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Current Research Focus Areas

Research Focus: Computer architecture, HW/SW, bioinformatics
interconnects

* Heterogeneous & parallel systems, GPUs, systems for data analytics
 System/architecture interaction, new execution models, new interfaces
* Energy efficiency, fault tolerance, hardware security, performance

« Genome sequence analysis & assembly algorithms and architectures

* Biologically inspired systems design for bio/medicine

@ crmnitnton

Heterogeneous Persistent Memory/Storage

Processors and
Accelerators

ooooooooooooo

Broad research
spanning apps, systems, logic

e

Graphics and Vision Processing

:::::



Four Key Current Directions

Fundamentally Secure/Reliable/Safe Architectures

Fundamentally Energy-Efficient Architectures
o Memory-centric (Data-centric) Architectures

Fundamentally Low-Latency Architectures

Architectures for Genomics, Medicine, Health
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In-Memory DNA Sequence Analysis

Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose,
Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using
Processing-in-Memory Technologies"

to appear in BMC Genomics, 2018.

to also appear in Proceedings of the 16th Asia Pacific Bioinformatics
Conference (APBC), Yokohama, Japan, January 2018.
arxiv.org Version (pdf)

GRIM-Filter: Fast Seed Location Filtering
in DNA Read Mapping

Using Processing-in-Memory Technologies

Jeremie S. Kim1®", Damla Senol Cali!, Hongyi Xin?, Donghyuk Lee?, Saugata Ghose!,
Mohammed Alser*, Hasan Hassan®, Oguz Ergin®, Can Alkan** and Onur Mutlu*®:!
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New Genome Sequencing Technologies

Nanopore Sequencing Technology and Tools:
Computational Analysis of the Current State,
Bottlenecks, and Future Directions

Damla Senol Cali!-*, Jeremie Kim -3, Saugata Ghose !, Can Alkan 2*
and Onur Mutlu 3-1*

! Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
2Department of Computer Engineering, Bilkent University, Bilkent, Ankara, Turkey
3Department of Computer Science, Systems Group, ETH Zurich, Ztrich, Switzerland
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Rethinking Memory & Storage




The Main Memory System

Processors Main Memory

and caches \ /

Storage (SSD/HDD)

= Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

= Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits
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The Main Memory System

FPGAS

\_

Main Memory

J

Storage (SSD/HDD)

= Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

= Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits
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The Main Memory System

o O mﬁﬂ‘“

Storage (SSD/HDD)

Main Memory

N\ /

= Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

= Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits
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Memory System: A Shared Resource View

Shared
Interconnect

\

/@Wmls /

AIOURA] pPaJaeys

Shared Memory
Shared Shared
Memory Memory
Control Control
Shared Shared
Memory Memory
Control Control
Shared Memory

Storége

Most of the system is dedicated to storing and moving data

SAFARI
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State of the Main Memory System

Recent technology, architecture, and application trends
o lead to new requirements
o exacerbate old requirements

DRAM and memory controllers, as we know them today,
are (will be) unlikely to satisfy all requirements

Some emerging non-volatile memory technologies (e.g.,
PCM) enable new opportunities: memory+storage merging

We need to rethink the main memory system
o to fix DRAM issues and enable emerging technologies
o to satisfy all requirements

SAFARI
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Major Trends Atfecting Main Memory (I)

= Need for main memory capacity, bandwidth, QoS increasing

= Main memory energy/power is a key system design concern

= DRAM technology scaling is ending

SAFARI 12



Major Trends Atfecting Main Memory (II)

= Need for main memory capacity, bandwidth, QoS increasing
o Multi-core: increasing number of cores/agents
o Data-intensive applications: increasing demand/hunger for data
o Consolidation: cloud computing, GPUs, mobile, heterogeneity

= Main memory energy/power is a key system design concern

= DRAM technology scaling is ending

SAFARI 13



Example: The Memory Capacity Gap

Core count doubling ~ every 2 years
DRAM DIMM capacity doubling ~ every 3 years

1000

o #Core Lim et al., ISCA 2009

= DRAM
100 —
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Relative capacity
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Memory capacity per core expected to drop by 30% every two years

Trends worse for memory bandwidth per core!
14



Example: Memory Bandwidth & Latency

#Capacity #Bandwidth  @latency 128X
Ej
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1999 2003 2006 2008 2011 2013 2014 2015 2016 2017

Memory latency remains almost constant
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DRAM Latency Is Critical tor Performance

In-memory Databases
[Mao+, EuroSys’[2;
Clapp+ (Intel), ISWC’15]

SAPACHE&

oark

In-Memory Data Analytics
[Clapp+ (Intel), ISWC’|5;
Awan+, BDCloud’15]

SAFARI

Graph/Tree Processing
[Xu+, ISWC’12; Umuroglu+, FPL15]

Datacenter Workloads
[Kanev+ (Google), ISCA’|5]



DRAM Latency Is Critical for Performance

In-memory Databases Graph/Tree Processing

Long memory latency — performance bottleneck

APACHE

Spark

In-Memory Data Analytics Datacenter Workloads
[Clappt (Intel), ISWC’I5; [Kanev+ (Google), ISCA’|5]
Awan+, BDCloud’ | 5]
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Major Trends Atfecting Main Memory (I1I)

= Need for main memory capacity, bandwidth, QoS increasing

= Main memory energy/power is a key system design concern

a ~40-50% energy spent in off-chip memory hierarchy [Lefurgy,
IEEE Computer'03] >40% power in DRAM [Ware, HPCA’10][Paul,ISCA'15]

a DRAM consumes power even when not used (periodic refresh)

= DRAM technology scaling is ending

SAFARI 18



Major Trends Atfecting Main Memory (IV)

= Need for main memory capacity, bandwidth, QoS increasing

= Main memory energy/power is a key system design concern

= DRAM technology scaling is ending
o ITRS projects DRAM will not scale easily below X nm

o Scaling has provided many benefits:
= higher capacity (density), lower cost, lower energy

SAFARI 19



Major Trends Atfecting Main Memory (V)

DRAM scaling has already become increasingly difficult

o Increasing cell leakage current, reduced cell reliability,

increasing manufacturing difficulties [Kim+ ISCA 2014],
[Liu+ ISCA 2013], [Mutlu IMW 2013], [Mutlu DATE 2017]

o Difficult to significantly improve capacity, energy

Emerging memory technologies are promising

SAFARI 20



Major Trends Atfecting Main Memory (V)

DRAM scaling has already become increasingly difficult

o Increasing cell leakage current, reduced cell reliability,

increasing manufacturing difficulties [Kim+ ISCA 2014],
[Liu+ ISCA 2013], [Mutlu IMW 2013], [Mutlu DATE 2017]

o Difficult to significantly improve capacity, energy

Emerging memory technologies are promising

3D-Stacked DRAM higher bandwidth smaller capacity
Reduced-Latency DRAM lower latenc higher cost
(e.g., RL/TL-DRAM, FLY-RAM) y J
Low-Power DRAM IOWer DOwer higher latency
(e.g., LPDDR3, LPDDR4, Voltron) P higher cost
Non-Volatile Memory (NVM) higher latency
(e.g., PCM, STTRAM, ReRAM, 3D larger capacity | higher dynamic power
Xpoint) lower endurance

SAFARI 21



Major Trend: Hybrid Main Memory

DRAM

PCM

Ll Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon+, "Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best
Paper Award.
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One Foreshadowing

Main Memory Needs
Intelligent Controllers

SAFARI



Agenda

Major Trends Affecting Main Memory
The Memory Scaling Problem and Solution Directions

a New Memory Architectures
o Enabling Emerging Technologies

Cross-Cutting Principles
Summary

SAFARI
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Three Key Issues in Future Platforms

= | Fundamentally Secure/Reliable/Safe Architectures

= Fundamentally Energy-Efficient Architectures
o Memory-centric (Data-centric) Architectures

= Fundamentally Low Latency Architectures

SAFARI
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Maslow’s (Human) Hierarchy of Needs

Maslow, “A Theory of Human Motivation,”
Psychological Review, 1943.

| Self-fulfillment
Maslow, “Motivation and Personality,” actualization:
Book, 1954-1970. '°.°h',°¥'"9 em-

‘prestige and feeling of accomplishment Psychological
ed
Belongingness and love needs: e

infimate relationships, friends

= We need to start with reliability and security...

SA FAR’ Source: https://www.simplypsychology.org/maslow.html o



How Reliable/Secure/Safe is This Bridge?

SAFARI Source: http://www.technologystudent.com/structl/tacom1.png 7



Collapse of the “Galloping Gertie”

SAFARI Source: AP

28



How Secure Are These People?

Security is about preventing unforeseen consequences

SA FARI Source: https://s-media-cache-ak0.pinimg.com/originals/48/09/54/4809543a9c7700246a0cf8acdae27abf.jpg 29



The DRAM Scaling Problem

DRAM stores charge in a capacitor (charge-based memory)
o Capacitor must be large enough for reliable sensing

o Access transistor should be large enough for low leakage and high
retention time

o Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

WL BL

= |

CAP —— ;
- SENSE

V

DRAM capacity, cost, and energy/power hard to scale

SAFARI 3



As Memory Scales, It Becomes Unreliable

= Data from all of Facebook’s servers worldwide
= Meza+, “"Revisiting Memory Errors in Large-Scale Production Data Centers,” DSN'15.
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Large-Scale Failure Analysis of DRAM Chips

= Analysis and modeling of memory errors found in all of
Facebook's server fleet

= Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"Revisiting Memory Errors in Large-Scale Production Data
Centers: Analysis and Modeling of New Trends from the Field"
Proceedings of the 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June
2015.

[Slides (pptx) (pdf)] [DRAM Error Model]

Revisiting Memory Errors in Large-Scale Production Data Centers:
Analysis and Modeling of New Trends from the Field

Justin Meza Qiang Wu™* Sanjeev Kumar™ Onur Mutlu
Carnegie Mellon University * Facebook, Inc.

SAFARI 52



Infrastructures to Understand Such Issues

E An Experimental Study of Data Retention
R T Behavior in Modern DRAM Devices:
‘Fjai__'r;overu Implications for Retention Time Profiling
9 & Mechanisms (Liu et al., ISCA 2013)

The Efficacy of Error Mitigation Technigques
for DRAM Retention Failures: A
Comparative Experimental Study

(Khan et al., SIGMETRICS 2014)

Flipping Bits in Memory Without Accessing

Them: An Experimental Study of DRAM z "mxuf?x Board
Disturbance Errors (Kim et al., ISCA 2014) | Q o |

Adaptive-Latency DRAM: Optimizing DRAM
Timing for the Common-Case (Lee et al.,
HPCA 2015)

AVATAR: A Variable-Retention-Time (VRT)
Aware Refresh for DRAM Systems (Qureshi
et al., DSN 2015)

SAFARI




Infrastructures to Understand Such Issues

SAFARI Kim+, “Flipping Bits in Memory Without Accessing Them: An !
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.



SottMC: Open Source DRAM Infrastructure

= Hasan Hassan et al., "SoftMC: A v T"“‘-‘

Flexible and Practical Open- Chamber
Source Infrastructure for \ |
Enabling Experimental DRAM
Studies,” HPCA 2017.

/ : \\,\\,{; »
T m

= Easy to Use (C++ API) ’ conetrgpller "

= Open-source B

github.com/CMU-SAFARI/SoftMC

= Flexible

SAFARI 3



SoftMC

= https://github.com/CMU-SAFARI/SoftMC

SoftMC: A Flexible and Practical Open-Source Infrastructure
for Enabling Experimental DRAM Studies

1,2,3 3 4,3 3

Samira Khan Saugata Ghose® Kevin Chang?
6.3 Oguz Ergin? Onur Mutlu!-3

Hasan Hassan Nandita Vijaykumar
Gennady Pekhimenko®3 Donghyuk Lee

\ETH Ziirich  >TOBB University of Economics & Technology 3Carnegie Mellon University
*University of Virginia > Microsoft Research ~ SNVIDIA Research

SAFARI 3



Data Retention in Memoty [Liu et al., ISCA 2013]

= Retention Time Profile of DRAM looks like this:

04-128ms

Location dependent

128-256ms =g

SAFARI Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 57



A Curious Discovery [Kim et al., ISCA 2014]

One can
predictably induce errors
in most DRAM memory chips

SAFARI
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DRAM RowHammer

A simple hardware failure mechanism
can create a widespread
system security vulnerability

WRYR}HD| Forget Software—Now Hackers Are Exploiting Physics

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

ik FORGET SOFTWARE—NOW
- MACKERS ARE EXPLOITING
PHYSICS




Modern DRAM is Prone to Disturbance Errors

= Row of Cells = Wordline

= Victim Row —
Hammere: i V ioew

= Victim Row —

== ROw —

Repeatedly reading a row enough times (before memory gets
refreshed) induces disturbance errors in adjacent rows in
most real DRAM chips you can buy today

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM 40
Disturbance Errors, (Kim et al., ISCA 2014)




Most DRAM Modules Are at Risk

A company B company C company

Up to Up to Up to
1.0x107 2.7x10° 3.3x10°
errors errors errors

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM

Disturbance Errors, (Kim et al., ISCA 2014)




Recent DRAM Is More Vulnerable

e A Modules = B Modules ¢ C Modules

100

Errors per 10° Cells
— e e e e
= O o O O O
-} =) — S} w > O

2008 2009 2010 2011 2012 2013 2014
Module Vintage
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Recent DRAM Is More Vulnerable

e A Modules = B Modules ¢ C Modules
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Recent DRAM Is More Vulnerable

) e A Modules = B Modules ¢ C Modules
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A Simple Program Can Induce Many Errors

RAM Module

¢
-M HH HH
Ine. .

loop:

mov (), %eax
mov (), %Tebx
clflush ()
clflush ()
mfence

Jmp loop

Download from: https://github.com/CMU-SAFARI/rowhammer




A Simple Program Can Induce Many Errors

B RAM Module

° -
e H“ H“ HH !l TR

1. Avoid cache hits ¥ =
— Flush X from cache

2. Avoid row hits to X Y >
— Read Y in another row

Download from: https://github.com/CMU-SAFARI/rowhammer




A Simple Program Can Induce Many Errors

RAM Module

Bos

° —

LR “" ““ "“
lno. .

loop:

mov (), %eax
mov (), %Tebx
clflush ()
clflush ()
mfence

Jmp loop

Download from: https://github.com/CMU-SAFARI/rowhammer




A Simple Program Can Induce Many Errors

RAM Module

Bos
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loop:
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A Simple Program Can Induce Many Errors

RAM Module

¢
-m HH HH
’n°'

loop:

mov (), %eax
mov (), %Tebx
clflush ()
clflush ()
mfence

Jmp loop

Download from: https://github.com/CMU-SAFARI/rowhammer




Observed Errors in Real Systems

CPU Architecture Errors Access-Rate

Intel Haswell (2013) 22.9K 12.3M/sec

Intel vy Bridge (2012) 20.7K 11.7M/sec
Intel Sandy Bridge (2011) 16.1K 11.6M/sec
AMD Piledriver (2012) 59 6.1M/sec

A real reliability & security issue

Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of 50
DRAM Disturbance Errors,” ISCA 2014.



One Can Take Over an Otherwise-Secure System

Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors

Abstract. Memory isolation is a key property of a reliable
and secure computing system — an access to one memory ad-
dress should not have unintended side effects on data stored
in other addresses. However, as DRAM process technology

Flipping Bits in Memory Without Accessing Them:

P r'Oj ect Ze ro An Experimental Study of DRAM Disturbance Errors

(Kim et al., ISCA 2014)

News and updates from the Project Zero team at Google

Exploiting the DRAM rowhammer bug to
gain kernel privileges (Seaborn+, 2015)

Exploiting the DRAM rowhammer bug to gain kernel privileges



RowHammer Security Attack Example

= "Rowhammer” is a problem with some recent DRAM devices in which
repeatedly accessing a row of memory can cause bit flips in adjacent rows
(Kim et al., ISCA 2014).

o Flipping Bits in Memory Without Accessing Them: An Experimental Study of
DRAM Disturbance Errors (Kim et al., ISCA 2014)

= We tested a selection of laptops and found that a subset of them
exhibited the problem.

= We built two working privilege escalation exploits that use this effect.
o Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn+, 2015)

= One exploit uses rowhammer-induced bit flips to gain kernel privileges on
x86-64 Linux when run as an unprivileged userland process.

= When run on a machine vulnerable to the rowhammer problem, the
process was able to induce bit flips in page table entries (PTES).

= It was able to use this to gain write access to its own page table, and
hence gain read-write access to all of physical memory.

Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn & Dullien, 2015) 22




Security Implications
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It's like breaking into an apartment by
repeatedly slamming a neighbor’s door until |
the vibrations open the door you were after



More Security Implications

“"We can gain unrestricted access to systems of website visitors.”

Not there yet, but ...

Y OWHAMMER)S

ROQOT privileges for web apps!

Daniel Gruss (@lavados), Clémentine Maurice (@BloodyTangerine),
December 28, 2015 — 32¢3, Hamburg, Germany

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript (DIMVA'16)
54

Source: https://lab.dsst.io/32c3-slides/7197.html




More Security Implications

“Can gain control of a smart phone deterministically”

Hammer And Root

Mllllons of Androids

Drammer: Deterministic Rowhammer
Attacks on Mobile Platforms, CCS’16 55

Source: https://fossbytes.com/drammer-rowhammer-attack-android-root-devices/



More Security Implications?

56



Apple’s Patch tor RowHammer

s https://support.apple.com/en-gh/HT204934

Available for: OS X Mountain Lion v10.8.5, OS X Mavericks v10.9.5
Impact: A malicious application may induce memory corruption to escalate privileges

Description: A disturbance error, also known as Rowhammer, exists with some DDR3 RAM that could
have led to memory corruption]This issue was mitigated by increasing memory refresh rates.

CVE-ID

CVE-2015-3693 : Mark Seaborn and Thomas Dullien of Google, working from original research by
Yoongu Kim et al (2014)

HP, Lenovo, and other vendors released similar patches




Our Solution to RowHammer

* PARA: Probabilistic Adjacent Row Activation

* Key Idea

— After closing a row, we activate (i.e., refresh) one of
its neighbors with a low probability: p = 0.005

* Reliability Guarantee
— When p=0.005, errors in one year: 9.4x1014

— By adjusting the value of p, we can vary the strength
of protection against errors

58



More on RowHammer Analysis

= Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
"Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors”
Proceedings of the 41st International Symposium on Computer
Architecture (ISCA), Minneapolis, MN, June 2014.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code
and Data]

Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors

Yoongu Kim'! Ross Daly*  Jeremie Kim' Chris Fallin*  Ji Hye Lee!
Donghyuk Lee! Chris Wilkerson? Konrad Lai  Onur Mutlu!

!Carnegie Mellon University ~ “Intel Labs

SAFARI 59



Future of Memory Reliability

=  Onur Mutluy,

"The RowHammer Problem and Other Issues We May Face as
Memory Becomes Denser"

Invited Paper in Proceedings of the Design, Automation, and Test in
Europe Conference (DATE), Lausanne, Switzerland, March 2017.
[Slides (pptx) (pdf)]

The RowHammer Problem
and Other Issues We May Face as Memory Becomes Denser

Onur Mutlu
ETH Ziirich
onur.mutlu @inf.ethz.ch
https://people.inf.ethz.ch/omutlu

SAFAR]I https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues datel7.pdf 60




Industry Is Writing Papers About It, Too

DRAM Process Scaling Challenges

% Refresh
» Difficult to build high-aspect ratio cell capacitors decreasing cell capacitance

» Leakage current of cell access transistors increasing

+ tWR
» Contact resistance between the cell capacitor and access transistor increasing
» On-current of the cell access transistor decreasing

+ Bit-line resistance increasing

+ VRT
* Occurring more frequently with cell capacitance decreasing
WIL
"o . . - .BLO - E
|r CcsL |r g 1' ) 4r p g 4
. 1 : Z- X ) [+ O
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o Time
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l I'|'he Memory 3/12 @ < intel)

Forum
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Call for Intelligent Memory Controllers

DRAM Process Scaling Challenges

+* Refresh

o Niffictilt ta huild hiadh-asneect ratio cell canacitare decreasina cell canacitance

THE MEMORY FORUM 2014

Co-Architecting Controllers and DRAM
to Enhance DRAM Process Scaling

Uksong Kang, Hak-soo Yu, Churoo Park, *Hongzhong Zheng,
**John Halbert, **Kuljit Bains, SeongJin Jang, and Joo Sun Choi

Samsung Electronics, Hwasung, Korea / *Samsung Electronics, San Jose / **Intel
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Solution Direction: Principled Designs

Design fundamentally secure
computing architectures

Predict and prevent
such safety issues

03



How Do We Keep Memory Secure?

Understand: Methodologies for failure modeling and discovery
o Modeling and prediction based on real (device) data

Architect: Principled co-architecting of system and memory
o Good partitioning of duties across the stack

Design & Test: Principled design, automation, testing

o High coverage and good interaction with system reliability
methods

04



Understand and Model with Experiments (DRAM)

SAFARI Kim+, “Flipping Bits in Memory Without Accessing Them: An pr
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.



Understand and Model with Experiments (Flash)
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[DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014, NAND Daughter Board
HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017, PIEEE'17]

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017




Another Talk: NAND Flash Reliability

Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu,

"Error Characterization, Mitigation, and Recovery in Flash Memory Based
Solid State Drives”

to appear in Proceedings of the IEEE, 2017.

Cai+, “Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis,” DATE 2012.

Cai+, “Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory Lifetime,” ICCD
2012.

Cai+, "Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization, Analysis and Modeling,” DATE
2013.

Cai+, “Error Analysis and Retention-Aware Error Management for NAND Flash Memory,” Intel Technology Journal 2013.
Cai+, ['Program Interferencelin MLC NAND Flash Memory: Characterization, Modeling, and Mitigation,” ICCD 2013.
Cai+, "Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories,” SIGMETRICS 2014,

Cai+,"Data Retention in MLC NAND Flash Memory: Characterization, Optimization and Recovery,” HPCA 2015.
Cai+,|“Read Disturb Errors!n MLC NAND Flash Memory: Characterization and Mitigation,” DSN 2015.

Luo+, : Improving NAND Flash Memory Lifetime with Write-hotness Aware Retention Management,” MSST
2015.

Meza+, “A Large-Scale Study of Flash Memory Errors in the Field,” SIGMETRICS 2015.

Luo+, “Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory,” IEEE
JSAC 2016.

Cai+,l‘VuInerabiIities in MLC NAND Flash Memory Programming: IExperimentaI Analysis, Exploits, and Mitigation

Techniques,
Fukami+, “Improving the Reliability of Chip-Off Forensic Analysis of NAND Flash Memory Devices,” DFRWS EU 2017.

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.



NAND Flash Vulnerabilities

HPCA, Feb. 2017

Vulnerabilities in MLC NAND Flash Memory Programming;:
Experimental Analysis, Exploits, and Mitigation Techniques

Saugata Ghose! Yixin Luot |
f Carnegie Mellon University

Yu Cail

Modern NAND flash memory chips provide high density by
storing two bits of data in each flash cell, called a multi-level cell
(MLC). An MLC partitions the threshold voltage range of a flash
cell into four voltage states. When a flash cell is programmed,
a high voltage is applied to the cell. Due to parasitic capacitance
coupling between flash cells that are physically close to each
other, flash cell programming can lead to cell-to-cell program
interference, which introduces errors into neighboring flash
cells. In order to reduce the impact of cell-to-cell interference on
the reliability of MLC NAND flash memory, flash manufactu-
rers adopt a two-step programming method, which programs
the MLC in two separate steps. First, the flash memory partially
programs the least significant bit of the MLC to some intermedi-
ate threshold voltage. Second. it programs the most significant
bit to bring the MLC up to its full voltage state.

In this paper, we demonstrate that two-step programming
exposes new reliability and security vulnerabilities. We expe-

Ken Maif
*Seagate Technology

Onur MutluSt  Erich F. Haratsch?
SETH Ziirich

belongs to a different flash memory page (the unit of data
programmed and read at the same time), which we refer to,
respectively, as the least significant bit (LSB) page and the
most significant bit (MSB) page [5].

A flash cell is programmed by applying a large voltage
on the control gate of the transistor, which triggers charge
transfer into the floating gate, thereby increasing the thres-
hold voltage. To precisely control the threshold voltage of
the cell, the flash memory uses incremental step pulse pro-
gramming (ISPP) [12,21,25,41]. ISPP applies multiple short
pulses of the programming voltage to the control gate, in
order to increase the cell threshold voltage by some small
voltage amount (Viep) after each step. Initial MLC designs
programmed the threshold voltage in one shot, issuing all
of the pulses back-to-back to program both bits of data at
the same time. However, as flash memory scales down, the
distance between neighboring flash cells decreases, which

https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities hpcal7.pdf
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NAND Flash: Intelligent Memory Control
| B

Error Characterization,
Mitigation, and Recovery
in Flash-Memory-Based
Solid-State Drives

This paper reviews the most recent advances in solid-state drive (SSD) error

Proceedings of the IEEE, Sept. 2017

characterization, mitigation, and data recovery techniques to improve both SSD’s

reliability and lifetime.

By Yu Car, SaucaTta GHOSE, EricH F. HARATSCH, YiXIN Luo, AND ONUR MUTLU

https://arxiv.org/pdf/1706.08642
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There are Two Other Solution Directions

= New Technologies: Replace or (more likely) augment DRAM
with a different technology

o Non-volatile memories

Problem

Program/Language

= Embracing Un-reliability: System Software
SW/HW Interface

Design memories with different reliability
and store data intelligently across them

Fundamental solutions to security
require co-design across the hierarchy




Exploiting Memory Error Tolerance
with Hybrid Memory Systems

Vulnerable
data

Reliable memory

On Microsoft’s Web Search workload
Reduces server hardware cost by 4.7 %
Achieves single server availability target of 99.90 %

Heterogeneous-Reliability Memory [psn 2014]

71




More on Heterogeneous-Reliability Memory

= Yixin Luo, Sriram Govindan, Bikash Sharma, Mark Santaniello, Justin Meza, Aman
Kansal, Jie Liu, Badriddine Khessib, Kushagra Vaid, and Onur Mutlu,
"Characterizing Application Memory Error Vulnerability to Optimize
Data Center Cost via Heterogeneous-Reliability Memory"
Proceedings of the 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Atlanta, GA, June 2014. [Summary]
[Slides (pptx) (pdf)] [Coverage on ZDNet]

Characterizing Application Memory Error Vulnerability to
Optimize Datacenter Cost via Heterogeneous-Reliability Memory

Yixin Luo  Sriram Govindan® Bikash Sharma® Mark Santaniello” Justin Meza
Aman Kansal® Jie Liu® Badriddine Khessib® Kushagra Vaid® Onur Mutlu

Carnegie Mellon University, yixinluo@cs.cmu.edu, {meza, onur}@cmu.edu
“Microsoft Corporation, {srgovin, bsharma, marksan, kansal, jie.liu, bkhessib, kvaid}@microsoft.com
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Summary: Memory Reliability and Security

Memory reliability is reducing
Reliability issues open up security vulnerabilities
o Very hard to defend against

Rowhammer is an example
o Its implications on system security research are tremendous & exciting

Good news: We have a lot more to do.

Understand: Solid methodologies for failure modeling and discovery
o Modeling based on real device data — small scale and large scale
Architect: Principled co-architecting of system and memory

o Good partitioning of duties across the stack

Design & Test: Principled electronic design, automation, testing
o High coverage and good interaction with system reliability methods
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Challenge and Opportunity for Future

Fundamentally
Secure, Reliable, Safe
Computing Architectures

SAFARI



One Important Takeaway

Main Memory Needs
Intelligent Controllers

SAFARI



Three Key Issues in Future Platforms

= Fundamentally Secure/Reliable/Safe Architectures

= | Fundamentally Energy-Efficient Architectures
o Memory-centric (Data-centric) Architectures

= Fundamentally Low Latency Architectures

SAFARI
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Do We Want This?

SAFARI Source: V. Milutinovic
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SAFARI Source: V. Milutinovic 78



Maslow’s (Human) Hierarchy of Needs, Revisited

Maslow, “A Theory of Human Motivation,”
Psychological Review, 1943.
Self-fulfillment
Maslow, “Motivation and Personality,”
Book, 1954-1970.

Psychological

. needs
Belongingness and love needs:

infimate relationships, friends

Scfotymds‘

Everlasting energy

SA FA R' Source: https://www.simplypsychology.org/maslow.html 79



Challenge and Opportunity for Future

Sustainable
and
Energy Efficient

SAFARI



Three Key Systems Trends

1. Data access is a major bottleneck
o Applications are increasingly data hungry

2. Energy consumption is a key limiter

3. Data movement energy dominates compute
o Especially true for off-chip to on-chip movement

81



The Need for More Memory Performance

=

—

In-memory Databases Graph/Tree Processing
[Mao+, EuroSys’12; [Xu+, ISWC’12; Umuroglu+, FPL’15]
Clapp+ (Intel), ISWC’|5]

et N
Spark

In-Memory Data Analytics Datacenter Workloads
[Clappt (Intel), ISWC’I5; [Kanev+ (Google), ISCA’|5]
Awan+, BDCloud’ | 5]

SAFARI




The Pertformance Perspective (1996-2005)

= “It's the Memory, Stupid!” (Richard Sites, MPR, 1996)

100
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5 .
0

@ Non-stall (compute) time

B Full-window stall time

Normalized Execution Time

128-entry window Data from Runahead Execution [HPCA 2003]

Mutlu+, “"Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.



The Performance Perspective (Today)

= All of Google’s Data Center Workloads (2015):

B Retiring
1 Front-end bound

B Bad speculation
=1 Back-end bound

ads -
bigtable B

SEEE R
disk

T = ——
flight-search
gmail-fe
indexingl
— :—_j
R T e = ———
search?2
cearch EEE——— ﬁ=__—"__,
video —t—

N _———q
gmail S HF
indexing2
— —

400.perlbench
445.gobmk
429.mcf
471.omnetpp
433.milc

0 20 40 60 80 100 120
Pipeline slot breakdown (%)

Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.

84



The Performance Perspective (Today)

All of Google’s Data Center Workloads (2015):

ads | ! ! ! PR N— ? ) — 1} — = —
bigtable| ——] ) -1 .
disk - i N n
flight-search} ———ef = - - .
gmail |- = - .
gmail-fe |- - & 1 4 .
indexingl} t—{— ) — .
indexing2} - @ 11 -
searchlf T o N i
search2 —— & - - — .
search3} W -
video | i i = = : [ - - 1 -
0 10 20 30 40 50 60 70 80
Cache-bound cycles (%)
Figure 11: Half of cycles are spent stalled on caches.
85
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The Pertformance Perspective

= Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
"Runahead Execution: An Alternative to Very Large Instruction
Windows for Out-of-order Processors"
Proceedings of the 9th International Symposium on High-Performance
Computer Architecture (HPCA), pages 129-140, Anaheim, CA, February
2003. Slides (pdf)

Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors

Onur Mutlu § Jared Stark  Chris Wilkerson 1 Yale N. Patt §

S§ECE Department TMicroprocessor Research IDesktop Platforms Group
The University of Texas at Austin Intel Labs Intel Corporation

{onur,patt} @ece.utexas.edu jared.w.stark @intel.com chris.wilkerson @intel.com
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The Energy Perspective

Communication Dominates Arithmetic

256-bit access
8 kB SRAM

SAFARI

Dally, HIPEAC 2015

256 pJ

— M
16 nJ I- Rd/Wr

Efficient
>00pJ ] off-chip link




Data Movement vs. Computation Energy

Communication Dominates Arithmetic

Dally, HIPEAC 2015

64-bit DP

256-bit buses

Efficient
>00p. off-chip link

256-bit access
8 kB SRAM
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Data Movement vs. Computation Energy

= Data movement is a major system energy bottleneck
o Comprises 41% of mobile system energy during web browsing [2]
o Costs ~115 times as much energy as an ADD operation [1, 2]

Data Movement

\

—

g  EEEN I B - - .y,

[1]: Reducing data Movement Energy via Online Data Clustering and Encoding (MICRO’16)
[2]: Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms (IISWC’14)
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Challenge and Opportunity for Future

High Performance
and
Energy Efficient

SAFARI



The Problem

Data access is the major performance and energy bottleneck

Our current
design principles
cause great energy waste

(and great performance loss)

SAFARI o



The Problem

Processing of data
iSs performed
far away from the data

SAFARI
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A Computing System

= Three key components
= Computation

= Communication

= Storage/memory

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Computing System

Computing E 5 Communication E 5 Memory/Storage
Unit Unit Unit

-
N
-
-
-
-
-
-
2®

T
’..‘
J'.-
“"
-.‘
‘-.
-
"‘
”

Memory System Storage System

93
Image source: https://Ibsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/



A Computing System

= Three key components
= Computation

= Communication

= Storage/memory

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Computing System

Communication

Image source: https://Ibsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/



Today’s Computing Systems

Are overwhelmingly processor centric
All data processed in the processor - at great system cost
Processor is heavily optimized and is considered the master

Data storage units are dumb and are largely unoptimized
(except for some that are on the processor die)

Computing System
4 )

Computing E a Communication E 3 Memory/Storage
Unit Unit Unit

k ————

L
-
-
-
s
-
et
-
-
-
-
-

Memory System Storage System
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Yet ...

= “It's the Memory, Stupid!” (Richard Sites, MPR, 1996)
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Mutlu+, “"Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.



Perils of Processor-Centric Design

Grossly-imbalanced systems

o Processing done only in one place

o Everything else just stores and moves data: data moves a lot
- Energy inefficient

- Low performance

- Complex

Overly complex and bloated processor (and accelerators)
o To tolerate data access from memory

o Complex hierarchies and mechanisms

- Energy inefficient

- Low performance

- Complex
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Perils of Processor-Centric Design

Shared Memory
Shared Shared
Memory Memory
Shared Control Control
Interconnect
\
\
wnn W
= =
V) V)
- -
@ (e
(=¥
\§ =
E E
= =
- -
<
Shared Shared
Memory Memory
Control Control
Shared Memory

Most of the system is dedicated to storing and moving data




We Do Not Want to Move Datal

Communication Dominates Arithmetic

Dally, HIPEAC 2015

64-bit DP

256-bit buses

Efficient
>00p. off-chip link

256-bit access
8 kB SRAM
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We Need A Paradigm Shift To ...

Enable computation with minimal data movement
Compute where it makes sense (where data resides)

Make computing architectures more data-centric

100



Goal: Processing Inside Memory

Processor

Core

Results

Many questions ... How do we design the:

Q

o o O o

compute-capable memory & controllers?
processor chip?

software and hardware interfaces?
system software and languages?
algorithms?

) ]
Interconnect

t Database

Graphs

| Media

Problem

Program/Language

System Software

SW/HW Interface

Micro-architecture

Logic

Electrons




Why In-Memory Computation Today?

= Pull from Systems and Applications
o Data access is a major system and application bottleneck
o Systems are energy limited
o Data movement much more energy-hungry than computation

SAFARI 102



Processing in Memory:

Two Approaches

1. Minimally changing memory chips
2. Exploiting 3D-stacked memory




Approach 1: Minimally Changing DRAM

= DRAM has great capability to perform bulk data movement and
computation internally with small changes

o Can exploit internal connectivity to move data
a Can exploit analog computation capability

Q ...

= Examples: RowClone, In-DRAM AND/OR, Gather/Scatter DRAM

o RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data
(Seshadri et al., MICRO 2013)

o Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)

o Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial
Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015)

o "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity
DRAM Technology” (Seshadri et al., MICRO 2017)
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Starting Simple: Data Copy and Initialization

memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ ISCA’15]

- Zero initialization ' '

Forking (e.g., security) Checkpointing

I. eo o
‘;li‘> Many more

VM Cloning  page Migration
Deduplication

SAFARI 105
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Today’s Systems: Bulk Data Copy

1) High latency
3) Cache pollution \

2) High bandwidth utilization

4) Unwanted data movement

1046ns, 3.6ul (for 4KB page copy via DMA)
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Future Systems: In-Memory Copy

3) No cache pollution 1) Low latency

2) Low bandwidth utilization
4) No unwanted data movement

1046ns, 3.6u] -2 90ns, 0.04u)
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RowClone: In-DRAM Row Copy

Transfer
row

Transfer|
row

4 Kbytes

Idea: Two consecutive ACTivates

Negligible HW cost

Step 1: Activate row A

Step 2: Activate row B

DRAM subarray

Row Buffer (4 Kbytes)

Data Bus



RowClone: Latency and Energy Savings

1.2 M Baseline M Intra-Subarray

W Inter-Bank M [nter-Subarray
A

_
|

74x

o
oo
|

o
H
|

Normalized Savings
o
(@)

o
N
|

Latency Energy

Seshadri et al., "RowClone: Fast and Efficient In-DRAM Copy and
Initialization of Bulk Data,” MICRO 2013.
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More on RowClone

= Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata
Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A.
Kozuch, Phillip B. Gibbons, and Todd C. Mowry,
"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and
Initialization”
Proceedings of the 46th International Symposium on Microarchitecture

(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning Session
Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

RowClone: Fast and Energy-Efficient
In-DRAM Bulk Data Copy and Initialization

Vivek Seshadri Yoongu Kim Chris Fallin™ Donghyuk Lee
vseshadr@cs.cmu.edu yoongukim@cmu.edu cfallin@cif.net donghyuki@cmu.edu
Rachata Ausavarungnirun Gennady Pekhimenko Yixin Luo

rachata@cmu.edu gpekhime@cs.cmu.edu  yixinluo@andrew.cmu.edu

Onur Mutlu Phillip B. Gibbonst Michael A. Kozucht Todd C. Mowry

onur@cmu.edu phillip.b.gibbons@intel.com michael.a.kozuch@intel.com tcm@cs.cmu.edu

Carnegie Mellon University fIntel Pittsburgh



Memory as an Accelerator

miniCPU| 1| GPU GPU |
CPU CPU core : | (throughput) | | (throughput) | :
core core core core :
video
core
cPU PU :| GpPU GPU |i
; _ : | (throughput) | | (throughput) | : :
core core imagingl | core core | Memory
LLC
N Specialized
Memory Controller compute-capability
1N memory

Memory Bus

Memory similar to a "conventional” accelerator



In-Memory Bulk Bitwise Operations

We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ
At low cost

Using analog computation capability of DRAM

o Idea: activating multiple rows performs computation

30-60X performance and energy improvement

o Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology,” MICRO 2017.

New memory technologies enable even more opportunities
o Memristors, resistive RAM, phase change mem, STT-MRAM, ...
o Can operate on data with minimal movement
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In-DRAM AND/OR: Triple Row Activation

YV 10
A‘l'l/). bp

I el Final State
BV AB + BC + AC

wl/’"

A

dis

| %,

SAFARI Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM", IEEE CAL 2015. 113




In-DRAM NOT: Dual Contact Cell

d-wordline o
dual-contact »: T 5
cell (DCC) | | i | .
n-wordline :__%I_ | Idea .
sense i J Feed the
amplifier —\ <7 negated value

in the sense amplifier
into a special row

bitline
Figure 5: A dual-contact

cell connected to both
ends of a sense amplifier

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.
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Performance: In-DRAM Bitwise Operations

Figure 9: Throughput of bitwise operations on various systems.

SAFARI
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Energy of In-DRAM Bitwise Operations

Design not and/or nand/nor xor/xnor

DRAM & DDR3 93.7 137.9 137.9 137.9
Channel Energy ~ Ambit 1.6 3.2 4.0 5.5
(nJ/KB) (}) 595X 439X 35.1X 25.1X

Table 3: Energy of bitwise operations. (|) indicates energy
reduction of Ambit over the traditional DDR3-based design.

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.
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Ambit vs. DDR3: Performance and Energy

Performance Improvement B Energy Reduction
70

. 32X 35X
50 5

40
30
20
Ahn 1l
0

and/or nand/nor Xor/xXnor mean

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2011 1 7



Bulk Bitwise Operations in Workloads

BitWeaving

Bitmap indices (database queries)
(database indexing)

BitFunnel

Bulk Bitwise (web search)

Set operations Operations

DNA
sequence mapping
Encryption algorithms

SA FARI [1] Li and Patel, BitWeaving, SIGMOD 2013
[2] Goodwin+, BitFunnel, SIGIR 2017



Example Data Structure: Bitmap Index

Alternative to B-tree and its variants
Efficient for performing range queries and joins
Many bitwise operations to perform a query

age <18 18<age<25 25<age<60 age>60

SAFARI



Performance: Bitmap Index on Ambit
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Figure 10: Bitmap index performance. The value above each
bar indicates the reduction in execution time due to Ambit.

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.
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Performance: BitWeaving on Ambit

‘select count(*) from T where cl <= val <= c2’

13 _ ROW count (r) _ D 1m . 2m D 4m . 8m ..................................

Speedup offered by Ambit

4 12 16 20 24 28 32
Number of Bits per Column (b)

Figure 11: Speedup offered by Ambit over baseline CPU with
SIMD for BitWeaving

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.
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More on In-DRAM Bulk AND/OR

= Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk

Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and
Todd C. Mowry,

"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015.

Fast Bulk Bitwise AND and OR in DRAM

Vivek Seshadri*, Kevin Hsieh*, Amirali Boroumand*, Donghyuk Lee*,
Michael A. Kozuch', Onur Mutlu*, Phillip B. Gibbons', Todd C. Mowry*

*Carnegie Mellon University TIntel Pittsburgh
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More on Ambit

= Vivek Seshadri et al., "Ambit: In-Memory Accelerator
for Bulk Bitwise Operations Using Commodity DRAM
Technology,” MICRO 2017.

Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology

Vivek Seshadri'® Donghyuk Lee*®> Thomas Mullins®® Hasan Hassan® Amirali Boroumand®
Jeremie Kim*®> Michael A. Kozuch® Onur Mutlu*®  Phillip B. Gibbons®> Todd C. Mowry?®

'!Microsoft Research India 2NVIDIA Research 3Intel ZETH Ziirich °Carnegie Mellon University

SAFARI 123



Challenge and Opportunity for Future

Computing Architectures
with
Minimal Data Movement

SAFARI



Challenge: Intelligent Memory Device

Does memory

have to be
dumb?

SAFARI



Processing in Memory:

Two Approaches

1. Minimally changing memory chips
2. Exploiting 3D-stacked memory




Opportunity: 3D-Stacked Logic+Memory

vbrid Memory Cube

Logic

Other “True 3D"” technologies
under development
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DRAM Landscape (circa 2015)

Segment DRAM Standards & Architectures
Commodity DDR3 (2007) [14]; DDR4 (2012) [1¥]
Low-Power  LPDDR3 (2012) [17]; LPDDR4 (2014) [20]
Graphics GDDRS5 (2009) [15]

Performance eDRAM [2£], [32]; RLDRAM3 (2011) [29]

SBA/SSA (2010) [38]; Staged Reads (2012) [3]; RAIDR (2012) [27];
SALP (2012) [24]; TL-DRAM (2013) [26]; RowClone (2013) [37];
Half-DRAM (2014) [39]; Row-Bufter Decoupling (2014) [33];

SARP (2014) [6]; AL-DRAM (2015) [25]

Academic

Table 1. Landscape of DRAM-based memory

Kim+, "Ramulator: A Flexible and Extensible DRAM Simulator”, IEEE CAL 2015.
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Two Key Questions in 3D-Stacked PIM

3D-stacked memory as a coarse-grained accelerator?
o what is the architecture and programming model?
o what are the mechanisms for acceleration?

What is the minimal processing-in-memory support we can
provide?

o without changing the system significantly

o while achieving significant benefits

SAFARI 129



Graph Processing

= Large graphs are everywhere (circa 2015)

oo [ L

36 Million 1.4 Billion 300 Million 30 Billion
Wikipedia Pages  Facebook Users Twitter Users  Instagram Photos

= Scalable large-scale graph processing is challenging

128... _ +420/0—

0 1 2 3 4
Speedup
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Key Bottlenecks in Graph Processing

for (v: graph.vertices) {
for (w: v.successors) {
w.next_rank += weight * v.rank;

1. Frequent random memory accesses

w.rank

w.next_rank

w.edges

2. Little amount of computation
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Tesseract System tor Graph Processing

Interconnected set of 3D-stacked memory+logic chips with simple cores

Host Processor

Memory-Mapped
Accelerator Interface

Noncacheable, Physically Addressed)
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SAFAR]/ Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Communications via

Remote Function Calls

Message Queue




Communications In Tesseract (I)

for (v: graph.vertices) {
for (w: v.successors) {
w.next_rank += weight * v.rank;

}
}
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Communications In Tesseract (1)

for (v: graph.vertices) {
for (w: v.successors) {
w.next_rank += weight * v.rank;

Vault #1 Vault #2
- ——»
\V; > &w
// | \
- \
«—= \
\\
\\\\\\\ — — >
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Communications In Tesseract (111)

for (v: graph.vertices) {

for (w: v.successors) { Non-blocking Remote Function Call
put(w.id, function() { w.next_rank += weight * v.rank; });
J Can be delayed
} until the nearest barrier
barrier();
Vault #1 Vault #2
put ~
Y > &w
4-——-”/// ‘\
put \\\
S~ put
TS » W
put |
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Remote Function Call (Non-Blocking)

1. Send function address & args to the remote core

2. Store the incoming message to the message queue
3. Flush the message queue when it is full or a

synchronization barrier is reached

Local
Core

g

NI

&func, &w, value

NI

_>

Remote
Core b
MQ -

put(w.id, function() { w.next_rank +=value; })
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Prefetching

LP PF Buffer

MTP




Evaluated Systems

DDR3-000 HMC-Oo0 HMC-MC Tesseract

| | | | | | | | | | |
| | | | | | | ! [ [
I I * I - I * I I ! v\ v\ y\ X ! v\ y\ y\ X ! 32
| I | I 1 I | I | . . Tesseract
z x X X X X ' X X X X ' Cores
v v v v i YY VYV \AJR A/ i \A 2R A \ A 2R A | |
128 128
- e B R L B o o
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4 v i v v i v v i o PN
! ! 128 128 !
8000 8000 | 8000 8000 : .ol So i ¥
y x ' R ¥ S ¥ ' W S Y Y i v v v v
v v v v \ v \ \ ! v \ v v ! ol ol R
| | | | | | |
| l | | l | l | | l |
I I I I \ 4 v v v v v \ 4 \ 4
| | | | | | |
[ [ [ [
| | | | | | |
102.4GB/s 640GB/s 640GB/s 8TB/s
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Tesseract Graph Processing Performance

>13X Performance Improvement

16
On five graph processing algorithms 13.8x
14
1 11.6x
o 10 9.0x
>
o 8
()
(@}
“ 6
4
5 +56% 4259
, = N e
DDR3-000 HMC-000 HMC-MC Tesseract Tesseract- Tesseract-

LP LP-MTP

SAFARI| Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Memory Bandwidth Consumption

2.9TB/s

Memory Bandwidth (TB/s)

2.2TB/s
1.3TB/s
190GB/s 243GB/s
80GB/s
T

DDR3-000 HMC-000 HMC-MC Tesseract Tesseract- Tesseract-
LP LP-MTP




Ettect of Bandwidth & Programming Model

] HMC-MC Bandwidth (640GB/s) ] Tesseract Bandwidth (8TB/s)
7 6.5x

3.0x

Speedup

- E
0
HMC-MC HMC-MC + Tesseract + Tesseract
PIM BW Conventional BW (No Prefetching)
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Tesseract Graph Processing System Energy

M Memory Layers M Logic Layers [1Cores
1.2

0.8
0.6
0.4

> 8X Energy Reduction

HMC-000 Tesseract with Prefetching

0.2

SAFAR/ Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



More on Tesseract

= Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu,
and Kiyoung Choi,

"A Scalable Processing-in-Memory Accelerator for
Parallel Graph Processing”

Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing

Junwhan Ahn  Sungpack Hong® Sungjoo Yoo Onur Mutlu’ Kiyoung Choi

junwhan@snu.ac.kr, sungpack.hong @oracle.com, sungjoo.yoo @ gmail.com, onur@cmu.edu, kchoi@snu.ac.kr

Seoul National University $Oracle Labs fCarnegie Mellon University
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Truly Distributed GPU Processing with PIM?

__global__

void applyScaleFactorsKernel( uint8_ T * const out,
uint8_T const * const in, const double *factor,
size_t const numRows, size_t const numCols )

// Work out which pixel we are working on.

const int rowIdx = blockIdx.x * blockDim.x + threadIdx.x:;
const int colldx = blockIdx.y:

const int sliceldx = threadIdx.z;

// Check this thread isn't off the image
if( rowIdx >= numRows ) return;

// Compute the index of my element

3 D-StaCked memory size_t linearIdx = rowIdx + colIdx*numRows +

sliceIdx*numRows*numCols;

(memory stack) SM (Streaming Multiprocessor)

<+ Logic layer

Logic layer
SM
I

Crossbar switch
[ [

Vault| .... |Vault
\ Ctrl Ctrl

Main GPU




Accelerating GPU Execution with PIM (I)

= Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems"”
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Transparent Offloading and Mapping (TOM):
Enabling Programmer-Transparent Near-Data Processing in GPU Systems

Kevin Hsieh! Eiman Ebrahimi Gwangsun Kim*  Niladrish Chatterjee]L Mike O’Connor'
Nandita Vij aykumari Onur Mutlu$? Stephen W. Keckler!

fCarnegie Mellon University NVIDIA *KAIST SETH Ziirich



Accelerating GPU Execution with PIM (1I)

= Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.
Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities”

Proceedings of the 25th International Conference on Parallel
Architectures and Compilation Techniques (PACT), Haifa, Israel,
September 2016.

Scheduling Techniques for GPU Architectures
with Processing-In-Memory Capabilities

Ashutosh Pattnaik®  Xulong Tang*  Adwait Jog>  Onur Kayiran?
Asit K. Mishra* Mahmut T. Kandemir! Onur Mutlu®® Chita R. Das!

'Pennsylvania State University =~ *College of William and Mary
3Advanced Micro Devices, Inc. “Intel Labs °ETH Zirich ¢Carnegie Mellon University
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Accelerating Linked Data Structures

= Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation”
Proceedings of the 34th IEEE International Conference on Computer
Design (ICCD), Phoenix, AZ, USA, October 2016.

Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation

Kevin Hsieh! Samira Khan* Nandita Vijaykumar!
Kevin K. Chang' Amirali Boroumand' Saugata Ghose! Onur Mutlu®!

"Carnegie Mellon University — *University of Virginia SETH Ziirich
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Two Key Questions in 3D-Stacked PIM

How can we accelerate important applications if we use
3D-stacked memory as a coarse-grained accelerator?

o what is the architecture and programming model?
o what are the mechanisms for acceleration?

What is the minimal processing-in-memory support we can
provide?

o without changing the system significantly
o while achieving significant benefits
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PIM-Enabled Instructions

= Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,
"PIM-Enabled Instructions: A Low-Overhead,
Locality-Aware Processing-in-Memory Architecture"
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

PIM-Enabled Instructions: A Low-Overhead, Locality-Aware
Processing-in-Memory Architecture

Junwhan Ahn  Sungjoo Yoo Onur Mutlu’ Kiyoung Choi
junwhan@snu.ac.kr, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi @snu.ac.kr

Seoul National University *Carnegie Mellon University
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Automatic Code and Data Mapping?

= Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems"”
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Transparent Offloading and Mapping (TOM):
Enabling Programmer-Transparent Near-Data Processing in GPU Systems

Kevin Hsieh! Eiman Ebrahimi Gwangsun Kim*  Niladrish Chatterjee]L Mike O’Connor'
Nandita Vij aykumari Onur Mutlu$? Stephen W. Keckler!

fCarnegie Mellon University NVIDIA *KAIST SETH Ziirich



Challenge and Opportunity for Future

Fundamentally
Energy-Efficient
(Data-Centric)
Computing Architectures
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Challenge and Opportunity for Future

Fundamentally
Low-Latency
(Data-Centric)
Computing Architectures
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Three Key Issues in Future Platforms

= Fundamentally Secure/Reliable/Safe Architectures

= Fundamentally Energy-Efficient Architectures
o Memory-centric (Data-centric) Architectures

= | Fundamentally Low Latency Architectures

SAFARI 1>4
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Maslow’s Hierarchy of Needs, A Third Time

Maslow, “A Theory of Human Motivation,”
Psychological Review, 1943.

Self- Self-fulfillment
Maslow, “Motivation and Personality,” actualization: '\ needs
Book, 1954-1970.
Speed
sy
, presligao SpEEd plnhmant Psychological

needs
Belongi needs:

infim Speed ands
Speed g
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Challenge and Opportunity for Future

Fundamentally
Low-Latency
Computing Architectures
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Agenda

Major Trends Affecting Main Memory
The Memory Scaling Problem and Solution Directions

o New Memory Architectures
o Enabling Emerging Technologies

Cross-Cutting Principles
Summary
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Limits of Charge Memory

Difficult charge placement and control

a Flash: floating gate charge
o DRAM: capacitor charge, transistor leakage

Reliable sensing becomes difficult as charge
storage unit size reduces

WL BL
] —— GATE I | 4
7 . FLOATING GATE
- SENSE
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Emerging Memory Technologies

Some emerging resistive memory technologies seem more
scalable than DRAM (and they are non-volatile)

Example: Phase Change Memory oL
o Data stored by changing phase of material
Data read by detecting material’s resistance ;
Expected to scale to 9nm (2022 [ITRS]) WL SENSE
Prototyped at 20nm (Raoux+, IBM JRD 2008) M vV
Expected to be denser than DRAM: can store multiple bits/cell

PCM

Q
Q
Q
Q

But, emerging technologies have (many) shortcomings
a Can they be enabled to replace/augment/surpass DRAM?
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Promising Resistive Memory Technologies

PCM

o Inject current to change material phase
o Resistance determined by phase

STT-MRAM
o Inject current to change magnet polarity
o Resistance determined by polarity

Memristors/RRAM/ReRAM
o Inject current to change atomic structure
o Resistance determined by atom distance
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Phase Change Memory: Pros and Cons

= Pros over DRAM
o Better technology scaling (capacity and cost)
a Non volatile > Persistent
a Low idle power (no refresh)

= Cons
o Higher latencies: ~4-15x DRAM (especially write)
o Higher active energy: ~2-50x DRAM (especially write)
a Lower endurance (a cell dies after ~108 writes)
a Reliability issues (resistance drift)

= Challenges in enabling PCM as DRAM replacement/helper:
o Mitigate PCM shortcomings

o Find the right way to place PCM in the system
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PCM-based Main Memory (1)

= How should PCM-based (main) memory be organized?

CPU CPU CPU
IcipdiciRgicsh
G- | - CE | @D
Q-G | - CE | ©@- D

= Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC'09]:
o How to partition/migrate data between PCM and DRAM
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PCM-based Main Memory (11)

= How should PCM-based (main) memory be organized?

CPU CPU CPU
o)~ L)~
Q-G - —c | @D
Q-G -G | @

= Pure PCM main memory [Lee et al., ISCA’'09, Top Picks’10]:

o How to redesign entire hierarchy (and cores) to overcome
PCM shortcomings
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Results: Naive Replacement of DRAM with PCM

= Replace DRAM with PCM in a 4-core, 4MB L2 system
= PCM organized the same as DRAM: row buffers, banks, peripherals
= 1.6x delay, 2.2x energy, 500-hour average lifetime

PCM Performance :: 2048Bx1 Buffer PCM Endurance :: 2048Bx1 Buffer
0.2
3 4 I Delay

- EnergyMem 0.18/

2.8
0.14

0.16
2.6/
24
2.2 012
1.8/ 0.
1.6
. 0.08}
o 1.2

0.06}
0.8
06 0.04
0.4/ 0.0
0.2}

cg Is mg rad oce art equ swi avg 1S mg rad oce art equ swu avg

-

Normalized to DRAM
oD
Years

-t
D

N

(=
o

= Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a
Scalable DRAM Alternative,” ISCA 20009.
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Results: Architected PCM as Main Memory

= 1.2x delay, 1.0x energy, 5.6-year average lifetime
= Scaling improves energy, endurance, density

PCM Performance .. 512Bx4 Buffer PCM Endurance .. 512Bx4 Buffer
1.8 A I I 16
Il Delay
1.6 I EnergyMem

- lefL ne (648)

14 12

cg is mg rad oce art equ swi avg cg is mg rad oce art equ swn avg

-
- N

Normalized to DRAM
o
o
Years
0’) @

o
»

°
'
I

©
(¥
)

o
o

= Caveat 1: Worst-case lifetime is much shorter (no guarantees)
= Caveat 2: Intensive applications see large performance and energy hits

= Caveat 3: Optimistic PCM parameters?
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More on PCM As Main Memory

= Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger,
"Architecting Phase Change Memory as a Scalable DRAM

Alternative"”
Proceedings of the 36th International Symposium on Computer

Architecture (ISCA), pages 2-13, Austin, TX, June 2009. Slides
(pdf)

Architecting Phase Change Memory as a
Scalable DRAM Alternative

Benjamin C. Leet Engin Ipeki Onur Mutlu: Doug Burgers

tComputer Architecture Group tComputer Architecture Laboratory
Microsoft Research Carnegie Mellon University
Redmond, WA Pittsburgh, PA
{blee, ipek, dburger}@microsoft.com onur@cmu.edu
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More on PCM As Main Memory (1I)

= Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao,
Engin Ipek, Onur Mutlu, and Doug Burger,
"Phase Change Technology and the Future of Main Memory"
IEEE Micro, Special Issue: Micro's Top Picks from 2009 Computer
Architecture Conferences (MICRO TOP PICKS), Vol. 30, No. 1,
pages 60-70, January/February 2010.

PHASE-CHANGE TECHNOLOGY AND THE
FUTURE OF MAIN MEMORY
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STT-MRAM as Main Memory

Magnetic Tunnel Junction (MTJ) device
o Reference layer: Fixed magnetic orientation
o Free layer: Parallel or anti-parallel

Magnetic orientation of the free layer
determines logical state of device

o High vs. low resistance

Write: Push large current through MTJ to
change orientation of free layer

Read: Sense current flow

Kultursay et al., “Evaluating STT-RAM as an Energy-
Efficient Main Memory Alternative,” ISPASS 2013.

SAFARI
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STT-MRAM: Pros and Cons

= Pros over DRAM

o Better technology scaling (capacity and cost)
a Non volatile > Persistent

a Low idle power (no refresh)

= Cons
a Higher write latency
o Higher write energy
a Poor density (currently)
o Reliability?

= Another level of freedom

a Can trade off non-volatility for lower write latency/energy (by
reducing the size of the MT)J)
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Architected STT-MRAM as Main Memory

= 4-core, 4GB main memory, multiprogrammed workloads
= ~6% performance loss, ~60% energy savings vs. DRAM

OSTT-RAM (base) B STT-RAM (opt)

98%
96% -

949% -
92% -
Q 5905 - —I—
gss% e fe T - NN N BN .
U C R S ’

SIS
LR & LS LSS &S

Performance

BEACT+PRE OWB HERB

0% -

N
TSI

Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.
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More on STT-MRAM as Main Memory

= Emre Kultursay, Mahmut Kandemir, Anand
Sivasubramaniam, and Onur Mutlu,
"Evaluating STT-RAM as an Energy-Efficient Main
Memory Alternative"
Proceedings of the 2013 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS),
Austin, TX, April 2013. Slides (pptx) (pdf)

Evaluating STT-RAM as an
Energy-Efficient Main Memory Alternative

Emre Kiiltiirsay*, Mahmut Kandemir*, Anand Sivasubramaniam*, and Onur Mutluf
*The Pennsylvania State University and TCarnegie Mellon University
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A More Viable Approach: Hybrid Memory Systems

CPU

DRAM PCM
Ctrl Ctrl

DRAM

Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon+, "Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best
Paper Award.
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A More Viable Approach: Hybrid Memory Systems

CPU
DRAM  PCM

DRAM Ctrl Ctrl

Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon+, "Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best
Paper Award.
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Challenge and Opportunity

Providing the Best of
Multiple Metrics
with
Multiple Memory Technologies

SAFARI



Challenge and Opportunity

Heterogeneous,
Configurable,
Programmable

Memory Systems
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Hybrid Memory Systems: Issues

Cache vs. Main Memory

Granularity of Data Move/Manage-ment: Fine or Coarse
Hardware vs. Software vs. HW/SW Cooperative

When to migrate data?

How to design a scalable and efficient large cache?
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On Hybrid Memory Data Placement (I)

= HanBin Yoon, Justin Meza, Rachata Ausavarungnirun,
Rachael Harding, and Onur Mutlu,
"Row Buffer Locality Aware Caching Policies for
Hybrid Memories"
Proceedings of the 30th IEEE International Conference on
Computer Design (ICCD), Montreal, Quebec, Canada,
September 2012. Slides (pptx) (pdf)

Row Buffer Locality Aware Caching Policies
for Hybrid Memories

HanBin Yoon, Justin Meza, Rachata Ausavarungnirun, Rachael A. Harding and Onur Mutlu
Carnegie Mellon University
{hanbinyoon,meza,rachata,onur} @cmu.edu, rhardin@mit.edu
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On Hybrid Memory Data Placement (1)

= Yang Li, Saugata Ghose, Jongmoo Choi, Jin Sun, Hui Wang,
and Onur Mutluy,

"Utility-Based Hybrid Memory Management”

Proceedings of the 19th IEEE Cluster Conference (CLUSTER),
Honolulu, Hawaii, USA, September 2017.

[Slides (pptx) (pdf)]

Utility-Based Hybrid Memory Management

Yang Li' Saugata Ghose! Jongmoo Choi? Jin Sun' Hui Wang* Onur Mutlu™ T
[ Carnegie Mellon University  Dankook University *Beihang University TETH Ziirich
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On Large DRAM Cache Design (I)

= Justin Meza, Jichuan Chang, HanBin Yoon, Onur Mutlu, and
Parthasarathy Ranganathan,

"Enabling Efficient and Scalable Hybrid Memories
Using Fine-Granularity DRAM Cache Management”
IEEE Computer Architecture Letters (CAL), February 2012.

Enabling Efficient and Scalable Hybrid Memories Using
Fine-Granularity DRAM Cache Management

Justin Meza* Jichuan Chang® HanBin Yoon® Onur Mutlu® Parthasarathy Ranganathant
*Carnegie Mellon University fHewlett-Packard Labs
{meza,hanbinyoon,onur}@cmu.edu {jichuan.chang,partha.ranganathan}@hp.com
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On Large DRAM Cache Design (11

= Xiangyao Yu, Christopher J. Hughes, Nadathur Satish, Onur
Mutlu, and Srinivas Devadas,

"Banshee: Bandwidth-Efficient DRAM Caching via
Software/Hardware Cooperation”

Proceedings of the 50th International Symposium on
Microarchitecture (MICRO), Boston, MA, USA, October 2017.

Banshee: Bandwidth-Efficient DRAM Caching
via Software/Hardware Cooperation

Xiangyao Yu' Christopher J. Hughes® Nadathur Satish® Onur Mutlu®  Srinivas Devadas!
IMIT “Intel Labs SETH Ziirich
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Challenge and Opportunity

Enabling
an Emerging Technology
to Augment DRAM

Managing Hybrid Memories
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Other Opportunities with Emerging Technologies

=| Merging of memory and storage

o e.g., a single interface to manage all data

= New applications
o e.g., ultra-fast checkpoint and restore

= More robust system design
o e.g., reducing data loss

= Processing tightly-coupled with memory
o e.g., enabling efficient search and filtering
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TWO-LEVEL STORAGE MODEL

5
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o
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TWO-LEVEL STORAGE MODEL

CPU

VOLATILE

&

S FAST

= BYTE ADDR
G NONVOLATILE
-

7

BLOCK ADDR

Non-volatile memories combine

characteristics of memory and storage



Two-Level Memory/Storage Model

= The traditional two-level storage model is a bottleneck with NVM
o Volatile data in memory - a load/store interface
o Persistent data in storage = a file system interface

o Problem: Operating system (OS) and file system (FS) code to locate, translate,
buffer data become performance and energy bottlenecks with fast NVM stores

__ Two-Level Store
Load/Store L fopgn, fread, fwrite, ...

Processor
and caches

........
........
........

Persistent (676 Phase-Change)
Main Memory Stofegeo($SD/HDD)
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Unified Memory and Storage with NVM

= Goal: Unify memory and storage management in a single unit to
eliminate wasted work to locate, transfer, and translate data
o Improves both energy and performance
o Simplifies programming model as well

__ Unified Memory/Storage

Persistent Memory
Manager
Processor
and caches

Load/Store Feedback

Ut

PersistentK(é.g., Phase-Change) Memory

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 188
SAFARI Storage and Memory,” WEED 2013.



The Persistent Memory Manager (PMM)

int main (void) {
// data in file.dat 1is persistent
FILE myData = "file.dat";
myData = new int[64];

Persistent objects

}

void updateValue (int n, int value) {
FILE myData = "file.dat";
myData [n] = value; // value is persistent

O 00 1O\ N Wi

Store l Hints from SW/OS/runtime

Software Persistent Memory Manager
Hardware Data Layout, Persistence, Metadata, Security, ..

I

| DRaM | Fiash | Nvm |[ HDD ]

PMM uses access and hint information to allocate, locate, migrate
and access data in the heterogeneous array of devices




Performance Benefits ot a Single-l.evel Store

M User CPU [ User Memory B Syscall CPU [ Syscall I/O

1.0 ~24X
£ 0.8 \
|_
5 \
n
3 04
\
=
0 e

HDD 2-level NVM 2-level  Persistent Memory

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 190
SAFARI Storage and Memory,” WEED 2013.



Energy Benefits of a Single-level Store

M User CPU [ Syscall CPFU m DRAM [] NVM @ HDD

o o ©
~ o oo

Fraction of Total Energy

©
N

HDD 2-level NVM 2-level  Persistent Memory

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 191
SAFARI Storage and Memory,” WEED 2013.



On Persistent Memory Benefits & Challenges

= Justin Meza, Yixin Luo, Samira Khan, Jishen Zhao, Yuan
Xie, and Onur Mutluy,
"A Case for Efficient Hardware-Software
Cooperative Management of Storage and Memory"”
Proceedings of the 5th Workshop on Energy-Efficient

Design (WEED), Tel-Aviv, Israel, June 2013. Slides (pptx)
Slides (pdf)

A Case for Efficient Hardware/Software Cooperative Management of Storage and Memory

Justin Meza*  Yixin Luo* Samira Khan** Jishen Zhao' Yuan Xie'® Onur Mutlu*
*Carnegie Mellon University ~ Pennsylvania State University ~ *Intel Labs ~ SAMD Research
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Challenge and Opportunity

Combined
Memory & Storage
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Challenge and Opportunity

A Unified Interface to
All Data
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Another Key Challenge 1n Persistent Memory

Programming Ease
to Exploit Persistence

SAFARI



Hardware Support for Crash Consistency

= Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu,
and Onur Mutluy,

"ThyNVM: Enabling Software-Transparent Crash Consistency
in Persistent Memory Systems"

Proceedings of the 48th International Symposium on
Microarchitecture (MICRO), Waikiki, Hawaii, USA, December 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster
(pptx) (pdf)]

[Source Code]

ThyNVM: Enabling Software-Transparent Crash Consistency
in Persistent Memory Systems

Jinglei Ren*™ Jishen Zhao* Samira Khan™ Jongmoo Choi*" Yongwei Wu* Onur Mutlu”

TCarnegie Mellon University *Tsinghua University
*University of California, Santa Cruz 'University of Virginia TDankook University
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Tools/Libraries to Help Programmers

= Himanshu Chauhan, Irina Calciu, Vijay Chidambaram, Eric
Schkufza, Onur Mutlu, and Pratap Subrahmanyam,
"NVMove: Helping Programmers Move to Byte-Based
Persistence”
Proceedings of the 4th Workshop on Interactions of NVM/Flash
with Operating Systems and Workloads (INFLOW), Savannah,
GA, USA, November 2016.

[Slides (pptx) (pdf)]

NVMOVE: Helping Programmers Move to Byte-Based Persistence

Himanshu Chauhan * Irina Calciu Vijay Chidambaram
UT Austin VMware Research Group UT Austin
Eric Schkufza Onur Mutlu Pratap Subrahmanyam
VMware Research Group ETH Ziirich VMware
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Data Structures for In-Memory Processing

= Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu,
"Concurrent Data Structures for Near-Memory Computing”
Proceedings of the 29th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), Washington, DC, USA, July 2017.
[Slides (pptx) (pdf)]

Concurrent Data Structures for Near-Memory Computing

Zhiyu Liu Irina Calciu
Computer Science Department VMware Research Group
Brown University icalciu@vmware.com
zhiyu_liu@brown.edu
Maurice Herlihy Onur Mutlu
Computer Science Department Computer Science Department
Brown University ETH Zirich
mph@cs.brown.edu onur.mutlu@inf.ethz.ch
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Concluding Remarks




A Quote from A Famous Architect

= ‘architecture [...] based upon principle, and not upon
precedent”
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Precedent-Based Design?

= ‘architecture [...] based upon principle, and not upon
precedent”

-
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Principled Design

= architecture [...] based upon principle, and not upon
precedent”
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The Overarching Principle

Organic architecture

From Wikipedia, the free encyclopedia

Organic architecture is a philosophy of architecture which promotes harmony
between human habitation and the natural world through design approaches so
sympathetic and well integrated with its site, that buildings, furnishings, and
surroundings become part of a unified, interrelated composition.

A well-known example of organic architecture is Fallingwater, the residence Frank Lloyd Wright
designed for the Kaufmann family in rural Pennsylvania. Wright had many choices to locate a
home on this large site, but chose to place the home directly over the waterfall and creek creating
a close, yet noisy dialog with the rushing water and the steep site. The horizontal striations of
stone masonry with daring cantilevers of colored beige concrete blend with native rock
outcroppings and the wooded environment.
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Another Example: Precedent-Based Design

Source: http://cookiemagik.deviantart.com/art/Train-station-207266944



Principled Design

Source: By Toni_V, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=4087256
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Another Principled Design

Source: By Martin Gbmez Tagle - Lisbon, Portugal, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=13764903 207
Source: http://www.arcspace.com/exhibitions/unsorted/santiago-calatrava/



Pr1nc1ple Apphed to Another Structure
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The Overarching Principle

Zoomorphic architecture

From Wikipedia, the free encyclopedia

Zoomorphic architecture is the practice of using animal
forms as the inspirational basis and blueprint for architectural
design. "While animal forms have always played a role adding
some of the deepest layers of meaning in architecture, it is
now becoming evident that a new strand of biomorphism is
emerging where the meaning derives not from any specific
representation but from a more general allusion to biological
processes."[!]

Some well-known examples of Zoomorphic architecture can be found in the TWA
Flight Center building in New York City, by Eero Saarinen, or the Milwaukee Art

Museum by Santiago Calatrava, both inspired by the form of a bird’s wings.!3!
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Overarching Principles for Computing?

Source: http://spectrum.ieee.org/image/MjYzMzAyMg.jpeg




Concluding Remarks

It is time to design principled system architectures to solve
the memory scaling problem

Discover design principles for fundamentally secure and
reliable computer architectures

Design complete systems to be balanced and energy-efficient,
i.e., data-centric (or memory-centric) and low latency

Enable new and emerging memory architectures

This can
o Lead to orders-of-magnitude improvements
o Enable new applications & computing platforms

D EER
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The Future of New Memory is Bright

= Regardless of challenges
o in underlying technology and overlying problems/requirements

Problem
Can enable: Yet, we have to
- Orders of magnitude Program/Language - Think across the stack
improvements System Software

SW/HW Interface - Design enabling systems

- New applications and
computing systems
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If In Doubt, See Other Doubttul Technologies

A very “doubtful” emerging technology
o for at least two decades

§H+|+ SATE Proceedings of the IEEE, Sept. 2017

Error Characterization,
Mitigation, and Recovery
in Flash-Memory-Based
Solid-State Drives

This paper reviews the most recent advances in solid-state drive (SSD) error
characterization, mitigation, and data recovery techniques to improve both SSD’s

reliability and lifetime.

By Yu Cai, Saucata GHosE, EricH F. HARATSCH, YIXIN Luo, AND ONUR MUTLU

SAFARI https://arxiv.org/pdf/1706.08642 21




Rethinking Memory System Design
(and the Plattorms We Design Around It)

Onur Mutlu
omutlu@gmail.com
https://people.inf.ethz.ch/omutlu
December 4, 2017

E; INESC-ID Distinguished Lecture (Lisbon)

Systems @ ETHu ETH:zurich
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Open Problems




For More Open Problems, See (I)

= Onur Mutlu and Lavanya Subramanian,
"Research Problems and Opportunities in Memory
Systems"

Invited Article in Supercomputing Frontiers and Innovations
(SUPERFRI), 2014/2015.

Research Problems and Opportunities in Memory Systéms

Onur Mutlu', Lavanya Subramanian'

https://people.inf.ethz.ch/omutlu/pub/memory-systems-research superfril4.pdf 216




For More Open Problems, See (1)

=  Onur Mutluy,

"The RowHammer Problem and Other Issues We May Face as
Memory Becomes Denser"

Invited Paper in Proceedings of the Design, Automation, and Test in
Europe Conference (DATE), Lausanne, Switzerland, March 2017.
[Slides (pptx) (pdf)]

The RowHammer Problem
and Other Issues We May Face as Memory Becomes Denser

Onur Mutlu
ETH Ziirich
onur.mutlu @inf.ethz.ch
https://people.inf.ethz.ch/omutlu

https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues datel7.pdf 217




For More Open Problems, See (11I)

= Onur Mutluy,

"Memory Scaling: A Systems Architecture
Perspective”

Technical talk at MemCon 2013 (MEMCON), Santa Clara,
CA, August 2013. [Slides (pptx) (pdf)]

[Video] [Coverage on StorageSearch]

Memory Scaling: A Systems Architecture Perspective

Onur Mutlu
Carnegie Mellon University
onur @cmu.edu
http://users.ece.cmu.edu/~omutlu/

https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf 218




For More Open Problems, See (IV)

Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and
Onur Mutluy,

"Error Characterization, Mitigation, and Recovery in
Flash Memory Based Solid State Drives”

to appear in Proceedings of the IEEE, 2017.
[Preliminary arxiv.org version]

Error Characterization, Mitigation, and Recovery
in Flash Memory Based Solid State Drives

Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu

https://arxiv.org/pdf/1706.08642.pdf 219




Reducing Memory Latency




Main Memory Latency LLags Behind

#Capacity #Bandwidth  @latency 128X
Ej
= 100
5
z 20X
>
2
é? |0
2
< 1.3x
- —o—o0—0—0 0009
| O

1999 2003 2006 2008 2011 2013 2014 2015 2016 2017

Memory latency remains almost constant
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A Closer Look ...

50 @ Activation » Precharge A Restoration
’g +21% 2704
S 40 —
LC>; 30 17% 0
-17% N
% 20 R 12%

1999 2003 2006 2008 2011 2013 2014 2015

Year
Figure 1: DRAM latency trends over time [20, 21, 23, 51].

Chang+, "Understanding Latency Variation in Modern DRAM Chips: Experimental

Characterization, Analysis, and Optimization",” SIGMETRICS 2016.
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DRAM Latency Is Critical tor Performance

In-memory Databases
[Mao+, EuroSys’[2;
Clapp+ (Intel), ISWC’15]

SAPACHE&

oark

In-Memory Data Analytics
[Clapp+ (Intel), ISWC’|5;
Awan+, BDCloud’15]

SAFARI

Graph/Tree Processing
[Xu+, ISWC’12; Umuroglu+, FPL15]

Datacenter Workloads
[Kanev+ (Google), ISCA’|5]



DRAM Latency Is Critical for Performance

In-memory Databases Graph/Tree Processing

Long memory latency — performance bottleneck

APACHE

Spark

In-Memory Data Analytics Datacenter Workloads
[Clappt (Intel), ISWC’I5; [Kanev+ (Google), ISCA’|5]
Awan+, BDCloud’ | 5]
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Why the Long Latency?

Design of DRAM uArchitecture
o Goal: Maximize capacity/area, not minimize latency

“One size fits all” approach to latency specification
Same latency parameters for all temperatures

Same latency parameters for all DRAM chips (e.g., rows)
Same latency parameters for all parts of a DRAM chip
Same latency parameters for all supply voltage levels
Same latency parameters for all application data

o 0o o o0 O O
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Latency Variation in Memory Chips

Heterogeneous manufacturing & operating conditions —
latency variation in timing parameters

DRAM A DRAM B DRAM C

. lSIow cells

Low High

DRAM Latency
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DRAM Characterization Infrastructure

SAFARI Kim+, “Flipping Bits in Memory Without Accessing Them: An 5>~
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.



DRAM Characterization Infrastructure

= Hasan Hassan et al., SoftMC: A
Flexible and Practical Open-
Source Infrastructure for
Enabling Experimental DRAM
Studies, HPCA 2017.

|

/ ‘ \\ d N \\Z; »
=% Tem

= Easy to Use (C++ API) ’ Contropller "

= Open-source b

github.com/CMU-SAFARI/SoftMC

= Flexible
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SofttMC: Open Source DRAM Infrastructure

= https://github.com/CMU-SAFARI/SoftMC

SoftMC: A Flexible and Practical Open-Source Infrastructure
for Enabling Experimental DRAM Studies

1,2,3 3 4,3 3

Samira Khan Saugata Ghose® Kevin Chang?
6.3 Oguz Ergin? Onur Mutlu!-3

Hasan Hassan Nandita Vijaykumar
Gennady Pekhimenko®3 Donghyuk Lee

\ETH Ziirich  2TOBB University of Economics & Technology  >Carnegie Mellon University
*University of Virginia > Microsoft Research ~ SNVIDIA Research
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Tackling the Fixed Latency Mindset

Reliable operation latency is actually very heterogeneous
o Across temperatures, chips, parts of a chip, voltage levels, ...

Idea: Dynamically find out and use the lowest latency one
can reliably access a memory location with

o Adaptive-Latency DRAM [HPCA 2015]

Flexible-Latency DRAM [SIGMETRICS 2016]
Design-Induced Variation-Aware DRAM [SIGMETRICS 2017]
Voltron [SIGMETRICS 2017]

o o o o

We would like to find sources of latency heterogeneity and
exploit them to minimize latency
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Adaptive-Latency DRAM

e Key idea
— Optimize DRAM timing parameters online

* Jwo components
— DRAM manufacturer provides multiple sets of

reliable DRAM timing parameters ElNsIiEL=Ial

temperatures for each DIMM

— System monitors [BRYAWRTEIIEEINIEE & uses

appropriate DRAM timing parameters

SAFARI Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 231
2015.



Latency Reduction Summary of 115 DIMMSs

e [atency reduction for read & write (55°C)
— Read Latency: 32.7%
— Write Latency: 55.1%

e [atency reduction for each timing
parameter (55°C)
— Sensing: 17.3%
— Restore: 37.3% (read), 54.8% (write)
— Precharge: 35.2%

SAFARI Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA
2015.



AL-DRAM: Real System Evaluation

System
— CPU: AMD 4386 ( 8 Cores, 3.1GHz, 8MB LLC)

D18F2x200 dct[0] mp[1:0] DDR3 DRAM Timing 0
Reset: 0F05_0505h. See 2.9.3 [DCT Configuration Registers].

Bits

Description

31:30

Reserved.

29:24

Tras: row active strobe. Read-write. BIOS: See 2.9.7.5 [SPD ROM-Based Configuration]. Specifies
the minimum time in memory clock cycles from an activate command to a precharge command. both

to the same chip select bank.
Bits Description
07h-00h Reserved
2Ah-08h <Tras> clocks
3Fh-2Bh Reserved

Reserved.

Trp: row precharge time. Read-write. BIOS: See 2.9.7.5 [SPD ROM-Based Configuration]. Speci-
fies the minimum time in memory clock cycles from a precharge command to an activate command or
auto refresh command. both to the same bank.




AL-DRAM: Single-Core Evaluation

- Average
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AL-DRAM improves single-core performance

on a real system
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AL-DRAM: Multi-Core Evaluation

Average

25%
20%
15%
10%
5%
0%

mcf
milc
libg
lbm
gems
copy

Performance Improvement
soplex

s.cluster

gups
non-intensive
Intensive

all-35-workload

AL-DRAM provides higher performance on

multi-programmed & multi-threaded workloads
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Reducing Latency Also Reduces Energy

AL-DRAM reduces DRAM power consumption by 5.8%

Major reason: reduction in row activation time
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More on Adaptive-Latency DRAM

= Donghyuk Lee, Yoongu Kim, Gennady Pekhimenko, Samira Khan,
Vivek Seshadri, Kevin Chang, and Onur Mutlu,
"Adaptive-Latency DRAM: Optimizing DRAM Timing for
the Common-Case"
Proceedings of the 21st International Symposium on High-
Performance Computer Architecture (HPCA), Bay Area, CA,
February 2015.
[Slides (pptx) (pdf)] [Full data sets]

Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case

Donghyuk Lee ~ Yoongu Kim  Gennady Pekhimenko
Samira Khan  Vivek Seshadri ~ Kevin Chang  Onur Mutlu

Carnegie Mellon University
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Heterogeneous Latency within A Chip

.25
0 |9 19.5% " *°
g . 17.6
£ LIS 13.3
§ . : B Baseline (DDR3)
T .1 B FLY-DRAM (DI)
> .05 ® FLY-DRAM (D2)
N m FLY.DRAM (D3)
= B Upper Bound
£ 095
@)
< 09

40 Workloads
Chang+, "Understanding Latency Variation in Modern DRAM Chips: Experimental

Characterization, Analysis, and Optimization",” SIGMETRICS 2016.
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Analysts of Latency Variation in DRAM Chips

= Kevin Chang, Abhijith Kashyap, Hasan Hassan, Samira Khan, Kevin Hsieh,
Donghyuk Lee, Saugata Ghose, Gennady Pekhimenko, Tianshi Li, and
Onur Mutlu,
"Understanding Latency Variation in Modern DRAM Chips:
Experimental Characterization, Analysis, and Optimization”
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Antibes Juan-Les-Pins,
France, June 2016.
[Slides (pptx) (pdf)]
[Source Code]

Understanding Latency Variation in Modern DRAM Chips:
Experimental Characterization, Analysis, and Optimization

Kevin K. Chang* Abhijith Kashyap* Hasan Hassan'?
Saugata Ghose* Kevin Hsieh' Donghyuk Lee' Tianshi Li*?
Gennady Pekhimenko' Samira Khan* Onur Mutlu®!

LCarnegie Mellon University 2TOBB ETU *Peking University *University of Virginia °ETH Zirich
SAFARI “>7



What Is Design-Induced Variation?

fast slow

—/—ﬂnherently slow

across column

distance from =
wordline driver @

@
@
@
@
(
e
MO|S

dCross row

distance from
sense amplifier

SIDALIP BUI|P

158

Inherently fast

sense amplifiers

Systematic variation in cell access times

caused by the physical organization of DRAM

SAFARI 240



DIVA Online Profiling

Design-Induced-Variation-Aware

inherently slow

J9AIIP aul|pJOMm

sense amplifier

Profile only slow regions to determine min. latency
—> Dynamic & low cost latency optimization
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DIVA Online Profiling

Design-Induced-Variation-Aware

slow cells inherently slow
process design-induced
variation variation

localized error

random error

8

: 2

online profiling

error-correcting
code

sense amplifier

Combine error-correcting codes & online profiling
— Reliably reduce DRAM latency
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AL-DRAM |DIVA Profiling|DIVA Profiling AL-DRAM |DIVA Profiling [DIVA Profiling
+ Shuffling + Shuffling

DIVA-DRAM reduces latency more aggressively

and uses ECC to correct random slow cells
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Design-Induced Latency Variation in DRAM

= Donghyuk Lee, Samira Khan, Lavanya Subramanian, Saugata Ghose,
Rachata Ausavarungnirun, Gennady Pekhimenko, Vivek Seshadri, and
Onur Mutluy,
"Design-Induced Latency Variation in Modern DRAM Chips:
Characterization, Analysis, and Latency Reduction Mechanisms"
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL,
USA, June 2017.

Design-Induced Latency Variation in Modern DRAM Chips:
Characterization, Analysis, and Latency Reduction Mechanisms

Donghyuk Lee, NVIDIA and Carnegie Mellon University

Samira Khan, University of Virginia

Lavanya Subramanian, Saugata Ghose, Rachata Ausavarungnirun, Carnegie Mellon University
Gennady Pekhimenko, Vivek Seshadri, Microsoft Research

Onur Mutlu, ETH Ziirich and Carnegie Mellon University
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Voltron: Exploiting the
Voltage-Latency-Reliability
Relationship




Executive Summary

* DRAM (memory) power is significant in today’s systems
— Existing low-voltage DRAM reduces voltage conservatively

* Goal: Understand and exploit the reliability and latency behavior of
real DRAM chips under aggressive reduced-voltage operation

* Key experimental observations:

— Huge voltage margin -- Errors occur beyond some voltage
— Errors exhibit spatial locality
— Higher operation latency mitigates voltage-induced errors

* Voltron:A new DRAM energy reduction mechanism

— Reduce DRAM voltage without introducing errors

— Use a regression model to select voltage that does not degrade
performance beyond a chosen target = 7.3% system energy reduction
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Analysis of Latency-Voltage in DRAM Chips

= Kevin Chang, A. Giray Yaglikci, Saugata Ghose, Aditya Agrawal, Niladrish
Chatterjee, Abhijith Kashyap, Donghyuk Lee, Mike O'Connor, Hasan
Hassan, and Onur Mutly,
"Understanding Reduced-Voltage Operation in Modern DRAM
Devices: Experimental Characterization, Analysis, and
Mechanisms"”
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL,
USA, June 2017.

Understanding Reduced-Voltage Operation in Modern DRAM Chips:
Characterization, Analysis, and Mechanisms

Kevin K. Chang'  Abdullah Giray Yaghke' Saugata Ghose”  Aditya Agrawall Niladrish Chatterjee
Abhijith Kashyap' Donghyuk Lee! Mike O’Connor®* Hasan Hassan®  Onur Mutlu®'

TCarnegie Mellon University INVIDIA *The University of Texas at Austin SETH Ziirich
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And, What If ...

= ... we can sacrifice reliability of some data to access it with
even lower latency?
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Challenge and Opportunity for Future

Fundamentally
Low Latency
Computing Architectures
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Tiered Latency DRAM




What Causes the Long Latency?
DRAM Chip

subarray

!

I/0

3

Subarray Latemoy

Dominant

channelt

DRAM Latency WO llatEmoy
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Why is the Subarray So Slow?

Subarray Cell
cell |
“ . B wordline
- - A T ‘
o QJ ,”’ \\\
% 8 t /’,, \\\ .E
Q N ° I/ \‘ EI:Q
Y n 3 /B _E‘a':.!;—‘ s
m o |5 transistor || @ -
S L ! © | = E
2 S 2 2 O
— Q \ o)
S s 8 3
= S
Q
------- 7
sense amplifier large sense amplifier
* Long bitline
— Amortizes sense amplifier cost = Small area
— Large bitline capacitance =2 High latency & power
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Trade-Off: Area (Die Size) vs. Latency
Long Bitline Short Bitline

—
%%%%

AYAYAYA
-Off. Area vs. Latency

253



Trade-Off: Area (Die Size) vs. Latency
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Approximating the Best of Both Worlds

Long Bitline J Our Proposal | Short Bitline
Small Area M

' N7 N/ \/ \

M Low Latency

Need Add Isolatlon
Isolation Transistors

tline = Fast
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Approximating the Best of Both Worlds

Long Bitlin Tiered-Latency DRAM \ort Bitline

Small Area Small Area M

' N/ N/ N/ \

M Low Latency  Low Latency

using long

bitline §
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Commodity DRAM vs. TL-DRAM [Hprca 2013)
 DRAM Latency (tRC) * DRAM Power

150%

+23%

100% -

Latency

50% -

0

0%
Commodity
DRAM

Near Far
TL-DRAM

Power

 DRAM Area Overhead

~3%: mainly due to the isolation transistors

+49%

150%

100% -

0%
Commodity
DRAM

Near Far
TL-DRAM
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Trade-Off: Area (Die-Area) vs. Latency
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Leveraging Tiered-Latency DRAM

TL-DRAM is a substrate that can be leveraged by
the hardware and/or software

Many potential uses

1. Use near segment as hardware-managed inclusive )
cache to far segment )

2. Use near segment as hardware-managed exclusive
cache to far segment

3. Profile-based page mapping by operating system )
4. Simply replace DRAM with TL-DRAM

259
Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.



Performance & Power Consumption

@ 120% 712.4% 11.5% 10.7% 120%
= -23% —24% —269
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Using near segment as a cache improves
performance and reduces power consumption

Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.
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More on PIM




Eliminating the Adoption Barriers

How to Enable Adoption
of Processing in Memory

SAFARI



Barriers to Adoption ot PIM

1. Functionality of and applications for PIM
2. Ease of programming (interfaces and compiler/HW support)
3. System support: coherence & virtual memory

4. Runtime systems for adaptive scheduling, data mapping,
access/sharing control

5. Infrastructures to assess benefits and feasibility
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We Need to Revisit the Entire Stack

SW/HW Interface
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Key Challenge 1: Code Mapping

* Challenge 1: Which operations should be executed
in memory vs.in CPU!? ey

void applyScaleFactorsKernel( uint8_ T * const out,

?

{

3D-stacked memory
(memory stack)

SM (Streaming Multiprocessor)

uint8_T const * const in, const double *factor,
size_t const numRows, size_t const numCols )

// Work out which pixel we are working on.

const int rowIdx = blockIdx.x * blockDim.x + threadIdx.x:;
const int colldx = blockIdx.y:

const int sliceldx = threadIdx.z;

// Check this thread isn't off the image
if( rowIdx >= numRows ) return;

// Compute the index of my element

size_t linearIdx = rowIdx + colIdx*numRows +
sliceIdx*numRows*numCols;

?

JIIIIIIIIIIII

Main GPU

<+ Logic layer

\ 4

Logic layer
SM
I

Crossbar switch
[ [

Vault| .... |Vault
Ctrl Ctrl




Key Challenge 2: Data Mapping

* Challenge 2: How should data be mapped to
different 3D memory stacks!?

3D-stacked memory
(memory stack) SM (Streaming Multiprocessor)

SM

Logic layer

I

Crossbar switch

[
Vault
Ctrl

Vault
Ctrl




How to Do the Code and Data Mapping?

= Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems"”
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Transparent Offloading and Mapping (TOM):
Enabling Programmer-Transparent Near-Data Processing in GPU Systems

Kevin Hsieh! Eiman Ebrahimi Gwangsun Kim*  Niladrish Chatterjee]L Mike O’Connor'
Nandita Vij aykumari Onur Mutlu$? Stephen W. Keckler!

fCarnegie Mellon University NVIDIA *KAIST SETH Ziirich



How to Schedule Code?

= Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.
Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities”

Proceedings of the 25th International Conference on Parallel
Architectures and Compilation Techniques (PACT), Haifa, Israel,
September 2016.

Scheduling Techniques for GPU Architectures
with Processing-In-Memory Capabilities

Ashutosh Pattnaik®  Xulong Tang*  Adwait Jog>  Onur Kayiran?
Asit K. Mishra* Mahmut T. Kandemir! Onur Mutlu®® Chita R. Das!

'Pennsylvania State University =~ *College of William and Mary
3Advanced Micro Devices, Inc. “Intel Labs °ETH Zirich ¢Carnegie Mellon University
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Coherence for Hybrid CPU-PIM Apps

Challenge

Traditional

© > = S
O E 2z| &
a | o
5 ol O 2|8|= Cm
(&) .
BN B B|2|0O m 2
.............. UB3IAID
8¢T1-dV1H o0
a
>
9G9¢-dV1H -
)ueyasded
S
lpey =
i
sjuauodwo)
| yueyasded
L
npey =
c
C)
sjuauodwo)
)ueyasded
=
lipey x
©
sjuauodwo)

269

SAFARI



How to Maintain Coherence?

= Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutlu,

"LazyPIM: An Efficient Cache Coherence Mechanism
for Processing-in-Memory"

IEEE Computer Architecture Letters (CAL), June 2016.

LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory

Amirali Boroumand', Saugata Ghose', Minesh Patel’, Hasan Hassan'$, Brandon Lucia’,
Kevin Hsieht, Krishna T. Malladi*, Hongzhong Zheng*, and Onur Mutlu*f

t Carnegie Mellon University *Samsung Semiconductor, Inc. $TOBB ETU *ETH Ziirich
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How to Support Virtual Memory?

= Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation”
Proceedings of the 34th IEEE International Conference on Computer
Design (ICCD), Phoenix, AZ, USA, October 2016.

Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation

Kevin Hsieh! Samira Khan* Nandita Vijaykumar!
Kevin K. Chang' Amirali Boroumand' Saugata Ghose! Onur Mutlu®!

"Carnegie Mellon University — *University of Virginia SETH Ziirich
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How to Design Data Structures tor PIM?

= Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu,
"Concurrent Data Structures for Near-Memory Computing”
Proceedings of the 29th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), Washington, DC, USA, July 2017.
[Slides (pptx) (pdf)]

Concurrent Data Structures for Near-Memory Computing

Zhiyu Liu Irina Calciu
Computer Science Department VMware Research Group
Brown University icalciu@vmware.com
zhiyu_liu@brown.edu
Maurice Herlihy Onur Mutlu
Computer Science Department Computer Science Department
Brown University ETH Zirich
mph@cs.brown.edu onur.mutlu@inf.ethz.ch
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Simulation Infrastructures for PIM

Ramulator extended for PIM
o Flexible and extensible DRAM simulator
o Can model many different memory standards and proposals

o Kim+, "Ramulator: A Flexible and Extensible DRAM
Simulator”, IEEE CAL 2015.

o https://qgithub.com/CMU-SAFARI/ramulator

Ramulator: A Fast and Extensible DRAM Simulator

Yoongu Kim!  Weikun Yang!-?  Onur Mutlu®
ICarnegie Mellon University ~ 2Peking University
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An FPGA-based Test-bed for PIM?

= Hasan Hassan et al., SoftMC: A
Flexible and Practical Open-
Source Infrastructure for
Enabling Experimental DRAM
Studies HPCA 2017.

|

/ ‘ \\,\\\’{; »
T m

= Easy to Use (C++ API) ’ conetropller "

= Open-source B

github.com/CMU-SAFARI/SoftMC

= Flexible
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Some PIM Applications




Goals

Understand the primitives, architectures, and benefits of
PIM by carefully examining many important workloads

Develop a common workload suite for PIM research
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Systems @ ETH zirich

Genome Read In-Memory (GRIM) Filter:

Fast Location Filtering in DNA Read Mapping
with Emerging Memory Technologies

Jeremie Kim,
Damla Senol, Hongyi Xin, Donghyuk Lee,
Saugata Ghose, Mohammed Alser, Hasan Hassan,
Oguz Ergin, Can Alkan, and Onur Mutlu

N Emzicich

TOBB
UNIVERSITY OF
ECONOMICS AND TECHNOLOGY

Carnegie Mellon




Executive Summary

Genome Read Mapping is a very important problem and is the first
step in many types of genomic analysis

o Could lead to improved health care, medicine, quality of life

Read mapping is an approximate string matching problem
o Find the best fit of 100 character strings into a 3 billion character dictionary

o Alignment is currently the best method for determining the similarity between
two strings, but is very expensive

We propose an in-memory processing algorithm GRIM-Filter for
accelerating read mapping, by reducing the number of required
alignments

We implement GRIM-Filter using in-memory processing within 3D-
stacked memory and show up to 3.7x speedup.
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GRIM-Filter in 3D-stacked DRAM

Bank Custom GRIM-Filter Logic

Systems @ ETH ziricn

Seed Location Filter Bitmask
Bank -4 .. DRAM Layers r

Row 1: AAAAA
Row 2: AAAAC
Row 3: AAAAG

)

Incr. PAccumulato

[Comparato

Bitvector for bin 2

Bitvector for bin O
Bitvector for bin 1

Bitvector for bin t—1
A
o
Per-Bin
Logic Module

Row N—1: TTTTT ' ~ —

e «== Row Data Register

Logic Layer

Figure 7: Left block: GRIM-Filter bitvector layout within a DRAM bank. Center block: 3D-
stacked DRAM with tightly integrated logic layer stacked underneath with TSVs for a high
intra-DRAM data transfer bandwidth. Right block: Custom GRIM-Filter logic placed in the

logic layer.

= The layout of bit vectors in a bank enables filtering many bins in parallel
= Customized logic for accumulation and comparison per genome segment
o Low area overhead, simple implementation
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GRIM-Filter Performance

Systems @ ETH ziricn

Time (x1000
seconds) Benchmarks and their Execution Times
70
e = 5 Errors
sk 4| FastHASH
o

Benchmarks

1.8x-3.7x performance benefit across real data sets
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GRIM-Filter False Positive Rate

Systems @ ETH ziricn

False Positive

Rate (%) Benchmarks and their False Positive Rates
45—
5 Errors
22.5} 1|3 FastHASH
B GRIM-Filter
0

ERR240728:00940726:-2294072T:40240727:2240728:22240728: 202407292 R240729%: 22240730 1 r 2407302

Benchmarks

5.6x-6.4x False Positive reduction across real data sets
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Conclusions

Systems @ ETH ziricn

= We propose an in memory filter algorithm to accelerate end-
to-end genome read mapping by reducing the number of
required alignments

= Compared to the previous best filter
o We observed 1.8x-3.7x speedup
o We observed 5.6x-6.4x fewer false positives

= GRIM-Filter is a universal filter that can be applied to any
genome read mapper
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PIM-Based DNA Sequence Analysis

= Jeremie Kim, Damla Senol, Hongyi Xin, Donghyuk Lee, Mohammed
Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"Genome Read In-Memory (GRIM) Filter: Fast Location Filtering
in DNA Read Mapping Using Emerging Memory Technologies"

Pacific Symposium on Biocomputing (PSB) Poster Session, Hawaii,
January 2017.

[Poster (pdf) (pptx)] [Abstract (pdf)]
= To Appear in APBC 2018 and BMC Genomics 2018.

GRIM-Filter: Fast Seed Location Filtering
in DNA Read Mapping

Using Processing-in-Memory Technologies

Jeremie S. Kim1®", Damla Senol Cali!, Hongyi Xin?, Donghyuk Lee?, Saugata Ghose!,
Mohammed Alser*, Hasan Hassan®, Oguz Ergin®, Can Alkan** and Onur Mutlu*®:!
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PIM-Enabled Instructions




PEI: PIM-Enabled Instructions (Ideas)

Goal: Develop mechanisms to get the most out of near-data
processing with minimal cost, minimal changes to the system, no
changes to the programming model

Key Idea 1: Expose each PIM operation as a cache-coherent,
virtually-addressed host processor instruction (called PEI) that
operates on only a single cache block

a

o 0O O O

e.g., _ pim_add(&w.next_rank, value) = pim.add r1, (r2)

No changes sequential execution/programming model

No changes to virtual memory

Minimal changes to cache coherence

No need for data mapping: Each PEI restricted to a single memory module

Key Idea 2: Dynamically decide where to execute a PEI (i.e., the
host processor or PIM accelerator) based on simple locality
characteristics and simple hardware predictors

a

Execute each operation at the location that provides the best performance
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Simple PIM Operations as ISA Extensions (I)

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {

w.next_rank += value;

Main Memory

64 bytes in
64 bytes out

Conventional Architecture
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Simple PIM Operations as ISA Extensions (II)

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {
__pim_add(&w.next_rank, value);

pim.add r1, (r2)

Main Memory

8 bytes in
0 bytes out

In-Memory Addition
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Always Executing in Memory? Not A Good Idea

60%
50%
(o)
40% Increased
30%  Memory Bandwidth
_%' 20% Consumption
O Caching very effective
g 10% /
(Vg
O% — (|
-10% | | \—l Reduced Memory Bandwidth
220% Consumption due to

2= o 2 cé) o In-Memory Computation

s = V9 2c =9 2 =7 T g L5 50
oN _,q_), Q 0o 4(3 £ N o O o o N
Q o 5 v  © n 2 =

More Vertices

—
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PEIL: PIM-Enabled Instructions: Examples

Table 1: Summary of Supported PIM Operations

Operation R W Input Output Applications

Obytes Obytes AT
8 bytes Obytes BES, SP, WCC
8 bytes Obytes PR
8 bytes 9bytes HJ
1 byte 16bytes HG, RP
64 bytes 4bytes SC
32bytes 8bytes SVM

8-byte integer increment
8-byte integer min
Floating-point add

Hash table probing
Histogram bin index
Euclidean distance

Dot product

OO O0OOO0OO0OO0
X XXX OOO

Executed either in memory or in the processor: dynamic decision
o Low-cost locality monitoring for a single instruction

Cache-coherent, virtually-addressed, single cache block only

Atomic between different PEIs

Not atomic with normal instructions (use pfence for ordering)
SAFARI 289



PIM-Enabled Instructions

Key to practicality: single-cache-block restriction
o Each PEI can access at most one last-level cache block
o Similar restrictions exist in atomic instructions

Benefits
o Localization: each PEI is bounded to one memory module

o Interoperability: easier support for cache coherence and
virtual memory

o Simplified locality monitoring: data locality of PEIs can be
identified simply by the cache control logic

SAFARI



Example PEI Microarchitecture

Host Processor

Out-Of-Order

() ) K]
Core S S o
© (4] — O
(@) @) 4+ (@O
— ~ n e
PCU (pel = - —
Computation Unit)
PMU (PEI—
Mgmt Umt) Directory
Locality
Monitor

HMC Controller

3D-stacked Memory

DRAM
PCU Controller

DRAM
PCU Controller

Network

DRAM
PCU Controller

Example PEI uArchitecture

SAFARI
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Evaluated Data-Intensive Applications

Ten emerging data-intensive workloads

o Large-scale graph processing

Average teenage follower, BFS, PageRank, single-source shortest
path, weakly connected components

o In-memory data analytics
Hash join, histogram, radix partitioning
o Machine learning and data mining
Streamcluster, SVM-RFE

Three input sets (small, medium, large) for each workload
to show the impact of data locality
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PEI Performance Delta: Large Data Sets

(Large Inputs, Baseline: Host-Only)
70%

60%

50%
40%
30%
20%
10% '
0%
WCC

SVM GM

B PIM-Only [ Locality-Aware
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PEI Energy Consumption

15 Host-Only
PIM-Only
Locality-Aware
1
0.5
0
Small Medium Large
B Cache B HMC Link E DRAM
[ Host-side PCU [JMemory-side PCU [IPMU
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More on PIM-Enabled Instructions

= Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,
"PIM-Enabled Instructions: A Low-Overhead,
Locality-Aware Processing-in-Memory Architecture"
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

PIM-Enabled Instructions: A Low-Overhead, Locality-Aware
Processing-in-Memory Architecture

Junwhan Ahn  Sungjoo Yoo Onur Mutlu’ Kiyoung Choi
junwhan@snu.ac.kr, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi @snu.ac.kr

Seoul National University *Carnegie Mellon University
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More on RowHammer and

Memory Rel




A Deeper Dive into
DRAM Reliability Issues




Root Causes of Disturbance Errors

e Cause 1: Electromagnetic coupling

— Toggling the wordline voltage briefly increases the
voltage of adjacent wordlines

— Slightly opens adjacent rows = Charge leakage
e Cause 2: Conductive bridges

* Cause 3: Hot-carrier injection

Confirmed by at least one manufacturer
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RowHammer Characterization Results

1. Most Modules Are at Risk
2. Errors vs. Vintage

3. Error = Charge Loss

4. Adjacency: Aggressor & Victim
5. Sensitivity Studies
6. Other Results in Paper

/. Solution Space

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM 299
Disturbance Errors, (Kim et al., ISCA 2014)




4. Adjacency: Aggressor & Victim

Bl Worst A Bl WorstB B WorstC

8% 10°

1 R R e AR R Rt Tt

00413 S SELEIALTEIETEISTSEIREI It ) it () et LR L L LR LTt

Count

D31 P o= e e e <L R S e e e

Non-Adjacent Non-Adjacent

Row-Address Difference (Victim — Aggressor)

Note: For three modules with the most errors (only first bank)

Most aggressors & victims are adjacent
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@ Access Interval (Aggressor)

o Worst A o Worst B ¢ Worst C

107 . .
109 .~ More Frequent <— Less Frequent
105 S,

4
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0
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0O 50 100 150 200 250 300 350 400 450 50
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® -
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<

Note: For three modules with the most errors (only first bank)

Less frequent accesses = Fewer errors
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@ Refresh Interval

o Worst A o Worst B o Worst C

Errors

‘ nt < Less Frequ/tent E

0@

0 16 32 48 64 80 9% 112 128
Refresh-Interval (ms)

Note: Using three modules with the most errors (only first bank)

More frequent refreshes = Fewer errors
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© Data Pattern

Solid

111111

111111
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Errors affected by data stored in other cells
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6. Other Results (in Paper)

e Victim Cells # Weak Cells (i.e., leaky cells)
— Almost no overlap between them

* Errors not strongly affected by temperature

— Default temperature: 50°C
— At 30°C and 70°C, number of errors changes <15%

e Errors are repeatable

— Across ten iterations of testing, >70% of victim cells
had errors in every iteration
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6. Other Results (in Paper) cont’d

* As many as 4 errors per cache-line
— Simple ECC (e.g., SECDED) cannot prevent all errors

 Number of cells & rows affected by aggressor
— Victims cells per aggressor: <110
— Victims rows per aggressor: <9

e Cells affected by two aggressors on either side

— Very small fraction of victim cells (<100) have an
error when either one of the aggressors is toggled
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Some Potential Solutions

Power, Performance

Cost, Power

Cost, Power, Complexity
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Naive Solutions

@ Throttle accesses to same row

— Limit access-interval: =500ns
— Limit number of accesses: <128K (=64ms/500ns)

@ Refresh more frequently

— Shorten refresh-interval by ~7x

Both naive solutions introduce significant
overhead in performance and power
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Apple’s Patch tor RowHammer

s https://support.apple.com/en-gh/HT204934

Available for: OS X Mountain Lion v10.8.5, OS X Mavericks v10.9.5
Impact: A malicious application may induce memory corruption to escalate privileges

Description: A disturbance error, also known as Rowhammer, exists with some DDR3 RAM that could
have led to memory corruption]This issue was mitigated by increasing memory refresh rates.

CVE-ID

CVE-2015-3693 : Mark Seaborn and Thomas Dullien of Google, working from original research by
Yoongu Kim et al (2014)

HP and Lenovo released similar patches




Our Solution to RowHammer

* PARA: Probabilistic Adjacent Row Activation

* Key Idea

— After closing a row, we activate (i.e., refresh) one of
its neighbors with a low probability: p = 0.005

* Reliability Guarantee
— When p=0.005, errors in one year: 9.4x1014

— By adjusting the value of p, we can vary the strength
of protection against errors
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Advantages of PARA

* PARA refreshes rows infrequently
— Low power
— Low performance-overhead
* Average slowdown: 0.20% (for 29 benchmarks)
* Maximum slowdown: 0.75%

e PARA is stateless
— Low cost
— Low complexity

* PARA is an effective and low-overhead solution
to prevent disturbance errors
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Requirements for PARA

e [f implemented in DRAM chip
— Enough slack in timing parameters
— Plenty of slack today:

Lee et al., “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common Case,” HPCA
2015.

e Changetal., “Understanding Latency Variation in Modern DRAM Chips,” SIGMETRICS 2016.
* Lee et al,, “Design-Induced Latency Variation in Modern DRAM Chips,” SIGMETRICS 2017.

* Changet al., “Understanding Reduced-Voltage Operation in Modern DRAM Devices,”
SIGMETRICS 2017.

e If implemented in memory controller

— Better coordination between memory controller and
DRAM

— Memory controller should know which rows are

physically adjacent .



More on RowHammer Analysis

= Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
"Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors”
Proceedings of the 41st International Symposium on Computer
Architecture (ISCA), Minneapolis, MN, June 2014.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code
and Data]

Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors

Yoongu Kim'! Ross Daly*  Jeremie Kim' Chris Fallin*  Ji Hye Lee!
Donghyuk Lee! Chris Wilkerson? Konrad Lai  Onur Mutlu!

!Carnegie Mellon University ~ “Intel Labs
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Retrospective on RowHammer & Future

=  Onur Mutluy,

"The RowHammer Problem and Other Issues We May Face as
Memory Becomes Denser"

Invited Paper in Proceedings of the Design, Automation, and Test in
Europe Conference (DATE), Lausanne, Switzerland, March 2017.
[Slides (pptx) (pdf)]

The RowHammer Problem
and Other Issues We May Face as Memory Becomes Denser

Onur Mutlu
ETH Ziirich
onur.mutlu @inf.ethz.ch
https://people.inf.ethz.ch/omutlu

SAFAR]| https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues datel7.pdf 313




Challenge and Opportunity for Future

Fundamentally
Secure, Reliable, Safe
Computing Architectures




Future of Main Memory

= DRAM is becoming less reliable > more vulnerable
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Large-Scale Failure Analysis of DRAM Chips

= Analysis and modeling of memory errors found in all of
Facebook's server fleet

= Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"Revisiting Memory Errors in Large-Scale Production Data
Centers: Analysis and Modeling of New Trends from the Field"
Proceedings of the 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June
2015.

[Slides (pptx) (pdf)] [DRAM Error Model]

Revisiting Memory Errors in Large-Scale Production Data Centers:
Analysis and Modeling of New Trends from the Field

Justin Meza Qiang Wu™* Sanjeev Kumar™ Onur Mutlu
Carnegie Mellon University * Facebook, Inc.
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DRAM Reliability Reducing
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Aside: SSD Error Analysis in the Field

= First large-scale field study of flash memory errors

= Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"A Large-Scale Study of Flash Memory Errors in the Field"
Proceedings of the ACM International Conference on
Measurement and Modeling of Computer Systems
(SIGMETRICS), Portland, OR, June 2015.
[Slides (pptx) (pdf)] [Coverage at ZDNet]

A Large-Scale Study of Flash Memory Failures in the Field

Justin Meza Qiang Wu Sanjeev Kumar Onur Mutlu
Carnegie Mellon University Facebook, Inc. Facebook, Inc. Carnegie Mellon University
meza@cmu.edu gqwu@fb.com skumar@fb.com onur@cmu.edu
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Future of Main Memory

DRAM is becoming less reliable - more vulnerable

Due to difficulties in DRAM scaling, other problems may
also appear (or they may be going unnoticed)

Some errors may already be slipping into the field
o Read disturb errors (Rowhammer)

Q | Retention errors |

o Read errors, write errors

a ...

These errors can also pose security vulnerabilities
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DRAM Data Retention Time Failures

Determining the data retention time of a cell/row is getting
more difficult

Retention failures may already be slipping into the field
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Analysis of Retention Fatlures [ISCA*13]

= Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu,
"An Experimental Study of Data Retention Behavior in Modern DRAM
Devices: Implications for Retention Time Profiling Mechanisms"
Proceedings of the 40th International Symposium on Computer Architecture
(ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt) Slides (pdf)

An Experimental Study of Data Retention Behavior in
Modern DRAM Devices:

Implications for Retention Time Profiling Mechanisms

* *

Jamie Liu Ben Jaiyen Yoongu Kim
Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University
5000 Forbes Ave. 5000 Forbes Ave. 5000 Forbes Ave.
Pittsburgh, PA 15213 Pittsburgh, PA 15213 Pittsburgh, PA 15213

jamiel@alumni.cmu.edu bjaiyen@alumni.cmu.edu yoonguk@ece.cmu.edu
Chris Wilkerson Onur Mutlu

Intel Corporation Carnegie Mellon University
2200 Mission College Blvd. 5000 Forbes Ave.
Santa Clara, CA 95054 Pittsburgh, PA 15213
chris.wilkerson@intel.com onur@cmu edt



Two Challenges to Retention Time Profiling

= Data Pattern Dependence (DPD) of retention time

= Variable Retention Time (VRT) phenomenon
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Two Challenges to Retention Time Profiling

= Challenge 1: Data Pattern Dependence (DPD)

o Retention time of a DRAM cell depends on its value and the
values of cells nearby it

o When a row is activated, all bitlines are perturbed simultaneously

Bitlines
—— ] oW
< Cell & : <
Word o . .........:.................... bl c cennnssnnnnssnnnnssananssnnns
\ N
i '_ﬁL i
— 1 S R el
< L L
Sense Sense Sense Row

amp amp amp buffer
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Data Pattern Dependence

= Electrical noise on the bitline affects reliable sensing of a DRAM cell
= The magnitude of this noise is affected by values of nearby cells via
o Bitline-bitline coupling - electrical coupling between adjacent bitlines

o Bitline-wordline coupling - electrical coupling between each bitline and
the activated wordline

/ | p— r—l_Lé..‘ l—l_l_ROW ;
| 2

Raln

Cell & :

Wordline;U w “ u :

\ * . .

. 1 i
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Sense Sense | Sense Row i
{ | amp amp amp buffer i
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Data Pattern Dependence

= Electrical noise on the bitline affects reliable sensing of a DRAM cell
= The magnitude of this noise is affected by values of nearby cells via
o Bitline-bitline coupling - electrical coupling between adjacent bitlines

o Bitline-wordline coupling - electrical coupling between each bitline and
the activated wordline

= Retention time of a cell depends on data patterns stored in
nearby cells

- need to find the worst data pattern to find worst-case retention time
-> this pattern is location dependent
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Two Challenges to Retention Time Profiling

Challenge 2: Variable Retention Time (VRT)

o Retention time of a DRAM cell changes randomly over time
a cell alternates between multiple retention time states

o Leakage current of a cell changes sporadically due to a charge
trap in the gate oxide of the DRAM cell access transistor

o When the trap becomes occupied, charge leaks more readily
from the transistor’s drain, leading to a short retention time
Called Trap-Assisted Gate-Induced Drain Leakage

o This process appears to be a random process [Kimﬂ—-*TEB’—l—x—]—

a Worst-case retention time depends on a random prpcgss
- need to find the worst case despite this 1

N
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Modern DRAM Retention Time Distribution
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Newer device families have more weak cells than older ones
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An Example VRT Cell
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Variable Retention Time
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More on DRAM Retention Analysts

= Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu,
"An Experimental Study of Data Retention Behavior in Modern DRAM
Devices: Implications for Retention Time Profiling Mechanisms"
Proceedings of the 40th International Symposium on Computer Architecture
(ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt) Slides (pdf)

An Experimental Study of Data Retention Behavior in
Modern DRAM Devices:

Implications for Retention Time Profiling Mechanisms

* *

Jamie Liu Ben Jaiyen Yoongu Kim
Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University
5000 Forbes Ave. 5000 Forbes Ave. 5000 Forbes Ave.
Pittsburgh, PA 15213 Pittsburgh, PA 15213 Pittsburgh, PA 15213

jamiel@alumni.cmu.edu bjaiyen@alumni.cmu.edu yoonguk@ece.cmu.edu
Chris Wilkerson Onur Mutlu

Intel Corporation Carnegie Mellon University
2200 Mission College Blvd. 5000 Forbes Ave.
Santa Clara, CA 95054 Pittsburgh, PA 15213
chris.wilkerson@intel.com onur@cmu edt



Industry Is Writing Papers About It, Too

DRAM Process Scaling Challenges

% Refresh
» Difficult to build high-aspect ratio cell capacitors decreasing cell capacitance

» Leakage current of cell access transistors increasing

+ tWR
» Contact resistance between the cell capacitor and access transistor increasing
» On-current of the cell access transistor decreasing

+ Bit-line resistance increasing

+ VRT
* Occurring more frequently with cell capacitance decreasing
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Industry Is Writing Papers About It, Too

DRAM Process Scaling Challenges

+* Refresh

o Niffictilt ta huild hiadh-asneect ratio cell canacitare decreasina cell canacitance

THE MEMORY FORUM 2014

Co-Architecting Controllers and DRAM
to Enhance DRAM Process Scaling

Uksong Kang, Hak-soo Yu, Churoo Park, *Hongzhong Zheng,
**John Halbert, **Kuljit Bains, SeongJin Jang, and Joo Sun Choi

Samsung Electronics, Hwasung, Korea / *Samsung Electronics, San Jose / **Intel
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Mitigation of Retention Issues [SIGMETRICS’14]

= Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa Alameldeen, Chris Wilkerson,
and Onur Mutlu,
"The Efficacy of Error Mitigation Techniques for DRAM Retention
Failures: A Comparative Experimental Study"”
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Austin, TX, June 2014. [Slides
(pptx) (pdf)] [Poster (pptx) (pdf)] [Full data sets]

The Efficacy of Error Mitigation Techniques for DRAM
Retention Failures: A Comparative Experimental Study

Samira Khant+ Donghyuk Leet Yoongu Kimt
samirakhan@cmu.edu donghyuki@cmu.edu  yoongukim@cmu.edu
Alaa R. Alameldeen* Chris Wilkerson* Onur Mutlut
alaa.r.alameldeen@intel.com chris.wilkerson@intel.com onur@cmu.edu
fCarnegie Mellon University *Intel Labs
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Handling Data-Dependent Failures [psnie)

= Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa Alameldeen, Chris Wilkerson,
and Onur Mutlu,
"The Efficacy of Error Mitigation Techniques for DRAM Retention
Failures: A Comparative Experimental Study"”
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Austin, TX, June 2014. [Slides
(pptx) (pdf)] [Poster (pptx) (pdf)] [Full data sets]

PARBOR: An Efficient System-Level Technique
to Detect Data-Dependent Failures in DRAM

Samira Khan*  Donghyuk Lee'™*  Onur Mutlu*"
*University of Virginia TCarnegie Mellon University *Nvidia *ETH Ziirich
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Handling Data-Dependent Failures [car16]

= Samira Khan, Chris Wilkerson, Donghyuk Lee, Alaa R. Alameldeen, and Onur
Mutlu,

"A Case for Memory Content-Based Detection and Mitigation of Data-
Dependent Failures in DRAM"
IEEE Computer Architecture Letters (CAL), November 2016.

A Case for Memory Content-Based Detection and Mitigation
of Data-Dependent Failures in DRAM

Samira Khan*, Chris Wilkersonf, Donghyuk Lee?, Alaa R. Alameldeent, Onur Mutlu**
*University of Virginia fIntel Labs tCarnegie Mellon University *ETH Zurich
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Handling Variable Retention Time [psNe15]

= Moinuddin Qureshi, Dae Hyun Kim, Samira Khan, Prashant Nair, and
Onur Mutlu,
"AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for
DRAM Systems"
Proceedings of the 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June
2015.
[Slides (pptx) (pdf)]

AVATAR: A Varniable-Retention-Time (VRT) Aware
Refresh for DRAM Systems

Moinuddin K. Qureshi’ Dae-Hyun Kim' Samira Khan* Prashant J. Nair' Onur Mutlu*
"Georgia Institute of Technology *Carnegie Mellon University
{moin, dhkim, pnair6}@ece.gatech.edu {samirakhan, onur}@cmu.edu

SAFARI 336



Handling Both DPD and VRT [sca17]

= Minesh Patel, Jeremie S. Kim, and Onur Mutlu,
"The Reach Profiler (REAPER): Enabling the Mitigation of DRAM
Retention Failures via Profiling at Aggressive Conditions"
Proceedings of the 44th International Symposium on Computer Architecture
(ISCA), Toronto, Canada, June 2017.

= First experimental analysis of (mobile) LPDDR4 chips
= Analyzes the complex tradeoff space of retention time profiling
= Key idea: enable fast and robust profiling at higher refresh intervals & temp.

The Reach Profiler (REAPER):
Enabling the Mitigation of DRAM Retention Failures
via Profiling at Aggressive Conditions

Minesh Patel’*  Jeremie S. Kim*®  Onur Mutlu®*
SETH Ziirich  *Carnegie Mellon University
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If Time Permits;: NAND Flash Vulnerabilities

Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu,

"Error Characterization, Mitigation, and Recovery in Flash Memory Based
Solid State Drives”

to appear in Proceedings of the IEEE, 2017.

Cai+, “Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis,” DATE 2012.

Cai+, “Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory Lifetime,” ICCD
2012.

Cai+, "Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization, Analysis and Modeling,” DATE
2013.

Cai+, “Error Analysis and Retention-Aware Error Management for NAND Flash Memory,” Intel Technology Journal 2013.
Cai+, ['Program Interferencelin MLC NAND Flash Memory: Characterization, Modeling, and Mitigation,” ICCD 2013.
Cai+, "Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories,” SIGMETRICS 2014,

Cai+,"Data Retention in MLC NAND Flash Memory: Characterization, Optimization and Recovery,” HPCA 2015.
Cai+,|“Read Disturb Errors!n MLC NAND Flash Memory: Characterization and Mitigation,” DSN 2015.

Luo+, : Improving NAND Flash Memory Lifetime with Write-hotness Aware Retention Management,” MSST
2015.

Meza+, “A Large-Scale Study of Flash Memory Errors in the Field,” SIGMETRICS 2015.

Luo+, “Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory,” IEEE
JSAC 2016.

Cai+,l‘VuInerabiIities in MLC NAND Flash Memory Programming: IExperimentaI Analysis, Exploits, and Mitigation

Techniques,
Fukami+, “Improving the Reliability of Chip-Off Forensic Analysis of NAND Flash Memory Devices,” DFRWS EU 2017.

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.



Overview Paper on Flash Reliability

Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and
Onur Mutlu,

"Error Characterization, Mitigation, and Recovery in
Flash Memory Based Solid State Drives"

to appear in Proceedings of the IEEE, 2017.

Error Characterization, Mitigation, and Recovery
in Flash Memory Based Solid State Drives

Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu
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NAND Flash Memory
Reliability and Security




Overview Papet

§HH+ Proceedings of the IEEE, Sept. 2017

Error Characterization,
Mitigation, and Recovery
in Flash-Memory-Based
Solid-State Drives

This paper reviews the most recent advances in solid-state drive (SSD) error

characterization, mitigation, and data recovery techniques to improve both SSD’s

reliability and lifetime.

By Yu Car, SaucaTta GHOSE, EricH F. HARATSCH, YiXIN Luo, AND ONUR MUTLU

https://arxiv.org/pdf/1706.08642
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Evolution of NAND Flash Memory Flaél;zl\:/lggory

=~ 1,000,000
E QO 64 » 0.7um — 2Xnm (Cell size : ~1/2000)
= 256M » 1.5year/gen. (18 years / 12 gen.)
v 100,000 e caom SLC
&
3 10,000
¢ CMOS scaling
B More bits per Cell
v 1,000
t .
- ", ,.. 9
100 - e
10 |\ 250\ 160 \ 130\ 90\ 70 \ 5x \ax \3x\ 2x\ 2v \1x \1v \1znm...... 22
‘98 ‘02 ‘06 ‘10 ‘14 ‘18

Seaung Suk Lee, “Emerging Challenges in NAND Flash Technology”, Flash Summit 2011 (Hynix)

= Flash memory is widening its range of applications
o Portable consumer devices, laptop PCs and enterprise servers
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Flash Challenges: Reliability and Endurance

NAND Flash Memory Endurance Properties
= PJ/E cycles

100000 ; \ (provided)

1000 ¢ the full capacity

e~ of the drive
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£ [ [T Writing
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E. Grochowski et al., “Future technology challenges for NAND flash and HDD products”, - b=
Flash Memory Summit2012 Tt mmmmmmm==——"
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NAND Flash Memory is Increasingly Noisy

SAFARI 44




Future NAND Flash-based Storage Architecture

Memory
Signal
Processing

Our Goals:

Build reliable error models for NAND flash memory

Raw Bit
Error Rate
ﬁ

Lidigar

Error
Correction

Better

Uncorrectable
BER < 1015
—

Design efficient reliability mechanisms based on the model

SAFARI
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NAND Flash Error Model

Write =—> Noisﬂ\lAND

Read

Experimentally characterize and model dominant errors

Cai et al., “Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis””, DATE 2012
Luo et al., “Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory”, JSAC 2016

Write_ | = Erase block

= Program page

Cai et al., “Threshold voltage
distribution in MLC NAND Flash
Memory: Characterization, Analysis,
and Modeling”, DATE 2013

Cai et al., “Vulnerabilities in MLC

NAND Flash Memory Programming:
Experimental Analysis, Exploits, and
Mitigation Techniques”, HPCA 2017

= Neighbor page
prog/read (c-to-c
interference)

Cai et al., “Program Interference in MLC
NAND Flash Memory: Characterization,
Modeling, and Mitigation”, ICCD 2013

Cai et al., “Neighbor-Cell Assisted Error
Correction in MLC NAND Flash
Memories”, SIGMETRICS 2014

Cai et al., “Read Disturb Errors in MLC
NAND Flash Memory: Characterization
and Mitigation”, DSN 2015

] Read
= Retention

Cai et al., “Flash Correct-and-Refresh:
Retention-aware error management for
increased flash memory lifetime”, ICCD 2012

Cai et al., “Error Analysis and Retention-
Aware Error Management for NAND Flash
Memory, ITJ 2013

Cai et al., "Data Retention in MLC NAND
Flash Memory: Characterization,
Optimization and Recovery" , HPCA 2015

SAFARI
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Our Goals and Approach

Goals:

o Understand error mechanisms and develop reliable predictive
models for MLC NAND flash memory errors

o Develop efficient error management techniques to mitigate
errors and improve flash reliability and endurance

Approach:

o Solid experimental analyses of errors in real MLC NAND flash
memory - drive the understanding and models

o Understanding, models, and creativity - drive the new
techniques
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Experimental Testing Platform

~ virtex:|l Pro
»7(JSB cotroller)
=50 T o
:'-NANP Flash

= \Videx-VEFPGA
(NAND -Cantroller). -« - ¥

[DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014,  NAND Daughter Board
HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017]

SAFARI Caiet al., FPGA-based Solid-State Drive prototyping platform, FCCM 2011. 348




NAND Flash Error Types
Four types of errors [Cai+, DATE 2012]

Caused by common flash operations
o Read errors

o Erase errors

o Program (interference) errors

Caused by flash cell losing charge over time

o Retention errors
Whether an error happens depends on required retention time

Especially problematic in MLC flash because threshold voltage
window to determine stored value is smaller
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0

Observations: Flash Error Analysis

- | == 3-year Retention Errors retention errors
10" _ =3¢ 1-year Retention Errors 7\
| == 3-month Retention Errors

_22 3-week Retention Errors I

10 3-day Retention Errors

: Program Interference Errors
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-e- Erase Errors N/

)
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I
-
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Raw Bit Error Rate
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10° | T 11111(133 P/ECycIes 11184 | | ll 111105
= Raw bit error rate increases exponentially with P/E cycles

= Retention errors are dominant (>99% for 1-year ret. time)
= Retention errors increase with retention time requirement

SAFARI cCaijet al., Error Patterns in MLC NAND Flash Memory, DATE 2012. >



More on Flash Error Analysis

= Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai,
"Error Patterns in MLC NAND Flash Memory:
Measurement, Characterization, and Analysis"
Proceedings of the Design, Automation, and Test in Europe

Conference (DATE), Dresden, Germany, March 2012. Slides
(ppt)

Error Patterns in MLC NAND Flash Memory:

Measurement, Characterization, and Analysis

Yu Cai'. Erich F. Haratsch?, Onur Mutlu' and Ken Mai'
'Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA
*LSI Corporation, 1110 American Parkway NE. Allentown, PA
!{yucai, onur, kenmai}@andrew.cmu.edu, “erich.haratsch@Isi.com
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Solution to Retention Errors

Refresh periodically

Change the period based on P/E cycle wearout
o Refresh more often at higher P/E cycles

Use a combination of in-place and remapping-based refresh

Flash Correct-and-Refresh: Retention-Aware Error
Management for Increased Flash Memory Lifetime

Yu Cai, Gulay Yalcin?, Onur Mutlu!, Erich F. Haratsch®, Adrian Cristal?, Osman S. Unsal® and Ken Mai'
'DSSC, Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA

*Barcelona Supercomputing Center, C/Jordi Girona 29, Barcelona, Spain
SLSI Corporation, 1110 American Parkway NE, Allentown, PA
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One Issue: Read Disturb in Flash Memory

= All scaled memories are prone to read disturb errors
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NAND Flash Memory Background
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Flash Read
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Flash Pass-Through
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Read from Flash Cell Array

=5.0

pass Pass (5V) Page 1
. y v |

read = Read (2.5V) Page 2
S I

pass Pass (5V) Page 3
S I N

pass Pass (5V) Page 4

Correct values 0
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Pass (5V)

Pass (5V)

Read (2.5V)

Pass (5V)

SAFARI Repeatedly read page 3 (or any page other than page 2)

Read Disturb Problem: “Weak Programming” Effect

Page 1

Page 2

Page 3

Page 4
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Read Disturb Problem: “Weak Programming” Effect

V...=50V

v Page 1
Vi.y=25V

read Page 2
V...=50V

" Page 3
V...=50V

pass

-
I ?.SV : : : Page 4

Incorrect values

from page 2: L_0O 0 0
saFARy High pass-through voltage induces“weak-programming” effects




Executive Summary FlashMemory
 SUMMIT |
* Read disturb errors limit flash memory lifetime today
— Apply a high pass-through voltage (V) to multiple pages on a read

— Repeated application of V., can alter stored values in unread pages

* We characterize read disturb on real NAND flash chips
— Slightly lowering V. greatly reduces read disturb errors
— Some flash cells are more prone to read disturb

* Technique 1: Mitigate read disturb errors online

— V,,4ss TUning dynamically finds and applies a lowered V ,, per block

— Flash memory lifetime improves by 21%

* Technique 2: Recover after failure to prevent data loss

— Read Disturb Oriented Error Recovery (RDR) selectively corrects
cells more susceptible to read disturb errors

— Reduces raw bit error rate (RBER) by up to 36%
SAFARI 362



More on Flash Read Disturb Errors

= Yu Cai, Yixin Luo, Saugata Ghose, Erich F. Haratsch, Ken Mai,
and Onur Mutluy,

"Read Disturb Errors in MLC NAND Flash Memory:
Characterization and Mitigation”
Proceedings of the 45th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN), Rio de
Janeiro, Brazil, June 2015.

Read Disturb Errors in MLC NAND Flash Memory:
Characterization, Mitigation, and Recovery

Yu Cai, Yixin Luo, Saugata Ghose, Erich F. Haratsch*, Ken Mai, Onur Mutlu
Carnegie Mellon University, *Seagate Technology
yucaicai@gmail.com, {yixinluo, ghose, kenmai, onur}@cmu. edu
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Large-Scale Flash SSD Error Analysis

= First large-scale field study of flash memory errors

= Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"A Large-Scale Study of Flash Memory Errors in the Field"
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Portland, OR, June
2015.

Slides (pptx) (pdf)] [Coverage at ZDNet] [Coverage on The Register]

Coverage on TechSpot] [Coverage on The Tech Report]

A Large-Scale Study of Flash Memory Failures in the Field

Justin Meza Qiang Wu Sanjeev Kumar Onur Mutlu
Carnegie Mellon University Facebook, Inc. Facebook, Inc. Carnegie Mellon University
meza@cmu.edu qwu@fb.com skumar@fb.com onur@cmu.edu
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Another Time: NAND Flash Vulnerabilities

= Onur Mutly,
"Error Analysis and Management for MLC NAND Flash Memory"
Technical talk at Flash Memory Summit 2014 (FMS), Santa Clara, CA, August
2014. Slides (ppt) (pdf)

Cai+, “Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis,” DATE 2012.

Cai+, “Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory Lifetime,” ICCD
2012.

Cai+, “Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization, Analysis and Modeling,” DATE
2013.

Cai+, “Error Analysis and Retention-Aware Error Management for NAND Flash Memory,” Intel Technology Journal 2013.
Cai+, I‘Program Interferencelin MLC NAND Flash Memory: Characterization, Modeling, and Mitigation,” ICCD 2013.
Cai+, "Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories,” SIGMETRICS 2014.

Cai+,"Data Retention in MLC NAND Flash Memory: Characterization, Optimization and Recovery,” HPCA 2015.

Cai+,|“Read Disturb ErrorsIn MLC NAND Flash Memory: Characterization and Mitigation,” DSN 2015.

Luo+, "WARM: Improving NAND Flash Memory Lifetime with Write-hotness Aware Retention Management,” MSST
2015.

Meza+, “A Large-Scale Study of Flash Memory Errors in the Field,” SIGMETRICS 2015.

Luo+, “Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory,” IEEE
JSAC .

Cai+, ['Vulnerabilities in MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and Mitigation
Techniques,” HPCA 2017.

Fukami+, “Improving the Reliability of Chip-Off Forensic Analysis of NAND Flash Memory Devices,” DFRWS EU 2017.
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Flash Memory Programming Vulnerabilities

= Yu Cai, Saugata Ghose, Yixin Luo, Ken Mai, Onur Mutlu, and Erich F.
Haratsch,
"Vulnerabilities in MLC NAND Flash Memory Programming:
Experimental Analysis, Exploits, and Mitigation Techniques"
Proceedings of the 23rd International Symposium on High-Performance
Computer Architecture (HPCA) Industrial Session, Austin, TX, USA,
February 2017.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]

Vulnerabilities in MLC NAND Flash Memory Programming;:
Experimental Analysis, Exploits, and Mitigation Techniques

Yu Cail Saugata Ghose! Yixin LuotT Ken Mail Onur Mutlu$T Erich F. Haratsch?
TCarnegie Mellon University iSeagate Technology SETH Ziirich
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Other Works on Flash Memory




NAND Flash Error Model

Write =—> Noisﬂ\lAND

Read

Experimentally characterize and model dominant errors

Cai et al., “Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis””, DATE 2012
Luo et al., “Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory”, JSAC 2016

Write_ | = Erase block

= Program page

Cai et al., “Threshold voltage
distribution in MLC NAND Flash
Memory: Characterization, Analysis,
and Modeling”, DATE 2013

Cai et al., “Vulnerabilities in MLC

NAND Flash Memory Programming:
Experimental Analysis, Exploits, and
Mitigation Techniques”, HPCA 2017

= Neighbor page
prog/read (c-to-c
interference)

Cai et al., “Program Interference in MLC
NAND Flash Memory: Characterization,
Modeling, and Mitigation”, ICCD 2013

Cai et al., “Neighbor-Cell Assisted Error
Correction in MLC NAND Flash
Memories”, SIGMETRICS 2014

Cai et al., “Read Disturb Errors in MLC
NAND Flash Memory: Characterization
and Mitigation”, DSN 2015

] Read
= Retention

Cai et al., “Flash Correct-and-Refresh:
Retention-aware error management for
increased flash memory lifetime”, ICCD 2012

Cai et al., “Error Analysis and Retention-
Aware Error Management for NAND Flash
Memory, ITJ 2013

Cai et al., "Data Retention in MLC NAND
Flash Memory: Characterization,
Optimization and Recovery" , HPCA 2015
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Threshold Voltage Distribution

= Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai,
"Threshold Voltage Distribution in MLC NAND Flash
Memory: Characterization, Analysis and Modeling"
Proceedings of the Design, Automation, and Test in Europe

Conference (DATE), Grenoble, France, March 2013. Slides
(ppt)

Threshold Voltage Distribution in MLC NAND Flash Memory:
Characterization, Analysis, and Modeling

Yu Cai', Erich F. Haratsch®, Onur Mutlu' and Ken Mai'
'DSSC. Department of Electncal and Computer Engmeenng Carnegie Mellon University, Pittsburgh, PA
*LSI Corporation, 1110 American Palkway NE, Allentown, PA
{yucai, onur, kenmai} @andrew.cmu.edu, “erich.haratsch@]Isi.com
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Program Interference and Vref Prediction

= Yu Cai, Onur Mutlu, Erich F. Haratsch, and Ken Mai,
"Program Interference in MLC NAND Flash Memory:
Characterization, Modeling, and Mitigation”
Proceedings of the 31st IEEE International Conference on
Computer Design (ICCD), Asheville, NC, October 2013.
Slides (pptx) (pdf) Lightning Session Slides (pdf)

Program Interference in MLC NAND Flash Memory:
Characterization, Modeling, and Mitigation

Yu Cai', Onur Mutlu’, Erich F. Haratsch® and Ken Mai'
1. Data Storage Systems Center, Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA
2. LSI Corporation, San Jose, CA
yucaicai@gmail.com, {omutlu, kenmai}@andrew.cmu.edu
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Neighbor-Assisted Error Correction

= Yu Cai, Gulay Yalcin, Onur Mutlu, Eric Haratsch, Osman Unsal,
Adrian Cristal, and Ken Mai,

"Neighbor-Cell Assisted Error Correction for MLC NAND
Flash Memories"

Proceedings of the ACM International Conference on
Measurement and Modeling of Computer Systems
(SIGMETRICS), Austin, TX, June 2014. Slides (ppt) (pdf)

Neighbor-Cell Assisted Error Correction
for MLC NAND Flash Memories

Yu Cai', Gulay Yalcin®, Onur Mutlu’, Erich F. Haratsch?,
Osman Unsal®, Adrian Cristal®?, and Ken Mai’

'Electrical and Computer Engineering Department, Carnegie Mellon University
Barcelona Supercomputing Center, Spain 1A — CSIC — Spain National Research Council ~ “LSI Corporation
yucaicai @gmail.com, {omutlu, kenmai}@ece.cmu.edu, {gulay.yalcin, adrian.cristal, osman.unsal}@bsc.es
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Data Retention

= Yu Cai, Yixin Luo, Erich F. Haratsch, Ken Mai, and Onur Mutlu,
"Data Retention in MLC NAND Flash Memory: Characterization,
Optimization and Recovery"
Proceedings of the 21st International Symposium on High-Performance
Computer Architecture (HPCA), Bay Area, CA, February 2015.
[Slides (pptx) (pdf)]

Data Retention in MLC NAND Flash Memory:
Characterization, Optimization, and Recovery

Yu Cai, Yixin Luo, Erich F. Haratsch®, Ken Mai, Onur Mutlu
Carnegie Mellon University, "LSI Corporation
yucaicai@gmail.com, yixinluo@cs.cmu.edu, erich.haratsch@]lsi.com, {kenmai, omutlu} @ece.cmu.edu
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SSD Error Analysis in the Field

= First large-scale field study of flash memory errors

= Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"A Large-Scale Study of Flash Memory Errors in the Field"
Proceedings of the ACM International Conference on
Measurement and Modeling of Computer Systems
(SIGMETRICS), Portland, OR, June 2015.
[Slides (pptx) (pdf)] [Coverage at ZDNet] [Coverage on The
Register] [Coverage on TechSpot] [Coverage on The Tech

Report]

A Large-Scale Study of Flash Memory Failures in the Field

Justin Meza Qiang Wu Sanjeev Kumar Onur Mutlu
Carnegie Mellon University Facebook, Inc. Facebook, Inc. Carnegie Mellon University
meza@cmu.edu gqwu@fb.com skumar@fb.com onur@cmu.edu
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Flash Memory Programming Vulnerabilities

= Yu Cai, Saugata Ghose, Yixin Luo, Ken Mai, Onur Mutlu, and Erich F.
Haratsch,
"Vulnerabilities in MLC NAND Flash Memory Programming:
Experimental Analysis, Exploits, and Mitigation Techniques"
Proceedings of the 23rd International Symposium on High-Performance
Computer Architecture (HPCA) Industrial Session, Austin, TX, USA,
February 2017.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]

Vulnerabilities in MLC NAND Flash Memory Programming;:
Experimental Analysis, Exploits, and Mitigation Techniques

Yu Cail Saugata Ghose! Yixin LuotT Ken Mail Onur Mutlu$T Erich F. Haratsch?
TCarnegie Mellon University iSeagate Technology SETH Ziirich

SAFARI 374



Accurate and Online Channel Modeling

= Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu,

"Enabling Accurate and Practical Online Flash Channel Modeling
for Modern MLC NAND Flash Memory"

to appear in IEEE Journal on Selected Areas in Communications (JSAC),
2016.

Enabling Accurate and Practical
Online Flash Channel Modeling
for Modern MLC NAND Flash Memory

Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, Onur Mutlu
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More on DRAM Refresh




Tackling Retresh: Solutions

= | Parallelize refreshes with accesses [Chang+ HPCA'14]

= Eliminate unnecessary refreshes [Liu+ ISCA’12]
o Exploit device characteristics
o Exploit data and application characteristics

= Reduce refresh rate and detect+correct errors that occur
[Khan+ SIGMETRICS'14]

= Understand retention time behavior in DRAM [Liu+ ISCA'13]
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Summary: Refresh-Access Parallelization

DRAM refresh interferes with memory accesses
— Degrades system performance and energy efficiency

— Becomes exacerbated as DRAM density increases

* Goal: Serve memory accesses in parallel with refreshes to
reduce refresh interference on demand requests
 QOur mechanisms:

— 1. Enable more parallelization between refreshes and accesses across
different banks with new per-bank refresh scheduling algorithms

— 2. Enable serving accesses concurrently with refreshes in the same bank
by exploiting parallelism across DRAM subarrays
* Improve system performance and energy efficiency for a wide
variety of different workloads and DRAM densities
— 20.2% and 9.0% for 8-core systems using 32Gb DRAM at low cost

— Very close to the ideal scheme without refreshes

378
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Refresh Penalty




Existing Refresh Modes

Per-bank refresh allows accesses to other

banks while a bank is refreshing



Shortcomings of Per-Bank Refresh

* Problem 1: Refreshes to different banks are scheduled
in a strict round-robin order

— The static ordering is hardwired into DRAM chips

— Refreshes busy banks with many queued requests when
other banks are idle

 Key idea: Schedule per-bank refreshes to idle banks
opportunistically in a dynamic order

381



Our First Approach: DARP

* Dynamic Access-Refresh Parallelization (DARP)

— An improved scheduling policy for per-bank refreshes
— Exploits refresh scheduling flexibility in DDR DRAM

e Component 1: Out-of-order per-bank refresh

— Avoids poor static scheduling decisions

— Dynamically issues per-bank refreshes to idle banks

e Component 2: Write-Refresh Parallelization

— Avoids refresh interference on latency-critical reads

— Parallelizes refreshes with a batch of writes
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Shortcomings of Per-Bank Refresh

 Problem 2: Banks that are being refreshed cannot
concurrently serve memory requests

Delayed by refresh

\

Per-Bank Refresh RD

Time
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Shortcomings of Per-Bank Refresh

* Problem 2: Refreshing banks cannot concurrently serve
memory requests

e Key idea: Exploit subarrays within a bank to parallelize
refreshes and accesses across subarrays

—— Tﬁ“e
] | | Time @
| |
| l
| |
Parallelize

Subarray 1
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Methodology

Simulator configurations

DDR3 Rank

W
Q
S
“ee »
N

Memory
Controller

8-core
processor

Memory
Controller

L1S: 32KB
L2 S: 512KB/core

100 workloads: SPEC CPU2006, STREAM, TPC-C/H, random access

* System performance metric: Weighted speedup
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Comparison Points

* All-bank refresh [DDR3, LPDDRS3, ...]

* Per-bank refresh [LPDDR3]

e Elastic refresh [Stuecheli et al., MICRO ‘10]:

— Postpones refreshes by a time delay based on the predicted
rank idle time to avoid interference on memory requests

— Proposed to schedule all-bank refreshes without exploiting
per-bank refreshes

— Cannot parallelize refreshes and accesses within a rank

* Ideal (no refresh)
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System Performance

All-Bank
[ Per-Bank
M Elastic

= DARP

W SARP

E DSARP
O Ideal

\®) Mm N «=H O

SA:mmS_omwv
dnpaads paiysiam

32Gb

16Gb
DRAM Chip Density

2. Consistent system performance improvement across

8Gb

DRAM densities (within 0.9%, 1.2%, and 3.8% of ideal)
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Energy Efficiency

45

w W b
o U1 O

Energy per Access (nJ)
=R NN
o U1 O U1 O »n

8Gb

1 All-Bank

Per-Bank

777777777777777 M Elastic
,,,,,,,,,, ~ E DARP
ffffffffff -~ HESARP
""""""""" @ DSARP
O Ideal

16Gb 32Gb
DRAM Chip Density

Consistent reduction on energy consumption
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More Information on Refresh-Access Parallelization

= Kevin Chang, Donghyuk Lee, Zeshan Chishti, Alaa Alameldeen, Chris
Wilkerson, Yoongu Kim, and Onur Mutlu,
"Improving DRAM Performance by Parallelizing Refreshes with
Accesses"”
Proceedings of the 20th International Symposium on High-Performance
Computer Architecture (HPCA), Orlando, FL, February 2014.

[Summary] [Slides (pptx) (pdf)]

Reducing Performance Impact of DRAM Refresh
by Parallelizing Refreshes with Accesses

Kevin Kai-Wei Chang Donghyuk Lee Zeshan Chishtif
Alaa R. Alameldeenf Chris Wilkerson Yoongu Kim Onur Mutlu

Carnegie Mellon University {Intel Labs
SAFARI 589




Tackling Retresh: Solutions

= Parallelize refreshes with accesses [Chang+ HPCA’14]
=| Eliminate unnecessary refreshes [Liu+ ISCA’12]

o Exploit device characteristics

o Exploit data and application characteristics

= Reduce refresh rate and detect+correct errors that occur
[Khan+ SIGMETRICS'14]

= Understand retention time behavior in DRAM [Liu+ ISCA'13]
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Most Refreshes Are Unnecessary

= Retention Time Profile of DRAM looks like this:

04-128ms

128-250ms
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RAIDR: Eliminating Unnecessary Retreshes
64-128ms

128-2560ms

Can reduce refreshes by ~75%
- reduces energy consumption and improves performance

SAFARI Luet al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 392




RAIDR: Baseline Design

Refresh control is in DRAM in today’s auto-refresh systems

RAIDR can be implemented in either the controller or DRAM




RAIDR in Memory Controller: Option 1

Overhead of RAIDR in DRAM controller:
1.25 KB Bloom Filters, 3 counters, additional commands

issued for per-row refresh (all accounted for in evaluations)




RAIDR in DRAM Chip: Option 2

Overhead of RAIDR in DRAM chip:
Per-chip overhead: 20B Bloom Filters, 1 counter (4 Gbit chip)

Total overhead: 1.25KB Bloom Filters, 64 counters (32 GB DRAM)




RAIDR: Results and Takeaways

System: 32GB DRAM, 8-core; SPEC, TPC-C, TPC-H workloads

RAIDR hardware cost: 1.25 kB (2 Bloom filters)
Refresh reduction: 74.6%

Dynamic DRAM energy reduction: 16%

Idle DRAM power reduction: 20%

Performance improvement: 9%

Benefits increase as DRAM scales in density

160 o 8

6
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Device capacity
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DRAM Device Capacity Scaling: Performance

o0

Bl Auto
[ RAIDR

Weighted speedup
— D W A N

O%4Gb 8Gb 16Gb 32Gb 64 Gb
Device capacity

RAIDR performance benefits increase with DRAM chip capacity

SAFARI Luet al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 397



DRAM Device Capacity Scaling: Energy

160
E
=120}

S0%
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T RAIDR

[E—
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Energy per acces
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-
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Device capacity

RAIDR energy benefits increase with DRAM chip capacity
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RAIDR: Eliminating Unnecessary Refreshes

= Observation: Most DRAM rows can be refreshgd much less often

—

without losing data [kim+, EDL'09][Liu+ ISCA'13] £

o 107
= Key idea: Refresh rows containing weak cellsz v |

= 107

more frequently, other rows less frequently 2=

-

E10°1
1. Profiling: Profile retention time of all rows ERe

2
6

. IOSQ

m

10°8

10*Q

1000 cells @ 256 ms p

-------------------- . """""““103-;

~30cells @ 128ms ~ | 1073

10's

______ C HEfo_@_y‘_‘!_m_S________L_______J________________10(’%3

T ' 0
107! 100 2

Refresh interval (s)

2. Binning: Store rows into bins by retention time in memory controller
Efficient storage with Bloom Filters (only 1.25KB for 32GB memory)
3. Refreshing: Memory controller refreshes rows in different bins at

different rates 160
~ 140

= Results: 8-core, 32GB, SPEC, TPC-C, TPC-H %120

C

[S—
)
S

o 74.6% refresh reduction @ 1.25KB storage g ”

a ~16%/20% DRAM dynamic/idle power reduction % "

o ~9% performance improvement ?g” 40

o Benefits increase with DRAM capacity B 28
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Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.



More on RAIDR

= Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu,
"RAIDR: Retention-Aware Intelligent DRAM Refresh”
Proceedings of the 39th International Symposium on

Computer Architecture (ISCA), Portland, OR, June 2012.
Slides (pdf)

RAIDR: Retention-Aware Intelligent DRAM Refresh

Jamie Liu  Ben Jaiyen Richard Veras Onur Mutlu
Carnegie Mellon University
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Tackling Retresh: Solutions

= Parallelize refreshes with accesses [Chang+ HPCA’14]

= Eliminate unnecessary refreshes [Liu+ ISCA’12]
o Exploit device characteristics
o Exploit data and application characteristics

= Reduce refresh rate and detect+correct errors that occur
[Khan+ SIGMETRICS'14]

= | Understand retention time behavior in DRAM [Liu+ ISCA'13]
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Motivation: Understanding Retention

Past works require accurate and reliable measurement of
retention time of each DRAM row

o To maintain data integrity while reducing refreshes

Assumption: worst-case retention time of each row can be
determined and stays the same at a given temperature

o Some works propose writing all 1's and 0’s to a row, and
measuring the time before data corruption

Question:

o Can we reliably and accurately determine retention times of all
DRAM rows?
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Two Challenges to Retention Time Profiling

= Data Pattern Dependence (DPD) of retention time

= Variable Retention Time (VRT) phenomenon
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An Example VRT Cell

7 | | | | |
T
: |

% |

) 5|
! A cell from E 2Gb chip family
% 2 4 6 8 10

Time (Hours)
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VRT: Implications on Profiling Mechanisms

= Problem 1: There does not seem to be a way of
determining if a cell exhibits VRT without actually observing
a cell exhibiting VRT

o VRT is a memoryless random process [Kim+ JJAP 2010]

= Problem 2: VRT complicates retention time profiling by
DRAM manufacturers

o Exposure to very high temperatures can induce VRT in cells that
were not previously susceptible

- can happen during soldering of DRAM chips
- manufacturer’s retention time profile may not be accurate

= One option for future work: Use ECC to continuously profile
DRAM online while aggressively reducing refresh rate
o Need to keep ECC overhead in check
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More on DRAM Retention Analysts

= Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu,
"An Experimental Study of Data Retention Behavior in Modern DRAM
Devices: Implications for Retention Time Profiling Mechanisms"
Proceedings of the 40th International Symposium on Computer Architecture
(ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt) Slides (pdf)

An Experimental Study of Data Retention Behavior in
Modern DRAM Devices:

Implications for Retention Time Profiling Mechanisms

* *

Jamie Liu Ben Jaiyen Yoongu Kim
Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University
5000 Forbes Ave. 5000 Forbes Ave. 5000 Forbes Ave.
Pittsburgh, PA 15213 Pittsburgh, PA 15213 Pittsburgh, PA 15213

jamiel@alumni.cmu.edu bjaiyen@alumni.cmu.edu yoonguk@ece.cmu.edu
Chris Wilkerson Onur Mutlu

Intel Corporation Carnegie Mellon University
2200 Mission College Blvd. 5000 Forbes Ave.
Santa Clara, CA 95054 Pittsburgh, PA 15213
chris.wilkerson@intel.com onur@cmu edt



Tackling Retresh: Solutions

= Parallelize refreshes with accesses [Chang+ HPCA’14]

= Eliminate unnecessary refreshes [Liu+ ISCA’12]
o Exploit device characteristics
o Exploit data and application characteristics

= | Reduce refresh rate and detect+correct errors that occur
[Khan+ SIGMETRICS'14]

= Understand retention time behavior in DRAM [Liu+ ISCA'13]
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Towards an Online Profiling System

Key Observations:

* Testing alone cannot detect all possible failures

* Combination of ECC and other mitigation
techniques is much more effective

— But degrades performance

* Testing can help to reduce the ECC strength
— Even when starting with a higher strength ECC

Khan+, "The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative
Experimental Study,” SIGMETRICS 2014.



Towards an Online Profiling System

Initially Protect DRAM Periodically Test
with Strong ECC 1 Parts of DRAM 2

Mitigate errors and
reduce ECC 3

Run tests periodically after a short interval
at smaller regions of memory



More on Online Profiling of DRAM

= Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa Alameldeen, Chris Wilkerson,
and Onur Mutlu,
"The Efficacy of Error Mitigation Techniques for DRAM Retention
Failures: A Comparative Experimental Study"”
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Austin, TX, June 2014. [Slides
(pptx) (pdf)] [Poster (pptx) (pdf)] [Full data sets]

The Efficacy of Error Mitigation Techniques for DRAM
Retention Failures: A Comparative Experimental Study

Samira Khant+ Donghyuk Leet Yoongu Kimt
samirakhan@cmu.edu donghyuki@cmu.edu  yoongukim@cmu.edu
Alaa R. Alameldeen* Chris Wilkerson* Onur Mutlut
alaa.r.alameldeen@intel.com chris.wilkerson@intel.com onur@cmu.edu
fCarnegie Mellon University *Intel Labs
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How Do We Make RAIDR Work in the
Presence of the VRT Phenomenon?




Making RAIDR Work w/ Online Profiling & ECC

= Moinuddin Qureshi, Dae Hyun Kim, Samira Khan, Prashant Nair, and
Onur Mutlu,
"AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for
DRAM Systems"
Proceedings of the 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June
2015.
[Slides (pptx) (pdf)]

AVATAR: A Varniable-Retention-Time (VRT) Aware
Refresh for DRAM Systems

Moinuddin K. Qureshi’ Dae-Hyun Kim' Samira Khan* Prashant J. Nair' Onur Mutlu*
"Georgia Institute of Technology *Carnegie Mellon University
{moin, dhkim, pnair6}@ece.gatech.edu {samirakhan, onur}@cmu.edu

SAFARI 412



AVATAR

Insight: Avoid retention failures =» Upgrade row on ECC error
Observation: Rate of VRT >> Rate of soft error (50x-2500x)

Scrub DRAM Rows Ref. Rate Table
(15 min) _
A 0
B Weak Cell [,
C 1
D T 0 Row protected from
E PROFILING | UALAS
= 0 retention failures
€ 1
H / - 1]

AVATAR mitigates VRT by increasing refresh rate on error




RESULTS: REFRESH SAVINGS

in Refresh (%
N

4 M

Retention Testing Once a Year can revert refresh saving from
60% to 70%

O 1 2 3 4 5 6 7 8 9 10 11 12
Number of Months Since Testing

AVATAR reduces refresh by 60%-70%, similar to multi rate
refresh but with VRT tolerance




SPEEDUP

B AVATAR (1yr) B NoRefresh

1.20
1.10 \
100 Ll
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AVATAR gets 2/3" the performance of NoRefresh. More
gains at higher capacity nodes




ENERGY DELAY PRODUCT
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AVATAR reduces EDP,
Significant reduction at higher capacity nodes




Making RAIDR Work w/ Online Profiling & ECC

= Moinuddin Qureshi, Dae Hyun Kim, Samira Khan, Prashant Nair, and
Onur Mutlu,
"AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for
DRAM Systems"”
Proceedings of the 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June
2015.

[Slides (pptx) (pdf)]

AVATAR: A Varniable-Retention-Time (VRT) Aware
Refresh for DRAM Systems

Moinuddin K. Qureshi’ Dae-Hyun Kim' Samira Khan* Prashant J. Nair' Onur Mutlu*
"Georgia Institute of Technology *Carnegie Mellon University
{moin, dhkim, pnair6}@ece.gatech.edu {samirakhan, onur}@cmu.edu
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DRAM Refresh: Summary and Conclusions

= DRAM refresh is a critical challenge
o in scaling DRAM technology efficiently to higher capacities

= Discussed several promising solution directions
o Parallelize refreshes with accesses [Chang+ HPCA'14]
o Eliminate unnecessary refreshes [Liu+ ISCA'12]

o Reduce refresh rate and detect+correct errors that occur [Khan+
SIGMETRICS'14]

= Examined properties of retention time behavior [Liu+ 1SCA'13]
o Enable realistic VRT-Aware refresh techniques [Qureshi+ DSN'15]

= Many avenues for overcoming DRAM refresh challenges
o Handling DPD/VRT phenomena
o Enabling online retention time profiling and error mitigation

Exoloit lication behavi
SAFARI 8
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Summary

Opportunity

RowHammer

Fixed, frequent refreshes
Fixed, high latency

Slow page copy & initialization
Fixed reliability mechanisms
Memory as a dumb device
DRAM-only main memory
Two-level data storage model
Large timing and error margins
Poor performance guarantees
Fixed policies in controllers

SAFARI

Memory controller anticipates and fixes errors
Heterogeneous refresh rate across memory
Heterogeneous latency in time and space

Exploit internal connectivity in memory to move data
Heterogeneous reliability across time and space
Memory as an accelerator and autonomous agent
Emerging memory technologies and hybrid memories
Unified interface to all data

Online adaptation of timing and error margins
Strong service guarantees and configurable QoS
Configurable and programmable memory controllers
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Some Open Source Tools

Rowhammer

a https://qgithub.com/CMU-SAFARI/rowhammer
Ramulator — Fast and Extensible DRAM Simulator
o https://qgithub.com/CMU-SAFARI/ramulator
MemSim

o https://qgithub.com/CMU-SAFARI/memsim
NOCulator

a https://github.com/CMU-SAFARI/NOCulator

DRAM Error Model
a http://www.ece.cmu.edu/~safari/tools/memerr/index.html

Other open-source software from my group
a https://github.com/CMU-SAFARI/
a http://www.ece.cmu.edu/~safari/tools.html

SAFARI

423



Ramulator: A Fast and Extensible
DRAM Simulator
[IEEE Comp Arch Letters’15]
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Ramulator Motivation

= DRAM and Memory Controller landscape is changing

= Many new and upcoming standards

= Many new controller designs

= A fast and easy-to-extend simulator is very much needed

Segment DRAM Standards & Architectures

Commodity DDR3 (2007) [14]; DDR4 (2012) [ 5]

Low-Power LPDDR3 (2012) [!7]: LPDDR4 (2014) [20]

Graphics GDDRS (2009) [15]

Performance eDRAM [2%], [°7]: RLDRAM3 (2011) [2Y]

WIO (2011) [16]: WIO2 (2014) [21]: MCDRAM (2015) [13]:

Academic  SALP (2012) [24]; TL-DRAM (2013) [26]; RowClone (2013) [37];

Half-DRAM (2014) [V]: Row-Buffer Decoupling (2014) [5°];
SARP (2014) [o]: AL-DRAM (2015) [25]

SAF, Table 1. Landscape of DRAM-based memory 405



Ramulator

Provides out-of-the box support for many DRAM standards:

o DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, plus new
proposals (SALP, AL-DRAM, TLDRAM, RowClone, and SARP)

~2.5X faster than fastest open-source simulator
Modular and extensible to different standards

Simulator Cycles (10°) Runtime (sec.) Reg/sec ( 10%) Memory

(clang -O3)  Random Stream Random  Stream Random Stream — (MB)

Ramulator 652 411 752 249 133 402 2.1
DRAMSim2 645 413 2,030 876 49 114 1.2
USIMM 661 409 1,880 750 53 133 4.5
DrSim 647 406 18,109 12,984 6 8 1.6
NVMain 666 413 6,881 5,023 15 20 4,230.0

Table 3. Comparison of five simulators using two traces
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Case Study: Comparison of DRAM Standards

Rate Timing Data-Bus BW
Standard  \ipy) (CL RCD-RP) (Widthx Chan.) Xank-per-Chan  op)
DDR3 1.600 11-11-11 64-bit x 1 1 11.9
DDR4 2400 16-16-16 64-bit x 1 1 17.9
SALPt 1,600 11-11-11 64-bit x 1 1 11.9
LPDDR3  1.600 12-15-15 64-bit x 1 1 11.9
LPDDR4  2.400 22-22-22 32.bit x 2* 1 17.9
GDDRS [17] 6.000 18-18-18 64-bit x 1 1 44.7
HBM 1.000  7-7-7 128-bit x 8* 1 119.2
WIO 266 777 128-bit x 4* 1 15.9
WIO2 1,066 9-10-10  128-bit x 8* 1 127.2
= o0 114 119 088 092 109 127 084 112
c B
20 el Across 22
€§ ' workloads,
9 N I I simple CPU
o8 MO T AL ST A B S model
a £
5

DDR4 SALP LPDDR3 LPDDR4 GDDR5 HBM WIO WI02
Figure 2. Performance comparison of DRAM standards
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Ramulator Paper and Source Code

= Yoongu Kim, Weikun Yang, and Onur Mutlu,
"Ramulator: A Fast and Extensible DRAM Simulator”
IEEE Computer Architecture Letters (CAL), March 2015.
[Source Code]

= Source code is released under the liberal MIT License
o https://qgithub.com/CMU-SAFARI/ramulator
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Rethinking Memory Architecture

= Compute Capable Memory
= Refresh

= Reliability

= Latency

= Bandwidth

[FE]

= Memory Compression
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Large DRAM Power in Modern Systems

>40% in POWER?7 (ware+, HPcA'10)  >40% in GPU (Paul+, 1ScA'15)
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Why Is Power Large?

Design of DRAM uArchitecture
o A lot of waste (granularity, latency, ...)

High Voltage
o Can we scale it down reliably?

High Frequency
o Can we scale it down with low performance impact?

DRAM Refresh

SAFARI w1



Memory Dynamic Voltage/Freq. Scaling

= Howard David, Chris Fallin, Eugene Gorbatov, UIf R. Hanebutte, and
Onur Mutlu,
"Memory Power Management via Dynamic Voltage/Frequency
Scaling"
Proceedings of the 8th International Conference on Autonomic
Computing (ICAC), Karlsruhe, Germany, June 2011. Slides (pptx) (pdf)

Memory Power Management via
Dynamic Voltage/Frequency Scaling

Howard Davidt, Chris Falling, Eugene Gorbatovi, Ulf R. Hanebuttet, Onur Mutlus

tIntel Corporation gCarnegie Mellon University
{howard.david,eugene.gorbatov, {cfallin,onur}@cmu.edu

ulf.r.hanebutte}@intel.com



New Memory Architectures

= Compute Capable Memory
= Refresh

= Reliability

= Latency

= Bandwidth

= Energy

= [Memory Compression
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Readings on Memory Compression (I)

= Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Philip B. Gibbons,
Michael A. Kozuch, and Todd C. Mowry,
"Base-Delta-Immediate Compression: Practical Data
Compression for On-Chip Caches"”
Proceedings of the 21st International Conference on Parallel
Architectures and Compilation Techniques (PACT), Minneapolis, MN,
September 2012. Slides (pptx) Source Code

Base-Delta-Immediate Compression:
Practical Data Compression for On-Chip Caches

Gennady Pekhimenkot Vivek Seshadrif Onur Mutlut
gpekhime@cs.cmu.edu vseshadr@cs.cmu.edu onur@cmu.edu
Michael A. Kozuch- Phillip B. Gibbons* Todd C. Mowryt

michael.a.kozuch@intel.com phillip.b.gibbons@intel.com tcm@cs.cmu.edu

fCarnegie Mellon University *Intel Labs Pittsburgh



Readings on Memory Compression (II)

= Gennady Pekhimenko, Vivek Seshadri, Yoongu Kim, Hongyi Xin, Onur
Mutlu, Michael A. Kozuch, Phillip B. Gibbons, and Todd C. Mowry,
"Linearly Compressed Pages: A Low-Complexity, Low-Latency
Main Memory Compression Framework"
Proceedings of the 46th International Symposium on Microarchitecture
(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning
Session Slides (pptx) (pdf)] Poster (pptx) (pdf)]

Linearly Compressed Pages: A Low-Complexity,
Low-Latency Main Memory Compression Framework

Gennady Pekhimenko® Vivek Seshadrif Yoongu Kimf Hongyi Xint

gpekhime@cs.cmu.edu vseshadr@cs.cmu.edu yoongukim@cmu.edu hxin@cs.cmu.edu

Onur Mutlu® Phillip B. Gibbons* Michael A. Kozuch+ Todd C. Mowryf

onur@cmu.edu phillip.b.gibbons@intel.com michael.a.kozuch@intel.com tcm@cs.cmu.edu
‘Carnegie Mellon University *Intel Labs Pittsburgh
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Readings on Memory Compression (11I)

= Gennady Pekhimenko, Tyler Huberty, Rui Cai, Onur Mutlu, Phillip P.
Gibbons, Michael A. Kozuch, and Todd C. Mowry,

"Exploiting Compressed Block Size as an Indicator of Future
Reuse"

Proceedings of the 21st International Symposium on High-Performance
Computer Architecture (HPCA), Bay Area, CA, February 2015.
[Slides (pptx) (pdf)]

Exploiting Compressed Block Size as an Indicator of Future Reuse

Gennady Pekhimenko! Tyler Huberty' Rui Cai' Onur Mutluf
gpekhime@cs.cmu.edu thuberty@alumni.cmu.edu rcai@alumni.cmu.edu onur@cmu.edu
Phillip B. Gibbons* Michael A. Kozuch* Todd C. Mowry'
phillip.b.gibbons@intel.com michael.a.kozuch@intel.com tem@cs.cmu.edu

fCarnegie Mellon University *Intel Labs Pittsburgh
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Readings on Memory Compression (IV)

= Gennady Pekhimenko, Evgeny Bolotin, Nandita Vijaykumar, Onur Mutlu,
Todd C. Mowry, and Stephen W. Keckler,

"A Case for Toggle-Aware Compression for GPU Systems"

Proceedings of the 22nd International Symposium on High-Performance
Computer Architecture (HPCA), Barcelona, Spain, March 2016.

[Slides (pptx) (pdf)]

A Case for Toggle-Aware Compression for GPU Systems

Gennady Pekhimenko, Evgeny Bolotin*, Nandita Vijaykumar',
Onur Mutlu’, Todd C. Mowry', Stephen W. Keckler*#

Carnegie Mellon University *NVIDIA #University of Texas at Austin
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Readings on Memory Compression (V)

= Nandita Vijaykumar, Gennady Pekhimenko, Adwait Jog, Abhishek
Bhowmick, Rachata Ausavarungnirun, Chita Das, Mahmut Kandemir, Todd
C. Mowry, and Onur Mutlu,
"A Case for Core-Assisted Bottleneck Acceleration in GPUs:
Enabling Flexible Data Compression with Assist Warps"
Proceedings of the 42nd International Symposium on Computer
Architecture (ISCA), Portland, OR, June 2015.

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]

A Case for Core-Assisted Bottleneck Acceleration in GPUs:
Enabling Flexible Data Compression with Assist Warps
Nandita Vijaykumar Gennady Pekhimenko Adwait Jog' Abhishek Bhowmick
Rachata Ausavarungnirun Chita Das’ Mahmut Kandemir’ Todd C. Mowry ~Onur Mutlu

Carnegie Mellon University " Pennsylvania State University

{nandita,abhowmick, rachata, onur}@cmu.edu
{gpekhime, tcm}@cs.cmu. edu {adwait,das,kandemir}@cse. psu.edu
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Emerging Technologies and
Hybrid Memories




Solution 2: Emerging Memory Technologies

Some emerging resistive memory technologies seem more
scalable than DRAM (and they are non-volatile)

Example: Phase Change Memory oL
o Data stored by changing phase of material
Data read by detecting material’s resistance ;
Expected to scale to 9nm (2022 [ITRS 2009]) w SENSE
Prototyped at 20nm (Raoux+, IBM JRD 2008) M vV
Expected to be denser than DRAM: can store multiple bits/cell

PCM

Q
Q
Q
Q

But, emerging technologies have (many) shortcomings
a Can they be enabled to replace/augment/surpass DRAM?
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Solution 2: Emerging Memory Technologies

=  Lee+, “Architecting Phase Change Memory as a Scalable DRAM Alternative,” ISCA’09, CACM'10, IEEE Micro’10.

=  Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters 2012.

=  Yoon, Meza+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012.

=  Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.

=  Meza+, “A Case for Efficient Hardware-Software Cooperative Management of Storage and Memory,” WEED 2013.
=  Lu+, “Loose Ordering Consistency for Persistent Memory,” ICCD 2014.

=  Zhao+, “FIRM: Fair and High-Performance Memory Control for Persistent Memory Systems,” MICRO 2014.

=  Yoon, Meza+, “Efficient Data Mapping and Buffering Techniques for Multi-Level Cell Phase-Change Memories,” TACO 2014.
= Ren+, "ThyNVM: Enabling Software-Transparent Crash Consistency in Persistent Memory Systems,” MICRO 2015.
=  Chauhan+, "NVMove: Helping Programmers Move to Byte-Based Persistence,” INFLOW 2016.

=  Li+, “Utility-Based Hybrid Memory Management,” CLUSTER 2017.

=  Yu+, “"Banshee: Bandwidth-Efficient DRAM Caching via Software/Hardware Cooperation,” MICRO 2017.
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Promising Resistive Memory Technologies

PCM

o Inject current to change material phase
o Resistance determined by phase

STT-MRAM
o Inject current to change magnet polarity
o Resistance determined by polarity

Memristors/RRAM/ReRAM
o Inject current to change atomic structure
o Resistance determined by atom distance

SAFARI 442



What 1s Phase Change Memory?

Phase change material (chalcogenide glass) exists in two states:
o Amorphous: Low optical reflexivity and high electrical resistivity
o Crystalline: High optical reflexivity and low electrical resistivity

BITLINE

METAL (bitline) I

I -----

CHALCOGENIDE ! :
|

|

|

|

7/

HEATER Neop -

WORDLINE

/%

METAL (access)

ACCESS DEV

\'%4

PCM is resistive memory: High resistance (0), Low resistance (1)
PCM cell can be switched between states reliably and quickly
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How Does PCM Work?

= Write: change phase via current injection o ! RESET
o SET: sustained current to heat cell above Tcryst 3
o RESET: cell heated above Tmelt and quenched g Tme
= Read: detect phase via material resistance qé.; -
o amorphous/crystalline = el
Tim: [ns]

Large
Current

Small
Current

|

Memory
Element

—
SET (cryst) Access

Low resistance Device

RESET (amorph)
High resistance

103-104Q

Photo Courtesy: Bipin Rajendran, IBM Slide Courtesy: Moinuddin Qureshi, IBM 444




Opportunity: PCM Advantages

Scales better than DRAM, Flash

o Requires current pulses, which scale linearly with feature size
o Expected to scale to 9nm (2022 [ITRS])

o Prototyped at 20nm (Raoux+, IBM JRD 2008)

Can be denser than DRAM
o Can store multiple bits per cell due to large resistance range
o Prototypes with 2 bits/cell in ISSCC’ 08, 4 bits/cell by 2012

Non-volatile
o Retain data for >10 years at 85C

No refresh needed, low idle power
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Phase Change Memory Properties

Surveyed prototypes from 2003-2008 (ITRS, IEDM, VLSI,
ISSCC)

Derived PCM parameters for F=90nm

Lee, Ipek, Mutlu, Burger, “Architecting Phase Change
Memory as a Scalable DRAM Alternative,” ISCA 20009.

Lee et al., "Phase Change Technology and the Future of
Main Memory,” IEEE Micro Top Picks 2010.
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Table 1. Technology survey.

Published prototype

Parameter* Horri® Ahn'? Bedeschi'®> Oh' Pellizer'® Chen® Kang™ Bedeschi® Lee'® Lee®
Year 2003 2004 2004 2005 2006 2006 2006 2008 2008 -
Process, F(nm) v 120 180 120 a0 - 100 a0 a0 a0
Array size (Mbyles)  ** 64 8 64 - - 256 256 512 o
Material GST,Nd GST.Nd  GST GST GST GS,Nd  GST GST GST GST, Nd
Cell size (pm°) - 0.290 0290 - 0097 60rm®  0.166 0097 0047 0.085 ©

0097
Cell size, F? = 20.1 90 - 12.0 o 166 12.0 58 90to

120
Access device = - BJT FET BIT o FET BT Diode BT
Read time (ns) - 70 48 68 - - 62 - 55 48
Hed ot () ™ -- 40 -- - - = - - 40
Read voitage (V) e 3.0 10 18 16 o 18 - 18 1.0
Read power (1W)  ** -- 40 -- - - - - - 40
Hedewny (o) -- 20 -- = - - - - 20
Set fime (ns) 100 150 150 180 = 80 300 - 400 150
Set current (nA) 200 ~ 300 200 - 55 o - - 150
Set voitage (V) = = 20 o - 125 " - - 1.2
Set power (uW) - - 300 " - 344 o - - a0
Set energy (pJ) = - 45 - - 28 " - - 135
Reset time (ns) 50 10 40 10 - 60 50 - 50 40
Resstcurent (gA) 600 800 600 600 400 90 800 300 600 300
Reset voltage (V) - o 27 o 18 16 o 16 - 16
Resetpower (uW)  ** - 1620 - - 804 " - - 480
Reset energy (pJ)  ** o 648 o - 48 - - - 192
Write endurance 107 10° 10° == 107 10* - 10° 10° 108

* BJ'T: bipolar junction trnsistor; FET: field-effect wansistor; GST: GexSbyTes; MLC: muliilevel cells; N-d: nitrogen doped.

** This information i not available in the publication cited.
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PCM-based Main Memory (1)

= How should PCM-based (main) memory be organized?

CPU CPU CPU
IcipdiciRgicsh
G- | - CE | @D
Q-G | - CE | ©@- D

= Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC'09]:
o How to partition/migrate data between PCM and DRAM
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PCM-based Main Memory (11)

= How should PCM-based (main) memory be organized?

CPU CPU CPU
o)~ L)~
Q-G - —c | @D
Q-G -G | @

= Pure PCM main memory [Lee et al., ISCA’'09, Top Picks’10]:

o How to redesign entire hierarchy (and cores) to overcome
PCM shortcomings
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An Initial Study: Replace DRAM with PCM

Lee, Ipek, Mutlu, Burger, “Architecting Phase Change
Memory as a Scalable DRAM Alternative,” ISCA 2009.

o Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC)
o Derived “average” PCM parameters for F=90nm

Density Latency
> 9-12F? using BJT > 50ns Rd, 150ns Wr
> 1.5x DRAM \

Endurance Energy

> 40A Rd, 150A Wr
> 1E-08x DRAM \
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Architecting PCM to Mitigate Shortcomings

Idea 1: Use multiple narrow row buffers in each PCM chip
- Reduces array reads/writes - better endurance, latency, energy

Idea 2: Write into array at
cache block or word

granularity DRAM PCM
- Reduces unnecessary wear { data array { data array J
sense amplifiers - ( 3
(buffer) sense amplifiers
o
l I/O l
latches
(buffer)
l I/0
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More on PCM As Main Memory

= Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger,
"Architecting Phase Change Memory as a Scalable DRAM

Alternative"”
Proceedings of the 36th International Symposium on Computer

Architecture (ISCA), pages 2-13, Austin, TX, June 2009. Slides
(pdf)

Architecting Phase Change Memory as a
Scalable DRAM Alternative

Benjamin C. Leet Engin Ipeki Onur Mutlu: Doug Burgers

tComputer Architecture Group tComputer Architecture Laboratory
Microsoft Research Carnegie Mellon University
Redmond, WA Pittsburgh, PA
{blee, ipek, dburger}@microsoft.com onur@cmu.edu
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More on PCM As Main Memory (1I)

= Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao,
Engin Ipek, Onur Mutlu, and Doug Burger,
"Phase Change Technology and the Future of Main Memory"
IEEE Micro, Special Issue: Micro's Top Picks from 2009 Computer
Architecture Conferences (MICRO TOP PICKS), Vol. 30, No. 1,
pages 60-70, January/February 2010.

PHASE-CHANGE TECHNOLOGY AND THE
FUTURE OF MAIN MEMORY
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Data Placement in Hybrid Memory

Memory Controllers

Channel A | IDLE|Channel B

Memory A
(Fast, Small)

Memory B
(Large, Slow)

Which memory do we place each page in,
to maximize system performance?

= Memory A is fast, but small
= Load should be balanced on both channels

= Page migrations have performance and energy overhead
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Data Placement Between DRAM and PCM

Idea: Characterize data access patterns and guide data
placement in hybrid memory

Streaming accesses: As fast in PCM as in DRAM
Random accesses: Much faster in DRAM

Idea: Place random access data with some reuse in DRAM;
streaming data in PCM

Yoon+, “"Row Buffer Locality-Aware Data Placement in
Hybrid Memories,” ICCD 2012 Best Paper Award.
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Hybrid vs. All-PCM/DRAM [iccp’12]

®16GB PCM BRBLA-Dyn 0O16GB DRAM

2 1.2
1.8 - -
g 1.6 29% - E b
C%l 4 — =
T % 0.8 -
=12 319 [ o
= | | &
§ 1 2 0.6 -
208 | - I
'TE 31% better performance than all PCM,
5 within 29% of all DRAM performance
Z. 0.

A P B

Yoon+, “Row Buffer Locality-Aware Data Placement in Hybrid Memories,” ICCD 2012 Best Paper Award.

S N
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More on Hybrid Memory Data Placement

= HanBin Yoon, Justin Meza, Rachata Ausavarungnirun,
Rachael Harding, and Onur Mutlu,
"Row Buffer Locality Aware Caching Policies for
Hybrid Memories"
Proceedings of the 30th IEEE International Conference on
Computer Design (ICCD), Montreal, Quebec, Canada,
September 2012. Slides (pptx) (pdf)

Row Buffer Locality Aware Caching Policies
for Hybrid Memories

HanBin Yoon, Justin Meza, Rachata Ausavarungnirun, Rachael A. Harding and Onur Mutlu
Carnegie Mellon University
{hanbinyoon,meza,rachata,onur} @cmu.edu, rhardin@mit.edu
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Weaknesses of Existing Solutions

= They are all heuristics that consider only a limited part of
memory access behavior

= Do not directly capture the overall system
performance impact of data placement decisions

= Example: None capture memory-level parallelism (MLP)

o Number of concurrent memory requests from the same
application when a page is accessed

o Affects how much page migration helps performance
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Importance of Memory-Level Parallelism

Before migration: Before migration:

requests to Page 1 ( Mem. B

requests to Page 2( Mem. B )
|

requests to Page 3( Mem. B j
| |

|
I
|
|
I
|
|
l
|
I
I
I
I
I
I
I
I
|
I
I
|
-
I
|
I
|
|
I
|
|
l
|
I
I
I
I
I
I
I
I
1
I
I
|
1
I

After migration:

requests to Page 1 QYIS RVAN

|
I
|
requests to Page 2 :
1

I
T requests to Page 3( Mem. B
ﬁ > ( R—E >
time Migrating one page time Must migrate two pages

reduces stall time by T to reduce stall time by T:
migrating one page alone

does not help

Page migration decisions need to consider MLP




Our Goal [CLUSTER 2017]

A generalized mechanism that

1. Directly estimates the performance benefit
of migrating a page between
any two types of memory

2. Places only the performance-critical data
in the fast memory
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Utility-Based Hybrid Memory Management

A memory manager that works for any hybrid memory
o e.g., DRAM-NVM, DRAM-RLDRAM

Key Idea

o For each page, use comprehensive characteristics to
calculate estimated utility (i.e., performance impact)
of migrating page from one memory to the other in the
system

o Migrate only pages with the highest utility
(i.e., pages that improve system performance the most
when migrated)

Li+, “Utility-Based Hybrid Memory Management”, CLUSTER 2017.
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Key Mechanisms of UH-MEM

For each page, estimate utility using a performance model
o Application stall time reduction

How much would migrating a page benefit the performance of the
application that the page belongs to?

o Application performance sensitivity

How much does the improvement of a single application’s
performance increase the overall system performance?

Utility = AStallTime;XSensitivity;

Migrate only pages whose utility exceed the migration
threshold from slow memory to fast memory

Periodically adjust migration threshold
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Results: System Performance

BALL OFREQ DRBLA MUH-MEM

Normalized
S
2
>
—>

0% 25% 50% 75% 100%
Workload Memory Intensity Category

UH-MEM improves system performance

over the best state-of-the-art hybrid memory manager

SAFARI
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Results: Sensitivity to Slow Memory Latency

= We vary tpcp and tyr of the slow memory
28 ALL OFREQ CORBLA ®UH-MEM
3.4
3.0
2.6 1 | (- | — i S — N
2.2

5 B

trep:  X3.0 x4.0 x4.5 x6.0 X7.5
twr: X3.0 x4.0 x12 X16 x20

Slow Memory Latency Multiplier

Weighted Speedup
|

UH-MEM improves system performance

for a wide variety of hybrid memory systems




Crash Consistency

465




One Key Challenge in Persistent Memory

How to ensure consistency of system/data if all
memory is persistent?

Two extremes
o Programmer transparent: Let the system handle it
o Programmer only: Let the programmer handle it

Many alternatives in-between...

SAFARI 466



CHALLENGE: CRASH CONSISTENCY

UL 10 e

Persistent Memory System

System crash can result in

permanent data corruption in NVM
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CRASH CONSISTENCY PROBLEM

Example: Add a node to a linked list

2. Link to pre# 1. Link to next

System crash can result in

inconsistent memory state



CURRENT SOLUTIONS

Explicit interfaces to manage consistency
— NV-Heaps asros111, BPFS 1sosp05, MNEMOSYNE (aspiosny

AtomicBegin ({
Insert a new node;

} AtomicEnd;

Limits adoption of NVM

Have to rewrite code with clear partition
between volatile and non-volatile data

Burden on the programmers
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OUR APPROACH: ThyNVM

Goal:
Software transparent consistency In

persistent memory systems




ThyNVM: Summary

A new hardware-based

checkpointing mechanism

 Checkpoints at multiple granularities to
reduce both checkpointing latency and
metadata overhead

* Overlaps checkpointing and execution to
reduce checkpointing latency

 Adapts to DRAM and NVM characteristics
Performs within 4.9% of an idealized DRAM

with zero cost consistency



End of Backup Slides




Brief Self Introduction @
Onur Mutlu ‘/j

o 0O 0O O O O

Full Professor @ ETH Zurich CS, since September 2015

Strecker Professor @ Carnegie Mellon University ECE/CS, 2009-2016, 2016-...
PhD from UT-Austin, worked @ Google, VMware, Microsoft Research, Intel, AMD
https://people.inf.ethz.ch/omutiu/

omutlu@gmail.com (Best way to reach me)
https://people.inf.ethz.ch/omutlu/projects.htm

Research, Education, Consulting in

U O 0 0O 0 0O O

a

Computer architecture and systems, bioinformatics

Memory and storage systems, emerging technologies

Many-core systems, heterogeneous systems, core design
Interconnects

Hardware/software interaction and co-design (PL, OS, Architecture)
Predictable and QoS-aware systems

Hardware fault tolerance and security

Algorithms and architectures for genome analysis
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