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Video Lectures on Same Topics

= Videos from a similar series of lectures at Bogazici
University (these are longer)

s http://www.youtube.com/playlist?
list=PLVngZ7BemHHV6NQ0ejHhwOfLWTr80Q-UKXj

= DRAM Basics and DRAM Scaling Lectures

o http://www.youtube.com/watch?
v=jX6McDvAIn4&list=PLVngZ7BemHHV6NOejHhwOfLwTr8Q-UKXj&index=6

o http://www.youtube.com/watch?
v=E0GuX12dnVo&list=PLVngZ7BemHHV6NOejHhwOfLwTr8Q-UKXj&index=7

o http://www.youtube.com/watch?
v=ANskLp74Z2k&list=PLVngZ7BemHHV6NQejHhwOfLWTr8Q-UKXj&index=8

o http://www.youtube.com/watch?
v=gzjaNUYxfFo&list=PLVngZ7BemHHV6NQejHhwOfLwWTr8Q-UKXj&index=9
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The Main Memory System

Processor
and caches

\_

Main Memory

/

Storage (SSD/HDD)

= Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

= Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits
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Memory System: A Shared Resonrce View
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State of the Main Memory System

Recent technology, architecture, and application trends
o lead to new requirements
o exacerbate old requirements

DRAM and memory controllers, as we know them today,
are (will be) unlikely to satisfy all requirements

Some emerging non-volatile memory technologies (e.g.,
PCM) enable new opportunities: memory+storage merging

We need to rethink the main memory system
o to fix DRAM issues and enable emerging technologies
o to satisfy all requirements
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Agenda

Major Trends Affecting Main Memory

DRAM Scaling Problem and Solution Directions
Three New Technigues for DRAM

o RAIDR: Reducing Refresh Impact

o TL-DRAM: Reducing DRAM Latency

o SALP: Reducing Bank Conflict Impact

Ongoing Research
Summary
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Major Trends Atfecting Main Memory (I)

= Need for main memory capacity, bandwidth, QoS increasing

= Main memory energy/power is a key system design concern

= DRAM technology scaling is ending
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Major Trends Attecting Main Memory (II)

= Need for main memory capacity, bandwidth, QoS increasing
o Multi-core: increasing number of cores
o Data-intensive applications: increasing demand/hunger for data
o Consolidation: cloud computing, GPUs, mobile

= Main memory energy/power is a key system design concern

= DRAM technology scaling is ending
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Major Trends Attecting Main Memory (I1I)

= Need for main memory capacity, bandwidth, QoS increasing

= Main memory energy/power is a key system design concern

o ~40-50% energy spent in off-chip memory hierarchy [Lefurgy,
IEEE Computer 2003]

o DRAM consumes power even when not used (periodic refresh)

= DRAM technology scaling is ending
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Major Trends Attecting Main Memory (IV)

= Need for main memory capacity, bandwidth, QoS increasing

= Main memory energy/power is a key system design concern

= DRAM technology scaling is ending
o ITRS projects DRAM will not scale easily below X nm

o Scaling has provided many benefits:
= higher capacity (density), lower cost, lower energy
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The DRAM Scaling Problem

DRAM stores charge in a capacitor (charge-based memory)
o Capacitor must be large enough for reliable sensing

o Access transistor should be large enough for low leakage and high
retention time

o Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]
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DRAM capacity, cost, and energy/power hard to scale

SAFARI 1



Solutions to the DRAM Scaling Problem

Two potential solutions
o Tolerate DRAM (by taking a fresh look at it)

o Enable emerging memory technologies to eliminate/minimize
DRAM

Do both
o Hybrid memory systems
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Solution 1: Tolerate DRAM

Overcome DRAM shortcomings with

o System-DRAM co-design

o Novel DRAM architectures, interface, functions
o Better waste management (efficient utilization)

Key issues to tackle

o Reduce refresh energy

a Improve bandwidth and latency

o Reduce waste

a Enable reliability at low cost

Liu, Jaiyen, Veras, Mutlu, "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.
Kim, Seshadri, Lee+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.
Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.

Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices” ISCA'13.
Seshadri+, "RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” 2013.
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Solution 2: Emerging Memory Technologies

Some emerging resistive memory technologies seem more
scalable than DRAM (and they are non-volatile)

Example: Phase Change Memory

o Expected to scale to 9nm (2022 [ITRS])

o Expected to be denser than DRAM: can store multiple bits/cell

But, emerging technologies have shortcomings as well
o Can they be enabled to replace/augment/surpass DRAM?

Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a Scalable DRAM
Alternative,” ISCA 2009, CACM 2010, Top Picks 2010.

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and Scalable Hybrid
Memories,” IEEE Comp. Arch. Letters 2012.

Yoon, Meza et al., "Row Buffer Locality Aware Caching Policies for Hybrid Memories,”
ICCD 2012 Best Paper Award.
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Hybrid Memory Systems

-

\2

PCM
Ctrl

/

Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement

to achieve the best of multiple technologies

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon, Meza et al., "Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD
2012 Best Paper Award.
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Agenda

Major Trends Affecting Main Memory

DRAM Scaling Problem and Solution Directions
Three New Techniques for DRAM

o RAIDR: Reducing Refresh Impact

o TL-DRAM: Reducing DRAM Latency

o SALP: Reducing Bank Conflict Impact

Ongoing Research
Summary
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DRAM Refresh

DRAM capacitor charge leaks over time

The memory controller needs to refresh each row
periodically to restore charge

o Activate + precharge each row every N ms
o Typical N = 64 ms

Downsides of refresh

-- Energy consumption: Each refresh consumes energy

-- Performance degradation: DRAM rank/bank unavailable while
refreshed

-- QoS/predictability impact: (Long) pause times during refresh
-- Refresh rate limits DRAM density scaling
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Refresh Today: Auto Refresh

Columns
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A batch of rows are
periodically refreshed
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DRAM CONTROLLER

via the auto-refresh command
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Refres

h Overhead: Performance
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Retresh Overhead: Energy
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% DRAM energy spent refreshing
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Problem with Conventional Refresh

= Today: Every row is refreshed at the same rate
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Refresh interval (s)

= Observation: Most rows can be refreshed much less often
without losing data [Kim+, EDL'09]

= Problem: No support in DRAM for different refresh rates per row
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Retention Time of DRAM Rows

= Observation: Only very few rows need to be refreshed at the
worst-case rate
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Refresh interval (s)

= Can we exploit this to reduce refresh operations at low cost?
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Reducing DRAM Retresh Operations

Idea: Identify the retention time of different rows and
refresh each row at the frequency it needs to be refreshed

(Cost-conscious) Idea: Bin the rows according to their
minimum retention times and refresh rows in each bin at
the refresh rate specified for the bin

o e.g., a bin for 64-128ms, another for 128-256ms, ...

Observation: Only very few rows need to be refreshed very
frequently [64-128ms] - Have only a few bins > Low HW
overhead to achieve large reductions in refresh operations

Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.
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RAIDR: Mechanism
04-128ms

1.25KB storage in controller for 32GB DRAM memory

128-250ms

bins at different rates
- probe Bloom Filters to determine refresh rate of a row
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1. Profiling

To profile a row:

1. Write data to the row
2. Prevent it from being refreshed
3. Measure time before data corruption

Row 1 Row 2 Row 3
Initially 11111111... 11111111... 11111111...

After64 ms 11111111... 11111111... 11111111...

After 128 ms 11011111... 11111111... 11111111...
(64-128ms)

After 256 ms 11111011... 11111111..

(128- 256ms) (>256ms)

SAFARI 2>



2. Binning

= How to efficiently and scalably store rows into retention
time bins?

= Use Hardware Bloom Filters [Bloom, CACM 1970]

Example with 64-128ms bin:

0]1]0]1(0]21])]0]0}10]0

N —

Hash function 1 Hash function 2 Hash function 3

Insert Row 1
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Bloom Filter Operation Example

Example with 64-128ms bin:

1 & 1 & 1 =1
o(fol1]10]1lO|lO]J]O]J]O(1]O|l]O|lO]lO]O
Hash function 1 Hash function 2 Hash function 3

Row 1 present?
Yes
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Bloom Filter Operation Example

Example with 64-128ms bin:

0)j]0j]1f{0)]11J]0/0)J]0}J0[1T)]O[0O0O]J0]0(]0O0

Hash function 1 Hash function 2 Hash function 3

Row 2 present?
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Bloom Filter Operation Example

Example with 64-128ms bin:

Hash function 1 Hash function 2 Hash function 3

T\

/

Insert Row 4

SAFARI
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Bloom Filter Operation Example

Example with 64-128ms bin:

O)J]0f[1]0O0

1

1

1 & 1 & 1 =1
0]j]0jJO0O)]1jJ0O0)]J]0O0]J1T}]0]1

_——

Hash function 1

Hash function 2

Hash function 3

SAFARI

Row 5 present?
Yes (false positive)
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Benefits of Bloom Filters as Bins

False positives: a row may be declared present in the
Bloom filter even if it was never inserted

o Not a problem: Refresh some rows more frequently than
needed

No false negatives: rows are never refreshed less
frequently than needed (no correctness problems)

Scalable: a Bloom filter never overflows (unlike a fixed-size
table)

Efficient: No need to store info on a per-row basis; simple
hardware - 1.25 KB for 2 filters for 32 GB DRAM system

SAFARI 3



3. Refreshing (RAIDR Retresh Controller)
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3. Refreshing (RAIDR Retresh Controller)

Memory controller
chooses each row
as a refresh candidate
every 64ms

:

Row in 64-128ms bin?—> Row in 128-256ms bin?
(First Bloom filter: 256B) (Second Bloom filter: 1KB)

| | |

Refresh the row Every other 64ms window, Every 4th 64ms window,
refresh the row refresh the row

Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.
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Tolerating Temperature Changes

» Change in temperature causes retention time of all cells to
change by a uniform and predictable factor

» Refresh rate scaling: increase the refresh rate for all rows
uniformly, depending on the temperature

» Implementation: counter with programmable period

» Lower temperature = longer period = less frequent refreshes
» Higher temperature = shorter period = more frequent
refreshes
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RAIDR: Baseline Design

Refresh control is in DRAM in today’s auto-refresh systems

RAIDR can be implemented in either the controller or DRAM
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RAIDR in Memory Controller: Option 1

Overhead of RAIDR in DRAM controller:
1.25 KB Bloom Filters, 3 counters, additional commands

issued for per-row refresh (all accounted for in evaluations)
SAFARI




RAIDR in DRAM Chip: Option 2

Overhead of RAIDR in DRAM chip:
Per-chip overhead: 20B Bloom Filters, 1 counter (4 Gbit chip)

Total overhead: 1.25KB Bloom Filters, 64 counters (32 GB DRAM)
SAFARI




RAIDR Results

Baseline:
o 32 GB DDR3 DRAM system (8 cores, 512KB cache/core)

o 64ms refresh interval for all rows

RAIDR:

0 64-128ms retention range: 256 B Bloom filter, 10 hash functions
o 128-256ms retention range: 1 KB Bloom filter, 6 hash functions
o Default refresh interval: 256 ms

Results on SPEC CPU2006, TPC-C, TPC-H benchmarks
a 74.6% refresh reduction

o ~16%/20% DRAM dynamic/idle power reduction

o ~9% performance improvement
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RAIDR Refresh Reduction

32 GB DDR3 DRAM system
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RAIDR: Performance

8.5
8.0'6'1%

B Auto [ 1RAIDR
[ Distributed I No Refresh
B Smart

9.3%

40%0% 25% 50% 75% 100%  Ave
Memory-intensive benchmarks in workload

RAIDR performance benefits increase with workload’s memory intensity

SAFARI 40



RAIDR: DRAM Energy Etficiency

Energy per access (nJ)

100
I Auto [ TRAIDR
18.9% 1 Distributed [ No Refresh
20 I Smart
60
40
20

0%0% 25% 50% 75% 100% Avg
Memory-intensive benchmarks in workload

RAIDR energy benefits increase with memory idleness

SAFARI
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DRAM Device Capacity Scaling: Performance
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RAIDR performance benefits increase with DRAM chip capacity

SAFARI 42



DRAM Device Capacity Scaling: Energy
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RAIDR energy benefits increase with DRAM chip capacity RAIDR slides
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Agenda

Major Trends Affecting Main Memory

DRAM Scaling Problem and Solution Directions
Three New Techniques for DRAM

o RAIDR: Reducing Refresh Impact

o TL-DRAM: Reducing DRAM Latency

o SALP: Reducing Bank Conflict Impact

Ongoing Research
Summary
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Historical DRAM Latency-Capacity Trend

#*Capacity *Llatency (tRC)

2.5 100
16X
2.0 80 —
© — £
.‘?1.5 — \/ . 60 3
o ) c
8 -20% 0 2
S 05 20 -
0.0 I | | 0
2000 2003 2006 2008 2011
Year

DRAM latency continues to be a critical bottleneck
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What Causes the Long Latency?

DRAM Chip subarray
subarray
cell

/o ety

% //’/ \\!;’/

channel S

/2 ‘ access
g ' é transistor | =
‘\‘ ('UT Il’ E
E \\?\)\ l/,' -Q

sense amplifier
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What Causes the Long Latency?
DRAM Chip W decoder subarray

subarray

o
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sense amplifier
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channel ‘

DRAM Latency {Subarray Lattemay ¥+ [)/D latt=moy
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Why is the Subarray So Slow?

Subarray Cell
cell N
© w5 wordline
. prrr—
T m /”’ Ss &
3 g % 7 L. | B
° N 8 II/ \\\ $
S ™~ ;= - —
Y ) U [ 2 ‘ access | o,
RS o i s transistor || & g
1 @© | ==
g .S 3 ‘\\ 1 5= (@
E E E \ / —Q &
= <
U
....... (7
sense amplifier large sense amplifier

* Long bitline
— Amortizes sense amplifier cost = Small area

— Large bitline capacitance 2 High latency & power
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Trade-Off: Area (Die Size) vs. Latency
Long Bitline Short Bitline

—
%%%%

AYAYAYA
Trade-Off. Area vs. Latency
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Trade-Off: Area (Die Size) vs. Latency

I

32

w

FENIE] LAY Commodity

64 Short Bitline DRAM
Long Bitline
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512 cells/bitline

0
Normalized DRAM Area
N

50 60 70

o

Latency (ns)
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Approximating the Best of Both Worlds

Long Bitline J Our Proposal | Short Bitline
Small Area __lorgeAreq

' N7 N/ \/ \

M Low Latency

Need Add Isolatlon
Isolation Transistors

tline = Fast
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Approximating the Best of Both Worlds

Long Bitlir Tiered-Latency DRAM ort Bitline

Small Area  Small Area M

' N/ N/ N/ \

M Low Latency Low Latency

SmaII area
using long

bitline §
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Tiered-Latency DRAM

* Divide a bitline into two segments with an
isolation transistor

Far Segment

Isolation Transistor

Near Segment

Sense Amplifier
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Near Segment Access

* Turn off the isolation transistor

Reduced bitline length
Reduced bitline capacitance
=» Low latency & low power

)

Isolation Transistor (Off)

Near Segment

Sense Amplifier
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Far Segment Access

e Turn on the isolation transistor

Long bitline length

Large bitline capacitance

Additional resistance of isolation transistor
=» High latency & high power

Isolation Transistor (ON)

Near Segment

Sense Amplifier
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Latency, Power, and Area Evaluation

 Commodity DRAM: 512 cells/bitline

* TL-DRAM: 512 cells/bitline

— Near segment: 32 cells
— Far segment: 480 cells

* Latency Evaluation
— SPICE simulation using circuit-level DRAM model
* Power and Area Evaluation

— DRAM area/power simulator from Rambus
— DDR3 energy calculator from Micron
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Commodity DRAM vs. TL-DRAM
 DRAM Latency (tRC) - DRAM Power

150% 150%
> o - 0
G 100% L+ 100%
Q S
T o
- 50% - Q. 50%
0% 0%
Commodity Near | Far Commodity Near | Far
DRAM TL-DRAM DRAM TL-DRAM

 DRAM Area Overhead

~3%: mainly due to the isolation transistors .



Latency vs. Near Segment Length

(o]
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B Near Segment
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Near Segment Length (Cells)

Longer near segment length leads to
higher near segment latency

512
Ref.
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Latency vs. Near Segment Length
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Far segment latency is higher than
commodity DRAM latency
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Trade-Off: Area (Die-Area) vs. Latency
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Leveraging Tiered-Latency DRAM

* TL-DRAM is a substrate that can be leveraged
by the hardware and/or software

 Many potential uses

1. Use near segment as hardware-managed inclusive |
cache to far segment )

2. Use near segment as hardware-managed exclusive
cache to far segment

3. Profile-based page mapping by operating system
4. Simply replace DRAM with TL-DRAM

\.

J
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Near Segment as Hardware-Managed Cache

TL-DRAM

far segment

near segment
sense amplifier

I/0

channel‘

main
memory

cache

[° Challenge 1: How to efficiently migrate a row between}

segments?

* Challenge 2: How to efficiently manage the cache?
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Inter-Segment Migration

* Goal: Migrate source row into destination row

* Naive way: Memory controller reads the source row
byte by byte and writes to destination row byte by byte
-> High latency

Far Segment

Isolation Transistor

Destination

Near Segment

Sense Amplifier
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Inter-Segment Migration

* Our way:
— Source and destination cells share bitlines

— Transfer data from source to destination across
shared bitlines concurrently

\

Far Segment

Isolation Transistor

Near Segment

Sense Amplifier
64



Inter-Segment Migration

* Our way:
— Source and destination cells share bitlines

— Transfer data from so
shared bitlines concu

Step 1: Activate source row

Migration is overlapped with source row access
Additional ~4ns over row access latency

Step 2: Activate destination

S i d g i @l oW to connect cell and bitline
Yoo 0 o

Near Segment

Sense Amplifier
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Near Segment as Hardware-Managed Cache

TL-DRAM

far segment

near segment
sense amplifier

I/0

channel‘

main
memory

cache

* Challenge 1: How to efficiently migrate a row between

segments?

* Challenge 2: How to efficiently manage the cache?

66



Evaluation Methodology

e System simulator
— CPU: Instruction-trace-based x86 simulator
— Memory: Cycle-accurate DDR3 DRAM simulator

* Workloads
— 32 Benchmarks from TPC, STREAM, SPEC CPU2006

* Performance Metrics
— Single-core: Instructions-Per-Cycle
— Multi-core: Weighted speedup
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Configurations

e System configuration
— CPU: 5.3GHz
— LLC: 512kB private per core

— Memory: DDR3-1066
e 1-2 channel, 1 rank/channel

* 8 banks, 32 subarrays/bank, 512 cells/bitline
* Row-interleaved mapping & closed-row policy

 TL-DRAM configuration
— Total bitline length: 512 cells/bitline
— Near segment length: 1-256 cells
— Hardware-managed inclusive cache: near segment
68



Performance & Power Consumption

Q 120% 792 4% 11.5% 10.7% 120%
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Using near segment as a cache improves

performance and reduces power consumption
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Single-Core: Varying Near Segment Length

Maximum IPC
~—\Improvement

14%
12%
10%

8%
Larger cache capacity

6%
gl I E R E R REERE

4%
2; Higher cache access latency
0

0%

Performance Improvement

1 2 4 8 16 32 64 128 256
Near Segment Length (cells)

By adjusting the near segment length, we can
trade off cache capacity for cache latency
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Other Mechanisms & Results

* More mechanisms for leveraging TL-DRAM
— Hardware-managed exclusive caching mechanism
— Profile-based page mapping to near segment

— TL-DRAM improves performance and reduces power
consumption with other mechanisms

* More than two tiers
— Latency evaluation for three-tier TL-DRAM

 Detailed circuit evaluation
for DRAM latency and power consumption
— Examination of tRC and tRCD

* Implementation details and storage cost analysis
in memory controller
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Summary of TL-DRAM

* Problem: DRAM latency is a critical performance bottleneck

* Qur Goal: Reduce DRAM latency with low area cost

* Observation: Long bitlines in DRAM are the dominant source
of DRAM latency

* Key Idea: Divide long bitlines into two shorter segments

—Fast and slow segments
* Tiered-latency DRAM: Enables latency heterogeneity in DRAM

—Can leverage this in many ways to improve performance
and reduce power consumption

* Results: When the fast segment is used as a cache to the slow
segment =2 Significant performance improvement (>12%) and
power reduction (>23%) at low area cost (3%)
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Agenda

Major Trends Affecting Main Memory

DRAM Scaling Problem and Solution Directions
Three New Techniques for DRAM

o RAIDR: Reducing Refresh Impact

o TL-DRAM: Reducing DRAM Latency

a SALP: Reducing Bank Conflict Impact

Ongoing Research
Summary
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The Memory Bank Conflict Problem

Two requests to the same bank are serviced serially
Problem: Costly in terms of performance and power

Goal: We would like to reduce bank conflicts without
increasing the number of banks (at low cost)

Idea: Exploit the internal sub-array structure of a DRAM bank
to parallelize bank conflicts

o By reducing global sharing of hardware between sub-arrays

Kim, Seshadri, Lee, Liu, Mutlu, “A Case for Exploiting
Subarray-Level Parallelism in DRAM,"” ISCA 2012.

SAFARI 4



The Problem with Memory Bank Contlicts
* Two BankW» Served in parallel

Wr .>

--------------




Goal

* Goal: Mitigate the detrimental effects of
bank conflicts in a cost-effective manner

* Naive solution: Add more banks
— Very expensive

* Cost-effective solution: Approximate the
benefits of more banks without adding
more banks
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Key Observation #1
A DRAM bank is divided into subarrays
Logical Bank Physical Bank

Subarray,

32k ro

Global Row-Buf

A single row-buffer  Many local row-buffers,
cannot drive all rows  one at each subarray
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Key Observation #2

Each subarray is mostly independent...
— except occasionally sharing global structures
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Key Idea: Reduce Sharing of Globals
1. Parallel access to subarrays

—
Local Row-Buf

—
Local Row-Buf

Global Row-Buf

2. Utilize multiple local row- buffers
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Overview of Our Mechanism

Subarray,

1. Parallelize

G5 [Raa) 1 Red)
Tosdme\bankers

but diff. subarrays

Subarray,

----------_,

Global Row-Buf

——————————————

‘----------
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Challenges: Global Structures
1. Global Address Latch



Challenge #1. Global Address Latch

Latch

Global Decoder

/
w-buffer

Global
row-buffer
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Solution #1. Subarray Address Latch
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Challenges: Global Structures

1. Global Address Latch
* Problem: Only one raised wordline

* Solution: Subarray Address Latch
2. Global Bitlines



Challenge #2. Global Bitlines
Global bitlines

bLoca/ -_-
row-bujier AT/ switch
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Solution #2. Designated-Bit Latch
Global bitlines

S
S

D

local be————
[rer

ro

.« Y 4

—71 Switch

—

D 7 71 Switch

| —
Global
READ row—bgﬁ‘gr —

Selectively connect local to global 5




Challenges: Global Structures

1. Global Address Latch
* Problem: Only one raised wordline

* Solution: Subarray Address Latch

2. Global Bitlines

* Problem: Collision during access
* Solution: Designhated-Bit Latch

MASA (Multitude of Activated Subarrays)



MASA: Advantages

e Baseline (Subarray-Oblivious)
1. Seria/izat'ion

Wr23-23 Rd 3 &

->
time
2 Wr/te 3. Thrashing
Penalty
* MASA . Saved .
—D >
( ] time
| wr | Rd >
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MASA: Overhead

* DRAM Die Size: Only 0.15% increase

— Subarray Address Latches
— Designated-Bit Latches & Wire

* DRAM Static Energy: Small increase
— 0.56mW for each activated subarray
— But saves dynamic energy

* Controller: Small additional storage

— Keep track of subarray status (< 256B)
— Keep track of new timing constraints
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System Configuration

e System Configuration
— CPU: 5.3GHz, 128 ROB, 8 MSHR
— LLC: 512kB per-core slice

* Memory Configuration
— DDR3-1066
— (default) 1 channel, 1 rank, 8 banks, 8 subarrays-per-bank
— (sensitivity) 1-8 chans, 1-8 ranks, 8-64 banks, 1-128 subarrays

* Mapping & Row-Policy
— (default) Line-interleaved & Closed-row
— (sensitivity) Row-interleaved & Open-row

* DRAM Controller Configuration

— 64-/64-entry read/write queues per-channel
— FR-FCFS, batch scheduling for writes
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SALP: Single-core Results
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SALP: Single-Core Results
SALP-1 M SALP-2 M MASA ® "|deal"

30%

20%

10%

IPC Increase

0%

DRAM
Die Area

<0.15%

13%_11%

o il

20%

0.15%

36.3%

SALP-1, SALP-2, MASA improve
performance at low cost
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Subarray-Level Parallelism: Results
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Summary

SAFARI
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Sampling ot Ongoing Research

= Online retention time profiling
o Preliminary work in ISCA 2013

o Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu,
"An Experimental Study of Data Retention Behavior in Modern DRAM

Devices: Implications for Retention Time Profiling Mechanisms"
Proceedings of the 40th International Symposium on Computer Architecture (ISCA),

Tel-Aviv, Israel, June 2013. Slides (pptx) Slides (pdf)

-‘ Fast bulk data copy and initialization: RowClone

= Refresh/demand parallelization

SAFARI %6



RowClone: Fast Bulk Data
Copy and Initialization

Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata Ausavarungnirun,
Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Phillip B. Gibbons, Michael A. Kozuch, Todd C. Mowry,
"RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data"

CMU Computer Science Technical Report, CMU-CS-13-108, Carnegie Mellon University, April 2013.




Today’s Memory: Bulk Data Copy

1) High latency
3) Cache pollution \

2) High bandwidth utilization

4) Unwanted data movement
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Future: RowClone (In-Memory Copy)

3) No cache pollution 1) Low latency

2) Low bandwidth utilization
4) No unwanted data movement

Seshadri et al., "RowClone: Fast and Efficient In-DRAM Copy and
Initialization of Bulk Data,” CMU Tech Report 2013.
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DRAM operation (load one byte)

4 Kbits

I 1. Activate row

2. Transfer DRAM array
row

CITTTTTT PP TTTTTTTITTTTTTT]  Row Buffer (4 Kbits)

3.Transfer
byte onto bus

Data pins (8 bits)

Memory Bus



RowClone: in-DRAM Row Copy (and Initialization)

4 Kbits

1. Activate row A

3. Activate row B

2. Transfer DRAM array
row

ransfer
row

CLET PV PV PP PP PP PP PP PPV PRV E 0] RowBuffer (4 Kbits)

Data pins (8 bits)

Memory Bus



Our Approach: Key Idea

* DRAM banks contain
1. Mutiple rows of DRAM cells — row = 8KB
2. A row buffer shared by the DRAM rows

* Large scale copy
1. Copy data from source row to row buffer
2. Copy data from row buffer to destination row



DRAM Subarray Microarchitecture

DRAM Row

(share wordline)
(~8Kb)

Sense
Amplifiers

(row buffer)

DRAM Cell

wordline

o

rF
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DRAM Operation

Raise wordline

Sense
Amplifiers

(row buffer)

Activate (src) — Precharge

%2
—
@)

dst
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RowClone: Intra-subarray Copy

(row buffer)

dst

Deactivate

Activate (src) —— —> Activate (dst)
(our proposal)
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RowClone: Inter-bank Copy

dst

SIrc

Read Write

/O Bus

Transfer
(our proposal)
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RowClone: Inter-subarray Copy

dst

SIrc

temp

/O Bus
1. Transfer (src to temp)

2. Transfer (temp to dst)
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Fast Row Initialization

v

Fix a row at Zero
(0.5% loss in capacity)
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RowClone: Latency and Energy Savings

1.2 W Baseline ¥ Intra-Subarray
¥ Inter-Subarray

A

"~ Inter-Bank

=
|

74X

o
0e]
|

Normalized Savings
o o
IN o

o
N
|

Latency Energy

Seshadri et al., "RowClone: Fast and Efficient In-DRAM Copy and
Initialization of Bulk Data,” CMU Tech Report 2013. 107
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Summary

Three major problems with DRAM scaling and design:
high refresh rate, high latency, low parallelism

Four new DRAM designs

o RAIDR: Reduces refresh impact

o TL-DRAM: Reduces DRAM Iatency at low cost

o SALP: Improves DRAM parallelism

o RowClone: Accelerates page copy and initialization

All four designs

o Improve both performance and energy consumption

a Are low cost (low DRAM area overhead)

o Enable new degrees of freedom to software & controllers

Rethinking DRAM interface and design essential for scaling
o Co-design DRAM with the rest of the system
SAFARI 1t
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An Experimental Study of
Data Retention Behavior
in Modern DRAM Devices

Implications for Retention Time Profiling Mechanisms

Jamie Liu'  Ben Jaiyen'  Yoongu Kim'
Chris Wilkerson?  Onur Mutlu’

1 Carnegie Mellon University
2 Intel Corporation
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Summary (1)

DRAM requires periodic refresh to avoid data loss

o Refresh wastes energy, reduces performance, limits DRAM density scaling

Many past works observed that different DRAM cells can retain data for

different times without being refreshed; proposed reducing refresh rate

for strong DRAM cells

a Problem: These techniques require an accurate profile of the retention time of
all DRAM cells

Our goal: To analyze the retention time behavior of DRAM cells in modern

DRAM devices to aid the collection of accurate profile information

Our experiments: We characterize 248 modern commodity DDR3 DRAM

chips from 5 manufacturers using an FPGA based testing platform

Two Key Issues:

1. Data Pattern Dependence: A cell’s retention time is heavily dependent on data
values stored in itself and nearby cells, which cannot easily be controlled.

2. Variable Retention Time: Retention time of some cells change unpredictably
from high to low at large timescales.

SAFARI



Summary (11)

Key findings on Data Pattern Dependence

o There is no observed single data pattern that elicits the lowest
retention times for a DRAM device - very hard to find this pattern

o DPD varies between devices due to variation in DRAM array circuit
design between manufacturers

a DPD of retention time gets worse as DRAM scales to smaller feature
sizes

Key findings on Variable Retention Time
o VRT is common in modern DRAM cells that are weak

o The timescale at which VRT occurs is very large (e.g., a cell can stay
in high retention time state for a day or longer) - finding minimum
retention time can take very long

Future work on retention time profiling must address these
issues

SAFARI 117



Talk Agenda

= DRAM Refresh: Background and Motivation
= Challenges and Our Goal

= DRAM Characterization Methodology

= Foundational Results

o Temperature Dependence
o Retention Time Distribution

= Data Pattern Dependence: Analysis and Implications
= Variable Retention Time: Analysis and Implications
= Conclusions
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A DRAM Cell

wordline (row enable)

LolL L]

bitline
bitline
bitline
bitline

<Hl
<H
<Hl|

A DRAM cell consists of a capacitor and an access transistor
It stores data in terms of charge in the capacitor
A DRAM chip consists of (10s of 1000s of) rows of such cells

SAFARI



DRAM Refresh

DRAM capacitor charge leaks over time

Each DRAM row is periodically refreshed to restore charge
o Activate each row every N ms
o Typical N = 64 ms

Downsides of refresh
-- Energy consumption: Each refresh consumes energy

-- Performance degradation: DRAM rank/bank unavailable while
refreshed

-- QoS/predictability impact: (Long) pause times during refresh
-- Refresh rate limits DRAM capacity scaling

SAFARI 120



Refresh Overhead: Performance
100

Present i Future

4 o) o0
S S S

% time spent refreshing

Do
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Device capacity

SAFARI Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 121



Refresh Overhead: Energy
100— - o
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SAFARI Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 122



Previous Work on Reducing Refreshes

Observed significant variation in data retention times of
DRAM cells (due to manufacturing process variation)

o Retention time: maximum time a cell can go without being
refreshed while maintaining its stored data

Proposed methods to take advantage of widely varying
retention times among DRAM rows

o Reduce refresh rate for rows that can retain data for longer
than 64 ms, e.g., [Liu+ ISCA 2012]

o Disable rows that have low retention times, e.q., [Venkatesan+
HPCA 2006]

Showed large benefits in energy and performance
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An Example: RAIDR [Liu+, ISCA 2012]

04-128ms

Problem: Requires accurate profiling of DRAM row retention times

128-250ms

Can reduce refreshes by ~75%
- reduces energy consumption and improves performance

SAFARI Luet al., “"RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 124



Motivation

Past works require accurate and reliable measurement of
retention time of each DRAM row

o To maintain data integrity while reducing refreshes

Assumption: worst-case retention time of each row can be
determined and stays the same at a given temperature

o Some works propose writing all 1's and 0’s to a row, and
measuring the time before data corruption

Question:

o Can we reliably and accurately determine retention times of all
DRAM rows?

SAFARI 125
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Two Challenges to Retention Time Protiling

= Data Pattern Dependence (DPD) of retention time

= Variable Retention Time (VRT) phenomenon

SAFARI 127



Two Challenges to Retention Time Protiling
= Challenge 1: Data Pattern Dependence (DPD)
o Retention time of a DRAM cell depends on its value and the

values of cells nearby it

o When a row is activated, all bitlines are perturbed simultaneously

Bitlines
= R
 ow
<
Word : : | RO
\ .
= —L T
v v k2
Sense Sense Sense Row
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Data Pattern Dependence

= Electrical noise on the bitline affects reliable sensing of a DRAM cell
= The magnitude of this noise is affected by values of nearby cells via
o Bitline-bitline coupling = electrical coupling between adjacent bitlines

o Bitline-wordline coupling - electrical coupling between each bitline and
the activated wordline

Bitlines
r—l_]_f 1—1_]_ 3 * l—l_]_ROW
| T [[|cen E |
= Retention Wordline: ww tored in
nearby cel >~ : : :
1 1 1 . .
- need to f — 1 = — i stention time
< < <
Sense Sense = Sense Row
amp amp amp buffer
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Two Challenges to Retention Time Protiling

Challenge 2: Variable Retention Time (VRT)
o Retention time of a DRAM cell changes randomly over time
a cell alternates between multiple retention time states

o Leakage current of a cell changes sporadically due to a charge
trap in the gate oxide of the DRAM cell access transistor

o When the trap becomes occupied, charge leaks more readily from
the transistor’s drain, leading to a short retention time

Called Trap-Assisted Gate-Induced Drain Leakage

o This process appears to be a random process [-K'rm-l—l-TEB'—l—l—]—

o Worst-case retention time depends on a random prpcgss
- need to find the worst case despite this 1
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Our Goal

Analyze the retention time behavior of DRAM cells in
modern commodity DRAM devices

o to aid the collection of accurate profile information

Provide a comprehensive empirical investigation of two key
challenges to retention time profiling

o Data Pattern Dependence (DPD)
o Variable Retention Time (VRT)
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DRAM Testing Platform and Method

Test platform: Developed a DDR3 DRAM testing platform
using the Xilinx ML605 FPGA development board

o Temperature controlled

Tested DRAM chips: 248 commodity DRAM chips from five
manufacturers (A,B,C,D,E)

Seven families based on equal capacity per device:
o A1Gb, A 2Gb

o B 2Gb

a C2Gb

o D 1Gb, D 2Gb

o E2Gb
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Experiment Design

Each module tested for multiple rounds of tests.

Each test searches for the set of cells with a retention time
less than a threshold value for a particular data pattern

High-level structure of a test:
o Write data pattern to rows in a DRAM bank
o Prevent refresh for a period of time tWAIT, leave DRAM idle

o Read stored data pattern, compare to written pattern and
record corrupt cells as those with retention time < tWAIT

Test details and important issues to pay attention to are
discussed in paper
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Experiment Structure

T Tests both the data pattern Round
est :
and its complement -/
., ) Round 1 Round 2
- N ~ - N ~
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tWAIT = 1.55 [ tWAIT = 1.65 tWAIT=6.0s |[ | tWAIT=15s
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Experiment Parameters

Most tests conducted at 45 degrees Celsius

No cells observed to have a retention time less than 1.5
second at 45°C

Tested tWAIT in increments of 128ms from 1.5 to 6.1
seconds
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Tested Data Patterns

All Os/1s: Value 0/1 is written to all bits Fixed patterns
o Previous work suggested this is sufficient

Checkerboard: Consecutive bits alternate between 0 and 1

o Coupling noise increases with voltage difference between the
neighboring bitlines > May induce worst case data pattern (if adjacent
bits mapped to adjacent cells)

Walk: Attempts to ensure a single cell storing 1 is
surrounded by cells storing 0

o This may lead to even worse coupling noise and retention time due to
coupling between nearby bitlines [Li+ IEEE TCSI 2011]

o Walk pattern is permuted in each round to exercise different cells

Random: Randomly generated data is written to each row
o A new set of random data is generated for each round
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Temperature Stability
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Tested chips at five different stable temperatures
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Dependence of Retention Time on Temperature

Fraction of cells that

Exponential fit, peak

exhipited r_etention ﬁ* - -- Exponential fit, tail
time failure
at any tWAIT
for any data pattern o
at 50°C £
0.8
2
Normalized retention ¢
times of the same cellsg
0]
at 55°C 06|
N
©
=
O ~
< Best-fit exponential curves Sa
041" for retention time change R
Normalized retention with temperature Rt
times of the same cells
At 70°C
0.2 : * * : *
50 55 60 65 70

SAFARI

Temperature (C)

0.200

0.175

0.150

0.125

0.100

ion of Weak Cells

0.075

Fract

0.050

0.025

0.000

140



Dependence of Retention Time on Temperature
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Relationship between retention time and temperature is
consistently bounded (predictable) within a device

Every 10°C temperature increase
- 46.5% reduction in retention time in the worst case »




Retention Time Distribution
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Some Terminology

Failure population of cells with Retention Time X: The set of
all cells that exhibit retention failure in any test with any
data pattern at that retention time (tWAIT)

Retention Failure Coverage of a Data Pattern DP: Fraction
of cells with retention time X that exhibit retention failure
with that particular data pattern DP

If retention times are not dependent on data pattern stored
in cells, we would expect

o Coverage of any data pattern to be 100%

o In other words, if one data pattern causes a retention failure,
any other data pattern also would
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Recall the Tested Data Patterns

All Os/1s: Value 0/1 is written to all bits Fixed patterns

Checkerboard: Consecutive bits alternate between 0 and 1

Walk: Attempts to ensure a single cell storing 1 is
surrounded by cells storing 0

Random: Randomly generated data is written to each row
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Retention Failure Coverage ot Data Patterns
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Different data patterns have widely different coverage:
Data pattern dependence exists and is severe

Coverage of fixed patterns is low: ~¥30% for All Os/1s

Walk is the most effective data pattern for this device

No data pattern achieves 100% coverage 16




Retention Failure Coverage ot Data Patterns
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Retention Failure Coverage ot Data Patterns
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Random is the most effective data pattern for this device

No data pattern achieves 100% coverage
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Data Pattern Dependence: Observations (I)

A cell’s retention time is heavily influenced by data pattern
stored in other cells

o Pattern affects the coupling noise, which affects cell leakage

No tested data pattern exercises the worst case retention
time for all cells (no pattern has 100% coverage)

o No pattern is able to induce the worst-case coupling noise for
every cell

o Problem: Underlying DRAM circuit organization is not known to
the memory controller = very hard to construct a pattern that
exercises the worst-case cell leakage

- Opaque mapping of addresses to physical DRAM geometry
- Internal remapping of addresses within DRAM to tolerate faults
- Second order coupling effects are very hard to determine
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Data Pattern Dependence: Observations (11)

Fixed, simple data patterns have low coverage
o They do not exercise the worst-case coupling noise

The effectiveness of each data pattern varies significantly
between DRAM devices (of the same or different vendors)

o Underlying DRAM circuit organization likely differs between
different devices - patterns leading to worst coupling are
different in different devices

Technology scaling appears to increase the impact of data
pattern dependence

o Scaling reduces the physical distance between circuit elements,
increasing the magnitude of coupling effects
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Efttect of Technology Scaling on DPD
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The lowest-coverage data pattern achieves much lower coverage

for the smaller technology node
SAFARI 151




DPD: Implications on Profiling Mechanisms

Any retention time profiling mechanism must handle data pattern
dependence of retention time

Intuitive approach: Identify the data pattern that induces the
worst-case retention time for a particular cell or device

Problem 1: Very hard to know at the memory controller which
bits actually interfere with each other due to

o Opaque mapping of addresses to physical DRAM geometry -
logically consecutive bits may not be physically consecutive

o Remapping of faulty bitlines/wordlines to redundant ones internally
within DRAM

Problem 2: Worst-case coupling noise is affected by non-obvious
second order bitline coupling effects
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DPD: Suggestions (for Future Work)

A mechanism for identifying worst-case data pattern(s)
likely requires support from DRAM device

o DRAM manufacturers might be in a better position to do this

o But, the ability of the manufacturer to identify and expose the
entire retention time profile is limited due to VRT

An alternative approach: Use random data patterns to
increase coverage as much as possible; handle incorrect
retention time estimates with ECC

o Need to keep profiling time in check
o Need to keep ECC overhead in check
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Variable Retention Time

Retention time of a cell can vary over time

A cell can randomly switch between multiple leakage
current states due to Trap-Assisted Gate-Induced Drain

Leakage, which appears to be a random process
[Yaney+ IEDM 1987, Restle+ IEDM 1992]
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An Example VRT Cell
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VRT: Questions and Methodology

Key Questions

Q

Q

Q

How prevalent is VRT in modern DRAM devices?
What is the timescale of observation of the lowest retention

time state?

What are the implications on retention time profiling?

Test Methodology

a

Q

Q

Each device was tested for at least 1024 rounds over 24 hours

Temperature fixed at 45°C
Data pattern used is the most effective data pattern for each
device

For each cell that fails at any retention time, we record the
minimum and the maximum retention time observed
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Variable Retention Time
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Variable Retention Time
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Variable Retention Time
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VRT: Observations So Far

VRT is common among weak cells (i.e., those cells that
experience low retention times)

VRT can result in significant retention time changes

o Difference between minimum and maximum retention times of
a cell can be more than 4x, and may not be bounded

o Implication: Finding a retention time for a cell and using a
guardband to ensure minimum retention time is “covered”
requires a large guardband or may not work

Retention time profiling mechanisms must identify lowest
retention time in the presence of VRT

o Question: How long to profile a cell to find its lowest retention
time state?
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Time Between Retention Time State Changes

= How much time does a cell spend in a high retention state
before switching to the minimum observed retention time
state?
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Time Spent in High Retention Time State
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Time Spent in High Retention Time State
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Time Spent in High Retention Time State
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VRT: Implications on Profiling Mechanisms

Problem 1: There does not seem to be a way of
determining if a cell exhibits VRT without actually observing

a cell exhibiting VRT
o VRT is a memoryless random process [Kim+ JJAP 2010]

Problem 2: VRT complicates retention time profiling by
DRAM manufacturers

o Exposure to very high temperatures can induce VRT in cells that
were not previously susceptible

- can happen during soldering of DRAM chips
- manufacturer’s retention time profile may not be accurate

One option for future work: Use ECC to continuously profile
DRAM online while aggressively reducing refresh rate

o Need to keep ECC overhead in check
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Talk Agenda

DRAM Refresh: Background and Motivation
Challenges and Our Goal

DRAM Characterization Methodology
Foundational Results

o Temperature Dependence
o Retention Time Distribution

Data Pattern Dependence: Analysis and Implications
Variable Retention Time: Analysis and Implications
Conclusions
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Summary and Conclusions

DRAM refresh is a critical challenge in scaling DRAM technology
efficiently to higher capacities and smaller feature sizes

Understanding the retention time of modern DRAM devices can
enable old or new methods to reduce the impact of refresh

o Many mechanisms require accurate and reliable retention time profiles

We presented the first work that comprehensively examines data
retention behavior in modern commodity DRAM devices

o Characterized 248 devices from five manufacturers

Key findings: Retention time of a cell significantly depends on data
pattern stored in other cells (data pattern dependence) and
changes over time via a random process (variable retention time)

o Discussed the underlying reasons and provided suggestions

Future research on retention time profiling should solve the
challenges posed by the DPD and VRT phenomena
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FEnabling Emerging Memory
Technologies




Aside: Scaling Flash Memory [Cai+, ICCD’12]

NAND flash memory has low endurance: a flash cell dies after 3k P/E
cycles vs. 50k desired - Major scaling challenge for flash memory
Flash error rate increases exponentially over flash lifetime

Problem: Stronger error correction codes (ECC) are ineffective and
undesirable for improving flash lifetime due to

o diminishing returns on lifetime with increased correction strength

o prohibitively high power, area, latency overheads

Our Goal: Develop techniques to tolerate high error rates w/o strong ECC

Observation: Retention errors are the dominant errors in MLC NAND flash
o flash cell loses charge over time; retention errors increase as cell gets worn out
Solution: Flash Correct-and-Refresh (FCR)

o Periodically read, correct, and reprogram (in place) or remap each flash page
before it accumulates more errors than can be corrected by simple ECC

o Adapt “refresh” rate to the severity of retention errors (i.e., # of P/E cycles)

Results: FCR improves flash memory lifetime by 46X with no hardware
changes and low energy overhead; outperforms strong ECCs
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Solution 2: Emerging Memory Technologies

Some emerging resistive memory technologies seem more
scalable than DRAM (and they are non-volatile)

Example: Phase Change Memory BL
o Data stored by changing phase of material
Data read by detecting material’s resistance ;
Expected to scale to 9nm (2022 [ITRS]) w SENSE
Prototyped at 20nm (Raoux+, IBM JRD 2008) ? Vv
Expected to be denser than DRAM: can store multiple bits/cell

PCM

a
a
a
a

But, emerging technologies have (many) shortcomings
o Can they be enabled to replace/augment/surpass DRAM?
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Phase Change Memory: Pros and Cons

= Pros over DRAM
o Better technology scaling (capacity and cost)
o Non volatility
o Low idle power (no refresh)

= Cons
o Higher latencies: ~4-15x DRAM (especially write)
a Higher active energy: ~2-50x DRAM (especially write)
a Lower endurance (a cell dies after ~108 writes)

= Challenges in enabling PCM as DRAM replacement/helper:
o Mitigate PCM shortcomings
o Find the right way to place PCM in the system
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PCM-based Main Memory (I)

= How should PCM-based (main) memory be organized?

CPU CPU CPU
IcipdiciRgicsh
GCGQ-—a | -G | @D
Q-G | - CE | @D

= Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC'09]:
o How to partition/migrate data between PCM and DRAM
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PCM-based Main Memory (11)

= How should PCM-based (main) memory be organized?

CPU CPU CPU
o)~ L)~
Q- - —Cc | @&«
Q-G -G | @

= Pure PCM main memory [Lee et al., ISCA'09, Top Picks’10]:

o How to redesign entire hierarchy (and cores) to overcome
PCM shortcomings

SAFARI 175



PCM-Based Memory Systems: Research Challenges

Partitioning
o Should DRAM be a cache or main memory, or configurable?
o What fraction? How many controllers?

Data allocation/movement (energy, performance, lifetime)

o Who manages allocation/movement?
o What are good control algorithms?
o How do we prevent degradation of service due to wearout?

Design of cache hierarchy, memory controllers, OS
o Mitigate PCM shortcomings, exploit PCM advantages

Design of PCM/DRAM chips and modules
o Rethink the design of PCM/DRAM with new requirements
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An Initial Study: Replace DRAM with PCM

Lee, Ipek, Mutlu, Burger, “Architecting Phase Change
Memory as a Scalable DRAM Alternative,” ISCA 2009.

o Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC)
o Derived “average” PCM parameters for F=90nm

Density \ Latency
> 9-12F? using BJT > 50ns Rd, 150ns Wr
> 1.5x DRAM .~ |> 4x,12x DRAM
Endurance Energy

> 404A Rd, 150A Wr
> 1E-08x DRAM | > 2x,43x DRAM
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Results: Naive Replacement of DRAM with PCM

Replace DRAM with PCM in a 4-core, 4MB L2 system
PCM organized the same as DRAM: row buffers, banks, peripherals
1.6x delay, 2.2x energy, 500-hour average lifetime

PCM Performance :: 2048Bx1 Buffer PCM Endurance :: 2048Bx1 Buffer

0.2
3 4 I Delay

-EnergyMem 0.18

2.8
0.14

0.16
26
z2
a 0.12
: 0.
T g, 0.08
' 0.0
0.8!
06l 0.04
0.4/ 0.0
0.2!

is mg rad oce art equ swi avg IS mg rad oce art equ swu avg

Normalized to
R N N NN
I\J -h 0‘) O’J N

Years

-h
D

N

(=
o

Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a
Scalable DRAM Alternative,” ISCA 2009.
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Architecting PCM to Mitigate Shortcomings

Idea 1: Use multiple narrow row buffers in each PCM chip
- Reduces array reads/writes = better endurance, latency, energy

Idea 2: Write into array at
cache block or word

granularity DRAM PCM
- Reduces unnecessary wear { data array { data array J
sense amplifiers * ( -
(buffer) sense amplifiers
.
l I/O ¢

latches

(buffer)
i 11O
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Results: Architected PCM as Main Memory

= 1.2x delay, 1.0x energy, 5.6-year average lifetime
= Scaling improves energy, endurance, density

PCM Performance .. 512Bx4 Buffer PCM Endurance .. 512Bx4 Buffer
1.8[———— 16
Il Delay — DiffLine (648)

1.6 I EnergyMem

14! I I DiffWord (4B)

cg IS mg rad oce art equ swi avg cg is mg rad oce art equ SWI avg

14

-
N

o

oo —

Years
@

2]

Normalized to DRAM
(]
o

o
'
I

©
(¥
N}

o
o

= Caveat 1: Worst-case lifetime is much shorter (no guarantees)
= Caveat 2: Intensive applications see large performance and energy hits

= Caveat 3: Optimistic PCM parameters?
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Hybrid Memory Systems

CPU

DRAM PCM
Ctrl  Ctrl

Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies
(5-9 years of average lifetime)

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and Scalable Hybrid Memories,”
IEEE Comp. Arch. Letters, 2012.
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One Option: DRAM as a Cache for PCM

PCM is main memory; DRAM caches memory rows/blocks
o Benefits: Reduced latency on DRAM cache hit; write filtering
Memory controller hardware manages the DRAM cache

o Benefit: Eliminates system software overhead

Three issues:

o What data should be placed in DRAM versus kept in PCM?
o What is the granularity of data movement?

o How to design a low-cost hardware-managed DRAM cache?

Two idea directions:
o Locality-aware data placement [Yoon+, ICCD 2012]
o Cheap tag stores and dynamic granularity [Meza+, IEEE CAL 2012]
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DRAM vs. PCM: An Observation

= Row buffers are the same in DRAM and PCM
= Row buffer hit latency same in DRAM and PCM
= Row buffer miss latency small in DRAM, large in PCM

CPU

Row buffer
DRAM Cache

PCM Main Memory
I I

N ns row hit N ns row hit
Fast row miss Slow row miss

= Accessing the row buffer in PCM is fast
= What incurs high latency is the PCM array access - avoid this
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Row-Locality-Aware Data Placement

Idea: Cache in DRAM only those rows that

o Frequently cause row buffer conflicts = because row-conflict latency
is smaller in DRAM

o Are reused many times - to reduce cache pollution and bandwidth
waste

Simplified rule of thumb:
o Streaming accesses: Better to place in PCM
o Other accesses (with some reuse): Better to place in DRAM

Bridges half of the performance gap between all-DRAM and all-
PCM memory on memory-intensive workloads

Yoon et al., "Row Buffer Locality-Aware Caching Policies for
Hybrid Memories,” ICCD 2012.
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Row-Locality-Aware Data Placement: Mechanism

For a subset of rows in PCM, memory controller:
o Tracks row conflicts as a predictor of future locality
o Tracks accesses as a predictor of future reuse

Cache a row in DRAM if its row conflict and access counts
are greater than certain thresholds

Determine thresholds dynamically to adjust to application/
workload characteristics

o Simple cost/benefit analysis every fixed interval
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Implementation: “Statistics Store™

* Goal: To keep count of row buffer misses to
recently used rows in PCM

 Hardware structure in memory controller

— Operation is similar to a cache

* Input: row address
e Output: row buffer miss count

— 128-set 16-way statistics store (9.25KB) achieves
system performance within 0.3% of an unlimited-
sized statistics store
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Evaluation Methodology

e Cycle-level x86 CPU-memory simulator

— CPU: 16 out-of-order cores, 32KB private L1 per
core, 512KB shared L2 per core

— Memory: 1GB DRAM (8 banks), 16GB PCM (8
banks), 4KB migration granularity

* 36 multi-programmed server, cloud workloads
— Server: TPC-C (OLTP), TPC-H (Decision Support)
— Cloud: Apache (Webserv.), H.264 (Video), TPC-C/H

* Metrics: Weighted speedup (perf.), perf./Watt
(energy eff.), Maximum slowdown (fairness)187



Comparison Points

Conventional LRU Caching
FREQ: Access-frequency-based caching

— Places “hot data” in cache [Jiang+ HPCA’10]

— Cache to DRAM rows with accesses = threshold
— Row buffer locality-unaware

FREQ-Dyn: Adaptive Freq.-based caching

— FREQ + our dynamic threshold adjustment

— Row buffer locality-unaware

RBLA: Row buffer locality-aware caching
RBLA-Dyn: Adaptive RBL-aware caching
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System Performance
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Average Memory Latency
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Memory Energy Efficiency
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Thread Fairness
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Compared to All-PCM/DRAM

®16GBPCM BERBLA-Dyn B016GB DRAM
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Our mechanism achieves 31% better performance
than all PCM, within 29% of all DRAM
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The Problem with LL.arge DRAM Caches

A large DRAM cache requires a large metadata (tag +
block-based information) store

How do we design an efficient DRAM cache?

CPU
LOAD X
Metadata: |
X = DRAM
[ M
(smali;+uow<ache)
Access X

SAFARI 194



Idea 1: Tags in Memory

Store tags in the same row as data in DRAM
o Store metadata in same row as their data
o Data and metadata can be accessed together

<€

DRAM row >

Cache block O

Cache block 1

Cache block 2 Tagd Tagl Tag2

Benefit: No on-chip tag storage overhead

Downsides:

o Cache hit determined only after a DRAM access
o Cache hit requires two DRAM accesses

SAFARI

195



Idea 2: Cache Tags in SRAM

Recall Idea 1: Store all metadata in DRAM
o To reduce metadata storage overhead

Idea 2: Cache in on-chip SRAM frequently-accessed
metadata

o Cache only a small amount to keep SRAM size small
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Idea 3: Dynamic Data Transter Granularity

Some applications benefit from caching more data
o They have good spatial locality
Others do not

o Large granularity wastes bandwidth and reduces cache
utilization

Idea 3: Simple dynamic caching granularity policy

o Cost-benefit analysis to determine best DRAM cache block size
o Group main memory into sets of rows

o Some row sets follow a fixed caching granularity

|

The rest of main memory follows the best granularity
Cost—benefit analysis: access latency versus number of cachings
Performed every quantum
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TIMBER Tag Management

A Tag-In-Memory BUffER (TIMBER)
o Stores recently-used tags in a small amount of SRAM

€ DRAM row >

s ashﬁ hlg;k 5” s ashﬁ thSk I| \ s aghﬁ h'gsk z ‘ Tag0 Tagl Tag2

-
- -
- -
- -
-
- -

RowTag _.--~ L

Tag0 Tagl Tag2
LOAD X Tago Tag?

Benefits: If tag is cached:
o no need to access DRAM twice
o cache hit determined quickly
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TIMBER Tag Management Example (I)
= Case 1: TIMBER hit

\
I'/ Tag0 Tagl Tagz\l J J l
] Tag0 | Tagl | Tag2 : JC:IDLJJ
l |
l !
l
[

N\

Access X
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TIMBER Tag Management Example (I1I)
= Case 2: TIMBER miss

2. Cache M(Y)

=

Tag0 ‘ Tagl ] Tagz\ . —
Tag0 Tagl Tag2 JCP |

J J
P 0D

\Access Metadata(Y)

1. Access M(Y)
3. Access Y (row hit)
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Methodology

System: 8 out-of-order cores at 4 GHz

Memory: 512 MB direct-mapped DRAM, 8 GB PCM

o 128B caching granularity

o DRAM row hit (miss): 200 cycles (400 cycles)

o PCM row hit (clean / dirty miss): 200 cycles (640 / 1840 cycles)

Evaluated metadata storage techniques
All SRAM system (8MB of SRAM)

a
o Region metadata storage

o TIM metadata storage (same row as data)

o TIMBER, 64-entry direct-mapped (8KB of SRAM)
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TIMBER Performance
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Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and
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TIMBER Energy Efficiency
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Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and
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Hybrid Main Memory: Research Topics

= Many research ideas from technology
layer to algorithms layer

Problems
= Enabling NVM and hybrid memory ~ [A9orthms
. Programs <—-

o How to maximize performance? :

o How to maximize lifetime? \ /

o How to prevent denial of service? Runtime System

(VM, OS, MM)

= Exploiting emerging tecnologies ISA

o How to exploit non-volatility?

o How to minimize energy consumption?
o How to minimize cost?

o How to exploit NVM on chip?
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Security Challenges of |

“merging Technologies

1. Limited endurance - Wearout attacks

2. Non-volatility = Data persists in memory after powerdown

—> Easy retrieval of privileged

or private information

3. Multiple bits per cell > Information leakage (via side channel)

SAFARI
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Securing Emerging Memory Technologies

1. Limited endurance - Wearout attacks
Better architecting of memory chips to absorb writes
Hybrid memory system management
Online wearout attack detection

2. Non-volatility = Data persists in memory after powerdown
- Easy retrieval of privileged or private information
Efficient encryption/decryption of whole main memory
Hybrid memory system management

3. Multiple bits per cell > Information leakage (via side channel)

System design to hide side channel information
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