
Onur Mutlu
omutlu@gmail.com

https://people.inf.ethz.ch/omutlu
December 4, 2017

INESC-ID Distinguished Lecture (Lisbon)

Rethinking Memory System Design
(and the Platforms We Design Around It)

Research Focus: Computer architecture, HW/SW, bioinformatics
• Memory and storage (DRAM, flash, emerging), interconnects
• Heterogeneous & parallel systems, GPUs, systems for data analytics
• System/architecture interaction, new execution models, new interfaces
• Energy efficiency, fault tolerance, hardware security, performance
• Genome sequence analysis & assembly algorithms and architectures
• Biologically inspired systems & system design for bio/medicine

Graphics	and	Vision	Processing

Heterogeneous
Processors and

Accelerators

Hybrid Main Memory

Persistent Memory/Storage

Broad research
spanning apps, systems, logic
with architecture at the center

Current Research Focus Areas

Four Key Current Directions

n Fundamentally Secure/Reliable/Safe Architectures

n Fundamentally Energy-Efficient Architectures
q Memory-centric (Data-centric) Architectures

n Fundamentally Low-Latency Architectures

n Architectures for Genomics, Medicine, Health

3

In-Memory DNA Sequence Analysis
n Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose,

Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using
Processing-in-Memory Technologies"
to appear in BMC Genomics, 2018.
to also appear in Proceedings of the 16th Asia Pacific Bioinformatics
Conference (APBC), Yokohama, Japan, January 2018.
arxiv.org Version (pdf)

4

New Genome Sequencing Technologies

5

Rethinking Memory & Storage

6

The Main Memory System

n Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

n Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits

7

Processors
and caches

Main Memory Storage (SSD/HDD)

The Main Memory System

n Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

n Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits

8

Main Memory Storage (SSD/HDD)FPGAs

The Main Memory System

n Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

n Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits

9

Main Memory Storage (SSD/HDD)GPUs

Memory System: A Shared Resource View

10

Storage

Most of the system is dedicated to storing and moving data

State of the Main Memory System
n Recent technology, architecture, and application trends

q lead to new requirements
q exacerbate old requirements

n DRAM and memory controllers, as we know them today,
are (will be) unlikely to satisfy all requirements

n Some emerging non-volatile memory technologies (e.g.,
PCM) enable new opportunities: memory+storage merging

n We need to rethink the main memory system
q to fix DRAM issues and enable emerging technologies
q to satisfy all requirements

11

Major Trends Affecting Main Memory (I)
n Need for main memory capacity, bandwidth, QoS increasing

n Main memory energy/power is a key system design concern

n DRAM technology scaling is ending

12

Major Trends Affecting Main Memory (II)
n Need for main memory capacity, bandwidth, QoS increasing

q Multi-core: increasing number of cores/agents
q Data-intensive applications: increasing demand/hunger for data
q Consolidation: cloud computing, GPUs, mobile, heterogeneity

n Main memory energy/power is a key system design concern

n DRAM technology scaling is ending

13

Example: The Memory Capacity Gap

n Memory capacity per core expected to drop by 30% every two years
n Trends worse for memory bandwidth per core!

14

Core count doubling ~ every 2 years
DRAM DIMM capacity doubling ~ every 3 years

Lim et al., ISCA 2009

1

10

100

1999 2003 2006 2008 2011 2013 2014 2015 2016 2017

D
R

A
M

 Im
pr

ov
em

en
t

(lo
g)

Capacity Bandwidth Latency

Example: Memory Bandwidth & Latency

128x

20x

1.3x

Memory latency remains almost constant

DRAM Latency Is Critical for Performance

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15;
Awan+, BDCloud’15]

Datacenter Workloads
[Kanev+ (Google), ISCA’15]

In-memory Databases
[Mao+, EuroSys’12;
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing
[Xu+, IISWC’12; Umuroglu+, FPL’15]

DRAM Latency Is Critical for Performance

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15;
Awan+, BDCloud’15]

Datacenter Workloads
[Kanev+ (Google), ISCA’15]

In-memory Databases
[Mao+, EuroSys’12;
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing
[Xu+, IISWC’12; Umuroglu+, FPL’15]

Long memory latency → performance bottleneck

Major Trends Affecting Main Memory (III)
n Need for main memory capacity, bandwidth, QoS increasing

n Main memory energy/power is a key system design concern
q ~40-50% energy spent in off-chip memory hierarchy [Lefurgy,

IEEE Computer’03] >40% power in DRAM [Ware, HPCA’10][Paul,ISCA’15]
q DRAM consumes power even when not used (periodic refresh)

n DRAM technology scaling is ending

18

Major Trends Affecting Main Memory (IV)
n Need for main memory capacity, bandwidth, QoS increasing

n Main memory energy/power is a key system design concern

n DRAM technology scaling is ending
q ITRS projects DRAM will not scale easily below X nm
q Scaling has provided many benefits:

n higher capacity (density), lower cost, lower energy

19

Major Trends Affecting Main Memory (V)
n DRAM scaling has already become increasingly difficult

q Increasing cell leakage current, reduced cell reliability,
increasing manufacturing difficulties [Kim+ ISCA 2014],
[Liu+ ISCA 2013], [Mutlu IMW 2013], [Mutlu DATE 2017]

q Difficult to significantly improve capacity, energy

n Emerging memory technologies are promising
3D-Stacked DRAM higher bandwidth smaller capacity
Reduced-Latency DRAM
(e.g., RLDRAM, TL-DRAM) lower latency higher cost

Low-Power DRAM
(e.g., LPDDR3, LPDDR4) lower power higher latency

higher cost
Non-Volatile Memory (NVM)
(e.g., PCM, STTRAM, ReRAM,
3D Xpoint)

larger capacity
higher latency

higher dynamic power
lower endurance

20

Major Trends Affecting Main Memory (V)
n DRAM scaling has already become increasingly difficult

q Increasing cell leakage current, reduced cell reliability,
increasing manufacturing difficulties [Kim+ ISCA 2014],
[Liu+ ISCA 2013], [Mutlu IMW 2013], [Mutlu DATE 2017]

q Difficult to significantly improve capacity, energy

n Emerging memory technologies are promising
3D-Stacked DRAM higher bandwidth smaller capacity
Reduced-Latency DRAM
(e.g., RL/TL-DRAM, FLY-RAM) lower latency higher cost

Low-Power DRAM
(e.g., LPDDR3, LPDDR4, Voltron) lower power higher latency

higher cost
Non-Volatile Memory (NVM)
(e.g., PCM, STTRAM, ReRAM, 3D
Xpoint)

larger capacity
higher latency

higher dynamic power
lower endurance

21

Major Trend: Hybrid Main Memory

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
Yoon+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best
Paper Award.

CPU
DRAM
Ctrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
CtrlDRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

One Foreshadowing

Main Memory Needs
Intelligent Controllers

23

Agenda

n Major Trends Affecting Main Memory
n The Memory Scaling Problem and Solution Directions

q New Memory Architectures
q Enabling Emerging Technologies

n Cross-Cutting Principles
n Summary

24

Three Key Issues in Future Platforms

n Fundamentally Secure/Reliable/Safe Architectures

n Fundamentally Energy-Efficient Architectures
q Memory-centric (Data-centric) Architectures

n Fundamentally Low Latency Architectures

25

Maslow’s (Human) Hierarchy of Needs

n We need to start with reliability and security…

26

Maslow, “A Theory of Human Motivation,”
Psychological Review, 1943.

Source:	https://www.simplypsychology.org/maslow.html

Maslow, “A Theory of Human Motivation,”
Psychological Review, 1943.

Maslow, “Motivation and Personality,”
Book, 1954-1970.

How Reliable/Secure/Safe is This Bridge?

27Source:	http://www.technologystudent.com/struct1/tacom1.png

Collapse of the “Galloping Gertie”

28Source:	AP

How Secure Are These People?

29Source:	https://s-media-cache-ak0.pinimg.com/originals/48/09/54/4809543a9c7700246a0cf8acdae27abf.jpg

Security is about preventing unforeseen consequences

The DRAM Scaling Problem
n DRAM stores charge in a capacitor (charge-based memory)

q Capacitor must be large enough for reliable sensing
q Access transistor should be large enough for low leakage and high

retention time
q Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

n DRAM capacity, cost, and energy/power hard to scale
30

As Memory Scales, It Becomes Unreliable
n Data from all of Facebook’s servers worldwide
n Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers,” DSN’15.

31

Large-Scale Failure Analysis of DRAM Chips
n Analysis and modeling of memory errors found in all of

Facebook’s server fleet

n Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"Revisiting Memory Errors in Large-Scale Production Data
Centers: Analysis and Modeling of New Trends from the Field"
Proceedings of the 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June
2015.
[Slides (pptx) (pdf)] [DRAM Error Model]

32

Infrastructures to Understand Such Issues

33

An Experimental Study of Data Retention
Behavior in Modern DRAM Devices:
Implications for Retention Time Profiling
Mechanisms (Liu et al., ISCA 2013)

The Efficacy of Error Mitigation Techniques
for DRAM Retention Failures: A
Comparative Experimental Study
(Khan et al., SIGMETRICS 2014)

Flipping Bits in Memory Without Accessing
Them: An Experimental Study of DRAM
Disturbance Errors (Kim et al., ISCA 2014)

Adaptive-Latency DRAM: Optimizing DRAM
Timing for the Common-Case (Lee et al.,
HPCA 2015)

AVATAR: A Variable-Retention-Time (VRT)
Aware Refresh for DRAM Systems (Qureshi
et al., DSN 2015)

Infrastructures to Understand Such Issues

34Kim+, “Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

HeaterFPGAs FPGAs

SoftMC: Open Source DRAM Infrastructure

n Hasan Hassan et al., “SoftMC: A
Flexible and Practical Open-
Source Infrastructure for
Enabling Experimental DRAM
Studies,” HPCA 2017.

n Flexible
n Easy to Use (C++ API)
n Open-source

github.com/CMU-SAFARI/SoftMC

35

SoftMC

n https://github.com/CMU-SAFARI/SoftMC

36

Data Retention in Memory [Liu et al., ISCA 2013]

n Retention Time Profile of DRAM looks like this:

37

Location dependent
Stored value pattern dependent

Time dependent

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

A Curious Discovery [Kim et al., ISCA 2014]

One can
predictably induce errors

in most DRAM memory chips

38

DRAM RowHammer

A simple hardware failure mechanism
can create a widespread

system security vulnerability

39

Row	of	Cells
Row
Row
Row
Row

Wordline

VLOWVHIGH
Victim	Row

Victim	Row
Hammered	Row

Repeatedly reading a	row	enough	times	(before	memory	gets	
refreshed)	induces	disturbance	errors in	adjacent rows in	
most	real	DRAM	chips	you	can	buy	today

OpenedClosed

40

Modern DRAM is Prone to Disturbance Errors

Flipping	Bits	in	Memory	Without	Accessing	Them:	An	Experimental	Study	of	DRAM	
Disturbance	Errors, (Kim	et	al.,	ISCA	2014)

86%
(37/43)

83%
(45/54)

88%
(28/32)

A company B company C	company

Up	to
1.0×107
errors	

Up	to
2.7×106
errors	

Up	to
3.3×105
errors	

41

Most DRAM Modules Are at Risk

Flipping	Bits	in	Memory	Without	Accessing	Them:	An	Experimental	Study	of	DRAM	
Disturbance	Errors, (Kim	et	al.,	ISCA	2014)

42

Recent DRAM Is More Vulnerable

43

First
Appearance

Recent DRAM Is More Vulnerable

44
All	modules	from	2012–2013	are	vulnerable

First
Appearance

Recent DRAM Is More Vulnerable

CPU

loop:
mov (X), %eax
mov (Y), %ebx
clflush (X)
clflush (Y)
mfence
jmp loop

Download	from:	https://github.com/CMU-SAFARI/rowhammer

DRAM	Module

A Simple Program Can Induce Many Errors

Y

X

CPU

Download	from:	https://github.com/CMU-SAFARI/rowhammer

DRAM	Module

A Simple Program Can Induce Many Errors

Y

X1. Avoid	cache	hits
– Flush	X from	cache

2. Avoid	row	hits to	X
– Read	Y in	another	row

CPU

loop:
mov (X), %eax
mov (Y), %ebx
clflush (X)
clflush (Y)
mfence
jmp loop

Download	from:	https://github.com/CMU-SAFARI/rowhammer

DRAM	Module

A Simple Program Can Induce Many Errors

Y

X

CPU

loop:
mov (X), %eax
mov (Y), %ebx
clflush (X)
clflush (Y)
mfence
jmp loop

Download	from:	https://github.com/CMU-SAFARI/rowhammer

DRAM	Module

A Simple Program Can Induce Many Errors

Y

X

CPU

loop:
mov (X), %eax
mov (Y), %ebx
clflush (X)
clflush (Y)
mfence
jmp loop

Y

X

Download	from:	https://github.com/CMU-SAFARI/rowhammer

DRAM	Module

A Simple Program Can Induce Many Errors

A	real	reliability	&	security	issue	

CPU	Architecture Errors Access-Rate

Intel	Haswell	(2013) 22.9K 12.3M/sec

Intel	Ivy Bridge	(2012) 20.7K 11.7M/sec

Intel	Sandy	Bridge	(2011) 16.1K 11.6M/sec

AMD Piledriver	(2012) 59 6.1M/sec

50Kim+, “Flipping	Bits	in	Memory	Without	Accessing	Them:	An	Experimental	Study	of	
DRAM	Disturbance	Errors,” ISCA 2014.

Observed Errors in Real Systems

One Can Take Over an Otherwise-Secure System

51

Exploiting the DRAM rowhammer bug to
gain kernel privileges (Seaborn+, 2015)

Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors
(Kim et al., ISCA 2014)

RowHammer Security Attack Example
n “Rowhammer” is a problem with some recent DRAM devices in which

repeatedly accessing a row of memory can cause bit flips in adjacent rows
(Kim et al., ISCA 2014).
q Flipping Bits in Memory Without Accessing Them: An Experimental Study of

DRAM Disturbance Errors (Kim et al., ISCA 2014)

n We tested a selection of laptops and found that a subset of them
exhibited the problem.

n We built two working privilege escalation exploits that use this effect.
q Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn+, 2015)

n One exploit uses rowhammer-induced bit flips to gain kernel privileges on
x86-64 Linux when run as an unprivileged userland process.

n When run on a machine vulnerable to the rowhammer problem, the
process was able to induce bit flips in page table entries (PTEs).

n It was able to use this to gain write access to its own page table, and
hence gain read-write access to all of physical memory.

52Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn & Dullien, 2015)

Security Implications

53

More Security Implications

54
Source: https://lab.dsst.io/32c3-slides/7197.html

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript (DIMVA’16)

“We can gain unrestricted access to systems of website visitors.”

More Security Implications

55
Source: https://fossbytes.com/drammer-rowhammer-attack-android-root-devices/

Drammer: Deterministic Rowhammer
Attacks on Mobile Platforms, CCS’16

“Can gain control of a smart phone deterministically”

More Security Implications?

56

Apple’s Patch for RowHammer
n https://support.apple.com/en-gb/HT204934

HP, Lenovo, and other vendors released similar patches

Our	Solution	to	RowHammer
• PARA:	Probabilistic	Adjacent	Row	Activation

• Key	Idea
– After	closing	a	row,	we	activate	(i.e.,	refresh)	one	of	
its	neighbors	with	a	low	probability:	p	=	0.005

• Reliability	Guarantee
– When	p=0.005,	errors	in	one	year:	9.4×10-14

– By	adjusting	the	value	of	p,	we	can	vary	the	strength	
of	protection	against	errors

58

More on RowHammer Analysis

59

n Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
"Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors"
Proceedings of the 41st International Symposium on Computer
Architecture (ISCA), Minneapolis, MN, June 2014.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code
and Data]

Future of Memory Reliability

60https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf

n Onur Mutlu,
"The RowHammer Problem and Other Issues We May Face as
Memory Becomes Denser"
Invited Paper in Proceedings of the Design, Automation, and Test in
Europe Conference (DATE), Lausanne, Switzerland, March 2017.
[Slides (pptx) (pdf)]

Industry Is Writing Papers About It, Too

61

Call for Intelligent Memory Controllers

62

Solution Direction: Principled Designs

Design fundamentally secure
computing architectures

Predict and prevent
such safety issues

63

How Do We Keep Memory Secure?

n Understand: Methodologies for failure modeling and discovery
q Modeling and prediction based on real (device) data

n Architect: Principled co-architecting of system and memory
q Good partitioning of duties across the stack

n Design & Test: Principled design, automation, testing
q High coverage and good interaction with system reliability

methods

64

65Kim+, “Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

HeaterFPGAs FPGAs

Understand and Model with Experiments (DRAM)

Understand and Model with Experiments (Flash)

USB Jack

Virtex-II Pro
(USB controller)

Virtex-V FPGA
(NAND Controller)

HAPS-52 Mother Board

USB Daughter Board

NAND Daughter Board

1x-nm
NAND Flash

[DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014,
HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017, PIEEE’17]

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.

Another Talk: NAND Flash Reliability
n Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu,

"Error Characterization, Mitigation, and Recovery in Flash Memory Based
Solid State Drives"
to appear in Proceedings of the IEEE, 2017.

Cai+, “Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis,” DATE 2012.
Cai+, “Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory Lifetime,” ICCD
2012.
Cai+, “Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization, Analysis and Modeling,” DATE
2013.
Cai+, “Error Analysis and Retention-Aware Error Management for NAND Flash Memory,” Intel Technology Journal 2013.
Cai+, “Program Interference in MLC NAND Flash Memory: Characterization, Modeling, and Mitigation,” ICCD 2013.
Cai+, “Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories,” SIGMETRICS 2014.
Cai+,”Data Retention in MLC NAND Flash Memory: Characterization, Optimization and Recovery,” HPCA 2015.
Cai+, “Read Disturb Errors in MLC NAND Flash Memory: Characterization and Mitigation,” DSN 2015.
Luo+, “WARM: Improving NAND Flash Memory Lifetime with Write-hotness Aware Retention Management,” MSST
2015.
Meza+, “A Large-Scale Study of Flash Memory Errors in the Field,” SIGMETRICS 2015.
Luo+, “Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory,” IEEE
JSAC 2016.
Cai+, “Vulnerabilities in MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and Mitigation
Techniques,” HPCA 2017.
Fukami+, “Improving the Reliability of Chip-Off Forensic Analysis of NAND Flash Memory Devices,” DFRWS EU 2017.

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.

NAND Flash Vulnerabilities

68

https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities_hpca17.pdf

HPCA, Feb. 2017

NAND Flash: Intelligent Memory Control

69

https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

There are Two Other Solution Directions
n New Technologies: Replace or (more likely) augment DRAM

with a different technology
q Non-volatile memories

n Embracing Un-reliability:
Design memories with different reliability
and store data intelligently across them

n …

70

Fundamental	solutions	to	security	
require	co-design	across	the	hierarchy

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

App/Data	A App/Data	B App/Data	C

M
em

or
y	
er
ro
r	v

ul
ne

ra
bi
lit
y

Vulnerable	
data

Tolerant	
data

Exploiting	Memory	Error	Tolerance	
with	Hybrid	Memory	Systems

Heterogeneous-Reliability	Memory	[DSN	2014]

Low-cost	memoryReliable	memory

Vulnerable	
data

Tolerant	
data

Vulnerable	
data

Tolerant	
data

• ECC	protected
• Well-tested	chips

• NoECC or	Parity
• Less-tested	chips

71

On	Microsoft’s	Web	Search	workload
Reduces	server	hardware	cost	by	4.7	%
Achieves	single	server	availability target	of	99.90	%

More on Heterogeneous-Reliability Memory
n Yixin Luo, Sriram Govindan, Bikash Sharma, Mark Santaniello, Justin Meza, Aman

Kansal, Jie Liu, Badriddine Khessib, Kushagra Vaid, and Onur Mutlu,
"Characterizing Application Memory Error Vulnerability to Optimize
Data Center Cost via Heterogeneous-Reliability Memory"
Proceedings of the 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Atlanta, GA, June 2014. [Summary]
[Slides (pptx) (pdf)] [Coverage on ZDNet]

72

Summary: Memory Reliability and Security
n Memory reliability is reducing
n Reliability issues open up security vulnerabilities

q Very hard to defend against
n Rowhammer is an example

q Its implications on system security research are tremendous & exciting

n Good news: We have a lot more to do.
n Understand: Solid methodologies for failure modeling and discovery

q Modeling based on real device data – small scale and large scale
n Architect: Principled co-architecting of system and memory

q Good partitioning of duties across the stack
n Design & Test: Principled electronic design, automation, testing

q High coverage and good interaction with system reliability methods

73

Challenge and Opportunity for Future

Fundamentally
Secure, Reliable, Safe

Computing Architectures

74

One Important Takeaway

Main Memory Needs
Intelligent Controllers

75

Three Key Issues in Future Platforms

n Fundamentally Secure/Reliable/Safe Architectures

n Fundamentally Energy-Efficient Architectures
q Memory-centric (Data-centric) Architectures

n Fundamentally Low Latency Architectures

76

Do We Want This?

77Source:	V.	Milutinovic

Or, This?

78Source:	V.	Milutinovic

Maslow’s (Human) Hierarchy of Needs, Revisited

79

Maslow, “A Theory of Human Motivation,”
Psychological Review, 1943.

Everlasting energy

Source:	https://www.simplypsychology.org/maslow.html

Maslow, “A Theory of Human Motivation,”
Psychological Review, 1943.

Maslow, “Motivation and Personality,”
Book, 1954-1970.

Challenge and Opportunity for Future

Sustainable
and

Energy Efficient

80

Three Key Systems Trends
1. Data access is a major bottleneck

q Applications are increasingly data hungry

2. Energy consumption is a key limiter

3. Data movement energy dominates compute
q Especially true for off-chip to on-chip movement

81

The Need for More Memory Performance

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15;
Awan+, BDCloud’15]

Datacenter Workloads
[Kanev+ (Google), ISCA’15]

In-memory Databases
[Mao+, EuroSys’12;
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing
[Xu+, IISWC’12; Umuroglu+, FPL’15]

The Performance Perspective (1996-2005)

n “It’s the Memory, Stupid!” (Richard Sites, MPR, 1996)

Mutlu+, “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.

The Performance Perspective (Today)
n All of Google’s Data Center Workloads (2015):

84Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.

The Performance Perspective (Today)
n All of Google’s Data Center Workloads (2015):

85Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.

The Performance Perspective

n Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
"Runahead Execution: An Alternative to Very Large Instruction
Windows for Out-of-order Processors"
Proceedings of the 9th International Symposium on High-Performance
Computer Architecture (HPCA), pages 129-140, Anaheim, CA, February
2003. Slides (pdf)

86

The Energy Perspective

87

Dally, HiPEAC 2015

Data Movement vs. Computation Energy

88

Dally, HiPEAC 2015

A memory access consumes ~1000X
the energy of a complex addition

Data Movement vs. Computation Energy
n Data movement is a major system energy bottleneck

q Comprises 41% of mobile system energy during web browsing [2]
q Costs ~115 times as much energy as an ADD operation [1, 2]

89

[1]:	Reducing	data	Movement	Energy	via	Online	Data	Clustering	and	Encoding	(MICRO’16)
[2]:	Quantifying	the	energy	cost	of	data	movement	for	emerging	smart	phone	workloads	on	mobile	platforms	(IISWC’14)

Challenge and Opportunity for Future

High Performance
and

Energy Efficient

90

The Problem

Data access is the major performance and energy bottleneck

Our current
design principles

cause great energy waste
(and great performance loss)

91

The Problem

Processing of data
is performed

far away from the data

92

A Computing System
n Three key components
n Computation
n Communication
n Storage/memory

93

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Image source: https://lbsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/

A Computing System
n Three key components
n Computation
n Communication
n Storage/memory

94

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Image source: https://lbsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/

Today’s Computing Systems
n Are overwhelmingly processor centric
n All data processed in the processor à at great system cost
n Processor is heavily optimized and is considered the master
n Data storage units are dumb and are largely unoptimized

(except for some that are on the processor die)

95

Yet …
n “It’s the Memory, Stupid!” (Richard Sites, MPR, 1996)

Mutlu+, “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.

Perils of Processor-Centric Design
n Grossly-imbalanced systems

q Processing done only in one place
q Everything else just stores and moves data: data moves a lot
à Energy inefficient
à Low performance
à Complex

n Overly complex and bloated processor (and accelerators)
q To tolerate data access from memory
q Complex hierarchies and mechanisms
à Energy inefficient
à Low performance
à Complex

97

Perils of Processor-Centric Design

98

Most of the system is dedicated to storing and moving data

We Do Not Want to Move Data!

99

Dally, HiPEAC 2015

A memory access consumes ~1000X
the energy of a complex addition

We Need A Paradigm Shift To …

n Enable computation with minimal data movement

n Compute where it makes sense (where data resides)

n Make computing architectures more data-centric

100

Goal: Processing Inside Memory

n Many questions … How do we design the:
q compute-capable memory & controllers?
q processor chip?
q software and hardware interfaces?
q system software and languages?
q algorithms?

Cache

Processor
Core

Interconnect

Memory
Database

Graphs

Media
Query

Results

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

Why In-Memory Computation Today?

n Push from Technology
q DRAM Scaling at jeopardy
à Controllers close to DRAM
à Industry open to new memory architectures

n Pull from Systems and Applications
q Data access is a major system and application bottleneck
q Systems are energy limited
q Data movement much more energy-hungry than computation

102

Dally, HiPEAC 2015

Processing in Memory:
Two Approaches

1. Minimally changing memory chips
2. Exploiting 3D-stacked memory

103

Approach 1: Minimally Changing DRAM
n DRAM has great capability to perform bulk data movement and

computation internally with small changes
q Can exploit internal connectivity to move data
q Can exploit analog computation capability
q …

n Examples: RowClone, In-DRAM AND/OR, Gather/Scatter DRAM
q RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data

(Seshadri et al., MICRO 2013)
q Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)
q Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial

Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015)
q "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity

DRAM Technology” (Seshadri et al., MICRO 2017)

104

Starting Simple: Data Copy and Initialization

105

Forking

00000
00000
00000

Zero initialization
(e.g., security)

VM Cloning
Deduplication

Checkpointing

Page Migration
Many more

memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ ISCA’15]

Today’s Systems: Bulk Data Copy

Memory

MCL3L2L1CPU

1)	High	latency

2)	High	bandwidth	utilization

3)	Cache	pollution

4)	Unwanted	data	movement

1061046ns,	3.6uJ				(for	4KB	page	copy	via	DMA)

Future Systems: In-Memory Copy

Memory

MCL3L2L1CPU

1)	Low	latency

2)	Low	bandwidth	utilization

3)	No	cache	pollution

4)	No	unwanted	data	movement

1071046ns,	3.6uJ à 90ns,	0.04uJ

RowClone: In-DRAM Row Copy

Row Buffer (4 Kbytes)

Data Bus

8 bits

DRAM subarray

4 Kbytes

Step 1: Activate row A

Transfer
row

Step 2: Activate row B

Transfer
row

Negligible HW cost
Idea: Two consecutive ACTivates

RowClone: Latency and Energy Savings

0

0.2

0.4

0.6

0.8

1

1.2

Latency Energy

N
or
m
al
ize

d	
Sa
vi
ng
s

Baseline Intra-Subarray
Inter-Bank Inter-Subarray

11.6x 74x

109
Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and
Initialization of Bulk Data,” MICRO 2013.

More on RowClone
n Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata

Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A.
Kozuch, Phillip B. Gibbons, and Todd C. Mowry,
"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and
Initialization"
Proceedings of the 46th International Symposium on Microarchitecture
(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning Session
Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

110

Memory as an Accelerator

CPU
core

CPU
core

CPU
core

CPU
core

mini-CPU
core

video
core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

LLC

Memory Controller
Specialized

compute-capability
in memory

Memoryimaging
core

Memory Bus

Memory similar to a “conventional” accelerator

In-Memory Bulk Bitwise Operations
n We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ
n At low cost
n Using analog computation capability of DRAM

q Idea: activating multiple rows performs computation
n 30-60X performance and energy improvement

q Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology,” MICRO 2017.

n New memory technologies enable even more opportunities
q Memristors, resistive RAM, phase change mem, STT-MRAM, …
q Can operate on data with minimal movement

112

In-DRAM AND/OR: Triple Row Activation

113

½VDD

½VDD

dis

A

B

C

Final	State
AB	+	BC	+	AC

½VDD+δ

C(A	+	B)	+	
~C(AB)en

0

VDD

Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015.

In-DRAM NOT: Dual Contact Cell

114

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

Idea:
Feed the

negated value
in the sense amplifier

into a special row

Performance: In-DRAM Bitwise Operations

115

Energy of In-DRAM Bitwise Operations

116

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

Ambit vs. DDR3: Performance and Energy

117

0
10
20
30
40
50
60
70

not and/or nand/nor xor/xnor mean

Performance Improvement Energy Reduction

32X 35X

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

Bulk Bitwise Operations in Workloads

[1] Li and Patel, BitWeaving, SIGMOD 2013
[2] Goodwin+, BitFunnel, SIGIR 2017

Example Data Structure: Bitmap Index

n Alternative to B-tree and its variants
n Efficient for performing range queries and joins
n Many bitwise operations to perform a query

Bi
tm

ap
	1

Bi
tm

ap
	2

Bi
tm

ap
	4

Bi
tm

ap
	3

age	<	18 18	<	age	<	25 25	<	age	<	60 age	>	60

Performance: Bitmap Index on Ambit

120

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

Performance: BitWeaving on Ambit

121

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

More on In-DRAM Bulk AND/OR

n Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk
Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and
Todd C. Mowry,
"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015.

122

More on Ambit

n Vivek Seshadri et al., “Ambit: In-Memory Accelerator
for Bulk Bitwise Operations Using Commodity DRAM
Technology,” MICRO 2017.

123

Challenge and Opportunity for Future

Computing Architectures
with

Minimal Data Movement

124

Challenge: Intelligent Memory Device

Does memory
have to be

dumb?
125

Processing in Memory:
Two Approaches

1. Minimally changing memory chips
2. Exploiting 3D-stacked memory

126

Opportunity: 3D-Stacked Logic+Memory

127

Logic

Memory

Other “True 3D” technologies
under development

DRAM Landscape (circa 2015)

128
Kim+, “Ramulator: A Flexible and Extensible DRAM Simulator”, IEEE CAL 2015.

Two Key Questions in 3D-Stacked PIM

n How can we accelerate important applications if we use
3D-stacked memory as a coarse-grained accelerator?
q what is the architecture and programming model?
q what are the mechanisms for acceleration?

n What is the minimal processing-in-memory support we can
provide?
q without changing the system significantly
q while achieving significant benefits

129

Graph Processing

130

n Large graphs are everywhere (circa 2015)

n Scalable large-scale graph processing is challenging

36 Million
Wikipedia Pages

1.4 Billion
Facebook Users

300 Million
Twitter Users

30 Billion
Instagram Photos

+42%

0 1 2 3 4

128 …

32 Cores

Speedup

Key Bottlenecks in Graph Processing

131

for (v:	graph.vertices)	{
for (w:	v.successors)	{
w.next_rank +=	weight	*	v.rank;

}
}

weight * v.rank

v

w

&w

1. Frequent random memory accesses

2. Little amount of computation

w.rank

w.next_rank
w.edges

…

Tesseract System for Graph Processing

Crossbar	Network

…
…

…
…

DRAM
	Controller

NI

In-Order	Core

Message	Queue

PF	Buffer

MTP

LP

Host	Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Interconnected set of 3D-stacked memory+logic chips with simple cores

Logic

Memory

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Logic

Memory

Tesseract System for Graph Processing

133

Crossbar	Network

…
…

…
…

DRAM
	Controller

NI

In-Order	Core

Message	Queue

PF	Buffer

MTP

LP

Host	Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Communications	via
Remote	Function	Calls

Communications In Tesseract (I)

134

Communications In Tesseract (II)

135

Communications In Tesseract (III)

136

Remote Function Call (Non-Blocking)

137

Logic

Memory

Tesseract System for Graph Processing

138

Crossbar	Network

…
…

…
…

DRAM
	Controller

NI

In-Order	Core

Message	Queue

PF	Buffer

MTP

LP

Host	Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Prefetching

Evaluated Systems

HMC-MC

128
In-Order
2GHz

128
In-Order
2GHz

128
In-Order
2GHz

128
In-Order
2GHz

102.4GB/s 640GB/s 640GB/s 8TB/s

HMC-OoO

8	OoO
4GHz

8	OoO
4GHz

8	OoO
4GHz

8	OoO
4GHz

8	OoO
4GHz

8	OoO
4GHz

8	OoO
4GHz

8	OoO
4GHz

DDR3-OoO Tesseract

32	
Tesseract	
Cores

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Tesseract Graph Processing Performance

+56% +25%

9.0x

11.6x

13.8x

0

2

4

6

8

10

12

14

16

DDR3-OoO HMC-OoO HMC-MC Tesseract Tesseract-
LP

Tesseract-
LP-MTP

Sp
ee
du

p

>13X Performance Improvement

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

On five graph processing algorithms

Tesseract Graph Processing Performance

141

+56% +25%

9.0x

11.6x

13.8x

0

2

4

6

8

10

12

14

16

DDR3-OoO HMC-OoO HMC-MC Tesseract Tesseract-
LP

Tesseract-
LP-MTP

Sp
ee
du

p

80GB/s 190GB/s 243GB/s

1.3TB/s

2.2TB/s

2.9TB/s

0

0.5

1

1.5

2

2.5

3

3.5

DDR3-OoO HMC-OoO HMC-MC Tesseract Tesseract-
LP

Tesseract-
LP-MTP

M
em

or
y	
Ba

nd
w
id
th
	(T

B/
s)

Memory	Bandwidth	Consumption

Effect of Bandwidth & Programming Model

142

2.3x
3.0x

6.5x

0

1

2

3

4

5

6

7

HMC-MC HMC-MC	+
PIM	BW

Tesseract	+	
Conventional	BW

Tesseract

Sp
ee
du

p

HMC-MC Bandwidth (640GB/s) Tesseract Bandwidth (8TB/s)

Bandwidth

Programming Model

(No Prefetching)

Tesseract Graph Processing System Energy

0

0.2

0.4

0.6

0.8

1

1.2

HMC-OoO Tesseract	with	Prefetching

Memory	Layers Logic	Layers Cores

> 8X Energy Reduction

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

More on Tesseract
n Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu,

and Kiyoung Choi,
"A Scalable Processing-in-Memory Accelerator for
Parallel Graph Processing"
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

144

Truly Distributed GPU Processing with PIM?

Logic layer
SM

Crossbar switch

Vault
Ctrl

…. Vault
Ctrl

Logic layer

Main GPU

3D-stacked memory
(memory stack) SM (Streaming Multiprocessor)

Accelerating GPU Execution with PIM (I)
n Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike

O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems"
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

146

Accelerating GPU Execution with PIM (II)
n Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.

Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities"
Proceedings of the 25th International Conference on Parallel
Architectures and Compilation Techniques (PACT), Haifa, Israel,
September 2016.

147

Accelerating Linked Data Structures
n Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali

Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation"
Proceedings of the 34th IEEE International Conference on Computer
Design (ICCD), Phoenix, AZ, USA, October 2016.

148

Two Key Questions in 3D-Stacked PIM

n How can we accelerate important applications if we use
3D-stacked memory as a coarse-grained accelerator?
q what is the architecture and programming model?
q what are the mechanisms for acceleration?

n What is the minimal processing-in-memory support we can
provide?
q without changing the system significantly
q while achieving significant benefits

149

PIM-Enabled Instructions
n Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,

"PIM-Enabled Instructions: A Low-Overhead,
Locality-Aware Processing-in-Memory Architecture"
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

Automatic Code and Data Mapping?
n Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike

O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems"
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

151

Challenge and Opportunity for Future

Fundamentally
Energy-Efficient
(Data-Centric)

Computing Architectures
152

Challenge and Opportunity for Future

Fundamentally
Low-Latency

(Data-Centric)
Computing Architectures

153

Three Key Issues in Future Platforms

n Fundamentally Secure/Reliable/Safe Architectures

n Fundamentally Energy-Efficient Architectures
q Memory-centric (Data-centric) Architectures

n Fundamentally Low Latency Architectures

154

155Source:	http://spectrum.ieee.org/image/MjYzMzAyMg.jpeg

Maslow’s Hierarchy of Needs, A Third Time

156

Speed

Speed
Speed
Speed
Speed

Source:	https://www.simplypsychology.org/maslow.html

Maslow, “A Theory of Human Motivation,”
Psychological Review, 1943.

Maslow, “Motivation and Personality,”
Book, 1954-1970.

See Backup Slides for Latency…

157

Challenge and Opportunity for Future

Fundamentally
Low-Latency

Computing Architectures

158

Agenda

n Major Trends Affecting Main Memory
n The Memory Scaling Problem and Solution Directions

q New Memory Architectures
q Enabling Emerging Technologies

n Cross-Cutting Principles
n Summary

159

Limits of Charge Memory
n Difficult charge placement and control

q Flash: floating gate charge
q DRAM: capacitor charge, transistor leakage

n Reliable sensing becomes difficult as charge
storage unit size reduces

160

Emerging Memory Technologies
n Some emerging resistive memory technologies seem more

scalable than DRAM (and they are non-volatile)

n Example: Phase Change Memory
q Data stored by changing phase of material
q Data read by detecting material’s resistance
q Expected to scale to 9nm (2022 [ITRS])
q Prototyped at 20nm (Raoux+, IBM JRD 2008)
q Expected to be denser than DRAM: can store multiple bits/cell

n But, emerging technologies have (many) shortcomings
q Can they be enabled to replace/augment/surpass DRAM?

161

Promising Resistive Memory Technologies
n PCM

q Inject current to change material phase
q Resistance determined by phase

n STT-MRAM
q Inject current to change magnet polarity
q Resistance determined by polarity

n Memristors/RRAM/ReRAM
q Inject current to change atomic structure
q Resistance determined by atom distance

162

Phase Change Memory: Pros and Cons
n Pros over DRAM

q Better technology scaling (capacity and cost)
q Non volatile à Persistent
q Low idle power (no refresh)

n Cons
q Higher latencies: ~4-15x DRAM (especially write)
q Higher active energy: ~2-50x DRAM (especially write)
q Lower endurance (a cell dies after ~108 writes)
q Reliability issues (resistance drift)

n Challenges in enabling PCM as DRAM replacement/helper:
q Mitigate PCM shortcomings
q Find the right way to place PCM in the system

163

PCM-based Main Memory (I)
n How should PCM-based (main) memory be organized?

n Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC’09]:
q How to partition/migrate data between PCM and DRAM

164

PCM-based Main Memory (II)
n How should PCM-based (main) memory be organized?

n Pure PCM main memory [Lee et al., ISCA’09, Top Picks’10]:
q How to redesign entire hierarchy (and cores) to overcome

PCM shortcomings

165

Results: Naïve Replacement of DRAM with PCM

n Replace DRAM with PCM in a 4-core, 4MB L2 system
n PCM organized the same as DRAM: row buffers, banks, peripherals
n 1.6x delay, 2.2x energy, 500-hour average lifetime

n Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a
Scalable DRAM Alternative,” ISCA 2009.

166

Results: Architected PCM as Main Memory
n 1.2x delay, 1.0x energy, 5.6-year average lifetime
n Scaling improves energy, endurance, density

n Caveat 1: Worst-case lifetime is much shorter (no guarantees)
n Caveat 2: Intensive applications see large performance and energy hits
n Caveat 3: Optimistic PCM parameters?

167

More on PCM As Main Memory
n Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger,

"Architecting Phase Change Memory as a Scalable DRAM
Alternative"
Proceedings of the 36th International Symposium on Computer
Architecture (ISCA), pages 2-13, Austin, TX, June 2009. Slides
(pdf)

168

More on PCM As Main Memory (II)
n Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao,

Engin Ipek, Onur Mutlu, and Doug Burger,
"Phase Change Technology and the Future of Main Memory"
IEEE Micro, Special Issue: Micro's Top Picks from 2009 Computer
Architecture Conferences (MICRO TOP PICKS), Vol. 30, No. 1,
pages 60-70, January/February 2010.

169

STT-MRAM as Main Memory
n Magnetic Tunnel Junction (MTJ) device

q Reference layer: Fixed magnetic orientation
q Free layer: Parallel or anti-parallel

n Magnetic orientation of the free layer
determines logical state of device
q High vs. low resistance

n Write: Push large current through MTJ to
change orientation of free layer

n Read: Sense current flow

n Kultursay et al., “Evaluating STT-RAM as an Energy-
Efficient Main Memory Alternative,” ISPASS 2013.

Reference Layer

Free Layer
Barrier

Reference Layer

Free Layer
Barrier

Logical 0

Logical 1

Word Line

Bit Line

Access
Transistor

MTJ

Sense Line

STT-MRAM: Pros and Cons
n Pros over DRAM

q Better technology scaling (capacity and cost)
q Non volatile à Persistent
q Low idle power (no refresh)

n Cons
q Higher write latency
q Higher write energy
q Poor density (currently)
q Reliability?

n Another level of freedom
q Can trade off non-volatility for lower write latency/energy (by

reducing the size of the MTJ)
171

Architected STT-MRAM as Main Memory
n 4-core, 4GB main memory, multiprogrammed workloads
n ~6% performance loss, ~60% energy savings vs. DRAM

172

88%
90%
92%
94%
96%
98%

Pe
rf

or
m

an
ce

vs

. D
RA

M

STT-RAM (base) STT-RAM (opt)

0%
20%
40%
60%
80%

100%

En
er

gy

vs
. D

RA
M

ACT+PRE WB RB

Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.

More on STT-MRAM as Main Memory
n Emre Kultursay, Mahmut Kandemir, Anand

Sivasubramaniam, and Onur Mutlu,
"Evaluating STT-RAM as an Energy-Efficient Main
Memory Alternative"
Proceedings of the 2013 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS),
Austin, TX, April 2013. Slides (pptx) (pdf)

173

A More Viable Approach: Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
Yoon+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best
Paper Award.

CPU
DRAM
Ctrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
CtrlDRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

A More Viable Approach: Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
Yoon+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best
Paper Award.

CPU
DRAM
Ctrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
CtrlDRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

Challenge and Opportunity

Providing the Best of
Multiple Metrics

with
Multiple Memory Technologies

176

Challenge and Opportunity

177

Heterogeneous,
Configurable,
Programmable

Memory Systems

Hybrid Memory Systems: Issues
n Cache vs. Main Memory

n Granularity of Data Move/Manage-ment: Fine or Coarse

n Hardware vs. Software vs. HW/SW Cooperative

n When to migrate data?

n How to design a scalable and efficient large cache?

n …

178

On Hybrid Memory Data Placement (I)
n HanBin Yoon, Justin Meza, Rachata Ausavarungnirun,

Rachael Harding, and Onur Mutlu,
"Row Buffer Locality Aware Caching Policies for
Hybrid Memories"
Proceedings of the 30th IEEE International Conference on
Computer Design (ICCD), Montreal, Quebec, Canada,
September 2012. Slides (pptx) (pdf)

179

On Hybrid Memory Data Placement (II)
n Yang Li, Saugata Ghose, Jongmoo Choi, Jin Sun, Hui Wang,

and Onur Mutlu,
"Utility-Based Hybrid Memory Management"
Proceedings of the 19th IEEE Cluster Conference (CLUSTER),
Honolulu, Hawaii, USA, September 2017.
[Slides (pptx) (pdf)]

180

On Large DRAM Cache Design (I)

n Justin Meza, Jichuan Chang, HanBin Yoon, Onur Mutlu, and
Parthasarathy Ranganathan,
"Enabling Efficient and Scalable Hybrid Memories
Using Fine-Granularity DRAM Cache Management"
IEEE Computer Architecture Letters (CAL), February 2012.

181

On Large DRAM Cache Design (II)
n Xiangyao Yu, Christopher J. Hughes, Nadathur Satish, Onur

Mutlu, and Srinivas Devadas,
"Banshee: Bandwidth-Efficient DRAM Caching via
Software/Hardware Cooperation"
Proceedings of the 50th International Symposium on
Microarchitecture (MICRO), Boston, MA, USA, October 2017.

182

Challenge and Opportunity

Enabling
an Emerging Technology

to Augment DRAM

Managing Hybrid Memories
183

Other Opportunities with Emerging Technologies

n Merging of memory and storage
q e.g., a single interface to manage all data

n New applications
q e.g., ultra-fast checkpoint and restore

n More robust system design
q e.g., reducing data loss

n Processing tightly-coupled with memory
q e.g., enabling efficient search and filtering

184

TWO-LEVEL	STORAGE	MODEL
CP

U
M
EM

O
RY

ST
O
RA

GE

VOLATILE
FAST

BYTE	ADDR
NONVOLATILE

SLOW
BLOCK	ADDR

Ld/St

FILE	
I/O

DRAM

185

TWO-LEVEL	STORAGE	MODEL
CP

U
M
EM

O
RY

ST
O
RA

GE

VOLATILE
FAST

BYTE	ADDR
NONVOLATILE

SLOW
BLOCK	ADDR

Ld/St

FILE	
I/O

DRAM

186

PCM, STT-RAM
NVM

Non-volatile	memories	combine	
characteristics	of	memory	and	storage

Two-Level Memory/Storage Model
n The traditional two-level storage model is a bottleneck with NVM

q Volatile data in memory à a load/store interface
q Persistent data in storage à a file system interface
q Problem: Operating system (OS) and file system (FS) code to locate, translate,

buffer data become performance and energy bottlenecks with fast NVM stores

187

Two-Level Store

Processor
and caches

Main Memory Storage (SSD/HDD)

Virtual memory

Address
translation

Load/Store

Operating
system

and file system

fopen, fread, fwrite, …

Persistent (e.g., Phase-Change)
Memory

Unified Memory and Storage with NVM
n Goal: Unify memory and storage management in a single unit to

eliminate wasted work to locate, transfer, and translate data
q Improves both energy and performance
q Simplifies programming model as well

188

Unified Memory/Storage

Processor
and caches

Persistent (e.g., Phase-Change) Memory

Load/Store

Persistent Memory
Manager

Feedback

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

The Persistent Memory Manager (PMM)

189

2.2.1 Efficient Hardware and Software Support: We propose to investigate the efficient software and
hardware support needed for single-level stores. A single-level store system should provide an abstraction
that maps persistent user data to physical addresses in memory. A software interface for programs would
map a pointer to the actual persistent data. Programs would be able to access any part of the data using
normal load and store instructions. Figure 2 shows two examples of high-level abstractions which could
be provided to programs to access persistent data in a single-level store system. In it, a program creates
a persistent file (Figure 2 left) or object (Figure 2 right) using the handle “file.dat” and allocates an array
of integers in it. Later—perhaps after the application or system is restarted—when the program executes
the updateValue() function, the system retrieves the persistent data for the same handle, and the program
modifies its state. With such an abstraction, a single-level store can eliminate the OS system calls to transfer
data to and from disk. In addition, it eliminates the need for a file system to track physical file addresses
by traversing metadata (such as inodes) in the OS. In this way, single-level stores provide the opportunity to
design a simple and efficient persistent data lookup system in hardware. We plan to research efficient ways
to map files or objects to the virtual address space. In such a hardware-based design, the processor would
manage how data handles correspond to physical addresses. Note that, single-level stores can use alternative
design choices, such as segments, to provide the high-level abstraction instead of files or objects. Regardless,
segments, files, or objects will be mapped to physical addresses with hardware support. Prior works tried to
make file lookup and update efficient in software [27, 28] in the presence of persistent memory, and other
works proposed using complex and potentially inefficient hardware directory techniques (e.g., [15]). Our
goal is to design fast and efficient techniques that take into account the byte addressability of persistent
memory in a single-level store. To this end, we will research the following:
• The efficient use of hash table and B-tree indices for locating files in a single-level store.
• How techniques such as key-value stores can provide fast and efficient lookups in single-level stores.
• Policies for intelligently caching some entries of these indices in hardware to improve system perfor-

mance.
Every access in the single-level store needs to be translated from a virtual address used by a program to

a physical address used to access a device. We will investigate how to efficiently manage address translation
so that locating data is simple and fast. We intend to explore the following directions to solve this problem:
• We will design mechanisms to predict access patterns based on program behavior and pre-compute

virtual-to-physical address translations. We are interested in answering questions such as: What is the
pattern of data accesses to a single-level store, and how can prefetching techniques be redesigned with
single-level stores in mind to enable efficient address translation? How can simple application-level or
profile-based hints on access patterns be communicated to and used by hardware to make address translation
and prefetching efficient?
• We will design efficient translation lookaside buffer (TLB)-like structures which will cache the trans-

lation between virtual and physical addresses but for a much larger amount of physical memory than in
existing systems. In the presence of such a single-level store, many disparate data accesses could need a
large translation table to be serviced effectively. To reduce overhead of such hardware, we are interested in
exploring whether TLB-like structures should favor storing translations only for particular classes of data,
such as data with locality or data which is on the critical path of execution, which get the most benefit
out of the limited structure space. In addition, we will investigate centralized versus distributed translation
structures to design techniques that, for example, buffer private data translation entries near the processor,
while distributing shared entries across processors to minimize translation overheads. Such translation struc-

1 int main(void) {
2 // data in file.dat is persistent
3 FILE myData = "file.dat";
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 FILE myData = "file.dat";
8 myData[n] = value; // value is persistent
9 }

1 int main(void) {
2 // data in file.dat is persistent
3 int *myData = new PersistentObject("file.dat");
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 int *myData = PersistentObject.open("file.dat");
8 myData[n] = value; // value is persistent
9 }

Figure 2: Sample program with access to file-based (left) and object-based (right) persistent data.

5

Load Store

DRAM Flash NVM HDD

Persistent Memory Manager
Hardware

Software
Data Layout, Persistence, Metadata, Security, ...

Hints from SW/OS/runtime

PMM	uses	access	and	hint	information	to	allocate,	locate,	migrate	
and	access	data	in	the	heterogeneous	array	of	devices

Persistent objects

Performance Benefits of a Single-Level Store

190

0

0.2

0.4

0.6

0.8

1.0

HDD 2-level NVM 2-level Persistent Memory

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

User CPU User Memory Syscall CPU Syscall I/O

0.044
0.009

~5X

~24X

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

Energy Benefits of a Single-Level Store

191

0

0.2

0.4

0.6

0.8

1.0

HDD 2-level NVM 2-level Persistent Memory

Fr
ac

tio
n

of
 T

ot
al

En
er

gy

User CPU Syscall CPU DRAM NVM HDD

0.065
0.013

~5X

~16X

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

On Persistent Memory Benefits & Challenges
n Justin Meza, Yixin Luo, Samira Khan, Jishen Zhao, Yuan

Xie, and Onur Mutlu,
"A Case for Efficient Hardware-Software
Cooperative Management of Storage and Memory"
Proceedings of the 5th Workshop on Energy-Efficient
Design (WEED), Tel-Aviv, Israel, June 2013. Slides (pptx)
Slides (pdf)

192

Challenge and Opportunity

Combined
Memory & Storage

193

Challenge and Opportunity

194

A Unified Interface to
All Data

Another Key Challenge in Persistent Memory

Programming Ease
to Exploit Persistence

195

Hardware Support for Crash Consistency

196

n Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu,
and Onur Mutlu,
"ThyNVM: Enabling Software-Transparent Crash Consistency
in Persistent Memory Systems"
Proceedings of the 48th International Symposium on
Microarchitecture (MICRO), Waikiki, Hawaii, USA, December 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster
(pptx) (pdf)]
[Source Code]

Tools/Libraries to Help Programmers
n Himanshu Chauhan, Irina Calciu, Vijay Chidambaram, Eric

Schkufza, Onur Mutlu, and Pratap Subrahmanyam,
"NVMove: Helping Programmers Move to Byte-Based
Persistence"
Proceedings of the 4th Workshop on Interactions of NVM/Flash
with Operating Systems and Workloads (INFLOW), Savannah,
GA, USA, November 2016.
[Slides (pptx) (pdf)]

197

Data Structures for In-Memory Processing
n Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu,

"Concurrent Data Structures for Near-Memory Computing"
Proceedings of the 29th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), Washington, DC, USA, July 2017.
[Slides (pptx) (pdf)]

198

Concluding Remarks

199

A Quote from A Famous Architect
n “architecture […] based upon principle, and not upon

precedent”

200

Precedent-Based Design?
n “architecture […] based upon principle, and not upon

precedent”

201

Principled Design
n “architecture […] based upon principle, and not upon

precedent”

202

203

The Overarching Principle

204

Another Example: Precedent-Based Design

205Source: http://cookiemagik.deviantart.com/art/Train-station-207266944

Principled Design

206Source: By Toni_V, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=4087256

Another Principled Design

207Source: By Martín Gómez Tagle - Lisbon, Portugal, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=13764903
Source: http://www.arcspace.com/exhibitions/unsorted/santiago-calatrava/

Principle Applied to Another Structure

208
Source: https://www.dezeen.com/2016/08/29/santiago-calatrava-oculus-world-trade-center-transportation-hub-new-york-photographs-hufton-crow/
Source: By 準建築人手札網站 Forgemind ArchiMedia - Flickr: IMG_2489.JPG, CC BY 2.0,
https://commons.wikimedia.org/w/index.php?curid=31493356, https://en.wikipedia.org/wiki/Santiago_Calatrava

The Overarching Principle

209

Overarching Principles for Computing?

210Source:	http://spectrum.ieee.org/image/MjYzMzAyMg.jpeg

Concluding Remarks
n It is time to design principled system architectures to solve

the memory scaling problem

n Discover design principles for fundamentally secure and
reliable computer architectures

n Design complete systems to be balanced and energy-efficient,
i.e., data-centric (or memory-centric) and low latency

n Enable new and emerging memory architectures

n This can
q Lead to orders-of-magnitude improvements
q Enable new applications & computing platforms
q …

211

The Future of New Memory is Bright

n Regardless of challenges
q in underlying technology and overlying problems/requirements

212

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

Can enable:

- Orders of magnitude
improvements

- New applications and
computing systems

Yet, we have to

- Think across the stack

- Design enabling systems

If In Doubt, See Other Doubtful Technologies
n A very “doubtful” emerging technology

q for at least two decades

213https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

Onur Mutlu
omutlu@gmail.com

https://people.inf.ethz.ch/omutlu
December 4, 2017

INESC-ID Distinguished Lecture (Lisbon)

Rethinking Memory System Design
(and the Platforms We Design Around It)

Open Problems

215

For More Open Problems, See (I)
n Onur Mutlu and Lavanya Subramanian,

"Research Problems and Opportunities in Memory
Systems"
Invited Article in Supercomputing Frontiers and Innovations
(SUPERFRI), 2014/2015.

216https://people.inf.ethz.ch/omutlu/pub/memory-systems-research_superfri14.pdf

For More Open Problems, See (II)

217https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf

n Onur Mutlu,
"The RowHammer Problem and Other Issues We May Face as
Memory Becomes Denser"
Invited Paper in Proceedings of the Design, Automation, and Test in
Europe Conference (DATE), Lausanne, Switzerland, March 2017.
[Slides (pptx) (pdf)]

For More Open Problems, See (III)
n Onur Mutlu,

"Memory Scaling: A Systems Architecture
Perspective"
Technical talk at MemCon 2013 (MEMCON), Santa Clara,
CA, August 2013. [Slides (pptx) (pdf)]
[Video] [Coverage on StorageSearch]

218https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf

For More Open Problems, See (IV)
n Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and

Onur Mutlu,
"Error Characterization, Mitigation, and Recovery in
Flash Memory Based Solid State Drives"
to appear in Proceedings of the IEEE, 2017.
[Preliminary arxiv.org version]

219https://arxiv.org/pdf/1706.08642.pdf

Reducing Memory Latency

220

1

10

100

1999 2003 2006 2008 2011 2013 2014 2015 2016 2017

D
R

A
M

 Im
pr

ov
em

en
t

(lo
g)

Capacity Bandwidth Latency

Main Memory Latency Lags Behind

128x

20x

1.3x

Memory latency remains almost constant

A Closer Look …

222

Chang+, “Understanding Latency Variation in Modern DRAM Chips: Experimental
Characterization, Analysis, and Optimization",” SIGMETRICS 2016.

DRAM Latency Is Critical for Performance

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15;
Awan+, BDCloud’15]

Datacenter Workloads
[Kanev+ (Google), ISCA’15]

In-memory Databases
[Mao+, EuroSys’12;
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing
[Xu+, IISWC’12; Umuroglu+, FPL’15]

DRAM Latency Is Critical for Performance

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15;
Awan+, BDCloud’15]

Datacenter Workloads
[Kanev+ (Google), ISCA’15]

In-memory Databases
[Mao+, EuroSys’12;
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing
[Xu+, IISWC’12; Umuroglu+, FPL’15]

Long memory latency → performance bottleneck

Why the Long Latency?

n Design of DRAM uArchitecture
q Goal: Maximize capacity/area, not minimize latency

n “One size fits all” approach to latency specification
q Same latency parameters for all temperatures
q Same latency parameters for all DRAM chips (e.g., rows)
q Same latency parameters for all parts of a DRAM chip
q Same latency parameters for all supply voltage levels
q Same latency parameters for all application data
q …

225

Latency Variation in Memory Chips

226

HighLow
DRAM Latency

DRAM BDRAM A DRAM C

Slow cells

Heterogeneous manufacturing & operating conditions→	
latency variation in timing parameters

DRAM Characterization Infrastructure

227Kim+, “Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

HeaterFPGAs FPGAs

DRAM Characterization Infrastructure

n Hasan Hassan et al., SoftMC: A
Flexible and Practical Open-
Source Infrastructure for
Enabling Experimental DRAM
Studies, HPCA 2017.

n Flexible
n Easy to Use (C++ API)
n Open-source

github.com/CMU-SAFARI/SoftMC

228

SoftMC: Open Source DRAM Infrastructure

n https://github.com/CMU-SAFARI/SoftMC

229

Tackling the Fixed Latency Mindset
n Reliable operation latency is actually very heterogeneous

q Across temperatures, chips, parts of a chip, voltage levels, …

n Idea: Dynamically find out and use the lowest latency one
can reliably access a memory location with
q Adaptive-Latency DRAM [HPCA 2015]
q Flexible-Latency DRAM [SIGMETRICS 2016]
q Design-Induced Variation-Aware DRAM [SIGMETRICS 2017]
q Voltron [SIGMETRICS 2017]
q ...

n We would like to find sources of latency heterogeneity and
exploit them to minimize latency

230

231

Adaptive-Latency	DRAM

• Key	idea
– Optimize	DRAM	timing	parameters	online

• Two	components
– DRAM	manufacturer	provides	multiple	sets	of	
reliable	DRAM	timing	parameters	at	different	
temperatures	for	each	DIMM

– System	monitors	DRAM	temperature	&	uses	
appropriate	DRAM	timing	parameters

reliable	DRAM	timing	parameters

DRAM	temperature

Lee+,	“Adaptive-Latency	DRAM:	Optimizing	DRAM	Timing	for	the	Common-Case,”	HPCA	
2015.

232

Latency	Reduction	Summary	of	115	DIMMs
• Latency	reduction	for	read	&	write	(55°C)

– Read	Latency:	32.7%
–Write	Latency:	55.1%

• Latency	reduction	for	each	timing	
parameter	(55°C)	
– Sensing:	17.3%
– Restore:	37.3% (read),	54.8% (write)
– Precharge:	35.2%

Lee+,	“Adaptive-Latency	DRAM:	Optimizing	DRAM	Timing	for	the	Common-Case,”	HPCA	
2015.

233

AL-DRAM:	Real	System	Evaluation
• System

– CPU:	AMD	4386	(8	Cores,	3.1GHz,	8MB	LLC)
– DRAM:	4GByte	DDR3-1600	(800Mhz	Clock)
– OS:	Linux
– Storage:	128GByte	SSD

• Workload
– 35	applications	from	SPEC,	STREAM,	Parsec,	
Memcached,	Apache,	GUPS

234

0%
5%

10%
15%
20%
25%

so
pl
ex

m
cf

m
ilc

lib
q

lb
m

ge
m
s

co
py

s.
cl
us
te
r

gu
ps

no
n-
in
te
ns
iv
e

in
te
ns
iv
e

al
l-w

or
kl
oa
ds

Single	Core Multi	Core

0%
5%

10%
15%
20%
25%

so
pl
ex

m
cf

m
ilc

lib
q

lb
m

ge
m
s

co
py

s.
cl
us
te
r

gu
ps

no
n-
in
te
ns
iv
e

in
te
ns
iv
e

al
l-w

or
kl
oa
ds

Single	Core Multi	Core

1.4%
6.7%

0%
5%

10%
15%
20%
25%

so
pl
ex

m
cf

m
ilc

lib
q

lb
m

ge
m
s

co
py

s.
cl
us
te
r

gu
ps

no
n-
in
te
ns
iv
e

in
te
ns
iv
e

al
l-w

or
kl
oa
ds

Single	Core Multi	Core

5.0%

AL-DRAM:	Single-Core	Evaluation

AL-DRAM	improves	single-core	performance	
on	a	real	system

Pe
rf
or
m
an
ce
	Im

pr
ov
em

en
t Average

Improvement

al
l-3

5-
w
or
kl
oa
d

235

0%
5%

10%
15%
20%
25%

so
pl
ex

m
cf

m
ilc

lib
q

lb
m

ge
m
s

co
py

s.
cl
us
te
r

gu
ps

no
n-
in
te
ns
iv
e

in
te
ns
iv
e

al
l-w

or
kl
oa
ds

Single	Core Multi	Core

0%
5%

10%
15%
20%
25%

so
pl
ex

m
cf

m
ilc

lib
q

lb
m

ge
m
s

co
py

s.
cl
us
te
r

gu
ps

no
n-
in
te
ns
iv
e

in
te
ns
iv
e

al
l-w

or
kl
oa
ds

Single	Core Multi	Core

0%
5%

10%
15%
20%
25%

so
pl
ex

m
cf

m
ilc

lib
q

lb
m

ge
m
s

co
py

s.
cl
us
te
r

gu
ps

no
n-
in
te
ns
iv
e

in
te
ns
iv
e

al
l-w

or
kl
oa
ds

Single	Core Multi	Core
14.0%

2.9%
0%
5%

10%
15%
20%
25%

so
pl
ex

m
cf

m
ilc

lib
q

lb
m

ge
m
s

co
py

s.
cl
us
te
r

gu
ps

no
n-
in
te
ns
iv
e

in
te
ns
iv
e

al
l-w

or
kl
oa
ds

Single	Core Multi	Core

10.4%

AL-DRAM:	Multi-Core	Evaluation

AL-DRAM	provides	higher	performance	on
multi-programmed	&	multi-threaded	workloads

Pe
rf
or
m
an
ce
	Im

pr
ov
em

en
t Average				

Improvement

al
l-3

5-
w
or
kl
oa
d

Reducing Latency Also Reduces Energy

n AL-DRAM reduces DRAM power consumption by 5.8%

n Major reason: reduction in row activation time

236

More on Adaptive-Latency DRAM
n Donghyuk Lee, Yoongu Kim, Gennady Pekhimenko, Samira Khan,

Vivek Seshadri, Kevin Chang, and Onur Mutlu,
"Adaptive-Latency DRAM: Optimizing DRAM Timing for
the Common-Case"
Proceedings of the 21st International Symposium on High-
Performance Computer Architecture (HPCA), Bay Area, CA,
February 2015.
[Slides (pptx) (pdf)] [Full data sets]

237

Heterogeneous Latency within A Chip

238

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25
N

or
m

al
iz

ed
 P

er
fo

rm
an

ce

40 Workloads

Baseline (DDR3)
FLY-DRAM (D1)
FLY-DRAM (D2)
FLY-DRAM (D3)
Upper Bound

17.6%
19.5%19.7%

13.3%

Chang+, “Understanding Latency Variation in Modern DRAM Chips: Experimental
Characterization, Analysis, and Optimization",” SIGMETRICS 2016.

Analysis of Latency Variation in DRAM Chips
n Kevin Chang, Abhijith Kashyap, Hasan Hassan, Samira Khan, Kevin Hsieh,

Donghyuk Lee, Saugata Ghose, Gennady Pekhimenko, Tianshi Li, and
Onur Mutlu,
"Understanding Latency Variation in Modern DRAM Chips:
Experimental Characterization, Analysis, and Optimization"
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Antibes Juan-Les-Pins,
France, June 2016.
[Slides (pptx) (pdf)]
[Source Code]

239

240

Inherently	fast

inherently	slow

What	Is	Design-Induced	Variation?
slowfast

slow
fast

Systematic	variation in	cell	access	times
caused	by	the	physical	organization of	DRAM

sense	amplifiers

w
ordline

drivers

across	row
distance	from	
sense	amplifier

across	column

distance	from	
wordline driver

241

DIVA Online	Profiling
inherently	slow

Profile	only slow	regions	to	determine	min.	latency
àDynamic&	low	cost	latency	optimization

sense	amplifier

w
ordline

driver

Design-Induced-Variation-Aware

242

inherently	slow

DIVA Online	Profiling
slow	cells		

design-induced
variation

process
variation

localized	errorrandom	error

online	profilingerror-correcting	
code

Combine	error-correcting	codes	& online	profiling
à Reliably reduce	DRAM	latency

sense	amplifier

w
ordline

driver

Design-Induced-Variation-Aware

243

DIVA-DRAM	Reduces	Latency
Read Write

31.2%
25.5%

35.1%34.6%36.6%35.8%

0%

10%

20%

30%

40%

50%

55°C 85°C 55°C 85°C 55°C 85°C

AL-DRAM AVA	Profiling AVA	Profiling	
+	Shuffling

La
te
nc
y	
Re
du

ct
io
n

DIVADIVA

36.6%

27.5%

39.4%38.7%
41.3%40.3%

0%

10%

20%

30%

40%

50%

55°C 85°C 55°C 85°C 55°C 85°C

AL-DRAM AVA	Profiling AVA	Profiling	
+	Shuffling

DIVADIVA

DIVA-DRAM	reduces	latency	more	aggressively
and	uses	ECC	to	correct	random	slow	cells

Design-Induced Latency Variation in DRAM
n Donghyuk Lee, Samira Khan, Lavanya Subramanian, Saugata Ghose,

Rachata Ausavarungnirun, Gennady Pekhimenko, Vivek Seshadri, and
Onur Mutlu,
"Design-Induced Latency Variation in Modern DRAM Chips:
Characterization, Analysis, and Latency Reduction Mechanisms"
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL,
USA, June 2017.

244

Voltron: Exploiting the
Voltage-Latency-Reliability

Relationship

245

Executive Summary
• DRAM (memory) power is significant in today’s systems

– Existing low-voltage DRAM reduces voltage conservatively

• Goal: Understand and exploit the reliability and latency behavior of
real DRAM chips under aggressive reduced-voltage operation

• Key experimental observations:
– Huge voltage margin -- Errors occur beyond some voltage
– Errors exhibit spatial locality
– Higher operation latency mitigates voltage-induced errors

• Voltron: A new DRAM energy reduction mechanism
– Reduce DRAM voltage without introducing errors
– Use a regression model to select voltage that does not degrade

performance beyond a chosen target à 7.3% system energy reduction

246

Analysis of Latency-Voltage in DRAM Chips
n Kevin Chang, A. Giray Yaglikci, Saugata Ghose, Aditya Agrawal, Niladrish

Chatterjee, Abhijith Kashyap, Donghyuk Lee, Mike O'Connor, Hasan
Hassan, and Onur Mutlu,
"Understanding Reduced-Voltage Operation in Modern DRAM
Devices: Experimental Characterization, Analysis, and
Mechanisms"
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL,
USA, June 2017.

247

And, What If …

n … we can sacrifice reliability of some data to access it with
even lower latency?

248

Challenge and Opportunity for Future

Fundamentally
Low Latency

Computing Architectures

249

Tiered Latency DRAM

250

251

DRAM	Latency	=	Subarray Latency +	I/O	Latency

What	Causes	the	Long	Latency?
DRAM	Chip

channel

cell	array

I/O

DRAM	Chip

channel

I/O

subarray

DRAM	Latency	=	Subarray Latency	+	I/O	Latency

Dominant
Su
ba

rr
ay

I/
O

252

Why	is	the	Subarray So	Slow?
Subarray

ro
w
	d
ec
od

er

sense	amplifier

ca
pa
ci
to
r

accesstransistor

wordline

bi
tli
ne

Cell

large	sense	amplifier

bi
tli
ne

:	5
12
	ce

lls

cell

• Long	bitline
– Amortizes	sense	amplifier	cost	à Small	area
– Large	bitline capacitance	à High	latency	&	power

se
ns
e	
am

pl
ifi
er

ro
w
	d
ec
od

er

253

Trade-Off:	Area	(Die	Size)	vs.	Latency

Faster

Smaller

Short	BitlineLong	Bitline

Trade-Off:	Area	vs.	Latency

254

Trade-Off:	Area	(Die Size)	vs.	Latency

0

1

2

3

4

0 10 20 30 40 50 60 70

N
or
m
al
ize

d	
DR

AM
	A
re
a

Latency	(ns)

64

32

128
256 512	cells/bitline

Commodity	
DRAM

Long	Bitline

Ch
ea
pe

r

Faster

Fancy	DRAM
Short	Bitline

255

Short	Bitline

Low	Latency	

Approximating	the	Best	of	Both	Worlds
Long	Bitline
Small	Area	
Long	Bitline

Low	Latency	

Short	BitlineOur	Proposal
Small	Area	

Short	Bitlineè Fast
Need	

Isolation
Add	Isolation	
Transistors

High	Latency

Large	Area

256

Approximating	the	Best	of	Both	Worlds

Low	Latency	

Our	Proposal
Small	Area	

Long	Bitline
Small	Area	
Long	Bitline

High	Latency

Short	Bitline

Low	Latency	

Short	Bitline
Large	Area

Tiered-Latency	DRAM

Low	Latency

Small	area	
using	long	
bitline

257

0%

50%

100%

150%

0%

50%

100%

150%

Commodity	DRAM	vs.	TL-DRAM	[HPCA	2013]	
La
te
nc
y

Po
w
er

–56%

+23%

–51%

+49%
• DRAM	Latency	(tRC) • DRAM	Power

• DRAM	Area	Overhead
~3%:	mainly	due	to	the	isolation	transistors

TL-DRAM
Commodity	

DRAM
Near							Far Commodity	

DRAM
Near							Far
TL-DRAM

(52.5ns)

258

Trade-Off:	Area	(Die-Area)	vs.	Latency

0

1

2

3

4

0 10 20 30 40 50 60 70

N
or
m
al
ize

d	
DR

AM
	A
re
a

Latency	(ns)

64

32

128
256 512	cells/bitlineCh

ea
pe

r

Faster

Near	Segment Far	Segment

259

Leveraging	Tiered-Latency	DRAM	
• TL-DRAM	is	a	substrate that	can	be	leveraged	by	
the	hardware	and/or	software

• Many	potential	uses
1. Use	near	segment	as	hardware-managed	inclusive
cache	to	far	segment

2. Use	near	segment	as	hardware-managed	exclusive
cache	to	far	segment

3. Profile-based	page	mapping	by	operating	system
4. Simply	replace	DRAM	with	TL-DRAM	

Lee+,	“Tiered-Latency	DRAM:	A	Low	Latency	and	Low	Cost	DRAM	Architecture,”	HPCA	2013.

260

0%

20%

40%

60%

80%

100%

120%

1	(1-ch) 2	(2-ch) 4	(4-ch)
0%

20%

40%

60%

80%

100%

120%

1	(1-ch) 2	(2-ch) 4	(4-ch)

Performance	&	Power	Consumption		
11.5%

N
or
m
al
ize

d	
Pe

rf
or
m
an

ce

Core-Count	(Channel)
N
or
m
al
ize

d	
Po

w
er
Core-Count	(Channel)

10.7%12.4%
–23% –24% –26%

Using	near	segment	as	a	cache	improves	
performance	and	reduces	power	consumption

Lee+,	“Tiered-Latency	DRAM:	A	Low	Latency	and	Low	Cost	DRAM	Architecture,”	HPCA	2013.

More on PIM

261

Eliminating the Adoption Barriers

How to Enable Adoption
of Processing in Memory

262

Barriers to Adoption of PIM

1. Functionality of and applications for PIM

2. Ease of programming (interfaces and compiler/HW support)

3. System support: coherence & virtual memory

4. Runtime systems for adaptive scheduling, data mapping,
access/sharing control

5. Infrastructures to assess benefits and feasibility

263

We Need to Revisit the Entire Stack

264

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

Key Challenge 1:	Code	Mapping

Logic layer
SM

Crossbar switch

Vault
Ctrl

…. Vault
Ctrl

Logic layer

?

Main GPU

3D-stacked memory
(memory stack)

• Challenge 1: Which operations should be executed
in memory vs. in CPU?

?
SM (Streaming Multiprocessor)

Key Challenge 2: Data Mapping

Logic layer
SM

Crossbar switch

Vault
Ctrl

…. Vault
Ctrl

Logic layer

Main GPU

3D-stacked memory
(memory stack)

• Challenge 2: How should data be mapped to
different 3D memory stacks?

SM (Streaming Multiprocessor)

How to Do the Code and Data Mapping?
n Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike

O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems"
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

267

How to Schedule Code?
n Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.

Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities"
Proceedings of the 25th International Conference on Parallel
Architectures and Compilation Techniques (PACT), Haifa, Israel,
September 2016.

268

Challenge: Coherence for Hybrid CPU-PIM Apps

269

Traditional
coherence

No coherence
overhead

How to Maintain Coherence?

n Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism
for Processing-in-Memory"
IEEE Computer Architecture Letters (CAL), June 2016.

270

How to Support Virtual Memory?
n Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali

Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation"
Proceedings of the 34th IEEE International Conference on Computer
Design (ICCD), Phoenix, AZ, USA, October 2016.

271

How to Design Data Structures for PIM?
n Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu,

"Concurrent Data Structures for Near-Memory Computing"
Proceedings of the 29th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), Washington, DC, USA, July 2017.
[Slides (pptx) (pdf)]

272

Simulation Infrastructures for PIM

n Ramulator extended for PIM
q Flexible and extensible DRAM simulator
q Can model many different memory standards and proposals
q Kim+, “Ramulator: A Flexible and Extensible DRAM

Simulator”, IEEE CAL 2015.
q https://github.com/CMU-SAFARI/ramulator

273

An FPGA-based Test-bed for PIM?

n Hasan Hassan et al., SoftMC: A
Flexible and Practical Open-
Source Infrastructure for
Enabling Experimental DRAM
Studies HPCA 2017.

n Flexible
n Easy to Use (C++ API)
n Open-source

github.com/CMU-SAFARI/SoftMC

274

Some PIM Applications

275

Goals

n Understand the primitives, architectures, and benefits of
PIM by carefully examining many important workloads

n Develop a common workload suite for PIM research

276

Genome Read In-Memory (GRIM) Filter:
Fast Location Filtering in DNA Read Mapping

with Emerging Memory Technologies

Jeremie Kim,
Damla Senol, Hongyi Xin, Donghyuk Lee,

Saugata Ghose, Mohammed Alser, Hasan Hassan,
Oguz Ergin, Can Alkan, and Onur Mutlu

Executive Summary
n Genome Read Mapping is a very important problem and is the first

step in many types of genomic analysis
q Could lead to improved health care, medicine, quality of life

n Read mapping is an approximate string matching problem
q Find the best fit of 100 character strings into a 3 billion character dictionary
q Alignment is currently the best method for determining the similarity between

two strings, but is very expensive

n We propose an in-memory processing algorithm GRIM-Filter for
accelerating read mapping, by reducing the number of required
alignments

n We implement GRIM-Filter using in-memory processing within 3D-
stacked memory and show up to 3.7x speedup.

278

GRIM-Filter in 3D-stacked DRAM

n The layout of bit vectors in a bank enables filtering many bins in parallel
n Customized logic for accumulation and comparison per genome segment

q Low area overhead, simple implementation

279

GRIM-Filter Performance

280

Time (x1000
seconds)

1.8x-3.7x performance benefit across real data sets

Benchmarks and their Execution Times

GRIM-Filter False Positive Rate

281

False Positive
Rate (%)

5.6x-6.4x False Positive reduction across real data sets

Benchmarks and their False Positive Rates

Conclusions

n We propose an in memory filter algorithm to accelerate end-
to-end genome read mapping by reducing the number of
required alignments

n Compared to the previous best filter
q We observed 1.8x-3.7x speedup
q We observed 5.6x-6.4x fewer false positives

n GRIM-Filter is a universal filter that can be applied to any
genome read mapper

282

PIM-Based DNA Sequence Analysis
n Jeremie Kim, Damla Senol, Hongyi Xin, Donghyuk Lee, Mohammed

Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"Genome Read In-Memory (GRIM) Filter: Fast Location Filtering
in DNA Read Mapping Using Emerging Memory Technologies"
Pacific Symposium on Biocomputing (PSB) Poster Session, Hawaii,
January 2017.
[Poster (pdf) (pptx)] [Abstract (pdf)]

n To Appear in APBC 2018 and BMC Genomics 2018.

283

PIM-Enabled Instructions

284

PEI: PIM-Enabled Instructions (Ideas)
n Goal: Develop mechanisms to get the most out of near-data

processing with minimal cost, minimal changes to the system, no
changes to the programming model

n Key Idea 1: Expose each PIM operation as a cache-coherent,
virtually-addressed host processor instruction (called PEI) that
operates on only a single cache block
q e.g., __pim_add(&w.next_rank,	value)	à pim.add r1,	(r2)
q No changes sequential execution/programming model
q No changes to virtual memory
q Minimal changes to cache coherence
q No need for data mapping: Each PEI restricted to a single memory module

n Key Idea 2: Dynamically decide where to execute a PEI (i.e., the
host processor or PIM accelerator) based on simple locality
characteristics and simple hardware predictors
q Execute each operation at the location that provides the best performance

285

Simple PIM Operations as ISA Extensions (I)

286

Main	Memory

w.next_rankw.next_rank

for (v:	graph.vertices)	{
value	=	weight	*	v.rank;
for (w:	v.successors)	{
w.next_rank +=	value;

}
}

Host	Processor

w.next_rankw.next_rank
64	bytes	in
64	bytes	out

Conventional	Architecture

Simple PIM Operations as ISA Extensions (II)

287

Main	Memory

w.next_rankw.next_rank

Host	Processor

value
8 bytes	in
0 bytes	out

In-Memory	Addition

for (v:	graph.vertices)	{
value	=	weight	*	v.rank;
for (w:	v.successors)	{
__pim_add(&w.next_rank, value);

}
}

pim.add r1,	(r2)

Always Executing in Memory? Not A Good Idea

288

-20%
-10%
0%
10%
20%
30%
40%
50%
60%

p2
p-
Gn

u
te
lla
31

so
c-
Sl
as
h

do
t0
81
1

w
eb

-
St
an
fo
rd

am
az
on

-
20
08

fr
w
ik
i-

20
13 w
ik
i-

Ta
lk

ci
t-

Pa
te
nt
s

so
c-
Li
ve

Jo
ur
na
l1

ljo
ur
na
l-

20
08

Sp
ee
du

p

More	Vertices

Increased
Memory	Bandwidth	

Consumption	
Caching	very	effective

Reduced	Memory	Bandwidth	
Consumption	due	to
In-Memory	Computation

PEI: PIM-Enabled Instructions: Examples

289

n Executed either in memory or in the processor: dynamic decision
q Low-cost locality monitoring for a single instruction

n Cache-coherent, virtually-addressed, single cache block only
n Atomic between different PEIs
n Not atomic with normal instructions (use pfence for ordering)

PIM-Enabled Instructions

n Key to practicality: single-cache-block restriction
q Each PEI can access at most one last-level cache block
q Similar restrictions exist in atomic instructions

n Benefits
q Localization: each PEI is bounded to one memory module
q Interoperability: easier support for cache coherence and

virtual memory
q Simplified locality monitoring: data locality of PEIs can be

identified simply by the cache control logic

Example PEI Microarchitecture

291

Out-Of-Order	
Core

L1
	C
ac
he

L2
	C
ac
he

La
st
-L
ev
el
	

Ca
ch
e

HM
C	
Co

nt
ro
lle
r

N
et
w
or
k

DRAM	
Controller

DRAM	
Controller

DRAM	
Controller

Host Processor 3D-stacked Memory
…

PCU	(PEI	
Computation	Unit)

PCU

PCU

PCU

PIM	
Directory

Locality	
Monitor

PMU (PEI
Mgmt Unit)

Example PEI uArchitecture

Evaluated Data-Intensive Applications

n Ten emerging data-intensive workloads
q Large-scale graph processing

n Average teenage follower, BFS, PageRank, single-source shortest
path, weakly connected components

q In-memory data analytics
n Hash join, histogram, radix partitioning

q Machine learning and data mining
n Streamcluster, SVM-RFE

n Three input sets (small, medium, large) for each workload
to show the impact of data locality

PEI Performance Delta: Large Data Sets

293

0%

10%

20%

30%

40%

50%

60%

70%

ATF BFS PR SP WCC HJ HG RP SC SVM GM

PIM-Only Locality-Aware

(Large Inputs, Baseline: Host-Only)

PEI Energy Consumption

294

0

0.5

1

1.5

Small Medium Large

Cache HMC	Link DRAM
Host-side	PCU Memory-side	PCU PMU

Host-Only
PIM-Only
Locality-Aware

More on PIM-Enabled Instructions
n Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,

"PIM-Enabled Instructions: A Low-Overhead,
Locality-Aware Processing-in-Memory Architecture"
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

More on RowHammer and
Memory Reliability

296

A Deeper Dive into
DRAM Reliability Issues

297

Root	Causes	of	Disturbance	Errors
• Cause	1:	Electromagnetic	coupling

– Toggling	the	wordline voltage	briefly	increases	the	
voltage	of	adjacent	wordlines

– Slightly	opens	adjacent	rows	à Charge	leakage

• Cause	2:	Conductive	bridges
• Cause	3:	Hot-carrier	injection

Confirmed	by	at	least	one	manufacturer

298

1. Most	Modules	Are	at	Risk
2. Errors	vs.	Vintage
3. Error	=	Charge	Loss
4. Adjacency:	Aggressor	&	Victim
5. Sensitivity	Studies
6. Other	Results	in	Paper
7. Solution	Space

299

RowHammer Characterization Results

Flipping	Bits	in	Memory	Without	Accessing	Them:	An	Experimental	Study	of	DRAM	
Disturbance	Errors, (Kim	et	al.,	ISCA	2014)

4.	Adjacency:	Aggressor	&	Victim

Most	aggressors	&	victims	are	adjacent
300

Note:	For	three	modules	with	the	most	errors	(only	first	bank)

Ad
ja
ce
nt

Ad
ja
ce
nt

Ad
ja
ce
nt

Non-AdjacentNon-Adjacent

Note:	For	three	modules	with	the	most	errors	(only	first	bank)

N
ot
	A
llo
w
ed

Less	frequent	accesses	à Fewer	errors

55
ns

50
0n
s

301

❶Access	Interval	(Aggressor)

Note:	Using	three	modules	with	the	most	errors	(only	first	bank)

More	frequent	refreshes	à Fewer	errors

~7x frequent

64
m
s

302

❷Refresh	Interval

RowStripe

~RowStripe

❸Data	Pattern

111111
111111
111111
111111

000000
000000
000000
000000

000000
111111
000000
111111

111111
000000
111111
000000

Solid

~Solid

Errors	affected	by	data	stored	in	other	cells	
303

6.	Other	Results	(in	Paper)
• Victim	Cells	≠Weak	Cells	(i.e.,	leaky	cells)

– Almost	no	overlap	between	them

• Errors	not	strongly	affected	by	temperature
– Default	temperature:	50°C
– At	30°C and	70°C,	number	of	errors	changes	<15%

• Errors	are	repeatable
– Across	ten	iterations	of	testing,	>70% of	victim	cells	
had	errors	in	every	iteration

304

6.	Other	Results	(in	Paper)	cont’d
• As	many	as	4 errors	per	cache-line

– Simple	ECC	(e.g.,	SECDED)	cannot	prevent	all	errors

• Number	of	cells	&	rows	affected	by	aggressor
– Victims	cells	per	aggressor:		≤110
– Victims	rows	per	aggressor:		≤9

• Cells	affected	by	two	aggressors	on	either	side
– Very	small	fraction	of	victim	cells	(<100)	have	an	
error	when	either	one	of	the	aggressors	is	toggled

305

Some Potential Solutions

306

Cost• Make	better	DRAM	chips

Cost,	Power• Sophisticated	ECC

Power,	Performance• Refresh	frequently

Cost,	Power,	Complexity• Access	counters	

Naive	Solutions
❶Throttle	accesses	to	same	row

– Limit	access-interval:	≥500ns
– Limit	number	of	accesses:	≤128K (=64ms/500ns)

❷Refresh	more	frequently
– Shorten	refresh-interval	by	~7x

Both	naive	solutions	introduce	significant	
overhead	in	performance and	power

307

Apple’s Patch for RowHammer
n https://support.apple.com/en-gb/HT204934

HP and Lenovo released similar patches

Our	Solution	to	RowHammer
• PARA:	Probabilistic	Adjacent	Row	Activation

• Key	Idea
– After	closing	a	row,	we	activate	(i.e.,	refresh)	one	of	
its	neighbors	with	a	low	probability:	p	=	0.005

• Reliability	Guarantee
– When	p=0.005,	errors	in	one	year:	9.4×10-14

– By	adjusting	the	value	of	p,	we	can	vary	the	strength	
of	protection	against	errors

309

Advantages	of	PARA
• PARA	refreshes	rows	infrequently

– Low	power
– Low	performance-overhead

• Average	slowdown:	0.20% (for	29 benchmarks)
• Maximum	slowdown:	0.75%

• PARA	is	stateless
– Low	cost
– Low	complexity

• PARA	is	an	effective	and	low-overhead	solution	
to	prevent	disturbance	errors

310

Requirements	for	PARA
• If	implemented	in	DRAM	chip

– Enough	slack	in	timing	parameters
– Plenty	of	slack	today:	

• Lee	et	al.,	“Adaptive-Latency	DRAM:	Optimizing	DRAM	Timing	for	the	Common	Case,”	HPCA	
2015.

• Chang	et	al.,	“Understanding	Latency	Variation	in	Modern	DRAM	Chips,”	SIGMETRICS	2016.
• Lee	et	al.,	“Design-Induced	Latency	Variation	in	Modern	DRAM	Chips,”	SIGMETRICS	2017.
• Chang	et	al.,	“Understanding	Reduced-Voltage	Operation	in	Modern	DRAM	Devices,”	

SIGMETRICS	2017.

• If	implemented	in	memory	controller
– Better	coordination	between	memory	controller	and	
DRAM

– Memory	controller	should	know	which	rows	are	
physically	adjacent

311

More on RowHammer Analysis

312

n Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
"Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors"
Proceedings of the 41st International Symposium on Computer
Architecture (ISCA), Minneapolis, MN, June 2014.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code
and Data]

Retrospective on RowHammer & Future

313https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf

n Onur Mutlu,
"The RowHammer Problem and Other Issues We May Face as
Memory Becomes Denser"
Invited Paper in Proceedings of the Design, Automation, and Test in
Europe Conference (DATE), Lausanne, Switzerland, March 2017.
[Slides (pptx) (pdf)]

Challenge and Opportunity for Future

Fundamentally
Secure, Reliable, Safe

Computing Architectures

314

Future of Main Memory
n DRAM is becoming less reliable à more vulnerable

315

Large-Scale Failure Analysis of DRAM Chips
n Analysis and modeling of memory errors found in all of

Facebook’s server fleet

n Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"Revisiting Memory Errors in Large-Scale Production Data
Centers: Analysis and Modeling of New Trends from the Field"
Proceedings of the 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June
2015.
[Slides (pptx) (pdf)] [DRAM Error Model]

316

DRAM Reliability Reducing

Aside: SSD Error Analysis in the Field

n First large-scale field study of flash memory errors

n Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"A Large-Scale Study of Flash Memory Errors in the Field"
Proceedings of the ACM International Conference on
Measurement and Modeling of Computer Systems
(SIGMETRICS), Portland, OR, June 2015.
[Slides (pptx) (pdf)] [Coverage at ZDNet]

318

Future of Main Memory
n DRAM is becoming less reliable à more vulnerable

n Due to difficulties in DRAM scaling, other problems may
also appear (or they may be going unnoticed)

n Some errors may already be slipping into the field
q Read disturb errors (Rowhammer)
q Retention errors
q Read errors, write errors
q …

n These errors can also pose security vulnerabilities

319

DRAM Data Retention Time Failures

n Determining the data retention time of a cell/row is getting
more difficult

n Retention failures may already be slipping into the field

320

n Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu,
"An Experimental Study of Data Retention Behavior in Modern DRAM
Devices: Implications for Retention Time Profiling Mechanisms"
Proceedings of the 40th International Symposium on Computer Architecture
(ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt) Slides (pdf)

321

Analysis of Retention Failures [ISCA’13]

Two Challenges to Retention Time Profiling
n Data Pattern Dependence (DPD) of retention time

n Variable Retention Time (VRT) phenomenon

322

Two Challenges to Retention Time Profiling
n Challenge 1: Data Pattern Dependence (DPD)

q Retention time of a DRAM cell depends on its value and the
values of cells nearby it

q When a row is activated, all bitlines are perturbed simultaneously

323

n Electrical noise on the bitline affects reliable sensing of a DRAM cell
n The magnitude of this noise is affected by values of nearby cells via

q Bitline-bitline coupling à electrical coupling between adjacent bitlines
q Bitline-wordline coupling à electrical coupling between each bitline and

the activated wordline

Data Pattern Dependence

324

n Electrical noise on the bitline affects reliable sensing of a DRAM cell
n The magnitude of this noise is affected by values of nearby cells via

q Bitline-bitline coupling à electrical coupling between adjacent bitlines
q Bitline-wordline coupling à electrical coupling between each bitline and

the activated wordline

n Retention time of a cell depends on data patterns stored in
nearby cells
à need to find the worst data pattern to find worst-case retention time
à this pattern is location dependent

Data Pattern Dependence

325

Two Challenges to Retention Time Profiling
n Challenge 2: Variable Retention Time (VRT)

q Retention time of a DRAM cell changes randomly over time
n a cell alternates between multiple retention time states

q Leakage current of a cell changes sporadically due to a charge
trap in the gate oxide of the DRAM cell access transistor

q When the trap becomes occupied, charge leaks more readily
from the transistor’s drain, leading to a short retention time
n Called Trap-Assisted Gate-Induced Drain Leakage

q This process appears to be a random process [Kim+ IEEE TED’11]

q Worst-case retention time depends on a random process
à need to find the worst case despite this

326

Modern DRAM Retention Time Distribution

327

0 1 2 3 4 5 6 7
Retention Time (s)

0.00000

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

0.00008
Fr

ac
tio

n
of

 C
el

ls
 w

ith
 R

et
en

tio
n

Ti
m

e
<

X-
Ax

is
Va

lu
e

C 2Gb

D 1Gb

D 2Gb

A 2Gb

A 1Gb

E 2Gb

B 2Gb

Newer	device	families	have	more	weak	cells	than	older	ones
Likely	a	result	of	technology	scaling

OLDER

NEWER

OLDER

NEWER

An Example VRT Cell

328

0 2 4 6 8 10
Time (Hours)

0

1

2

3

4

5

6

7
Re

te
nt

io
n

Ti
m

e
(s

)

A cell from E 2Gb chip family

Variable Retention Time

329

0 1 2 3 4 5 6 7
Minimum Retention Time (s)

0

1

2

3

4

5

6

7
M

ax
im

um
 R

et
en

tio
n

Ti
m

e
(s

)

6.0

5.4

4.8

4.2

3.6

3.0

2.4

1.8

1.2

0.6

0.0

lo
g1

0(
Fr

ac
tio

n
of

 C
el

ls
)

A 2Gb chip family

Min ret time = Max ret time
Expected if no VRT

Most failing cells
exhibit VRT

Many failing cells jump from
very high retention time to very low

More on DRAM Retention Analysis
n Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu,

"An Experimental Study of Data Retention Behavior in Modern DRAM
Devices: Implications for Retention Time Profiling Mechanisms"
Proceedings of the 40th International Symposium on Computer Architecture
(ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt) Slides (pdf)

330

Industry Is Writing Papers About It, Too

331

Industry Is Writing Papers About It, Too

332

n Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa Alameldeen, Chris Wilkerson,
and Onur Mutlu,
"The Efficacy of Error Mitigation Techniques for DRAM Retention
Failures: A Comparative Experimental Study"
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Austin, TX, June 2014. [Slides
(pptx) (pdf)] [Poster (pptx) (pdf)] [Full data sets]

333

Mitigation of Retention Issues [SIGMETRICS’14]

Handling Data-Dependent Failures [DSN’16]

334

n Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa Alameldeen, Chris Wilkerson,
and Onur Mutlu,
"The Efficacy of Error Mitigation Techniques for DRAM Retention
Failures: A Comparative Experimental Study"
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Austin, TX, June 2014. [Slides
(pptx) (pdf)] [Poster (pptx) (pdf)] [Full data sets]

Handling Data-Dependent Failures [CAL’16]

335

n Samira Khan, Chris Wilkerson, Donghyuk Lee, Alaa R. Alameldeen, and Onur
Mutlu,
"A Case for Memory Content-Based Detection and Mitigation of Data-
Dependent Failures in DRAM"
IEEE Computer Architecture Letters (CAL), November 2016.

n Moinuddin Qureshi, Dae Hyun Kim, Samira Khan, Prashant Nair, and
Onur Mutlu,
"AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for
DRAM Systems"
Proceedings of the 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June
2015.
[Slides (pptx) (pdf)]

336

Handling Variable Retention Time [DSN’15]

Handling Both DPD and VRT [ISCA’17]

337

n Minesh Patel, Jeremie S. Kim, and Onur Mutlu,
"The Reach Profiler (REAPER): Enabling the Mitigation of DRAM
Retention Failures via Profiling at Aggressive Conditions"
Proceedings of the 44th International Symposium on Computer Architecture
(ISCA), Toronto, Canada, June 2017.

n First experimental analysis of (mobile) LPDDR4 chips
n Analyzes the complex tradeoff space of retention time profiling
n Key idea: enable fast and robust profiling at higher refresh intervals & temp.

If Time Permits: NAND Flash Vulnerabilities
n Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu,

"Error Characterization, Mitigation, and Recovery in Flash Memory Based
Solid State Drives"
to appear in Proceedings of the IEEE, 2017.

Cai+, “Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis,” DATE 2012.
Cai+, “Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory Lifetime,” ICCD
2012.
Cai+, “Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization, Analysis and Modeling,” DATE
2013.
Cai+, “Error Analysis and Retention-Aware Error Management for NAND Flash Memory,” Intel Technology Journal 2013.
Cai+, “Program Interference in MLC NAND Flash Memory: Characterization, Modeling, and Mitigation,” ICCD 2013.
Cai+, “Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories,” SIGMETRICS 2014.
Cai+,”Data Retention in MLC NAND Flash Memory: Characterization, Optimization and Recovery,” HPCA 2015.
Cai+, “Read Disturb Errors in MLC NAND Flash Memory: Characterization and Mitigation,” DSN 2015.
Luo+, “WARM: Improving NAND Flash Memory Lifetime with Write-hotness Aware Retention Management,” MSST
2015.
Meza+, “A Large-Scale Study of Flash Memory Errors in the Field,” SIGMETRICS 2015.
Luo+, “Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory,” IEEE
JSAC 2016.
Cai+, “Vulnerabilities in MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and Mitigation
Techniques,” HPCA 2017.
Fukami+, “Improving the Reliability of Chip-Off Forensic Analysis of NAND Flash Memory Devices,” DFRWS EU 2017.

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.

Overview Paper on Flash Reliability
n Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and

Onur Mutlu,
"Error Characterization, Mitigation, and Recovery in
Flash Memory Based Solid State Drives"
to appear in Proceedings of the IEEE, 2017.

339

NAND Flash Memory
Reliability and Security

340

Overview Paper

341

https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

Evolution of NAND Flash Memory

n Flash memory is widening its range of applications
q Portable consumer devices, laptop PCs and enterprise servers

Seaung Suk Lee, “Emerging Challenges in NAND Flash Technology”, Flash Summit 2011 (Hynix)

CMOS scaling
More bits per Cell

342

Flash Challenges: Reliability and Endurance

E. Grochowski et al., “Future technology challenges for NAND flash and HDD products”,
Flash Memory Summit 2012

§ P/E cycles
(required)

§ P/E cycles
(provided)

A few thousand

Writing
the full capacity

of the drive
10 times per day

for 5 years
(STEC)

> 50k P/E cycles

343

NAND Flash Memory is Increasingly Noisy

Noisy NANDWrite Read

344

Future NAND Flash-based Storage Architecture

Memory
Signal

Processing

Error
Correction

Raw Bit
Error Rate

Uncorrectable
BER < 10-15Noisy

HighLower

345

Build reliable error models for NAND flash memory
Design efficient reliability mechanisms based on the model

Our Goals:

Better

NAND Flash Error Model

Noisy NANDWrite Read

Experimentally characterize and model dominant errors

§ Neighbor page
prog/read (c-to-c
interference)

§ Retention§ Erase block
§ Program page

Write Read

Cai et al., “Threshold voltage
distribution in MLC NAND Flash
Memory: Characterization, Analysis,
and Modeling”, DATE 2013

Cai et al., “Vulnerabilities in MLC
NAND Flash Memory Programming:
Experimental Analysis, Exploits, and
Mitigation Techniques”, HPCA 2017

Cai et al., “Flash Correct-and-Refresh:
Retention-aware error management for
increased flash memory lifetime”, ICCD 2012

346

Cai et al., “Program Interference in MLC
NAND Flash Memory: Characterization,
Modeling, and Mitigation”, ICCD 2013
Cai et al., “Neighbor-Cell Assisted Error
Correction in MLC NAND Flash
Memories”, SIGMETRICS 2014
Cai et al., “Read Disturb Errors in MLC
NAND Flash Memory: Characterization
and Mitigation”, DSN 2015

Cai et al., “Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis””, DATE 2012

Cai et al., “Error Analysis and Retention-
Aware Error Management for NAND Flash
Memory, ITJ 2013

Cai et al., “Data Retention in MLC NAND
Flash Memory: Characterization,
Optimization and Recovery" , HPCA 2015

Luo et al., “Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory”, JSAC 2016

Our Goals and Approach

n Goals:
q Understand error mechanisms and develop reliable predictive

models for MLC NAND flash memory errors
q Develop efficient error management techniques to mitigate

errors and improve flash reliability and endurance

n Approach:
q Solid experimental analyses of errors in real MLC NAND flash

memory à drive the understanding and models
q Understanding, models, and creativity à drive the new

techniques

347

Experimental Testing Platform

348

USB Jack

Virtex-II Pro
(USB controller)

Virtex-V FPGA
(NAND Controller)

HAPS-52 Mother Board

USB Daughter Board

NAND Daughter Board

1x-nm
NAND Flash

[DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014,
HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017]

Cai et al., FPGA-based Solid-State Drive prototyping platform, FCCM 2011.

NAND Flash Error Types

n Four types of errors [Cai+, DATE 2012]

n Caused by common flash operations
q Read errors
q Erase errors
q Program (interference) errors

n Caused by flash cell losing charge over time
q Retention errors

n Whether an error happens depends on required retention time
n Especially problematic in MLC flash because threshold voltage

window to determine stored value is smaller

349

retention errors

n Raw bit error rate increases exponentially with P/E cycles
n Retention errors are dominant (>99% for 1-year ret. time)
n Retention errors increase with retention time requirement

Observations: Flash Error Analysis

350

P/E Cycles

Cai et al., Error Patterns in MLC NAND Flash Memory, DATE 2012.

More on Flash Error Analysis
n Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai,

"Error Patterns in MLC NAND Flash Memory:
Measurement, Characterization, and Analysis"
Proceedings of the Design, Automation, and Test in Europe
Conference (DATE), Dresden, Germany, March 2012. Slides
(ppt)

351

Solution to Retention Errors
n Refresh periodically
n Change the period based on P/E cycle wearout

q Refresh more often at higher P/E cycles
n Use a combination of in-place and remapping-based refresh

352

One Issue: Read Disturb in Flash Memory
n All scaled memories are prone to read disturb errors

353

NAND	Flash	Memory	Background

Flash	Memory

Page	1

Page	0

Page	2

Page	255

…
…

Page	257

Page	256

Page	258

Page	511

…
…

……

Page	M+1

Page	M

Page	M+2

Page	M+255

…
…

Flash	
Controller

354

Block	0 Block	1 Block	N

Read
Pass
Pass

…

Pass

Sense	Amplifiers

Flash	Cell	Array

Block	X

Page	Y

Sense	Amplifiers

355

Row

Co
lu
m
n

Flash	Cell

Floating	
Gate

Gate

Drain

Source

Floating	Gate	Transistor
(Flash	Cell)

Vth=	
2.5	V

356

Flash	Read

Vread =	2.5	V Vth=	
3	V

Vth=	
2	V

1 0

Vread =	2.5	V

357

Gate

Flash	Pass-Through

Vpass =	5	V Vth=	
2	V

1

Vpass =	5	V

358

Gate

1

Vth=	
3	V

Read	from	Flash	Cell	Array

3.0V 3.8V 3.9V 4.8V

3.5V 2.9V 2.4V 2.1V

2.2V 4.3V 4.6V 1.8V

3.5V 2.3V 1.9V 4.3V

Vread =	2.5	V

Vpass =	5.0	V

Vpass =	5.0	V

Vpass =	5.0	V

1 100Correct	values	
for	page	2: 359

Page	1

Page	2

Page	3

Page	4

Pass	(5V)

Read	(2.5V)

Pass	(5V)

Pass	(5V)

Read	Disturb	Problem:	“Weak	Programming”	Effect

3.0V 3.8V 3.9V 4.8V

3.5V 2.9V 2.4V 2.1V

2.2V 4.3V 4.6V 1.8V

3.5V 2.3V 1.9V 4.3V

Repeatedly	read	page	3	(or	any	page	other	than	page	2) 360

Read	(2.5V)

Pass	(5V)

Pass	(5V)

Pass	(5V)

Page	1

Page	2

Page	3

Page	4

Vread =	2.5	V

Vpass =	5.0	V

Vpass =	5.0	V

Vpass =	5.0	V

0 100

Read	Disturb	Problem:	“Weak	Programming”	Effect

High	pass-through	voltage	induces	“weak-programming”	effect

3.0V 3.8V 3.9V 4.8V

3.5V 2.9V 2.1V

2.2V 4.3V 4.6V 1.8V

3.5V 2.3V 1.9V 4.3V

Incorrect	values	
from	page	2:	

361

2.4V2.6V

Page	1

Page	2

Page	3

Page	4

Executive	Summary
•Read	disturb	errors limit	flash	memory	lifetime	today
– Apply	a	high	pass-through	voltage	(Vpass)to	multiple	pages	on	a	read
– Repeated	application	of	Vpasscan	alter	stored	values	in	unread	pages

•We	characterize	read	disturb	on	real	NAND	flash	chips
– Slightly	lowering	Vpass greatly	reduces	read	disturb	errors
– Some	flash	cells	are	more	prone	to	read	disturb

• Technique	1:Mitigate read	disturb	errors	online
– Vpass Tuning dynamically	finds	and	applies	a	lowered	Vpass per	block
– Flash	memory	lifetime	improves	by	21%

• Technique	2: Recover after	failure	to	prevent	data	loss
– Read	Disturb	Oriented	Error	Recovery (RDR)	selectively	corrects	
cells	more	susceptible	to	read	disturb	errors

– Reduces	raw	bit	error	rate (RBER)	by	up	to	36%
362

More on Flash Read Disturb Errors
n Yu Cai, Yixin Luo, Saugata Ghose, Erich F. Haratsch, Ken Mai,

and Onur Mutlu,
"Read Disturb Errors in MLC NAND Flash Memory:
Characterization and Mitigation"
Proceedings of the 45th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), Rio de
Janeiro, Brazil, June 2015.

363

Large-Scale Flash SSD Error Analysis
n First large-scale field study of flash memory errors

n Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"A Large-Scale Study of Flash Memory Errors in the Field"
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Portland, OR, June
2015.
[Slides (pptx) (pdf)] [Coverage at ZDNet] [Coverage on The Register]
[Coverage on TechSpot] [Coverage on The Tech Report]

364

Another Time: NAND Flash Vulnerabilities
n Onur Mutlu,

"Error Analysis and Management for MLC NAND Flash Memory"
Technical talk at Flash Memory Summit 2014 (FMS), Santa Clara, CA, August
2014. Slides (ppt) (pdf)

Cai+, “Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis,” DATE 2012.
Cai+, “Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory Lifetime,” ICCD
2012.
Cai+, “Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization, Analysis and Modeling,” DATE
2013.
Cai+, “Error Analysis and Retention-Aware Error Management for NAND Flash Memory,” Intel Technology Journal 2013.
Cai+, “Program Interference in MLC NAND Flash Memory: Characterization, Modeling, and Mitigation,” ICCD 2013.
Cai+, “Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories,” SIGMETRICS 2014.
Cai+,”Data Retention in MLC NAND Flash Memory: Characterization, Optimization and Recovery,” HPCA 2015.
Cai+, “Read Disturb Errors in MLC NAND Flash Memory: Characterization and Mitigation,” DSN 2015.
Luo+, “WARM: Improving NAND Flash Memory Lifetime with Write-hotness Aware Retention Management,” MSST
2015.
Meza+, “A Large-Scale Study of Flash Memory Errors in the Field,” SIGMETRICS 2015.
Luo+, “Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory,” IEEE
JSAC 2016.
Cai+, “Vulnerabilities in MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and Mitigation
Techniques,” HPCA 2017.
Fukami+, “Improving the Reliability of Chip-Off Forensic Analysis of NAND Flash Memory Devices,” DFRWS EU 2017.

365

Flash Memory Programming Vulnerabilities

366

n Yu Cai, Saugata Ghose, Yixin Luo, Ken Mai, Onur Mutlu, and Erich F.
Haratsch,
"Vulnerabilities in MLC NAND Flash Memory Programming:
Experimental Analysis, Exploits, and Mitigation Techniques"
Proceedings of the 23rd International Symposium on High-Performance
Computer Architecture (HPCA) Industrial Session, Austin, TX, USA,
February 2017.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]

Other Works on Flash Memory

367

NAND Flash Error Model

Noisy NANDWrite Read

Experimentally characterize and model dominant errors

§ Neighbor page
prog/read (c-to-c
interference)

§ Retention§ Erase block
§ Program page

Write Read

Cai et al., “Threshold voltage
distribution in MLC NAND Flash
Memory: Characterization, Analysis,
and Modeling”, DATE 2013

Cai et al., “Vulnerabilities in MLC
NAND Flash Memory Programming:
Experimental Analysis, Exploits, and
Mitigation Techniques”, HPCA 2017

Cai et al., “Flash Correct-and-Refresh:
Retention-aware error management for
increased flash memory lifetime”, ICCD 2012

368

Cai et al., “Program Interference in MLC
NAND Flash Memory: Characterization,
Modeling, and Mitigation”, ICCD 2013
Cai et al., “Neighbor-Cell Assisted Error
Correction in MLC NAND Flash
Memories”, SIGMETRICS 2014
Cai et al., “Read Disturb Errors in MLC
NAND Flash Memory: Characterization
and Mitigation”, DSN 2015

Cai et al., “Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis””, DATE 2012

Cai et al., “Error Analysis and Retention-
Aware Error Management for NAND Flash
Memory, ITJ 2013

Cai et al., “Data Retention in MLC NAND
Flash Memory: Characterization,
Optimization and Recovery" , HPCA 2015

Luo et al., “Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory”, JSAC 2016

Threshold Voltage Distribution
n Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai,

"Threshold Voltage Distribution in MLC NAND Flash
Memory: Characterization, Analysis and Modeling"
Proceedings of the Design, Automation, and Test in Europe
Conference (DATE), Grenoble, France, March 2013. Slides
(ppt)

369

Program Interference and Vref Prediction
n Yu Cai, Onur Mutlu, Erich F. Haratsch, and Ken Mai,

"Program Interference in MLC NAND Flash Memory:
Characterization, Modeling, and Mitigation"
Proceedings of the 31st IEEE International Conference on
Computer Design (ICCD), Asheville, NC, October 2013.
Slides (pptx) (pdf) Lightning Session Slides (pdf)

370

Neighbor-Assisted Error Correction
n Yu Cai, Gulay Yalcin, Onur Mutlu, Eric Haratsch, Osman Unsal,

Adrian Cristal, and Ken Mai,
"Neighbor-Cell Assisted Error Correction for MLC NAND
Flash Memories"
Proceedings of the ACM International Conference on
Measurement and Modeling of Computer Systems
(SIGMETRICS), Austin, TX, June 2014. Slides (ppt) (pdf)

371

Data Retention
n Yu Cai, Yixin Luo, Erich F. Haratsch, Ken Mai, and Onur Mutlu,

"Data Retention in MLC NAND Flash Memory: Characterization,
Optimization and Recovery"
Proceedings of the 21st International Symposium on High-Performance
Computer Architecture (HPCA), Bay Area, CA, February 2015.
[Slides (pptx) (pdf)]

372

SSD Error Analysis in the Field
n First large-scale field study of flash memory errors
n Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,

"A Large-Scale Study of Flash Memory Errors in the Field"
Proceedings of the ACM International Conference on
Measurement and Modeling of Computer Systems
(SIGMETRICS), Portland, OR, June 2015.
[Slides (pptx) (pdf)] [Coverage at ZDNet] [Coverage on The
Register] [Coverage on TechSpot] [Coverage on The Tech
Report]

373

Flash Memory Programming Vulnerabilities

374

n Yu Cai, Saugata Ghose, Yixin Luo, Ken Mai, Onur Mutlu, and Erich F.
Haratsch,
"Vulnerabilities in MLC NAND Flash Memory Programming:
Experimental Analysis, Exploits, and Mitigation Techniques"
Proceedings of the 23rd International Symposium on High-Performance
Computer Architecture (HPCA) Industrial Session, Austin, TX, USA,
February 2017.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]

Accurate and Online Channel Modeling

375

n Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu,
"Enabling Accurate and Practical Online Flash Channel Modeling
for Modern MLC NAND Flash Memory"
to appear in IEEE Journal on Selected Areas in Communications (JSAC),
2016.

More on DRAM Refresh

376

Tackling Refresh: Solutions

n Parallelize refreshes with accesses [Chang+ HPCA’14]

n Eliminate unnecessary refreshes [Liu+ ISCA’12]
q Exploit device characteristics
q Exploit data and application characteristics

n Reduce refresh rate and detect+correct errors that occur
[Khan+ SIGMETRICS’14]

n Understand retention time behavior in DRAM [Liu+ ISCA’13]

377

Summary:	Refresh-Access	Parallelization
• DRAM	refresh	interferes	with	memory	accesses

– Degrades	system	performance	and	energy	efficiency
– Becomes	exacerbated	as	DRAM	density	increases

• Goal:	Serve	memory	accesses	in	parallel	with	refreshes	to	
reduce	refresh	interference	on	demand	requests

• Our	mechanisms:
– 1.	Enable	more	parallelization	between	refreshes	and	accesses	across	

different	banks	with	new	per-bank	refresh	scheduling	algorithms
– 2.	Enable	serving	accesses	concurrently	with	refreshes	in	the	same	bank	

by	exploiting	parallelism	across	DRAM	subarrays

• Improve	system	performance	and	energy	efficiency	for	a	wide	
variety	of	different	workloads	and	DRAM	densities
– 20.2%	and	9.0%	for	8-core	systems	using	32Gb	DRAM	at	low	cost
– Very	close	to	the	ideal	scheme	without	refreshes

378
Chang+, “Improving DRAM Performance by Parallelizing Refreshes with Accesses,” HPCA 2014.

Refresh	Penalty

Processor

M
em

or
y	

Co
nt
ro
lle
r

379

DRAMRefreshRead
Data

Capacitor

Access
transistor

Refresh	delays	requests	by	100s	of	ns

Time

Per-bank	refresh	in	mobile	DRAM	(LPDDRx)

Existing	Refresh	Modes

380

Time

All-bank	refresh	in	commodity	DRAM	(DDRx)

Bank	7

Bank	1
Bank	0

…

Bank	7

Bank	1
Bank	0

…

Refresh

Round-robin	order

Per-bank	refresh	allows	accesses	to	other	
banks	while	a	bank	is	refreshing

Shortcomings	of	Per-Bank	Refresh
• Problem	1:	Refreshes	to	different	banks	are	scheduled	
in	a	strict	round-robin	order	
– The	static	ordering	is	hardwired	into	DRAM	chips
– Refreshes	busy	banks	with	many	queued	requests	when	
other	banks	are	idle

• Key	idea:	Schedule	per-bank	refreshes	to	idle	banks	
opportunistically	in	a	dynamic	order	

381

Our	First	Approach:	DARP
• Dynamic	Access-Refresh	Parallelization	(DARP)

– An	improved	scheduling	policy	for	per-bank	refreshes
– Exploits	refresh	scheduling	flexibility in	DDR	DRAM

• Component	1:	Out-of-order	per-bank	refresh
– Avoids	poor	static	scheduling	decisions
– Dynamically	issues	per-bank	refreshes	to	idle	banks

• Component	2:	Write-Refresh	Parallelization
– Avoids	refresh	interference	on	latency-critical	reads
– Parallelizes	refreshes	with	a	batch	of	writes

382

Shortcomings	of	Per-Bank	Refresh
• Problem	2:	Banks	that	are	being	refreshed	cannot	
concurrently	serve	memory	requests

383

Time
Bank	0RD

Delayed	by	refresh

Per-Bank	Refresh

Shortcomings	of	Per-Bank	Refresh
• Problem	2:	Refreshing	banks	cannot	concurrently	serve	
memory	requests

• Key	idea:	Exploit	subarrays within	a	bank	to	parallelize	
refreshes	and	accesses	across	subarrays

384

Time Bank	0
Subarray	1
Subarray	0

RD

Subarray	Refresh Time

Parallelize

Methodology

• 100	workloads:	SPEC	CPU2006,	STREAM,	TPC-C/H,	random	access

• System	performance	metric:	Weighted	speedup

385

DDR3	Rank

Simulator	configurations

M
em

or
y	

Co
nt
ro
lle
r

8-core
processor

M
em

or
y	

Co
nt
ro
lle
r

Bank	7

Bank	1

Bank	0

…

L1	$:	32KB
L2	$:	512KB/core

Comparison	Points
• All-bank	refresh	[DDR3,	LPDDR3,	…]

• Per-bank	refresh	[LPDDR3]

• Elastic	refresh	[Stuecheli et	al.,	MICRO	‘10]:
– Postpones	refreshes	by	a	time	delay	based	on	the	predicted	
rank	idle	time	to	avoid	interference	on	memory	requests

– Proposed	to	schedule	all-bank	refreshes	without	exploiting	
per-bank	refreshes

– Cannot	parallelize	refreshes	and	accesses	within	a	rank

• Ideal	(no	refresh)
386

0

1

2

3

4

5

6

8Gb 16Gb 32Gb

W
ei
gh
te
d	
Sp
ee
du

p	
(G
eo

M
ea
n)

DRAM	Chip	Density

All-Bank
Per-Bank
Elastic
DARP
SARP
DSARP
Ideal

System	Performance

387

7.9% 12.3% 20.2%

1.	Both	DARP	&	SARP	provide	performance	gains	and	
combining	them	(DSARP)	improves	even	more
2.	Consistent	system	performance	improvement	across	
DRAM	densities	(within	0.9%,	1.2%,	and	3.8%	of	ideal)

Energy	Efficiency

388

3.0% 5.2% 9.0%

Consistent	reduction	on	energy	consumption

0
5
10
15
20
25
30
35
40
45

8Gb 16Gb 32Gb

En
er
gy
	p
er
	A
cc
es
s	(
nJ
)

DRAM	Chip	Density

All-Bank
Per-Bank
Elastic
DARP
SARP
DSARP
Ideal

More Information on Refresh-Access Parallelization

n Kevin Chang, Donghyuk Lee, Zeshan Chishti, Alaa Alameldeen, Chris
Wilkerson, Yoongu Kim, and Onur Mutlu,
"Improving DRAM Performance by Parallelizing Refreshes with
Accesses"
Proceedings of the 20th International Symposium on High-Performance
Computer Architecture (HPCA), Orlando, FL, February 2014.
[Summary] [Slides (pptx) (pdf)]

389

Tackling Refresh: Solutions

n Parallelize refreshes with accesses [Chang+ HPCA’14]

n Eliminate unnecessary refreshes [Liu+ ISCA’12]
q Exploit device characteristics
q Exploit data and application characteristics

n Reduce refresh rate and detect+correct errors that occur
[Khan+ SIGMETRICS’14]

n Understand retention time behavior in DRAM [Liu+ ISCA’13]

390

Most Refreshes Are Unnecessary
n Retention Time Profile of DRAM looks like this:

391

1. Profiling: Profile the retention time of all DRAM rows

2. Binning: Store rows into bins by retention time
à use Bloom Filters for efficient and scalable storage

3. Refreshing: Memory controller refreshes rows in different
bins at different rates
à probe Bloom Filters to determine refresh rate of a row

392

1.25KB storage in controller for 32GB DRAM memory

Can reduce refreshes by ~75%
à reduces energy consumption and improves performance

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

RAIDR: Eliminating Unnecessary Refreshes

RAIDR: Baseline Design

393

Refresh control is in DRAM in today’s auto-refresh systems
RAIDR can be implemented in either the controller or DRAM

RAIDR in Memory Controller: Option 1

394

Overhead of RAIDR in DRAM controller:
1.25 KB Bloom Filters, 3 counters, additional commands
issued for per-row refresh (all accounted for in evaluations)

RAIDR in DRAM Chip: Option 2

395

Overhead of RAIDR in DRAM chip:
Per-chip overhead: 20B Bloom Filters, 1 counter (4 Gbit chip)

Total overhead: 1.25KB Bloom Filters, 64 counters (32 GB DRAM)

RAIDR: Results and Takeaways
n System: 32GB DRAM, 8-core; SPEC, TPC-C, TPC-H workloads

n RAIDR hardware cost: 1.25 kB (2 Bloom filters)
n Refresh reduction: 74.6%
n Dynamic DRAM energy reduction: 16%
n Idle DRAM power reduction: 20%
n Performance improvement: 9%

n Benefits increase as DRAM scales in density

396

DRAM Device Capacity Scaling: Performance

397

RAIDR performance benefits increase with DRAM chip capacity

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

DRAM Device Capacity Scaling: Energy

398

RAIDR energy benefits increase with DRAM chip capacity

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

RAIDR: Eliminating Unnecessary Refreshes
n Observation: Most DRAM rows can be refreshed much less often

without losing data [Kim+, EDL’09][Liu+ ISCA’13]

n Key idea: Refresh rows containing weak cells
more frequently, other rows less frequently
1. Profiling: Profile retention time of all rows
2. Binning: Store rows into bins by retention time in memory controller

Efficient storage with Bloom Filters (only 1.25KB for 32GB memory)
3. Refreshing: Memory controller refreshes rows in different bins at
different rates

n Results: 8-core, 32GB, SPEC, TPC-C, TPC-H
q 74.6% refresh reduction @ 1.25KB storage
q ~16%/20% DRAM dynamic/idle power reduction
q ~9% performance improvement
q Benefits increase with DRAM capacity

399
Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

More on RAIDR
n Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu,

"RAIDR: Retention-Aware Intelligent DRAM Refresh"
Proceedings of the 39th International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2012.
Slides (pdf)

400

Tackling Refresh: Solutions

n Parallelize refreshes with accesses [Chang+ HPCA’14]

n Eliminate unnecessary refreshes [Liu+ ISCA’12]
q Exploit device characteristics
q Exploit data and application characteristics

n Reduce refresh rate and detect+correct errors that occur
[Khan+ SIGMETRICS’14]

n Understand retention time behavior in DRAM [Liu+ ISCA’13]

401

Motivation: Understanding Retention
n Past works require accurate and reliable measurement of

retention time of each DRAM row
q To maintain data integrity while reducing refreshes

n Assumption: worst-case retention time of each row can be
determined and stays the same at a given temperature
q Some works propose writing all 1’s and 0’s to a row, and

measuring the time before data corruption

n Question:
q Can we reliably and accurately determine retention times of all

DRAM rows?

402

Two Challenges to Retention Time Profiling
n Data Pattern Dependence (DPD) of retention time

n Variable Retention Time (VRT) phenomenon

403

An Example VRT Cell

404

0 2 4 6 8 10
Time (Hours)

0

1

2

3

4

5

6

7
Re

te
nt

io
n

Ti
m

e
(s

)

A cell from E 2Gb chip family

VRT: Implications on Profiling Mechanisms
n Problem 1: There does not seem to be a way of

determining if a cell exhibits VRT without actually observing
a cell exhibiting VRT
q VRT is a memoryless random process [Kim+ JJAP 2010]

n Problem 2: VRT complicates retention time profiling by
DRAM manufacturers
q Exposure to very high temperatures can induce VRT in cells that

were not previously susceptible
à can happen during soldering of DRAM chips
à manufacturer’s retention time profile may not be accurate

n One option for future work: Use ECC to continuously profile
DRAM online while aggressively reducing refresh rate
q Need to keep ECC overhead in check

405

More on DRAM Retention Analysis
n Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu,

"An Experimental Study of Data Retention Behavior in Modern DRAM
Devices: Implications for Retention Time Profiling Mechanisms"
Proceedings of the 40th International Symposium on Computer Architecture
(ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt) Slides (pdf)

406

Tackling Refresh: Solutions

n Parallelize refreshes with accesses [Chang+ HPCA’14]

n Eliminate unnecessary refreshes [Liu+ ISCA’12]
q Exploit device characteristics
q Exploit data and application characteristics

n Reduce refresh rate and detect+correct errors that occur
[Khan+ SIGMETRICS’14]

n Understand retention time behavior in DRAM [Liu+ ISCA’13]

407

Key	Observations:
• Testing	alone cannot	detect	all	possible	failures
• Combination	of	ECC	and	other	mitigation	
techniques	is	much	more effective
– But	degrades	performance

• Testing	can	help	to	reduce	the	ECC	strength
– Even	when	starting	with	a higher	strength	ECC

Towards	an	Online	Profiling	System

Khan+, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative
Experimental Study,” SIGMETRICS 2014.

Run	tests	periodically	after	a	short	interval	
at	smaller	regions	of	memory	

Towards	an	Online	Profiling	System
Initially	Protect	DRAM	

with	Strong	ECC 1
Periodically	Test
Parts	of	DRAM 2

Test
Test
Test

Mitigate	errors	and
reduce	ECC 3

More on Online Profiling of DRAM
n Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa Alameldeen, Chris Wilkerson,

and Onur Mutlu,
"The Efficacy of Error Mitigation Techniques for DRAM Retention
Failures: A Comparative Experimental Study"
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Austin, TX, June 2014. [Slides
(pptx) (pdf)] [Poster (pptx) (pdf)] [Full data sets]

410

How Do We Make RAIDR Work in the
Presence of the VRT Phenomenon?

Making RAIDR Work w/ Online Profiling & ECC
n Moinuddin Qureshi, Dae Hyun Kim, Samira Khan, Prashant Nair, and

Onur Mutlu,
"AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for
DRAM Systems"
Proceedings of the 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June
2015.
[Slides (pptx) (pdf)]

412

AVATAR

Insight: Avoid retention failures è Upgrade row on ECC error
Observation: Rate of VRT >> Rate of soft error (50x-2500x)

413

A
B
C
D
E
F
G
H

DRAM Rows

RETENTION
PROFILING

Weak Cell
0
0
1
0
0
0
1
0

Ref. Rate Table

ECC

ECC

ECC

ECC

ECC

ECC

ECC

ECC 1

AVATAR	mitigates	VRT	by	increasing	refresh	rate	on	error

Scrub
(15 min)

Row protected from
future

retention failures

RESULTS: REFRESH SAVINGS

414

AVATAR
No VRT

AVATAR	reduces	refresh	by	60%-70%,	similar	to	multi	rate	
refresh	but	with	VRT	tolerance

Retention	Testing	Once	a	Year	can	revert	refresh	saving	from	
60%	to	70%

SPEEDUP

415

Sp
ee

du
p

1.00

1.10

1.20

1.30

1.40

1.50

1.60

8Gb 16Gb 32Gb 64Gb

AVATAR	(1yr) NoRefresh

AVATAR	gets	2/3rd the	performance	of	NoRefresh.	More	
gains	at	higher	capacity	nodes

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

8Gb 16Gb 32Gb 64Gb

AVATAR	(1yr) NoRefresh

ENERGY DELAY PRODUCT

416

En
er

gy
 D

el
ay

 P
ro

du
ct

AVATAR	reduces	EDP,	
Significant	reduction	at	higher	capacity	nodes

Making RAIDR Work w/ Online Profiling & ECC
n Moinuddin Qureshi, Dae Hyun Kim, Samira Khan, Prashant Nair, and

Onur Mutlu,
"AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for
DRAM Systems"
Proceedings of the 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June
2015.
[Slides (pptx) (pdf)]

417

DRAM Refresh: Summary and Conclusions
n DRAM refresh is a critical challenge

q in scaling DRAM technology efficiently to higher capacities

n Discussed several promising solution directions
q Parallelize refreshes with accesses [Chang+ HPCA’14]
q Eliminate unnecessary refreshes [Liu+ ISCA’12]
q Reduce refresh rate and detect+correct errors that occur [Khan+

SIGMETRICS’14]

n Examined properties of retention time behavior [Liu+ ISCA’13]
q Enable realistic VRT-Aware refresh techniques [Qureshi+ DSN’15]

n Many avenues for overcoming DRAM refresh challenges
q Handling DPD/VRT phenomena
q Enabling online retention time profiling and error mitigation
q Exploiting application behavior

418

Other Backup Slides

419

Acknowledgments

n My current and past students and postdocs
q Rachata Ausavarungnirun, Abhishek Bhowmick, Amirali

Boroumand, Rui Cai, Yu Cai, Kevin Chang, Saugata Ghose, Kevin
Hsieh, Tyler Huberty, Ben Jaiyen, Samira Khan, Jeremie Kim,
Yoongu Kim, Yang Li, Jamie Liu, Lavanya Subramanian,
Donghyuk Lee, Yixin Luo, Justin Meza, Gennady Pekhimenko,
Vivek Seshadri, Lavanya Subramanian, Nandita Vijaykumar,
HanBin Yoon, Jishen Zhao, …

n My collaborators
q Can Alkan, Chita Das, Phil Gibbons, Sriram Govindan, Norm

Jouppi, Mahmut Kandemir, Mike Kozuch, Konrad Lai, Ken Mai,
Todd Mowry, Yale Patt, Moinuddin Qureshi, Partha Ranganathan,
Bikash Sharma, Kushagra Vaid, Chris Wilkerson, …

420

Funding Acknowledgments

n NSF
n GSRC
n SRC
n CyLab
n AMD, Google, Facebook, HP Labs, Huawei, IBM, Intel,

Microsoft, Nvidia, Oracle, Qualcomm, Rambus, Samsung,
Seagate, VMware

421

Summary

Business as Usual Opportunity
RowHammer Memory controller anticipates and fixes errors
Fixed, frequent refreshes Heterogeneous refresh rate across memory
Fixed, high latency Heterogeneous latency in time and space
Slow page copy & initialization Exploit internal connectivity in memory to move data
Fixed reliability mechanisms Heterogeneous reliability across time and space
Memory as a dumb device Memory as an accelerator and autonomous agent
DRAM-only main memory Emerging memory technologies and hybrid memories
Two-level data storage model Unified interface to all data
Large timing and error margins Online adaptation of timing and error margins
Poor performance guarantees Strong service guarantees and configurable QoS
Fixed policies in controllers Configurable and programmable memory controllers
… …

422

Some Open Source Tools
n Rowhammer

q https://github.com/CMU-SAFARI/rowhammer
n Ramulator – Fast and Extensible DRAM Simulator

q https://github.com/CMU-SAFARI/ramulator
n MemSim

q https://github.com/CMU-SAFARI/memsim
n NOCulator

q https://github.com/CMU-SAFARI/NOCulator
n DRAM Error Model

q http://www.ece.cmu.edu/~safari/tools/memerr/index.html

n Other open-source software from my group
q https://github.com/CMU-SAFARI/
q http://www.ece.cmu.edu/~safari/tools.html

423

Ramulator: A Fast and Extensible
DRAM Simulator

[IEEE Comp Arch Letters’15]

424

Ramulator Motivation
n DRAM and Memory Controller landscape is changing
n Many new and upcoming standards
n Many new controller designs
n A fast and easy-to-extend simulator is very much needed

425

Ramulator
n Provides out-of-the box support for many DRAM standards:

q DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, plus new
proposals (SALP, AL-DRAM, TLDRAM, RowClone, and SARP)

n ~2.5X faster than fastest open-source simulator
n Modular and extensible to different standards

426

Case Study: Comparison of DRAM Standards

427

Across 22
workloads,
simple CPU
model

Ramulator Paper and Source Code
n Yoongu Kim, Weikun Yang, and Onur Mutlu,

"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters (CAL), March 2015.
[Source Code]

n Source code is released under the liberal MIT License
q https://github.com/CMU-SAFARI/ramulator

428

Rethinking Memory Architecture
n Compute Capable Memory

n Refresh

n Reliability

n Latency

n Bandwidth

n Energy

n Memory Compression
429

Large DRAM Power in Modern Systems

430

>40% in POWER7 (Ware+, HPCA’10) >40% in GPU (Paul+, ISCA’15)

Why Is Power Large?
n Design of DRAM uArchitecture

q A lot of waste (granularity, latency, …)

n High Voltage
q Can we scale it down reliably?

n High Frequency
q Can we scale it down with low performance impact?

n DRAM Refresh

n …
431

Memory Dynamic Voltage/Freq. Scaling

n Howard David, Chris Fallin, Eugene Gorbatov, Ulf R. Hanebutte, and
Onur Mutlu,
"Memory Power Management via Dynamic Voltage/Frequency
Scaling"
Proceedings of the 8th International Conference on Autonomic
Computing (ICAC), Karlsruhe, Germany, June 2011. Slides (pptx) (pdf)

432

New Memory Architectures
n Compute Capable Memory

n Refresh

n Reliability

n Latency

n Bandwidth

n Energy

n Memory Compression
433

Readings on Memory Compression (I)
n Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Philip B. Gibbons,

Michael A. Kozuch, and Todd C. Mowry,
"Base-Delta-Immediate Compression: Practical Data
Compression for On-Chip Caches"
Proceedings of the 21st International Conference on Parallel
Architectures and Compilation Techniques (PACT), Minneapolis, MN,
September 2012. Slides (pptx) Source Code

434

Readings on Memory Compression (II)
n Gennady Pekhimenko, Vivek Seshadri, Yoongu Kim, Hongyi Xin, Onur

Mutlu, Michael A. Kozuch, Phillip B. Gibbons, and Todd C. Mowry,
"Linearly Compressed Pages: A Low-Complexity, Low-Latency
Main Memory Compression Framework"
Proceedings of the 46th International Symposium on Microarchitecture
(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning
Session Slides (pptx) (pdf)] Poster (pptx) (pdf)]

435

Readings on Memory Compression (III)
n Gennady Pekhimenko, Tyler Huberty, Rui Cai, Onur Mutlu, Phillip P.

Gibbons, Michael A. Kozuch, and Todd C. Mowry,
"Exploiting Compressed Block Size as an Indicator of Future
Reuse"
Proceedings of the 21st International Symposium on High-Performance
Computer Architecture (HPCA), Bay Area, CA, February 2015.
[Slides (pptx) (pdf)]

436

Readings on Memory Compression (IV)
n Gennady Pekhimenko, Evgeny Bolotin, Nandita Vijaykumar, Onur Mutlu,

Todd C. Mowry, and Stephen W. Keckler,
"A Case for Toggle-Aware Compression for GPU Systems"
Proceedings of the 22nd International Symposium on High-Performance
Computer Architecture (HPCA), Barcelona, Spain, March 2016.
[Slides (pptx) (pdf)]

437

Readings on Memory Compression (V)
n Nandita Vijaykumar, Gennady Pekhimenko, Adwait Jog, Abhishek

Bhowmick, Rachata Ausavarungnirun, Chita Das, Mahmut Kandemir, Todd
C. Mowry, and Onur Mutlu,
"A Case for Core-Assisted Bottleneck Acceleration in GPUs:
Enabling Flexible Data Compression with Assist Warps"
Proceedings of the 42nd International Symposium on Computer
Architecture (ISCA), Portland, OR, June 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]

438

Emerging Technologies and
Hybrid Memories

439

Solution 2: Emerging Memory Technologies
n Some emerging resistive memory technologies seem more

scalable than DRAM (and they are non-volatile)

n Example: Phase Change Memory
q Data stored by changing phase of material
q Data read by detecting material’s resistance
q Expected to scale to 9nm (2022 [ITRS 2009])
q Prototyped at 20nm (Raoux+, IBM JRD 2008)
q Expected to be denser than DRAM: can store multiple bits/cell

n But, emerging technologies have (many) shortcomings
q Can they be enabled to replace/augment/surpass DRAM?

440

Solution 2: Emerging Memory Technologies
n Lee+, “Architecting Phase Change Memory as a Scalable DRAM Alternative,” ISCA’09, CACM’10, IEEE Micro’10.
n Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters 2012.
n Yoon, Meza+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012.
n Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.
n Meza+, “A Case for Efficient Hardware-Software Cooperative Management of Storage and Memory,” WEED 2013.
n Lu+, “Loose Ordering Consistency for Persistent Memory,” ICCD 2014.
n Zhao+, “FIRM: Fair and High-Performance Memory Control for Persistent Memory Systems,” MICRO 2014.
n Yoon, Meza+, “Efficient Data Mapping and Buffering Techniques for Multi-Level Cell Phase-Change Memories,” TACO 2014.
n Ren+, “ThyNVM: Enabling Software-Transparent Crash Consistency in Persistent Memory Systems,” MICRO 2015.
n Chauhan+, “NVMove: Helping Programmers Move to Byte-Based Persistence,” INFLOW 2016.
n Li+, “Utility-Based Hybrid Memory Management,” CLUSTER 2017.
n Yu+, “Banshee: Bandwidth-Efficient DRAM Caching via Software/Hardware Cooperation,” MICRO 2017.

441

Promising Resistive Memory Technologies
n PCM

q Inject current to change material phase
q Resistance determined by phase

n STT-MRAM
q Inject current to change magnet polarity
q Resistance determined by polarity

n Memristors/RRAM/ReRAM
q Inject current to change atomic structure
q Resistance determined by atom distance

442

What is Phase Change Memory?
n Phase change material (chalcogenide glass) exists in two states:

q Amorphous: Low optical reflexivity and high electrical resistivity
q Crystalline: High optical reflexivity and low electrical resistivity

443

PCM is resistive memory: High resistance (0), Low resistance (1)
PCM cell can be switched between states reliably and quickly

How Does PCM Work?
n Write: change phase via current injection

q SET: sustained current to heat cell above Tcryst
q RESET: cell heated above Tmelt and quenched

n Read: detect phase via material resistance
q amorphous/crystalline

444

Large
Current

SET (cryst)
Low resistance

103-104 W

Small
Current

RESET (amorph)
High resistance

Access
Device

Memory
Element

106-107 W
Photo Courtesy: Bipin Rajendran, IBM Slide Courtesy: Moinuddin Qureshi, IBM

Opportunity: PCM Advantages
n Scales better than DRAM, Flash

q Requires current pulses, which scale linearly with feature size
q Expected to scale to 9nm (2022 [ITRS])
q Prototyped at 20nm (Raoux+, IBM JRD 2008)

n Can be denser than DRAM
q Can store multiple bits per cell due to large resistance range
q Prototypes with 2 bits/cell in ISSCC’08, 4 bits/cell by 2012

n Non-volatile
q Retain data for >10 years at 85C

n No refresh needed, low idle power
445

Phase Change Memory Properties

n Surveyed prototypes from 2003-2008 (ITRS, IEDM, VLSI,
ISSCC)

n Derived PCM parameters for F=90nm

n Lee, Ipek, Mutlu, Burger, “Architecting Phase Change
Memory as a Scalable DRAM Alternative,” ISCA 2009.

n Lee et al., “Phase Change Technology and the Future of
Main Memory,” IEEE Micro Top Picks 2010.

446

447

PCM-based Main Memory (I)
n How should PCM-based (main) memory be organized?

n Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC’09]:
q How to partition/migrate data between PCM and DRAM

448

PCM-based Main Memory (II)
n How should PCM-based (main) memory be organized?

n Pure PCM main memory [Lee et al., ISCA’09, Top Picks’10]:
q How to redesign entire hierarchy (and cores) to overcome

PCM shortcomings

449

An Initial Study: Replace DRAM with PCM
n Lee, Ipek, Mutlu, Burger, “Architecting Phase Change

Memory as a Scalable DRAM Alternative,” ISCA 2009.
q Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC)
q Derived “average” PCM parameters for F=90nm

450

Architecting PCM to Mitigate Shortcomings
n Idea 1: Use multiple narrow row buffers in each PCM chip

à Reduces array reads/writes à better endurance, latency, energy

n Idea 2: Write into array at
cache block or word
granularity
à Reduces unnecessary wear

451

DRAM PCM

More on PCM As Main Memory
n Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger,

"Architecting Phase Change Memory as a Scalable DRAM
Alternative"
Proceedings of the 36th International Symposium on Computer
Architecture (ISCA), pages 2-13, Austin, TX, June 2009. Slides
(pdf)

452

More on PCM As Main Memory (II)
n Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao,

Engin Ipek, Onur Mutlu, and Doug Burger,
"Phase Change Technology and the Future of Main Memory"
IEEE Micro, Special Issue: Micro's Top Picks from 2009 Computer
Architecture Conferences (MICRO TOP PICKS), Vol. 30, No. 1,
pages 60-70, January/February 2010.

453

Data Placement in Hybrid Memory

n Memory A is fast, but small
n Load should be balanced on both channels
n Page migrations have performance and energy overhead

454

Channel A Channel B

Memory A Memory B
(Fast, Small) (Large, Slow)

Page 1 Page 2

IDLE

Which memory do we place each page in,
to maximize system performance?

Cores/Caches

Memory Controllers

Data Placement Between DRAM and PCM
n Idea: Characterize data access patterns and guide data

placement in hybrid memory

n Streaming accesses: As fast in PCM as in DRAM

n Random accesses: Much faster in DRAM

n Idea: Place random access data with some reuse in DRAM;
streaming data in PCM

n Yoon+, “Row Buffer Locality-Aware Data Placement in
Hybrid Memories,” ICCD 2012 Best Paper Award.

455

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Weighted Speedup Max. Slowdown Perf. per Watt
Normalized Metric

16GB PCM RBLA-Dyn 16GB DRAM

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

N
or

m
al

iz
ed

 W
ei

gh
te

d
Sp

ee
du

p

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 M
ax

. S
lo

w
do

w
n

Hybrid vs. All-PCM/DRAM [ICCD’12]

31%	better	performance	than	all	PCM,	
within	29%	of	all	DRAM	performance

31%

29%

Yoon+,	“Row	Buffer	Locality-Aware	Data	Placement	in	Hybrid	Memories,”	ICCD	2012	Best	Paper	Award.

More on Hybrid Memory Data Placement
n HanBin Yoon, Justin Meza, Rachata Ausavarungnirun,

Rachael Harding, and Onur Mutlu,
"Row Buffer Locality Aware Caching Policies for
Hybrid Memories"
Proceedings of the 30th IEEE International Conference on
Computer Design (ICCD), Montreal, Quebec, Canada,
September 2012. Slides (pptx) (pdf)

457

Weaknesses of Existing Solutions
n They are all heuristics that consider only a limited part of

memory access behavior

n Do not directly capture the overall system
performance impact of data placement decisions

n Example: None capture memory-level parallelism (MLP)
q Number of concurrent memory requests from the same

application when a page is accessed
q Affects how much page migration helps performance

458

Importance of Memory-Level Parallelism

459

requests to Page 1

requests to Page 3

requests to Page 1

requests to Page 3

time

Before migration:

After migration:

requests to Page 2

requests to Page 2

time

Before migration:

After migration:

Mem. B

Mem. B

Mem. A

Mem. A

Mem. B

Mem. A

T T

Migrating one page
reduces stall time by T

Must migrate two pages
to reduce stall time by T:
migrating one page alone

does not help

Mem. B

Page migration decisions need to consider MLP

Our Goal [CLUSTER 2017]

A generalized mechanism that

1. Directly estimates the performance benefit
of migrating a page between
any two types of memory

2. Places only the performance-critical data
in the fast memory

460

Utility-Based Hybrid Memory Management
n A memory manager that works for any hybrid memory

q e.g., DRAM-NVM, DRAM-RLDRAM

n Key Idea
q For each page, use comprehensive characteristics to

calculate estimated utility (i.e., performance impact)
of migrating page from one memory to the other in the
system

q Migrate only pages with the highest utility
(i.e., pages that improve system performance the most
when migrated)

n Li+, “Utility-Based Hybrid Memory Management”, CLUSTER 2017.
461

Key Mechanisms of UH-MEM
n For each page, estimate utility using a performance model

q Application stall time reduction
How much would migrating a page benefit the performance of the
application that the page belongs to?

q Application performance sensitivity
How much does the improvement of a single application’s
performance increase the overall system performance?

n Migrate only pages whose utility exceed the migration
threshold from slow memory to fast memory

n Periodically adjust migration threshold

462

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 = 	∆𝑆𝑡𝑎𝑙𝑙𝑇𝑖𝑚𝑒X×𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦X

Results: System Performance

463

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

0% 25% 50% 75% 100%

N
or

m
al

iz
ed

W
ei

gh
te

d
Sp

ee
du

p

Workload Memory Intensity Category

ALL FREQ RBLA UH-MEM

14%

5%3%

9%

UH-MEM improves system performance
over the best state-of-the-art hybrid memory manager

Results: Sensitivity to Slow Memory Latency
n We vary 𝑡\]^ and 𝑡_\ of the slow memory

464

1.8

2.2

2.6

3.0

3.4

3.8

x3.0
x3.0

x4.0
x4.0

x4.5
x12

x6.0
x16

x7.5
x20

W
ei

gh
te

d
Sp

ee
du

p

Slow Memory Latency Multiplier

ALL FREQ RBLA UH-MEM

13%13%

8% 6%
14%

UH-MEM improves system performance
for a wide variety of hybrid memory systems

𝑡\]^:
𝑡_\:

Crash Consistency

465

One Key Challenge in Persistent Memory

n How to ensure consistency of system/data if all
memory is persistent?

n Two extremes
q Programmer transparent: Let the system handle it
q Programmer only: Let the programmer handle it

n Many alternatives in-between…

466

CHALLENGE:	CRASH	CONSISTENCY

System	crash	can	result	in	
permanent	data	corruption	in	NVM

467

Persistent	Memory	System

CRASH	CONSISTENCY	PROBLEM

468

Example: Add a node to a linked list

1.	Link	to	next2.	Link	to	prev

System	crash	can	result	in	
inconsistent	memory	state

CURRENT	SOLUTIONS
Explicit	interfaces	to	manage	consistency

– NV-Heaps	[ASPLOS’11],	BPFS	[SOSP’09],	Mnemosyne	[ASPLOS’11]

AtomicBegin {
Insert a new node;

} AtomicEnd;

Limits	adoption	of	NVM
Have	to	rewrite	code	with	clear	partition	
between	volatile	and	non-volatile	data

Burden	on	the	programmers
469

OUR	APPROACH:	ThyNVM

470

Goal:
Software transparent consistency in

persistent memory systems

ThyNVM:	Summary

471

• Checkpoints at	multiple	granularities	to	
reduce	both	checkpointing	latency	and	
metadata	overhead

• Overlaps checkpointing and	execution	to	
reduce	checkpointing	latency

• Adapts to	DRAM	and	NVM	characteristics

Performs	within	4.9% of	an	idealized	DRAM	
with	zero	cost	consistency

A new hardware-based
checkpointing mechanism

End of Backup Slides

472

Brief Self Introduction
n Onur Mutlu

q Full Professor @ ETH Zurich CS, since September 2015
q Strecker Professor @ Carnegie Mellon University ECE/CS, 2009-2016, 2016-…
q PhD from UT-Austin, worked @ Google, VMware, Microsoft Research, Intel, AMD
q https://people.inf.ethz.ch/omutlu/
q omutlu@gmail.com (Best way to reach me)
q https://people.inf.ethz.ch/omutlu/projects.htm

n Research, Education, Consulting in
q Computer architecture and systems, bioinformatics
q Memory and storage systems, emerging technologies
q Many-core systems, heterogeneous systems, core design
q Interconnects
q Hardware/software interaction and co-design (PL, OS, Architecture)
q Predictable and QoS-aware systems
q Hardware fault tolerance and security
q Algorithms and architectures for genome analysis
q … 473

