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Research Focus: Computer architecture, HW/SW, bioinformatics
• Memory and storage (DRAM, flash, emerging), interconnects
• Heterogeneous & parallel systems, GPUs, systems for data analytics
• System/architecture interaction, new execution models, new interfaces
• Energy efficiency, fault tolerance, hardware security, performance 
• Genome sequence analysis & assembly algorithms and architectures
• Biologically inspired systems & system design for bio/medicine

Graphics	and	Vision	Processing

Heterogeneous
Processors and 

Accelerators

Hybrid Main Memory

Persistent Memory/Storage

Broad research 
spanning apps, systems, logic
with architecture at the center

Current Research Focus Areas



Four Key Current Directions

n Fundamentally Secure/Reliable/Safe Architectures

n Fundamentally Energy-Efficient Architectures
q Memory-centric (Data-centric) Architectures

n Fundamentally Low-Latency Architectures

n Architectures for Genomics, Medicine, Health

3



In-Memory DNA Sequence Analysis
n Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, 

Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using 
Processing-in-Memory Technologies"
to appear in BMC Genomics, 2018.
to also appear in Proceedings of the 16th Asia Pacific Bioinformatics 
Conference (APBC), Yokohama, Japan, January 2018.
arxiv.org Version (pdf)
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New Genome Sequencing Technologies
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Rethinking Memory & Storage
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The Main Memory System

n Main memory is a critical component of all computing 
systems: server, mobile, embedded, desktop, sensor

n Main memory system must scale (in size, technology, 
efficiency, cost, and management algorithms) to maintain 
performance growth and technology scaling benefits
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Processors
and caches

Main Memory Storage (SSD/HDD)
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Main Memory Storage (SSD/HDD)FPGAs



The Main Memory System

n Main memory is a critical component of all computing 
systems: server, mobile, embedded, desktop, sensor

n Main memory system must scale (in size, technology, 
efficiency, cost, and management algorithms) to maintain 
performance growth and technology scaling benefits
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Main Memory Storage (SSD/HDD)GPUs



Memory System: A Shared Resource View
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Storage

Most of the system is dedicated to storing and moving data 



State of the Main Memory System
n Recent technology, architecture, and application trends

q lead to new requirements
q exacerbate old requirements

n DRAM and memory controllers, as we know them today, 
are (will be) unlikely to satisfy all requirements

n Some emerging non-volatile memory technologies (e.g., 
PCM) enable new opportunities: memory+storage merging

n We need to rethink the main memory system
q to fix DRAM issues and enable emerging technologies 
q to satisfy all requirements
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Major Trends Affecting Main Memory (I)
n Need for main memory capacity, bandwidth, QoS increasing 

n Main memory energy/power is a key system design concern

n DRAM technology scaling is ending 
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Major Trends Affecting Main Memory (II)
n Need for main memory capacity, bandwidth, QoS increasing 

q Multi-core: increasing number of cores/agents
q Data-intensive applications: increasing demand/hunger for data
q Consolidation: cloud computing, GPUs, mobile, heterogeneity

n Main memory energy/power is a key system design concern

n DRAM technology scaling is ending 

13



Example: The Memory Capacity Gap

n Memory capacity per core expected to drop by 30% every two years
n Trends worse for memory bandwidth per core!
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Core count doubling ~ every 2 years 
DRAM DIMM capacity doubling ~ every 3 years

Lim et al., ISCA 2009
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DRAM Latency Is Critical for Performance

In-Memory Data Analytics 
[Clapp+ (Intel), IISWC’15;  
Awan+, BDCloud’15]

Datacenter Workloads 
[Kanev+ (Google), ISCA’15]

In-memory Databases 
[Mao+, EuroSys’12; 
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing 
[Xu+, IISWC’12; Umuroglu+, FPL’15]



DRAM Latency Is Critical for Performance

In-Memory Data Analytics 
[Clapp+ (Intel), IISWC’15;  
Awan+, BDCloud’15]

Datacenter Workloads 
[Kanev+ (Google), ISCA’15]

In-memory Databases 
[Mao+, EuroSys’12; 
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing 
[Xu+, IISWC’12; Umuroglu+, FPL’15]

Long memory latency → performance bottleneck



Major Trends Affecting Main Memory (III)
n Need for main memory capacity, bandwidth, QoS increasing 

n Main memory energy/power is a key system design concern
q ~40-50% energy spent in off-chip memory hierarchy [Lefurgy, 

IEEE Computer’03] >40% power in DRAM [Ware, HPCA’10][Paul,ISCA’15]
q DRAM consumes power even when not used (periodic refresh)

n DRAM technology scaling is ending 
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Major Trends Affecting Main Memory (IV)
n Need for main memory capacity, bandwidth, QoS increasing 

n Main memory energy/power is a key system design concern

n DRAM technology scaling is ending 
q ITRS projects DRAM will not scale easily below X nm 
q Scaling has provided many benefits: 

n higher capacity (density), lower cost, lower energy
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Major Trends Affecting Main Memory (V)
n DRAM scaling has already become increasingly difficult

q Increasing cell leakage current, reduced cell reliability, 
increasing manufacturing difficulties [Kim+ ISCA 2014],
[Liu+ ISCA 2013], [Mutlu IMW 2013], [Mutlu DATE 2017]

q Difficult to significantly improve capacity, energy

n Emerging memory technologies are promising
3D-Stacked DRAM higher bandwidth smaller capacity
Reduced-Latency DRAM
(e.g., RLDRAM, TL-DRAM) lower latency higher cost

Low-Power DRAM
(e.g., LPDDR3, LPDDR4) lower power higher latency

higher cost
Non-Volatile Memory (NVM) 
(e.g., PCM, STTRAM, ReRAM, 
3D Xpoint)

larger capacity
higher latency

higher dynamic power 
lower endurance
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Major Trends Affecting Main Memory (V)
n DRAM scaling has already become increasingly difficult

q Increasing cell leakage current, reduced cell reliability, 
increasing manufacturing difficulties [Kim+ ISCA 2014],
[Liu+ ISCA 2013], [Mutlu IMW 2013], [Mutlu DATE 2017]

q Difficult to significantly improve capacity, energy

n Emerging memory technologies are promising
3D-Stacked DRAM higher bandwidth smaller capacity
Reduced-Latency DRAM
(e.g., RL/TL-DRAM, FLY-RAM) lower latency higher cost

Low-Power DRAM
(e.g., LPDDR3, LPDDR4, Voltron) lower power higher latency

higher cost
Non-Volatile Memory (NVM) 
(e.g., PCM, STTRAM, ReRAM, 3D 
Xpoint)

larger capacity
higher latency

higher dynamic power 
lower endurance

21



Major Trend: Hybrid Main Memory

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
Yoon+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best 
Paper Award.

CPU
DRAM
Ctrl

Fast, durable
Small, 

leaky, volatile, 
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM 
CtrlDRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement 
to achieve the best of multiple technologies



One Foreshadowing

Main Memory Needs 
Intelligent Controllers
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Agenda

n Major Trends Affecting Main Memory
n The Memory Scaling Problem and Solution Directions

q New Memory Architectures
q Enabling Emerging Technologies

n Cross-Cutting Principles
n Summary
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Three Key Issues in Future Platforms

n Fundamentally Secure/Reliable/Safe Architectures

n Fundamentally Energy-Efficient Architectures
q Memory-centric (Data-centric) Architectures

n Fundamentally Low Latency Architectures
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Maslow’s (Human) Hierarchy of Needs

n We need to start with reliability and security…
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Maslow, “A Theory of Human Motivation,” 
Psychological Review, 1943. 

Source:	https://www.simplypsychology.org/maslow.html

Maslow, “A Theory of Human Motivation,” 
Psychological Review, 1943. 

Maslow, “Motivation and Personality,”
Book, 1954-1970.



How Reliable/Secure/Safe is This Bridge?

27Source:	http://www.technologystudent.com/struct1/tacom1.png



Collapse of the “Galloping Gertie”

28Source:	AP



How Secure Are These People?

29Source:	https://s-media-cache-ak0.pinimg.com/originals/48/09/54/4809543a9c7700246a0cf8acdae27abf.jpg

Security is about preventing unforeseen consequences



The DRAM Scaling Problem
n DRAM stores charge in a capacitor (charge-based memory)

q Capacitor must be large enough for reliable sensing
q Access transistor should be large enough for low leakage and high 

retention time
q Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

n DRAM capacity, cost, and energy/power hard to scale
30



As Memory Scales, It Becomes Unreliable
n Data from all of Facebook’s servers worldwide
n Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers,” DSN’15.
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Large-Scale Failure Analysis of DRAM Chips
n Analysis and modeling of memory errors found in all of 

Facebook’s server fleet

n Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"Revisiting Memory Errors in Large-Scale Production Data 
Centers: Analysis and Modeling of New Trends from the Field"
Proceedings of the 45th Annual IEEE/IFIP International Conference on 
Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June 
2015. 
[Slides (pptx) (pdf)] [DRAM Error Model] 
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Infrastructures to Understand Such Issues

33

An Experimental Study of Data Retention 
Behavior in Modern DRAM Devices: 
Implications for Retention Time Profiling 
Mechanisms (Liu et al., ISCA 2013)

The Efficacy of Error Mitigation Techniques 
for DRAM Retention Failures: A 
Comparative Experimental Study
(Khan et al., SIGMETRICS 2014)

Flipping Bits in Memory Without Accessing 
Them: An Experimental Study of DRAM 
Disturbance Errors (Kim et al., ISCA 2014)

Adaptive-Latency DRAM: Optimizing DRAM 
Timing for the Common-Case (Lee et al., 
HPCA 2015)

AVATAR: A Variable-Retention-Time (VRT) 
Aware Refresh for DRAM Systems (Qureshi
et al., DSN 2015)



Infrastructures to Understand Such Issues

34Kim+, “Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

HeaterFPGAs FPGAs



SoftMC: Open Source DRAM Infrastructure

n Hasan Hassan et al., “SoftMC: A 
Flexible and Practical Open-
Source Infrastructure for 
Enabling Experimental DRAM 
Studies,” HPCA 2017.

n Flexible
n Easy to Use (C++ API)
n Open-source 

github.com/CMU-SAFARI/SoftMC 
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SoftMC

n https://github.com/CMU-SAFARI/SoftMC
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Data Retention in Memory [Liu et al., ISCA 2013]

n Retention Time Profile of DRAM looks like this:
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Location dependent
Stored value pattern dependent

Time dependent

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.



A Curious Discovery [Kim et al., ISCA 2014]

One can 
predictably induce errors 

in most DRAM memory chips
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DRAM RowHammer

A simple hardware failure mechanism 
can create a widespread 

system security vulnerability
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Row	of	Cells
Row
Row
Row
Row

Wordline

VLOWVHIGH
Victim	Row

Victim	Row
Hammered	Row

Repeatedly reading a	row	enough	times	(before	memory	gets	
refreshed)	induces	disturbance	errors in	adjacent rows in	
most	real	DRAM	chips	you	can	buy	today

OpenedClosed
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Modern DRAM is Prone to Disturbance Errors

Flipping	Bits	in	Memory	Without	Accessing	Them:	An	Experimental	Study	of	DRAM	
Disturbance	Errors, (Kim	et	al.,	ISCA	2014)



86%
(37/43)

83%
(45/54)

88%
(28/32)

A company B company C	company

Up	to
1.0×107
errors	

Up	to
2.7×106
errors	

Up	to
3.3×105
errors	
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Most DRAM Modules Are at Risk

Flipping	Bits	in	Memory	Without	Accessing	Them:	An	Experimental	Study	of	DRAM	
Disturbance	Errors, (Kim	et	al.,	ISCA	2014)
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Recent DRAM Is More Vulnerable
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First
Appearance

Recent DRAM Is More Vulnerable



44
All	modules	from	2012–2013	are	vulnerable

First
Appearance

Recent DRAM Is More Vulnerable



CPU

loop:
mov (X), %eax
mov (Y), %ebx
clflush (X)
clflush (Y)
mfence
jmp loop

Download	from:	https://github.com/CMU-SAFARI/rowhammer

DRAM	Module

A Simple Program Can Induce Many Errors

Y

X



CPU

Download	from:	https://github.com/CMU-SAFARI/rowhammer

DRAM	Module

A Simple Program Can Induce Many Errors

Y

X1. Avoid	cache	hits
– Flush	X from	cache

2. Avoid	row	hits to	X
– Read	Y in	another	row
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CPU

loop:
mov (X), %eax
mov (Y), %ebx
clflush (X)
clflush (Y)
mfence
jmp loop

Y

X

Download	from:	https://github.com/CMU-SAFARI/rowhammer

DRAM	Module

A Simple Program Can Induce Many Errors



A	real	reliability	&	security	issue	

CPU	Architecture Errors Access-Rate

Intel	Haswell	(2013) 22.9K 12.3M/sec

Intel	Ivy Bridge	(2012) 20.7K 11.7M/sec

Intel	Sandy	Bridge	(2011) 16.1K 11.6M/sec

AMD Piledriver	(2012) 59 6.1M/sec

50Kim+, “Flipping	Bits	in	Memory	Without	Accessing	Them:	An	Experimental	Study	of	
DRAM	Disturbance	Errors,” ISCA 2014.

Observed Errors in Real Systems



One Can Take Over an Otherwise-Secure System

51

Exploiting the DRAM rowhammer bug to 
gain kernel privileges (Seaborn+, 2015)

Flipping Bits in Memory Without Accessing Them: 
An Experimental Study of DRAM Disturbance Errors
(Kim et al., ISCA 2014)



RowHammer Security Attack Example
n “Rowhammer” is a problem with some recent DRAM devices in which 

repeatedly accessing a row of memory can cause bit flips in adjacent rows 
(Kim et al., ISCA 2014). 
q Flipping Bits in Memory Without Accessing Them: An Experimental Study of 

DRAM Disturbance Errors (Kim et al., ISCA 2014)

n We tested a selection of laptops and found that a subset of them 
exhibited the problem. 

n We built two working privilege escalation exploits that use this effect. 
q Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn+, 2015)

n One exploit uses rowhammer-induced bit flips to gain kernel privileges on 
x86-64 Linux when run as an unprivileged userland process. 

n When run on a machine vulnerable to the rowhammer problem, the 
process was able to induce bit flips in page table entries (PTEs). 

n It was able to use this to gain write access to its own page table, and 
hence gain read-write access to all of physical memory.

52Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn & Dullien, 2015)



Security Implications
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More Security Implications

54
Source: https://lab.dsst.io/32c3-slides/7197.html

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript (DIMVA’16)

“We can gain unrestricted access to systems of website visitors.”



More Security Implications

55
Source: https://fossbytes.com/drammer-rowhammer-attack-android-root-devices/

Drammer: Deterministic Rowhammer
Attacks on Mobile Platforms, CCS’16 

“Can gain control of a smart phone deterministically”



More Security Implications?
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Apple’s Patch for RowHammer
n https://support.apple.com/en-gb/HT204934

HP, Lenovo, and other vendors released similar patches



Our	Solution	to	RowHammer
• PARA:	Probabilistic	Adjacent	Row	Activation

• Key	Idea
– After	closing	a	row,	we	activate	(i.e.,	refresh)	one	of	
its	neighbors	with	a	low	probability:	p	=	0.005

• Reliability	Guarantee
– When	p=0.005,	errors	in	one	year:	9.4×10-14

– By	adjusting	the	value	of	p,	we	can	vary	the	strength	
of	protection	against	errors
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More on RowHammer Analysis

59

n Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
"Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors"
Proceedings of the 41st International Symposium on Computer 
Architecture (ISCA), Minneapolis, MN, June 2014. 
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code 
and Data]



Future of Memory Reliability

60https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf

n Onur Mutlu,
"The RowHammer Problem and Other Issues We May Face as 
Memory Becomes Denser"
Invited Paper in Proceedings of the Design, Automation, and Test in 
Europe Conference (DATE), Lausanne, Switzerland, March 2017. 
[Slides (pptx) (pdf)] 



Industry Is Writing Papers About It, Too
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Call for Intelligent Memory Controllers
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Solution Direction: Principled Designs

Design fundamentally secure
computing architectures 

Predict and prevent 
such safety issues
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How Do We Keep Memory Secure?

n Understand: Methodologies for failure modeling and discovery
q Modeling and prediction based on real (device) data 

n Architect: Principled co-architecting of system and memory
q Good partitioning of duties across the stack

n Design & Test: Principled design, automation, testing
q High coverage and good interaction with system reliability 

methods

64



65Kim+, “Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

HeaterFPGAs FPGAs

Understand and Model with Experiments (DRAM)



Understand and Model with Experiments (Flash)

USB Jack

Virtex-II Pro
(USB controller)

Virtex-V FPGA
(NAND Controller)

HAPS-52 Mother Board

USB Daughter Board

NAND Daughter Board

1x-nm
NAND Flash

[DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014, 
HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017, PIEEE’17]

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.



Another Talk: NAND Flash Reliability
n Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu,

"Error Characterization, Mitigation, and Recovery in Flash Memory Based 
Solid State Drives"
to appear in Proceedings of the IEEE, 2017. 

Cai+, “Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis,” DATE 2012.
Cai+, “Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory Lifetime,” ICCD 
2012.
Cai+, “Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization, Analysis and Modeling,” DATE 
2013.
Cai+, “Error Analysis and Retention-Aware Error Management for NAND Flash Memory,” Intel Technology Journal 2013.
Cai+, “Program Interference in MLC NAND Flash Memory: Characterization, Modeling, and Mitigation,” ICCD 2013.
Cai+, “Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories,” SIGMETRICS 2014.
Cai+,”Data Retention in MLC NAND Flash Memory: Characterization, Optimization and Recovery,” HPCA 2015.
Cai+, “Read Disturb Errors in MLC NAND Flash Memory: Characterization and Mitigation,” DSN 2015. 
Luo+, “WARM: Improving NAND Flash Memory Lifetime with Write-hotness Aware Retention Management,” MSST 
2015.
Meza+, “A Large-Scale Study of Flash Memory Errors in the Field,” SIGMETRICS 2015.
Luo+, “Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory,” IEEE 
JSAC 2016.
Cai+, “Vulnerabilities in MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and Mitigation 
Techniques,” HPCA 2017.
Fukami+, “Improving the Reliability of Chip-Off Forensic Analysis of NAND Flash Memory Devices,” DFRWS EU 2017. 

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.



NAND Flash Vulnerabilities

68

https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities_hpca17.pdf

HPCA, Feb. 2017



NAND Flash: Intelligent Memory Control

69

https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017



There are Two Other Solution Directions
n New Technologies: Replace or (more likely) augment DRAM 

with a different technology
q Non-volatile memories

n Embracing Un-reliability:
Design memories with different reliability
and store data intelligently across them

n …

70

Fundamental	solutions	to	security	
require	co-design	across	the	hierarchy

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons
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data

Exploiting	Memory	Error	Tolerance	
with	Hybrid	Memory	Systems

Heterogeneous-Reliability	Memory	[DSN	2014]

Low-cost	memoryReliable	memory

Vulnerable	
data

Tolerant	
data

Vulnerable	
data

Tolerant	
data

• ECC	protected
• Well-tested	chips

• NoECC or	Parity
• Less-tested	chips
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On	Microsoft’s	Web	Search	workload
Reduces	server	hardware	cost	by	4.7	%
Achieves	single	server	availability target	of	99.90	%



More on Heterogeneous-Reliability Memory
n Yixin Luo, Sriram Govindan, Bikash Sharma, Mark Santaniello, Justin Meza, Aman

Kansal, Jie Liu, Badriddine Khessib, Kushagra Vaid, and Onur Mutlu,
"Characterizing Application Memory Error Vulnerability to Optimize 
Data Center Cost via Heterogeneous-Reliability Memory"
Proceedings of the 44th Annual IEEE/IFIP International Conference on 
Dependable Systems and Networks (DSN), Atlanta, GA, June 2014. [Summary] 
[Slides (pptx) (pdf)] [Coverage on ZDNet] 
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Summary: Memory Reliability and Security
n Memory reliability is reducing
n Reliability issues open up security vulnerabilities

q Very hard to defend against
n Rowhammer is an example 

q Its implications on system security research are tremendous & exciting

n Good news: We have a lot more to do.
n Understand: Solid methodologies for failure modeling and discovery

q Modeling based on real device data – small scale and large scale
n Architect: Principled co-architecting of system and memory

q Good partitioning of duties across the stack
n Design & Test: Principled electronic design, automation, testing

q High coverage and good interaction with system reliability methods
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Challenge and Opportunity for Future

Fundamentally
Secure, Reliable, Safe

Computing Architectures

74



One Important Takeaway

Main Memory Needs 
Intelligent Controllers
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Three Key Issues in Future Platforms

n Fundamentally Secure/Reliable/Safe Architectures

n Fundamentally Energy-Efficient Architectures
q Memory-centric (Data-centric) Architectures

n Fundamentally Low Latency Architectures
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Do We Want This?

77Source:	V.	Milutinovic



Or, This?

78Source:	V.	Milutinovic



Maslow’s (Human) Hierarchy of Needs, Revisited

79

Maslow, “A Theory of Human Motivation,” 
Psychological Review, 1943. 

Everlasting energy

Source:	https://www.simplypsychology.org/maslow.html

Maslow, “A Theory of Human Motivation,” 
Psychological Review, 1943. 

Maslow, “Motivation and Personality,”
Book, 1954-1970.



Challenge and Opportunity for Future

Sustainable
and

Energy Efficient

80



Three Key Systems Trends
1. Data access is a major bottleneck

q Applications are increasingly data hungry

2. Energy consumption is a key limiter

3. Data movement energy dominates compute
q Especially true for off-chip to on-chip movement

81



The Need for More Memory Performance

In-Memory Data Analytics 
[Clapp+ (Intel), IISWC’15;  
Awan+, BDCloud’15]

Datacenter Workloads 
[Kanev+ (Google), ISCA’15]

In-memory Databases 
[Mao+, EuroSys’12; 
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing 
[Xu+, IISWC’12; Umuroglu+, FPL’15]



The Performance Perspective (1996-2005)

n “It’s the Memory, Stupid!” (Richard Sites, MPR, 1996)

Mutlu+, “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.



The Performance Perspective (Today)
n All of Google’s Data Center Workloads (2015): 

84Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.



The Performance Perspective (Today)
n All of Google’s Data Center Workloads (2015): 

85Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.



The Performance Perspective

n Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
"Runahead Execution: An Alternative to Very Large Instruction 
Windows for Out-of-order Processors"
Proceedings of the 9th International Symposium on High-Performance 
Computer Architecture (HPCA), pages 129-140, Anaheim, CA, February 
2003. Slides (pdf)
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The Energy Perspective

87

Dally, HiPEAC 2015



Data Movement vs. Computation Energy

88

Dally, HiPEAC 2015

A memory access consumes ~1000X 
the energy of a complex addition 



Data Movement vs. Computation Energy
n Data movement is a major system energy bottleneck

q Comprises 41% of mobile system energy during web browsing [2]
q Costs ~115 times as much energy as an ADD operation [1, 2]

89

[1]:	Reducing	data	Movement	Energy	via	Online	Data	Clustering	and	Encoding	(MICRO’16)
[2]:	Quantifying	the	energy	cost	of	data	movement	for	emerging	smart	phone	workloads	on	mobile	platforms	(IISWC’14)



Challenge and Opportunity for Future

High Performance
and

Energy Efficient

90



The Problem

Data access is the major performance and energy bottleneck

Our current
design principles 

cause great energy waste
(and great performance loss)
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The Problem

Processing of data 
is performed 

far away from the data
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A Computing System
n Three key components
n Computation 
n Communication
n Storage/memory

93

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Image source: https://lbsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/



A Computing System
n Three key components
n Computation 
n Communication
n Storage/memory
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Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Image source: https://lbsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/



Today’s Computing Systems
n Are overwhelmingly processor centric
n All data processed in the processor à at great system cost
n Processor is heavily optimized and is considered the master
n Data storage units are dumb and are largely unoptimized

(except for some that are on the processor die)
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Yet …
n “It’s the Memory, Stupid!” (Richard Sites, MPR, 1996)

Mutlu+, “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.



Perils of Processor-Centric Design
n Grossly-imbalanced systems

q Processing done only in one place
q Everything else just stores and moves data: data moves a lot
à Energy inefficient 
à Low performance
à Complex

n Overly complex and bloated processor (and accelerators)
q To tolerate data access from memory
q Complex hierarchies and mechanisms 
à Energy inefficient 
à Low performance
à Complex
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Perils of Processor-Centric Design

98

Most of the system is dedicated to storing and moving data 



We Do Not Want to Move Data!

99

Dally, HiPEAC 2015

A memory access consumes ~1000X 
the energy of a complex addition 



We Need A Paradigm Shift To …

n Enable computation with minimal data movement

n Compute where it makes sense (where data resides)

n Make computing architectures more data-centric
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Goal: Processing Inside Memory

n Many questions … How do we design the:
q compute-capable memory & controllers?
q processor chip?
q software and hardware interfaces?
q system software and languages?
q algorithms?

Cache

Processor
Core

Interconnect

Memory
Database

Graphs

Media 
Query

Results

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons



Why In-Memory Computation Today?

n Push from Technology
q DRAM Scaling at jeopardy 
à Controllers close to DRAM
à Industry open to new memory architectures

n Pull from Systems and Applications
q Data access is a major system and application bottleneck
q Systems are energy limited
q Data movement much more energy-hungry than computation
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Dally, HiPEAC 2015



Processing in Memory:
Two Approaches

1. Minimally changing memory chips
2. Exploiting 3D-stacked memory
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Approach 1: Minimally Changing DRAM
n DRAM has great capability to perform bulk data movement and 

computation internally with small changes
q Can exploit internal connectivity to move data
q Can exploit analog computation capability
q …

n Examples: RowClone, In-DRAM AND/OR, Gather/Scatter DRAM
q RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data

(Seshadri et al., MICRO 2013)
q Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)
q Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial 

Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015)
q "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity 

DRAM Technology” (Seshadri et al., MICRO 2017)
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Starting Simple: Data Copy and Initialization
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Forking

00000
00000
00000

Zero initialization
(e.g., security)

VM Cloning
Deduplication

Checkpointing

Page Migration
Many more

memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ ISCA’15]



Today’s Systems: Bulk Data Copy

Memory

MCL3L2L1CPU

1)	High	latency

2)	High	bandwidth	utilization

3)	Cache	pollution

4)	Unwanted	data	movement

1061046ns,	3.6uJ				(for	4KB	page	copy	via	DMA)



Future Systems: In-Memory Copy

Memory

MCL3L2L1CPU

1)	Low	latency

2)	Low	bandwidth	utilization

3)	No	cache	pollution

4)	No	unwanted	data	movement

1071046ns,	3.6uJ à 90ns,	0.04uJ



RowClone: In-DRAM Row Copy

Row Buffer (4 Kbytes)

Data Bus

8 bits

DRAM subarray

4 Kbytes

Step 1: Activate row A

Transfer
row

Step 2: Activate row B

Transfer
row

Negligible HW cost
Idea: Two consecutive ACTivates



RowClone: Latency and Energy Savings
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Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and 
Initialization of Bulk Data,” MICRO 2013.



More on RowClone
n Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata

Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A. 
Kozuch, Phillip B. Gibbons, and Todd C. Mowry,
"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and 
Initialization"
Proceedings of the 46th International Symposium on Microarchitecture
(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning Session 
Slides (pptx) (pdf)] [Poster (pptx) (pdf)] 
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Memory as an Accelerator

CPU
core

CPU
core

CPU
core

CPU
core

mini-CPU
core

video
core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

LLC

Memory Controller
Specialized

compute-capability
in memory

Memoryimaging
core

Memory Bus

Memory similar to a “conventional” accelerator



In-Memory Bulk Bitwise Operations
n We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ
n At low cost
n Using analog computation capability of DRAM

q Idea: activating multiple rows performs computation
n 30-60X performance and energy improvement

q Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations 
Using Commodity DRAM Technology,” MICRO 2017.

n New memory technologies enable even more opportunities
q Memristors, resistive RAM, phase change mem, STT-MRAM, …
q Can operate on data with minimal movement
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In-DRAM AND/OR: Triple Row Activation
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½VDD

½VDD

dis

A

B

C

Final	State
AB	+	BC	+	AC

½VDD+δ

C(A	+	B)	+	
~C(AB)en

0

VDD

Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015.



In-DRAM NOT: Dual Contact Cell
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Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

Idea: 
Feed the 

negated value 
in the sense amplifier

into a special row



Performance: In-DRAM Bitwise Operations
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Energy of In-DRAM Bitwise Operations
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Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.



Ambit vs. DDR3: Performance and Energy
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32X 35X

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.



Bulk Bitwise Operations in Workloads

[1] Li and Patel, BitWeaving, SIGMOD 2013
[2] Goodwin+, BitFunnel, SIGIR 2017



Example Data Structure: Bitmap Index

n Alternative to B-tree and its variants
n Efficient for performing range queries and joins
n Many bitwise operations to perform a query
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Performance: Bitmap Index on Ambit
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Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.



Performance: BitWeaving on Ambit
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Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.



More on In-DRAM Bulk AND/OR

n Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk 
Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and 
Todd C. Mowry,
"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015. 
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More on Ambit

n Vivek Seshadri et al., “Ambit: In-Memory Accelerator 
for Bulk Bitwise Operations Using Commodity DRAM 
Technology,” MICRO 2017.
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Challenge and Opportunity for Future

Computing Architectures
with 

Minimal Data Movement
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Challenge: Intelligent Memory Device

Does memory
have to be

dumb?
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Processing in Memory:
Two Approaches

1. Minimally changing memory chips
2. Exploiting 3D-stacked memory
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Opportunity: 3D-Stacked Logic+Memory

127

Logic

Memory

Other “True 3D” technologies
under development



DRAM Landscape (circa 2015)

128
Kim+, “Ramulator: A Flexible and Extensible DRAM Simulator”, IEEE CAL 2015.



Two Key Questions in 3D-Stacked PIM

n How can we accelerate important applications if we use         
3D-stacked memory as a coarse-grained accelerator?
q what is the architecture and programming model?
q what are the mechanisms for acceleration?

n What is the minimal processing-in-memory support we can 
provide?
q without changing the system significantly
q while achieving significant benefits
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Graph Processing

130

n Large graphs are everywhere (circa 2015)

n Scalable large-scale graph processing is challenging

36 Million 
Wikipedia Pages

1.4 Billion
Facebook Users

300 Million
Twitter Users

30 Billion
Instagram Photos

+42%

0 1 2 3 4

128 …

32 Cores

Speedup



Key Bottlenecks in Graph Processing
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for (v:	graph.vertices)	{
for (w:	v.successors)	{
w.next_rank +=	weight	*	v.rank;

}
}

weight * v.rank

v

w

&w

1. Frequent random memory accesses

2. Little amount of computation

w.rank

w.next_rank
w.edges

…



Tesseract System for Graph Processing

Crossbar	Network

…
…

…
…

DRAM
	Controller

NI

In-Order	Core

Message	Queue

PF	Buffer

MTP

LP

Host	Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Interconnected set of 3D-stacked memory+logic chips with simple cores

Logic

Memory

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Logic

Memory

Tesseract System for Graph Processing
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Memory-Mapped
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Remote	Function	Calls



Communications In Tesseract (I)
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Communications In Tesseract (II)
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Communications In Tesseract (III)
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Remote Function Call (Non-Blocking)
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Logic

Memory

Tesseract System for Graph Processing
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Evaluated Systems
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Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Tesseract Graph Processing Performance

+56% +25%
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Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

On five graph processing algorithms



Tesseract Graph Processing Performance
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Effect of Bandwidth & Programming Model
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Tesseract Graph Processing System Energy
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Memory	Layers Logic	Layers Cores

> 8X Energy Reduction

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



More on Tesseract
n Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, 

and Kiyoung Choi,
"A Scalable Processing-in-Memory Accelerator for 
Parallel Graph Processing"
Proceedings of the 42nd International Symposium on 
Computer Architecture (ISCA), Portland, OR, June 2015. 
[Slides (pdf)] [Lightning Session Slides (pdf)]
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Truly Distributed GPU Processing with PIM?

Logic layer 
SM

Crossbar switch

Vault 
Ctrl

…. Vault 
Ctrl

Logic layer

Main GPU

3D-stacked memory
(memory stack) SM (Streaming Multiprocessor)



Accelerating GPU Execution with PIM (I)
n Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike 

O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling 
Programmer-Transparent Near-Data Processing in GPU 
Systems"
Proceedings of the 43rd International Symposium on Computer 
Architecture (ISCA), Seoul, South Korea, June 2016. 
[Slides (pptx) (pdf)] 
[Lightning Session Slides (pptx) (pdf)] 
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Accelerating GPU Execution with PIM (II)
n Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K. 

Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities"
Proceedings of the 25th International Conference on Parallel 
Architectures and Compilation Techniques (PACT), Haifa, Israel, 
September 2016.
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Accelerating Linked Data Structures
n Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali 

Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory: 
Challenges, Mechanisms, Evaluation"
Proceedings of the 34th IEEE International Conference on Computer 
Design (ICCD), Phoenix, AZ, USA, October 2016. 
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Two Key Questions in 3D-Stacked PIM

n How can we accelerate important applications if we use         
3D-stacked memory as a coarse-grained accelerator?
q what is the architecture and programming model?
q what are the mechanisms for acceleration?

n What is the minimal processing-in-memory support we can 
provide?
q without changing the system significantly
q while achieving significant benefits
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PIM-Enabled Instructions
n Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,

"PIM-Enabled Instructions: A Low-Overhead, 
Locality-Aware Processing-in-Memory Architecture"
Proceedings of the 42nd International Symposium on 
Computer Architecture (ISCA), Portland, OR, June 2015. 
[Slides (pdf)] [Lightning Session Slides (pdf)] 



Automatic Code and Data Mapping?
n Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike 

O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling 
Programmer-Transparent Near-Data Processing in GPU 
Systems"
Proceedings of the 43rd International Symposium on Computer 
Architecture (ISCA), Seoul, South Korea, June 2016. 
[Slides (pptx) (pdf)] 
[Lightning Session Slides (pptx) (pdf)] 
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Challenge and Opportunity for Future

Fundamentally
Energy-Efficient
(Data-Centric)

Computing Architectures
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Challenge and Opportunity for Future

Fundamentally
Low-Latency

(Data-Centric)
Computing Architectures
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Three Key Issues in Future Platforms

n Fundamentally Secure/Reliable/Safe Architectures

n Fundamentally Energy-Efficient Architectures
q Memory-centric (Data-centric) Architectures

n Fundamentally Low Latency Architectures
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155Source:	http://spectrum.ieee.org/image/MjYzMzAyMg.jpeg



Maslow’s Hierarchy of Needs, A Third Time
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Speed

Speed
Speed
Speed
Speed

Source:	https://www.simplypsychology.org/maslow.html

Maslow, “A Theory of Human Motivation,” 
Psychological Review, 1943. 

Maslow, “Motivation and Personality,”
Book, 1954-1970.



See Backup Slides for Latency…
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Challenge and Opportunity for Future

Fundamentally
Low-Latency

Computing Architectures
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Agenda

n Major Trends Affecting Main Memory
n The Memory Scaling Problem and Solution Directions

q New Memory Architectures
q Enabling Emerging Technologies

n Cross-Cutting Principles
n Summary
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Limits of Charge Memory
n Difficult charge placement and control

q Flash: floating gate charge
q DRAM: capacitor charge, transistor leakage

n Reliable sensing becomes difficult as charge 
storage unit size reduces
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Emerging Memory Technologies
n Some emerging resistive memory technologies seem more 

scalable than DRAM (and they are non-volatile)

n Example: Phase Change Memory
q Data stored by changing phase of material 
q Data read by detecting material’s resistance
q Expected to scale to 9nm (2022 [ITRS])
q Prototyped at 20nm (Raoux+, IBM JRD 2008)
q Expected to be denser than DRAM: can store multiple bits/cell

n But, emerging technologies have (many) shortcomings
q Can they be enabled to replace/augment/surpass DRAM?
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Promising Resistive Memory Technologies
n PCM

q Inject current to change material phase
q Resistance determined by phase

n STT-MRAM
q Inject current to change magnet polarity
q Resistance determined by polarity

n Memristors/RRAM/ReRAM
q Inject current to change atomic structure
q Resistance determined by atom distance
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Phase Change Memory: Pros and Cons
n Pros over DRAM

q Better technology scaling (capacity and cost)
q Non volatile à Persistent
q Low idle power (no refresh)

n Cons
q Higher latencies: ~4-15x DRAM (especially write)
q Higher active energy: ~2-50x DRAM (especially write)
q Lower endurance (a cell dies after ~108 writes)
q Reliability issues (resistance drift)

n Challenges in enabling PCM as DRAM replacement/helper:
q Mitigate PCM shortcomings
q Find the right way to place PCM in the system
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PCM-based Main Memory (I)
n How should PCM-based (main) memory be organized?

n Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC’09]: 
q How to partition/migrate data between PCM and DRAM

164



PCM-based Main Memory (II)
n How should PCM-based (main) memory be organized?

n Pure PCM main memory [Lee et al., ISCA’09, Top Picks’10]: 
q How to redesign entire hierarchy (and cores) to overcome 

PCM shortcomings
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Results: Naïve Replacement of DRAM with PCM

n Replace DRAM with PCM in a 4-core, 4MB L2 system
n PCM organized the same as DRAM: row buffers, banks, peripherals
n 1.6x delay, 2.2x energy, 500-hour average lifetime

n Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a 
Scalable DRAM Alternative,” ISCA 2009.
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Results: Architected PCM as Main Memory 
n 1.2x delay, 1.0x energy, 5.6-year average lifetime
n Scaling improves energy, endurance, density

n Caveat 1: Worst-case lifetime is much shorter (no guarantees)
n Caveat 2: Intensive applications see large performance and energy hits
n Caveat 3: Optimistic PCM parameters?
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More on PCM As Main Memory
n Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger,

"Architecting Phase Change Memory as a Scalable DRAM 
Alternative"
Proceedings of the 36th International Symposium on Computer 
Architecture (ISCA), pages 2-13, Austin, TX, June 2009. Slides 
(pdf)
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More on PCM As Main Memory (II)
n Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao, 

Engin Ipek, Onur Mutlu, and Doug Burger,
"Phase Change Technology and the Future of Main Memory"
IEEE Micro, Special Issue: Micro's Top Picks from 2009 Computer 
Architecture Conferences (MICRO TOP PICKS), Vol. 30, No. 1, 
pages 60-70, January/February 2010. 
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STT-MRAM as Main Memory
n Magnetic Tunnel Junction (MTJ) device

q Reference layer: Fixed magnetic orientation
q Free layer: Parallel or anti-parallel

n Magnetic orientation of the free layer 
determines logical state of device
q High vs. low resistance

n Write: Push large current through MTJ to 
change orientation of free layer

n Read: Sense current flow

n Kultursay et al., “Evaluating STT-RAM as an Energy-
Efficient Main Memory Alternative,” ISPASS 2013.

Reference Layer

Free Layer
Barrier

Reference Layer

Free Layer
Barrier

Logical 0
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STT-MRAM: Pros and Cons
n Pros over DRAM

q Better technology scaling (capacity and cost)
q Non volatile à Persistent
q Low idle power (no refresh)

n Cons
q Higher write latency
q Higher write energy
q Poor density (currently)
q Reliability?

n Another level of freedom
q Can trade off non-volatility for lower write latency/energy (by 

reducing the size of the MTJ)
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Architected STT-MRAM as Main Memory
n 4-core, 4GB main memory, multiprogrammed workloads
n ~6% performance loss, ~60% energy savings vs. DRAM
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Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.



More on STT-MRAM as Main Memory
n Emre Kultursay, Mahmut Kandemir, Anand

Sivasubramaniam, and Onur Mutlu,
"Evaluating STT-RAM as an Energy-Efficient Main 
Memory Alternative"
Proceedings of the 2013 IEEE International Symposium on 
Performance Analysis of Systems and Software (ISPASS), 
Austin, TX, April 2013. Slides (pptx) (pdf)
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A More Viable Approach: Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
Yoon+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best 
Paper Award.

CPU
DRAM 
Ctrl

Fast, durable
Small, 

leaky, volatile, 
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM 
CtrlDRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement 
to achieve the best of multiple technologies



A More Viable Approach: Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
Yoon+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best 
Paper Award.
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Challenge and Opportunity

Providing the Best of
Multiple Metrics

with
Multiple Memory Technologies
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Challenge and Opportunity

177

Heterogeneous,
Configurable,
Programmable 

Memory Systems



Hybrid Memory Systems: Issues
n Cache vs. Main Memory

n Granularity of Data Move/Manage-ment: Fine or Coarse

n Hardware vs. Software vs. HW/SW Cooperative 

n When to migrate data?

n How to design a scalable and efficient large cache?

n …
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On Hybrid Memory Data Placement (I)
n HanBin Yoon, Justin Meza, Rachata Ausavarungnirun, 

Rachael Harding, and Onur Mutlu,
"Row Buffer Locality Aware Caching Policies for 
Hybrid Memories"
Proceedings of the 30th IEEE International Conference on 
Computer Design (ICCD), Montreal, Quebec, Canada, 
September 2012. Slides (pptx) (pdf)
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On Hybrid Memory Data Placement (II)
n Yang Li, Saugata Ghose, Jongmoo Choi, Jin Sun, Hui Wang, 

and Onur Mutlu,
"Utility-Based Hybrid Memory Management"
Proceedings of the 19th IEEE Cluster Conference (CLUSTER), 
Honolulu, Hawaii, USA, September 2017.
[Slides (pptx) (pdf)]
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On Large DRAM Cache Design (I)

n Justin Meza, Jichuan Chang, HanBin Yoon, Onur Mutlu, and 
Parthasarathy Ranganathan, 
"Enabling Efficient and Scalable Hybrid Memories 
Using Fine-Granularity DRAM Cache Management"
IEEE Computer Architecture Letters (CAL), February 2012. 
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On Large DRAM Cache Design (II)
n Xiangyao Yu, Christopher J. Hughes, Nadathur Satish, Onur 

Mutlu, and Srinivas Devadas,
"Banshee: Bandwidth-Efficient DRAM Caching via 
Software/Hardware Cooperation"
Proceedings of the 50th International Symposium on 
Microarchitecture (MICRO), Boston, MA, USA, October 2017.
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Challenge and Opportunity

Enabling 
an Emerging Technology

to Augment DRAM

Managing Hybrid Memories
183



Other Opportunities with Emerging Technologies

n Merging of memory and storage
q e.g., a single interface to manage all data

n New applications
q e.g., ultra-fast checkpoint and restore

n More robust system design
q e.g., reducing data loss

n Processing tightly-coupled with memory
q e.g., enabling efficient search and filtering
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PCM, STT-RAM
NVM

Non-volatile	memories	combine	
characteristics	of	memory	and	storage



Two-Level Memory/Storage Model
n The traditional two-level storage model is a bottleneck with NVM

q Volatile data in memory à a load/store interface
q Persistent data in storage à a file system interface
q Problem: Operating system (OS) and file system (FS) code to locate, translate, 

buffer data become performance and energy bottlenecks with fast NVM stores
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Two-Level Store

Processor
and caches

Main Memory Storage (SSD/HDD)

Virtual memory

Address 
translation

Load/Store

Operating 
system

and file system

fopen, fread, fwrite, …

Persistent (e.g., Phase-Change) 
Memory



Unified Memory and Storage with NVM
n Goal: Unify memory and storage management in a single unit to 

eliminate wasted work to locate, transfer, and translate data
q Improves both energy and performance
q Simplifies programming model as well
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Unified Memory/Storage

Processor
and caches

Persistent (e.g., Phase-Change) Memory

Load/Store

Persistent Memory
Manager

Feedback

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 
Storage and Memory,” WEED 2013.



The Persistent Memory Manager (PMM)

189

2.2.1 Efficient Hardware and Software Support: We propose to investigate the efficient software and
hardware support needed for single-level stores. A single-level store system should provide an abstraction
that maps persistent user data to physical addresses in memory. A software interface for programs would
map a pointer to the actual persistent data. Programs would be able to access any part of the data using
normal load and store instructions. Figure 2 shows two examples of high-level abstractions which could
be provided to programs to access persistent data in a single-level store system. In it, a program creates
a persistent file (Figure 2 left) or object (Figure 2 right) using the handle “file.dat” and allocates an array
of integers in it. Later—perhaps after the application or system is restarted—when the program executes
the updateValue() function, the system retrieves the persistent data for the same handle, and the program
modifies its state. With such an abstraction, a single-level store can eliminate the OS system calls to transfer
data to and from disk. In addition, it eliminates the need for a file system to track physical file addresses
by traversing metadata (such as inodes) in the OS. In this way, single-level stores provide the opportunity to
design a simple and efficient persistent data lookup system in hardware. We plan to research efficient ways
to map files or objects to the virtual address space. In such a hardware-based design, the processor would
manage how data handles correspond to physical addresses. Note that, single-level stores can use alternative
design choices, such as segments, to provide the high-level abstraction instead of files or objects. Regardless,
segments, files, or objects will be mapped to physical addresses with hardware support. Prior works tried to
make file lookup and update efficient in software [27, 28] in the presence of persistent memory, and other
works proposed using complex and potentially inefficient hardware directory techniques (e.g., [15]). Our
goal is to design fast and efficient techniques that take into account the byte addressability of persistent
memory in a single-level store. To this end, we will research the following:
• The efficient use of hash table and B-tree indices for locating files in a single-level store.
• How techniques such as key-value stores can provide fast and efficient lookups in single-level stores.
• Policies for intelligently caching some entries of these indices in hardware to improve system perfor-

mance.
Every access in the single-level store needs to be translated from a virtual address used by a program to

a physical address used to access a device. We will investigate how to efficiently manage address translation
so that locating data is simple and fast. We intend to explore the following directions to solve this problem:
• We will design mechanisms to predict access patterns based on program behavior and pre-compute

virtual-to-physical address translations. We are interested in answering questions such as: What is the
pattern of data accesses to a single-level store, and how can prefetching techniques be redesigned with
single-level stores in mind to enable efficient address translation? How can simple application-level or
profile-based hints on access patterns be communicated to and used by hardware to make address translation
and prefetching efficient?
• We will design efficient translation lookaside buffer (TLB)-like structures which will cache the trans-

lation between virtual and physical addresses but for a much larger amount of physical memory than in
existing systems. In the presence of such a single-level store, many disparate data accesses could need a
large translation table to be serviced effectively. To reduce overhead of such hardware, we are interested in
exploring whether TLB-like structures should favor storing translations only for particular classes of data,
such as data with locality or data which is on the critical path of execution, which get the most benefit
out of the limited structure space. In addition, we will investigate centralized versus distributed translation
structures to design techniques that, for example, buffer private data translation entries near the processor,
while distributing shared entries across processors to minimize translation overheads. Such translation struc-

1 int main(void) {
2 // data in file.dat is persistent
3 FILE myData = "file.dat";
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 FILE myData = "file.dat";
8 myData[n] = value; // value is persistent
9 }

1 int main(void) {
2 // data in file.dat is persistent
3 int *myData = new PersistentObject("file.dat");
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 int *myData = PersistentObject.open("file.dat");
8 myData[n] = value; // value is persistent
9 }

Figure 2: Sample program with access to file-based (left) and object-based (right) persistent data.

5

Load Store

DRAM Flash NVM HDD

Persistent Memory Manager
Hardware

Software
Data Layout, Persistence, Metadata, Security, ...

Hints from SW/OS/runtime

PMM	uses	access	and	hint	information	to	allocate,	locate,	migrate	
and	access	data	in	the	heterogeneous	array	of	devices

Persistent objects



Performance Benefits of a Single-Level Store
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Energy Benefits of a Single-Level Store
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On Persistent Memory Benefits & Challenges 
n Justin Meza, Yixin Luo, Samira Khan, Jishen Zhao, Yuan 

Xie, and Onur Mutlu,
"A Case for Efficient Hardware-Software 
Cooperative Management of Storage and Memory"
Proceedings of the 5th Workshop on Energy-Efficient 
Design (WEED), Tel-Aviv, Israel, June 2013. Slides (pptx)
Slides (pdf)
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Challenge and Opportunity

Combined 
Memory & Storage
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Challenge and Opportunity
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A Unified Interface to 
All Data



Another Key Challenge in Persistent Memory

Programming Ease
to Exploit Persistence
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Hardware Support for Crash Consistency

196

n Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu, 
and Onur Mutlu,
"ThyNVM: Enabling Software-Transparent Crash Consistency 
in Persistent Memory Systems"
Proceedings of the 48th International Symposium on 
Microarchitecture (MICRO), Waikiki, Hawaii, USA, December 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster 
(pptx) (pdf)]
[Source Code]



Tools/Libraries to Help Programmers
n Himanshu Chauhan, Irina Calciu, Vijay Chidambaram, Eric 

Schkufza, Onur Mutlu, and Pratap Subrahmanyam,
"NVMove: Helping Programmers Move to Byte-Based 
Persistence"
Proceedings of the 4th Workshop on Interactions of NVM/Flash 
with Operating Systems and Workloads (INFLOW), Savannah, 
GA, USA, November 2016.
[Slides (pptx) (pdf)]
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Data Structures for In-Memory Processing
n Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu,

"Concurrent Data Structures for Near-Memory Computing"
Proceedings of the 29th ACM Symposium on Parallelism in Algorithms 
and Architectures (SPAA), Washington, DC, USA, July 2017.
[Slides (pptx) (pdf)]
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Concluding Remarks
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A Quote from A Famous Architect
n “architecture […] based upon principle, and not upon 

precedent”
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Precedent-Based Design?
n “architecture […] based upon principle, and not upon 

precedent”
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Principled Design
n “architecture […] based upon principle, and not upon 

precedent”
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The Overarching Principle
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Another Example: Precedent-Based Design

205Source: http://cookiemagik.deviantart.com/art/Train-station-207266944



Principled Design

206Source: By Toni_V, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=4087256



Another Principled Design

207Source: By Martín Gómez Tagle - Lisbon, Portugal, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=13764903
Source: http://www.arcspace.com/exhibitions/unsorted/santiago-calatrava/



Principle Applied to Another Structure

208
Source: https://www.dezeen.com/2016/08/29/santiago-calatrava-oculus-world-trade-center-transportation-hub-new-york-photographs-hufton-crow/
Source: By 準建築人手札網站 Forgemind ArchiMedia - Flickr: IMG_2489.JPG, CC BY 2.0, 
https://commons.wikimedia.org/w/index.php?curid=31493356, https://en.wikipedia.org/wiki/Santiago_Calatrava



The Overarching Principle
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Overarching Principles for Computing?

210Source:	http://spectrum.ieee.org/image/MjYzMzAyMg.jpeg



Concluding Remarks
n It is time to design principled system architectures to solve 

the memory scaling problem

n Discover design principles for fundamentally secure and 
reliable computer architectures

n Design complete systems to be balanced and energy-efficient, 
i.e., data-centric (or memory-centric) and low latency

n Enable new and emerging memory architectures 

n This can
q Lead to orders-of-magnitude improvements 
q Enable new applications & computing platforms
q …
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The Future of New Memory is Bright

n Regardless of challenges 
q in underlying technology and overlying problems/requirements 

212

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

Can enable:

- Orders of magnitude 
improvements

- New applications and 
computing systems

Yet, we have to

- Think across the stack

- Design enabling systems



If In Doubt, See Other Doubtful Technologies
n A very “doubtful” emerging technology 

q for at least two decades

213https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017



Onur Mutlu
omutlu@gmail.com

https://people.inf.ethz.ch/omutlu
December 4, 2017

INESC-ID Distinguished Lecture (Lisbon)

Rethinking Memory System Design
(and the Platforms We Design Around It)



Open Problems
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For More Open Problems, See (I)
n Onur Mutlu and Lavanya Subramanian,

"Research Problems and Opportunities in Memory 
Systems"
Invited Article in Supercomputing Frontiers and Innovations
(SUPERFRI), 2014/2015. 

216https://people.inf.ethz.ch/omutlu/pub/memory-systems-research_superfri14.pdf



For More Open Problems, See (II)

217https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf

n Onur Mutlu,
"The RowHammer Problem and Other Issues We May Face as 
Memory Becomes Denser"
Invited Paper in Proceedings of the Design, Automation, and Test in 
Europe Conference (DATE), Lausanne, Switzerland, March 2017. 
[Slides (pptx) (pdf)] 



For More Open Problems, See (III)
n Onur Mutlu,

"Memory Scaling: A Systems Architecture 
Perspective"
Technical talk at MemCon 2013 (MEMCON), Santa Clara, 
CA, August 2013. [Slides (pptx) (pdf)]
[Video] [Coverage on StorageSearch] 

218https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf



For More Open Problems, See (IV)
n Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and 

Onur Mutlu,
"Error Characterization, Mitigation, and Recovery in 
Flash Memory Based Solid State Drives"
to appear in Proceedings of the IEEE, 2017.
[Preliminary arxiv.org version]

219https://arxiv.org/pdf/1706.08642.pdf



Reducing Memory Latency
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A Closer Look …

222

Chang+, “Understanding Latency Variation in Modern DRAM Chips: Experimental 
Characterization, Analysis, and Optimization",” SIGMETRICS 2016.



DRAM Latency Is Critical for Performance

In-Memory Data Analytics 
[Clapp+ (Intel), IISWC’15;  
Awan+, BDCloud’15]

Datacenter Workloads 
[Kanev+ (Google), ISCA’15]

In-memory Databases 
[Mao+, EuroSys’12; 
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing 
[Xu+, IISWC’12; Umuroglu+, FPL’15]



DRAM Latency Is Critical for Performance

In-Memory Data Analytics 
[Clapp+ (Intel), IISWC’15;  
Awan+, BDCloud’15]

Datacenter Workloads 
[Kanev+ (Google), ISCA’15]

In-memory Databases 
[Mao+, EuroSys’12; 
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing 
[Xu+, IISWC’12; Umuroglu+, FPL’15]

Long memory latency → performance bottleneck



Why the Long Latency?

n Design of DRAM uArchitecture
q Goal: Maximize capacity/area, not minimize latency

n “One size fits all” approach to latency specification
q Same latency parameters for all temperatures
q Same latency parameters for all DRAM chips (e.g., rows)
q Same latency parameters for all parts of a DRAM chip
q Same latency parameters for all supply voltage levels
q Same latency parameters for all application data 
q …
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Latency Variation in Memory Chips

226

HighLow
DRAM Latency

DRAM BDRAM A DRAM C

Slow cells

Heterogeneous manufacturing & operating conditions→	
latency variation in timing parameters



DRAM Characterization Infrastructure

227Kim+, “Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

HeaterFPGAs FPGAs



DRAM Characterization Infrastructure

n Hasan Hassan et al., SoftMC: A 
Flexible and Practical Open-
Source Infrastructure for 
Enabling Experimental DRAM 
Studies, HPCA 2017.

n Flexible
n Easy to Use (C++ API)
n Open-source 

github.com/CMU-SAFARI/SoftMC 
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SoftMC: Open Source DRAM Infrastructure

n https://github.com/CMU-SAFARI/SoftMC
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Tackling the Fixed Latency Mindset
n Reliable operation latency is actually very heterogeneous

q Across temperatures, chips, parts of a chip, voltage levels, …

n Idea: Dynamically find out and use the lowest latency one 
can reliably access a memory location with
q Adaptive-Latency DRAM [HPCA 2015]
q Flexible-Latency DRAM [SIGMETRICS 2016]
q Design-Induced Variation-Aware DRAM [SIGMETRICS 2017]
q Voltron [SIGMETRICS 2017]
q ...

n We would like to find sources of latency heterogeneity and 
exploit them to minimize latency
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Adaptive-Latency	DRAM

• Key	idea
– Optimize	DRAM	timing	parameters	online

• Two	components
– DRAM	manufacturer	provides	multiple	sets	of	
reliable	DRAM	timing	parameters	at	different	
temperatures	for	each	DIMM

– System	monitors	DRAM	temperature	&	uses	
appropriate	DRAM	timing	parameters

reliable	DRAM	timing	parameters

DRAM	temperature

Lee+,	“Adaptive-Latency	DRAM:	Optimizing	DRAM	Timing	for	the	Common-Case,”	HPCA	
2015.
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Latency	Reduction	Summary	of	115	DIMMs
• Latency	reduction	for	read	&	write	(55°C)

– Read	Latency:	32.7%
–Write	Latency:	55.1%

• Latency	reduction	for	each	timing	
parameter	(55°C)	
– Sensing:	17.3%
– Restore:	37.3% (read),	54.8% (write)
– Precharge:	35.2%

Lee+,	“Adaptive-Latency	DRAM:	Optimizing	DRAM	Timing	for	the	Common-Case,”	HPCA	
2015.
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AL-DRAM:	Real	System	Evaluation
• System

– CPU:	AMD	4386	(	8	Cores,	3.1GHz,	8MB	LLC)
– DRAM:	4GByte	DDR3-1600	(800Mhz	Clock)
– OS:	Linux
– Storage:	128GByte	SSD

• Workload
– 35	applications	from	SPEC,	STREAM,	Parsec,	
Memcached,	Apache,	GUPS



234

0%
5%

10%
15%
20%
25%

so
pl
ex

m
cf

m
ilc

lib
q

lb
m

ge
m
s

co
py

s.
cl
us
te
r

gu
ps

no
n-
in
te
ns
iv
e

in
te
ns
iv
e

al
l-w

or
kl
oa
ds

Single	Core Multi	Core

0%
5%

10%
15%
20%
25%

so
pl
ex

m
cf

m
ilc

lib
q

lb
m

ge
m
s

co
py

s.
cl
us
te
r

gu
ps

no
n-
in
te
ns
iv
e

in
te
ns
iv
e

al
l-w

or
kl
oa
ds

Single	Core Multi	Core

1.4%
6.7%

0%
5%

10%
15%
20%
25%

so
pl
ex

m
cf

m
ilc

lib
q

lb
m

ge
m
s

co
py

s.
cl
us
te
r

gu
ps

no
n-
in
te
ns
iv
e

in
te
ns
iv
e

al
l-w

or
kl
oa
ds

Single	Core Multi	Core

5.0%

AL-DRAM:	Single-Core	Evaluation

AL-DRAM	improves	single-core	performance	
on	a	real	system

Pe
rf
or
m
an
ce
	Im

pr
ov
em

en
t Average

Improvement

al
l-3

5-
w
or
kl
oa
d



235

0%
5%

10%
15%
20%
25%

so
pl
ex

m
cf

m
ilc

lib
q

lb
m

ge
m
s

co
py

s.
cl
us
te
r

gu
ps

no
n-
in
te
ns
iv
e

in
te
ns
iv
e

al
l-w

or
kl
oa
ds

Single	Core Multi	Core

0%
5%

10%
15%
20%
25%

so
pl
ex

m
cf

m
ilc

lib
q

lb
m

ge
m
s

co
py

s.
cl
us
te
r

gu
ps

no
n-
in
te
ns
iv
e

in
te
ns
iv
e

al
l-w

or
kl
oa
ds

Single	Core Multi	Core

0%
5%

10%
15%
20%
25%

so
pl
ex

m
cf

m
ilc

lib
q

lb
m

ge
m
s

co
py

s.
cl
us
te
r

gu
ps

no
n-
in
te
ns
iv
e

in
te
ns
iv
e

al
l-w

or
kl
oa
ds

Single	Core Multi	Core
14.0%

2.9%
0%
5%

10%
15%
20%
25%

so
pl
ex

m
cf

m
ilc

lib
q

lb
m

ge
m
s

co
py

s.
cl
us
te
r

gu
ps

no
n-
in
te
ns
iv
e

in
te
ns
iv
e

al
l-w

or
kl
oa
ds

Single	Core Multi	Core

10.4%

AL-DRAM:	Multi-Core	Evaluation

AL-DRAM	provides	higher	performance	on
multi-programmed	&	multi-threaded	workloads

Pe
rf
or
m
an
ce
	Im

pr
ov
em

en
t Average				

Improvement

al
l-3

5-
w
or
kl
oa
d



Reducing Latency Also Reduces Energy

n AL-DRAM reduces DRAM power consumption by 5.8%

n Major reason: reduction in row activation time
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More on Adaptive-Latency DRAM
n Donghyuk Lee, Yoongu Kim, Gennady Pekhimenko, Samira Khan, 

Vivek Seshadri, Kevin Chang, and Onur Mutlu,
"Adaptive-Latency DRAM: Optimizing DRAM Timing for 
the Common-Case"
Proceedings of the 21st International Symposium on High-
Performance Computer Architecture (HPCA), Bay Area, CA, 
February 2015. 
[Slides (pptx) (pdf)] [Full data sets] 
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Heterogeneous Latency within A Chip

238

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25
N

or
m

al
iz

ed
 P

er
fo

rm
an

ce

40 Workloads

Baseline (DDR3)
FLY-DRAM (D1)
FLY-DRAM (D2)
FLY-DRAM (D3)
Upper Bound

17.6%
19.5%19.7%

13.3%

Chang+, “Understanding Latency Variation in Modern DRAM Chips: Experimental 
Characterization, Analysis, and Optimization",” SIGMETRICS 2016.



Analysis of Latency Variation in DRAM Chips
n Kevin Chang, Abhijith Kashyap, Hasan Hassan, Samira Khan, Kevin Hsieh, 

Donghyuk Lee, Saugata Ghose, Gennady Pekhimenko, Tianshi Li, and 
Onur Mutlu,
"Understanding Latency Variation in Modern DRAM Chips: 
Experimental Characterization, Analysis, and Optimization"
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Antibes Juan-Les-Pins, 
France, June 2016. 
[Slides (pptx) (pdf)] 
[Source Code] 
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Inherently	fast

inherently	slow

What	Is	Design-Induced	Variation?
slowfast

slow
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Systematic	variation in	cell	access	times
caused	by	the	physical	organization of	DRAM

sense	amplifiers

w
ordline

drivers

across	row
distance	from	
sense	amplifier

across	column

distance	from	
wordline driver



241

DIVA Online	Profiling
inherently	slow

Profile	only slow	regions	to	determine	min.	latency
àDynamic&	low	cost	latency	optimization
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inherently	slow

DIVA Online	Profiling
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design-induced
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process
variation
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DIVA-DRAM	Reduces	Latency
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Design-Induced Latency Variation in DRAM
n Donghyuk Lee, Samira Khan, Lavanya Subramanian, Saugata Ghose, 

Rachata Ausavarungnirun, Gennady Pekhimenko, Vivek Seshadri, and 
Onur Mutlu,
"Design-Induced Latency Variation in Modern DRAM Chips: 
Characterization, Analysis, and Latency Reduction Mechanisms"
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL, 
USA, June 2017. 
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Voltron: Exploiting the 
Voltage-Latency-Reliability 

Relationship
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Executive Summary
• DRAM (memory) power is significant in today’s systems

– Existing low-voltage DRAM reduces voltage conservatively

• Goal: Understand and exploit the reliability and latency behavior of 
real DRAM chips under aggressive reduced-voltage operation

• Key experimental observations:
– Huge voltage margin -- Errors occur beyond some voltage
– Errors exhibit spatial locality
– Higher operation latency mitigates voltage-induced errors

• Voltron: A new DRAM energy reduction mechanism 
– Reduce DRAM voltage without introducing errors 
– Use a regression model to select voltage that does not degrade 

performance beyond a chosen target à 7.3% system energy reduction
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Analysis of Latency-Voltage in DRAM Chips
n Kevin Chang, A. Giray Yaglikci, Saugata Ghose, Aditya Agrawal, Niladrish

Chatterjee, Abhijith Kashyap, Donghyuk Lee, Mike O'Connor, Hasan 
Hassan, and Onur Mutlu,
"Understanding Reduced-Voltage Operation in Modern DRAM 
Devices: Experimental Characterization, Analysis, and 
Mechanisms"
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL, 
USA, June 2017. 
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And, What If …

n … we can sacrifice reliability of some data to access it with 
even lower latency?
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Challenge and Opportunity for Future

Fundamentally
Low Latency

Computing Architectures
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Tiered Latency DRAM
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DRAM	Latency	=	Subarray Latency +	I/O	Latency

What	Causes	the	Long	Latency?
DRAM	Chip
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Dominant
Su
ba

rr
ay

I/
O



252

Why	is	the	Subarray So	Slow?
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Trade-Off:	Area	(Die	Size)	vs.	Latency

Faster

Smaller

Short	BitlineLong	Bitline

Trade-Off:	Area	vs.	Latency
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Trade-Off:	Area	(Die Size)	vs.	Latency
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Short	Bitline

Low	Latency	

Approximating	the	Best	of	Both	Worlds
Long	Bitline
Small	Area	
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Approximating	the	Best	of	Both	Worlds
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Tiered-Latency	DRAM

Low	Latency

Small	area	
using	long	
bitline



257

0%

50%

100%

150%

0%

50%

100%

150%

Commodity	DRAM	vs.	TL-DRAM	[HPCA	2013]	
La
te
nc
y

Po
w
er

–56%

+23%

–51%

+49%
• DRAM	Latency	(tRC) • DRAM	Power

• DRAM	Area	Overhead
~3%:	mainly	due	to	the	isolation	transistors

TL-DRAM
Commodity	

DRAM
Near							Far Commodity	

DRAM
Near							Far
TL-DRAM

(52.5ns)



258

Trade-Off:	Area	(Die-Area)	vs.	Latency
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Leveraging	Tiered-Latency	DRAM	
• TL-DRAM	is	a	substrate that	can	be	leveraged	by	
the	hardware	and/or	software

• Many	potential	uses
1. Use	near	segment	as	hardware-managed	inclusive
cache	to	far	segment

2. Use	near	segment	as	hardware-managed	exclusive
cache	to	far	segment

3. Profile-based	page	mapping	by	operating	system
4. Simply	replace	DRAM	with	TL-DRAM	

Lee+,	“Tiered-Latency	DRAM:	A	Low	Latency	and	Low	Cost	DRAM	Architecture,”	HPCA	2013.
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More on PIM
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Eliminating the Adoption Barriers

How to Enable Adoption 
of Processing in Memory

262



Barriers to Adoption of PIM

1. Functionality of and applications for PIM

2. Ease of programming (interfaces and compiler/HW support)

3. System support: coherence & virtual memory

4. Runtime systems for adaptive scheduling, data mapping, 
access/sharing control

5. Infrastructures to assess benefits and feasibility
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We Need to Revisit the Entire Stack
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Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons



Key Challenge 1:	Code	Mapping

Logic layer 
SM

Crossbar switch

Vault 
Ctrl

…. Vault 
Ctrl

Logic layer

?

Main GPU

3D-stacked memory
(memory stack)

• Challenge 1: Which operations should be executed 
in memory vs. in CPU?

?
SM (Streaming Multiprocessor)



Key Challenge 2: Data Mapping

Logic layer 
SM

Crossbar switch

Vault 
Ctrl

…. Vault 
Ctrl

Logic layer

Main GPU

3D-stacked memory
(memory stack)

• Challenge 2: How should data be mapped to 
different 3D memory stacks? 

SM (Streaming Multiprocessor)



How to Do the Code and Data Mapping?
n Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike 

O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling 
Programmer-Transparent Near-Data Processing in GPU 
Systems"
Proceedings of the 43rd International Symposium on Computer 
Architecture (ISCA), Seoul, South Korea, June 2016. 
[Slides (pptx) (pdf)] 
[Lightning Session Slides (pptx) (pdf)] 
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How to Schedule Code?
n Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K. 

Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities"
Proceedings of the 25th International Conference on Parallel 
Architectures and Compilation Techniques (PACT), Haifa, Israel, 
September 2016.
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Challenge: Coherence for Hybrid CPU-PIM Apps
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Traditional
coherence

No coherence
overhead



How to Maintain Coherence?

n Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, 
Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism 
for Processing-in-Memory"
IEEE Computer Architecture Letters (CAL), June 2016.
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How to Support Virtual Memory?
n Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali 

Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory: 
Challenges, Mechanisms, Evaluation"
Proceedings of the 34th IEEE International Conference on Computer 
Design (ICCD), Phoenix, AZ, USA, October 2016. 
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How to Design Data Structures for PIM?
n Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu,

"Concurrent Data Structures for Near-Memory Computing"
Proceedings of the 29th ACM Symposium on Parallelism in Algorithms 
and Architectures (SPAA), Washington, DC, USA, July 2017.
[Slides (pptx) (pdf)]
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Simulation Infrastructures for PIM

n Ramulator extended for PIM
q Flexible and extensible DRAM simulator
q Can model many different memory standards and proposals
q Kim+, “Ramulator: A Flexible and Extensible DRAM 

Simulator”, IEEE CAL 2015.
q https://github.com/CMU-SAFARI/ramulator
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An FPGA-based Test-bed for PIM?

n Hasan Hassan et al., SoftMC: A 
Flexible and Practical Open-
Source Infrastructure for 
Enabling Experimental DRAM 
Studies HPCA 2017.

n Flexible
n Easy to Use (C++ API)
n Open-source 

github.com/CMU-SAFARI/SoftMC 
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Some PIM Applications
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Goals

n Understand the primitives, architectures, and benefits of 
PIM by carefully examining many important workloads

n Develop a common workload suite for PIM research
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Genome Read In-Memory (GRIM) Filter: 
Fast Location Filtering in DNA Read Mapping 

with Emerging Memory Technologies

Jeremie Kim, 
Damla Senol, Hongyi Xin, Donghyuk Lee, 

Saugata Ghose, Mohammed Alser, Hasan Hassan, 
Oguz Ergin, Can Alkan, and Onur Mutlu



Executive Summary
n Genome Read Mapping is a very important problem and is the first 

step in many types of genomic analysis
q Could lead to improved health care, medicine, quality of life

n Read mapping is an approximate string matching problem
q Find the best fit of 100 character strings into a 3 billion character dictionary
q Alignment is currently the best method for determining the similarity between 

two strings, but is very expensive

n We propose an in-memory processing algorithm GRIM-Filter for 
accelerating read mapping, by reducing the number of required 
alignments

n We implement GRIM-Filter using in-memory processing within 3D-
stacked memory and show up to 3.7x speedup.
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GRIM-Filter in 3D-stacked DRAM

n The layout of bit vectors in a bank enables filtering many bins in parallel
n Customized logic for accumulation and comparison per genome segment

q Low area overhead, simple implementation
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GRIM-Filter Performance
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Time (x1000 
seconds)

1.8x-3.7x performance benefit across real data sets

Benchmarks and their Execution Times



GRIM-Filter False Positive Rate

281

False Positive 
Rate (%)

5.6x-6.4x False Positive reduction across real data sets

Benchmarks and their False Positive Rates



Conclusions

n We propose an in memory filter algorithm to accelerate end-
to-end genome read mapping by reducing the number of 
required alignments

n Compared to the previous best filter
q We observed 1.8x-3.7x speedup
q We observed 5.6x-6.4x fewer false positives

n GRIM-Filter is a universal filter that can be applied to any 
genome read mapper 
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PIM-Based DNA Sequence Analysis
n Jeremie Kim, Damla Senol, Hongyi Xin, Donghyuk Lee, Mohammed 

Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"Genome Read In-Memory (GRIM) Filter: Fast Location Filtering 
in DNA Read Mapping Using Emerging Memory Technologies"
Pacific Symposium on Biocomputing (PSB) Poster Session, Hawaii, 
January 2017.
[Poster (pdf) (pptx)] [Abstract (pdf)]

n To Appear in APBC 2018 and BMC Genomics 2018.
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PIM-Enabled Instructions
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PEI: PIM-Enabled Instructions (Ideas)
n Goal: Develop mechanisms to get the most out of near-data 

processing with minimal cost, minimal changes to the system, no 
changes to the programming model

n Key Idea 1: Expose each PIM operation as a cache-coherent, 
virtually-addressed host processor instruction (called PEI) that 
operates on only a single cache block
q e.g., __pim_add(&w.next_rank,	value)	à pim.add r1,	(r2)
q No changes sequential execution/programming model
q No changes to virtual memory
q Minimal changes to cache coherence
q No need for data mapping: Each PEI restricted to a single memory module

n Key Idea 2: Dynamically decide where to execute a PEI (i.e., the 
host processor or PIM accelerator) based on simple locality 
characteristics and simple hardware predictors
q Execute each operation at the location that provides the best performance
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Simple PIM Operations as ISA Extensions (I)
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Main	Memory

w.next_rankw.next_rank

for (v:	graph.vertices)	{
value	=	weight	*	v.rank;
for (w:	v.successors)	{
w.next_rank +=	value;

}
}

Host	Processor

w.next_rankw.next_rank
64	bytes	in
64	bytes	out

Conventional	Architecture



Simple PIM Operations as ISA Extensions (II)

287

Main	Memory

w.next_rankw.next_rank

Host	Processor

value
8 bytes	in
0 bytes	out

In-Memory	Addition

for (v:	graph.vertices)	{
value	=	weight	*	v.rank;
for (w:	v.successors)	{
__pim_add(&w.next_rank, value);

}
}

pim.add r1,	(r2)



Always Executing in Memory? Not A Good Idea
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PEI: PIM-Enabled Instructions: Examples

289

n Executed either in memory or in the processor: dynamic decision
q Low-cost locality monitoring for a single instruction

n Cache-coherent, virtually-addressed, single cache block only
n Atomic between different PEIs
n Not atomic with normal instructions (use pfence for ordering)



PIM-Enabled Instructions

n Key to practicality: single-cache-block restriction
q Each PEI can access at most one last-level cache block
q Similar restrictions exist in atomic instructions

n Benefits
q Localization: each PEI is bounded to one memory module
q Interoperability: easier support for cache coherence and 

virtual memory
q Simplified locality monitoring: data locality of PEIs can be 

identified simply by the cache control logic



Example PEI Microarchitecture
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Evaluated Data-Intensive Applications

n Ten emerging data-intensive workloads
q Large-scale graph processing

n Average teenage follower, BFS, PageRank, single-source shortest 
path, weakly connected components

q In-memory data analytics
n Hash join, histogram, radix partitioning

q Machine learning and data mining
n Streamcluster, SVM-RFE

n Three input sets (small, medium, large) for each workload
to show the impact of data locality



PEI Performance Delta: Large Data Sets
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PEI Energy Consumption
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More on PIM-Enabled Instructions
n Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,

"PIM-Enabled Instructions: A Low-Overhead, 
Locality-Aware Processing-in-Memory Architecture"
Proceedings of the 42nd International Symposium on 
Computer Architecture (ISCA), Portland, OR, June 2015. 
[Slides (pdf)] [Lightning Session Slides (pdf)] 



More on RowHammer and 
Memory Reliability
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A Deeper Dive into 
DRAM Reliability Issues
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Root	Causes	of	Disturbance	Errors
• Cause	1:	Electromagnetic	coupling

– Toggling	the	wordline voltage	briefly	increases	the	
voltage	of	adjacent	wordlines

– Slightly	opens	adjacent	rows	à Charge	leakage

• Cause	2:	Conductive	bridges
• Cause	3:	Hot-carrier	injection

Confirmed	by	at	least	one	manufacturer
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1. Most	Modules	Are	at	Risk
2. Errors	vs.	Vintage
3. Error	=	Charge	Loss
4. Adjacency:	Aggressor	&	Victim
5. Sensitivity	Studies
6. Other	Results	in	Paper
7. Solution	Space

299

RowHammer Characterization Results

Flipping	Bits	in	Memory	Without	Accessing	Them:	An	Experimental	Study	of	DRAM	
Disturbance	Errors, (Kim	et	al.,	ISCA	2014)



4.	Adjacency:	Aggressor	&	Victim

Most	aggressors	&	victims	are	adjacent
300

Note:	For	three	modules	with	the	most	errors	(only	first	bank)

Ad
ja
ce
nt

Ad
ja
ce
nt

Ad
ja
ce
nt

Non-AdjacentNon-Adjacent



Note:	For	three	modules	with	the	most	errors	(only	first	bank)

N
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w
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Less	frequent	accesses	à Fewer	errors

55
ns

50
0n
s
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❶Access	Interval	(Aggressor)



Note:	Using	three	modules	with	the	most	errors	(only	first	bank)

More	frequent	refreshes	à Fewer	errors

~7x frequent

64
m
s
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❷Refresh	Interval



RowStripe

~RowStripe

❸Data	Pattern

111111
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111111

000000
000000
000000
000000

000000
111111
000000
111111

111111
000000
111111
000000

Solid

~Solid

Errors	affected	by	data	stored	in	other	cells	
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6.	Other	Results	(in	Paper)
• Victim	Cells	≠Weak	Cells	(i.e.,	leaky	cells)

– Almost	no	overlap	between	them

• Errors	not	strongly	affected	by	temperature
– Default	temperature:	50°C
– At	30°C and	70°C,	number	of	errors	changes	<15%

• Errors	are	repeatable
– Across	ten	iterations	of	testing,	>70% of	victim	cells	
had	errors	in	every	iteration
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6.	Other	Results	(in	Paper)	cont’d
• As	many	as	4 errors	per	cache-line

– Simple	ECC	(e.g.,	SECDED)	cannot	prevent	all	errors

• Number	of	cells	&	rows	affected	by	aggressor
– Victims	cells	per	aggressor:		≤110
– Victims	rows	per	aggressor:		≤9

• Cells	affected	by	two	aggressors	on	either	side
– Very	small	fraction	of	victim	cells	(<100)	have	an	
error	when	either	one	of	the	aggressors	is	toggled

305



Some Potential Solutions

306

Cost• Make	better	DRAM	chips

Cost,	Power• Sophisticated	ECC

Power,	Performance• Refresh	frequently

Cost,	Power,	Complexity• Access	counters	



Naive	Solutions
❶Throttle	accesses	to	same	row

– Limit	access-interval:	≥500ns
– Limit	number	of	accesses:	≤128K (=64ms/500ns)

❷Refresh	more	frequently
– Shorten	refresh-interval	by	~7x

Both	naive	solutions	introduce	significant	
overhead	in	performance and	power
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Apple’s Patch for RowHammer
n https://support.apple.com/en-gb/HT204934

HP and Lenovo released similar patches



Our	Solution	to	RowHammer
• PARA:	Probabilistic	Adjacent	Row	Activation

• Key	Idea
– After	closing	a	row,	we	activate	(i.e.,	refresh)	one	of	
its	neighbors	with	a	low	probability:	p	=	0.005

• Reliability	Guarantee
– When	p=0.005,	errors	in	one	year:	9.4×10-14

– By	adjusting	the	value	of	p,	we	can	vary	the	strength	
of	protection	against	errors
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Advantages	of	PARA
• PARA	refreshes	rows	infrequently

– Low	power
– Low	performance-overhead

• Average	slowdown:	0.20% (for	29 benchmarks)
• Maximum	slowdown:	0.75%

• PARA	is	stateless
– Low	cost
– Low	complexity

• PARA	is	an	effective	and	low-overhead	solution	
to	prevent	disturbance	errors
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Requirements	for	PARA
• If	implemented	in	DRAM	chip

– Enough	slack	in	timing	parameters
– Plenty	of	slack	today:	

• Lee	et	al.,	“Adaptive-Latency	DRAM:	Optimizing	DRAM	Timing	for	the	Common	Case,”	HPCA	
2015.

• Chang	et	al.,	“Understanding	Latency	Variation	in	Modern	DRAM	Chips,”	SIGMETRICS	2016.
• Lee	et	al.,	“Design-Induced	Latency	Variation	in	Modern	DRAM	Chips,”	SIGMETRICS	2017.
• Chang	et	al.,	“Understanding	Reduced-Voltage	Operation	in	Modern	DRAM	Devices,”	

SIGMETRICS	2017.

• If	implemented	in	memory	controller
– Better	coordination	between	memory	controller	and	
DRAM

– Memory	controller	should	know	which	rows	are	
physically	adjacent
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More on RowHammer Analysis

312

n Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
"Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors"
Proceedings of the 41st International Symposium on Computer 
Architecture (ISCA), Minneapolis, MN, June 2014. 
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code 
and Data]



Retrospective on RowHammer & Future

313https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf

n Onur Mutlu,
"The RowHammer Problem and Other Issues We May Face as 
Memory Becomes Denser"
Invited Paper in Proceedings of the Design, Automation, and Test in 
Europe Conference (DATE), Lausanne, Switzerland, March 2017. 
[Slides (pptx) (pdf)] 



Challenge and Opportunity for Future

Fundamentally
Secure, Reliable, Safe

Computing Architectures
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Future of Main Memory
n DRAM is becoming less reliable à more vulnerable
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Large-Scale Failure Analysis of DRAM Chips
n Analysis and modeling of memory errors found in all of 

Facebook’s server fleet

n Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"Revisiting Memory Errors in Large-Scale Production Data 
Centers: Analysis and Modeling of New Trends from the Field"
Proceedings of the 45th Annual IEEE/IFIP International Conference on 
Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June 
2015. 
[Slides (pptx) (pdf)] [DRAM Error Model] 
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DRAM Reliability Reducing



Aside: SSD Error Analysis in the Field

n First large-scale field study of flash memory errors

n Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"A Large-Scale Study of Flash Memory Errors in the Field"
Proceedings of the ACM International Conference on 
Measurement and Modeling of Computer Systems
(SIGMETRICS), Portland, OR, June 2015. 
[Slides (pptx) (pdf)] [Coverage at ZDNet]
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Future of Main Memory
n DRAM is becoming less reliable à more vulnerable

n Due to difficulties in DRAM scaling, other problems may 
also appear (or they may be going unnoticed)

n Some errors may already be slipping into the field
q Read disturb errors (Rowhammer)
q Retention errors
q Read errors, write errors
q …

n These errors can also pose security vulnerabilities
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DRAM Data Retention Time Failures

n Determining the data retention time of a cell/row is getting 
more difficult

n Retention failures may already be slipping into the field
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n Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu,
"An Experimental Study of Data Retention Behavior in Modern DRAM 
Devices: Implications for Retention Time Profiling Mechanisms"
Proceedings of the 40th International Symposium on Computer Architecture
(ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt) Slides (pdf)
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Analysis of Retention Failures [ISCA’13]



Two Challenges to Retention Time Profiling
n Data Pattern Dependence (DPD) of retention time

n Variable Retention Time (VRT) phenomenon
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Two Challenges to Retention Time Profiling
n Challenge 1: Data Pattern Dependence (DPD)

q Retention time of a DRAM cell depends on its value and the 
values of cells nearby it

q When a row is activated, all bitlines are perturbed simultaneously
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n Electrical noise on the bitline affects reliable sensing of a DRAM cell
n The magnitude of this noise is affected by values of nearby cells via

q Bitline-bitline coupling à electrical coupling between adjacent bitlines
q Bitline-wordline coupling à electrical coupling between each bitline and 

the activated wordline

Data Pattern Dependence
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n Electrical noise on the bitline affects reliable sensing of a DRAM cell
n The magnitude of this noise is affected by values of nearby cells via

q Bitline-bitline coupling à electrical coupling between adjacent bitlines
q Bitline-wordline coupling à electrical coupling between each bitline and 

the activated wordline

n Retention time of a cell depends on data patterns stored in 
nearby cells 
à need to find the worst data pattern to find worst-case retention time
à this pattern is location dependent

Data Pattern Dependence
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Two Challenges to Retention Time Profiling
n Challenge 2: Variable Retention Time (VRT)

q Retention time of a DRAM cell changes randomly over time 
n a cell alternates between multiple retention time states

q Leakage current of a cell changes sporadically due to a charge 
trap in the gate oxide of the DRAM cell access transistor

q When the trap becomes occupied, charge leaks more readily 
from the transistor’s drain, leading to a short retention time
n Called Trap-Assisted Gate-Induced Drain Leakage

q This process appears to be a random process [Kim+ IEEE TED’11]

q Worst-case retention time depends on a random process 
à need to find the worst case despite this
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Modern DRAM Retention Time Distribution
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An Example VRT Cell
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Variable Retention Time
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More on DRAM Retention Analysis
n Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu,

"An Experimental Study of Data Retention Behavior in Modern DRAM 
Devices: Implications for Retention Time Profiling Mechanisms"
Proceedings of the 40th International Symposium on Computer Architecture
(ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt) Slides (pdf)
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Industry Is Writing Papers About It, Too
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Industry Is Writing Papers About It, Too
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n Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa Alameldeen, Chris Wilkerson, 
and Onur Mutlu,
"The Efficacy of Error Mitigation Techniques for DRAM Retention 
Failures: A Comparative Experimental Study"
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Austin, TX, June 2014. [Slides 
(pptx) (pdf)] [Poster (pptx) (pdf)] [Full data sets] 
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Handling Data-Dependent Failures [DSN’16]
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n Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa Alameldeen, Chris Wilkerson, 
and Onur Mutlu,
"The Efficacy of Error Mitigation Techniques for DRAM Retention 
Failures: A Comparative Experimental Study"
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Austin, TX, June 2014. [Slides 
(pptx) (pdf)] [Poster (pptx) (pdf)] [Full data sets] 



Handling Data-Dependent Failures [CAL’16]
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n Samira Khan, Chris Wilkerson, Donghyuk Lee, Alaa R. Alameldeen, and Onur 
Mutlu,
"A Case for Memory Content-Based Detection and Mitigation of Data-
Dependent Failures in DRAM"
IEEE Computer Architecture Letters (CAL), November 2016. 



n Moinuddin Qureshi, Dae Hyun Kim, Samira Khan, Prashant Nair, and 
Onur Mutlu,
"AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for 
DRAM Systems"
Proceedings of the 45th Annual IEEE/IFIP International Conference on 
Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June 
2015. 
[Slides (pptx) (pdf)] 
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Handling Both DPD and VRT [ISCA’17]

337

n Minesh Patel, Jeremie S. Kim, and Onur Mutlu,
"The Reach Profiler (REAPER): Enabling the Mitigation of DRAM 
Retention Failures via Profiling at Aggressive Conditions"
Proceedings of the 44th International Symposium on Computer Architecture
(ISCA), Toronto, Canada, June 2017. 

n First experimental analysis of (mobile) LPDDR4 chips
n Analyzes the complex tradeoff space of retention time profiling
n Key idea: enable fast and robust profiling at higher refresh intervals & temp.



If Time Permits: NAND Flash Vulnerabilities
n Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu,

"Error Characterization, Mitigation, and Recovery in Flash Memory Based 
Solid State Drives"
to appear in Proceedings of the IEEE, 2017. 

Cai+, “Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis,” DATE 2012.
Cai+, “Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory Lifetime,” ICCD 
2012.
Cai+, “Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization, Analysis and Modeling,” DATE 
2013.
Cai+, “Error Analysis and Retention-Aware Error Management for NAND Flash Memory,” Intel Technology Journal 2013.
Cai+, “Program Interference in MLC NAND Flash Memory: Characterization, Modeling, and Mitigation,” ICCD 2013.
Cai+, “Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories,” SIGMETRICS 2014.
Cai+,”Data Retention in MLC NAND Flash Memory: Characterization, Optimization and Recovery,” HPCA 2015.
Cai+, “Read Disturb Errors in MLC NAND Flash Memory: Characterization and Mitigation,” DSN 2015. 
Luo+, “WARM: Improving NAND Flash Memory Lifetime with Write-hotness Aware Retention Management,” MSST 
2015.
Meza+, “A Large-Scale Study of Flash Memory Errors in the Field,” SIGMETRICS 2015.
Luo+, “Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory,” IEEE 
JSAC 2016.
Cai+, “Vulnerabilities in MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and Mitigation 
Techniques,” HPCA 2017.
Fukami+, “Improving the Reliability of Chip-Off Forensic Analysis of NAND Flash Memory Devices,” DFRWS EU 2017. 

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.



Overview Paper on Flash Reliability
n Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and 

Onur Mutlu,
"Error Characterization, Mitigation, and Recovery in 
Flash Memory Based Solid State Drives"
to appear in Proceedings of the IEEE, 2017.
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NAND Flash Memory
Reliability and Security
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Overview Paper
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https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017



Evolution of NAND Flash Memory

n Flash memory is widening its range of applications
q Portable consumer devices, laptop PCs and enterprise servers

Seaung Suk Lee, “Emerging Challenges in NAND Flash Technology”, Flash Summit 2011 (Hynix)

CMOS scaling
More bits per Cell
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Flash Challenges: Reliability and Endurance

E. Grochowski et al., “Future technology challenges for NAND flash and HDD products”, 
Flash Memory Summit 2012

§ P/E cycles 
(required)

§ P/E cycles 
(provided)

A few thousand

Writing 
the full capacity 

of the drive 
10 times per day 

for 5 years 
(STEC)

> 50k P/E cycles
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NAND Flash Memory is Increasingly Noisy

Noisy NANDWrite Read
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Future NAND Flash-based Storage Architecture

Memory
Signal 

Processing

Error
Correction

Raw Bit 
Error Rate

Uncorrectable 
BER < 10-15Noisy

HighLower

345

Build reliable error models for NAND flash memory 
Design efficient reliability mechanisms based on the model

Our Goals:

Better



NAND Flash Error Model

Noisy NANDWrite Read

Experimentally characterize and model dominant errors

§ Neighbor page 
prog/read (c-to-c 
interference)

§ Retention§ Erase block
§ Program page

Write Read

Cai et al., “Threshold voltage 
distribution in MLC NAND Flash 
Memory: Characterization, Analysis, 
and Modeling”, DATE 2013

Cai et al., “Vulnerabilities in MLC 
NAND Flash Memory Programming: 
Experimental Analysis, Exploits, and 
Mitigation Techniques”, HPCA 2017

Cai et al., “Flash Correct-and-Refresh: 
Retention-aware error management for 
increased flash memory lifetime”, ICCD 2012
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Cai et al., “Program Interference in MLC 
NAND Flash Memory: Characterization, 
Modeling, and Mitigation”, ICCD 2013
Cai et al., “Neighbor-Cell Assisted Error 
Correction in MLC NAND Flash 
Memories”, SIGMETRICS 2014
Cai et al., “Read Disturb Errors in MLC 
NAND Flash Memory: Characterization 
and Mitigation”, DSN 2015

Cai et al., “Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis””, DATE 2012

Cai et al., “Error Analysis and Retention-
Aware Error Management for NAND Flash 
Memory, ITJ 2013

Cai et al., “Data Retention in MLC NAND 
Flash Memory: Characterization, 
Optimization and Recovery" , HPCA 2015

Luo et al., “Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory”, JSAC 2016



Our Goals and Approach

n Goals:
q Understand error mechanisms and develop reliable predictive 

models for MLC NAND flash memory errors
q Develop efficient error management techniques to mitigate 

errors and improve flash reliability and endurance

n Approach:
q Solid experimental analyses of errors in real MLC NAND flash 

memory à drive the understanding and models
q Understanding, models, and creativity à drive the new 

techniques
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Experimental Testing Platform
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USB Jack

Virtex-II Pro
(USB controller)

Virtex-V FPGA
(NAND Controller)

HAPS-52 Mother Board

USB Daughter Board

NAND Daughter Board

1x-nm
NAND Flash

[DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014, 
HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017]

Cai et al., FPGA-based Solid-State Drive prototyping platform, FCCM 2011.



NAND Flash Error Types

n Four types of errors [Cai+, DATE 2012]

n Caused by common flash operations
q Read errors
q Erase errors
q Program (interference) errors

n Caused by flash cell losing charge over time
q Retention errors

n Whether an error happens depends on required retention time
n Especially problematic in MLC flash because threshold voltage 

window to determine stored value is smaller
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retention errors

n Raw bit error rate increases exponentially with P/E cycles
n Retention errors are dominant (>99% for 1-year ret. time)
n Retention errors increase with retention time requirement

Observations: Flash Error Analysis
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P/E Cycles

Cai et al., Error Patterns in MLC NAND Flash Memory, DATE 2012.



More on Flash Error Analysis
n Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai,

"Error Patterns in MLC NAND Flash Memory: 
Measurement, Characterization, and Analysis"
Proceedings of the Design, Automation, and Test in Europe 
Conference (DATE), Dresden, Germany, March 2012. Slides 
(ppt)
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Solution to Retention Errors
n Refresh periodically
n Change the period based on P/E cycle wearout

q Refresh more often at higher P/E cycles
n Use a combination of in-place and remapping-based refresh
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One Issue: Read Disturb in Flash Memory
n All scaled memories are prone to read disturb errors
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NAND	Flash	Memory	Background
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Sense	Amplifiers

Flash	Cell	Array
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Flash	Read

Vread =	2.5	V Vth=	
3	V

Vth=	
2	V

1 0

Vread =	2.5	V
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Flash	Pass-Through

Vpass =	5	V Vth=	
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Read	from	Flash	Cell	Array
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1 100Correct	values	
for	page	2: 359
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Read	Disturb	Problem:	“Weak	Programming”	Effect

3.0V 3.8V 3.9V 4.8V

3.5V 2.9V 2.4V 2.1V

2.2V 4.3V 4.6V 1.8V

3.5V 2.3V 1.9V 4.3V

Repeatedly	read	page	3	(or	any	page	other	than	page	2) 360
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Vread =	2.5	V

Vpass =	5.0	V

Vpass =	5.0	V

Vpass =	5.0	V

0 100

Read	Disturb	Problem:	“Weak	Programming”	Effect

High	pass-through	voltage	induces	“weak-programming”	effect

3.0V 3.8V 3.9V 4.8V
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2.2V 4.3V 4.6V 1.8V
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Executive	Summary
•Read	disturb	errors limit	flash	memory	lifetime	today
– Apply	a	high	pass-through	voltage	(Vpass)to	multiple	pages	on	a	read
– Repeated	application	of	Vpasscan	alter	stored	values	in	unread	pages

•We	characterize	read	disturb	on	real	NAND	flash	chips
– Slightly	lowering	Vpass greatly	reduces	read	disturb	errors
– Some	flash	cells	are	more	prone	to	read	disturb

• Technique	1:Mitigate read	disturb	errors	online
– Vpass Tuning dynamically	finds	and	applies	a	lowered	Vpass per	block
– Flash	memory	lifetime	improves	by	21%

• Technique	2: Recover after	failure	to	prevent	data	loss
– Read	Disturb	Oriented	Error	Recovery (RDR)	selectively	corrects	
cells	more	susceptible	to	read	disturb	errors

– Reduces	raw	bit	error	rate (RBER)	by	up	to	36%
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More on Flash Read Disturb Errors
n Yu Cai, Yixin Luo, Saugata Ghose, Erich F. Haratsch, Ken Mai, 

and Onur Mutlu,
"Read Disturb Errors in MLC NAND Flash Memory: 
Characterization and Mitigation"
Proceedings of the 45th Annual IEEE/IFIP International 
Conference on Dependable Systems and Networks (DSN), Rio de 
Janeiro, Brazil, June 2015. 
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Large-Scale Flash SSD Error Analysis
n First large-scale field study of flash memory errors

n Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"A Large-Scale Study of Flash Memory Errors in the Field"
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Portland, OR, June 
2015. 
[Slides (pptx) (pdf)] [Coverage at ZDNet] [Coverage on The Register] 
[Coverage on TechSpot] [Coverage on The Tech Report] 
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Another Time: NAND Flash Vulnerabilities
n Onur Mutlu,

"Error Analysis and Management for MLC NAND Flash Memory"
Technical talk at Flash Memory Summit 2014 (FMS), Santa Clara, CA, August 
2014. Slides (ppt) (pdf)

Cai+, “Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis,” DATE 2012.
Cai+, “Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory Lifetime,” ICCD 
2012.
Cai+, “Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization, Analysis and Modeling,” DATE 
2013.
Cai+, “Error Analysis and Retention-Aware Error Management for NAND Flash Memory,” Intel Technology Journal 2013.
Cai+, “Program Interference in MLC NAND Flash Memory: Characterization, Modeling, and Mitigation,” ICCD 2013.
Cai+, “Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories,” SIGMETRICS 2014.
Cai+,”Data Retention in MLC NAND Flash Memory: Characterization, Optimization and Recovery,” HPCA 2015.
Cai+, “Read Disturb Errors in MLC NAND Flash Memory: Characterization and Mitigation,” DSN 2015. 
Luo+, “WARM: Improving NAND Flash Memory Lifetime with Write-hotness Aware Retention Management,” MSST 
2015.
Meza+, “A Large-Scale Study of Flash Memory Errors in the Field,” SIGMETRICS 2015.
Luo+, “Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory,” IEEE 
JSAC 2016.
Cai+, “Vulnerabilities in MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and Mitigation 
Techniques,” HPCA 2017.
Fukami+, “Improving the Reliability of Chip-Off Forensic Analysis of NAND Flash Memory Devices,” DFRWS EU 2017. 
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Flash Memory Programming Vulnerabilities

366

n Yu Cai, Saugata Ghose, Yixin Luo, Ken Mai, Onur Mutlu, and Erich F. 
Haratsch,
"Vulnerabilities in MLC NAND Flash Memory Programming: 
Experimental Analysis, Exploits, and Mitigation Techniques"
Proceedings of the 23rd International Symposium on High-Performance 
Computer Architecture (HPCA) Industrial Session, Austin, TX, USA, 
February 2017. 
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] 



Other Works on Flash Memory
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NAND Flash Error Model

Noisy NANDWrite Read

Experimentally characterize and model dominant errors

§ Neighbor page 
prog/read (c-to-c 
interference)

§ Retention§ Erase block
§ Program page

Write Read

Cai et al., “Threshold voltage 
distribution in MLC NAND Flash 
Memory: Characterization, Analysis, 
and Modeling”, DATE 2013

Cai et al., “Vulnerabilities in MLC 
NAND Flash Memory Programming: 
Experimental Analysis, Exploits, and 
Mitigation Techniques”, HPCA 2017

Cai et al., “Flash Correct-and-Refresh: 
Retention-aware error management for 
increased flash memory lifetime”, ICCD 2012
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Cai et al., “Program Interference in MLC 
NAND Flash Memory: Characterization, 
Modeling, and Mitigation”, ICCD 2013
Cai et al., “Neighbor-Cell Assisted Error 
Correction in MLC NAND Flash 
Memories”, SIGMETRICS 2014
Cai et al., “Read Disturb Errors in MLC 
NAND Flash Memory: Characterization 
and Mitigation”, DSN 2015

Cai et al., “Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis””, DATE 2012

Cai et al., “Error Analysis and Retention-
Aware Error Management for NAND Flash 
Memory, ITJ 2013

Cai et al., “Data Retention in MLC NAND 
Flash Memory: Characterization, 
Optimization and Recovery" , HPCA 2015

Luo et al., “Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory”, JSAC 2016



Threshold Voltage Distribution
n Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai,

"Threshold Voltage Distribution in MLC NAND Flash 
Memory: Characterization, Analysis and Modeling"
Proceedings of the Design, Automation, and Test in Europe 
Conference (DATE), Grenoble, France, March 2013. Slides 
(ppt)
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Program Interference and Vref Prediction
n Yu Cai, Onur Mutlu, Erich F. Haratsch, and Ken Mai,

"Program Interference in MLC NAND Flash Memory: 
Characterization, Modeling, and Mitigation"
Proceedings of the 31st IEEE International Conference on 
Computer Design (ICCD), Asheville, NC, October 2013. 
Slides (pptx) (pdf) Lightning Session Slides (pdf)
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Neighbor-Assisted Error Correction
n Yu Cai, Gulay Yalcin, Onur Mutlu, Eric Haratsch, Osman Unsal, 

Adrian Cristal, and Ken Mai,
"Neighbor-Cell Assisted Error Correction for MLC NAND 
Flash Memories"
Proceedings of the ACM International Conference on 
Measurement and Modeling of Computer Systems 
(SIGMETRICS), Austin, TX, June 2014. Slides (ppt) (pdf)
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Data Retention
n Yu Cai, Yixin Luo, Erich F. Haratsch, Ken Mai, and Onur Mutlu,

"Data Retention in MLC NAND Flash Memory: Characterization, 
Optimization and Recovery"
Proceedings of the 21st International Symposium on High-Performance 
Computer Architecture (HPCA), Bay Area, CA, February 2015. 
[Slides (pptx) (pdf)] 
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SSD Error Analysis in the Field
n First large-scale field study of flash memory errors
n Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,

"A Large-Scale Study of Flash Memory Errors in the Field"
Proceedings of the ACM International Conference on 
Measurement and Modeling of Computer Systems
(SIGMETRICS), Portland, OR, June 2015. 
[Slides (pptx) (pdf)] [Coverage at ZDNet] [Coverage on The 
Register] [Coverage on TechSpot] [Coverage on The Tech 
Report] 
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Flash Memory Programming Vulnerabilities

374

n Yu Cai, Saugata Ghose, Yixin Luo, Ken Mai, Onur Mutlu, and Erich F. 
Haratsch,
"Vulnerabilities in MLC NAND Flash Memory Programming: 
Experimental Analysis, Exploits, and Mitigation Techniques"
Proceedings of the 23rd International Symposium on High-Performance 
Computer Architecture (HPCA) Industrial Session, Austin, TX, USA, 
February 2017. 
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] 



Accurate and Online Channel Modeling

375

n Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu,
"Enabling Accurate and Practical Online Flash Channel Modeling 
for Modern MLC NAND Flash Memory"
to appear in IEEE Journal on Selected Areas in Communications (JSAC), 
2016. 



More on DRAM Refresh
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Tackling Refresh: Solutions

n Parallelize refreshes with accesses [Chang+ HPCA’14]

n Eliminate unnecessary refreshes [Liu+ ISCA’12]
q Exploit device characteristics 
q Exploit data and application characteristics

n Reduce refresh rate and detect+correct errors that occur 
[Khan+ SIGMETRICS’14]

n Understand retention time behavior in DRAM [Liu+ ISCA’13]
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Summary:	Refresh-Access	Parallelization
• DRAM	refresh	interferes	with	memory	accesses

– Degrades	system	performance	and	energy	efficiency
– Becomes	exacerbated	as	DRAM	density	increases

• Goal:	Serve	memory	accesses	in	parallel	with	refreshes	to	
reduce	refresh	interference	on	demand	requests

• Our	mechanisms:
– 1.	Enable	more	parallelization	between	refreshes	and	accesses	across	

different	banks	with	new	per-bank	refresh	scheduling	algorithms
– 2.	Enable	serving	accesses	concurrently	with	refreshes	in	the	same	bank	

by	exploiting	parallelism	across	DRAM	subarrays

• Improve	system	performance	and	energy	efficiency	for	a	wide	
variety	of	different	workloads	and	DRAM	densities
– 20.2%	and	9.0%	for	8-core	systems	using	32Gb	DRAM	at	low	cost
– Very	close	to	the	ideal	scheme	without	refreshes
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Time

Per-bank	refresh	in	mobile	DRAM	(LPDDRx)

Existing	Refresh	Modes
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Time

All-bank	refresh	in	commodity	DRAM	(DDRx)

Bank	7

Bank	1
Bank	0

…

Bank	7

Bank	1
Bank	0

…

Refresh

Round-robin	order

Per-bank	refresh	allows	accesses	to	other	
banks	while	a	bank	is	refreshing



Shortcomings	of	Per-Bank	Refresh
• Problem	1:	Refreshes	to	different	banks	are	scheduled	
in	a	strict	round-robin	order	
– The	static	ordering	is	hardwired	into	DRAM	chips
– Refreshes	busy	banks	with	many	queued	requests	when	
other	banks	are	idle

• Key	idea:	Schedule	per-bank	refreshes	to	idle	banks	
opportunistically	in	a	dynamic	order	
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Our	First	Approach:	DARP
• Dynamic	Access-Refresh	Parallelization	(DARP)

– An	improved	scheduling	policy	for	per-bank	refreshes
– Exploits	refresh	scheduling	flexibility in	DDR	DRAM

• Component	1:	Out-of-order	per-bank	refresh
– Avoids	poor	static	scheduling	decisions
– Dynamically	issues	per-bank	refreshes	to	idle	banks

• Component	2:	Write-Refresh	Parallelization
– Avoids	refresh	interference	on	latency-critical	reads
– Parallelizes	refreshes	with	a	batch	of	writes
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Shortcomings	of	Per-Bank	Refresh
• Problem	2:	Banks	that	are	being	refreshed	cannot	
concurrently	serve	memory	requests
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Shortcomings	of	Per-Bank	Refresh
• Problem	2:	Refreshing	banks	cannot	concurrently	serve	
memory	requests

• Key	idea:	Exploit	subarrays within	a	bank	to	parallelize	
refreshes	and	accesses	across	subarrays

384

Time Bank	0
Subarray	1
Subarray	0

RD

Subarray	Refresh Time

Parallelize



Methodology

• 100	workloads:	SPEC	CPU2006,	STREAM,	TPC-C/H,	random	access

• System	performance	metric:	Weighted	speedup
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Comparison	Points
• All-bank	refresh	[DDR3,	LPDDR3,	…]

• Per-bank	refresh	[LPDDR3]

• Elastic	refresh	[Stuecheli et	al.,	MICRO	‘10]:
– Postpones	refreshes	by	a	time	delay	based	on	the	predicted	
rank	idle	time	to	avoid	interference	on	memory	requests

– Proposed	to	schedule	all-bank	refreshes	without	exploiting	
per-bank	refreshes

– Cannot	parallelize	refreshes	and	accesses	within	a	rank

• Ideal	(no	refresh)
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7.9% 12.3% 20.2%

1.	Both	DARP	&	SARP	provide	performance	gains	and	
combining	them	(DSARP)	improves	even	more
2.	Consistent	system	performance	improvement	across	
DRAM	densities	(within	0.9%,	1.2%,	and	3.8%	of	ideal)



Energy	Efficiency
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More Information on Refresh-Access Parallelization

n Kevin Chang, Donghyuk Lee, Zeshan Chishti, Alaa Alameldeen, Chris 
Wilkerson, Yoongu Kim, and Onur Mutlu,
"Improving DRAM Performance by Parallelizing Refreshes with 
Accesses"
Proceedings of the 20th International Symposium on High-Performance 
Computer Architecture (HPCA), Orlando, FL, February 2014. 
[Summary] [Slides (pptx) (pdf)] 
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Tackling Refresh: Solutions

n Parallelize refreshes with accesses [Chang+ HPCA’14]

n Eliminate unnecessary refreshes [Liu+ ISCA’12]
q Exploit device characteristics 
q Exploit data and application characteristics

n Reduce refresh rate and detect+correct errors that occur 
[Khan+ SIGMETRICS’14]

n Understand retention time behavior in DRAM [Liu+ ISCA’13]
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Most Refreshes Are Unnecessary
n Retention Time Profile of DRAM looks like this:
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1. Profiling: Profile the retention time of all DRAM rows

2. Binning: Store rows into bins by retention time
à use Bloom Filters for efficient and scalable storage

3. Refreshing: Memory controller refreshes rows in different 
bins at different rates
à probe Bloom Filters to determine refresh rate of a row
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1.25KB storage in controller for 32GB DRAM memory

Can reduce refreshes by ~75% 
à reduces energy consumption and improves performance

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

RAIDR: Eliminating Unnecessary Refreshes



RAIDR: Baseline Design
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Refresh control is in DRAM in today’s auto-refresh systems
RAIDR can be implemented in either the controller or DRAM



RAIDR in Memory Controller: Option 1
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Overhead of RAIDR in DRAM controller:
1.25 KB Bloom Filters, 3 counters, additional commands    
issued for per-row refresh (all accounted for in evaluations)



RAIDR in DRAM Chip: Option 2
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Overhead of RAIDR in DRAM chip:
Per-chip overhead: 20B Bloom Filters, 1 counter (4 Gbit chip)

Total overhead: 1.25KB Bloom Filters, 64 counters (32 GB DRAM)



RAIDR: Results and Takeaways
n System: 32GB DRAM, 8-core; SPEC, TPC-C, TPC-H workloads

n RAIDR hardware cost: 1.25 kB (2 Bloom filters)
n Refresh reduction: 74.6%
n Dynamic DRAM energy reduction: 16%
n Idle DRAM power reduction: 20%
n Performance improvement: 9%

n Benefits increase as DRAM scales in density
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DRAM Device Capacity Scaling: Performance

397

RAIDR performance benefits increase with DRAM chip capacity

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.



DRAM Device Capacity Scaling: Energy
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RAIDR energy benefits increase with DRAM chip capacity

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.



RAIDR: Eliminating Unnecessary Refreshes
n Observation: Most DRAM rows can be refreshed much less often 

without losing data [Kim+, EDL’09][Liu+ ISCA’13]

n Key idea: Refresh rows containing weak cells 
more frequently, other rows less frequently
1. Profiling: Profile retention time of all rows
2. Binning: Store rows into bins by retention time in memory controller

Efficient storage with Bloom Filters (only 1.25KB for 32GB memory)
3. Refreshing: Memory controller refreshes rows in different bins at 
different rates

n Results: 8-core, 32GB, SPEC, TPC-C, TPC-H
q 74.6% refresh reduction @ 1.25KB storage
q ~16%/20% DRAM dynamic/idle power reduction
q ~9% performance improvement 
q Benefits increase with DRAM capacity
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Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.



More on RAIDR
n Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu,

"RAIDR: Retention-Aware Intelligent DRAM Refresh"
Proceedings of the 39th International Symposium on 
Computer Architecture (ISCA), Portland, OR, June 2012. 
Slides (pdf)
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Tackling Refresh: Solutions

n Parallelize refreshes with accesses [Chang+ HPCA’14]

n Eliminate unnecessary refreshes [Liu+ ISCA’12]
q Exploit device characteristics 
q Exploit data and application characteristics

n Reduce refresh rate and detect+correct errors that occur 
[Khan+ SIGMETRICS’14]

n Understand retention time behavior in DRAM [Liu+ ISCA’13]
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Motivation: Understanding Retention
n Past works require accurate and reliable measurement of 

retention time of each DRAM row
q To maintain data integrity while reducing refreshes

n Assumption: worst-case retention time of each row can be 
determined and stays the same at a given temperature
q Some works propose writing all 1’s and 0’s to a row, and 

measuring the time before data corruption

n Question:
q Can we reliably and accurately determine retention times of all 

DRAM rows?
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Two Challenges to Retention Time Profiling
n Data Pattern Dependence (DPD) of retention time

n Variable Retention Time (VRT) phenomenon
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An Example VRT Cell
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VRT: Implications on Profiling Mechanisms
n Problem 1: There does not seem to be a way of 

determining if a cell exhibits VRT without actually observing 
a cell exhibiting VRT
q VRT is a memoryless random process [Kim+ JJAP 2010]

n Problem 2: VRT complicates retention time profiling by 
DRAM manufacturers
q Exposure to very high temperatures can induce VRT in cells that 

were not previously susceptible 
à can happen during soldering of DRAM chips
à manufacturer’s retention time profile may not be accurate

n One option for future work: Use ECC to continuously profile 
DRAM online while aggressively reducing refresh rate
q Need to keep ECC overhead in check
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More on DRAM Retention Analysis
n Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu,

"An Experimental Study of Data Retention Behavior in Modern DRAM 
Devices: Implications for Retention Time Profiling Mechanisms"
Proceedings of the 40th International Symposium on Computer Architecture
(ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt) Slides (pdf)
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Tackling Refresh: Solutions

n Parallelize refreshes with accesses [Chang+ HPCA’14]

n Eliminate unnecessary refreshes [Liu+ ISCA’12]
q Exploit device characteristics 
q Exploit data and application characteristics

n Reduce refresh rate and detect+correct errors that occur 
[Khan+ SIGMETRICS’14]

n Understand retention time behavior in DRAM [Liu+ ISCA’13]
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Key	Observations:
• Testing	alone cannot	detect	all	possible	failures
• Combination	of	ECC	and	other	mitigation	
techniques	is	much	more effective
– But	degrades	performance

• Testing	can	help	to	reduce	the	ECC	strength
– Even	when	starting	with	a higher	strength	ECC

Towards	an	Online	Profiling	System

Khan+, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative 
Experimental Study,” SIGMETRICS 2014.



Run	tests	periodically	after	a	short	interval	
at	smaller	regions	of	memory	

Towards	an	Online	Profiling	System
Initially	Protect	DRAM	

with	Strong	ECC 1
Periodically	Test
Parts	of	DRAM 2

Test
Test
Test

Mitigate	errors	and
reduce	ECC 3



More on Online Profiling of DRAM
n Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa Alameldeen, Chris Wilkerson, 

and Onur Mutlu,
"The Efficacy of Error Mitigation Techniques for DRAM Retention 
Failures: A Comparative Experimental Study"
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Austin, TX, June 2014. [Slides 
(pptx) (pdf)] [Poster (pptx) (pdf)] [Full data sets] 
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How Do We Make RAIDR Work in the 
Presence of the VRT Phenomenon?



Making RAIDR Work w/ Online Profiling & ECC
n Moinuddin Qureshi, Dae Hyun Kim, Samira Khan, Prashant Nair, and 

Onur Mutlu,
"AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for 
DRAM Systems"
Proceedings of the 45th Annual IEEE/IFIP International Conference on 
Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June 
2015. 
[Slides (pptx) (pdf)] 
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AVATAR

Insight: Avoid retention failures è Upgrade row on ECC error
Observation: Rate of VRT >> Rate of soft error (50x-2500x)
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RESULTS: REFRESH SAVINGS

414

AVATAR
No VRT

AVATAR	reduces	refresh	by	60%-70%,	similar	to	multi	rate	
refresh	but	with	VRT	tolerance

Retention	Testing	Once	a	Year	can	revert	refresh	saving	from	
60%	to	70%
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Making RAIDR Work w/ Online Profiling & ECC
n Moinuddin Qureshi, Dae Hyun Kim, Samira Khan, Prashant Nair, and 

Onur Mutlu,
"AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for 
DRAM Systems"
Proceedings of the 45th Annual IEEE/IFIP International Conference on 
Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June 
2015. 
[Slides (pptx) (pdf)] 
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DRAM Refresh: Summary and Conclusions
n DRAM refresh is a critical challenge 

q in scaling DRAM technology efficiently to higher capacities

n Discussed several promising solution directions
q Parallelize refreshes with accesses [Chang+ HPCA’14]
q Eliminate unnecessary refreshes [Liu+ ISCA’12]
q Reduce refresh rate and detect+correct errors that occur [Khan+ 

SIGMETRICS’14]

n Examined properties of retention time behavior [Liu+ ISCA’13]
q Enable realistic VRT-Aware refresh techniques [Qureshi+ DSN’15]

n Many avenues for overcoming DRAM refresh challenges
q Handling DPD/VRT phenomena 
q Enabling online retention time profiling and error mitigation
q Exploiting application behavior
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Other Backup Slides
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Summary

Business as Usual Opportunity
RowHammer Memory controller anticipates and fixes errors
Fixed, frequent refreshes Heterogeneous refresh rate across memory
Fixed, high latency Heterogeneous latency in time and space
Slow page copy & initialization Exploit internal connectivity in memory to move data
Fixed reliability mechanisms Heterogeneous reliability across time and space
Memory as a dumb device Memory as an accelerator and autonomous agent
DRAM-only main memory Emerging memory technologies and hybrid memories
Two-level data storage model Unified interface to all data 
Large timing and error margins Online adaptation of timing and error margins
Poor performance guarantees Strong service guarantees and configurable QoS
Fixed policies in controllers Configurable and programmable memory controllers
… …
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Some Open Source Tools
n Rowhammer

q https://github.com/CMU-SAFARI/rowhammer
n Ramulator – Fast and Extensible DRAM Simulator

q https://github.com/CMU-SAFARI/ramulator
n MemSim

q https://github.com/CMU-SAFARI/memsim
n NOCulator

q https://github.com/CMU-SAFARI/NOCulator
n DRAM Error Model

q http://www.ece.cmu.edu/~safari/tools/memerr/index.html

n Other open-source software from my group
q https://github.com/CMU-SAFARI/
q http://www.ece.cmu.edu/~safari/tools.html
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Ramulator: A Fast and Extensible 
DRAM Simulator 

[IEEE Comp Arch Letters’15]
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Ramulator Motivation
n DRAM and Memory Controller landscape is changing
n Many new and upcoming standards
n Many new controller designs
n A fast and easy-to-extend simulator is very much needed
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Ramulator
n Provides out-of-the box support for many DRAM standards:

q DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, plus new 
proposals (SALP, AL-DRAM, TLDRAM, RowClone, and SARP)

n ~2.5X faster than fastest open-source simulator
n Modular and extensible to different standards
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Case Study: Comparison of DRAM Standards
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Ramulator Paper and Source Code
n Yoongu Kim, Weikun Yang, and Onur Mutlu,

"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters (CAL), March 2015. 
[Source Code] 

n Source code is released under the liberal MIT License
q https://github.com/CMU-SAFARI/ramulator
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Rethinking Memory Architecture
n Compute Capable Memory

n Refresh

n Reliability

n Latency

n Bandwidth

n Energy

n Memory Compression
429



Large DRAM Power in Modern Systems

430

>40% in POWER7 (Ware+, HPCA’10) >40% in GPU (Paul+, ISCA’15)



Why Is Power Large?
n Design of DRAM uArchitecture

q A lot of waste (granularity, latency, …)

n High Voltage
q Can we scale it down reliably?

n High Frequency
q Can we scale it down with low performance impact?

n DRAM Refresh

n …
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Memory Dynamic Voltage/Freq. Scaling

n Howard David, Chris Fallin, Eugene Gorbatov, Ulf R. Hanebutte, and 
Onur Mutlu,
"Memory Power Management via Dynamic Voltage/Frequency 
Scaling"
Proceedings of the 8th International Conference on Autonomic 
Computing (ICAC), Karlsruhe, Germany, June 2011. Slides (pptx) (pdf)
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New Memory Architectures
n Compute Capable Memory

n Refresh

n Reliability

n Latency

n Bandwidth

n Energy

n Memory Compression
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Readings on Memory Compression (I)
n Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Philip B. Gibbons, 

Michael A. Kozuch, and Todd C. Mowry,
"Base-Delta-Immediate Compression: Practical Data 
Compression for On-Chip Caches"
Proceedings of the 21st International Conference on Parallel 
Architectures and Compilation Techniques (PACT), Minneapolis, MN, 
September 2012. Slides (pptx) Source Code
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Readings on Memory Compression (II)
n Gennady Pekhimenko, Vivek Seshadri, Yoongu Kim, Hongyi Xin, Onur 

Mutlu, Michael A. Kozuch, Phillip B. Gibbons, and Todd C. Mowry,
"Linearly Compressed Pages: A Low-Complexity, Low-Latency 
Main Memory Compression Framework"
Proceedings of the 46th International Symposium on Microarchitecture
(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning 
Session Slides (pptx) (pdf)] Poster (pptx) (pdf)] 
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Readings on Memory Compression (III)
n Gennady Pekhimenko, Tyler Huberty, Rui Cai, Onur Mutlu, Phillip P. 

Gibbons, Michael A. Kozuch, and Todd C. Mowry,
"Exploiting Compressed Block Size as an Indicator of Future 
Reuse"
Proceedings of the 21st International Symposium on High-Performance 
Computer Architecture (HPCA), Bay Area, CA, February 2015. 
[Slides (pptx) (pdf)] 
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Readings on Memory Compression (IV)
n Gennady Pekhimenko, Evgeny Bolotin, Nandita Vijaykumar, Onur Mutlu, 

Todd C. Mowry, and Stephen W. Keckler,
"A Case for Toggle-Aware Compression for GPU Systems"
Proceedings of the 22nd International Symposium on High-Performance 
Computer Architecture (HPCA), Barcelona, Spain, March 2016. 
[Slides (pptx) (pdf)] 
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Readings on Memory Compression (V)
n Nandita Vijaykumar, Gennady Pekhimenko, Adwait Jog, Abhishek 

Bhowmick, Rachata Ausavarungnirun, Chita Das, Mahmut Kandemir, Todd 
C. Mowry, and Onur Mutlu,
"A Case for Core-Assisted Bottleneck Acceleration in GPUs: 
Enabling Flexible Data Compression with Assist Warps"
Proceedings of the 42nd International Symposium on Computer 
Architecture (ISCA), Portland, OR, June 2015. 
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] 
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Emerging Technologies and 
Hybrid Memories

439



Solution 2: Emerging Memory Technologies
n Some emerging resistive memory technologies seem more 

scalable than DRAM (and they are non-volatile)

n Example: Phase Change Memory
q Data stored by changing phase of material 
q Data read by detecting material’s resistance
q Expected to scale to 9nm (2022 [ITRS 2009])
q Prototyped at 20nm (Raoux+, IBM JRD 2008)
q Expected to be denser than DRAM: can store multiple bits/cell

n But, emerging technologies have (many) shortcomings
q Can they be enabled to replace/augment/surpass DRAM?
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Solution 2: Emerging Memory Technologies
n Lee+, “Architecting Phase Change Memory as a Scalable DRAM Alternative,” ISCA’09, CACM’10, IEEE Micro’10.
n Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters 2012.
n Yoon, Meza+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012.
n Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013. 
n Meza+, “A Case for Efficient Hardware-Software Cooperative Management of Storage and Memory,” WEED 2013.
n Lu+, “Loose Ordering Consistency for Persistent Memory,” ICCD 2014.
n Zhao+, “FIRM: Fair and High-Performance Memory Control for Persistent Memory Systems,” MICRO 2014.
n Yoon, Meza+, “Efficient Data Mapping and Buffering Techniques for Multi-Level Cell Phase-Change Memories,” TACO 2014.
n Ren+, “ThyNVM: Enabling Software-Transparent Crash Consistency in Persistent Memory Systems,” MICRO 2015.
n Chauhan+, “NVMove: Helping Programmers Move to Byte-Based Persistence,” INFLOW 2016.
n Li+, “Utility-Based Hybrid Memory Management,” CLUSTER 2017.
n Yu+, “Banshee: Bandwidth-Efficient DRAM Caching via Software/Hardware Cooperation,” MICRO 2017.
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Promising Resistive Memory Technologies
n PCM

q Inject current to change material phase
q Resistance determined by phase

n STT-MRAM
q Inject current to change magnet polarity
q Resistance determined by polarity

n Memristors/RRAM/ReRAM
q Inject current to change atomic structure
q Resistance determined by atom distance
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What is Phase Change Memory?
n Phase change material (chalcogenide glass) exists in two states:

q Amorphous: Low optical reflexivity and high electrical resistivity
q Crystalline: High optical reflexivity and low electrical resistivity
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PCM is resistive memory:  High resistance (0), Low resistance (1)
PCM cell can be switched between states reliably and quickly



How Does PCM Work?
n Write: change phase via current injection

q SET: sustained current to heat cell above Tcryst
q RESET: cell heated above Tmelt and quenched

n Read: detect phase via material resistance 
q amorphous/crystalline
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Opportunity: PCM Advantages
n Scales better than DRAM, Flash

q Requires current pulses, which scale linearly with feature size
q Expected to scale to 9nm (2022 [ITRS])
q Prototyped at 20nm (Raoux+, IBM JRD 2008)

n Can be denser than DRAM
q Can store multiple bits per cell due to large resistance range
q Prototypes with 2 bits/cell in ISSCC’08, 4 bits/cell by 2012

n Non-volatile
q Retain data for >10 years at 85C

n No refresh needed, low idle power
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Phase Change Memory Properties

n Surveyed prototypes from 2003-2008 (ITRS, IEDM, VLSI, 
ISSCC)

n Derived PCM parameters for F=90nm

n Lee, Ipek, Mutlu, Burger, “Architecting Phase Change 
Memory as a Scalable DRAM Alternative,” ISCA 2009.

n Lee et al., “Phase Change Technology and the Future of 
Main Memory,” IEEE Micro Top Picks 2010.
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PCM-based Main Memory (I)
n How should PCM-based (main) memory be organized?

n Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC’09]: 
q How to partition/migrate data between PCM and DRAM
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PCM-based Main Memory (II)
n How should PCM-based (main) memory be organized?

n Pure PCM main memory [Lee et al., ISCA’09, Top Picks’10]: 
q How to redesign entire hierarchy (and cores) to overcome 

PCM shortcomings
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An Initial Study: Replace DRAM with PCM
n Lee, Ipek, Mutlu, Burger, “Architecting Phase Change 

Memory as a Scalable DRAM Alternative,” ISCA 2009.
q Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC)
q Derived “average” PCM parameters for F=90nm
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Architecting PCM to Mitigate Shortcomings
n Idea 1: Use multiple narrow row buffers in each PCM chip

à Reduces array reads/writes à better endurance, latency, energy

n Idea 2: Write into array at
cache block or word 
granularity
à Reduces unnecessary wear
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More on PCM As Main Memory
n Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger,

"Architecting Phase Change Memory as a Scalable DRAM 
Alternative"
Proceedings of the 36th International Symposium on Computer 
Architecture (ISCA), pages 2-13, Austin, TX, June 2009. Slides 
(pdf)
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More on PCM As Main Memory (II)
n Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao, 

Engin Ipek, Onur Mutlu, and Doug Burger,
"Phase Change Technology and the Future of Main Memory"
IEEE Micro, Special Issue: Micro's Top Picks from 2009 Computer 
Architecture Conferences (MICRO TOP PICKS), Vol. 30, No. 1, 
pages 60-70, January/February 2010. 
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Data Placement in Hybrid Memory

n Memory A is fast, but small
n Load should be balanced on both channels
n Page migrations have performance and energy overhead 
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Channel A Channel B

Memory A Memory B
(Fast, Small) (Large, Slow)

Page 1 Page 2

IDLE

Which memory do we place each page in, 
to maximize system performance?

Cores/Caches

Memory Controllers



Data Placement Between DRAM and PCM
n Idea: Characterize data access patterns and guide data 

placement in hybrid memory

n Streaming accesses: As fast in PCM as in DRAM

n Random accesses: Much faster in DRAM

n Idea: Place random access data with some reuse in DRAM; 
streaming data in PCM

n Yoon+, “Row Buffer Locality-Aware Data Placement in 
Hybrid Memories,” ICCD 2012 Best Paper Award.
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31%	better	performance	than	all	PCM,	
within	29%	of	all	DRAM	performance

31%

29%

Yoon+,	“Row	Buffer	Locality-Aware	Data	Placement	in	Hybrid	Memories,”	ICCD	2012	Best	Paper	Award.



More on Hybrid Memory Data Placement
n HanBin Yoon, Justin Meza, Rachata Ausavarungnirun, 

Rachael Harding, and Onur Mutlu,
"Row Buffer Locality Aware Caching Policies for 
Hybrid Memories"
Proceedings of the 30th IEEE International Conference on 
Computer Design (ICCD), Montreal, Quebec, Canada, 
September 2012. Slides (pptx) (pdf)

457



Weaknesses of Existing Solutions
n They are all heuristics that consider only a limited part of 

memory access behavior

n Do not directly capture the overall system 
performance impact of data placement decisions 

n Example: None capture memory-level parallelism (MLP)
q Number of concurrent memory requests from the same 

application when a page is accessed
q Affects how much page migration helps performance
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Importance of Memory-Level Parallelism
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requests to Page 2
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Migrating one page
reduces stall time by T

Must migrate two pages
to reduce stall time by T:
migrating one page alone

does not help

Mem. B

Page migration decisions need to consider MLP



Our Goal [CLUSTER 2017]

A generalized mechanism that

1. Directly estimates the performance benefit
of migrating a page between
any two types of memory

2. Places only the performance-critical data
in the fast memory
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Utility-Based Hybrid Memory Management
n A memory manager that works for any hybrid memory

q e.g., DRAM-NVM, DRAM-RLDRAM

n Key Idea
q For each page, use comprehensive characteristics to 

calculate estimated utility (i.e., performance impact)
of migrating page from one memory to the other in the 
system

q Migrate only pages with the highest utility
(i.e., pages that improve system performance the most 
when migrated)

n Li+, “Utility-Based Hybrid Memory Management”, CLUSTER 2017.
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Key Mechanisms of UH-MEM
n For each page, estimate utility using a performance model

q Application stall time reduction
How much would migrating a page benefit the performance of the 
application that the page belongs to?

q Application performance sensitivity
How much does the improvement of a single application’s 
performance increase the overall system performance?

n Migrate only pages whose utility exceed the migration 
threshold from slow memory to fast memory

n Periodically adjust migration threshold
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Results: System Performance
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UH-MEM improves system performance
over the best state-of-the-art hybrid memory manager



Results: Sensitivity to Slow Memory Latency
n We vary 𝑡\]^ and 𝑡_\ of the slow memory
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Crash Consistency
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One Key Challenge in Persistent Memory

n How to ensure consistency of system/data if all 
memory is persistent? 

n Two extremes
q Programmer transparent: Let the system handle it
q Programmer only: Let the programmer handle it 

n Many alternatives in-between…
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CHALLENGE:	CRASH	CONSISTENCY

System	crash	can	result	in	
permanent	data	corruption	in	NVM

467

Persistent	Memory	System



CRASH	CONSISTENCY	PROBLEM
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Example: Add a node to a linked list

1.	Link	to	next2.	Link	to	prev

System	crash	can	result	in	
inconsistent	memory	state



CURRENT	SOLUTIONS
Explicit	interfaces	to	manage	consistency

– NV-Heaps	[ASPLOS’11],	BPFS	[SOSP’09],	Mnemosyne	[ASPLOS’11]

AtomicBegin {
Insert a new node;

} AtomicEnd;

Limits	adoption	of	NVM
Have	to	rewrite	code	with	clear	partition	
between	volatile	and	non-volatile	data

Burden	on	the	programmers
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OUR	APPROACH:	ThyNVM

470

Goal: 
Software transparent consistency in 

persistent memory systems



ThyNVM:	Summary
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• Checkpoints at	multiple	granularities	to	
reduce	both	checkpointing	latency	and	
metadata	overhead

• Overlaps checkpointing and	execution	to	
reduce	checkpointing	latency

• Adapts to	DRAM	and	NVM	characteristics

Performs	within	4.9% of	an	idealized	DRAM	
with	zero	cost	consistency

A new hardware-based 
checkpointing mechanism



End of Backup Slides
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Brief Self Introduction
n Onur Mutlu

q Full Professor @ ETH Zurich CS, since September 2015 
q Strecker Professor @ Carnegie Mellon University ECE/CS, 2009-2016, 2016-…
q PhD from UT-Austin, worked @ Google, VMware, Microsoft Research, Intel, AMD
q https://people.inf.ethz.ch/omutlu/
q omutlu@gmail.com (Best way to reach me)
q https://people.inf.ethz.ch/omutlu/projects.htm

n Research, Education, Consulting in
q Computer architecture and systems, bioinformatics
q Memory and storage systems, emerging technologies
q Many-core systems, heterogeneous systems, core design
q Interconnects
q Hardware/software interaction and co-design (PL, OS, Architecture)
q Predictable and QoS-aware systems
q Hardware fault tolerance and security
q Algorithms and architectures for genome analysis
q … 473


