extending Sibyl for more devices:
1. Add a new action
2. Add the remaining capacity of the new device as a 

state feature
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Performance on Tri-HSS

SibylTri-hybridHeuristicTri-hybrid

Extending Sibyl for more devices:
1. Add a new action
2. Add the remaining capacity of the new device as a 

state feature

High-end SSD Low-end HDDMid-end SSD
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Performance on Tri-HSS

SibylTri-hybridHeuristicTri-hybrid

Extending Sibyl for more devices:
1. Add a new action
2. Add the remaining capacity of the new device as a 

state featureSibyl outperforms the state-of-the-art 
data placement policy by

48.2% in a real tri-hybrid system

Sibyl reduces the system architect's burden 
by providing ease of extensibility

High-end SSD Low-end HDDMid-end SSD
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Sibyl’s Overhead
• 124.4 KiB of total storage cost 

- Experience buffer, inference and training network

• 40-bit metadata overhead per page for state features

• Inference latency of ~10ns

• Training latency of ~2us

Small area overhead

Small inference overhead

Satisfies prediction latency
190



More in the Paper (1/3)
• Throughput (IOPS) evaluation

- Sibyl provides high IOPS compared to baseline policies because it 
indirectly captures throughput (size/latency)

• Evaluation on unseen workloads
- Sibyl can effectively adapt its policy to highly dynamic workloads

• Evaluation on mixed workloads
- Sibyl provides equally-high performance benefits as in single 

workloads
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More in the Paper (2/3)
• Evaluation using different features

- Sibyl autonomously decides which features are important to 
maximize the performance

• Evaluation with different hyperparameter values

• Sensitivity to fast storage capacity
- Sibyl provides scalability by dynamically adapting its policy to 

available storage size

• Explainability analysis of Sibyl's decision making
- Explain Sibyl’s actions for different workload characteristics and 

device configurations

192



More in the Paper (3/3)

https://arxiv.org/pdf/2205.07394.pdf

https://github.com/CMU-SAFARI/Sibyl
193
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Conclusion
• We introduced Sibyl, the first reinforcement learning-

based data placement technique in hybrid storage
systems that provides
- Adaptivity
- Easily extensibility
- Ease of design and implementation

•We evaluated Sibyl on real systems using many 
different workloads
- Sibyl improves performance by 21.6% compared to the best prior

data placement policy in a dual-HSS configuration
- In a tri-HSS configuration, Sibyl outperforms the state-of-the-art-

data placement policy by 48.2%
- Sibyl achieves 80% of the performance of an oracle policy with a

storage overhead of only 124.4 KiB
https://github.com/CMU-SAFARI/Sibyl 195
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Sibyl
Adaptive and Extensible Data Placement 

in Hybrid Storage Systems 
Using Online Reinforcement Learning

Gagandeep Singh, Rakesh Nadig, Jisung Park, 
Rahul Bera, Nastaran Hajinazar, David Novo, 

Juan Gómez Luna, Sander Stuijk, Henk Corporaal,  
Onur Mutlu
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ISCA 2022 Paper, Slides, Videos
n Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar, 

David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu,
"Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage 
Systems Using Online Reinforcement Learning"
Proceedings of the 49th International Symposium on Computer 
Architecture (ISCA), New York, June 2022.
[Slides (pptx) (pdf)]
[arXiv version]
[Sibyl Source Code]
[Talk Video (16 minutes)]
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https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
http://iscaconf.org/isca2022/
http://iscaconf.org/isca2022/
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pdf
https://arxiv.org/pdf/2205.07394.pdf
https://github.com/CMU-SAFARI/Sibyl
https://www.youtube.com/watch?v=5-WedkiB000
https://arxiv.org/pdf/2205.07394.pdf


SSD Course (Spring 2023)
n Spring 2023 Edition: 

q https://safari.ethz.ch/projects_and_seminars/spring2023/
doku.php?id=modern_ssds

n Fall 2022 Edition: 
q https://safari.ethz.ch/projects_and_seminars/fall2022/do

ku.php?id=modern_ssds 

n Youtube Livestream (Spring 2023):
q https://www.youtube.com/watch?v=4VTwOMmsnJY&list

=PL5Q2soXY2Zi_8qOM5Icpp8hB2SHtm4z57&pp=iAQB
n Youtube Livestream (Fall 2022):

q https://www.youtube.com/watch?v=hqLrd-
Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4JI5bwhAMpAp13&p
p=iAQB

n Project course
q Taken by Bachelor’s/Master’s students
q SSD Basics and Advanced Topics
q Hands-on research exploration
q Many research readings

198https://www.youtube.com/onurmutlulectures 
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https://www.youtube.com/onurmutlulectures


Comp Arch (Fall 2021)
n Fall 2021 Edition: 

q https://safari.ethz.ch/architecture/fall2021/doku.
php?id=schedule 

n Fall 2020 Edition: 
q https://safari.ethz.ch/architecture/fall2020/doku.

php?id=schedule 

n Youtube Livestream (2021):
q https://www.youtube.com/watch?v=4yfkM_5EFg

o&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF 
n Youtube Livestream (2020):

q https://www.youtube.com/watch?v=c3mPdZA-
Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN 

n Master’s level course
q Taken by Bachelor’s/Masters/PhD students
q Cutting-edge research topics + fundamentals in 

Computer Architecture
q 5 Simulator-based Lab Assignments
q Potential research exploration
q Many research readings
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Reward Assignment to EQ Entry
• Every action gets inserted into EQ
• Reward is assigned to each EQ entry before or during the 

eviction

• During EQ insertion: for actions
- Not to prefetch
- Out-of-page prefetch
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Reward Assignment to EQ Entry
• Every action gets inserted into EQ
• Reward is assigned to each EQ entry before or during the 

eviction

• During EQ insertion: for actions
- Not to prefetch
- Out-of-page prefetch

• During EQ residency:
- In case address of a demand matches with address in EQ 

(signifies accurate prefetch)
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Reward Assignment to EQ Entry
• Every action gets inserted into EQ
• Reward is assigned to each EQ entry before or during the 

eviction

• During EQ insertion: for actions
- Not to prefetch
- Out-of-page prefetch

• During EQ residency:
- In case address of a demand matches with address in EQ 

(signifies accurate prefetch)

• During EQ eviction:
- In case no reward is assigned till eviction                             

(signifies inaccurate prefetch)
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Performance S-curve: Single-core
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Performance S-curve: Four-core
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Pythia Discussion
• FAQs

- Why RL?
- What about large page?
- What’s the prefetch degree?
- Can customization happen during 

workload execution?
- Can runtime mixing create problem?

• Simulation and Methodology
- Basic Pythia configuration
- System parameters
- Configuration of prefetchers
- Evaluated workloads
- Feature selection

• Detailed Design
- Reward structure
- Design overview
- QVStore Organization

• More Results
- Comparison against other adaptive 

prefetchers
- Comparison against Context prefetcher
- Feature combination sensitivity
- Hyperparameter sensitivity
- Comparison with multi-level prefetchers
- Performance in unseen workloads
- Single-core s-curve
- Four-core s-curve
- Detailed performance analysis
- Benefit of bandwidth awareness
- Case study
- Customizing rewards
- Customizing features
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Why RL? Why Not Supervised Learning?
• Determining the benefits of prefetching (i.e., whether a 

decision was good for performance or not) is not easy
- Depends on a complex set of metrics

• Coverage, accuracy, timeliness
• Effects on system: b/w usage, pollution, cross-application interference, …

- Dynamically-changing environmental conditions change the 
benefit

- Delayed feedback due to long latency (might not receive 
feedback at all for inaccurate prefetches!)

• Differs from classification tasks (e.g., branch prediction)
- Performance strongly correlates mainly to accuracy
- Does not depend on environment
- Bounded feedback delay
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What About Large Pages?
• Pythia’s framework can be easily extended to incorporate 

additional prefetch actions (i.e., possible prefetch offsets 
for the page size)

• To decrease the storage overhead
- Prune action space via automatic design-space exploration
- Hash action values to retrieve Q-values
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What is the Prefetch Degree? Is It Managed by 
the RL Agent?
• Pythia employs a simple degree selector, separate from 

the RL agent
- If the agent has selected the same prefetch action (O) multiple 

times in a row, Pythia increases the degree (A+2O, A+3O, …)
- At most degree 4

• Future works on managing degree by the RL agent
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Can the Customization Be Done While the 
Workload is Running?
• Certainly.
• Pythia, being an online learning technique, will 

autonomously adapt (and optimize) its policy to use the 
new program features or the modified reward values
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Can Runtime Workload Mix Create an Issue?
• We implement the bandwidth usage feedback using a 

counter in the memory controller. Thus Pythia already has 
a global view of the memory bandwidth usage that 
incorporates all workloads running on a multi-core system

• We evaluate a diverse set (300 of each category) of four-
core, eight-core, twelve-core random workload mixes 
• Based on our evaluation, we observe that Pythia 

dynamically adapts itself to varying workload demands
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How does Pythia Compare Against Other Adaptive 
Prefetching Solutions?
• We compare Pythia against IBM POWER7[5] prefetcher

- Adaptively selects prefetcher degree/configuration by 
monitoring program IPC
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6.4%

[5] Jimenez et al., TOPC’14
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How Does Pythia Compare Against the Context 
Prefetcher?
• Pythia widely differs from the Context Prefetcher (CP)[6] in 

all three aspects: state, action, and reward. The key 
differences are:
- CP does not consider system-level feedback
- CP models the agent as a contextual bandit which takes myopic 

prefetch decisions as compared to Pythia
- CP requires compiler support to extract software-level features

1
1.1
1.2
1.3
1.4
1.5

SPEC06 SPEC17 PARSEC Ligra Cloudsuite GEOMEAN

Ge
om

ea
n 

sp
ee

du
p 

ov
er

 b
as

el
in

e

CP-HW Pythia

1
1.1
1.2
1.3
1.4
1.5

SPEC06 SPEC17 PARSEC Ligra Cloudsuite Mix GEOMEAN

Ge
om

ea
n 

sp
ee

du
p 

ov
er

 b
as

el
in

e

CP-HW Pythia
(a) single-core (b) four-core

Pythia outperforms CP-HW by 5.3% in single-core and 
7.6% in four-core system

[6] Leeor et al., ISCA’15
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How Pythia’s Performance Changes With 
Various State Definitions You Have Swept?
• In total we evaluate state defined as any-one, any-two, 

and any-three combinations of 32 features
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Performance gain ranges from 20.7% to 22.4%

Coverage ranges from 66.2% to 71.5%
Overprediction ranges from 26.7% to 32.2%
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Is Pythia Sensitive to Hyperparameters?
• Not setting hyperparameters can significantly impact the 

overall performance improvement
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Changing 𝜀 from 0.002 to 1.0 drops perf. by 16%

Changing 𝛼 from 0.0065 to 1.0 drops perf. by 5.4%
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How Does Pythia Compare Against Commercial 
Multi-level Prefetchers?
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Pythia outperforms IPCP [7] by 14.2% on average in 150-MTPS

[6] Prakalapati et al., ISCA’20
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Does Pythia Perform Equally Well for Unseen 
Workloads?
• Evaluated with 500 traces from value prediction 

championship
- No prefetcher has been trained on these traces
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Pythia outperforms MLOP and Bingo by 
8.3% and 3.5% in single-core

And 9.7% and 5.4% in four-core
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Basic Pythia Configuration
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System Parameters
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Configuration of Prefetchers
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Evaluated Workloads
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List of Evaluated Features



MORE RESULTS
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Performance S-curve: Single-core
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Performance S-curve: Four-core
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Single-core Coverage & Overprediction
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Detailed Performance

1
1.1
1.2
1.3
1.4
1.5

SP
EC

06

SP
EC

17

PARSE
C

Lig
ra

Cloudsuite

GEO
MEA

NGe
om

ea
n 

sp
ee

du
p 

ov
er

 b
as

el
in

e SPP Bingo MLOP Pythia

1.06

1.12

1.18

1.24

St
St

+S
St

+S
+B

St
+S

+B
+D

St
+S

+B
+D

+M
Py

th
iaGe

om
ea

n 
sp

ee
du

p
ov

er
 b

as
el

in
e (a) (b)

1
1.1
1.2
1.3
1.4
1.5

SP
EC

06

SP
EC

17

PARSE
C

Lig
ra

Cloudsu
ite M

ix

GEO
M

EA
NG

eo
m

ea
n 

sp
ee

du
p 

ov
er

 b
as

el
in

e SPP Bingo MLOP Pythia

1
1.06
1.12
1.18
1.24

1.3

St
St

+S
St

+S
+B

St
+S

+B
+D

St
+S

+B
+D

+M
p

yt
h

iaG
eo

m
ea

n 
sp

ee
du

p 
ov

er
 b

as
el

in
e(a) (b)



230

Benefit of Bandwidth Awareness
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Case Study
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Customizing Rewards
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Customizing Features
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Hermes Discussion
• FAQs

- What are the selected set of program features?
- Can you provide some intuition on why these 

features work?
- What happens in case of a misprediction?
- What’s the performance headroom for off-chip 

prediction?

- Do you see a variance of different features in final 
prediction accuracy?

• Simulation Methodology
- System parameters
- Evaluated workloads

• More Results
- Percentage of off-chip requests
- Reduction in stall cycles by reducing the 

critical path
- Fraction of off-chip load requests
- Accuracy and coverage of POPET
- Effect of different features
- Are all features required?
- 1C performance
- 1C performance line graph
- 1C performance against prior predictors
- Effect on stall cycles
- 8C performance
- Sensitivity:

• Hermes request issue latency
• Cache hierarchy access latency
• Activation threshold
• ROB size
• LLC size

- Power overhead
- Accuracy without prefetcher
- Main memory request overhead with 

different prefetchers



HERMES BACKUP
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Initial Set of Program Features
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Selected Set of Program Features

Five features
A binary hint that 
represents whether or not a 
cacheblock has been 
recently touched
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When A Feature Works/Does Not Work?

Trace: 462.libquantum-1343B PC: 0x401442

Cacheline #42 Cacheline #43 ……

Without prefetcher

• PC + first access
• Cacheline offset + first access 

With a simple stride prefetcher

• Cacheline offset + first access 
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What Happens in case of a Misprediction?

• Two cases of mispredictions:

• Predicted on-chip but actually goes off-chip
- Loss of performance improvement opportunity

• Predicted off-chip but actually is on-chip
- Memory controller forwards the data to LLC if and only if 

a load to the same address have already missed LLC and 
arrived at the memory controller

No need for misprediction detection and recovery

No need for misprediction detection and recovery
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Performance Headroom of Off-Chip Prediction
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System Parameters
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Evaluated Workloads
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Observation: Not All Off-Chip Loads are Prefetched
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Nearly 50% of the loads are still not prefetched
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Observation: Not All Off-Chip Loads are Prefetched
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70% of these off-chip loads blocks ROB
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Observation: With Large Cache Comes Longer Latency 

• On-chip cache access latency significantly contributes to 
the latency of an off-chip load 
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On-chip cache hierarchy access latency
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Observation: With Large Cache Comes Longer Latency 

• On-chip cache access latency significantly contributes to 
the latency of an off-chip load 
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On-chip cache hierarchy access latency

40% of stall cycles caused by an off-chip load can be eliminated 
by removing on-chip cache access latency from its critical path 
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What Fraction of Load Requests Goes Off-Chip?
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Off-Chip Prediction Quality: Defining Metrics

Predicted off-chip Actual off-chip

Predicted and actual off-chip

Accuracy Coverage
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Off-Chip Prediction Quality: Analysis

Accuracy

Coverage
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Off-Chip Prediction Quality: Analysis

Accuracy

Coverage
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POPET provides off-chip predictions with 
high-accuracy and high-coverage
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Effect of Different Features

Combination of features provides both higher 
accuracy and higher coverage than any individual feature
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Are All Features Required? (1)

No single feature individually provides 
highest prediction accuracy across all workloads
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Are All Features Required? (2)

No single feature individually provides 
highest prediction coverage across all workloads
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Single-Core Performance

Hermes in combination with Pythia 
outperforms Pythia alone in every workload category
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Single-Core Performance Line Graph
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Single-Core Performance Against Prior Predictors

POPET provides higher performance benefit 
than prior predictors

Hermes with POPET achieves nearly 90% performance 
improvement of the Ideal Hermes
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Effect on Stall Cycles

Hermes reduces off-chip load induced stall cycles 
on average by 16.2% (up-to 51.8%)
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Eight-Core Performance

Hermes in combination with Pythia 
outperforms Pythia alone by 5.1% on average
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Effect of Hermes Request Issue Latency

3.6%
5.7%

Hermes in combination with Pythia outperforms Pythia 
alone even with a 24-cycle Hermes request issue latency
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Effect of Cache Hierarchy Access Latency

3.6%

6.2%

Hermes can provide even higher performance benefit in 
future processors with bigger and slower on-chip caches



261

Effect of Activation Threshold

With increase in activation threshold
1. Accuracy increases

2. Coverage decreases
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Power Overhead
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Effect of ROB Size

6.7%
5.3%
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Effect of LLC Size

1.3%2.5%
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Accuracy and Coverage with Different Prefetchers

POPET’s accuracy and coverage increases significantly 
in absence of a data prefetcher
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Increase in Main Memory Requests



SIBYL BACKUP
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Performance on Unseen Workloads

H&M (H&L) HSS configuration, Sibyl outperforms RNN-
HSS and Archivist by 46.1% (54.6%) and 8.5% (44.1%), 
respectively
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Performance Analysis

Sibyl Oracle

Baseline policies are ineffective for many 
workloads even when compared to Slow-Only

RNN-HSSSlow-Only CDE HPS Archivist

Performance-Oriented HSS Configuration
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Performance on Mixed Workloads
Slow-Only CDE HPS Archivist RNN-HSS SibylDef SibylOpt Oracle

Performance-Oriented Cost-Oriented
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Performance on Mixed Workloads
Slow-Only CDE HPS Archivist RNN-HSS SibylDef SibylOpt Oracle

Performance-Oriented Cost-Oriented

SibylDef outperforms baseline data placement 
techniques by up to 27.9%
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Performance on Mixed Workloads
Slow-Only CDE HPS Archivist RNN-HSS SibylDef SibylOpt Oracle

Performance-Oriented Cost-Oriented

SibylDef outperforms baseline data placement 
techniques by up to 27.9%

SibylOpt provides 7.2% higher average 
performance than SibylDef

272



Performance With Different Features

Sibyl autonomously decides which features are 
important to maximize the performance of the running 
workload
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Sensitivity to Fast Storage Capacity
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Explainability Analysis
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Training and Inference Network
• Training and inference 

networks allow parallel 
execution 

• Observation vector as 
the input 

• Produces probability 
distribution of Q-values
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