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Slides for These Lectures

= Architecting and Exploiting Asymmetry in Multi-Core

a http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecturel-
asymmetry-jul-2-2013.pptx

= A Fresh Look At DRAM Architecture

o http://www.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture2-
DRAM-jul-4-2013.pptx

= QoS-Aware Memory Systems

o http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture3-
memory-qos-jul-8-2013.pptx

= QoS-Aware Memory Systems and Waste Management

o http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture4-
memory-gos-and-waste-management-jul-9-2013.pptx
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Videos for Similar .ectures

= Basics (of Computer Architecture)

a http://www.youtube.com/playlist?
list=PL5PHmM2jkkXmidJOd59RE0g9jDnPDTG61]

= Advanced (Longer versions of these lectures)

o http://www.youtube.com/playlist?
list=PLVngZ7BemHHV6N0ejHhwOfLWTr8Q-UKXj
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Designing QoS-Aware Memory Systems: Approaches

= Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism

QOS aware memory controllers fmutiu+ MICRO '07] [Moscibroda+, Usenix Security’07]

oS TOrPIeRSt PER10] [Kim+ MICRO'10, Top Picks'11] [Ebrahimi+ ISCA'11,
MICRO 11] [Ausavarungn|run+ ISCA’12][Subramanian+, HPCA"13]

o QoS-aware interconnects [Das+ MICRO'09, ISCA'10, Top Picks ‘11] [Grot+ MICRO'09,
ISCA'11, Top Picks '12]

o QoS-aware caches

Q

= Dumb resources: Keep each resource free-for-all, but reduce/
control interference by injection control or data mapping

o Source throttling to control access to memory system [Ebrahimi+ ASPLOS'10,
ISCA'11, TOCS'12] [Ebrahimi+ MICRO'09] [Nychis+ HotNets'10] [Nychis+ SIGCOMM12]

o QoS-aware data mapping to memory controllers [Muralidhara+ MICRO'11]
o QoS-aware thread scheduling to cores [pas+ HPCA'13]
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ATLAS Pros and Cons

Upsides:
o Good at improving overall throughput (compute-intensive
threads are prioritized)

o Low complexity
o Coordination among controllers happens infrequently

Downsides:

o Lowest/medium ranked threads get delayed significantly 2>
high unfairness



TCM:
Thread Cluster Memory Scheduling

Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter,
"Thread Cluster Memory Scheduling:
Exploiting Differences in Memory Access Behavior"
43rd International Symposium on Microarchitecture (MICRO),
pages 65-76, Atlanta, GA, December 2010. Slides (pptx) (pdf)

TCM Micro 2010 Talk




Previous Scheduling Algorithms are Biased

24 cores, 4 memory controllers, 96 workloads

17 A
oI
] 9. System throughput bias
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Weighted Speedup
Better system throughput
No previous memory scheduling algorithm provides

both the best fairness and system throughput
SAFARI



Throughput vs. Fairness

Throughput biased approach Fairness biased approach

Prioritize less memory-intensive threads Take turns accessing memory

Good for throughput Does not starve

— T

—>—
less memory higher

intensive {M priority
not prioritized =»

starvation =» unfairness reduced throughput

Single policy for all threads is insufficient
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Achieving the Best of Both Worlds
higher

priority L _ _
_ _ Prioritize memory-non-intensive threads

thread

| thread

e
/f« Unfairness caused by memory-intensive
f’- being prioritized over each other

\L/ pre— * Shuffle thread ranking

thread

Memory-intensive threads have
different vulnerability to interference
* Shuffle asymmetrically

SAFARI :



Thread Cluster Memory Scheduling [Kim+ MICRO’10]

1. Group threads into two clusters
2. Prioritize non-intensive cluster
3. Different policies for each cluster

[higher A

priority
) . Non-intensive
Memory-non-intensive
thread ‘

cluste
[ ]
[ ]
[ ]

Gl
Prioritized ghe
prlorlty
’ /
Threads in ystem - -

Intensive cluster

SAFARI 10
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Clustering Threads

Stepl Sort threads by MPKI (misses per kiloinstruction)
S,

n | higher
© ge) ©
11| 4 MPK
"E§E EE .
Non-intensive Intensive
cluster oT cluster
| ]
Y
T
a<10%

T = Total memory bandwidth usage ClusterThreshold

Step2 Memory bandwidth usage aT divides clusters
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Prioritization Between Clusters

Prioritize non-intensive cluster

== > Bl

priority

* Increases system throughput

— Non-intensive threads have greater potential for
making progress

* Does not degrade fairness
— Non-intensive threads are “light”
— Rarely interfere with intensive threads

SAFARI



Non-Intensive Cluster
Prioritize threads according to MPKI

higher
priority —lowest MPKI
thread
nm'\h/ghest MPKI

* Increases system throughput

— Least intensive thread has the greatest potential
for making progress in the processor

SAFARI
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Intensive Cluster
Periodically shuffle the priority of threads

higher _ o Most prioritized
| ol
(:} — Increases fairness

—

* |s treating all threads equally good enough?

 BUT: Equal turns # Same slowdown

SAFARI 14



Case Study: A Tale of Two Threads

Case Study: Two intensive threads contending

1.random-access
Which is slowed down more easily?

2.streaming
Prioritize random-access Prioritize streaming
14 14
c 12 —>11x
2 10 (_/B?E’
_8 8 .7)( _8 8
% 2 prioritized % 2 prioritized
v, 1x P 1x
0 0
random-access streaming random-access streaming

random-access thread is more easily slowed down

SAFARI 15



Why are Threads Different?

random-access streaming
stuck >

activated row

— 4 *}/ rows

Bank 1 Bank 2 Bank 3 Bank4  Memory

* All requests parallel * All requests =2 Same row
* High bank-level parallelism < High row-buffer locality
-

Vulnerable to interference

SAFARI 16



Niceness

How to quantify difference between threads?

Niceness

Bank-level parallelism Row-buffer locality

Vulnerability to interference  Causes interference

==  Niceness -

17



Shuffling: Round-Robin vs. Niceness-Aware

1.Round-Robin shuffling | € What can go wrong?

2.Niceness-Aware shuffling GOOD: Each thread
Most prioritized P b’t’ze d once
Priority A 4 < v v v _
| | | _ Nice thread
1]
Least nice thread
| | | I —> Time
<>

Shuffleinterval
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Shuffling: Round-Robin vs. Niceness-Aware

1.Round-Robin shuffling | € What can go wrong?

2.Niceness-Aware shuffling GOOD: Each thread
Most prioritized P b’t’ze d once
Priority A
1
Nice thread
]

Least nice thread
—=> Time

Shuffleinterval BAD: Nice .threads receive
lots of interference

19



Shuffling: Round-Robin vs. Niceness-Aware

1.Round-Robin shuffling

2.Niceness-Aware shuffling GOOD: Each thread

prioritized once

Most prioritized
/
Priority A !' < < < < —
_ _ _ _ Nice thread
1]
Least nice thread
I I I I > Time
<>

Shuffleinterval
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Shuffling: Round-Robin vs. Niceness-Aware

1.Round-Robin shuffling

2.Niceness-Aware shuffling GOOD: Each thread

prioritized once

-

Most prioritized

Priority A

]
Nice thread

]
Least nice thread

—— —> Time
shuffleinterval GOOD: Least nice. th.r?(]d stays
mostly deprioritized
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TCM Outline

3. Non-Intensive

Cluster
1. Clustering | == » =
— )
— - ‘ Throughput
- 2. Between 4. Intensive
’ Clusters Cluster

—
— il

raimess
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TCM: Quantum-Based Operation

Previous quantum Current quantum
(~1M cycles) (~1M cycles)
| |

: \ \
—|—H'"—'—'—'—'—'—'—'—'—'—|—) Time

[ T
_ Shuffle interval
During quantum: (~1K cycles)
* Monitor thread behavior
1. Memory intensity Beginning of quantum:
2. Bank-level parallelism | *Perform clustering
3. Row-buffer locality e Compute niceness of

intensive threads

SAFARI

23



TCM: Scheduling Algorithm

1.Highest-rank: Requests from higher ranked threads prioritized

| * Non-Intensive cluster > Intensive cluster |
| * Non-Intensive cluster: lower intensity =» higher rank |

| * Intensive cluster: rank shuffling |

2.Row-hit: Row-buffer hit requests are prioritized

3.0ldest: Older requests are prioritized

SAFARI
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TCM: Implementation Cost

Required storage at memory controller (24 cores)

Thread memory behavior

MPKI ~0.2kb
Bank-level parallelism ~0.6kb
Row-buffer locality ~2.9kb

* No computation is on the critical path

SAFARI 25



Previous Work

FRFCEFS [Rixner et al., ISCA00]: Prioritizes row-buffer hits
— Thread-oblivious = Low throughput & Low fairness

STFM [Mutlu et al., MICROO7]: Equalizes thread slowdowns
— Non-intensive threads not prioritized = Low throughput

PAR-BS [Mutlu et al., ISCA08]: Prioritizes oldest batch of requests
while preserving bank-level parallelism

— Non-intensive threads not always prioritized = Low
throughput

ATLAS [Kim et al., HPCA10]: Prioritizes threads with less memory
service

— Most intensive thread starves =» Low fairness
SAFARI
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SAFAR

TCM: Throughput and Fairness

24 cores, 4 memory controllers, 96 workloads

16;
7))
7, c 14 -
g 3
= '§12-
] ©°
(- mlO'
g £
E £ 8-
1 I
(¢0)
= 6 -
4 T T T T »I
7.5 8 8.5 9 9.5 10

Weighted Speedup
TCM, a heterogeneous scheduling policy,
I provides best fairness and system throughput
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TCM: Fairness-Throughput Tradeoff

When configuration parameter is varied...
12 A

=
co o
1 1

Better fairness
(@))

Maximum Slowdown

/

. : : : Adjusting
VX R E R VI C/usterThreshold :

Weighted Speedtp
TCM allows robust fairness-throughput tradeoff
SAFARI ”
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Operating System Support

* ClusterThreshold is a tunable knob
— OS can trade off between fairness and throughput

* Enforcing thread weights
— OS assighs weights to threads

— TCM enforces thread weights within each cluster

SAFARI

29



Conclusion

* No previous memory scheduling algorithm provides
both high system throughput and fairness

— Problem: They use a single policy for all threads

* TCM groups threads into two clusters
1. Prioritize non-intensive cluster = throughput
2. Shuffle priorities in intensive cluster = fairness
3. Shuffling should favor nice threads =» fairness

e TCM provides the best system throughput and fairness

SAFARI 30



TCM Pros and Cons

Upsides:
o Provides both high fairness and high performance

Downsides:
o Scalability to large buffer sizes?
o Effectiveness in a heterogeneous system?

31



Staged Memory Scheduling

Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian, Gabriel Loh, and Onur Mutlu,

"Staged Memory Scheduling: Achieving High Performance
and Scalability in Heterogeneous Systems”
39th International Symposium on Computer Architecture (ISCA),
Portland, OR, June 2012.

SMS ISCA 2012 Talk




SMS: Executive Summary

Observation: Heterogeneous CPU-GPU systems require
memory schedulers with large request buffers

Problem: Existing monolithic application-aware memory
scheduler designs are hard to scale to large request buffer sizes

Solution: Staged Memory Scheduling (SMS)

decomposes the memory controller into three simple stages:
1) Batch formation: maintains row buffer locality

2) Batch scheduler: reduces interference between applications
3) DRAM command scheduler: issues requests to DRAM

Compared to state-of-the-art memory schedulers:
a SMS is significantly simpler and more scalable
o SMS provides higher performance and fairness

33



SMS: Staged Memory Scheduling

Core 1 Core 2 Core 3 Core 4 GPU

4

Scheduler

34



SMS: Staged Memory Scheduling
Corel Core2  Core3 Core4  GPU

4 4 § 5 §
Stage 1
Batch /) (= [ ]
Formation - - -

35



Putting Everything Together

Stage 1:
Batch
Formation

Corel Core2 Core3 4 GPU
o e

Command
Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

RR

36



Complexity

Compared to a row hit first scheduler, SMS consumes*

a

Q

66% less area
46% less static power

Reduction comes from:

a

a

Monolithic scheduler - stages of simpler schedulers

Each stage has a simpler scheduler (considers fewer
properties at a time to make the scheduling decision)

Each stage has simpler buffers (FIFO instead of out-of-order)

Each stage has a portion of the total buffer size (buffering is
distributed across stages)

* Based on a Verilog model using 180nm library 37



Performance at Ditterent GPU Weights

GPUweight

v 1 |
% 0.8 - Best Previous
= Scheduler
“f__, 0.6
s 0.4
J
5 0.2 v T |
73 ATLAS TCM FR-FCFS
m> O [ T TTTTT] [ T TTTTT [ T TTTTI
0.001 0.1 10 1000
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Performance at Ditterent GPU Weights

1

0.8 - Best Previous
Scheduler

- SMS

0.6
0.4
0.2

O T T TTTTT] T T TTTTT] T T TTTT
0.001 0.1 10 1000
GPUweight

= At every GPU weight, SMS outperforms the best previous
scheduling algorithm for that weight

System Performance
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Stronger Memory Service Guarantees

Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen, and Onur Mutlu,
"MISE: Providing Performance Predictability and Improving Fairness in Shared Main Memory Systems"
Proceedings of the 19th International Symposium on High-Performance Computer Architecture (HPCA),
Shenzhen, China, February 2013. Slides (pptx)




Strong Memory Service Guarantees

Goal: Satisfy performance bounds/requirements in the
presence of shared main memory, prefetchers,
heterogeneous agents, and hybrid memory

Approach:

o Develop techniques/models to accurately estimate the
performance of an application/agent in the presence of
resource sharing

o Develop mechanisms (hardware and software) to enable the
resource partitioning/prioritization needed to achieve the

required performance levels for all applications
o All the while providing high system performance

41



MISE:
Providing Performance Predictability
in Shared Main Memory Systems

Lavanya Subramanian, Vivek Seshadri,
Yoongu Kim, Ben Jaiyen, Onur Mutlu

SAFARI Carnegie Mellon




Unpredictable Application Slowdowns

6 6

Slowdown
w AN Ul
Slowdown

—t
|

AN
|

N

N
|

—
|

n

mcf (core 1)

o
|

eslie3d (core Q

An application’s performance depends on
which application it is running with
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Need for Predictable Performance

Our Goal: Predictable performance
in the presence of memory interference

SAFARI
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Outline

1. Estimate Slowdown
o Key Observations

4
d

d

2. Control Slowdown

d

d

SAFARI
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Slowdown: Definition

Performance Alone

Slowdown =
Performance shared

SAFARI
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Key Observation 1

For a memory bound application,
Performance « Memory request service rate

§ O; ==omnetpp ~ q
© O Harder
g 0.8 : "
[ P
L & .“. 2
SlOWdO\& = > ore i7, 4 cores
o) idth: 8.5 GB/s
Q05
© 0.4 ~
£ . Easy
s 0.
2 0.3 04 05 06 07 08 0.9 1

Normalized Request Service Rate
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Key Observation 2

Request Service Rate ,... (RSR,..) Of an application can be
estimated by giving the application highest priority in
accessing memory

Highest priority - Little interference
(almost as if the application were run alone)

SAFARI 48



Key Observation 2

1. Run alone
Request Buffer State

Main
Memory

Time( units

Service order

2. Run with another application.

Request Buffer State

Main
Memory

T|me unlts

| SerV|ce order

Main
Memory

3. Run with another application: hlghESt priority

Request Buffer State

SAFARI
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Memory

T|me units

1 Service order

Main
Memory

) ‘ .

Main
Memory
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Memory Interference-induced Slowdown Estimation
(MISE) model for memory bound applications

Request Service Rate alone (RSR Alone)

Slowdown = :
Request Service Rate shared (RSR shared)

SAFARI 50



Key Observation 3

= Memory-bound application
- Compute Phase

Memory Phase

-]
interference fime
iy L
interference

—>time

Memory phase slowdown dominates overall slowdown

SAFARI o1



Key Observation 3

Memory Interference-induced Slowdown Estimation
(MISE) model for non-memory bound applications

RS RAlone
RS RShared

Slowdown = (1-a) +

SAFARI 52



Measuring RSR¢, ., and &

Request Service Rate ¢ ...q (RSRehared)
a Per-core counter to track number of requests serviced

o At the end of each interval, measure

Number of Requests Serviced

RS RShared =
Interval Length

Memory Phase Fraction (&)
a Count number of stall cycles at the core
o Compute fraction of cycles stalled for memory

SAFARI
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Estimating Request Service Rate ;. (RSR,;...)

Divide each interval into shorter epochs

At the beginning of each epoch

a mgwec;ypmtail:gemnﬁnﬁvepiﬁgﬁg I2'|:1)eplication as the
How: Periodically give each application
At e et priesertdl fiar sreteBrlieRyom essiestsy

Number of Requests During High Priority Epochs
Number of Cycles Application Given High Priority

RSRAlone =

SAFARI >4



Inaccuracy in Estimating RSR

lone

Reqlifen@n application hashighestsariegityser I High Priority

Bl exierlq@ces lsome idtefference ! .
ain Main
Memory Memory
Request Buffer Time units Service order
State Mai 3 2 1 Mai
ain ain
| |,
Request Buffer Timg units  Service order
State

3 2 1 _
I | o
Memory
Time( units  Service order
3 2 1 _
| o
Memory
<>

Interference Cycles

B | o
Memory
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Accounting for Interference in RSR,, . Estimation

lone

Solution: Determine and remove interference cycles from
RSR,,, Calculation

Number of Requests During High Priority Epochs
Number of Cycles Application Given High Priority<Interference Cycles>

RSRAlone =

A cycle is an interference cycle if

o a request from the highest priority application is
waiting in the request buffer and

o another application’s request was issued previously

SAFARI 56



Outline

1. Estimate Slowdown

a Key Observations
a Implementation
o MISE Model: Putting it All Together

o Evaluating the Model

2. Control Slowdown

a Providing Soft Slowdown Guarantees
a Minimizing Maximum Slowdown

SAFARI
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MISE Model: Putting it All Together

Interval Interval

A A

( Y AN
—)tlme

) | E

= Measure RSR¢,...qy @ | = Measure RSRgy 404 &
= Estimate RSRy e = Estimate RSR e

\ 4 4
Estimate Estimate

slowdown slowdown
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Previous Work on Slowdown Estimation

Previous work on slowdown estimation

2 STFM (Stall Time Fair Memory) Scheduling [Mutlu+, MICRO 07}
o FST (Fairness via Source Throttling) [Ebrahimi+, ASPLOS ‘10]

o Per-thread Cycle Accounting [Du Bois+, HIPEAC ‘13]

Basic Idea:
@l Time S e
Slowdown %ﬁ
d 1IMC Share
d\ Easy

Count number of cycles application receives interference

SAFARI 59



Two Major Advantages of

= Advantage 1:

E Over STFM

o STFM estimates alone performance while an
application is receiving interference - Hard

o MISE estimates alone performance while giving an
application the highest priority > Easier

= Advantage 2:

o STFM does not take into account compute phase for

non-memory-bound applications

a MISE accounts for compute phase = Better accuracy

SAFARI
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Methodology

Configuration of our simulated system
o 4 cores

o 1 channel, 8 banks/channel
o DDR3 1066 DRAM

o 512 KB private cache/core

Workloads
o SPEC CPU2006

0 300 multi programmed workloads

SAFARI
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Quantitative Comparison

SPEC CPU 2006 application

leslie3d
4
3.5 -
c
E 3T o a "\/\/
2.5 —Actual
/4
E, 2 AV-Y,
(7))
1.5
1 | | | | |
0 20 40 60 80 100

Million Cycles
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Comparison to STFM

[ )
Average error of MISE: 8.2%
\____Average error of STEM: 29.4%
- (across 300 workloads) A
- /

SAFARI
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Providing “Soft” Slowdown Guarantees

= Goal

1. Ensure QoS-critical applications meet a prescribed
slowdown bound

2. Maximize system performance for other applications

= Basic Idea

o Allocate just enough bandwidth to QoS-critical
application

a Assign remaining bandwidth to other applications

SAFARI
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MISE-QoS: Mechanism to Provide Soft QoS

= Assign an initial bandwidth allocation to QoS-critical application

= Estimate slowdown of QoS-critical application using the MISE
model

= After every N intervals
a If slowdown > bound B +/- €, increase bandwidth allocation
o If slowdown < bound B +/- €, decrease bandwidth allocatior
= When slowdown bound not met for N intervals
a Notify the OS so it can migrate/de-schedule jobs

SAFARI 65



Methodology

Each application (25 applications in total) considered the
QoS-critical application

Run with 12 sets of co-runners of different memory
intensities

Total of 300 multiprogrammed workloads
Each workload run with 10 slowdown bound values

Baseline memory scheduling mechanism

a Always prioritize QoS-critical application
[Iyer+, SIGMETRICS 2007]

a Other applications’ requests scheduled in FRFCFS order
[Zuravleff +, US Patent 1997, Rixner+, ISCA 2000]

SAFARI 66



A Look at One Workload

>R RNAT 1% 33
;7 ONE )

own Boun

/

MISE is effective in
1. meeting the slowdown bound for the QoS-

critical application
2. improving performance of non-QoS-critical

applications
(eslie3d hmmer Ibm omne’rpp>
QoS-critical non-QoS-critical

SAFARI
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Ettectiveness of MISE 1n Enforcing QoS

Across 3000 data points

Predicted Predicted
Not Met

b < 78.8% O 2.1% O

QﬁsotBa‘:t‘d 2.2% C 16.9% O

MISE-QoS correctly predicts whether or not the bound
Is met for 95.7% of workloads
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Pertormance of Non-QoS-Critical Applications

1.4
212
S
v 1 N
g- ® AlwaysPrioritize
»n 0.8 ® MISE-Q0S-10/1
= 0.6 = MISE-Q0S-10/3
g 04 = MISE-Q0S-10/5
= ' = MISE-Qo0S-10/7
T 0.2 " MISE-QoS-10/9
0

When slowdown bound is 10/3
MISE-QoS improves system performance by 10%
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Other Results in the Paper

Sensitivity to model parameters
o Robust across different values of model parameters

Comparison of STFM and MISE models in enforcing soft
slowdown guarantees

o MISE significantly more effective in enforcing guarantees

Minimizing maximum slowdown
o MISE improves fairness across several system configurations

SAFARI 70



Summary

= Uncontrolled memory interference slows down
applications unpredictably

= Goal: Estimate and control slowdowns

= Key contribution
o MISE: An accurate slowdown estimation model
o Average error of MISE: 8.2%

= Key Idea

o Request Service Rate is a proxy for performance

o Request Service Rate . estimated by giving an application highest
priority in accessing memory

= Leverage slowdown estimates to control slowdowns

o Providing soft slowdown guarantees
a Minimizing maximum slowdown

SAFARI 7



MISE:
Providing Performance Predictability
in Shared Main Memory Systems

Lavanya Subramanian, Vivek Seshadri,
Yoongu Kim, Ben Jaiyen, Onur Mutlu

SAFARI Carnegie Mellon




Memory Scheduling
tfor Parallel Applications

Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin,
Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Parallel Application Memory Scheduling”
Proceedings of the 44th International Symposium on Microarchitecture (MICRO),
Porto Alegre, Brazil, December 2011. Slides (pptx)




Handling Interference in Parallel Applications

Threads in a multithreaded application are inter-dependent

Some threads can be on the critical path of execution due
to synchronization; some threads are not

How do we schedule requests of inter-dependent threads to
maximize multithreaded application performance?

Idea: Estimate limiter threads likely to be on the critical path and
prioritize their requests; shuffle priorities of non-limiter threads
to reduce memory interference among them [Ebrahimi+, MICRO'11]

Hardware/software cooperative limiter thread estimation:

Thread executing the most contended critical section
Thread that is falling behind the most in a parallel for loop

SAFARI PAMS Micro 2011 Talk 74




Aside:
Selt-Optimizing Memory Controllers

Engin Ipek, Onur Mutlu, José F. Martinez, and Rich Caruana,
"Self Optimizing Memory Controllers: A Reinforcement Learning Approach"”

Proceedings of the 35th International Symposium on Computer Architecture (ISCA),
pages 39-50, Beijing, China, June 2008. Slides (pptx)




Why are DRAM Controllers Ditficult to Design?

Need to obey DRAM timing constraints for correctness
o There are many (50+) timing constraints in DRAM

o tWTR: Minimum number of cycles to wait before issuing a
read command after a write command is issued

o tRC: Minimum number of cycles between the issuing of two
consecutive activate commands to the same bank

a ...

Need to keep track of many resources to prevent conflicts
o Channels, banks, ranks, data bus, address bus, row buffers

Need to handle DRAM refresh
Need to optimize for performance (in the presence of constraints)

o Reordering is not simple
o Predicting the future?
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Many DRAM Timing Constraints

Latency | Symbol | DRAM cyeles H Latency | Symbol | DRAM cycles |

Precharge ‘RP 11 Activate to read/write ‘RCD 11

Read column address strobe CL 11 Write column address strobe CWL 8
Additive AL 0 Activate to activate ‘RC 39

Activate to precharge ‘RAS 28 Read to precharge ‘RTP 6

Burst length ‘BL 4 Column address strobe to column address strobe | ‘CC D 4
Activate to activate (different bank) | *RRD 6 Four activate windows ‘FAW 24
Write to read ‘WTR 6 Write recovery ‘WR 12

Table 4. DDR3 1600 DRAM timing specifications

= From Lee et al., “DRAM-Aware Last-Level Cache Writeback: Reducing
Write-Caused Interference in Memory Systems,” HPS Technical Report,

April 2010.
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More on DRAM Operation and Constraints

= Kim et al., “A Case for Exploiting Subarray-Level Parallelism
(SALP) in DRAM,” ISCA 2012.

= Lee et al., "Tiered-Latency DRAM: A Low Latency and Low
Cost DRAM Architecture,” HPCA 2013.

Q .| Q
® & & Gi N Table 2. Timing Constraints (DDR3-1066) [43]
< &« Q < <
N tRC | Phase Commands Name Value
——tRAS——— | < tRP—| ACT o READ
; time -
Subarray —{ 1. Activation Pre 1. Activation — 1 ACT — WRITE  CRCD 15ns
| |
Peripheral & | €ERCD™ S5 | ¢tRCD> N time ACT — PRE tRAS  37.5ns
I/O-Circuitry - - READ — data tCL 15ns
«—tCL— | <tCL—> ! time 2  WRITE — data tCWL 11.25ns
Bus data >
' ! : data burst tBL 7.5ns
_ 'CBL tBL| 3 PRE— ACT tRP  1I5ns
<—first access latency—> | i TRC
second access latency | 1&3 ACT — ACT (tRAS+LRP) 52.5ns

Figure 5. Three Phases of DRAM Access
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Selt-Optimizing DRAM Controllers

Problem: DRAM controllers difficult to design - It is difficult for
human designers to design a policy that can adapt itself very well
to different workloads and different system conditions

Idea: Design a memory controller that adapts its scheduling
policy decisions to workload behavior and system conditions
using machine learning.

Observation: Reinforcement learning maps nicely to memory
control.

Design: Memory controller is a reinforcement learning agent that
dynamically and continuously learns and employs the best
scheduling policy.
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Selt-Optimizing DRAM Controllers

’ I ENVIRONMENT

Action a(t+1) Agent

’ I SYSTEM

<— Data Bus Utilization (t)
<— State Attributes (t)

— Scheduled Command (t+1) 1 Scheduler

Figure 2: (a) Intelligent agent based on reinforcement learning
principles; (b) DRAM scheduler as an RL-agent



Selt-Optimizing DRAM Controllers

= Engin Ipek, Onur Mutlu, José F. Martinez, and Rich Caruana,
"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach”
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.
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Figure 4: High-level overview of an RL-based scheduler.



Performance Results

BORON BOOON
COO0COO0OCO00O

Speedup over FR-FCFS
COORREEEENN

ART CG EQUAKE FFT MG OCEAN RADIX  SCALPARC SWIM  G-MEAN
B In-Order W FR-FCFS MWRL M Optimistic

Figure 7: Performance comparison of in-order, FR-FCFS, RL-based, and optimistic memory controllers

Speedup over
1-Channel FR-FCFS

ART CG EQUAKE FFT MG OCEAN RADIX SCALPARC SWIM G-MEAN

M FR-FCFS-1Channel = RL-1Channel M FR-FCFS-2 Channels M RL-2 Channels

Figure 15: Performance comparison of FR-FCFS and RL-based memory controllers on systems with 6.4GB/s and 12.8GB/s peak
DRAM bandwidth
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QoS-Aware Memory Systems:
The Dumb Resources Approach




Designing QoS-Aware Memory Systems: Approaches

= Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism

0 QoS—aware memaory controllers [Mutlu+ MICRO'07] [Moscibroda+, Usenix Security’07]
[Mutlu+ ISCA'08, Top Picks'09] [Kim+ HPCA'10] [Kim+ MICRO'10, Top Picks'11] [Ebrahimi+ ISCA'11,
MICRO'11] [Ausavarungnirun+, ISCA’12] [Subramanian+, HPCA'13]

o QoS-aware interconnects [Das+ MICRO'09, ISCA'10, Top Picks ‘11] [Grot+ MICRO'09,
ISCA'11, Top Picks '12]

o QoS-aware caches

= Dumb resources: Keep each resource free-for-all, but reduce/
control interference by injection control or data mapping

Source throttling to control access to memory system JEbrahimi+ ASPLOS'10,

o QoS-aware data mapping to memory controllers [Muralidhara+ MICRO'11]
o QoS-aware thread scheduling to cores [pas+ HPCA'13]

a
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Fairness via Source Throttling

Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Fairness via Source Throttling: A Configurable and High-Performance

Fairness Substrate for Multi-Core Memory Systems"
15th Intl. Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS),

pages 335-346, Pittsburgh, PA, March 2010. Slides (pdf)

FST ASPLOS 2010 Talk




Many Shared Resources

Shared Memory
Resources

.. Chip Boundary
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The Problem with “Smart Resources’

Independent interference control mechanisms in
caches, interconnect, and memory can contradict
each other

Explicitly coordinating mechanisms for different
resources requires complex implementation

How do we enable fair sharing of the entire
memory system by controlling interference in a
coordinated manner?

SAFARI
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An Alternative Approach: Source Throttling

Manage inter-thread interference at the cores, not at the
shared resources

Dynamically estimate unfairness in the memory system
Feed back this information into a controller

Throttle cores’ memory access rates accordingly

o Whom to throttle and by how much depends on performance
target (throughput, fairness, per-thread QoS, etc)

o E.g., if unfairness > system-software-specified target then
throttle down core causing unfairness &
throttle up core that was unfairly treated

Ebrahimi et al., “Fairness via Source Throttling,” ASPLOS'10, TOCS'12.
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Fairness via Source Throttling (FST) [aspros10]

‘ Interval 1’ Interval 2 ‘ Interval 3

Time
>
Slowdown
Estimation
L I
_ Unfairness Estimate
. App-interfering Request Throttling
Evaluation >
1- Estimating system unfairness if (Unfairness Estimate >Target)
2- Find app. with the highest {
slowdown (App-slowest) 1-Throttle down App-interfering
3- Find app. causing most (limit injection rate and parallelism)
interference for App-slowest 2-Throttle up App-slowest
(App-interfering) >




System Software Support

Different fairness objectives can be configured by
system software

o Keep maximum slowdown in check
Estimated Max Slowdown < Target Max Slowdown

o Keep slowdown of particular applications in check to achieve a
particular performance target

Estimated Slowdown(i) < Target Slowdown(i)

Support for thread priorities

o Weighted Slowdown(i) =
Estimated Slowdown(i) x Weight(i)

SAFARI 0



Source Throttling Results: Takeaways

Source throttling alone provides better performance than a
combination of “smart” memory scheduling and fair caching

o Decisions made at the memory scheduler and the cache
sometimes contradict each other

Neither source throttling alone nor “smart resources” alone
provides the best performance

Combined approaches are even more powerful
o Source throttling and resource-based interference control

SAFARI I



Designing QoS-Aware Memory Systems: Approaches

= Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism

0 QoS—aware memaory controllers [Mutlu+ MICRO'07] [Moscibroda+, Usenix Security’07]
[Mutlu+ ISCA'08, Top Picks'09] [Kim+ HPCA'10] [Kim+ MICRO'10, Top Picks'11] [Ebrahimi+ ISCA'11,
MICRO'11] [Ausavarungnirun+, ISCA’12] [Subramanian+, HPCA'13]

o QoS-aware interconnects [Das+ MICRO'09, ISCA'10, Top Picks ‘11] [Grot+ MICRO'09,
ISCA'11, Top Picks '12]

o QoS-aware caches

= Dumb resources: Keep each resource free-for-all, but reduce/
control interference by injection control or data mapping

o Source throttling to control access to memory system [Ebrahimi+ ASPLOS'10,
ISCA'11, TOCS'12] [Ebrahimi+ MICRO'09] [Nychis+ HotNets'10] [Nychis+ SIGCOMM12]

o | QoS-aware data mapping to memory controllersjiMuralidnara+ MICRO'11]

o QoS-aware thread scheduling to cores [pas+ HPCA'13]
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Memory Channel Partitioning

Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut Kandemir, and Thomas Moscibroda,
"Reducing Memory Interference in Multicore Systems via
Application-Aware Memory Channel Partitioning”
44th International Symposium on Microarchitecture (MICRO),

Porto Alegre, Brazil, December 2011. Slides (pptx)

MCP Micro 2011 Talk




Another Way to Reduce Memory Interference
= Memory Channel Partitioning

o Idea: System software maps badly-interfering applications’ pages
to different channels [Muralidhara+, MICRO11]

Time Units Time Units

Channel 0 Channel 0
5 4|3 2 1

514321
u APD A Emmm Banki

Bank 0 B BankO
App B BEEm Bankl App B Bank 1
Channel 1 Channel 1
Conventional Page Mapping Channel Partitioning

= Separate data of low/high intensity and low/high row-locality applications

= Especially effective in reducing interference of threads with “*medium” and
“heavy” memory intensity

o 11% higher performance over existing systems (200 workloads)

Core 0

App A

Bank 1
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Memory Channel Partitioning (MCP) Mechanism

/ Hardware
1. Profile applications

2. Classify applications into groups

3. Partition channels between application groups
4. Assign a preferred channel to each application
5. Allocate application pages to preferred channel

N

System
Software
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2. Classity Applications

Low igh
High Intensity
Test RBH

High Intensity High Intensity

Low Row-Buffer High Row-Buffer
Locality Locality




Summary: Memory QoS

= Technology, application, architecture trends dictate
new needs from memory system

= A fresh look at (re-designing) the memory hierarchy
o Scalability;: DRAM-System Codesign and New Technologies

o | QoS: Reducing and controlling main memory interference:
QoS-aware memory system design

o Efficiency: Customizability, minimal waste, new technologies

= QoS-unaware memory: uncontrollable and unpredictable

= Providing QoS awareness improves performance,
predictability, fairness, and utilization of the memory system

SAFARI 7



Summary: Memory QoS Approaches and Techniques

Approaches: Smart vs. dumb resources

o Smart resources: QoS-aware memory scheduling

o Dumb resources: Source throttling; channel partitioning
o Both approaches are effective in reducing interference
o No single best approach for all workloads

Techniques: Request/thread scheduling, source throttling,
memory partitioning

o All approaches are effective in reducing interference

o Can be applied at different levels: hardware vs. software

o No single best technique for all workloads

Combined approaches and techniques are the most powerful
o Integrated Memory Channel Partitioning and Scheduling [MICRO'11]
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Cache Potpourri: Managing Waste

Onur Mutlu
onur@cmu.edu
July 9, 2013
INRIA

Carnegie Mellon
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More Efficient Cache Utilization

Compressing redundant data

Reducing pollution and thrashing
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Base-Delta-Immediate
Cache Compression

Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Philip B. Gibbons, Michael
A. Kozuch, and Todd C. Mowry,
"Base-Delta-Immediate Compression: Practical Data Compression
for On-Chip Caches”

Proceedings of the
21st ACM International Conference on Parallel Architectures and Compilation
Technigues (PACT), Minneapolis, MN, September 2012. Slides (pptx)
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Executive Summary
* Off-chip memory latency is high

— Large caches can help, but at significant cost

 Compressing data in cache enables larger cache at low
cost

* Problem: Decompression is on the execution critical path

* Goal: Design a new compression scheme that has
1. low decompression latency, 2. low cost, 3. high compression ratio

* Observation: Many cache lines have low dynamic range
data

* Key Idea: Encode cachelines as a base + multiple differences

e Solution: Base-Delta-Immediate compression with low
decompression latency and high compression ratio

— Outperforms three state-of-the-art compression mechanisms
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Motivation for Cache Compression
Significant redundancy in data:

0x00000000 | 0x0000000B | 0x00000003 | 000000004 | ..

How can we exploit this redundancy?
— Cache compression helps

— Provides effect of a larger cache without
making it physically larger
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Background on Cache Compression

W
Cache

Uncompressed  Presston Compressed

* Key requirements:
— Fast (low decompression latency)
— Simple (avoid complex hardware changes)
— Effective (good compression ratio)
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Shortcomings of Prior Work

Compression Decompression | Complexity | Compression
Mechanisms Latency Ratio
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Shortcomings of Prior Work

Compression Decompression | Complexity | Compression
Mechanisms Latency Ratio
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Shortcomings of Prior Work

Compression Decompression | Complexity | Compression
Mechanisms Latency Ratio

m——
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Shortcomings of Prior Work

Compression Decompression | Complexity | Compression
Mechanisms Latency Ratio

x
x x v
x x /v v
v v v

108



Outline

* Key Idea & Our Mechanism
* Evaluation

 Conclusion
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Key Data Patterns in Real Applications

Zero Values: initialization, sparse matrices, NULL pointers

0x00000000 | 0x00000000 | 0x00000000 | 000000000 | ...

Repeated Values: common initial values, adjacent pixels

0XO0000OFF | 0x000000FE | 0x000000FF | 0x000000FF | ..

Narrow Values: small values stored in a big data type

0x00000000 | 0x0000000B | 000000003 | 0x00000004 | ..

Other Patterns: pointers to the same memory region

0xC04039€0 | 0xC04039€8 | 0xC04039D0 | 0xC04039D8| ..

110



How Common Are These Patterns?

SPEC2006, databases, web workloads, 2MB L2 cache

“Other Patterns” include Narrow Values

= 100%
s W Zero
O 80%
© ¥ Repeated Values
g 60% — —
o Other Patterns
O 40%
Q
S 20% -
8 o)
0% ||_|-_|_.| |I_V_-||
Y N N X D N = ¥ X O “ Y4 4= J)]
EEEC oS 2Eoeqgs8eESgessEZE @
< w2882 8E838 £ 33z O
> " E o= Loy ¥ < .cggq% <
= S SO
43% of the cache lines belong to key patterns 111



Key Data Patterns in Real Applications

Low Dynamic Range:

Differences between values are significantly
smaller than the values themselves
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Key Idea: Base+Delta (B+A) Encoding

< 4 bytes J

32-byte Uncompressed Cache Line

12-byte

Compressed Cache Line

I\
VI

v' Fast Decompression: v’ Simple Hardware:

vector addition arithmetic and comparison

v’ Effective: good compression ratio
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Can We Do Better?

* Uncompressible cache line (with a single base):

0x00000000 | 0x09A40178 | 000000008 | Ox09A4A838 | ..

* Key idea:
Use more bases, e.g., two instead of one
* Pro:
— More cache lines can be compressed
* Cons:

— Unclear how to find these bases efficiently
— Higher overhead (due to additional bases)
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B+A with Multiple Arbitrary Bases

2.2

w1l m2 W3 ®m4 =8 10 16

N

=
00

Compression Ratio
= =
I o))

=
N

1 —

GeoMean

v’ 2 bases — the best option based on evaluations
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How to Find Two Bases Efficiently?

1. First base - first element in the cache line

v’ Base+Delta part

2. Second base - implicit base of 0

v Immediate part

Advantages over 2 arbitrary bases:
— Better compression ratio
— Simpler compression logic

Base-Delta-Immediate (BAl) Compression
116



B+A (with two arbitrary bases) vs. BAI

M B+A (2 bases)

B BAI
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Average compression ratio is close, but BAl is simpler
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BAlI Implementation

* Decompressor Design
— Low latency

* Compressor Design

— Low cost and complexity

 BAI Cache Organization

— Modest complexity



BAlI Decompressor Design

Compressed Cache Line

B o lafafa

Bo| Bg| Bo| By
0 0 0 0 Vector addition
0 1 2 3

Uncompressed Cache Line
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BAlI Compressor Design

32-byte Uncompressed Cache Line

8-byte B, || 8-byte B, || 8-byte B, || 4-byte B, || 4-byte B, || 2-byte B, Zero Rep.
1-byte A || 2-byte A || 4-byte A || 1-byte A || 2-byte A || 1-byte A U Values
CU CU CU CU CU CU CU

0/‘
(

\.

CFlag &

CCL CCL

CFlag &

CCL

Compression Flag "~
& Compressed 1

Cache

R

CFlag &

CFlag &
CCL

Compression Selection Logic (based on compr. size)

CFlag &
CCL

ine . .
.---Compressed Cache Line

CFlag &
CCL

CFlag &/ CFlag &

CCL
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BAlI Compression Unit: 8-byte B, 1-byte A

32-byte Uncompressed Cache Line
< 8 bytes 5|

Within 1-byte Within 1-byte Within 1-byte Within 1-byte
range’? range’? range’? range’?

Yes No
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BAI Cache Organlzatlon

Tag,

Way, Way, Way, Way,

BAIl: 4-way cache with 8-byte segmented data

8 bytes
Tag Storage:
Set,

Set

Set; Tag,

Way, Way, Way, Way,
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Qualitative Comparison with Prior Work

e Zero-based designs
— ZCA [Dusser+, ICS’09]: zero-content augmented cache
— ZVC [Islam+, PACT'09]: zero-value cancelling
— Limited applicability (only zero values)

* FVC [vang+ MicrO’00]: frequent value compression
— High decompression latency and complexity

* Pattern-based compression designs

— FPC [Alameldeen+, ISCA’04]: frequent pattern compression
e High decompression latency (5 cycles) and complexity

— C-pack [Chen+, T-VLSI Systems’10]: practical implementation of
FPC-like algorithm

* High decompression latency (8 cycles)
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Outline

e Evaluation

 Conclusion
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Methodology

 Simulator

— Xx86 event-driven simulator based on Simics [Magnusson
+, Computer’02]

e Workloads

— SPEC2006 benchmarks, TPC, Apache web server

— 1 -4 core simulations for 1 billion representative
Instructions

* System Parameters
— L1/L2/L3 cache latencies from CACTI [Thoziyoor+, ISCA’08]

— 4GHz, x86 in-order core, 512kB - 16MB L2, simple
memory model (300-cycle latency for row-misses)



BAIl vs. Prior Work

SPEC2006, databases, web workloads, 2MB L2

Compression Ratio
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BAIl achieves the highest compression ratio
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Single-Core: IPC and MPKI

M Baseline (no compr.)
B BAI

M Baseline (no compr.)
B BAI

1.5

1 _ 1C9/.

LU /70

1.4

Normalized IPC

Normalized MPKI

L2 cache size L2 cache size

BAIl achieves the performance of a 2X-size cache
Performance improves due to the decrease in MPKI
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Multi-Core Workloads

* Application classification based on

Compressibility: effective cache size increase
(Low Compr. (LC) < 1.40, High Compr. (HC) >= 1.40)

Sensitivity: performance gain with more cache
(Low Sens. (LS) < 1.10, High Sens. (HS) >=1.10; 512kB -> 2MB)

* Three classes of applications:
— LCLS, HCLS, HCHS, no LCHS applications

* For 2-core - random mixes of each possible class pairs
(20 each, 120 total workloads)



Multi-Core: Weighted Speedup

1.20

Normalized Weighted Speedup

L1ZCA OFVC BFPC

1.05 -
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0.95

Low Sensitivity
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Other Results in Paper

IPC comparison against upper bounds
— BAIl almost achieves performance of the 2X-size cache

Sensitivity study of having more than 2X tags
— Up to 1.98 average compression ratio

Effect on bandwidth consumption
— 2.31X decrease on average

Detailed quantitative comparison with prior work

Cost analysis of the proposed changes
— 2.3% L2 cache area increase



Conclusion

A new Base-Delta-Immediate compression mechanism

Key insight: many cache lines can be efficiently
represented using base + delta encoding

Key properties:
— Low latency decompression

— Simple hardware implementation
— High compression ratio with high coverage

Improves cache hit ratio and performance of both single-
core and multi-core workloads

— Outperforms state-of-the-art cache compression techniques:
FVC and FPC
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The Evicted-Address Filter

Vivek Seshadri, Onur Mutlu, Michael A. Kozuch, and Todd C. Mowry,
"The Evicted-Address Filter: A Unified Mechanism to Address Both
Cache Pollution and Thrashing"

Proceedings of the
21st ACM International Conference on Parallel Architectures and Compilation
Technigues (PACT), Minneapolis, MN, September 2012. Slides (pptx)
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Executive Summary

Two problems degrade cache performance

— Pollution and thrashing

— Prior works don’t address both problems concurrently
Goal: A mechanism to address both problems

EAF-Cache

— Keep track of recently evicted block addresses in EAF
— Insert low reuse with low priority to mitigate pollution
— Clear EAF periodically to mitigate thrashing

— Low complexity implementation using Bloom filter

EAF-Cache outperforms five prior approaches that
address pollution or thrashing .



Cache Utilization is Important

I(_arge Iatency)/

Core Core
Last-Level

Cache

(‘r)rn

Core Core

N

Increasing contention

Effective cache utilization is important
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Reuse Behavior of Cache Blocks

Different blocks have different reuse behavior

Access Sequence:
BECBEE ERMENERNE EEE

I High-reuse block I Low-reuse block

135



Cache Pollution

Problem: Low-reuse blocks evict high-reuse blocks

Cache

LRU Policy IIIIIIIE EEE

MRU

Prior work: Predict reuse behavior of missed blocks.
Insert low-reuse blocks at LRU position.

EEGEEECE
MRU LRU
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Cache Thrashing

Problem: High-reuse blocks evict each other

Cache

wroy [DEGEEEEENEEE

Cache

Prior work: Insert at MRU position with a very low
probability (Bimodal insertion policy)

A fraction of
working set n
MRU LRU

stays in cache
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Shortcomings of Prior Works

Prior works do not address both pollution and
thrashing concurrently

Prior Work on Cache Pollution

No control on the number of blocks inserted with high
priority into the cache

Prior Work on Cache Thrashing

No mechanism to distinguish high-reuse blocks
from low-reuse blocks

Our goal: Design a mechanism to address both
pollution and thrashing concurrently

B8




Outline

* Background and Motivation

e Evicted-Address Filter
— Reuse Prediction
— Thrash Resistance

* Final Design
* Advantages and Disadvantages

 Evaluation

 Conclusion
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Reuse Prediction

High reuse
% Missed- bIockI <

Low reuse

Keep track of the reuse behavior of every cache
block in the system

Impractical
1. High storage overhead
2. Look-up latency
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Prior Work on Reuse Prediction

Use program counter or memory region
information.

2. Learn group
behavior

PC1 PC2 PC1 PC2 PC 1 H
48 4 <2 -

1. Same group 4 same reuse behavior
2. No control over number of high-reuse blocks

1. Group Blocks 3. Predict reuse
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Our Approach: Per-block Prediction

Use recency of eviction to predict reuse

\ . >Time
v \ Accessed soon
Time of eviction after eviction  Accessed long time
T | after eviction
I
\ >Time
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Evicted-Address Filter (EAF)

Evicted-block address EAF
\ (Addresses of recently evicted blocks)
Cache
MRU LRU
l< Y nEar?  —° >l
High Reuse T Low Reuse

]
% Missed-block address
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Naive Implementation: Full Address Tags

Recently
EAF evicted address

Need not be
100% accurate

1. Large storage overhead
2. Associative lookups — High energy
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Low-Cost Implementation: Bloom Filter

EAF

Need not be
100% accurate

Implement EAF using a Bloom Filter
Low storage overhead + energy

N
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Bloom Filter

Compact representatlon of a set
May remove

1. Bit vector % Fallﬁﬁl'?l%g'gﬁdresses
2. Set of hash fundtions l

H1 H2

nﬂnﬂnnnnénnnngnﬁ

H1 H2

Inserted Elements: @ @
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EAF using a Bloom Filter
EAF ® Clear

when full
Insert Bloom Filter _

: motve X
FIFO4ddress
address hen Tl

Evicted-block

Test
Missed-block address

@R ve X
If pfesent

Bloom-filter EAF: 4x reduction in storage overhead,
1.47% compared to cache size .




Outline

* Background and Motivation

e Evicted-Address Filter
— Reuse Prediction
— Thrash Resistance

* Final Design
* Advantages and Disadvantages

 Evaluation

 Conclusion
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Large Working Set: 2 Cases

@ Cache < Working set < Cache + EAF

__
OCODCEGE ECER

@ Cache + EAF < Working Set

B
BREEERDN RODCEGEE EEB |




Large Working Set: Case 1

Cache < Working set < Cache + EAF

Cache

clBlAlLIKD I H IIII!
sequence: BEREEGERNORNNEEEE

EAF Naive: % & % % X %X X X X X X X X X X X

150



Large Working Set: Case 1

Cache < Working set < Cache + EAF

Cache | I
EEEDBDOE EEEDEEEE- v cnow:

~____—Not presentin the EAF
sequence: BEEEEREENNGNRERE

EAF Naive: % X X X X X X X X X X X X X X X
EAF BF: XXXXXXXXX

Bloom-filter based EAF mitigates thrashing
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Large Working Set: Case 2

Cache + EAF < Working Set

Cache | I
SOECERDE CANCEGEE EEE

Problem: All blocks are predicted to have low reuse

Allow a fraction of the working set to stay in the
cache

Use Bimodal Insertion Policy for low reuse

blocks. Insert few of them at the MRU position




Outline

* Background and Motivation

e Evicted-Address Filter
— Reuse Prediction
— Thrash Resistance

* Final Design

* Advantages and Disadvantages
* Evaluation

 Conclusion
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EAF-Cache: Final Design

@ Cache eviction
Insert address into filter

Increment counter

Bloom Filter
Cache

Q Counter reaches max
Clear filter and counter

Q Cache miss
Test if address is present in filter

Yes, insert at MRU. No, insert with BIP
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Outline

* Background and Motivation

e Evicted-Address Filter
— Reuse Prediction
— Thrash Resistance

* Final Design

* Advantages and Disadvantages

 Evaluation

 Conclusion
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EAF: Advantages

Cache eviction
>

Bloom Filter
Cache

>
Cache miss

1. Simple to implement
2. Easy to design and verify

3. Works with other techniques (replacement policy)
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EAF: Disadvantage

Cache

In PAF?

% besbadcassess

Problem: For an LRU-friendly application, EAF
incurs one additional miss for most blocks

Dueling-EAF: set dueling between EAF and LRU
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Outline

* Background and Motivation

e Evicted-Address Filter
— Reuse Prediction
— Thrash Resistance

* Final Design

* Advantages and Disadvantages

 Evaluation

 Conclusion
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Methodology

e Simulated System
— In-order cores, single issue, 4 GHz
— 32 KB L1 cache, 256 KB L2 cache (private)
— Shared L3 cache (1MB to 16 MB)
— Memory: 150 cycle row hit, 400 cycle row conflict

e Benchmarks
— SPEC 2000, SPEC 2006, TPC-C, 3 TPC-H, Apache

* Multi-programmed workloads
— Varying memory intensity and cache sensitivity

* Metrics
— 4 different metrics for performance and fairness
— Present weighted speedup
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Comparison with Prior Works

Addressing Cache Pollution
Run-time Bypassing (RTB) —Johnson+ ISCA’97
- Memory region based reuse prediction

Single-usage Block Prediction (SU) — Piquet+ ACSAC'07
Signature-based Hit Prediction (SHIP) — Wu+ MICRO’11

- Program counter based reuse prediction

Miss Classification Table (MCT) — Collins+ MICRO’99
- One most recently evicted block

- No control on number of blocks inserted with high
priority = Thrashing

160



Comparison with Prior Works

Addressing Cache Thrashing

TA-DIP — Qureshi+ ISCA’07, Jaleel+ PACT’08
TA-DRRIP —Jaleel+ ISCA’10

- Use set dueling to determine thrashing applications

- No mechanism to filter low-reuse blocks = Pollution
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Results — Summary
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4-Core: Performance

Weighted Speedup Improvement over

LRU
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Effect of Cache Size
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Effect of EAF Size
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Other Results in Paper

 EAF orthogonal to replacement policies
— LRU, RRIP —Jaleel+ ISCA’10

* Performance improvement of EAF increases with
increasing memory latency

* EAF performs well on four different metrics
— Performance and fairness

e Alternative EAF-based designs perform comparably

— Segmented EAF
— Decoupled-clear EAF
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Conclusion

e Cache utilization is critical for system performance
— Pollution and thrashing degrade cache performance
— Prior works don’t address both problems concurrently

 EAF-Cache
— Keep track of recently evicted block addresses in EAF
— Insert low reuse with low priority to mitigate pollution
— Clear EAF periodically and use BIP to mitigate thrashing
— Low complexity implementation using Bloom filter

 EAF-Cache outperforms five prior approaches that address
pollution or thrashing
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Additional Material




Main Memory Compression

= Gennady Pekhimenko, Vivek Seshadri, Yoongu Kim, Hongyi Xin, Onur
Mutlu, Michael A. Kozuch, Phillip B. Gibbons, and Todd C. Mowry,
"Linearly Compressed Pages: A Main Memory Compression
Framework with Low Complexity and Low Latency"”
SAFARI Technical Report, TR-SAFARI-2012-005, Carnegie Mellon
University, September 2012.
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Caching tor Hybrid Memoties

= Justin Meza, Jichuan Chang, HanBin Yoon, Onur Mutlu, and
Parthasarathy Ranganathan,
"Enabling Efficient and Scalable Hybrid Memories Using Fine-
Granularity DRAM Cache Management”
IEEE Computer Architecture Letters (CAL), February 2012.

= HanBin Yoon, Justin Meza, Rachata Ausavarungnirun, Rachael Harding,
and Onur Mutlu,
"Row Buffer Locality Aware Caching Policies for Hybrid
Memories"
Proceedings of the
30th IEEE International Conference on Computer Design (ICCD),
Montreal, Quebec, Canada, September 2012. Slides (pptx) (pdf)
Best paper award (in Computer Systems and Applications track).
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Four Works on Memory Interference (I)

= Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Fairness via Source Throttling: A Configurable and High-
Performance Fairness Substrate for Multi-Core Memory
Systems"”
Proceedings of the
15th International Conference on Architectural Support for
Programming Lanquages and Operating Systems (ASPLOS), pages
335-346, Pittsburgh, PA, March 2010. Slides (pdf)

= Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut
Kandemir, and Thomas Moscibroda,
"Reducing Memory Interference in Multicore Systems via
Application-Aware Memory Channel Partitioning”
Proceedings of the 44th International Symposium on Microarchitecture
(MICRO), Porto Alegre, Brazil, December 2011. Slides (pptx)
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Four Works on Memory Interterence (I1)

= Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh
Kumar, and Mani Azimi,
"Application-to-Core Mapping Policies to Reduce Memory
System Interference in Multi-Core Systems"

Proceedings of the
19th International Symposium on High-Performance Computer
Architecture (HPCA), Shenzhen, China, February 2013. Slides (pptx)

= Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin, Chang Joo Lee,
Onur Mutlu, and Yale N. Patt,
"Parallel Application Memory Scheduling”
Proceedings of the 44th International Symposium on Microarchitecture
(MICRO), Porto Alegre, Brazil, December 2011. Slides (pptx)
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FEnabling Emerging Memory
Technologies




Aside: Scaling Flash Memory [Cai+, ICCD’12]

NAND flash memory has low endurance: a flash cell dies after 3k P/E
cycles vs. 50k desired - Major scaling challenge for flash memory
Flash error rate increases exponentially over flash lifetime

Problem: Stronger error correction codes (ECC) are ineffective and
undesirable for improving flash lifetime due to

o diminishing returns on lifetime with increased correction strength

o prohibitively high power, area, latency overheads

Our Goal: Develop techniques to tolerate high error rates w/o strong ECC

Observation: Retention errors are the dominant errors in MLC NAND flash
o flash cell loses charge over time; retention errors increase as cell gets worn out
Solution: Flash Correct-and-Refresh (FCR)

o Periodically read, correct, and reprogram (in place) or remap each flash page
before it accumulates more errors than can be corrected by simple ECC

o Adapt “refresh” rate to the severity of retention errors (i.e., # of P/E cycles)

Results: FCR improves flash memory lifetime by 46X with no hardware
changes and low energy overhead; outperforms strong ECCs
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Solution 2: Emerging Memory Technologies

Some emerging resistive memory technologies seem more
scalable than DRAM (and they are non-volatile)

Example: Phase Change Memory BL
o Data stored by changing phase of material
Data read by detecting material’s resistance ;
Expected to scale to 9nm (2022 [ITRS]) w SENSE
Prototyped at 20nm (Raoux+, IBM JRD 2008) ? Vv
Expected to be denser than DRAM: can store multiple bits/cell

PCM

a
a
a
a

But, emerging technologies have (many) shortcomings
o Can they be enabled to replace/augment/surpass DRAM?
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Phase Change Memory: Pros and Cons

= Pros over DRAM
o Better technology scaling (capacity and cost)
o Non volatility
o Low idle power (no refresh)

= Cons
o Higher latencies: ~4-15x DRAM (especially write)
a Higher active energy: ~2-50x DRAM (especially write)
a Lower endurance (a cell dies after ~108 writes)

= Challenges in enabling PCM as DRAM replacement/helper:
o Mitigate PCM shortcomings
o Find the right way to place PCM in the system
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PCM-based Main Memory (I)

= How should PCM-based (main) memory be organized?

CPU CPU CPU
IcipdiciRgicsh
GCGQ-—a | -G | @D
Q-G | - CE | @D

= Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC'09]:
o How to partition/migrate data between PCM and DRAM
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PCM-based Main Memory (11)

= How should PCM-based (main) memory be organized?

CPU CPU CPU
o)~ L)~
Q- - —Cc | @&«
Q-G -G | @

= Pure PCM main memory [Lee et al., ISCA'09, Top Picks’10]:

o How to redesign entire hierarchy (and cores) to overcome
PCM shortcomings
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PCM-Based Memory Systems: Research Challenges

Partitioning
o Should DRAM be a cache or main memory, or configurable?
o What fraction? How many controllers?

Data allocation/movement (energy, performance, lifetime)

o Who manages allocation/movement?
o What are good control algorithms?
o How do we prevent degradation of service due to wearout?

Design of cache hierarchy, memory controllers, OS
o Mitigate PCM shortcomings, exploit PCM advantages

Design of PCM/DRAM chips and modules
o Rethink the design of PCM/DRAM with new requirements
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An Initial Study: Replace DRAM with PCM

Lee, Ipek, Mutlu, Burger, “Architecting Phase Change
Memory as a Scalable DRAM Alternative,” ISCA 2009.

o Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC)
o Derived “average” PCM parameters for F=90nm

Density \ Latency
> 9-12F? using BJT > 50ns Rd, 150ns Wr
> 1.5x DRAM .~ |> 4x,12x DRAM
Endurance Energy

> 404A Rd, 150A Wr
> 1E-08x DRAM | > 2x,43x DRAM
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Results: Naive Replacement of DRAM with PCM

Replace DRAM with PCM in a 4-core, 4MB L2 system
PCM organized the same as DRAM: row buffers, banks, peripherals
1.6x delay, 2.2x energy, 500-hour average lifetime

PCM Performance :: 2048Bx1 Buffer PCM Endurance :: 2048Bx1 Buffer

0.2
3 4 I Delay

-EnergyMem 0.18

2.8
0.14

0.16
26
z2
a 0.12
: 0.
T g, 0.08
' 0.0
0.8!
06l 0.04
0.4/ 0.0
0.2!

is mg rad oce art equ swi avg IS mg rad oce art equ swu avg

Normalized to
R N N NN
I\J -h 0‘) O’J N

Years

-h
D

N

(=
o

Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a
Scalable DRAM Alternative,” ISCA 2009.
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Architecting PCM to Mitigate Shortcomings

Idea 1: Use multiple narrow row buffers in each PCM chip
- Reduces array reads/writes = better endurance, latency, energy

Idea 2: Write into array at
cache block or word

granularity DRAM PCM
- Reduces unnecessary wear { data array { data array J
sense amplifiers * ( -
(buffer) sense amplifiers
.
l I/O ¢

latches

(buffer)
i 11O
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Results: Architected PCM as Main Memory

= 1.2x delay, 1.0x energy, 5.6-year average lifetime
= Scaling improves energy, endurance, density

PCM Performance .. 512Bx4 Buffer PCM Endurance .. 512Bx4 Buffer
1.8[———— 16
Il Delay — DiffLine (648)

1.6 I EnergyMem

14! I I DiffWord (4B)

cg IS mg rad oce art equ swi avg cg is mg rad oce art equ SWI avg

14

-
N

o

oo —

Years
@

2]

Normalized to DRAM
(]
o

o
'
I

©
(¥
N}

o
o

= Caveat 1: Worst-case lifetime is much shorter (no guarantees)
= Caveat 2: Intensive applications see large performance and energy hits

= Caveat 3: Optimistic PCM parameters?
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Hybrid Memory Systems

CPU

DRAM PCM
Ctrl  Ctrl

Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies
(5-9 years of average lifetime)

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and Scalable Hybrid Memories,”
IEEE Comp. Arch. Letters, 2012.
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One Option: DRAM as a Cache for PCM

PCM is main memory; DRAM caches memory rows/blocks
o Benefits: Reduced latency on DRAM cache hit; write filtering
Memory controller hardware manages the DRAM cache

o Benefit: Eliminates system software overhead

Three issues:

o What data should be placed in DRAM versus kept in PCM?
o What is the granularity of data movement?

o How to design a low-cost hardware-managed DRAM cache?

Two idea directions:
o Locality-aware data placement [Yoon+, ICCD 2012]
o Cheap tag stores and dynamic granularity [Meza+, IEEE CAL 2012]
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DRAM vs. PCM: An Observation

= Row buffers are the same in DRAM and PCM
= Row buffer hit latency same in DRAM and PCM
= Row buffer miss latency small in DRAM, large in PCM

CPU

Row buffer
DRAM Cache

PCM Main Memory
I I

N ns row hit N ns row hit
Fast row miss Slow row miss

= Accessing the row buffer in PCM is fast
= What incurs high latency is the PCM array access - avoid this
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Row-Locality-Aware Data Placement

Idea: Cache in DRAM only those rows that

o Frequently cause row buffer conflicts = because row-conflict latency
is smaller in DRAM

o Are reused many times - to reduce cache pollution and bandwidth
waste

Simplified rule of thumb:
o Streaming accesses: Better to place in PCM
o Other accesses (with some reuse): Better to place in DRAM

Bridges half of the performance gap between all-DRAM and all-
PCM memory on memory-intensive workloads

Yoon et al., "Row Buffer Locality-Aware Caching Policies for
Hybrid Memories,” ICCD 2012.
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Row-Locality-Aware Data Placement: Mechanism

For a subset of rows in PCM, memory controller:
o Tracks row conflicts as a predictor of future locality
o Tracks accesses as a predictor of future reuse

Cache a row in DRAM if its row conflict and access counts
are greater than certain thresholds

Determine thresholds dynamically to adjust to application/
workload characteristics

o Simple cost/benefit analysis every fixed interval
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Implementation: “Statistics Store™

* Goal: To keep count of row buffer misses to
recently used rows in PCM

 Hardware structure in memory controller

— Operation is similar to a cache

* Input: row address
e Output: row buffer miss count

— 128-set 16-way statistics store (9.25KB) achieves
system performance within 0.3% of an unlimited-
sized statistics store

191



Evaluation Methodology

e Cycle-level x86 CPU-memory simulator

— CPU: 16 out-of-order cores, 32KB private L1 per
core, 512KB shared L2 per core

— Memory: 1GB DRAM (8 banks), 16GB PCM (8
banks), 4KB migration granularity

* 36 multi-programmed server, cloud workloads
— Server: TPC-C (OLTP), TPC-H (Decision Support)
— Cloud: Apache (Webserv.), H.264 (Video), TPC-C/H

* Metrics: Weighted speedup (perf.), perf./Watt
(energy eff.), Maximum slowdown (fairness)192



Comparison Points

Conventional LRU Caching
FREQ: Access-frequency-based caching

— Places “hot data” in cache [Jiang+ HPCA’10]

— Cache to DRAM rows with accesses = threshold
— Row buffer locality-unaware

FREQ-Dyn: Adaptive Freq.-based caching

— FREQ + our dynamic threshold adjustment

— Row buffer locality-unaware

RBLA: Row buffer locality-aware caching
RBLA-Dyn: Adaptive RBL-aware caching
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System Performance

BFREQ MFREQ-Dyn @RBLA BRBLA-Dyn
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Benefit 1: Increased row buffer locality (RBL) |
in PCM by moving low RBL data to DRAM

Benefit 2: Reduced memory bandwidth
consumption due to stricter caching criteria

~
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[
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Benefit 3: Balanced memory request load
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Average Memory Latency
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Memory Energy Efficiency
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Thread Fairness
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[E—"
(\®)

V7.6%

[
|

v6.2%

=
o0
|

Normalized Maximum Slowdown
-}
(@)

0.4 -
0.2 -
O _
Server Cloud Avg
Workload

197



Compared to All-PCM/DRAM

®16GBPCM BERBLA-Dyn B016GB DRAM

2 1.2
%18 - =
=
31.6 29% o E :
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Our mechanism achieves 31% better performance
than all PCM, within 29% of all DRAM
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O
o0

<
S N
| |

I O _

198



The Problem with LL.arge DRAM Caches

A large DRAM cache requires a large metadata (tag +
block-based information) store

How do we design an efficient DRAM cache?

CPU
LOAD X
Metadata: |
X = DRAM
[ M
(smali;+uow<ache)
Access X
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Idea 1: Tags in Memory

Store tags in the same row as data in DRAM
o Store metadata in same row as their data
o Data and metadata can be accessed together

<€

DRAM row >

Cache block O

Cache block 1

Cache block 2 Tagd Tagl Tag2

Benefit: No on-chip tag storage overhead

Downsides:

o Cache hit determined only after a DRAM access
o Cache hit requires two DRAM accesses

SAFARI
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Idea 2: Cache Tags in SRAM

Recall Idea 1: Store all metadata in DRAM
o To reduce metadata storage overhead

Idea 2: Cache in on-chip SRAM frequently-accessed
metadata

o Cache only a small amount to keep SRAM size small
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Idea 3: Dynamic Data Transter Granularity

Some applications benefit from caching more data
o They have good spatial locality
Others do not

o Large granularity wastes bandwidth and reduces cache
utilization

Idea 3: Simple dynamic caching granularity policy

o Cost-benefit analysis to determine best DRAM cache block size
o Group main memory into sets of rows

o Some row sets follow a fixed caching granularity

|

The rest of main memory follows the best granularity
Cost—benefit analysis: access latency versus number of cachings
Performed every quantum
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TIMBER Tag Management

A Tag-In-Memory BUffER (TIMBER)
o Stores recently-used tags in a small amount of SRAM

€ DRAM row >

s ashﬁ hlg;k 5” s ashﬁ thSk I| \ s aghﬁ h'gsk z ‘ Tag0 Tagl Tag2

-
- -
- -
- -
-
- -

RowTag _.--~ L

Tag0 Tagl Tag2
LOAD X Tago Tag?

Benefits: If tag is cached:
o no need to access DRAM twice
o cache hit determined quickly
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TIMBER Tag Management Example (I)
= Case 1: TIMBER hit

\
I'/ Tag0 Tagl Tagz\l J J l
] Tag0 | Tagl | Tag2 : JC:IDLJJ
l |
l !
l
[

N\

Access X
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TIMBER Tag Management Example (I1I)
= Case 2: TIMBER miss

2. Cache M(Y)

=

Tag0 ‘ Tagl ] Tagz\ . —
Tag0 Tagl Tag2 JCP |

J J
P 0D

\Access Metadata(Y)

1. Access M(Y)
3. Access Y (row hit)
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Methodology

System: 8 out-of-order cores at 4 GHz

Memory: 512 MB direct-mapped DRAM, 8 GB PCM

o 128B caching granularity

o DRAM row hit (miss): 200 cycles (400 cycles)

o PCM row hit (clean / dirty miss): 200 cycles (640 / 1840 cycles)

Evaluated metadata storage techniques
All SRAM system (8MB of SRAM)

a
o Region metadata storage

o TIM metadata storage (same row as data)

o TIMBER, 64-entry direct-mapped (8KB of SRAM)
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TIMBER Performance

0.9 -6%
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Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and
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TIMBER Energy Efficiency

1.2 18%
1 I
0 I I I

SRAM Region TIMBER  TIMBER-Dyn

o
(0/¢)

o
D

Normalized Performance per Watt
(for Memory System)
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Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and
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Hybrid Main Memory: Research Topics

= Many research ideas from technology
layer to algorithms layer

Problems
= Enabling NVM and hybrid memory ~ [A9orthms
. Programs <—-

o How to maximize performance? :

o How to maximize lifetime? \ /

o How to prevent denial of service? Runtime System

(VM, OS, MM)

= Exploiting emerging tecnologies ISA

o How to exploit non-volatility?

o How to minimize energy consumption?
o How to minimize cost?

o How to exploit NVM on chip?
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Security Challenges of |

“merging Technologies

1. Limited endurance - Wearout attacks

2. Non-volatility = Data persists in memory after powerdown

—> Easy retrieval of privileged

or private information

3. Multiple bits per cell > Information leakage (via side channel)

SAFARI
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Securing Emerging Memory Technologies

1. Limited endurance - Wearout attacks
Better architecting of memory chips to absorb writes
Hybrid memory system management
Online wearout attack detection

2. Non-volatility = Data persists in memory after powerdown
- Easy retrieval of privileged or private information
Efficient encryption/decryption of whole main memory
Hybrid memory system management

3. Multiple bits per cell > Information leakage (via side channel)

System design to hide side channel information
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Linearly Compressed Pages

Gennady Pekhimenko, Vivek Seshadri, Yoongu Kim, Hongyi Xin, Onur Mutlu,
Michael A. Kozuch, Phillip B. Gibbons, and Todd C. Mowry,
"Linearly Compressed Pages: A Main Memory Compression
Framework with Low Complexity and Low Latency"”

SAFARI Technical Report, TR-SAFARI-2012-005, Carnegie Mellon University,
September 2012.
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Executive Summary

" Main memory is a limited shared resource
= Observation: Significant data redundancy
" |dea: Compress data in main memory

" Problem: How to avoid latency increase?
= Solution: Linearly Compressed Pages (LCP):
fixed-size cache line granularity compression
1. Increases capacity (69% on average)
2. Decreases bandwidth consumption (46%)
3. Improves overall performance (9.5%)
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Challenges in Main Memory Compression

1. Address Computation
2. Mapping and Fragmentation

3. Physically Tagged Caches



Address Computation

> Cache Line (64B)

ppeompressedl o | nj b | o |t

Page i
Address Offset 54 128 (N- i)*64

Compressed
P oy L],

Page | |

Address Offset O  ? ? p
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Mapping and Fragmentation

Virtual Page
(4kB) :
\ ‘ ‘ ‘ - Virtual
Address
Physical
' N Address

\ I

Physical Page ~-_ ‘.
(? kB) “Fragmentation
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Physically Tagged Caches

Virtual
_—~ Address

Address Translation

Physical
_______ Address

L2 Cache
Lines
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Shortcomings of Prior Work

Compression | Access | Decompression | Complexity | Compression
Mechanisms | Latency | Latency Ratio

IBM MXT
[IBM J.R.D. '01]
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Shortcomings of Prior Work

Compression | Access | Decompression | Complexity | Compression
Mechanisms | Latency | Latency Ratio

IBM MXT
[IBM J.R.D. '01]

Robust Main
Memory

Compression X v X v
[ISCA’05]
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Shortcomings of Prior Work

Compression | Access | Decompression | Complexity | Compression
Mechanisms | Latency | Latency Ratio

IBM MXT
[IBM J.R.D. '01]

Robust Main
Memory

Compression X v X v
[ISCA’05]

LCP:

Our Proposal v v v v
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Linearly Compressed Pages (LCP): Key Idea

Uncompressed Page (4kB: 64*64B)

Compressed Data
(1kB)

Exception
Storage

Metadata
(64B):
? (compressible)
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LCP Overview

 Page Table entry extension
— compression type and size
— extended physical base address

* Operating System management support
— 4 memory pools (512B, 1kB, 2kB, 4kB)

* Changes to cache tagging logic
— physical page base address + cache line index
(within a page)
 Handling page overflows
 Compression algorithms: BDI jpacT12], FPC [isca’04]



LCP Optimizations
 Metadata cache

— Avoids additional requests to metadata
* Memory bandwidth reduction:

— 1] Lrenster

e Zero pages and zero cache lines
— Handled separately in TLB (1-bit) and in metadata
(1-bit per cache line)
* Integration with cache compression
— BDIl and FPC
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Methodology

e Simulator

— X86 event-driven simulators
e Simics-based [Magnusson+, computero2] for CPU

e Multi2Sim [ubal+, pAcT’12] fOor GPU

e Workloads

— SPEC2006 benchmarks, TPC, Apache web server,
GPGPU applications

* System Parameters
— L1/L2/L3 cache latencies from CACTI [Thoziyoor+, ISCA’08]
— 512kB - 16MB L2, simple memory model



Compression Ratio Comparison
SPEC2006, databases, web workloads, 2MB L2 cache

W Zero Page W FPC
83> ¥ LCP (BDI) ® LCP (BDI+FPC-fixed)
T B MXT w1z
c 2.60
25
)]
()]
Q 2
£
€15
)

=
|

GeoMean

LCP-based frameworks achieve competitive
average compression ratios with prior work o



Bandwidth Consumption Decrease
SPEC2006, databases, web workloads, 2MB L2 cache

M FPC-cache ™ BDI-cache
® FPC-memory ™ (None, LCP-BDI)
_ = (FPC, FPC) (BDI, LCP-BDI)
¥ (BDI, LCP-BDI+FPC-fixed)
a 1.2
(a8 1 0.92 0.89
o © 08 -
E .g 06 - 0.55 (s
© 0.4
v g 0.2
o 0
< GeoMean

LCP frameworks significantly reduce bandwidth (46%)



Performance Improvement

LCP-BDI | (BDI, LCP-BDI) | (BDI, LCP-BDI+FPC-fixed)

6.1% 9.5% 9.3%
2 13.9% 23.7% 23.6%
4 10.7% 22.6% 22.5%

LCP frameworks significantly improve performance
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Conclusion

* A new main memory compression framework
called LCP (Linearly Compressed Pages)

— Key idea: fixed size for compressed cache lines within
a page and fixed compression algorithm per page

e LCP evaluation:
— Increases capacity (69% on average)
— Decreases bandwidth consumption (46%)
— Improves overall performance (9.5%)
— Decreases energy of the off-chip bus (37%)



Fairness via Source Throttling

Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Fairness via Source Throttling: A Configurable and High-Performance

Fairness Substrate for Multi-Core Memory Systems"
15th Intl. Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS),

pages 335-346, Pittsburgh, PA, March 2010. Slides (pdf)

FST ASPLOS 2010 Talk




Many Shared Resources

Shared Memory
Resources

.. Chip Boundary
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The Problem with “Smart Resources’

Independent interference control mechanisms in
caches, interconnect, and memory can contradict
each other

Explicitly coordinating mechanisms for different
resources requires complex implementation

How do we enable fair sharing of the entire
memory system by controlling interference in a
coordinated manner?
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An Alternative Approach: Source Throttling

Manage inter-thread interference at the cores, not at the
shared resources

Dynamically estimate unfairness in the memory system
Feed back this information into a controller

Throttle cores’ memory access rates accordingly

o Whom to throttle and by how much depends on performance
target (throughput, fairness, per-thread QoS, etc)

o E.qg., if unfairness > system-software-specified target then
throttle down core causing unfairness &
throttle up core that was unfairly treated

Ebrahimi et al., “Fairness via Source Throttling,” ASPLOS'10, TOCS'12.
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queue of requests to @uest Generation Order:>
Al,A2,A3,A4, Bl

shared resources

Unmanaged Bl A:| Compute |[Stall on Al |Stall on A2|Stall on A3|Stall on A4
1 A4 | o,
Interference 5 3 B: Compute Stall waiting for shared resources Stall on Bl
1 A2 Core A’s stall time :
Oldest > Al more Bl dme
— X Intensive application A generates many requests and :
Shared Memory auses long stall times for less intensive application B
Resources 5
Request Generation Order Thrqgttled

queue of requests to A'&@Mﬂi , Reqﬁlests

shared resources 00— o

Fair Source 2‘3‘ A Compute |Stall on Al Stall wait. |Stall on A2|Stall on A3|Stall on A4|
Throttling . B | Compute | Stall wait. |Stall on Bl ;Extra Cyclgs
A2 Core A J

) : Saved Cycles Core B :
Oldest3 Al | Core B’s stall time (‘)

Shz;red Memc;ry Dynamically detect application A’s interference for
Resources pplication B and throttle down application A




Fairness via Source Throttling (FST)

Two components (interval-based)

Run-time unfairness evaluation (in hardware)
o Dynamically estimates the unfairness in the memory system
o Estimates which application is slowing down which other

Dynamic request throttling (hardware or software)

o Adjusts how aggressively each core makes requests to the
shared resources

o Throttles down request rates of cores causing unfairness
Limit miss buffers, limit injection rate
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Fairness via Source Throttling (FST)

‘ Interval 1’ Interval 2 ‘ Interval 3

Time
>
Slowdown
Estimation
O e
_ Unfairness Estimate
. App-interfering | Request Throttling
Evaluation >

.
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------

1- Estimating system unfairness
2- Find app. with the highest

slowdown (App-slowest) 1-Throttle down App-interfering

3- Find app. causing most 2-Throttle up App-slowest
interference for App-slowest Y

(App-interfering)

if (Unfairness Estimate >Target)

{




Fairness via Source Throttling (FST)

L —
_ Unfairness Estimate
Unfaimess Ao sowest Dynamic
. App-interfering | Request Throttling
Evaluation :

--------------------------------------------------------------------------------

------------------------------------------------------------------------------------------

1- Estimating system unfairness
2- Find app. with the highest
slowdown (App-slowest)

3- Find app. causing most
interference for App-slowest
(App-interfering)

if (Unfairness Estimate >Target)

{
1-Throttle down App-interfering

2-Throttle up App-slowest
b
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Estimating System Unfairness

Max{Slowdown i} over all applications i

Unfairness =
Min{Slowdown i} over all applications i
_I__Shared
I
Slowdown of application i = ——
Ti

How can TiA lone be estimated in shared mode?

E .
Ti > is the number of extra cycles it takes

application i to execute due to interference

Alone Shared Excess
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Tracking Inter-Core Interference

Core 3

--------------------------------------
*

;FST hardware

: ofojo]o
Core# 0 1 2 3

Interference per core
bit vector

---------------------------------------

Three interference sources:
1. Shared Cache
2. DRAM bus and bank

Core O Core 1 Core 2
Shared Cache
Memory Controller
Row
Bank O | |Bank 1 Bank 2

/

Bank 7

<. DRAM row-buffers >
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Tracking DRAM Row-Butter Interference

! Shadow Row Address Register 1 Core 0 Core |
| (SRAR) Core 1:| Row B : Row A
| |
| Shadow Row Address Register |

SRAR) Core 0:
' (SRAR) Row A |

| | |

. Interference : : |
: induced row conflict : : Row B |
I I 1| RowB |1
| |
: 1 . 0 : m eue of requests to bank 2
' Interference I - -

Lper core bitvector ________ JROW Bantlict Row A

Bank O Bank | Bank 2 Bank 7
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Tracking Inter-Core Interference

Cycle Count T+3
:.I-:SThardwarev .............................
Core 0 Core 1 Core 2 Core 3 |: = :
. 0 Excess:
I .
1|0 |
3 0

Shared Cache

hterference per core Excess Cycles
bit vector Counters per core

-----------------------------------------------------------------------------------

‘ Memory Controller

Alone Shared Excess

Ti = Ti - Ti

Bank O | |Bank 1 | [Bank 2 Bank 7
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Fairness via Source Throttling (FST)

L
_ Unfairness Estimate
ey [ feosonest | oymamic
. App-interfering Request Throttling
Evaluation

--------------------------------------------------------------------------------

*
------------------------------------------------------------------------------------------

1- Estimating system unfairness
2- Find app. with the highest
slowdown (App-slowest)

3- Find app. causing most
interference for App-slowest
(App-interfering)

if (Unfairness Estimate >Target)

{
1-Throttle down App-interfering

2-Throttle up App-slowest
b
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Tracking Inter-Core Interference

To identify App-interfering, for each core i

o FST separately tracks interference caused by each core j
(J#1)

IPazvfaserineeptarence PairbseexCaadeycles
bit meatuox Countatpar core
Interfered with core App-slowest = 2
Core #0(1)2 3 —
. 0 [-JoJo]o] - T cneor J/cneoN\][ cneo3

Interfering | 1 [0]-10l0} " tore 3 cpelo - cne2 “l Cnt 1,3
core QEI]HE interfered CntZ,d"'iant 2,I+| - M Cnt 2,3

) 3[ofofol-]  with cne30 [ cne3n J[\cne32/]
core | N

Row with largest count
determines App-interfering
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Fairness via Source Throttling (FST)

LI
Unfairness Estimate

Runtime Unfairness App-slowest Dynamic

Evaluation App-interfering Request Throttling

1- Estimating system unfairness : : :
2- Find app. with the highest slowdown g(Unfawness Estimate >Target)
(App-slowest) . . :
3- Find app. causing most interference ;Tﬂrott:e down Ap||3 interfering
for App-slowest -Throttle up App-slowest
(App-interfering) b
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Dynamic Request Throttling

Goal: Adjust how aggressively each core makes requests to
the shared memory system

Mechanisms:
o Miss Status Holding Register (MSHR) quota

Controls the number of concurrent requests accessing shared
resources from each application

o Request injection frequency

Controls how often memory requests are issued to the last level
cache from the MSHRs
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Dynamic Request Throttling

Throttling level assigned to each core determines both
MSHR quota and request injection rate

Throttling level MSHR quota  |Request Injection Rate
100% 128 Every cycle
50% 64 Every other cycle
25% 32 Once every 4 cycles
< 10% 12 Once every 10 cycles |
5% 6 Once every 20 cycles
4% 5 Once every 25 cycles
3% 3 Once every 30 cycles
LostalRiolfzg 2% 2 Once every 50 cycles
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EST at Work

Interval i Interval i+1 Interval i+2
) a Time
>
Slowdown Slowdown
Estimation

FST Estimation

-------------------------------------------------------

Runtime Unfairness
Evaluation

---------------------------------------------------------------------------------------------------

Unfairness Estimate 35 [System software

fairness goal: |.4

App-slowest Core 2

App-interfering Core 0 Dynamic

-------------------------------------------------------

Request Throttling

-----------------------------------------------l.--------------!--------------n --------------------

Throttld l:lownle down! iThrottle up

Core 0 Core I Core 2 |Core 3
nterval i OO% I 0% 100%

Throttling Levels
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System Software Support

Different fairness objectives can be configured by
system software

o Keep maximum slowdown in check
Estimated Max Slowdown < Target Max Slowdown

o Keep slowdown of particular applications in check to achieve a
particular performance target

Estimated Slowdown(i) < Target Slowdown(i)

Support for thread priorities

o Weighted Slowdown(i) =
Estimated Slowdown(i) x Weight(i)
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FST Hardware Cost

Total storage cost required for 4 cores is ~12KB

FST does not require any structures or logic that are on the
processor’s critical path
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FST Evaluation Methodology

x86 cycle accurate simulator

Baseline processor configuration
o Per-core

4-wide issue, out-of-order, 256 entry ROB
a Shared (4-core system)

128 MSHRs

2 MB, 16-way L2 cache

o Main Memory
DDR3 1333 MHz

Latency of 15ns per command (tRP, tRCD, CL)
8B wide core to memory bus
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FST: System Unfairness Results

No Fairness
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FST

1 4%
25.6%

System Performance Results
[ Parallelism-Aware Batch Scheduling +VPC

] Fairness via Source Throttling (FST)

B Fair Cache Capacity (VPC)
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Source Throttling Results: Takeaways

Source throttling alone provides better performance than a
combination of “smart” memory scheduling and fair caching

o Decisions made at the memory scheduler and the cache
sometimes contradict each other

Neither source throttling alone nor “smart resources” alone
provides the best performance

Combined approaches are even more powerful
o Source throttling and resource-based interference control

FST ASPLOS 2010 Talk
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Designing QoS-Aware Memory Systems: Approaches

= Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism

0 QoS—aware memaory controllers [Mutlu+ MICRO'07] [Moscibroda+, Usenix Security’07]
[Mutlu+ ISCA'08, Top Picks'09] [Kim+ HPCA'10] [Kim+ MICRO'10, Top Picks'11] [Ebrahimi+ ISCA'11,
MICRO'11] [Ausavarungnirun+, ISCA’12] [Subramanian+, HPCA'13]

o QoS-aware interconnects [Das+ MICRO'09, ISCA'10, Top Picks ‘11] [Grot+ MICRO'09,
ISCA'11, Top Picks '12]

o QoS-aware caches

= Dumb resources: Keep each resource free-for-all, but reduce/
control interference by injection control or data mapping

o Source throttling to control access to memory system [Ebrahimi+ ASPLOS'10,
ISCA'11, TOCS'12] [Ebrahimi+ MICRO'09] [Nychis+ HotNets'10] [Nychis+ SIGCOMM12]

o | QoS-aware data mapping to memory controllersjiMuralidnara+ MICRO'11]

o QoS-aware thread scheduling to cores [pas+ HPCA'13]
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Memory Channel Partitioning

Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut Kandemir, and Thomas Moscibroda,
"Reducing Memory Interference in Multicore Systems via
Application-Aware Memory Channel Partitioning”
44th International Symposium on Microarchitecture (MICRO),

Porto Alegre, Brazil, December 2011. Slides (pptx)

MCP Micro 2011 Talk




Outline

Goal:
Mitigate
Inter-Application Interference

EAN

Previous Approach: Our First Approach:
Application-Aware Memory Application-Aware Memory
Request Scheduling Channel Partitioning

~._

Our Second Approach:
Integrated Memory
Partitioning and Scheduling
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Application-Aware Memory Request Scheduling

Monitor application memory access
characteristics

Rank applications based on memory access
characteristics

Prioritize requests at the memory controller,
based on ranking
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An Example: Thread Cluster Memory Scheduling

[higher A
priority
Non- -
_ i - intensive —
Memory-non-intensive e o

e’

‘

G
’ P”anty priority
Intenw
cluster

Figure: Kim et al., MICRO 2010

Threads in t
system

Memory-intensive
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Application-Aware Memory Request Scheduling

Advantages
Reduces interference between applications by
request reordering
Improves system performance

Disadvantages

Requires modifications to memory scheduling logic for

o Ranking
a Prioritization

Cannot completely eliminate interference by request
reordering
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Our Approach

Goal:
Mitigate
Inter-Application Interference

Our First Approach:

Application-Aware Memory
Channel Partitioning
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Observation: Modern Systems Have Multiple Channels

Core

Red Memory Channel 0 Memory

App Controller <:>
Core ><
Blue <}:{> Memory ( Channel1 ) Memory

App Controller

A new degree of freedom
Mapping data across multiple channels
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Data Mapping in Current Systems

Core

Page

Memor

Red Memory

App Controller

Blue <}:{> Memory
Controller

App

Core

=
G=p

Causes interference between applications’ requests
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Partitioning Channels Between Applications

Core

Page

Memor

Red Memory

App Controller

QZD Memory
Controller

Memor

=
G=p

Eliminates interference between applications’ requests
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Overview: Memory Channel Partitioning (MCP)

Goal
o Eliminate harmful interference between applications

Basic Idea

o Map the data of badly-interfering applications to different
channels

Key Principles

a Separate low and high memory-intensity applications
a Separate low and high row-buffer locality applications
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Key Insight 1: Separate by Memory Intensity

Map data of low and high memory-intensity applications
to different channels
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Key Insight 2: Separate by Row-Buftfer Locality

Map data of low and high row-buffer locality applications
to different channels
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Memory Channel Partitioning (MCP) Mechanism

/ Hardware
1. Profile applications

2. Classify applications into groups

3. Partition channels between application groups
4. Assign a preferred channel to each application
5. Allocate application pages to preferred channel

N

System
Software
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1. Protfile Applications

Hardware counters collect application memory
access characteristics

Memory access characteristics

o Memory intensity:

_ast level cache Misses Per Kilo Instruction (MPKI)
a Row-buffer locality:

Row-buffer Hit Rate (RBH) - percentage of
accesses that hit in the row buffer
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2. Classity Applications

Low

Low Intensity

High Intensity

Low Row-Buffer

Locality

igh

High Intensity

Test RBH

High Intensity
High Row-Buffer

Locality

268



3. Partittion Channels Among Groups: Step 1

Low Intensity

- =

High Intensity
Low Row-Buffer
Locality

High Intensity
High Row-Buffer
Locality

o

Assign number of channels
« proportional to number of
*.applications in group

gu—

W

Channel 1

Channel 2

Channel 3

Channiel N-1

Channel N
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3. Partition Channels Among Groups: Step 2

pu—

Channel 1
Low Intensity ‘; 7

Channel 2

Channel 3
High Intensity

Low Row-Buffer
Locality

Assign number of channels
proportional to bandwidth
demand of group

M

High Intensity Channel N-1

High Row-Buffer
Locality

Channel N
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4. Assign Preferred Channel to Application

= Assign each application a preferred channel from
its group’s allocated channels

= Distribute applications to channels such that
group’s bandwidth demand is balanced across its
channels

MPKI: 1
Channel 1

MPKI: 3

MPKI: 1

| MPKL: 3

MPKI: 4
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5. Allocate Page to Preterred Channel

Enforce channel preferences
computed in the previous step

On a page fault, the operating system

o allocates page to preferred channel if free page
available in preferred channel

o if free page not available, replacement policy tries to
allocate page to preferred channel

o if it fails, allocate page to another channel
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Interval Based Operation

Current AInterval

Next ‘Interval

[

|

|

—_——m—m

>

1. Profile applications

\4

time

>

5. Enforce channel preferences

2. Classify applications into groups
3. Partition channels between groups
4. Assign preferred channel to applications
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Integrating Partitioning and Scheduling

Goal:
Mitigate
Inter-Application Interference

EAN

Previous Approach: Our First Approach:
Application-Aware Memory Application-Aware Memory
Request Scheduling Channel Partitioning

~._

Our Second Approach:
Integrated Memory
Partitioning and Scheduling
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Observations

= Applications with very low memory-intensity rarely
access memory
- Dedicating channels to them results in precious
memory bandwidth waste

= They have the most potential to keep their cores busy
- We would really like to prioritize them

= They interfere minimally with other applications
—> Prioritizing them does not hurt others
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Integrated Memory Partitioning and Scheduling (IMPS)

= Always prioritize very low memory-intensity
applications in the memory scheduler

= Use memory channel partitioning to mitigate
interference between other applications
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Hardware Cost

Memory Channel Partitioning (MCP)

a Only profiling counters in hardware

o No madifications to memory scheduling logic

o 1.5 KB storage cost for a 24-core, 4-channel system

Integrated Memory Partitioning and Scheduling (IMPS)

o A single bit per request
o Scheduler prioritizes based on this single bit
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Methodology

Simulation Model
24 cores, 4 channels, 4 banks/channel

Core Model
Out-of-order, 128-entry instruction window
512 KB L2 cache/core

Memory Model — DDR2

Workloads

240 SPEC CPU 2006 multiprogrammed workloads
(categorized based on memory intensity)

Metrics

. ]Pc§hared
System Performance Weighted Speedup =y —

] P qalone
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Previous Work on Memory Scheduling

FR-FCFS [zuravleff et al., US Patent 1997, Rixner et al., ISCA 2000]
o Prioritizes row-buffer hits and older requests
o Application-unaware

ATLAS [Kim et al., HPCA 2010]
o Prioritizes applications with low memory-intensity

TCM [Kim et al., MICRO 2010]
o Always prioritizes low memory-intensity applications
o Shuffles request priorities of high memory-intensity applications
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Comparison to Previous Scheduling Policies

Averaged over 240 workloads

1.15
0 A 5986
S 11 ® FRFCFS
T E l = ATLAS
N & 1.05
=
£ 9 B TCM
B = 1 -
<9 = MmcP
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em performance than the best previous s r
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Interaction with Memory Sc

heduling

Averaged over 240 wor

kloads

1.12 N\
)

Normalized
System Perfor
S

FRFCFS ATLAS TCM

IMPS improves performance regardless

of scheduling policy

Highest improvement over FRFCFS as IMPS designed for FRFCFS
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MCP Summary

Uncontrolled inter-application interference in main memory
degrades system performance

Application-aware memory channel partitioning (MCP)

o Separates the data of badly-interfering applications
to different channels, eliminating interference

Integrated memory partitioning and scheduling (IMPS)
a Prioritizes very low memory-intensity applications in scheduler
o Handles other applications’ interference by partitioning

MCP/IMPS provide better performance than application-
aware memory request scheduling at lower hardware cost
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Staged Memory Scheduling

Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian, Gabriel Loh, and Onur Mutlu,

"Staged Memory Scheduling: Achieving High Performance
and Scalability in Heterogeneous Systems”
39th International Symposium on Computer Architecture (ISCA),
Portland, OR, June 2012.

SMS ISCA 2012 Talk




Executive Summary

Observation: Heterogeneous CPU-GPU systems require
memory schedulers with large request buffers

Problem: Existing monolithic application-aware memory
scheduler designs are hard to scale to large request buffer sizes

Solution: Staged Memory Scheduling (SMS)

decomposes the memory controller into three simple stages:
1) Batch formation: maintains row buffer locality

2) Batch scheduler: reduces interference between applications
3) DRAM command scheduler: issues requests to DRAM

Compared to state-of-the-art memory schedulers:
a SMS is significantly simpler and more scalable
o SMS provides higher performance and fairness
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Main Memory 1s a Bottleneck

J

Core 2 Core 3 Core 4

J J J

Req

Req

Req Req - Req

Memory Scheduler

Memory Request Buffer

All cores contend for Ii%—chip bandwidth

o Inter-application interfeféftf@¥egrades system performance
o The memory scheduler can help mitigate the problem

How does the memory scheduler deliver good performance

and fairness?
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Three Principles of Memory Scheduling

= Prioritize row-buffer-hit requests [Rixner+, ISCA'00]

o To maximize memory bandwidth

= Prioritize latency-sensitive applications [Kim+, HPCA’10]

o To maximize system throughput

Older

= Enstret ieatinn ig gtgrved [Mutlu and Moscibroda,

MICED'07

o 1pim

row
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Memory Scheduling for CPU-GPU Systems

Current and future systems integrate a GPU along with
multiple cores

GPU shares the main memory with the CPU cores

GPU is much more (4x-20x) memory-intensive than CPU

How should memory scheduling be done when GPU is
integrated on-chip?
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Introducing the GPU into the System

Core 1 Core 2 Core 3 Core 4

4 4 4 4

[ MemoryScheduer |
=

To DRAM

= GPU occupies a significant portion of the request buffers

o Limits the MC's visibility of the CPU applications’ differing
memory behavior - can lead to a poor scheduling decision
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Naive Solution: Large Monolithic Butfer

Core 1 Core 2 Core 3 Core 4

4 4 4
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Problems with Large Monolithic Butfer

= This leads to high complexity, high power, large die area
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Our Goal

Design a new memory scheduler that is:

o Scalable to accommodate a large number of requests

o Easy to implement

o Application-aware

o Able to provide high performance and fairness, especially in
heterogeneous CPU-GPU systems
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Key Functions of a Memory Controller

= Memory controller must consider three different things
concurrently when choosing the next request:

1) Maximize row buffer hits
o Maximize memory bandwidth

2) Manage contention between applications
o Maximize system throughput and fairness

3) Satisfy DRAM timing constraints

= Current systems use a centralized memory controller
design to accomplish these functions

o Complex, especially with large request buffers
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Key Idea: Decouple Tasks into Stages

= Idea: Decouple the functional tasks of the memory controller
o Partition tasks across several simpler HW structures (stages)

1) Maximize row buffer hits

o Stage 1: Batch formation

o Within each application, groups requests to the same row into
batches

2) Manage contention between applications

o Stage 2: Batch scheduler

o Schedules batches from different applications
3) Satisfy DRAM timing constraints

o Stage 3: DRAM command scheduler
o Issues requests from the already-scheduled order to each bank
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SMS: Staged Memory Scheduling

Core 1 Core 2 Core 3 Core 4 GPU

4

Scheduler
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SMS: Staged Memory Scheduling
Corel Core2  Core3 Core4  GPU

4 4 § 5 §
Stage 1
Batch /) (= [ ]
Formation - - -
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Stage 1: Batch Formation

Goal: Maximize row buffer hits

At each core, we want to batch requests that access the
same row within a limited time window

A batch is ready to be scheduled under two conditions
1) When the next request accesses a different row
2) When the time window for batch formation expires

Keep this stage simple by using per-core FIFOs
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Stage 1: Batch Formation Example

Stage 1

Batch

Formation

Time

expires

window /f

Next request goes to a different row

Core 1

Batch Boundary

Core 2 Core 3

Core 4

To Stage 2 (Batch Scheduling)

297



SMS: Staged Memory Scheduling

Core 1 Core 2 Core 3 Core 4 GPU

Stage 1

Batch
Formation

Stage 2

Stage 3

DRAM
Command Bank 1 Bank 2 Bank 3 Bank 4
Scheduler

To DRAM
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Stage 2: Batch Scheduler

Goal: Minimize interference between applications

Stage 1 forms batches within each application

Stage 2 schedules batches from different applications
o Schedules the oldest batch from each application

Question: Which application’s batch should be scheduled
next?

Goal: Maximize system performance and fairness

o To achieve this goal, the batch scheduler chooses between
two different policies
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Stage 2: Two Batch Scheduling Algorithms

Shortest Job First (SJF)

o Prioritize the applications with the fewest outstanding memory
requests because they make fast forward progress

o Pro: Good system performance and fairness
o Con: GPU and memory-intensive applications get deprioritized

Round-Robin (RR)

o Prioritize the applications in a round-robin manner to ensure
that memory-intensive applications can make progress

o Pro: GPU and memory-intensive applications are treated fairly

o Con: GPU and memory-intensive applications significantly
slow down others
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Stage 2: Batch Scheduling Policy

The importance of the GPU varies between systems and
over time - Scheduling policy needs to adapt to this

Solution: Hybrid Policy
At every cycle:

o With probability p : Shortest Job First - Benefits the CPU
o With probability 1-p : Round-Robin - Benefits the GPU

System software can configure p based on the importance/
weight of the GPU

o Higher GPU importance - Lower p value
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SMS: Staged Memory Scheduling

Stage 3 [ 1]
DRAM B ( (O
Command Bank 1 Bank 2 Bank 3 Bank 4
Scheduler G
To DRAM
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Stage 3: DRAM Command Scheduler

High level policy decisions have already been made by:
o Stage 1: Maintains row buffer locality
o Stage 2: Minimizes inter-application interference

Stage 3: No need for further scheduling

Only goal: service requests while satisfying DRAM
timing constraints

Implemented as simple per-bank FIFO queues

303



Putting Everything Together

Stage 1:
Batch
Formation

Corel Core2 Core3 4 GPU
o e

Command
Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

RR
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Complexity

Compared to a row hit first scheduler, SMS consumes*

a

Q

66% less area
46% less static power

Reduction comes from:

a

a

Monolithic scheduler - stages of simpler schedulers

Each stage has a simpler scheduler (considers fewer
properties at a time to make the scheduling decision)

Each stage has simpler buffers (FIFO instead of out-of-order)

Each stage has a portion of the total buffer size (buffering is
distributed across stages)

* Based on a Verilog model using 180nm library 305



Methodology

Simulation parameters
o 16 000 CPU cores, 1 GPU modeling AMD Radeon™ 5870
o DDR3-1600 DRAM 4 channels, 1 rank/channel, 8 banks/channel

Workloads
o CPU: SPEC CPU 2006
o GPU: Recent games and GPU benchmarks

o 7 workload categories based on the memory-intensity of CPU
applications
- Low memory-intensity (L)
- Medium memory-intensity (M)
- High memory-intensity (H)
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Comparison to Previous Scheduling Algorithms

FR-FCFS [Rixner+, ISCA'00]

a Prioritizes row buffer hits

o Maximizes DRAM throughput

o Low multi-core performance € Application unaware

ATLAS [Kim+, HPCA'10]

o Prioritizes latency-sensitive applications

o Good multi-core performance

o Low fairness € Deprioritizes memory-intensive applications

TCM [Kim+, MICRO'10]

o Clusters low and high-intensity applications and treats each
separately

o Good multi-core performance and fairness

o Not robust € Misclassifies latency-sensitive applications
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Evaluation Metrics

CPU performance metric: Weighted speedup

CPU _ IPCShared
ws —
[P CAlone
GPU performance metric: Frame rate speedup
FrameRatesy req
GP USpeedup — &
FrameRates; ne

CPU-GPU system performance: CPU-GPU weighted speedup

CGWS = CPUys + GPUspeequn *

308



FEvaluated System Scenario: CPU Focused
GPU has low weight (weight = 1)

CGWS = CPUys + GPUspooauy

1

Configure SMS such that p, SJF probability, is set to 0.9

o Mostly uses SJF batch scheduling = prioritizes latency-
sensitive applications (mainly CPU)
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Performance: CPU-Focused System

12
10
8 -
5 6 m ATLAS
O 4 = TCM
5 = SMS
p=0.9
0

L ML M HL HML HM H Avg
Workload Categories

SJF batch scheduling policy allows latency-sensitive
applications to get serviced as fast as possible
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FEvaluated System Scenario: GPU Focused
GPU has high weight (weight = 1000)

CGWS = CPUys + GPUspeoqup

1000

Configure SMS such that p, SJF probability, is set to 0

o Always uses round-robin batch scheduling - prioritizes
memory-intensive applications (GPU)
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Pertformance: GPU-Focused System

1000 +1.6% over FR-FCFS |\

800
@ 600 FR-FCFS
5 ® ATLAS
O 400 = TCM
200 'S;,'\lg

L ML M HL HML HM H Avg
Workload Categories

= Round-robin batch scheduling policy schedules GPU
requests more frequently
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Performance at Ditterent GPU Weights

GPUweight

v 1 |
% 0.8 - Best Previous
= Scheduler
“f__, 0.6
s 0.4
J
5 0.2 v T |
73 ATLAS TCM FR-FCFS
m> O [ T TTTTT] [ T TTTTT [ T TTTTI
0.001 0.1 10 1000
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Performance at Ditterent GPU Weights

1

0.8 - Best Previous
Scheduler

- SMS

0.6
0.4
0.2

O T T TTTTT] T T TTTTT] T T TTTT
0.001 0.1 10 1000
GPUweight

= At every GPU weight, SMS outperforms the best previous
scheduling algorithm for that weight

System Performance
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Additional Results in the Paper

Fairness evaluation
a0 47.6% improvement over the best previous algorithms

Individual CPU and GPU performance breakdowns

CPU-only scenarios
o Competitive performance with previous algorithms

Scalability results

o SMS’ performance and fairness scales better than previous
algorithms as the number of cores and memory channels

INnCreases

Analysis of SMS design parameters
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Conclusion

Observation: Heterogeneous CPU-GPU systems require
memory schedulers with large request buffers

Problem: Existing monolithic application-aware memory
scheduler designs are hard to scale to large request buffer size

Solution: Staged Memory Scheduling (SMS)

decomposes the memory controller into three simple stages:
1) Batch formation: maintains row buffer locality

2) Batch scheduler: reduces interference between applications
3) DRAM command scheduler: issues requests to DRAM

Compared to state-of-the-art memory schedulers:
o SMS is significantly simpler and more scalable
o SMS provides higher performance and fairness
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