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The Problem

Computing
IS Bottlenecked by Data
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Data 1s Key tor Al, ML, Genomics, ...

Important workloads are all data intensive

They require rapid and efficient processing of large amounts
of data

Data is increasing
o We can generate more than we can process
o We need to perform more sophisticated analyses on more data

SAFARI 3



Huge Demand for Performance & Efficiency

Exponential Growth of Neural Networks aa

Memory and compute requirements 1800x more com pute
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Huge Demand for Performance & Efficiency

Coct ner Paw Menabace ¢
COSI per xaw viegabase Or |

development of new
sequencing technologies
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http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped

Data Overwhelms Modern Machines ...

= Storage/memory capability

= Communication capability

= Computation capability

= Greatly impacts robustness, energy, performance, cost

SAFARI



Data Movement Overwhelms Modern Machines

Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul
Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Willamsburg, VA, USA, March 2018.

62.7% of the total system energy
Is spent on data movement

Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand* Saugata Ghose' Youngsok Kim*
Rachata Ausavarungnirun’ Eric Shiv>  Rahul Thakur’  Daehyun Kim*?
Aki Kuusela®  Allan Knies®>  Parthasarathy Ranganathan®  Onur Mutlu™!
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https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/
https://www.asplos2018.org/

Data Movement Overwhelms Accelerators

Amirali Boroumand, Saugata Ghose, Berkin Akin, Ravi Narayanaswami, Geraldo F. Oliveira,
Xiaoyu Ma, Eric Shiu, and Onur Mutlu,

"Google Neural Network Models for Edge Devices: Analyzing and Mitigating Machine
Learning Inference Bottlenecks"

Proceedings of the 30th International Conference on Parallel Architectures and Compilation
Technigues (PACT), Virtual, September 2021.

[Slides (pptx) (pdf)]

[Talk Video (14 minutes)]

> 90% of the total system energy
Is spent on memory in large ML models

Google Neural Network Models for Edge Devices:
Analyzing and Mitigating Machine Learning Inference Bottlenecks

Amirali Boroumand'® Saugata Ghose* Berkin Akin® Ravi Narayanaswami®
Geraldo F. Oliveira* Xiaoyu Ma® Eric Shiu® Onur Mutlu*?

Y Carnegie Mellon Univ. °Stanford Uniyv. tUniv. of Illinois Urbana-Champaign YGoogle *ETH Ziirich
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https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21.pdf
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21.pdf
http://pactconf.org/
http://pactconf.org/
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21-talk.pdf
https://www.youtube.com/watch?v=A5gxjDbLRAs&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=178
https://arxiv.org/pdf/2109.14320
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Axiom

An Intelligent Architecture
Handles Data Well

SAFARI



Corollaries: Computing Systems Today ...

= Are processor-centric vs. data-centric

= Make designer-dictated decisions vs. data-driven

= Make component-based myopic decisions vs. data-aware

SAFARI 1



Architectures for Intelligent Machines

Data-centric

Data-driven

Data-aware

SAFARI
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A Blueprint for Fundamentally Better Architectures

= Onur Mutlu,

'Intelligent Architectures for Intelligent Computing Systems"
Invited Paper in Proceedings of the Design, Automation, and Test in
Europe Conference (DATE), Virtual, February 2021.

Slides (pptx) (pdf)]

[IEDM Tutorial Slides (pptx) (pdf)]

[Short DATE Talk Video (11 minutes)]

Longer IEDM Tutorial Video (1 hr 51 minutes)]

Intelligent Architectures for Intelligent Computing Systems

Onur Mutlu
ETH Zurich

omutlu@gmail.com

SAFARI 13


https://people.inf.ethz.ch/omutlu/pub/intelligent-architectures-for-intelligent-computingsystems-invited_paper_DATE21.pdf
http://www.date-conference.com/
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-DATE-InvitedTalk-IntelligentArchitecturesForIntelligentComputingSystems-January-22-2021.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-DATE-InvitedTalk-IntelligentArchitecturesForIntelligentComputingSystems-January-22-2021.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://www.youtube.com/watch?v=eAZZGDlsDAY
https://www.youtube.com/watch?v=H3sEaINPBOE

Our Goals: MI.-Memory System Duo

1. Memory system design for AI/ML workloads/accelerators

- in-depth exploration of memory system designs for
cutting-edge and emerging machine learning accelerators

- more efficient on-chip and off-chip memory systems

2. AI/ML techniques for improving memory system designs

- comprehensive look at memory system design to make
it data driven, i.e., based on machine learning

- more effective cache/memory/prefetch/thread
controllers and data/resource management/mapping/scheduling
policies

SAFARI 14



Two Major Directions

1. Memory system design for AI/ML workloads/accelerators

2. AI/ML techniques for improving memory system designs

SAFARI
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Data-Driven (Selt-Optimizing)
Architectures




System Architecture Design Today

Human-driven
o Humans design the policies (how to do things)

Many (too) simple, short-sighted policies all over the system
No automatic data-driven policy learning

(Almost) no learning: cannot take lessons from past actions

Can we design
fundamentally intelligent architectures?

SAFARI 17



An Intelligent Architecture

Data-driven
o Machine learns the “best” policies (how to do things)

Sophisticated, workload-driven, changing, far-sighted policies
Automatic data-driven policy learning

All controllers are intelligent data-driven agents

We need to rethink design
(of all controllers)

SAFARI 18



Selt-Optimizing Memory Controllers

= Engin Ipek, Onur Mutlu, José F. Martinez, and Rich Caruana,
"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA ), pages 39-50, Beijing, China, June 2008.
Selected to the ISCA-50 25-Year Retrospective Issue covering 1996-
2020 in 2023 (Retrospective (pdf) Full Issue).

Self-Optimizing Memory Controllers: A Reinforcement Learning Approach

Engin Ipek'2  Onur Mutlu?> José F. Martinez'  Rich Caruana!

LCornell University, Ithaca, NY 14850 USA
2 Microsoft Research, Redmond, WA 98052 USA
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http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/
https://sites.coecis.cornell.edu/isca50retrospective/files/2023/06/Retrospective__RL.pdf
https://sites.coecis.cornell.edu/isca50retrospective/

Selt-Optimizing Memory Pretetchers

Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu,
"Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, October 2021.
[Slides (pptx) (pdf)]

[Short Talk Slides (pptx) (pdf)]

[Lightning Talk Slides (pptx) (pdf)]

[Talk Video (20 minutes)]

[Lightning Talk Video (1.5 minutes)]

[Pythia Source Code (Officially Artifact Evaluated with All Badges)]

[arXiv version]

Officially artifact evaluated as available, reusable and reproducible.

Pythia: A Customizable Hardware Prefetching Framework
Using Online Reinforcement Learning

Rahul Bera!  Konstantinos Kanellopoulos! ~ Anant V. Nori?  Taha Shahroodi>!
Sreenivas Subramoney?  Onur Mutlu!

IETH Ziirich  ?Processor Architecture Research Labs, Intel Labs  *TU Delft

https://arxiv.orqg/pdf/2109.12021.pdf 20


https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=7
https://www.youtube.com/watch?v=kzL22FTz0vc&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=2
https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/abs/2109.12021
https://arxiv.org/pdf/2109.12021.pdf

Learning-Based Off-Chip LLoad Predictors

Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk Olgun,
Mohammad Sadrosadati, and Onur Mutlu,
"Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load

Prediction"

Proceedings of the 55th International Symposium on Microarchitecture (MICRO), Chicago, IL, USA,
October 2022.

[Slides (pptx) (pdf)]

[Longer Lecture Slides (pptx) (pdf)]

[Talk Video (12 minutes)]

[Lecture Video (25 minutes)]

[arXiv version]

[Source Code (Officially Artifact Evaluated with All Badges)]

Officially artifact evaluated as available, reusable and reproducible.

Best paper award at MICRO 2022.

Hermes: Accelerating Long-Latency Load Requests
via Perceptron-Based Off-Chip Load Prediction

Rahul Bera!  Konstantinos Kanellopoulos!  Shankar Balachandran?  David Novo®
Ataberk Olgun'  Mohammad Sadrosadati’  Onur Mutlu®

1ETH Ziirich ZIntel Processor Architecture Research Lab SLIRMM, Univ. Montpellier, CNRS

https://arxiv.or df/2209.00188.pdf


https://arxiv.org/pdf/2209.00188.pdf
https://arxiv.org/pdf/2209.00188.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pdf
https://www.youtube.com/watch?v=afGc1pWr-_Y
https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s
https://arxiv.org/abs/2209.00188
https://github.com/CMU-SAFARI/Hermes
https://arxiv.org/pdf/2209.00188.pdf

Selt-Optimizing Hybrid SSD Controllers

Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar,
David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu,
"Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage
Systems Using Online Reinforcement Learning"

Proceedings of the 49th International Symposium on Computer

Architecture (ISCA), New York, June 2022.

[Slides (pptx) (pdf)]

[arXiv version]

[Sibyl Source Code]

[Talk Video (16 minutes)]

Sibyl: Adaptive and Extensible Data Placement in
Hybrid Storage Systems Using Online Reinforcement Learning

Gagandeep Singh!  Rakesh Nadig!  Jisung Park’ = Rahul Bera' = Nastaran Hajinazar'
David Novo®  Juan Gémez-Luna!  Sander Stuijk®  Henk Corporaal?  Onur Mutlu!

1ETH Ziirich 2Eindhoven University of Technology 3SLIRMM, Univ. Montpellier, CNRS

https://arxiv.orqg/pdf/2205.07394.pdf 22


https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
http://iscaconf.org/isca2022/
http://iscaconf.org/isca2022/
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pdf
https://arxiv.org/pdf/2205.07394.pdf
https://github.com/CMU-SAFARI/Sibyl
https://www.youtube.com/watch?v=5-WedkiB000
https://arxiv.org/pdf/2205.07394.pdf

A Blueprint for Fundamentally Better Architectures

= Onur Mutlu,

'Intelligent Architectures for Intelligent Computing Systems"
Invited Paper in Proceedings of the Design, Automation, and Test in
Europe Conference (DATE), Virtual, February 2021.

Slides (pptx) (pdf)]

[IEDM Tutorial Slides (pptx) (pdf)]

[Short DATE Talk Video (11 minutes)]

Longer IEDM Tutorial Video (1 hr 51 minutes)]

Intelligent Architectures for Intelligent Computing Systems

Onur Mutlu
ETH Zurich

omutlu@gmail.com
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https://people.inf.ethz.ch/omutlu/pub/intelligent-architectures-for-intelligent-computingsystems-invited_paper_DATE21.pdf
http://www.date-conference.com/
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-DATE-InvitedTalk-IntelligentArchitecturesForIntelligentComputingSystems-January-22-2021.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-DATE-InvitedTalk-IntelligentArchitecturesForIntelligentComputingSystems-January-22-2021.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://www.youtube.com/watch?v=eAZZGDlsDAY
https://www.youtube.com/watch?v=H3sEaINPBOE

Fundamentally Better Architectures

Data-centric

Data-driven

Data-aware

SAFARI

24



Pythia: Pretetching using

Reinforcement Learning




Selt-Optimizing Memory Pretetchers

Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu,
"Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, October 2021.
[Slides (pptx) (pdf)]

[Short Talk Slides (pptx) (pdf)]

[Lightning Talk Slides (pptx) (pdf)]

[Talk Video (20 minutes)]

[Lightning Talk Video (1.5 minutes)]

[Pythia Source Code (Officially Artifact Evaluated with All Badges)]

[arXiv version]

Officially artifact evaluated as available, reusable and reproducible.

Pythia: A Customizable Hardware Prefetching Framework
Using Online Reinforcement Learning

Rahul Bera!  Konstantinos Kanellopoulos! ~ Anant V. Nori?  Taha Shahroodi>!
Sreenivas Subramoney?  Onur Mutlu!

IETH Ziirich  ?Processor Architecture Research Labs, Intel Labs  *TU Delft

https://arxiv.orqg/pdf/2109.12021.pdf 26


https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=7
https://www.youtube.com/watch?v=kzL22FTz0vc&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=2
https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/abs/2109.12021
https://arxiv.org/pdf/2109.12021.pdf

Pythia

A Customizable Hardware Prefetching Framework
Using Online Reinforcement Learning

Rahul Bera, Konstantinos Kanellopoulos, Anant V. Nori,
Taha Shahroodi, Sreenivas Subramoney, Onur Mutlu

https://github.com/CMU-SAFARI/Pythia

- ]
SAFARI ETH:zirich TUDelft

SAFARI Research Group
s

afari.ethz.ch



https://github.com/CMU-SAFARI/Pythia

y

Lack inherent system Lack in-silicon
awareness customizability

Mainly use one
program context info.
for prediction

—

@ Il "‘Ill!!?',]"?‘_F""" ]

 —T—

Why do prefetchers
not perform well?

SAFARI i 28



Lack of In-silicon Customizability

* Feature statically selected at design time
- Rigid hardware designed specifically to exploit that feature

* No way to change program feature and/or change
prefetcher’s objective in silicon

- Cannot adapt to a wide range of workload demands

Design from scratch Verify Fabricate

SAFARI 29



Our Goal

A prefetching framework that can:

1.Learn to prefetch using and
information

2.Be easily customized in silicon to use different

features and/or change prefetcher’s objectives
.

SAFARI



Our Proposal

Pythia

Formulates prefetching as a
reinforcement learning problem

Pythia is named after the oracle of Delphi, who is known for her accurate prophecies

SA F A R l https.//en.wikipedia.org/wiki/Pythia
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Basics of Reinforcement Learning (RL)

* Algorithmic approach to learn to take an action in a
given situation to maximize a numerical reward

| Agent \

[ Environment ]

* Agent stores Q-values for every state-action pair
- Expected return for taking an action in a state

- Given a state, selects action that provides Q-value
SAFARI 32



Formulating Prefetching as RL

SAFARI



What is State?

* k-dimensional vector of features
S = {4595 -, 95}
 Feature = control-flow + data-flow

e Control-flow examples
- PC
- Branch PC
- Last-3 PGCs, ...

* Data-flow examples
- Cacheline address
- Physical page number

- Delta between two cacheline addresses
- Last 4 deltas, ...

SAFARI



What is Action?

Given a demand access to address A [l
the action is to select prefetch offset “O”

: 127 actions in the range [-63, +63]
- For a machine with 4KB page and 64B cacheline

* Upper and lower limits ensure prefetches do not cross
physical page boundary

* A zero offset means no prefetch is generated

* We further prune action-space by design-space exploration
SAFARI 35



What is Reward?

* Defines the objective of Pythia

* Encapsulates two metrics:

- Prefetch usefulness (e.g., accurate, late, out-of-page, ...)

- System-level feedback (e.g., mem. b/w usage, cache
pollution, energy, ...)

* We demonstrate Pythia with
as the system-level feedback in the paper

SAFARI 36



What is Reward?

e Seven distinct reward levels
- Accurate and timely (Ry;)
- Accurate but late (Ry)
- Loss of coverage (R¢)

- Inaccurate
* With low memory b/w usage (R\-L)

* With high memory b/w usage (R,-H)
- No-prefetch

* With low memory b/w usage (Ryp-L)

* With high memory b/w usage(Ryp-H)

* Values are set at design time via automatic design-
space exploration

- Can be further in silicon for higher performance
SAFARI 37



Steering Pythia’s Objective via Reward Values

* Example reward configuration for
- Generating accurate prefetches

- Making prefetch decisions
-14 -8 -4 -2 +12  +20
; I —1 I I
Rin-H Ri-L Ryp-L RypH Ra.  Rar

AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate;
H = High mem. b/w; L = Low mem. b/w

r

1 Highly prefers to generate accurate prefetches

s

2 Prefers not to prefetch if memory bandwidth usage is low

3 Strongly prefers not to prefetch if memory bandwidth usage is high

SAFARI 38



Steering Pythia’s Objective via Reward Values

* Customizing reward values to make Pythia conservative
towards prefetching

-22 -20 +12 +20

< | | | | |
- | | | | |

R|N-H RlN-L RAL RAT

AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate;
H = High mem. b/w; L = Low mem. b/w

(

1 Highly prefers to generate accurate prefetches

N

2 Otherwise prefers not to prefetch

SAFARI 39



Basic Pythia Configuration

* Derived from automatic design-space exploration

e State: 2 features
- PC+Delta
- Sequence of last-4 deltas

* Actions: 16 prefetch offsets
- Ranging between -6 to +32. Including O.

 Rewards:
- Ry = +20; Ry = +12; Ryp-H=-2; Ryp-L=-4;
- Rp-H=-14; R,\-L=-8; R =-12

SAFARI
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More Detailed Pythia Overview

: Records Q-values for all state-action pairs

* Evaluation Queue: A FIFO queue of recently-taken actions

Find the Action with max Q-Value

a Look up

Demand | [ State QVstore

Vo
Al A2 A3

Request | Vector 9

S1

52

S3

54

G Evict EQ entry and
update QVStore

v

Q-Value Store

(QVStore)

—[ Evaluation Queue (EQ) }:

Generate

prefetch |

Memory
Hierarchy

e |

Assign reward to
corresponding EQ entry

SAFARI

Insert prefetch action &

State-Action pair in EQ
Set filled bit e

Prefetch Fill




Simulation Methodology

* Champsim (2] trace-driven simulator

* 150 single-core memory-intensive workload traces
- SPEC CPU2006 and CPU2017
- PARSEC 2.1
- Ligra
- Cloudsuite

* Homogeneous and heterogeneous multi-core mixes

* Five state-of-the-art prefetchers
- SPP

Bingo

MLOP

SPP+DSPatch

SPP+PPF

SAFARI


https://github.com/ChampSim/ChampSim

Performance with Varying Core Count

1.35
1.3 -
S £
TS
o :5'_, 1.25 - —O Pythia
v o
c g
e e 12- SPP
S O MLOP
O o 115 - Bingo
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Performance with Varying Core Count

1. Pythia consistently provides the highest
performance in all core configurations

2. Pythia’s gain increases with core count

SAFARI 44



Performance with Varying DRAM Bandwidth
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Performance with Varying DRAM Bandwidth

Pythia outperforms prior best prefetchers for

a wide range of DRAM bandwidth configurations

SAFARI 46



Performance Improvement via Customization

N
o
)

M Basic Pythia

= = =
- (@) 00
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=
N
|

IPC normalized to no prefetching

=
o

SAFARI Customize reward values for graph analytics workloads 47



Performance Improvement via Customization

Pythia can extract even higher performance

via customization without changing hardware

SAFARI ) 48



Pythia’s Overhead

e 25.5 KB of total metadata storage per core
- Only simple tables

* We also model functionally-accurate Pythia with full
complexity in Chisel 2 HDL

V 1.03% area overhead

« 0.4% power overhead

V Satisfies prediction latency

of a desktop-class 4-core Skylake processor (Xeon D2132IT, 60W)
SAFAR’ [4] https://www.chisel-lang.org 49
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Pythia is Open Source

https://github.com/CMU-SAFARI/Pythia

e MICRO’21 artifact evaluated

* Champsim source code + Chisel model

e All traces used for evaluation

SAFARI

& CMU-SAFARI/Pythia  pubic

<> Code @ Issues

¥ master ~

0 rahulbera Github pages documentation

branch
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docs
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src
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.gitignore
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LICENSE
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¥ 1branch © 5 tags

1 Pull requests () Actions [ Projects 07 wiki &) Security

Go to file

|~ Insights

®Unwatch ~ 3 v Star 9 ¥ Fork 2

« dlefess 7 hoursago O 40 commits

Initial commit for MICRO'21 artifact evaluation
Initial commit for MICRO'21 artifact evaluation
Github pages documentation

Added chart visualization in Excel template
Updated README

Initial commit for MICRO'21 artifact evaluation
Initial commit for MICRO'21 artifact evaluation
Added md5 checksum for all artifact traces to verify download
Initial commit for MICRO'21 artifact evaluation
Initial commit for MICRO'21 artifact evaluation
Initial commit for MICRO'21 artifact evaluation
Added citation file

Updated LICENSE

Initial commit for MICRO'21 artifact evaluation

2 months ago
2 months ago

7 hours ago
2 months ago

8 days ago
2 months ago
2 months ago
2 months ago
2 months ago
2 months ago
2 months ago

8 days ago
2 months ago

2 months ago
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A customizable hardware prefetching
framework using online reinforcement
learning as described in the MICRO
2021 paper by Bera and
Kanellopoulos et al.
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https://github.com/CMU-SAFARI/Pythia

Pythia Talk Video

Steering Pythia’s Objective via Reward Values

Strict Pythia configuration

Bandwidth-sensitive
workloads

MICRO 2021 Conference Presentations

Pythia: A Customizable Prefetching Framework Using Reinforcement Learning - MICRO"21 Long Talk
@ Onur Mutlp Lectures
> 289K subscribers

k22 GOP ~> Share 1 Download & clip
661 views 11 months ago

=+ Save

Talk: "Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning"
Full Conference Talk at MICRO 2021 by Rahul Bera

SAFARI



https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=8

A Lot More 1n the Pythia Paper

Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu,
"Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, October 2021.
[Slides (pptx) (pdf)]

[Short Talk Slides (pptx) (pdf)]

[Lightning Talk Slides (pptx) (pdf)]

[Talk Video (20 minutes)]

[Lightning Talk Video (1.5 minutes)]

[Pythia Source Code (Officially Artifact Evaluated with All Badges)]

[arXiv version]

Officially artifact evaluated as available, reusable and reproducible.

Pythia: A Customizable Hardware Prefetching Framework
Using Online Reinforcement Learning

Rahul Bera!  Konstantinos Kanellopoulos! ~ Anant V. Nori?  Taha Shahroodi>!
Sreenivas Subramoney?  Onur Mutlu!

IETH Ziirich  ?Processor Architecture Research Labs, Intel Labs  *TU Delft

https://arxiv.orqg/pdf/2109.12021.pdf 52
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Hermes: Perceptron-Based
Ott-Chip Load Prediction




Learning-Based Off-Chip LLoad Predictors

Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk Olgun,
Mohammad Sadrosadati, and Onur Mutlu,
"Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load

Prediction"

Proceedings of the 55th International Symposium on Microarchitecture (MICRO), Chicago, IL, USA,
October 2022.

[Slides (pptx) (pdf)]

[Longer Lecture Slides (pptx) (pdf)]

[Talk Video (12 minutes)]

[Lecture Video (25 minutes)]

[arXiv version]

[Source Code (Officially Artifact Evaluated with All Badges)]

Officially artifact evaluated as available, reusable and reproducible.

Best paper award at MICRO 2022.

Hermes: Accelerating Long-Latency Load Requests
via Perceptron-Based Off-Chip Load Prediction
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Ataberk Olgun'  Mohammad Sadrosadati’  Onur Mutlu®
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Hermes Talk Video

Hermes Overview ———
© Predict off-chip load predictor

= (porer)

Issue a
Hermes
request

© wait LS
MC | Main Memory!
Off-Chip
Main Memory

|
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|
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Saved stall cycles

Computer Architecture - Lecture 18: Cutting-Edge Research in Computer Architecture (Fall 2022)

2 Onur Mutlu Lectures - e - —
& ‘l’ < =
5;/’ 2 0K subscribere Analytics Edit video ik 23 GF £ Share Y Download & clip + Save

2.4K views Streamed 5 months ago Livestream - Computer Architecture - ETH Ziirich (Fall 2022)
Computer Architecture, ETH Ziirich, Fall 2022 (https://safari.ethz.ch/architecture/f...)
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Accelerating Long-Latency Load Requests
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Problem

Long-latency off-chip load requests

» 4

Often stall processor by
blocking instruction retirement from
Reorder Buffer (ROB)

¥

Limit performance

SAFARI 58




Traditional Solutions

.

IA:A

]

Employ sophisticated prefetchers

Increase size of on-chip caches

SAFARI



Key Observation 1

Many loads still go off-chip

50%
50% still go off-chip even with
a state-of-the-art prefetcher

successfully prefetched

70% of the off-chip loads
block the ROB

# off-chip loads without any prefetcher
SAFARI
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Key Observation 2 <\
4

On-chip cache access latency
significantly contributes to off-chip load latency

L1 | L2 LLC Main Memory

-

Saved cycles

40% of the stalls can be eliminated by removing

on-chip cache access latency from critical path

SAFARI 61



Caches are Getting Bigger and Slower...
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Our Goal

Improve processor performance
by removing on-chip cache access latency
from the critical path of off-chip loads

SAFARI
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Predicts which load requests
are likely to go off-chip

Starts fetching data directly from main memory
while concurrently accessing the cache hierarchy

SAFARI 8



Hermes: Key Contribution

Yo! -
e Hermes employs the first
perceptron-based off-chip load predictor

@,

That predicts which loads are likely to go off-chip

Q By learning from
multiple program context information

SAFARI 65



Hermes Overview

Core

L1-D

L2

Latency tolerance limit of ROB

.

Processor is stalled

»

!

L1

L2

LLC

Main Memory

[

LLC

MC

[ Main Memory

Off-Chip

SAFARI
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Hermes Overview
“ Predict off-chip load predictor

Perceptron-based

Train o i

Issue a
L2 Hermes
request

© it L1 | L2 LLC
Main Memory,

Saved stall cycles

Off-Chip |
Main Memory
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Designing the Off-Chip Load Predictor

POPET provides

both higher accuracy and higher performance
than predictors inspired from these previous works

Learning from program behavior

Correlate different program features with off-chip loads

@ Low storage overhead @ Low design complexity




POPET: Perceptron-Based Off-Chip Predictor

* Multi-feature hashed perceptron model™

- Each feature has its own weight table
 Stores correlation between feature value and off-chip prediction

Weight
(Feature; Table,

(e.g., PC+ offset)

CFeature, Tabiey
Table,

Weight

SAFAR’ [1] D. Tarjan and K. Skadron, “"Merging Path and Gshare Indexing in Perceptron Branch Prediction,” TACO, 2005 69



Predicting using POPET

* Usessimple table lookups, addition, and comparison

index | Weight
o) — @ 2| o |

(eg., PC+offset) ““5“ weight

Ox7ffe0+12

index | Weight wetght Predict that
- @ Tablez the load

ko]
(@)
°
)
<
-
S

L)
. tn
P
U > hash would go
S o Sum .
S Activation off-chip
S - Welghts
& - weight,
S
S . 5
-E. index | WVeight /-
§ o) — @ " T,

hash
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Training POPET

* Usessimple increment or decrement of feature weights

off-chip

L L Shouldn’t be activated

Cumulative weight < 7,

SAFARI 71



Evaluation



Simulation Methodology

* ChampSim trace driven simulator

* 110 single-core memory-intensive traces

- SPECCPU 2006 and 2017
- PARSEC2.1

- Ligra

- Real-world applications

* 220 eight-core memory-intensive trace mixes

LLC Prefetchers

Off-Chip Predictors

Pythia « History-based: HMP

Bingo  Tracking-based: Address Tag-
MLOP _ Tracking based Predictor (TTP)
SPP + Perceptron filter

SMS * ldeal Off-chip Predictor

SAFARI 73



Single-Core Performance Improvement

1.35

[
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|
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Geomean speedup
over the No-prefetching system
[
N
|
|

armace alana nraviidac naarhy

Hermes provides nearly 90% of performance benefit of

Ideal Hermes that has an ideal off-chip load predictor
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Increase in Main Memory Requests

For every 1% performance benefit,

Increase in main memory requests

Pythia 2%

Hermes on top of Pythia 1%

Hermes alone 0.5%

Hermes is more bandwidth-efficient

than even an efficient prefetcher like Pythia

SAFARI 75



Performance with Varying Memory Bandwidth

1.3 7 Pythia+Hermes

1.25 - -O —O
1.2 - /O/

1.15 -

1.1 4 4 ¢ ¢

1.05 -

Geomean speedup
over the No-prefetching system

0.9§5

O
Vo)

Hermes+Pythia outperforms Pythia

across all bandwidth configurations



Performance with Varying Baseline Prefetcher

O Prefetcher-only  m Prefetcher + Hermes

H
w

Ing system
2
N
(a
I

Hermes consistently improves performance
on top of a wide range of baseline prefetchers

Geomean speedup

Pythia Bingo SPP MLOP SMS

SAFARI
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Overhead of Hermes

4 KB storage overhead

1.5% power overhead*

*On top of an Intel Alder Lake-like performance-core %! configuration

SA FA R’ [2] https://www.anandtech.com/show/16881/a-deep-dive-into-intels-alder-lake-microarchitectures/3 /8
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A Lot More in the Hermes Paper

Hermes: Accelerating Long-Latency Load Requests
via Perceptron-Based Off-Chip Load Prediction

Rahul Bera!  Konstantinos Kanellopoulos®

Shankar Balachandran?  David Novo?

Ataberk Olgun!  Mohammad Sadrosadati’ ~ Onur Mutlu®

'ETH Ziirich %Intel Processor Architecture Research Lab 3LIRMM, Univ. Montpellier, CNRS

Long-latency load requests continue to limit the performance
of modern high-performance processors. To increase the latency
tolerance of a processor, architects have primarily relied on two
key techniques: sophisticated data prefetchers and large on-chip
caches. In this work, we show that: (1) even a sophisticated state-
of-the-art prefetcher can only predict half of the off-chip load
requests on average across a wide range of workloads, and (2)
due to the increasing size and complexity of on-chip caches, a
large fraction of the latency of an off-chip load request is spent
accessing the on-chip cache hierarchy to solely determine that it
needs to go off-chip.

The goal of this work is to accelerate off-chip load requests
by removing the on-chip cache access latency from their critical
path. To this end, we propose a new technique called Hermes,
whose key idea is to: (1) accurately predict which load requests

off-chip main memory (i.e., an off-chip load) often stalls the pro-
cessor core by blocking the instruction retirement from the re-
order buffer (ROB), thus limiting the core’s performance [88, 91,
92]. To increase the latency tolerance of a core, computer archi-
tects primarily rely on two key techniques. First, they employ
increasingly sophisticated hardware prefetchers that can learn
complex memory address patterns and fetch data required by
future load requests before the core demands them [28, 32,
33, 35, 75]. Second, they significantly scale up the size of the
on-chip cache hierarchy with each new generation of proces-
sors [10, 11, 16].

Key problem. Despite recent advances in processor core
design, we observe two key trends in new processor designs
that leave a significant opportunity for performance improve-
ment on the table. First, even a sophisticated state-of-the-art

https://arxiv.org/pdf/2209.00188. pdf

79


https://arxiv.org/pdf/2209.00188.pdf

A New Approach to Latency Reduction

Hermes advocates for off-chip load prediction,
a different form of speculation than
employed by prefetchers

Off-chip load prediction can be applied by itself
or combined with load address prediction
to provide performance improvement

SAFARI



Hermes: Summary

Hermes employs the first

perceptron-based off-chip load predictor

CX d

High accuracy | High coverage Low storage
overhead
(77%) (74%)
) ) (4KB/core) )
(A N

High performance improvement
over best prior baseline
(5.4%)

High performance
per bandwidth




Hermes is Open Source

All workload traces

13 prefetchers @ 9 off-chip predictors

« Stride [Fu+, MICRO'92]

e Streamer [Chen and Baer, IEEE TC'95] Predictor type  Description

¢ SMS [Somogyi+, ISCA'06] Base Always NO

e AMPM [Ishii+, ICS'09] Basic Simple confidence counter-based threshold

* Sandbox [PUQSIey+’ HPCA™ 4] Random Random Hit-miss predictor with a given positive probability
* BOP [MiChaUd’ HRCA™ 6] HMP-Local Hit-miss predictor [Yoaz+, ISCA'99] with local prediction

« SPP [Kim+, MICRO'16]

. . HMP-GShare Hit-miss predictor with GShare prediction
Bingo [Bakshalipour+, HPCA'19]

« SPP+PPF [Bhatia+, ISCA'19] HMP-GSkew Hit-miss predictor with GSkew prediction

« DSPatch [Bera+, MICRO'19] HMP-Ensemble  Hit-miss predictor with all three types combined
e MLOP [Shakerinava+, DPC-3'19] TTP Tag-tracking based predictor

¢ |PCP [Pakalapati+, ISCA'20] Perc Perceptron-based OCP used in this paper

Pythia [Bera+, MICRO'21]

SAFARI https://github.com/CMU-SAFARI/Hermes 82
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Easy To Define Your Own Off-Chip Predictor

» Just extend the OffchipPredBase class

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

SAFARI

class OffchipPredBase

{

public:

};

uint32_t cpu;

string type;

uinté4_t seed;

uint8_t dram_bw; // current DRAM bandwidth bucket

OffchipPredBase(uint32_t _cpu, string _type, uinté4_t _seed) : cpu(_cpu), type(_type), seed(_seed)
{
srand(seed);
dram_bw = 0;
}
~0ffchipPredBase() {}
void update_dram_bw(uint8_t _dram_bw) { dram_bw = _dram_bw; }

virtual void print_config();

virtual void dump_stats();

virtual void reset_stats();

virtual void train(ooo_model_instr xarch_instr, uint32_t data_index, LSQ_ENTRY xlg_entry);
virtual bool predict(ooo_model_instr xarch_instr, uint32_t data_index, LSQ_ENTRY xlqg_entry);

#endif /x OFFCHIP_PRED_BASE_H */

83



Easy To Define Your Own Off-Chip Predictor

» Define yourown train() and predict () functions

19 void OffchipPredBase::train(ooo_model_instr xarch_instr, uint32_t data_index, LSQ_ENTRY x1lq_entry)
20 A

21 // nothing to train

22}

23

24 bool OffchipPredBase: :predict(ooo_model_instr xarch_instr, uint32_t data_index, LSQ_ENTRY xlg_entry)
25 A

26 // predict randomly

27 // return (rand() % 2) ? true : false;
28 return false;

29 }

* Get statistics like accuracy (stat name precision) and
coverage (stat name recall) out of the box

Core_0O_offchip_pred_true_pos 2358716
Core_0O_offchip_pred_false_pos 276883
Core_0O_offchip_pred_false_neg 132145

Core_0O_offchip_pred_precision 89.49
Core_0O_offchip_pred_recall 94.69

SAFARI 84




Off-Chip Prediction Can Further Enable...

Prioritizing loads that are likely go off-chip
in cache queues and on-chip network routing

Better instruction scheduling
of data-dependent instructions

Other ideas to improve performance and
fairness in multi-core system design...

SAFARI
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Learning-Based Off-Chip LLoad Predictors
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DRAM Controller: Functions

Ensure correct operation of DRAM (refresh and timing)

Service DRAM requests while obeying timing constraints of
DRAM chips

o Constraints: resource conflicts (bank, bus, channel), minimum
write-to-read delays

o Translate requests to DRAM command sequences

Buffer and schedule requests for high performance + QoS
2 Reordering, row-buffer, bank, rank, bus management

Manage power consumption and thermals in DRAM
2 Turn on/off DRAM chips, manage power modes

SAFARI 20



Why Are DRAM Controllers Ditficult to Design?

Need to obey DRAM timing constraints for correctness
o There are many (50+) timing constraints in DRAM

o tWTR: Minimum number of cycles to wait before issuing a read
command after a write command is issued

2 tRC: Minimum number of cycles between the issuing of two
consecutive activate commands to the same bank

Q ...

Need to keep track of many resources to prevent conflicts
o Channels, banks, ranks, data bus, address bus, row buffers

Neec
Neec

Neec

to handle DRAM refresh
to manage power consumption
to optimize performance & QOS (in the presence of constraints)

o Reordering is not simple
o Fairness and QoS needs complicates the scheduling problem

SAFARI
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Many DRAM Timing Constraints

Latency lS}'mbol I DRAM cveles ” Latency I Svmbol I DRAM cyeles |

Precharge ‘RP 11 Activate to read/write *RCD 11

Read column address strobe CL 11 Write column address strobe CWL 8
Additive AL 0 Activate to activate *RC 39

Aetivate to precharge *RAS 28 Read to precharge ‘RTP 6

Burst length ‘BL - Column address strobe to column address strobe | “CC D -

Activate to activate (different bank) | * RRD 6 Four activate windows ‘FAW 24
Write to read ‘WTR 6 Write recovery 'WR 12

Table 4. DDR3 1600 DRAM timing specifications

= From Lee et al., "DRAM-Aware Last-Level Cache Writeback: Reducing
Write-Caused Interference in Memory Systems,” HPS Technical Report,
April 2010.

SAFARI )2



More on DRAM Operation

« Kim et al., “A Case for Exploiting Subarray-Level Parallelism
(SALP) in DRAM,"” ISCA 2012.

« Lee et al., “Tiered-Latency DRAM: A Low Latency and Low
Cost DRAM Architecture,” HPCA 2013.

Q! % Q
G 8! & Gi 5 Table 2. Timing Constraints (DDR3-1066) [43]
< o Qi <§ <
€ : tRC > Phase Commands Name Value
tRAS— > | <" tRP—| ACT — READ
: -’ ' time 2 tRCD 15
Subarray — 1. Activation 3. Prech. 1. Activation }———) 1 ACT — WRITE s
| ; ! ! 3
Peripheral & <tRCD> fz}[fa—f' ! «tRCD- ‘:_‘ﬁ.g‘w—f}: time ACT — PRE tRAS 37.5ns
I/O-Circuitry Rl e READ — data tCL 15ns
fetCL~> “—tCL—> B oo 2 WRITE—data tCWL  11.25ns
time
' : : : data burst tBL 7.5ns
. L) s 3 PRE— ACT tRP  15ms
«first access latency— | i tRC
second access latency > | 1&3 ACT — ACT (tRAS+£RP) 52.5ns

Figure 5. Three Phases of DRAM Access
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DRAM Scheduling Policies (1)

FCFS (first come first served)
2 Oldest request first

FR-FCFS (first ready, first come first served)
1. Row-hit first
2. Oldest first
Goal: Maximize row buffer hit rate > maximize DRAM throughput

SAFARI



DRAM Scheduling Policies (II)

A scheduling policy is a request prioritization order

Prioritization can be based on

a2 Request age

Row buffer hit/miss status

Request type (prefetch, read, write)

Requestor type (load miss or store miss)

Request criticality
Oldest miss in the core?
How many instructions in core are dependent on it?
Will it stall the processor?

o Interference caused to other cores

o U U 0

SAFARI
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Memory Performance Attacks [USENIX SEC07]

Thomas Moscibroda and Onur Mutlu,

"Memory Performance Attacks: Denial of Memory Service
in Multi-Core Systems"

Proceedings of the 16th USENIX Security Symposium (USENIX
SECURITY), pages 257-274, Boston, MA, August 2007. Slides
(ppt)

Memory Performance Attacks:
Denial of Memory Service in Multi-Core Systems

Thomas Moscibroda Onur Mutlu

Microsoft Research
{moscitho,onur } @microsoft.com
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http://users.ece.cmu.edu/~omutlu/pub/mph_usenix_security07.pdf
http://users.ece.cmu.edu/~omutlu/pub/mph_usenix_security07.pdf
http://www.usenix.org/events/sec07/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_usenix-security07_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/mutlu_usenix-security07_talk.ppt

STFM MICRO07]

Onur Mutlu and Thomas Moscibroda,

"Stall-Time Fair Memory Access Scheduling for Chip
Multiprocessors”

Proceedings of the 40th International Symposium on
Microarchitecture (MICRO), pages 146-158, Chicago, IL,
December 2007. [Summary] [Slides (ppt)]

Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors

Onur Mutlu Thomas Moscibroda

Microsoft Research
{onur,moscitho } @microsoft.com


http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.microarch.org/micro40/
http://www.microarch.org/micro40/
http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/mutlu_micro07_talk.ppt

PAR-BS [scaos)

Onur Mutlu and Thomas Moscibroda,

"Parallelism-Aware Batch Scheduling: Enhancing both
Performance and Fairness of Shared DRAM Systems"
Proceedings of the 35th International Symposium on Computer
Architecture (ISCA), pages 63-74, Beijing, China, June 2008.
[Summary] [Slides (ppt)]

Parallelism-Aware Batch Scheduling:
Enhancing both Performance and Fairness of Shared DRAM Systems

Onur Mutlu Thomas Moscibroda
Microsotft Research
fonur,moscitho } @microsoft.com


http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca08_talk.ppt

On PAR-BS

Variants implemented in Samsung SoC memory controllers

Effective platform level approach and DRAM accesses are
crucial to system performance. This paper touches this
topics and suggest a superior approach to current known

techniques. Review from ISCA 2008



ATLAS Memory Scheduler (HPCA*10]

Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter,
"ATLAS: A Scalable and High-Performance Scheduling
Algorithm for Multiple Memory Controllers”

Proceedings of the 16th International Symposium on High-

Performance Computer Architecture (HPCA), Bangalore, India,
January 2010. Slides (pptx)

ATLAS: A Scalable and High-Performance Scheduling Algorithm
for Multiple Memory Controllers

Yoongu Kim Dongsu Han Onur Mutlu Mor Harchol-Balter

Carnegie Mellon University


http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://www.cse.psu.edu/hpcl/hpca16.html
http://www.cse.psu.edu/hpcl/hpca16.html
http://users.ece.cmu.edu/~omutlu/pub/kim_hpca10_talk.pptx

Thread Cluster Memory Scheduling [MicrO’10]

Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-
Balter,

"Thread Cluster Memory Scheduling: Exploiting
Differences in Memory Access Behavior"

Proceedings of the 43rd International Symposium on
Microarchitecture (MICRO), pages 65-76, Atlanta, GA,
December 2010. Slides (pptx) (pdf)

Thread Cluster Memory Scheduling:
Exploiting Differences in Memory Access Behavior

Yoongu Kim Michael Papamichael Onur Mutlu Mor Harchol-Balter
yoonguk@ece.cmu.edu papamix@cs.cmu.edu onur@cmu.edu harchol@cs.cmu.edu

Carnegie Mellon University


http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://www.microarch.org/micro43/
http://www.microarch.org/micro43/
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pdf

BLISS [ccpi4, TPDS 16]

Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha
Rastogi, and Onur Mutlu,

"The Blacklisting Memory Scheduler: Achieving High
Performance and Fairness at Low Cost"

Proceedings of the 32nd IEEE International Conference on
Computer Design (ICCD), Seoul, South Korea, October 2014.
[Slides (pptx) (pdf)]

The Blacklisting Memory Scheduler:
Achieving High Performance and Fairness at Low Cost

Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha Rastogi, Onur Mutlu
Carnegie Mellon University
{lsubrama,dunghyul vise sh,harshar,ﬂnur} @cmu.edu
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http://users.ece.cmu.edu/~omutlu/pub/bliss-memory-scheduler_iccd14.pdf
http://users.ece.cmu.edu/~omutlu/pub/bliss-memory-scheduler_iccd14.pdf
http://www.iccd-conf.com/
http://www.iccd-conf.com/
http://users.ece.cmu.edu/~omutlu/pub/bliss_lavanya_iccd14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/bliss_lavanya_iccd14-talk.pdf

Staged Memory Scheduling: CPU-GPU [1scA’12]

= Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian,
Gabriel Loh, and Onur Mutlu,
"Staged Memory Scheduling: Achieving High
Performance and Scalability in Heterogeneous Systems"”
Proceedings of the 39th International Symposium on Computer
Architecture (ISCA), Portland, OR, June 2012. Slides (pptx)

Staged Memory Scheduling: Achieving High Performance and Scalability
in Heterogeneous Systems
Rachata Ausavarungnirun’ Kevin Kai-Wei Chang' Lavanya Subramanian® Gabriel H. Loh* Onur Mutlu’

"Carnegie Mellon University *Advanced Micro Devices, Inc.
{rachata,kevincha,lsubrama,onur} @cmu.edu gabe.loh@amd.com
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http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://isca2012.ittc.ku.edu/
http://isca2012.ittc.ku.edu/
http://users.ece.cmu.edu/~omutlu/pub/rachata_isca12_talk.pptx

DASH: Heterogeneous Systems [TACO’16]

= Hiroyuki Usui, Lavanya Subramanian, Kevin Kai-Wei Chang, and
Onur Mutluy,
"DASH: Deadline-Aware High-Performance Memory
Scheduler for Heterogeneous Systems with Hardware
Accelerators"
ACM Transactions on Architecture and Code Optimization (TACO),
Vol. 12, January 2016.
Presented at the 11th HIPEAC Conference, Prague, Czech Repubilic,
January 2016.
[Slides (pptx) (pdf)]
[Source Code]

DASH: Deadline-Aware High-Performance Memory Scheduler
for Heterogeneous Systems with Hardware Accelerators

HIROYUKI USUI, LAVANYA SUBRAMANIAN, KEVIN KAI-WEI CHANG,
and ONUR MUTLU, Carnegie Mellon University
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https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_taco16.pdf
https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_taco16.pdf
https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_taco16.pdf
http://taco.acm.org/
https://www.hipeac.net/2016/prague/
https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_usui_hipeac16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_usui_hipeac16-talk.pdf
https://github.com/CMU-SAFARI/HWASim

MISE: Predictable Performance [HpPca’13]

= Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen,
and Onur Mutlu,
"MISE: Providing Performance Predictability and
Improving Fairness in Shared Main Memory Systems"”
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, Ching,
February 2013. Slides (pptx)

MISE: Providing Performance Predictability and Improving Fairness
in Shared Main Memory Systems

Lavanya Subramanian ~ Vivek Seshadri ~ Yoongu Kim  Ben Jaiyen =~ Onur Mutlu

Carnegie Mellon University
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http://users.ece.cmu.edu/~omutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_hpca13_talk.pptx

ASM: Predictable Performance [MICRO15]

Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and
Onur Mutlu,

"The Application Slowdown Model: Quantifying and Controlling
the Impact of Inter-Application Interference at Shared Caches
and Main Memory"

Proceedings of the 48th International Symposium on Microarchitecture
(MICRO), Waikiki, Hawaii, USA, December 2015.

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster
(pptx) (pdf)]

[Source Code]

The Application Slowdown Model: Quantifying and Controlling the Impact
of Inter-Application Interference at Shared Caches and Main Memory

Lavanya Subramanian®*§  Vivek Seshadri* Arnab Ghosh*1
Samira Khan** Onur Mutlu*

*Carnegie Mellon University §Intel Labs 'IIT Kanpur #University of Virginia
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https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
http://www.microarch.org/micro48/
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pdf
https://github.com/CMU-SAFARI/ASMSim

The Future

Memory Controllers
are critical to research

They will become
even more Important
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Memory Control 1s Getting More Complex

CPU CPU CPU CPU

HWA HWA

Shared Cache

T
DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

= Heterogeneous agents: CPUs, GPUs, and HWAs
= Main memory interference between CPUs, GPUs, HWAs

Many goals, many constraints, many metrics ...

SAFARI



Reality and Dream

Reality: It is difficult to design a policy that maximizes
performance, QoS, energy-efficiency, ...

2 Too many things to think about

2 Continuously changing workload and system behavior

Dream: Wouldn't it be nice if the DRAM controller
automatically found a good scheduling policy on its own?
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Selt-Optimizing DRAM Controllers

Problem: DRAM controllers are difficult to design

o Itis difficult for human designers to design a policy that can adapt
itself very well to different workloads and different system conditions

Idea: A memory controller that adapts its scheduling policy to
workload behavior and system conditions using machine learning.

Observation: Reinforcement learning maps nicely to memory
control.

Design: Memory controller is a reinforcement learning agent

o It dynamically and continuously learns and employs the best
scheduling policy to maximize long-term performance.

SAFARI Ipek+, “Self Optimizing Memory Controllers: A Reinforcement Learning Approach,” ISCA 2008.



Selt-Optimizing DRAM Controllers

" ENVIRONMENT

<+— Reward r(t)
< State s(t)

Goal: Learn to choose actions to maximize ro + yry + y2r, + ... (0 <y < 1)

Action a(t+1) Agent

Figure 2: (a) Intelligent agent based on reinforcement learning
principles;


http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/

Selt-Optimizing DRAM Controllers

Dynamically adapt the memory scheduling policy via
interaction with the system at runtime

o Associate system states and actions (commands) with long term
reward values: each action at a given state leads to a learned reward

o Schedule command with highest estimated long-term reward value in
each state

o Continuously update reward values for <state, action> pairs based on
feedback from system

'I SYSTEM '
Data Bus
Scheduled DRAM Utilization (t)
Command (t+1) Scheduler State
Attributes ()

SAFARI 12




Selt-Optimizing DRAM Controllers

= Engin Ipek, Onur Mutlu, José F. Martinez, and Rich Caruana,
"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach”
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA ), pages 39-50, Beijing, China, June 2008.

State ion

gL

/

Command

Transaction Queue

// ~

-~ ~
-~ ~
-~ ~

Address

P R %
Valid | Bank | Row | Col | Data quta“tzs' Reward

Figure 4: High-level overview of an RL-based scheduler.
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http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

States, Actions, Rewards

® Reward function ® State attributes ® Actions

* +1 for scheduling *  Number of reads, * Activate
Read and Write writes, and load . Writ
commands misses in e

. 0 at all other transaction queue * Read - load miss
times *  Number of pending * Read - store miss

Goal is t . writes and ROB . _

oalo:;sg_cgeTn?xmze heads waiting for Precharge - pending
data bus referenced row * Precharge - preemptive
utilization * Request’s relative e NOP
ROB order
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Performance Results
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Figure 7: Performance comparison of in-order, FR-FCFS, RL-based, and optimistic memory controllers

Large, robust performance improvements
over many human-designed policies

220 -
CZam
g & 180
o e 16D 1,39
.s. E 140 1.19
1.20 Lo
g 5o = 1 | ‘=
=% E 0.80
wog
- EQUAKE OCEAN RADIX SCALPARC SWIM G-MEAN
BFR-FCFS-1Channel ®ARL-1Channel W FR-FCFS-2 Channels HERL -2 Channels

Figure 15: Performance comparison of FR-FCFS and RL-based memory controllers on systems with 6.4GB Js and 12.8GB /s peak
DRAM bandwidth
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Selt Optimizing DRAM Controllers

+ Continuous learning in the presence of changing environment

+ Reduced designer burden in finding a good scheduling policy.
Designer specifies:

1) What system variables might be useful
2) What target to optimize, but not how to optimize it

-- How to specify different objectives? (e.g., fairness, QosS, ...)
-- Hardware complexity?

-- Design mindset and flow
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More on Selt-Optimizing DRAM Controllers (I)

= Engin Ipek, Onur Mutlu, José F. Martinez, and Rich Caruana,

"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach”

Proceedings of the 35th International Symposium on Computer Architecture
(ISCA ), pages 39-50, Beijing, China, June 2008.

Self-Optimizing Memory Controllers: A Reinforcement Learning Approach

Engin Ipek!2  Onur Mutlu?  José F. Martinez!  Rich Caruana!

ICornell University, Ithaca, NY 14850 USA
2 Microsoft Research, Redmond, WA 98052 USA
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http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

More on Selt-Optimizing DRAM Controllers (1I)

= Janani Mukundan and José F. Martinez
“"MORSE: Multi-Objective Reconfigurable Self-Optimizing Memory Scheduler”
Proceedings of the 18th International Symposium on High Performance
Computer Architecture (HPCA), New Orleans, Louisiana, February 2012.

MORSE: Multi-objective Reconfigurable
Self-optimizing Memory Scheduler

Janani Mukundan José F. Martinez

Computer Systems Laboratory
Cornell University
lthaca, NY, 14850 USA

http://m3.csl.cornell.edu/
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The Future

Memory Controllers
are critical to research

They will become
even more Important
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Sibyl: Reinforcement Learning based
Data Placement in Hybrid SSDs




Selt-Optimizing Hybrid SSD Controllers

Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar,
David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu,
"Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage
Systems Using Online Reinforcement Learning"

Proceedings of the 49th International Symposium on Computer

Architecture (ISCA), New York, June 2022.

[Slides (pptx) (pdf)]

[arXiv version]

[Sibyl Source Code]

[Talk Video (16 minutes)]

Sibyl: Adaptive and Extensible Data Placement in
Hybrid Storage Systems Using Online Reinforcement Learning

Gagandeep Singh!  Rakesh Nadig!  Jisung Park’ = Rahul Bera' = Nastaran Hajinazar'
David Novo®  Juan Gémez-Luna!  Sander Stuijk®  Henk Corporaal?  Onur Mutlu!

1ETH Ziirich 2Eindhoven University of Technology 3SLIRMM, Univ. Montpellier, CNRS

https://arxiv.orqg/pdf/2205.07394.pdf 121


https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
http://iscaconf.org/isca2022/
http://iscaconf.org/isca2022/
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pdf
https://arxiv.org/pdf/2205.07394.pdf
https://github.com/CMU-SAFARI/Sibyl
https://www.youtube.com/watch?v=5-WedkiB000
https://arxiv.org/pdf/2205.07394.pdf

Sibyl

Adaptive and Extensible Data Placement
in Hybrid Storage Systems
Using Online Reinforcement Learning

Gagandeep Singh, Rakesh Nadig, Jisung Park,
Rahul Bera, Nastaran Hajinazar, David Novo,
Juan GAomez Luna, Sander Stuijk, Henk Corporaal,
Onur Mutlu
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Executive Summary

* Background: A hybrid storage system (HSS) uses multiple different storage devices to
provide high and scalable storage capacity at high performance

* Problem: Two key shortcomings of prior data placement policies:
- Lack of adaptivity to:
* Workload changes
* Changes in device types and configurations
- Lack of extensibility to more devices

: Design a data placement technique that provides:
, by to the

to incorporate a wide range of hybrid storage configurations
e Contribution: Sibyl, the first reinforcement learning-based data placement technique in
hybrid storage systems that:
- Provides adaptivity to changing workload demands and underlying device characteristics
- Can easily extend to any number of storage devices
- Provides ease of design and implementation that requires only a small computation overhead

* Key Results: Evaluate on real systems using a wide range of workloads

- Sibyl improves performance by 21.6% compared to the best previous data placement technique in
dual-HSS configuration

- In a tri-HSS configuration, Sibyl outperforms the state-of-the-art-policy policy by 48.2%
- Sibyl achieves 80% of the performance of an oracle policy with storage overhead of only 124.4 KiB

SAFARI https://github.com/CMU-SAFARI/Sibyl 123


https://github.com/CMU-SAFARI/Sibyl

Hybrid Storage System Basics
Address Space (Application/File System View)

[ Logical Pages J
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Read | Write
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J Eviction \ -l T
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Slow Device

Hybrid Storage System
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Hybrid Storage System Basics

Performance of a hybrid storage system
highly depends on the

storage management layer’s ability to

manage diverse devices and workloads
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Key Shortcomings in Prior Techniques

We observe two key shortcomings that significantly
limit the performance benefits of prior techniques

1. Lack of adaptivity to:
a) Workload changes
b) Changes in device types and configuration

2. Lack of extensibility to more devices
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Lack of Extensibility (1/2)

Rigid techniques that require significant effort to
accommodate more than two devices

Change in storage configuration
A INE | 1_1’\,,:‘"/}"'§-/‘ | EEEER S

4 )
| D e Ifmr s o - , l
\_ Dual-HSS Y,
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Lack of Extensibility (2/2)

Rigid techniques that require significant effort to
accommodate more than two devices

Change in storage configuration Design a new policy
WAL »21‘ \/'I/ - EEEEER ¥ B

) INTEL" OPTANE” §

\_ Tri-HSS
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Our Goal

-
A data-placement mechanism

that can provide:

1.Adaptivity, by continuously learning and
adapting to the application and underlying
device characteristics

2.Easy extensibility to incorporate a wide
range of hybrid storage configurations

\_

J

SAFARI
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Our Proposal

Sibyl

Formulates data placement in
hybrid storage systems as a
reinforcement learning problem

Sibyl is an oracle that makes accurate prophecies

S A FA R’ https.//en.wikipedia.org/wiki/Sibyl 1 30



Basics of Reinforcement Learning (RL)

| Agent \

[ Environment ]

Agent learns to take an action in a given state
to maximize a numerical reward
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Formulating Data Placement as RL

>[ Agent }
| 1 |
State (S,) Reward (R,,,) Action (A,)

{ Environment ]<

>[ Sibyl }
1

Features of the Request latency Select storage device to

current request (of last served request) ~ place the current page
and system I

‘ ( Hybrid Storage }

L System
SAFARI 132




Sibyl ]—‘
A

Request latency  Select storage

W i ?
hat is State?
‘request and (of last served device to place

* Limited number of state features: uen 7 )  tecmenoe
H brld Storage
- Reduce the implementation overhead \_| e ]'—‘
- RL agent is more sensitive to reward

| the current

* 6-dimensional vector of state features

Oy = (sizey, typey, intry, cnty, capy, curry)

* We quantize the state representation into bins to
reduce storage overhead
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Sibyl

What is Reward? IS S\) —
(of last serveq
°q_uest£

equest laten
the current q Y  Select storage

request and device to place

* Defines the objective of Sibyl system

Hybrid Storage
System

e We formulate the reward as a function of the
request latency

the current page

* Encapsulates three key aspects:

- Internal state of the device (e.g., read/write latencies, the
latency of garbage collection, queuing delays, ...)

- Throughput
- Evictions

* More details in the paper
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Features of

Request latene ™ S
the current q N(-

® ® ?
request and (of last served d’ewce to plade

* At every new page request, the sysrem i | ooe

Hyb r|d Storage

action is to select a storage device System

e Action can be easily extended to any number of
storage devices

* Sibyl evicts a page when the fast device utilization is
100%

* Sibyl promotes a page when there is an update from
the application
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Talk Outline

Sibyl: Overview
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Sibyl Execution

s \
RL Training
Thread
\ * | )
State, Reward, '\ \

and Action \

N

Periodic Policy

Information 1 Weight Update
Storage 4 ~
Request _L__o RL Decision
(from OS) Thread

SAFARI

/

\
\ Sibyl

/

Asynchronous
Execution

Data

ﬁ Placement

Decision
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Sibyl Design: Overview

~

RL Training

Trainin —
Networ | Training L Batch Thread
QO Dataset J

Periodic Policy
\_ Weight Update

a ,

-

Experience Buffer
(in host DRAM)
State O Max Action

Storage Inference Sib .
yl Policy
Request _E)bservatioﬂ‘ \_ Network Vi v v

(from OS) ) Reward ( Collect
Vector [ HSS ] "| Experiences

\__ se J

J
RL Decisioh
Thread
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RL Decision Thread

/ RL Decision
4 I
Experience Buffer T
(in host DRAM)
State O Max Action

Storage Inference Sib .
yl Policy
Request {Observationl \_Network L

Reward Collect
[ HSS } {Expgrigrﬁces]

W sie J
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RL Decision Thread

/ RL Decisioh

Thread

State

Storage
Request [[Observation
(from OS) Vector

\_ sute /
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RL Decision Thread

/ RL Decisioh

e I Thread

State % Max Action

\ l{,‘;‘f\;’eg‘r‘f(e sibyl Policy )

- -

\_ /

SAFARI 141



RL Decision Thread

/ RL Decisioh

Thread
—
Storage
Request [[Observation ] Reward (
(from OS)||  vector [ HSS ] :LExggrlilgﬁges]
K State /
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RL Decision Thread

/ - RL Decision
Experience Buffer Thread
(in host DRAM)

Storage
Request ||Observation ] Reward (
(from OS)||  vector [ HSS ] :LExggrlilgﬁges]

\_ sute /
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RL Training Thread

6 Trainin — RL Training\
Networ %@ | Training |___ Batch Thread
O Dataset )
Periodic Policy
\_ Weight Update Vi

/ RL Decision

Experience Buffer AT
(in host DRAM)

\_ /
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Periodic Weight Transfer

~

RL Training

Trainin : —
Netwoﬁd Training L Batch Thread
- O [ Dataset

Periodic Policy :
\_Weight Update

~

J
RL Decisioh

]

I

A Y ™\ Thread

: Experience Buffer

- (in host DRAM)

I
Storage 1 Inference 1 . .

1 Sibyl Policy
Request ||Observation \}_I\le;C\/_VC_)rl(_j . - ] Reward ( )
(from OS)||  vector [ HSS ] :LExggrlilgﬁEes]
K State /
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Evaluation Methodology (1/3)

* Real system with various HSS configurations
- Dual-hybrid and tri-hybrid systems

AMD Ryzen7  _
2700G CPU

I\ B

Intel Optane
SSD P4800X

&

e AN A * -~ )
Seagate HDD = O

ST1000DM010 =
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Evaluation Methodology (2/3)
Cost-Oriented HSS Configuration

B

) INTEL" OPTANE™ ¢

High-end SSD Low-end HDD

Performance-Oriented HSS Configuration

e ~ ~
i D INTEL” OPTANE
f
) o

() (o)
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Evaluation Methodology (3/3)

» 18 different workloads from:
- MSR Cambridge and Filebench Suites

* Four state-of-the-art data placement baselines:

S DE Heuristic-based
- HPS :>- euristic-base
- Archivist

}- Learning-based

- RNN-HSS
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Performance Analysis
Cost-Oriented HSS Configuration

[1Slow-Only[] CDE [] HPS [JArchivist [ RNN-HSS [ Sibyl [l Oracle

-

 High-endSSD  Low-end HDD

o 200

9 >

C 2150 - -

23 w | il

< ®100 - | I-{H -

Q +

< 8 5ol 1 - \ (il

€9 I il | I | I 1l s

o= ’ o 0 0 % 0O 1 .5 4

< N
((\/ S ‘(\/ O\’ O\’ O\’ s‘/ s‘ c‘\o/ xO- ot~ esl/ A\ P N
O (“6 Q Q( Q( Q( Q"' de 9( S N Q‘é ¢‘6
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Performance Analysis .ﬁ }
Cost-Oriented HSS Configuration

" High-end SSD Low~em7/-lb

[] Sibyl [ Oracle

o 200
>

C 2150

Z

< ®100

Eg 50 1 :
m 5

P %> 0 % .0 .17 .D O 5% 0O O 5~ O 1 Ao \‘C‘)

N A9 O™ 0V 0V 0N N N N o‘\o/ xO7 7N’ 0 B

Sibyl consistently outperforms all the baselines
for all the workloads
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]

Performance Analysis = 0

Performance-Oriented HSS Configuration

[1Slow-Only ] CDE [] HPS []Archivist [ RNN-HSS [] Sibyl [ Oracle

un

~
[

W
|

|

|

1

|

Normalized Average
qutlj_'es’lc\)Latency
I |
:
=
-
——
-
x —
1 -
: =
x
B=
—
— 1
.
-

+ 0. %.0.72.% .0 % 0.0 3% O 1 3 (©
“‘(\ /,‘(\69/ Q((\ /Q (O\’ (O\ /Q (O\ /Q(P‘ /Q(.,S :9(8(\ /6((:\'/ 9‘9/ 09( -, 604 /\“o\o s »
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=

Performance Analysis = 0
" High-endSSD ~ Mid-end S5

Performance-Oriented HSS Configuration

[] Sibyl [ Oracle

un

~

Normalized Average
Request Latency
O = N
)
2

w

| | | | | | | | | | | | | |
» 0 5% .0 .72 .% O A
s SO~ ’ -, -, , -, P PR W ’ ., N
W7 ¢ O O 'Q(P‘ QdS @«3“ I N O

Sibyl provides 21.6% performance improvement by
dynamically adapting its data placement policy
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e o)
|
‘%@
©

Performance Analysis = O

Performance-Oriented HSS Configuration

[] Sibyl [ Oracle

un

o

© 04

)

353

Q +

NT

S

B&JO | | | | | | | | | | | | | |
=2 % 0 A v .

. 0 . * 0 s
7 827 (7 0V (0 (0N N - - (:&/ xO- ot~ 04/ e®

Sibyl achieves 80% of the performance
of an oracle policy that has
complete knowledge of future access patterns
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Performance on Tri-HSS s J«HQ

High-end SSD  Mlid-end SSD Lowend HDD

Extending Sibyl for more devices:
1. Add a new action
2. Add the remaining capacity of the new device as a
state feature

- Heu ristiCTrl -hybrid

10

]ll ” |I|| |

/ / / / ( /

— |
!

Normalized Average
Request Latency

Y o
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Performance on Tri-HSS gmmm—

High-end SSD  Mid-end SSD Lowend HDD

Extending Sibyl for more devices:
1. Add a new action
2. Add the remaining capacity of the new device as a
state feature

[ Heuristicrppig L SiPYlrinybrid

% 10

© 3

S g

53 5

5 n

g g . " m|w mn

= 2o | | | 1 | | l

S v O A RN o9 o S
-, -, ’ / / ( P Ny
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Performance on Tri- HSS[m-» > /4 ﬁ}

High-end SSD  Mid-end SSD Low-end HD

Sibyl outperforms the state-of-the-art
data placement policy by
48.2% in a real tri-hybrid system

Sibyl reduces the system architect's burden
by providing ease of extensibility
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Sibyl's Overhead

* 124.4 KiB of total storage cost
- Experience buffer, inference and training network

* 40-bit metadata overhead per page for state features
* Inference latency of ~10ns

* Training latency of ~2us

v Small inference overhead

« Satisfies prediction latency
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More in the Paper (1/3)

* Throughput (IOPS) evaluation

- Sibyl provides high IOPS compared to baseline policies because it
indirectly captures throughput (size/latency)

* Evaluation on
- Sibyl can its policy to highly dynamic workloads

e Evaluation on mixed workloads

- Sibyl provides equally-high performance benefits as in single
workloads
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More in the Paper (2/3)

e Evaluation on different features

- Sibyl autonomously decides which features are important to
maximize the performance

e Evaluation with different hyperparameter values

* Sensitivity to fast storage capacity
- Sibyl provides scalability by dynamically adapting its policy to
available storage size

of Sibyl's decision making
for different workload characteristics and
device configurations
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More in the Paper (3/3)

Sibyl: Adaptive and Extensible Data Placement in
Hybrid Storage Systems Using Online Reinforcement Learning
Gagandeep Singh!  Rakesh Nadig'  Jisung Park! = Rahul Bera! = Nastaran Hajinazar!
David Novo®  Juan Gémez-Luna'  Sander Stuijk?  Henk Corporaal?  Onur Mutlu!
'ETH Ziirich 2Eindhoven University of Technology SLIRMM, Univ. Montpellier, CNRS

https://arxiv.org/pdf/2205.07394. pdf

https://github.com/CMU-SAFARI/Sibyl
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https://arxiv.org/pdf/2205.07394.pdf
https://github.com/CMU-SAFARI/Sibyl

Conclusion

* We introduced Sibyl, the first reinforcement learning-
based data placement technique in hybrid storage
systems that provides

- Adaptivity
- Easily extensibility
- Ease of design and implementation

*We evaluated Sibyl on real systems using many
different workloads

- Sibyl improves performance by 21.6% compared to the best prior
data placement policy in a dual-HSS configuration

- In a tri-HSS configuration, Sibyl outperforms the state-of-the-art-
data placement policy by 48.2%

- Sibyl achieves of an oracle policy with a
storage overhead of only

SAFARI https://github.com/CMU-SAFARI/Sibyl 161


https://github.com/CMU-SAFARI/Sibyl

Major Directions

» Consider other optimization objectives
- Energy consumption, endurance of storage devices.....
- Design better reward structures

* Optimize data migration in hybrid storage systems

- Explore machine learning (ML) techniques to make
data migration adaptive and extensible

- How do we coordinate multiple ML techniques?

« How do we improve these policies in other
heterogeneous memory systems?
- DRAM + NVM, CPU Caches + DRAM
- Design RL models keeping latency constraints in mind
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ISCA 2022 Paper, Slides, Videos

Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar,
David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu,
"Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage
Systems Using Online Reinforcement Learning"

Proceedings of the 49th International Symposium on Computer

Architecture (ISCA), New York, June 2022.

[Slides (pptx) (pdf)]

[arXiv version]

[Sibyl Source Code]

[Talk Video (16 minutes)]

Sibyl: Adaptive and Extensible Data Placement in
Hybrid Storage Systems Using Online Reinforcement Learning

Gagandeep Singh!  Rakesh Nadig!  Jisung Park’ = Rahul Bera' = Nastaran Hajinazar'
David Novo®  Juan Gémez-Luna!  Sander Stuijk®  Henk Corporaal?  Onur Mutlu!

1ETH Ziirich 2Eindhoven University of Technology 3SLIRMM, Univ. Montpellier, CNRS

https://arxiv.or df/2205.07394.pdf 163


https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
http://iscaconf.org/isca2022/
http://iscaconf.org/isca2022/
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pdf
https://arxiv.org/pdf/2205.07394.pdf
https://github.com/CMU-SAFARI/Sibyl
https://www.youtube.com/watch?v=5-WedkiB000
https://arxiv.org/pdf/2205.07394.pdf

SSD Course (Spring 2023)

e[

D)

= A die (or chip) contains multiple (e.g., 2 — 4) planes

= Spring 2023 Edition:

o https://safari.ethz.ch/projects and seminars/spring2023/
doku.php?id=modern_ssds

= Fall 2022 Edition:

o https://safari.ethz.ch/projects and seminars/fall2022/do
ku.php?id=modern_ssds

= Youtube Livestream (Spring 2023):

a  https://www.youtube.com/watch?v=4VTwOMmsnJY&list

=PL5Q2s0XY2Zi 8qOM5Icpp8hB2SHtM4z57&pp=iAQB
= Youtube Livestream (Fall 2022):

o https://www.youtube.com/watch?v=hgLrd-
Uj0aU&list=PL50Q2s0XY2Zi9BJhenUg4JI15bwhAMpAp13&p
p=iAQB

= Project course

Taken by Bachelor's/Master’s students
SSD Basics and Advanced Topics
Hands-on research exploration

Many research readings

0o 0o 0O O

Watch on [0 YouTube

___ Row/Column Decoders ____

i

/= Planes share decoders:

limits internal parallelism

Fall 2022 Meetings/Schedule

Week Date
w1 06.10
w2 12.10
wa 19.10
w4 26.10
ws 02.11
wé 09.11
w7 231
wa 30.11
we 14.12

W10 | 04.01.2023

wit | 11.01

https: //www.youtube.com/onurmutlulectures

wi2 | 2501

Livestream

Yol Live

Youfll) Live

Youl [ Live

Yool Live

Youll) Live

Yol Live

YofllD Live

Youfll) Live

Yol Premiere

Youf ) Live

Wil Premiers

(only operations @ the
same WL offset)

Meeting

M1: P&S Course Presentation
@aPDF s PPT

M2: Basics of NAND Flash-
Based SSDs

aaPDF 5 PPT

M3: NAND Flash Read/Write
Operations

aaPOF m PPT

M4: Processing inside NAND
Flash

aaPDF ma PPT

M5: Advanced NAND Flash
Commands & Mapping
aaPDF ga PPT

MB6: Processing inside Storage
xa PDF wm PPT

M7: Address Mapping &
Garbage Collection

aaPDF maPPT

M8: Introduction to MQSim
aaPDF maPPT

Learning
Materials
Required
Recommended

Required
Recommended

Required
Recommended

M3: Fine-Grained Mapping and equire

Muiti-Plane Operation-Aware
Block Management

anPDF ma PPT

M10a: NAND Flash Basics
aaPDF ma PPT

M10b: Reducing Solid-State
Drive Read Latency by
Optimizing Read-Retry
aaPOF ma PPT aaPaper
M10c: Evanesco: Architectural
Support for Efficient Data
Sanitization in Modern Flash-
Based Storage Systems

& PDF @ PPT aaPaper
M10d: DeepSketch: A New
Machine Leaming-Based
Refarenca Search Technique
for Post-Deduplication Delta
Compression

aaPDF ma PPT aaPaper

M11: FLIN: Enabling Faimess
and Enhancing Performance in
Modern NVMe Solid Stats
Drives

auPDF mPPT

M12: Flash Memory and Solid-
State Drives

@ PDF 1 PPT

Required


https://safari.ethz.ch/projects_and_seminars/spring2023/doku.php?id=modern_ssds
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https://safari.ethz.ch/projects_and_seminars/spring2023/doku.php?id=modern_ssds
https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=modern_ssds
https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=modern_ssds
https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=modern_ssds
https://www.youtube.com/watch?v=4VTwOMmsnJY&list=PL5Q2soXY2Zi_8qOM5Icpp8hB2SHtm4z57&pp=iAQB
https://www.youtube.com/watch?v=4VTwOMmsnJY&list=PL5Q2soXY2Zi_8qOM5Icpp8hB2SHtm4z57&pp=iAQB
https://www.youtube.com/watch?v=4VTwOMmsnJY&list=PL5Q2soXY2Zi_8qOM5Icpp8hB2SHtm4z57&pp=iAQB
https://www.youtube.com/watch?v=_q4rm71DsY4&list=PL5Q2soXY2Zi8vabcse1kL22DEcgMl2RAq
https://www.youtube.com/watch?v=hqLrd-Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4JI5bwhAMpAp13&pp=iAQB
https://www.youtube.com/watch?v=hqLrd-Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4JI5bwhAMpAp13&pp=iAQB
https://www.youtube.com/watch?v=hqLrd-Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4JI5bwhAMpAp13&pp=iAQB
https://www.youtube.com/watch?v=hqLrd-Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4JI5bwhAMpAp13&pp=iAQB
https://www.youtube.com/onurmutlulectures

',;Y_ / Computer Architecture - Fall 2021 Sonich

wu Recent Changes Media Manager Sitemap

Comp Arch (Fall 2021) -~

Lecture Video Playlist on YouTube

f Livestream Lecture Playlist

Fall 2021 Edition:

o https://safari.ethz.ch/architecture/fall2021/doku.
php?id=schedule
Fall 2020 Edition:
o https://safari.ethz.ch/architecture/fall2020/doku.
php?id=schedule
Watehof °V°"T"|W https:‘/Iarxiv.org/pdf/llos.038l4.pd'
Youtube Livestream (2021):
- httDS: //WWW IVOUtUbe - CO m/WatCh?V= 4vko 5E Fq = YML accelerator: 260 mm?, 6‘ billion transistd;s",”wm
o&list=PL5Q2s0XY2Zi-Mnk1PxjEIG32HAGILKTOF W .
Youtube Livestream (2020):
o https://www.youtube.com/watch?v=c3mPdZA-
Fmc&list=PL5Q2s0XY2Zi9xidyIgBxUz7xRPS-wisBN
Watch on ﬂVnuTu.bn T
Master’s level course

Fall 2021 Lectures & Schedule

o Taken by Bachelor's/Masters/PhD students Weok Date | Livetream  Locture Readngs Lab W

w1 30.09 Yol Live = L1: Introduction and Basics Required Lab 1 HWO
- - - Thu. @a(PDF) am (PPT) Mentioned = Out Out
D CUttIng edge resea rCh to pICS + fu ndamenta IS In 01.10 Yol Live = L2: Trends, Tradeoffs and Design Required
H Fri. Fundamentals Mentioned
Computer Architecture otk |
w2 07.10 | Yol Live = L3a: Memory Systems: Challenges and Described HW 1

o 5 Simulator-based Lab Assignments —

o Potential research exploration POP) )

L3c: Memory Performance Attacks Described
M h 1 aza(PDF) zm (PPT) Suggested
a a n y resea rC read I ngs 08.10 | Yol Live = L4a: Memory Performance Attacks Described | Lab 2
Fri. aa(PDF) i (PPT) Suggested = Out

L4b: Data Retention and Memory Refresh = Described
aza(PDF) o (PPT) Suggested

https: //www.youtube.com/onurmutlulectures

i (PDF) zam (PPT) Suggested



https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2020/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2020/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2020/doku.php?id=schedule
https://www.youtube.com/watch?v=4yfkM_5EFgo&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF
https://www.youtube.com/watch?v=4yfkM_5EFgo&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF
https://www.youtube.com/watch?v=4yfkM_5EFgo&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF
https://www.youtube.com/watch?v=c3mPdZA-Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN
https://www.youtube.com/watch?v=c3mPdZA-Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN
https://www.youtube.com/watch?v=c3mPdZA-Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN
https://www.youtube.com/onurmutlulectures

Two Major Directions

1. Memory system design for AI/ML workloads/accelerators

2. AI/ML techniques for improving memory system designs
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Goal: Processing Inside Memory/Storage

Memory/Storage

Processor t Database

Graphs

| Media

Interconneét
Results Problem

Many questions ... How do we design the: e [
o compute-capable memory & controllers? System Software
processors & communication units? SW/HW Interface
software & hardware interfaces? Micro-architecture
system software, compilers, languages? '-°9i_c
algorithms & theoretical foundations?

Cc O O O

Electrons




Why In-Memory Computation Today?

= Huge demand from Applications & Systems
o Data access bottleneck
o Energy & power bottlenecks
o Data movement energy dominates computation energy
o Need all at the same time: performance, energy, sustainability
o We can improve all metrics by minimizing data movement

= Huge problems with Memory Technology
o Memory technology scaling is not going well (e.g., RowHammer)
o Scaling issues demand intelligence in memory + new technology

= Designs are squeezed in the middle
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Processing-in-Memory:
Nature of Computation

Two main approaches for Processing-in-Memory:

1 Processing-Near-Memory: Design compute logic and memory separately (
today) and integrate logic closer to memory

2 Processing-Using-Memory: Use analog operational principles of
memory circuitry to perform computation (no compute logic)

DRAM DRAM Bank
(e.g., 3D-Stacked Memory) . an
Processing-
DRAM Vault Using-DRAM
/]
Vault
Controller B
| Processing- | | mrmecoacoreoco
PHY ' Near-Vault ! {—m 3
. U

Processmg Near Bank
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A PIM Taxonomy

Nature (of computation)
o Using: Use operational properties of memory structures
o Near: Add logic close to memory structures

Technology
o Flash, DRAM, SRAM, RRAM, MRAM, FeRAM, PCM, 3D, ...

Location

o Sensor, Cold Storage, Hard Disk, SSD, Main Memory, Cache,
Register File, Memory Controller, Interconnect, ...

A tuple of the three determines “PIM type”

One can combine multiple “PIM types” in a system
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Mindset: Memory as an Accelerator

mini-CPU ; GPU GPU :
L CPU cor€ | i Jthroughput)| |ithroughput)] :
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Accelerating Neural Network Inference

Amirali Boroumand, Saugata Ghose, Berkin Akin, Ravi Narayanaswami, Geraldo
F. Oliveira, Xiaoyu Ma, Eric Shiu, and Onur Mutlu,

"Google Neural Network Models for Edge Devices: Analyzing and
Mitigating Machine Learning Inference Bottlenecks"

Proceedings of the 30th International Conference on Parallel Architectures and
Compilation Technigues (PACT), Virtual, September 2021.
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[Talk Video (14 minutes)]
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Executive Summary

Context: We extensively analyze a state-of-the-art edge ML accelerator
(Google Edge TPU) using 24 Google edge models

— Wide range of models (CNNs, LSTMs, Transducers, RCNNs)

Problem: The Edge TPU accelerator suffers from three challenges:
— It operates significantly below its peak throughput
— It operates significantly below its theoretical energy efficiency
— It inefficiently handles memory accesses

Key Insight: These shortcomings arise from the monolithic design of the
Edge TPU accelerator

— The Edge TPU accelerator design does not account for layer heterogeneity

Key Mechanism: A new framework called Mensa

— Mensa consists of heterogeneous accelerators whose dataflow and
hardware are specialized for specific families of layers

Key Results: We design a version of Mensa for Google edge ML models
— Mensa improves performance and energy by 3.0X and 3.1X
— Mensa reduces cost and improves area efficiency
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Google Edge Neural Network Models

We analyze inference execution using 24 edge NN models

Face Detection Image Captioning
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Diversity Across the Models

Insight |: there is significant variation in terms of
layer characteristics across the models

Layers from
- CNNs and RCNNs
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Diversity Within the Models

Insight 2: even within each model, layers exhibit
significant variation in terms of layer characteristics

For example, our analysis of edge CNN models shows:

CNNI3

6000

4000

FLOP/Byte
N9
o
o
o

Variation in MAC intensity: up to 200x across layers

Variation in FLOP/Byte: up to 244x across layers
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Mensa High-Level Overview

Edge TPU Accelerator Mensa
ModelA ModelB Model C

Model A ModelB Model C

Family |

—

S Ny,

Monolithic Accelerator
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Identifying Layer Families

Key observation: the majority of layers group into

a small number of layer families
~~CNN3 =0=CNN4 =6=CNN11 =0=CNN9 =e=CNN13
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Family | Family |
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Families | & 2:low parameter footprint, high data reuse and MAC intensity
— compute-centric layers

Families 3,4 & 5: high parameter footprint,low data reuse and MAC intensity
— data-centric layers
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Mensa: Energy Reduction
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Mensa-G reduces energy consumption by 3.0X
compared to the baseline Edge TPU




Mensa: Throughput Improvement
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Mensa-G improves inference throughput by 3.1 X
compared to the baseline Edge TPU
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Mensa: Highly-Etficient ML Inference
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Mitigating Machine Learning Inference Bottlenecks"

Proceedings of the 30th International Conference on Parallel Architectures and
Compilation Technigues (PACT), Virtual, September 2021.

[Slides (pptx) (pdf)]

[Talk Video (14 minutes)]

Google Neural Network Models for Edge Devices:
Analyzing and Mitigating Machine Learning Inference Bottlenecks

Amirali Boroumand '™ Saugata Ghose* Berkin Akin® Ravi Narayanaswami®
Geraldo F. Oliveira* Xiaoyu Ma?® Eric Shiu® Onur Mutlu*"

Y Carnegie Mellon Univ. °Stanford Uniyv. *Univ. of Illinois Urbana-Champaign YGoogle *ETH Ziirich

SAFARI 182


https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21.pdf
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21.pdf
http://pactconf.org/
http://pactconf.org/
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21-talk.pdf
https://www.youtube.com/watch?v=A5gxjDbLRAs&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=178

Accelerating In-Memory Graph Analytics

= Large graphs are everywhere (circa 2015)

oo [

36 Million 1.4 Billion 300 Million 30 Billion
Wikipedia Pages  Facebook Users Twitter Users  Instagram Photos

= Scalable large-scale graph processing is challenging

128 . _ +420/0—

0 1 2 3 4
Speedup
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Key Bottlenecks in Graph Processing

for (v: graph.vertices) {
for (w: v.successors) {
w.next_rank += weight * v.rank;

1. Frequent random memory accesses

w.rank

w.next_rank

w.edges

2. Little amount of computation
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Opportunity: 3D-Stacked Logic+Memory

vbrid Memory Cube

1 U

Logic

Other "True 3D" technologies
under development
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Tesseract System for Graph Processing

Interconnected set of 3D-stacked memory+logic chips with simple cores

Host Processor

Memory-Mapped

Accelerator Interface |
Noncacheable, Physically Addressed) :

= n | o 0 S =
- | , i =
) 2 \ il . 1
| ]
b e | J N 1
< “K | ik S8 B N K
i s3 ¥ " 1
e ety S0 11 4 ] 1
150 0] 1
1
1 \,__‘» 1 ,’
1 ] ,
| < 1 ,
1 1 ’
1 1 ’
1 1 ’
: ) In-Ord
/ n-vraer core
’
/
/I /
7 /
’

o

o

>

e ) z

| | | L/ 0

o)

T Y I TN LP PF Buffer =

Crossbar Network <} o

S % M ) | )
| | = | MTP

v

Message Queue NI

SAFARI Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Communications via
Remote Function Calls

Message Queue



Prefetching

LP PF Buffer
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Evaluated Systems
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Tesseract Graph Processing Performance

>13X Performance Improvement

16
Y On five graph processing algorithms 13.8x
19 11.6x
o 10 9.0x
>
o 8
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SAFARI Anhn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Tesseract Graph Processing System Energy
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HMC-0o00O Tesseract with Prefetching
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More on Tesseract

= Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and
Kiyoung Choi,
"A Scalable Processing-in-Memory Accelerator for Parallel

Graph Processing”
Proceedings of the 42nd International Symposium on Computer

Architecture (ISCA), Portland, OR, June 2015.

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]
Top Picks Honorable Mention by IEEE Micro.
Selected to the ISCA-50 25-Year Retrospective Issue

covering 1996-2020 in 2023 (Retrospective (pdf) Full
Issue).

A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing

Junwhan Ahn  Sungpack Hong®  Sungjoo Yoo Onur Mutlu’ Kiyoung Choi
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A Short Retrospective (@ 50 Years of ISCA

Retrospective: A Scalable Processing-in-Memory Accelerator
for Parallel Graph Processing

Junwhan Ahnf

Sungpack Hong?
tGoogle DeepMind

*Oracle Labs

Abxmzcl—()ur ]SCA 2015 paper [1] provides a new pro-
and system

design that mn accererale key &m intensive applications, with
a focus on gra %h processing workloads. Our major idea was to
completely rethink the system, including the programming model,
data pnmuomng mechanisms, system support, instruction sel
architecture, along with near-memory execution units and their
communication architecture, such that an important workload
can be accelerated at a maximum level using a distributed
system of well-connected near-memory accelerators. We built
our accelerator system, Tesseracti using 3D-stacked memories
with logic layers, where each logic layer contains general-purpose
processing cores and cores communicate with each other using a
passing p ing model. Cores could be specialized

for graph pr (or any other ion to be accelerated).

To our knowledge, our paper was the first to completely design
a near-memory accelerator system from scratch such that it is
both generally pmgmmmahe and specifically customizable to
accelerate important lﬁplmations with a case study on major
graph processing workloads. Ensuing work in academia and
industry showed that similar approaches to system design can
gremly benefit both grnph processing workloads and other

such as learning, for which ideas from
Tesseract seem to have been influential.

This short retrospective provides a brief analysis of our ISCA
2015 paper and its impact. We briefly describe the major ideas
and contributions of the work, discuss later works that built on
it or were influenced by it, and make some educated guesses on
what the future may bring on PIM and accelerator systems.

I. BACKGROUND, APPROACH & MINDSET

We started our research when 3D-stacked memories
(e.g., [2-4]) were viable and seemed to have promise for build-
ing effective and practical processing-near-memory systems.
Such near-memory systems could lead to improvements, but
there was little to no research that examined how an accelerator
could be completely (re-)designed using such near-memory
technology, from its hardware architecture to its programming
model and software system, and what the performance and
energy benefits could be of such a re-design. We set out to
answer these questions in our ISCA 2015 paper [1].

We followed several major principles to design our acceler-
ator from the ground up. We believe these principles are still
important: a major contribution and influence of our work was
in putting all of these together in a cohesive full-system design
and demonstrating the large performance and energy benefits
that can be obtained from such a design. We see a similar
approach in many modern large-scale accelerator systems in
machine leaming today (e.g., [5-9]). Our principles are:

1. Near-memory execution to enable/exploit the high data
access bandwidth modern workloads (e.g., graph processing)
need and to reduce data movement and access latency.

2. General programmability so that the system can be easily
adopted, extended, and customized for many workloads.

3. Maximal acceleration capability to maximize the per-
formance and energy benefits. We set ourselves free from
backward compatibility and cost constraints. We aimed to
completely re-design the system stack. Our goal was to explore
the maximal performance and energy efficiency benefits we
can gain from a near-memory accelerator if we had complete
freedom to change things as much as we needed. We contrast
this approach to the minimal intrusion approach we also
explored in a separate ISCA 2015 paper [10].

4. Customizable to specific workloads, such that we can
maximize acceleration benefits. Our focus workload was graph

Sungjoo YooY

Kiyoung Choi¥

Onur Myutlu®
VSeoul National University

SETH Ziirich

analytics/processing, a key workload at the time and today.
However, our design principles are not limited to graph
processing and the system we built is customizable to other
workloads as well, e.g., machine learning, genome analysis.

5. Memory-capacity-proportional performance, i.e., pro-
cessing capability should proportionally grow (i.e., scale)
as memory capacity increases and vice versa. This enables
scaling of data-intensive workloads that need both memory
and compute.

6. Exploit new technology (3D stacking) that enables tight
integration of memory and logic and helps multiple above prin-
ciples (e.g., enables customizable near-memory acceleration
capability in the logic layer of a 3D-stacked memory chip).

7. Good communication and scaling capability to support
scalability to large dataset sizes and to enable memory-
capacity-proportional performance. To this end, we provided
scalable communication mechanisms between execution cores
and carefully interconnected small accelerator chips to form a
large distributed system of accelerator chips.

8. Maximal and efficient use of memory bandwidth to supply
the high-bandwidth data access that modern workloads need.
To this end, we introduced new, specialized mechanisms for
prefetching and a programming model that helps leverage
application semantics for hardware optimization.

II. CONTRIBUTIONS AND INFLUENCE

We believe the major contributions of our work were 1)
complete rethinking of how an accelerator system should be
designed to enable maximal acceleration capability, and 2) the
design and analysis of such an accelerator with this mindset
and using the aforementioned principles to demonstrate its
effectiveness in an important class of workloads.

One can find examples of our approach in modern large-
scale machine learning (ML) accelerators, which are perhaps
the most successful incarnation of scalable near-memory ex-
ecution architectures. ML infrastructure today (e.g., [5-9])
consists of accelerator chips, each containing compute units
and high-bandwidth memory tightly packaged together, and
features scale-up capability enabled by connecting thousands
of such chips with high-bandwidth interconnection links. The
system-wide rethinking that was done to enable such accel-
erators and many of the principles used in such accelerators
resemble our ISCA 2015 paper’s approach.

The “memory-capacity-proportional performance” principle
we explored in the paper shares similarities with how ML
workloads are scaled up today. Similar to how we carefully
sharded graphs across our accelerator chips to greatly im-
prove effective memory bandwidth in our paper, today’s ML
workloads are sharded across a large number of accelera-
tors by leveraging data/model parallelism and optimizing the
placement to balance communication overheads and compute
scalability [11, 12]. With the advent of large generative models
requiring high memory bandwidth for fast training and infer-
ence, the scaling behavior where capacity and bandwidth are
scaled together has become an essential architectural property
to support modern data-intensive workloads.

The “maximal acceleration capability” principle we used
in Tesseract provides much larger performance and energy
improvements and better customization than the “minimalist”
approach that our other ISCA 2015 paper on PIM-Enabled
Instructions [10] explored: “minimally change” an existing

system to incorporate (near-memory) acceleration capability
to ease programming and keep costs low. So far, the industry
has more widely adopted the maximal approach to overcome
the pressing scaling bottlenecks of major workloads. The key
enabler that bridges the programmability gap between the
maximal approach favoring large performance & energy bene-
fits and the minimal approach favoring ease of programming is
compilation techniques. These techniques lower well-defined
high-level constructs into lower-level primitives [12, 13]; our
ISCA 2015 papers [1,10] and a follow-up work [14] explore
them lightly. We believe that a good programming model that
enables large benefits coupled with support for it across the
entire system stack (including compilers & hardware) will
continue to be important for effective near-memory system
and accelerator designs [14]. We also believe that the maximal
versus minimal approaches that are initially explored in our
two ISCA 2015 papers is a useful way of exploring emerg-
ing technologies (e.g., near-memory accelerators) to better
understand the tradeoffs of system designs that exploit such
technologies.

III. INFLUENCE ON LATER WORKS

Our paper was at the beginning of a proliferation of scalable
near-memory processing systems designed to accelerate key
applications (see [15] for many works on the topic). Tesseract
has inspired many near-memory system ideas (e.g., [16-28])
and served as the de facto comparison point for such systems,
including near-memory graph processing accelerators that built
on Tesseract and improved various aspects of Tesseract. Since
machine leaming accelerators that use high-bandwidth mem-
ory (e.g., [5,29]) and industrial PIM prototypes (e.g., [30-417)
are now in the market, near-memory processing is no longer
an “eccentric” architecture it used to be when Tesseract was
originally published.

Graph processing & analytics workloads remain as an
important and growing class of applications in various forms,
ranging from large-scale industrial graph analysis engines
(e.g., [42]) to graph neural networks [43]. Our focus on large-
scale graph processing in our ISCA 2015 paper increased
attention to this domain in the computer architecture com-
munity, resulting in subsequent research on efficient hardware
architectures for graph processing (e.g., [:

IV. SUMMARY AND FUTURE OUTLOOK

We believe that our ISCA 2015 paper’s principled re-
thinking of system design to accelerate an important class
of data-intensive workloads provided significant value and
enabled/influenced a large body of follow-on works and ideas.
We expect that such rethinking of system design for key
workloads, especially with a focus on “maximal acceleration
capability,” will continue to be critical as pressing technology
and application scaling challenges increasingly require us to
think differently to substantially improve performance and
energy (as well as other metrics). We believe the principles
exploited in Tesseract are fundamental and they will remain
useful and likely become even more important as systems
become more constrained due to the continuously-increasing
memory access and computation demands of future workloads.
We also project that as hardware substrates for near-memory
acceleration (e.g., 3D stacking, in-DRAM computation, NVM-
based PIM, processing using memory [15]) evolve and mature,
systems will take advantage of them even more, likely using
principles similar to those used in the design of Tesseract.

REFERENCES
[1] J. Ahn et al., “A Scalable Processing-in-Memory Accelerator for Parallel
Graph Pmcessmg, in IS X
[2] Hybrid Memory Cube Consort ium, “HMC Specification 1.1,” 2013.
131 1. .Tedd:lch and B. Keeth, “Hy rid Memory Cube: New DRAM Archi-
tecture Increases Density and Performance.” in VLSIT. 2012.

[4] JEDEC, “High Bandwidth Memory (HBM) DRAM. Siandard No.
JESD233, 2013

[51

[6
m
8
]

[10]
[
[12]
[13] 8
[14]
[15]

[16]
[1mn
[18]
[19]
[20]
21]
[22]
[23]

[24] M
[25] X
[26]
27

(28]

[29] 1.

[30]
[31]

[32]
1331

[34] Y-C

[35] L.

[36]

[37] S.

(38]

[39] Y.

[40]
[41]
[42]

(43 T
[44] L. Nai
[45] M.
[46] T.

N. Juupﬂl et al., “TPU v4: An Optically Reconfigurable Supemomlpulcr
fnr Machine Learmng with Hardware Support for Embedding,” in ISCA,
I l‘nwcrs et al.

“A Ccnﬁgurahl: Cloud-Scale DNN Processor for Real-
Time AL” in ISCA, 2018.

S. Lie, “Cercbras Archﬂmure Deep Dive: First Look Inside the Hard-
ware/Software Cu -Design for Deep Learning,” in IEEE Micro, 2023.
E. Talpes et al., icroarchitecture of DOJO, Tesla’s Exa-Scale
Com uter,” in IEEE Mn.ru 2023,

i and R. Wells, “NVLink-Network Switch - NVIDIA's Switch
Cclg fnr High Communication-Bandwidth SuperPODs," in Hot Chips,

T Abn er al, “PIM-] Enahl:d Instructions: A Low-Overhead, Locality-
Aware P g in ISCA, 2015,
R Pape et al, ‘Tfﬁc]enlly calmg Transfﬂrmer Inferenc: in MLSys,

D Lepﬂ(hm et al., “GShard: Scaling Giant Models with Conditional
Com utation and Automatic Sharding,” in /CLR, 2021.

‘ang et al., “Overlap Communication with Dcpend:m Computation
via D:ccmposmon in Large DE;“E Learning Models,” in ASP,
1. Ahn et al., “AIM: Energy-Efficient Ag,gneﬁgalmn Inside the Mcmnry
Hierarchy,” ACM TACQ, vol. 13, no. 4,
O. Mutlueral., “A Mcd:rn Per:r on Pmcessmg in Memory.” Emergis
gﬂ"ﬂi’“m‘g' From Devices 1o Systems, 2021, hups:h‘arxjv.nrg;‘ahsfzﬁ

M. Zhang et al.,
Graph Processin
“GraphR:

“GraphP: Reducing Communication for PIM-Based
with %fﬁu:m Data Partition,” in HPCA, 2018.

G Accelerating Graph Processing Using ReRA.M
Y. Zinio et al..

“GraphQ: Scalable PIM-Based Graph Processing,” in
MICRO, 2019.

G. Dai er al., “GraphH: A Processing-in-Memory Architecture for Large-
Scale Graph Pnoc:ssmg, IEEE TCAD, 2018,

G. Li et at, ‘GraphIA: An In-situ Accelerator for Large-scale Graph
Processing ,” in MEMSYS, 2018.

S. Rheindt er al, “NEMESYS: Near-Memory Graph Copy Enhanced
System-Software,” in MEMSYS, 20

L. Belayneh and V. Berta rlacco, Grapthe Exploiting Multicast for
Scalable Gralph Amalytics,” in DATE, 202

N Challapalle et al., “GaaS-X: Graph Analyucs Accelerator Suppomr:ag
Barse Data Represcnm[mn using Crossbar Architectures,” in ISC/

et al, “Ulira Efficient Acceleration for De Novo Genome
Ass:mbly via Near- Memory Computing,” in PACT, 2021.
. Xie ‘et al, “SpaceA:” Sparse Matrix Vector Multiplication on
Processing-in-| Memn Acceleralnn in HPCA, 2021.
M. Zhou et al., “HyGraph: Accelsrmrég Graph Processing with Hybrid
Memory C:rn.rm Cum&uung in DAT
Accumulation

A Casé For Suppnrun
celerators,” in

5 et
Dl&mclgun§ and Hybnd Parlmunmg in PIM-based

M. Oenes-Vera ef al., “Dalorex: A Data-Local Program Execution and
Architecture for Memory -Bound Apé:hcauon& in APCA, 2023.
szlzmqucne, “Nvidia Hopper GPU: Scaling Performance,” in Hot Chips,

F. Dcvsux “The True Processing In Memory Accelerator,” in Hot Chips,

201
I Gém:z Luna ef al., “Benchmark.m% a New Paradaid Experimental
‘Analysis and Characterization of a Real Processing-in-Memory System,”
EE] A(;(-eu4 2022.
J. Gomez-Luna et al, “Evaluating Machine Learning Workloads on
Memory- C:m.nc Cumpuung Systems,” in ISPASS, 2023.
S. Lee et al., “Hardware Architecture and Software Slm:k for PIM Based
on Commercial DRAM Technology: Industrial Product,” in ISCA, 2021.
. Kwon ef al, “25.4 A 20nm 6GB Function-In- Memcry DRAM

Based on HBM?2 with a 1.2 TFLOPS Programmable Computing Um(
Using Bank-Level Parallelism, for Machine Learning Applications.”
ISSCCT, 2021.

Ke ef al., “Near- -Memory Pmc:ssmélm Action: Accelerating Person-
alized Rcmmmcndauon with AxDIM! IEEE Micro, 2021.
D. Lee ef al., “Improving In-Memo, DaLabase Opcralmns with Accel-
eration DIMM (AxDIMI lél), in DaMoN, 21
e et al, “A lynm 125V Sdb lﬁGh.‘s.’pm GDDR6-based
Accelerator-in- Memor supporting ITFLOPS MAC Operation and Var-
l%ls Activation Functions for Deep-Learning Applications,” in ISSCC,

“ISAQPSIW ﬁ‘chfmlénz 3D Lnﬁnc 10-DRAM. Hylmd

g wi
tem,” in !SSCE‘ 2022.

won, “System Architecture and Software Stack for GDDR6-AIM,”
in HCS, 2

G. Smgh el al “FPGA-based Near-Memos
Data-Intensive Agxhcanonsf‘ IEEE Micro, 2
G. Singh et al. ceelerating Weather Prediction using Near-Memory
Reconfigurable Fabric,” ACM TRETS, 2021.

S Hon; oe{sal' “PGX.D: A Fast Distributed Graph Processing Engine,”

Acceleration of Modern

NKi pf and M. Wellmg, “Semi-. SuBervlsed Classification with Graph
Convolulmnal Networks™ in ICLR, 21
et al., “Gri phPIM Ennhlm Instruction-Level PIM Offloading
in Graph Cnmpmm I‘ramcwnrks n HPCA, 2017.
Besta er al., Set-Centric Instruction Set Architecture for
Graph Mining DII Pruccssmg in-Memory Systems,” in MICRO,

am et “Graphicionado: A gh- erformance and r.nergy-
Efficient Acc:leralm for Graph Analytics,” in MICRO, 2016.

SAFARI

https://arxiv.org/pdf/2306.16093

193


https://arxiv.org/pdf/2306.16093

Accelerating Graph Pattern Mining

Maciej Besta, Raghavendra Kanakagiri, Grzegorz Kwashiewski, Rachata Ausavarungnirun, Jakub
Beranek, Konstantinos Kanellopoulos, Kacper Janda, Zur Vonarburg-Shmaria, Lukas Gianinazz,
Ioana Stefan, Juan Gémez-Luna, Marcin Copik, Lukas Kapp-Schwoerer, Salvatore Di Girolamo,
Nils Blach, Marek Konieczny, Onur Mutlu, and Torsten Hoefler,

"SISA: Set-Centric Instruction Set Architecture for Graph Mining on Processing-in-
Memory Systems"”

Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual,
October 2021.

[Slides (pdf)]

[Talk Video (22 minutes)]

[Lightning Talk Video (1.5 minutes)]

[Full arXiv version]

SISA: Set-Centric Instruction Set Architecture
for Graph Mining on Processing-in-Memory Systems

Maciej Besta!, Raghavendra Kanakagiri?, Grzegorz Kwasniewski!, Rachata Ausavarungnirun’,

Jakub Beranek?, Konstantinos Kanellopoulos®, Kacper Janda®, Zur Vonarburg-Shmaria!, Lukas
Gianinazzi!, Ioana Stefan!, Juan Gémez-Luna!, Marcin Copik!, Lukas Kapp-Schwoerer!, Salvatore
Di Girolamo?, Nils Blach!, Marek Konieczny’, Onur Mutlu!, Torsten Hoefler!

1ETH Zurich, Switzerland 2IIT Tirupati, India 3King Mongkut’s University of Technology North Bangkok,
Thailand *Technical University of Ostrava, Czech Republic > AGH-UST, Poland
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Processing using DRAM




Background Work: RowClone

Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata
Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A.
Kozuch, Phillip B. Gibbons, and Todd C. Mowry,

"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and
Initialization"

Proceedings of the 46th International Symposium on Microarchitecture

(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning Session
Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

RowClone: Fast and Energy-Efficient
In-DRAM Bulk Data Copy and Initialization

Vivek Seshadri Yoongu Kim Chris Fallin” Donghyuk Lee

vseshadr@cs.cmu.edu yoongukim@cmu.edu cfallin@cif.net donghyuki@cmu.edu

Rachata Ausavarungnirun Gennady Pekhimenko Yixin Luo
rachata@cmu.edu gpekhime@cs.cmu.edu  yixinluo@andrew.cmu.edu

Onur Mutlu Phillip B. Gibbons? Michael A. Kozucht Todd C. Mowry

onur@cmu.edu phillip.b.gibbons@intel.com michael.a.kozuch@intel.com tcm@cs.cmu.edu

Carnegie Mellon University fIntel Pittsburgh
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Background Work: PIDRAM

Ataberk Olgun, Juan Gomez Luna, Konstantinos Kanellopoulos, Behzad Salami,
Hasan Hassan, Oguz Ergin, and Onur Mutlu,

"PiDRAM: A Holistic End-to-end FPGA-based Framework for
Processing-in-DRAM"

ACM Transactions on Architecture and Code Optimization (TACO), March 2023.
[arXiv version]

Presented at the 18th HIPEAC Conference, Toulouse, France, January 2023.
[Slides (pptx) (pdf)]

[Longer Lecture Slides (pptx) (pdf)]

[Lecture Video (40 minutes)]

[PIDRAM Source Code]

PiDRAM: A Holistic End-to-end FPGA-based Framework
for Processing-in-DRAM

Ataberk Olgun® Juan Gémez Luna’ Konstantinos Kanellopoulos® Behzad Salami®
Hasan Hassan® Oguz Ergin' Onur Mutlu®

SETH Ziirich TTOBB University of Economics and Technology
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http://taco.acm.org/
https://arxiv.org/abs/2111.00082
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https://people.inf.ethz.ch/omutlu/pub/PiDRAM_hipeac23-talk.pptx
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https://people.inf.ethz.ch/omutlu/pub/PiDRAM_comparch22-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/PiDRAM_comparch22-lecture-slides.pdf
https://www.youtube.com/watch?v=JyWxkeQA0W8
https://github.com/CMU-SAFARI/PiDRAM

Background Work: In-DRAM Bulk AND/OR

Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk
Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and
Todd C. Mowry,

"Fast Bulk Bitwise AND and OR in DRAM"

IEEE Computer Architecture Letters (CAL), April 2015.

Fast Bulk Bitwise AND and OR in DRAM

Vivek Seshadri*, Kevin Hsieh*, Amirali Boroumand*, Donghyuk Lee*,
Michael A. Kozuchf, Onur Mutlu*, Phillip B. Gibbons', Todd C. Mowry*

*Carnegie Mellon University fIntel Pittsburgh
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Background Work: Ambit

= Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali

Boroumand, Jeremie Kim, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons,
and Todd C. Mowry,

"Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using
Commodity DRAM Technology"

Proceedings of the 50th International Symposium on

Microarchitecture (MICRO), Boston, MA, USA, October 2017.

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology

Vivek Seshadri’® Donghyuk Lee®® Thomas Mullins®>® Hasan Hassan? Amirali Boroumand®
Jeremie Kim*® Michael A. Kozuch® Onur Mutlu®®  Phillip B. Gibbons® Todd C. Mowry®

IMicrosoft Research India “NVIDIA Research 3Intel “ETH Ziirich °Carnegie Mellon University
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http://www.microarch.org/micro50/
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https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-talk.pptx
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https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-lightning-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-poster.pdf

Background: In-DRAM Bulk Bitwise Execution

Vivek Seshadri and Onur Mutlu,
"In-DRAM Bulk Bitwise Execution Engine"

Invited Book Chapter in Advances in Computers, to appear
in 2020.

[Preliminary arXiv version]

In-DRAM Bulk Bitwise Execution Engine

Vivek Seshadri Onur Mutlu
Microsoft Research India ETH Zurich

visesha@microsoft.com onur .mutlu@inf.ethz.ch
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Background: SIMDRAM Framework

= Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, Joao Dinis Ferreira, Nika Mansouri
Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose, Juan Gomez-Luna, and Onur Mutlu,
"SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in DRAM"
Proceedings of the 26th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Virtual, March-April 2021.
[2-page Extended Abstract]
[Short Talk Slides (pptx) (pdf)]
[Talk Slides (pptx) (pdf)]
[Short Talk Video (5 mins)]
[Full Talk Video (27 mins)]

SIMDRAM: A Framework for
Bit-Serial SIMD Processing using DRAM

*Nastaran Hajinazar!2 *Geraldo F. Oliveira' Sven Gregorio® Jodo Dinis Ferreira’
Nika Mansouri Ghiasi' Minesh Patel’ Mohammed Alser! Saugata Ghose?
Juan Gémez-Luna! Onur Mutlu?
1ETH Ziirich 2Simon Fraser University 3University of Illinois at Urbana—Champaign
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https://asplos-conference.org/
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-extended-abstract.pdf
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-short-talk.pptx
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In-DRAM Lookup-Table Based Execution

Joao Dinis Ferreira, Gabriel Falcao, Juan Gomez-Luna, Mohammed Alser, Lois Orosa, Mohammad
Sadrosadati, Jeremie S. Kim, Geraldo F. Oliveira, Taha Shahroodi, Anant Nori, and Onur Mutlu,
"pLUTo: Enabling Massively Parallel Computation in DRAM via Lookup Tables"

Proceedings of the 55th International Symposium on Microarchitecture (MICRO), Chicago, IL, USA,
October 2022.

[Slides (pptx) (pdf)]

[Longer Lecture Slides (pptx) (pdf)]

[Lecture Video (26 minutes)]

[arXiv version]

[Source Code (Officially Artifact Evaluated with All Badges)]

Officially artifact evaluated as available, reusable and reproducible.

in DRAM via Lookup Tables
Jodo Dinis Ferreira® Gabriel Falcaof Juan Gémez-Luna¥ Mohammed Alser?
Lois Orosa3V Mohammad Sadrosadati® Jeremie S. Kim?$ Geraldo F. Oliveira$
Taha Shahroodi* Anant Nori* Onur Mutlu$

SETH Ziirich  TIT, University of Coimbra V Galicia Supercomputing Center ~+TU Delft  *Intel
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https://people.inf.ethz.ch/omutlu/pub/pLUTo_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/pLUTo_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/pLUTo_lecture-slides.pptx
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https://youtu.be/JyWxkeQA0W8?t=2495
https://arxiv.org/abs/2104.07699
https://github.com/CMU-SAFARI/pLUTo
https://arxiv.org/pdf/2104.07699.pdf

MIMDRAM: More Flexible Processing using DRAM

Appears at HPCA 2024  https://arxiv.org/pdf/2402.19080.pdf

MIMDRAM: An End-to-End Processing-Using-DRAM System
for High-Throughput, Energy-Efficient and Programmer-Transparent
Multiple-Instruction Multiple-Data Computing

Geraldo F. Oliveira’ Ataberk Olgun’ Abdullah Giray Yaglikc1" F. Nisa Bostanci’
Juan Gémez-Luna® Saugata Ghose* Onur Mutlu®
" ETH Ziirich * Univ. of lllinois Urbana-Champaign

Our goal is to design a flexible PUD system that overcomes
the limitations caused by the large and rigid granularity of
PUD. To this end, we propose MIMDRAM, a hardware/software
co-designed PUD system that introduces new mechanisms to
allocate and control only the necessary resources for a given
PUD operation. The key idea of MIMDRAM is to leverage fine-
grained DRAM (i.e., the ability to independently access smaller
segments of a large DRAM row) for PUD computation. MIM-
DRAM exploits this key idea to enable a multiple-instruction
multiple-data (MIMD) execution model in each DRAM subar-

SAFARI ray (and SIMD execution within each DRAM row segment). 203
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MIMDRAM: Executive Summary

 Problem: Processing-Using-DRAM (PUD) suffers from three issues caused by
DRAM'’s large and rigid access granularity

e Underutilization due to data parallelism variation in (and across) applications

e Limited computation support due to a lack of interconnects

e Challenging programming model due to a lack of compilers

\

Goal: Design a flexible PUD system that overcomes the three limitations caused by
DRAM'’s large and rigid access granularity

7

Key Mechanism: MIMDRAM, a hardware/software co-design PUD system

 Keyidea: leverage fine-grained DRAM for PUD operation

e HW: -simple changes to the DRAM array, enabling concurrent PUD operations
- low-cost interconnects at the DRAM peripherals for data reduction

e SW: - compiler and OS support to generate and map PUD instructions

\

Key Results: MIMDRAM achieves
e 14.3x, 30.6x, and 6.8x the energy efficiency of state-of-the-art PUD systems, a high-end
CPU and GPU, respectively
* Small area cost to a DRAM chip (1.11%) and CPU die (0.6%)

.
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Real DRAM Chips
Are Already Quite Capable:
FC-DRAM & SiMRA




DRAM Chips Are Already (Quite) Capable!

Appears at HPCA 2024

https://arxiv.orq/pdf/2402.18736.pdf

Functionally-Complete Boolean Logic in Real DRAM Chips:
Experimental Characterization and Analysis

Ismail Emir Yiiksel

Yahya Can Tugrul

Ataberk Olgun F. Nisa Bostanci

A. Giray Yaglike¢1

Geraldo F. Oliveira Haocong Luo Juan Gomez-Luna Mohammad Sadrosadati  Onur Mutlu

SAFARI

ETH Ziirich

We experimentally demonstrate that COTS DRAM chips are
capable of performing 1) functionally-complete Boolean opera-
tions: NOT, NAND, and NOR and 2) many-input (i.e., more than
two-input) AND and OR operations. We present an extensive
characterization of new bulk bitwise operations in 256 off-the-
shelf modern DDR4 DRAM chips. We evaluate the reliability of
these operations using a metric called success rate: the fraction
of correctly performed bitwise operations. Among our 19 new
observations, we highlight four major results. First, we can
perform the NOT operation on COTS DRAM chips with 98.37%
success rate on average. Second, we can perform up to 16-input
NAND, NOR, AND, and OR operations on COTS DRAM chips
with high reliability (e.g., 16-input NAND, NOR, AND, and
OR with average success rate of 94.94%, 95.87%, 94.94%,
and 95.85%, respectively). Third, data pattern only slightly
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DRAM Chips Are Already (Quite) Capable!
https://arxiv.org/pdf/2312.02880.pdf

PULSAR: Simultaneous Many-Row Activation
for Reliable and High-Performance Computing
in Off-the-Shelf DRAM Chips

Ismail Emir Yuksel Yahya Can Tugrul F Nisa Bostanci Abdullah Giray Yaglikci Ataberk Olgun
Geraldo F. Oliveira Melina Soysal Haocong Luo Juan Gomez Luna Mohammad Sadrosadati
Onur Mutlu

ETH Zurich

We propose PULSAR, a new technique to enable high-
success-rate and high-performance PuM operations in off-the-
shelf DRAM chips. PULSAR leverages our new observation
that a carefully-crafted sequence of DRAM commands simul-
taneously activates up to 32 DRAM rows. PULSAR over-
comes the limitations of existing techniques by 1) replicating
the input data to improve the success rate and 2) enabling
new bulk bitwise operations (e.g., many-input majority, Multi-
Rowlnit, and Bulk-Write) to improve the performance.
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DRAM Chips Are Already (Quite) Capable!

Appears at DSN 2024

Simultaneous Many-Row Activation in Off-the-Shelf DRAM Chips:
Experimental Characterization and Analysis

Ismail Emir Yiiksel! Yahya Can Tugrul'> F. Nisa Bostanc1'! Geraldo F. Oliveira!
A. Giray Yaglik¢ci! Ataberk Olgun! Melina Soysal! Haocong Luo!
Juan Gémez-Luna! Mohammad Sadrosadati! ~ Onur Mutlu!

VETH Ziirich 2TOBB University of Economics and Technology
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The Capability of COTS DRAM Chips
We demonstrate that COTS DRAM chips:

1 Can simultaneously activate up to
48 rows in two neighboring subarrays

2 Can perform NOT operation
with up to 32 output operands

3 Can perform up to 16-input
AND, NAND, OR, and NOR operations
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Finding: SIMRA Across Subarrays

Activating two rows in quick succession
can simultaneously activate
multiple rows in neighboring subarrays

ACT Row A ACT Row B
<3ns <3ns
Subarray X
ACT = Row A
1 1 1 1 1 1T 1T 1T 1T 11 Neighboring
_Shared Sense Amplifiers Subarrays
Subarray Y
ACT =pepe—p Row B
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Key Idea: NOT Operation

Connect rows in neighboring subarrays
through a NOT gate by simultaneously activating rows

SI'C SI'C SIc

dst
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Key Idea: NAND, NOR, AND, OR

Manipulate the bitline voltage to express
a wide variety of functions using
multiple-row activation in neighboring subarrays

VREF V(A,B)

sense amp.
compares

V(A,B) and V(X,Y)

Multiple Row ACT :
—
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Two-Input AND and NAND Operations
X X

<3ns <3ns

ACT PRE ACT

AVG(Vpp,Vpp/2)
VDD
1 Reference
Voo/?2 } Subarray
(REF)

® Compute
: }Subarray

S (COM)
AVG(X,Y)

SAFAR]/ *Gaoetal, "FracDRAM: Fractional Values in Off-the-Shelf DRAM," in MICRO, 2022. 213



Two-Input AND and NAND Operations

ACT X X

<3ns — <3ns ——

Vpp=1 & GND = 0

X Y COM REF

3VDD/4‘ }‘
1VDD

sense amp

compares

t

he voltages on

the bitlines
Jow O L
9

00 O 1

I
/

/
/

GND <~

w)
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Two-Input AND and NAND Operations

ACT X X

<3ns PR

ACT
<3ns

1VDD '

X Y COM REF

sense amp. O O 0 i |
compares y
the voltages on 0 1 0 i |
the bltllnes
‘GND —O' i
N ,
VDD/Z‘ g
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Two-Input AND and NAND Operations
X X

<3ns <3ns

ACT PRE ACT

3VDD/4‘ i‘ VDD=1 & GND — O

\
1
1
1

X Y COM REF

1VDD ! ' '
sense amp. 00 0 i |

compares Y Y Y
the voltages on 0 1 0 1

the bltlmes Y Y Y
‘GND —( , 1 0 O 1

\ ,
Vpp/24 g
SAFARI
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Two-Input AND and NAND Operations
X X

ACT PRE ACT
<3ns <3ns
3Vpp/4 i‘ VDD=1 & GND - O
‘. Y COM REF
1GND ' ' '
sense amp. 0 0 1
compares Y Y Y
the voltages on 1 0 1
the bltllnes Y Y
‘VDD —() , 0O O 1
A 1 1 0
VDD <~
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Two-Input AND and NAND Operations
X X

<3ns <3ns

ACT PRE ACT

AVG (Vpp,Vpp/2) Vpp=1 & GND O

}Reference COM REF

VDD

Vpp/2*

Subarray
(REF)

® Compute
C }Subarray

Y (COM)
AVG(X,Y)

S A FA R l *Gao et al., "FracDRAM: Fractional Values in Off-the-Shelf DRAM," in MICRO, 2022.




Many-Input AND, NAND, OR, and NOR Operations

We can express AND, NAND, OR, and NOR operations

by carefully manipulating the reference voltage

Functionally-Complete Boolean Logic in Real DRAM Chips:
Experimental Characterization and Analysis

Ismail Emir Yiiksel Yahya Can Tugrul Ataberk Olgun F. Nisa Bostanc1  A. Giray Yaglikci
Geraldo E. Oliveira Haocong Luo Juan Gomez-Luna Mohammad Sadrosadati  Onur Mutlu

ETH Ziirich

(More details in the paper)

https://arxiv.org/pdf/2402.18736.pdf
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DRAM Testing Infrastructure

* Developed from DRAM Bender [Olgun+, TCAD’23|*

* Fine-grained control over DRAM commands, timings,
and temperature

4) Temperature |
Controller
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DRAM Chips Tested

* 256 DDR4 chips from two major DRAM manufacturers

* Covers different die revisions and chip densities

. #Modules Die  Mir. Chip Chip Speed

LD i (#Chips) Rev. Date® Density Org. Rate
9(72) M N/A 4Gb X8 2666M'T/s
5 (40) A N/A 4Gb X8 2133MT/s
SK Hvnix 1 (16) A N/A 8Gb X8 2666MT/s
Y 1 (32) A 18-14  4Gb x4 2400MT/s
1(32) A 16-49 8Gb x4 2400MT/s
1 (32) M 16-22 8Gb x4 2666MT/s
I (8) F 21-02 4Gb X8 2666M'T/s
Samsung 2 (16) D 21-10 8Gb X8 2133MT/s
I (8) A 22-12 8Gb X8 3200MT/s

SAFARI
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Performing AND, NAND, OR, and NOR

T

Operatlon
I AND
I NAND
[TIOR
[ NOR

2 4 8 16
Number of Input Operands

100-

Success Rate (%)
~d
on

0
o

COTS DRAM chips can perform
{2, 4, 8, 16}-input AND, NAND, OR, and NOR operations
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Performing AND, NAND, OR, and NOR

100+ ¢ ’%%

Operation |
B AND
B NAND
[I10R
[ NOR

2 4 8 16
Number of Input Operands

Success Rate (%)
~d
on

Ul
o

COTS DRAM chips can perform
16-input AND, NAND, OR, and NOR operations
with very high success rate (>94%)
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Impact of Data Pattern

—~ 100

§

Q

-

o

= 75

n

Q

8 Data Pattern
- ¢ ¢ B All 1s/0s
Y 5o NOR |mmRandom

4 38 16
Number of Input Operands

1.98% variation in average success rate

across all number of input operands
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Impact of Data Pattern

Success Rate (%)

SAFARI

100 -

75

50 1

o=
T

100 1

75

50 1

4

7 v+
| |

¢

8 16 2 4
Number of Input Operands

8

!HT'?'“"

NAND

T

Data Pattern
I All 1s/0s
[ Random

16

Impact of data pattern is consistent

across all tested operations
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Impact of Data Pattern

Success Rate (%)

100

50 1

I

50 1

100

75

!gﬁ@

75 -

AND

!HT'?“*

NAND

7 v+
| |
OR

’
. Data Pattern
¢ ¢ [ All 1s/0s
NOR I Random

2 4 8 16

2 4 8 16

Number of Input Operands

Data pattern slightly affects
the reliability of AND, NAND, OR, and NOR operations
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Available on arXiv

Functionally-Complete Boolean Logic in Real DRAM Chips:
Experimental Characterization and Analysis

Ismail Emir Yiiksel
Geraldo F. Oliveira

Yahya Can Tugrul
Haocong Luo

Ataberk Olgun F Nisa Bostanci
Juan Gomez-Luna Mohammad Sadrosadati

A. Giray Yaghker
Onur Mutlu

ETH Ziirich

Processing-using-DRAM (PuD) is an emerging paradigm
that leverages the analog operational properties of DRAM cir-
cuitry to enable massively parallel in-DRAM computation. PuD
has the potential to significantly reduce or eliminate costly
data movement between processing elements and main memory.
A common approach for PuD architectures is to make use of
bulk bitwise computation (e.g., AND, OR, NOT). Prior works
experimentally demonstrate three-input MAJ (i.e., MAJ3) and
two-input AND and OR operations in commercial off-the-shelf
(COTS) DRAM chips. Yet, demonstrations on COTS DRAM
chips do not provide a functionally complete set of operations
(e.g., NAND or AND and NOT).

We experimentally demonstrate that COTS DRAM chips are
capable of performing 1) functionally-complete Boolean opera-
tions: NOT, NAND, and NOR and 2) many-input (i.e., more than
two-input) AND and OR operations. We present an extensive

systems and applications [12, 13]. Processing-using-DRAM
(PuD) [29-32] is a promising paradigm that can alleviate the
data movement bottleneck. PuD uses the analog operational
properties of the DRAM circuitry to enable massively parallel
in-DRAM computation. Many prior works [29-53] demonstrate
that PuD can greatly reduce or eliminate data movement.

A widely used approach for PuD is to perform bulk bitwise
operations, i.e., bitwise operations on large bit vectors. To per-
form bulk bitwise operations using DRAM, prior works pro-
pose modifications to the DRAM circuitry [29-31,33,35,36,
43,44,46,48-58]. Recent works [38,41,42,45] experimentally
demonstrate the feasibility of executing data copy & initializa-
tion [42,45], i.e., the RowClone operation [49], and a subset
of bitwise operations, i.e., three-input bitwise majority (MAJ3)
and two-input AND and OR operations in unmodified commer-
cial off-the-shelf (COTS) DRAM chips by operatine bevond

https://arxiv.org/pdf/2402.18736.pdf
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Summary

* We experimentally demonstrate that commercial off-the-shelf (COTS)
DRAM chips can perform:

— Functionally-complete Boolean operations: NOT, NAND, and NOR
— Up to 16-input AND, NAND, OR, and NOR operations

* We characterize the success rate of these operations on
256 COTS DDR4 chips from two major manufacturers
* We highlight two key results:
— We can perform NOT and
{2, 4,8, 16}-input AND, NAND, OR, and NOR operations
on COTS DRAM chips with very high success rates (>94%)

— Data pattern and temperature only slightly affect
the reliability of these operations

We believe these empirical results demonstrate
the promising potential of using DRAM as a computation substrate
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Simultaneous Many-Row Activation

in Off-the-Shelf DRAM Chips

Experimental Characterization and Analysis

Code Dataset
Reproducible Reproducible

Ismail Emir Yiiksel
Yahya C. Tugrul F. Nisa Bostanci Geraldo F. Oliveira
A. Giray Yaglikci Ataberk Olgun Melina Soysal Haocong Luo

Juan GoOmez-Luna Mohammad Sadr Onur Mutlu

SAFARI ETHzurich




In-DRAM Multiple Row Copy (Multi-RowCopy)

Simultaneously activate many rows to
copy one row’s content to multiple destination rows

RowClone Multi-RowCopy

SAFARI [Seshadri+ MICRO’13] 230



Key Takeaways from Multi-RowCopy

Key Takeaway 1

COTS DRAM chips are capable of copying one row’s data
to1, 3,7,15, and 31 other rows at very high success rates

Key Takeaway 2

Multi-RowCopy in COTS DRAM chips is highly resilient to changes in
data pattern, temperature, and wordline voltage
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Robustness of Multi-RowCopy

Success Rate (%)
Ul
o

1 3 7 15 31
Number of Destination Rows

Average: >99.98%

COTS DRAM chips can copy one row’s content
to up to 31 rows with a very high success rate

SAFARI
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Impact of Data Pattern

Data Pattern
O-All 1s -O-Random

3 7
Number of Destination Rows

Success Rate (%)
O
(o]

15

At most 0.79% decrease in
average success rate

Data pattern has a small effect
on the success rate of the Multi-RowCopy operation
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Also in the Paper: Impact of Temperature & Voltage

Temperature

Increasing temperature up to 90°C
has a very small effect on
the success rate of the Multi-RowCopy operation

50°C = 90°C

Wordline Voltage

Reducing the wordline voltage
only slightly affects
the success rate of the Multi-RowCopy operation

2.5V =P 21V
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Available on arXiv

Ismail Emir Yiiksel'  Yahya Can Tugrul'?
A. Giray Yaghkgt'  Ataberk Olgun’

VETH Ziirich

We experimentally analyze the compurational capability of
commercial off-the-shelf (COTS) DRAM chips and the robust-
ness of these capabilities under various timing delavs between
DRAM commandy, data patterns, temperature, and voltage
levels. We extensively characterize 120 COTS DDR4 chips
from two major manufacturers. We highlight four key results of
our study. First, COTS DRAM chips are capable of 1) simulta-
neously activaring up 1o 32 rows (i.e.. simultaneous many-row
activation), 2) executing a majority of X (MAJX) operation where
X>3 (e, MAIS, MAD7, and MAJS operations), and 3) copying
a DRAM row (concurrently) to up to 31 other DRAM rows,
which we call Multi-RowCopy. Second, storing multiple copies
of MAIX's input operands on all simultaneously activated rows
drastically increases the success rate (i.e., the percentage of
DRAM cells that correctly perform the computation) of the
MAJX operation, For example, MAJ3 with 32-row activation (i.e.,

Code Datasot
Roproducible Reproducitile

Simultaneous Many-Row Activation in Off-the-Shelf DRAM Chips:
Experimental Characterization and Analysis

F. Nisa Bostancr'  Geraldo F. Oliveira'
Melina Soysal'  Haocong Luo'

Juan Gémez-Luna'  Mohammad Sadrosadati’ ~ Onur Mutlu!
3 g . . . » » g
“TOBB University of Economics and Technology

A subset of PIM proposals devise mechanisms that en-
able PUM using DRAM cells for computation, including data
copy and initalizaton [67,72,77, 78,89, 104, 127], Boolean
logic [56,64-66,68,70,72,76,79,122, 127-129], majority-
based anthmetic [64.66,69,72.91, 127, 130, 131]. and lookup
table based operations [82, 106, 107, 132], We refer to DRAM-
based PUM as Processing-Using-DRAM (PUD) and the com-
putation performed using DRAM cells as PUD operations,

PUD benefits from the bulk data parallelism in DRAM de-
vices to perform bulk bitwise PUD operations. Prior works show
that bulk bitwise operations are used in a wide variety of impor-
tant applications, including databases and web scarch [64, 67,
79, 130, 133-140), data analytics [64, 141144, graph process-
ing [56, 80,94, 130, 145], genome analysis [60,99, 146-149],
cryptography [ 150, 151], set operations [S6,64], and hyper-
dimensional cnmlpllling [152-154].

https://arxiv.org/pdf/2405.06081

SAFARI

235



Our Work is Open Source and Artifact Evaluated

Code Dataset
Reproducible Reproducible

=2 SIMRA-DRAM  public P Edit Pins { Watch 4 ~ % Fork 0 v Starred 6 v

¥ main ~ ¥ 1Branch > 0 Tags Q Go to file t Add file ~ <> Code ~ About b

Source code & scripts for experimental

& unrealismail Update README.md astabfa-lastmonth ) 5 Commits characterization and demonstration of 1)

simultaneous many-row activation, 2) up
[ DRAM-Bender initial comit last month to nine-input majority operations and 3)
B9 analysis initial comit last month copying one row's content to up 31 rows

in real DDR4 DRAM chips. Described in
B0 experimental_data initial comit last month our DSN'24 paper by Yuksel et al. at
https://arxiv.org/abs/2405.06081

[ LICENSE initial comit last month
[0 Readme
[ README.md Update README.md last month 52 View license
A Activity
[0 README  &[3 License 7 = B Custom properties
Y¢ 6stars
. . . . & 4 watching
Simultaneous Many-Row Activation in Off-the-Shelf N

DRAM Chips: Experimental Characterization and Analysis Report repository

https://github.com/CMU-SAFARI/SiMRA-DRAM
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PIM Review and Open Problems

A Modern Primer on Processing in Memory

Onur Mutlu?b, Saugata Ghoseb°, Juan Gémez-Luna?, Rachata Ausava.rungnirund

SAFARI Research Group

“ETH Ziirich
b Carnegie Mellon University
©University of Illinois at Urbana-Champaign
4King Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"A Modern Primer on Processing in Memory"

Invited Book Chapter in Emerging Computing: From Devices to Systems -
Looking Beyond Moore and Von Neumann, Springer, to be published in 2021.

SAFARI https: //arxiv.org/pdf/2012.03112.pdf 237


https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21-extended.pdf
https://people.inf.ethz.ch/omutlu/projects.htm
https://people.inf.ethz.ch/omutlu/projects.htm
https://arxiv.org/pdf/2012.03112.pdf

PIM Review and Open Problems (II)

A Workload and Programming Ease Driven Perspective of Processing-in-Memory
Saugata Ghose”  Amirali Boroumand®  Jeremie S. Kim™  Juan Gémez-Luna®  Onur Mutlu®'

'Carnegie Mellon University ETH Ziirich

Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutluy,
"Processing-in-Memory: A Workload-Driven Perspective"

Invited Article in IBM Journal of Research & Development, Special Issue on
Hardware for Artificial Intelligence, to appear in November 20109.

[Preliminary arXiv version]
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https://arxiv.org/pdf/1907.12947.pdf
https://www.research.ibm.com/journal/
https://arxiv.org/pdf/1907.12947.pdf
https://arxiv.org/pdf/1907.12947.pdf

Processing in Memory:

Adoption Challenges

1. Processing using Memory
2. Processing near Memory




Eliminating the Adoption Barriers

How to Enable Adoption
of Processing in Memory

SAFARI



Potential Barriers to Adoption of PIM

1. Applications & software for PIM
2. Ease of programming (interfaces and compiler/HW support)

3. System and security support: coherence, synchronization,
virtual memory, isolation, communication interfaces, ...

4. Runtime and compilation systems for adaptive scheduling,
data mapping, access/sharing control, ...

5. Infrastructures to assess benefits and feasibility

All can be solved with change of mindset
SAFARI 241




We Need to Revisit the Entire Stack

= With a memory-centric mindset

System Software
SW/HW Interface

We can get there step by step
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Processing-in-Memory LLandscape Today
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[SK Hynix 2022] [Samsung 2021] [UPMEM 2019]
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Adoption: How to Keep It Simple?

= Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,
"PIM-Enabled Instructions: A Low-Overhead,
Locality-Aware Processing-in-Memory Architecture”
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

PIM-Enabled Instructions: A Low-Overhead, Locality-Aware
Processing-in-Memory Architecture

Junwhan Ahn  Sungjoo Yoo Onur Mutlu' Kiyoung Choi
junwhan @snu.ac.kr, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi @snu.ac.kr

Seoul National University TCarnegie Mellon University
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http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
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http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-lightning-talk.pdf

Adoption: How to Keep It Simple?

= Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,
"PIM-Enabled Instructions: A Low-Overhead,
Locality-Aware Processing-in-Memory Architecture”
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

PIM-Enabled Instructions: A Low-Overhead, Locality-Aware
Processing-in-Memory Architecture

Junwhan Ahn  Sungjoo Yoo Onur Mutlu' Kiyoung Choi
junwhan @snu.ac.kr, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi @snu.ac.kr

Seoul National University TCarnegie Mellon University
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Adoption: How to FEase Programmability? (1)

= Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,

"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU

Systems”
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.

[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Transparent Offloading and Mapping (TOM):
Enabling Programmer-Transparent Near-Data Processing in GPU Systems

Kevin Hsieh’ Fiman Ebrahimi' Gwangsun Kim™  Niladrish Chatterjee]L Mike O’Connor'
Nandita Vijaykumari Onur Mutlu®? Stephen W. Keckler!

fCarnegie Mellon University NVIDIA *KAIST SETH Ziirich


https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf

Truly Distributed GPU Processing with PIM

__global__
void applyScaleFactorsKernel( uint8_T * const out,
uint8_T const * const in, const double *factor,
size_t const numRows, size_t const numCols )
{
// Work out which pixel we are working on.
const int rowlIdx = blockIdx.x * blockDim.x + threadIdx.x;
const int colldx = blockIdx.y:
const int sliceldx = threadIdx.z:

// Check this thread isn't ff the image

if ( rowIdx >= numRows ) return;
// Compute the index of my element

3D-stac ked memory size t linearIdx = rowIdx + colIldx*numRows +

sliceIdx*numRows*numCols;

(memory stack) SM (Streaming Multiprocessor)

............... Logic layer

Logic layer
SM
[

Crossbar switch
[ I

Vault| .... |Vault
Ctrl Ctrl

7" Main GPU




Adoption: How to Fase Programmability? (1I)

Geraldo F. Oliveira, Alain Kohli, David Novo,
Juan Gomez-Luna, Onur Mutlu,
“"DaPPA: A Data-Parallel Framework for Processing-

in-Memory Architectures,”
in PACT SRC Student Competition, Vienna, Austria, October
2023.

DaPPA: A Data-Parallel Framework for Processing-in-Memory Architectures

Geraldo F. Oliveira*® Alain Kohli* David Novo* Juan Gémez-Luna* Onur Mutlu*
*ETH Ziirich *LIRMM, Univ. Montpellier, CNRS
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Adoption: How to Fase Programmability? (111)

Jinfan Chen, Juan Gomez-Luna, Izzat El Hajj, YuXin Guo,
and Onur Mutluy,
"SimplePIM: A Software Framework for Productive

and Efficient Processing in Memory"

Proceedings of the 32nd International Conference on
Parallel Architectures and Compilation Techniques (PACT),
Vienna, Austria, October 2023.

SimplePIM: A Software Framework for
Productive and Efficient Processing-in-Memory

Jinfan Chen' Juan Gémez-Luna' Izzat El Hajj* Yuxin Guo' Onur Mutlu'
1ETH Ziirich  2American University of Beirut
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Adoption: How to Fase Programmability? (IV)

Geraldo F. Oliveira, Juan Gomez-Luna, Lois Orosa, Saugata Ghose, Nandita
Vijaykumar, Ivan fernandez, Mohammad Sadrosadati, and Onur Mutlu,
"DAMOV: A New Methodology and Benchmark Suite for Evaluating Data
Movement Bottlenecks"

TEEE Access, 8 September 2021.

Preprint in arXiv, 8 May 2021.

[arXiv preprint]

[IEEE Access version]

[DAMOV Suite and Simulator Source Code]

[SAFARI Live Seminar Video (2 hrs 40 mins)]

[Short Talk Video (21 minutes)]

DAMOYV: A New Methodology and Benchmark Suite
for Evaluating Data Movement Bottlenecks

GERALDO F. OLIVEIRA, ETH Ziirich, Switzerland
JUAN GOMEZ-LUNA, ETH Ziirich, Switzerland
LOIS OROSA, ETH Ziirich, Switzerland
SAUGATA GHOSE, University of Illinois at Urbana-Champaign, USA
NANDITA VIJAYKUMAR, University of Toronto, Canada
IVAN FERNANDEZ, University of Malaga, Spain & ETH Ziirich, Switzerland
MOHAMMAD SADROSADATI, ETH Ziirich, Switzerland
SA FA RI ONUR MUTLU, ETH Ziirich, Switzerland 250
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https://doi.org/10.1109/ACCESS.2021.3110993
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Adoption: How to |

Appears in IEEE TETC 2023
ALP: Alleviating CPU-Memory Data Movement Overheads

in Memory-Centric Systems

Nika Mansouri Ghiasi, Nandita Vijaykumar, Geraldo F. Oliveira, Lois Orosa, Ivan Fernandez,

“ase Programmability?

Mohammad Sadrosadati, Konstantinos Kanellopoulos, Nastaran Hajinazar, Juan Gémez Luna, Onur Mutlu

SAFARI

Abstract—Recent advances in memory technology have enabled near-data processing (NDP) to tackle main memory bottlenecks in
modern systems. Prior works partition applications into segments (e.qg., instructions, loops, functions) and execute memory-bound
segments of the applications on NDP computation units, while mapping the cache-friendly application segments to host CPU cores
that access a deeper cache hierarchy. Partitioning applications between NDP and host cores causes inter-segment data movement
overhead, which is the overhead from moving data generated from one segment and used in the consecutive segments. This overhead
can be large if the segments map to cores in different parts of the system (i.e., host and NDP). Prior works take two approaches to the
inter-segment data movement overhead when partitioning applications between NDP and host cores. The first class of works maps
segments to NDP or host cores based on the properties of each segment, neglecting the performance impact of the inter-segment data
movement. Such partitioning techniques suffer from inter-segment data movement overhead. The second class of works maps
segments to host or NDP cores based on the overall memory bandwidth savings of each segment (which depends on the memory
bandwidth savings within each segment and the inter-segment data movement overhead between other segments). These works do
not offload each segment to the best-fitting core if they incur high inter-segment data movement overhead. Therefore these works miss
some of the potential NDP performance benefits. We show that mapping each segment (here basic block) to its best-fitting core based
on the properties of each segment, assuming no inter-segment data movement, can provide substantial performance benéefits.
However, we show that the inter-segment data movement reduces this benefit significantly.

To this end, we introduce ALP, a new programmer-transparent technique to leverage the performance benefits of NDP by alleviating the
performance impact of inter-segment data movement between host and memory and enabling efficient partitioning of applications
between host and NDP cores. ALP alleviates the inter-segment data movement overhead by proactively and accurately transferring the
required data between the segments mapped on host and NDP cores. This is based on the key observation that the instructions that
generate the inter-segment data stay the same across different executions of a program on different input sets. ALP uses a compiler
pass to identify these instructions and uses specialized hardware support to transfer data between the host and NDP cores at runtime.
Using both the compiler and runtime information, ALP efficiently maps application segments to either host or NDP cores considering 1)
the properties of each segment, 2) the inter-segment data movement overhead between different segments, and 3) whether this
inter-segment data movement overhead can be alleviated proactively and in a timely manner. We evaluate ALP across a wide range of
workloads and show on average 54.3% and 45.4% speedup compared to executing the application only on the host CPU or only the
NDP cores, respectively.

https://arxiv.or df/2212.06292
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Adoption: How to Maintain Cohetrencer (I)

Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutlu,

"LazyPIM: An Efficient Cache Coherence Mechanism

for Processing-in-Memory"
IEEE Computer Architecture Letters (CAL), June 2016.

LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory

Amirali Boroumand', Saugata Ghose', Minesh Patel’, Hasan Hassan'®, Brandon LuciaT,
Kevin Hsieh', Krishna T. Malladi*, Hongzhong Zheng*, and Onur Mutlu*f

t Carnegie Mellon University *Samsung Semiconductor, Inc. $TOBB ETU *ETH Ziirich
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Adoption: How to Maintain Coherencer (1I)

Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutluy,

"CoNDA: Efficient Cache Coherence Support for Near-
Data Accelerators”

Proceedings of the 46th International Symposium on Computer
Architecture (ISCA), Phoenix, AZ, USA, June 2019.

CoNDA: Efficient Cache Coherence Support
for Near-Data Accelerators

Amirali Boroumand' Saugata Ghose' Minesh Patel* Hasan Hassan*
Brandon Lucia’ Rachata Ausavarungnirun’* Kevin Hsieh'
Nastaran Hajinazar®" Krishna T. Malladi® Hongzhong Zheng® Onur Mutlu*"

TCarnegie Mellon University *ETH Ziirich *KMUTNB
°Simon Fraser University SSamsung Semiconductor, Inc.
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https://people.inf.ethz.ch/omutlu/pub/CONDA-coherence-for-near-data-accelerators_isca19.pdf
https://people.inf.ethz.ch/omutlu/pub/CONDA-coherence-for-near-data-accelerators_isca19.pdf
http://iscaconf.org/isca2019/
http://iscaconf.org/isca2019/

Adoption: How to Support Synchronization?

= Christina Giannoula, Nandita Vijaykumar, Nikela Papadopoulou, Vasileios Karakostas, Ivan
Fernandez, Juan GoOmez-Luna, Lois Orosa, Nectarios Koziris, Georgios Goumas, Onur Mutlu,
"SynCron: Efficient Synchronization Support for Near-Data-Processin
Architectures”
Proceedings of the 27th International Symposium on High-Performance Computer
Architecture (HPCA), Virtual, February-March 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Talk Video (21 minutes)]
[Short Talk Video (7 minutes)]

SynCron: Efficient Synchronization Support
for Near-Data-Processing Architectures

Christina Giannoula™ Nandita Vijaykumar** Nikela Papadopoulou’ Vasileios Karakostas’ Ivan Fernandez®*
Juan Gémez-Luna* Lois Orosa* Nectarios Koziris' Georgios Goumas' Onur Mutlu*

National Technical University of Athens ~ *ETH Ziirich *University of Toronto $University of Malaga
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https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21.pdf
https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21.pdf
https://www.hpca-conf.org/2021/
https://www.hpca-conf.org/2021/
https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21-short-talk.pdf
https://www.youtube.com/watch?v=2DNDjQjNDTw
https://www.youtube.com/watch?v=kGiN-YjeUUA

Adoption: How to Support Virtual Memory?

Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu,

"Accelerating Pointer Chasing in 3D-Stacked Memory:

Challenges, Mechanisms, Evaluation”
Proceedings of the 34th IEEE International Conference on Computer

Design (ICCD), Phoenix, AZ, USA, October 2016.

Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation

Kevin Hsieh! Samira Khan* Nandita Vijaykumar!
Kevin K. Chang' Amirali Boroumand' Saugata Ghose! Onur Mutlu®!

TCarnegie Mellon University — *University of Virginia SETH Ziirich

SAFARI 256


https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
http://www.iccd-conf.com/
http://www.iccd-conf.com/

Adoption: Evaluation Infrastructures

Haocong Luo, Yahya Can Tugrul, F. Nisa Bostanci, Ataberk Olgun, A. Giray
Yaglikci, and Onur Mutlu,

"Ramulator 2.0: A Modern, Modular, and Extensible DRAM Simulator”
Preprint on arxiv, August 2023.

[arXiv version]

[Ramulator 2.0 Source Code]

Ramulator 2.0: A Modern, Modular, and
Extensible DRAM Simulator

Haocong Luo, Yahya Can Tugrul, F. Nisa Bostanci, Ataberk Olgun, A. Giray Yaglkei, and Onur Mutlu

https://arxiv.org/pdf/2308.11030.pdf
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https://people.inf.ethz.ch/omutlu/pub/Ramulator2_arxiv23.pdf
https://arxiv.org/abs/2308.11030
https://github.com/CMU-SAFARI/ramulator2
https://arxiv.org/pdf/2308.11030.pdf
https://github.com/CMU-SAFARI/ramulator2

Processing-in-Memory:
Challenges

To fully support PIM systems, we need to develop:

1 Workload characterization methodologies and
benchmark suites targeting PIM architectures

2 Frameworks that can facilitate the implementation of
complex operations and algorithms using PIM primitives

Compiler support and compiler optimizations
targeting PIM architectures

4 Operating system support for PIM-aware virtual memory, memory
management, data allocation and mapping

End-to-End System-on-Chip Design Beyond DRAM

The lack of tools and system support for
PIM architectures limit the adoption of PIM systems
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An Example: SimplePIM Framework

Jinfan Chen, Juan Gomez-Luna, Izzat El Hajj, YuXin Guo,
and Onur Mutluy,
"SimplePIM: A Software Framework for Productive

and Efficient Processing in Memory"

Proceedings of the 32nd International Conference on
Parallel Architectures and Compilation Techniques (PACT),
Vienna, Austria, October 2023.

SimplePIM: A Software Framework for
Productive and Efficient Processing-in-Memory

Jinfan Chen' Juan Gémez-Luna' Izzat El Hajj* Yuxin Guo' Onur Mutlu'
1ETH Ziirich  2American University of Beirut
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https://people.inf.ethz.ch/omutlu/pub/SimplePIM_pact23.pdf
https://people.inf.ethz.ch/omutlu/pub/SimplePIM_pact23.pdf
http://pactconf.org/
http://pactconf.org/

Executive Summary

Real PIM hardware is now available, e.g., UPMEM PIM

However, programming real PIM hardware is challenging, e.g., need to:
- Distribute data across PIM memory banks,

- Manage data transfers between host cores and PIM cores, between PIM
cores, and between DRAM bank and PIM scratchpad

- Launch PIM kernels on the PIM cores, etc.
- Synchronize properly between threads

SimplePIM is a high-level programming framework for real PIM hardware
- Iterators such asmap, reduce, and zip
- Collective communication with broadcast, scatter,and gather

Implementation on UPMEM and evaluation with six different

workloads
- Reduction, vector add, histogram, linear/logistic regression, K-means
- 4.4x fewer lines of code compared to hand-optimized code
- Between 15% and 43% faster than hand-optimized code for three workloads

Source code: https://github.com/CMU-SAFARI/SimplePIM
SAFARI 260
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Concluding Remarks




Challenge and Opportunity for Future

Fundamentally
Energy-Efficient
(Data-Centric)

Computing Architectures




Challenge and Opportunity for Future

Fundamentally
High-Performance
(Data-Centric)
Computing Architectures




Challenge and Opportunity for Future

Computing Architectures
with
Minimal Data Movement
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Concluding Remarks

It is time to design principled system architectures to solve the
memory problem

We must design systems to be balanced, high-performance,
and energy-efficient > memory-centric

a Enable computation capabilities in memory

This can

o Lead to orders-of-magnitude improvements

o Enable new applications & computing platforms
o Enable better understanding of nature
a

Future of truly memory-centric computing is bright
o We need to do research & design across the computing stack
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Fundamentally Better Architectures

Data-centric

Data-driven

Data-aware
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We Need to Revisit the Entire Stack

= With a memory-centric mindset

System Software
SW/HW Interface

We can get there step by step
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PIM Review and Open Problems

A Modern Primer on Processing in Memory

Onur Mutlu?b, Saugata Ghoseb°, Juan Gémez-Luna?, Rachata Ausava.rungnirund

SAFARI Research Group

“ETH Ziirich
b Carnegie Mellon University
©University of Illinois at Urbana-Champaign
4King Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"A Modern Primer on Processing in Memory"

Invited Book Chapter in Emerging Computing: From Devices to Systems -
Looking Beyond Moore and Von Neumann, Springer, to be published in 2021.

SAFARI https: //arxiv.org/pdf/2012.03112.pdf 268


https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21-extended.pdf
https://people.inf.ethz.ch/omutlu/projects.htm
https://people.inf.ethz.ch/omutlu/projects.htm
https://arxiv.org/pdf/2012.03112.pdf

Referenced Papers, Talks, Artifacts

= All are available at

https://people.inf.ethz.ch/omutlu/projects.htm

https://www.youtube.com/onurmutlulectures

https://github.com/CMU-SAFARI/
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SAFARI Introduction & Research

Computer architecture, HW/SW, systems, bioinformatics, security, memory

SAFARI Research Group

Introduction & Research

)

Onur Mutlu
omutlu@gmail.com
https://people.inf.ethz.ch/omutlu
23 March 2023
Computer Architecture Seminar

SAFARI ETHzirich  CarnegieMellon

Seminar in Computer Architecture - Lecture 5: Potpourri of Research Topics (Spring 2023)

@ Onur Nlljutll.; Lectures "‘ Subscribed I &1 »~> Share 4 Download & clip SAFAR’

719 views Streamed 1 month ago Livestream - Seminar in Computer Architecture - ETH Ziirich (Spring 2023) SOEANE SRESSTe

Think BI&, Aim HIGH)!

https:/ /www.youtube.com/watch?v=mV20uB2djEs



https://www.youtube.com/watch?v=mV2OuB2djEs

Open Source Tools: SAFARI GitHub

SAFARI Research Group at ETH Zurich and Carnegie Mellon University

SA FAR’ Site for source code and tools distribution from SAFARI Research Group at ETH Zurich and Carnegie Mellon University.

SAFAR| Research Group

A2 440 followers @ ETH Zurich and Carnegie Mellon U... & https://safari.ethz.ch/ [ omutlu@gmail.com

() Overview [ Repositories 98  [[] Projects @ Packages A People 13

& ramulator ( Public

A Fast and Extensible DRAM Simulator, with built-in support for
modeling many different DRAM technologies including DDRx, LPDDRX,
GDDRx, WIOx, HBMx, and various academic proposals. Described in
the...

®@c++ TI519 ¥ 206

& MQSim ( Public

MQSim is a fast and accurate simulator modeling the performance of
modern multi-queue (MQ) SSDs as well as traditional SATA based
SSDs. MQSim faithfully models new high-bandwidth protocol
implement...

®@c+ vr265 %144

] SoftMC ( Public

SoftMC is an experimental FPGA-based memory controller design that
can be used to develop tests for DDR3 SODIMMSs using a C++ based
API. The design, the interface, and its capabilities and limitatio...

Verilog 13120 % 27

https://github.com/CMU-SAFARI/

& prim-benchmarks | Public

PrIM (Processing-In-Memory benchmarks) is the first benchmark suite
for a real-world processing-in-memory (PIM) architecture. PriM is
developed to evaluate, analyze, and characterize the first publ...

®@c w125 % a5

] rowhammer | Public

Source code for testing the Row Hammer error mechanism in DRAM
devices. Described in the ISCA 2014 paper by Kim et al. at
http://users.ece.cmu.eduf~omutlu/pub/dram-row-hammer_iscal4.pdf.

®c w210 %a3

[ Pythia | Public

A customizable hardware prefetching framework using online
reinforcement learning as described in the MICRO 2021 paper by Bera
et al. (https://arxiv.org/pdf/2109.12021.pdf).

®c++ w107 %34
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omutlu@gmail.com
https://people.inf.ethz.ch/omutlu
23 August 2024
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Processing-in-Memory:
Challenges

To fully support PIM systems, we need to develop:

1 Workload characterization methodologies and
benchmark suites targeting PIM architectures

2 Frameworks that can facilitate the implementation of
complex operations and algorithms using PIM primitives

Compiler support and compiler optimizations
targeting PIM architectures

4 Operating system support for PIM-aware virtual memory, memory
management, data allocation and mapping

End-to-End System-on-Chip Design Beyond DRAM

The lack of tools and system support for
PIM architectures limit the adoption of PIM systems
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Security Issues in Processing in Memory

Does PIM make security better or easier?

Does PIM make security worse?

Many interesting questions here

Topic of a separate talk, but we highlight some papers

Evaluating Homomorphic Operations on a Real-World Processing-In-Memory
System [IISWC 2023]

Amplifying Main Memory-Based Timing Covert and Side Channels using
Processing-in-Memory Operations [arxiv 2024]
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MIMDRAM: More Flexible Processing using DRAM

Appears at HPCA 2024  https://arxiv.org/pdf/2402.19080.pdf

MIMDRAM: An End-to-End Processing-Using-DRAM System
for High-Throughput, Energy-Efficient and Programmer-Transparent
Multiple-Instruction Multiple-Data Computing

Geraldo F. Oliveira’ Ataberk Olgun’ Abdullah Giray Yaglikc1" F. Nisa Bostanci’
Juan Gémez-Luna® Saugata Ghose* Onur Mutlu®
" ETH Ziirich * Univ. of lllinois Urbana-Champaign

Our goal is to design a flexible PUD system that overcomes
the limitations caused by the large and rigid granularity of
PUD. To this end, we propose MIMDRAM, a hardware/software
co-designed PUD system that introduces new mechanisms to
allocate and control only the necessary resources for a given
PUD operation. The key idea of MIMDRAM is to leverage fine-
grained DRAM (i.e., the ability to independently access smaller
segments of a large DRAM row) for PUD computation. MIM-
DRAM exploits this key idea to enable a multiple-instruction
multiple-data (MIMD) execution model in each DRAM subar-

SAFARI ray (and SIMD execution within each DRAM row segment). 282
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Processing-in-Memory:
Challenges

To fully support PIM systems, we need to develop:

3 Compiler support and compiler optimizations
targeting PIM architectures

The lack of tools and system support for
PIM architectures limit the adoption of PIM systems
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MIMDRAM

An End-to-End Processing-Using-DRAM System for
High-Throughput, Energy-Efficient and Programmer-Transparent
Multiple-Instruction Multiple-Data Computing

Geraldo F. Oliveira
Ataberk Olgun A. Giray Yaglikei F. Nisa Bostanci

Saugata Ghose Juan Gémez-Luna Onur Mutlu

ETHzirich X iiiikos SAFARI




Executive Summary

 Problem: Processing-Using-DRAM (PUD) suffers from three issues caused by
DRAM'’s large and rigid access granularity

e Underutilization due to data parallelism variation in (and across) applications

e Limited computation support due to a lack of interconnects

e Challenging programming model due to a lack of compilers

\

Goal: Design a flexible PUD system that overcomes the three limitations caused by
DRAM'’s large and rigid access granularity

7

Key Mechanism: MIMDRAM, a hardware/software co-design PUD system

 Keyidea: leverage fine-grained DRAM for PUD operation

e HW: -simple changes to the DRAM array, enabling concurrent PUD operations
- low-cost interconnects at the DRAM peripherals for data reduction

e SW: - compiler and OS support to generate and map PUD instructions

\

Key Results: MIMDRAM achieves
e 14.3x, 30.6x, and 6.8x the energy efficiency of state-of-the-art PUD systems, a high-end
CPU and GPU, respectively
* Small area cost to a DRAM chip (1.11%) and CPU die (0.6%)

.

SAFARI https://github.com/CMU-SAFARI/MIMDRAM 285
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Recall: Processing using DRAM

= We can support
a Bulk bitwise AND, OR, NOT, MAJ
o Bulk bitwise COPY and INIT/ZERO
o True Random Number Generation; Physical Unclonable Functions
o Lookup Table based more complex computation

= At low cost

= Using analog computation capability of DRAM

o Idea: activating (multiple) rows performs computation
= Even in commodity off-the-shelf DRAM chips!

= 30-77X performance and energy improvement

o Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity
DRAM Technology,” MICRO 2017.

o Seshadri+"RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,”
MICRO 2013.
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Background Work: RowClone

Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata
Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A.
Kozuch, Phillip B. Gibbons, and Todd C. Mowry,

"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and
Initialization"

Proceedings of the 46th International Symposium on Microarchitecture

(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning Session
Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

RowClone: Fast and Energy-Efficient
In-DRAM Bulk Data Copy and Initialization

Vivek Seshadri Yoongu Kim Chris Fallin” Donghyuk Lee

vseshadr@cs.cmu.edu yoongukim@cmu.edu cfallin@cif.net donghyuki@cmu.edu

Rachata Ausavarungnirun Gennady Pekhimenko Yixin Luo
rachata@cmu.edu gpekhime@cs.cmu.edu  yixinluo@andrew.cmu.edu

Onur Mutlu Phillip B. Gibbons? Michael A. Kozucht Todd C. Mowry

onur@cmu.edu phillip.b.gibbons@intel.com michael.a.kozuch@intel.com tcm@cs.cmu.edu

Carnegie Mellon University fIntel Pittsburgh


http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://www.microarch.org/micro46/
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pdf

Background Work: PIDRAM

Ataberk Olgun, Juan Gomez Luna, Konstantinos Kanellopoulos, Behzad Salami,
Hasan Hassan, Oguz Ergin, and Onur Mutlu,

"PiDRAM: A Holistic End-to-end FPGA-based Framework for
Processing-in-DRAM"

ACM Transactions on Architecture and Code Optimization (TACO), March 2023.
[arXiv version]

Presented at the 18th HIPEAC Conference, Toulouse, France, January 2023.
[Slides (pptx) (pdf)]

[Longer Lecture Slides (pptx) (pdf)]

[Lecture Video (40 minutes)]

[PIDRAM Source Code]

PiDRAM: A Holistic End-to-end FPGA-based Framework
for Processing-in-DRAM

Ataberk Olgun® Juan Gémez Luna’ Konstantinos Kanellopoulos® Behzad Salami®
Hasan Hassan® Oguz Ergin' Onur Mutlu®

SETH Ziirich TTOBB University of Economics and Technology
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https://people.inf.ethz.ch/omutlu/pub/PiDRAM_taco23.pdf
https://people.inf.ethz.ch/omutlu/pub/PiDRAM_taco23.pdf
http://taco.acm.org/
https://arxiv.org/abs/2111.00082
https://www.hipeac.net/2023/toulouse/
https://people.inf.ethz.ch/omutlu/pub/PiDRAM_hipeac23-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/PiDRAM_hipeac23-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/PiDRAM_comparch22-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/PiDRAM_comparch22-lecture-slides.pdf
https://www.youtube.com/watch?v=JyWxkeQA0W8
https://github.com/CMU-SAFARI/PiDRAM

Background Work: In-DRAM Bulk AND/OR

Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk
Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and
Todd C. Mowry,

"Fast Bulk Bitwise AND and OR in DRAM"

IEEE Computer Architecture Letters (CAL), April 2015.

Fast Bulk Bitwise AND and OR in DRAM

Vivek Seshadri*, Kevin Hsieh*, Amirali Boroumand*, Donghyuk Lee*,
Michael A. Kozuchf, Onur Mutlu*, Phillip B. Gibbons', Todd C. Mowry*

*Carnegie Mellon University fIntel Pittsburgh
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http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://www.computer.org/web/cal

Background Work: Ambit

= Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali

Boroumand, Jeremie Kim, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons,
and Todd C. Mowry,

"Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using
Commodity DRAM Technology"

Proceedings of the 50th International Symposium on

Microarchitecture (MICRO), Boston, MA, USA, October 2017.

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology

Vivek Seshadri’® Donghyuk Lee®® Thomas Mullins®>® Hasan Hassan? Amirali Boroumand®
Jeremie Kim*® Michael A. Kozuch® Onur Mutlu®®  Phillip B. Gibbons® Todd C. Mowry®

IMicrosoft Research India “NVIDIA Research 3Intel “ETH Ziirich °Carnegie Mellon University
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https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
http://www.microarch.org/micro50/
http://www.microarch.org/micro50/
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-lightning-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-poster.pdf

Background: In-DRAM Bulk Bitwise Execution

Vivek Seshadri and Onur Mutlu,
"In-DRAM Bulk Bitwise Execution Engine"

Invited Book Chapter in Advances in Computers, to appear
in 2020.

[Preliminary arXiv version]

In-DRAM Bulk Bitwise Execution Engine

Vivek Seshadri Onur Mutlu
Microsoft Research India ETH Zurich

visesha@microsoft.com onur .mutlu@inf.ethz.ch
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Recall: SIMDRAM Framework

= Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, Joao Dinis Ferreira, Nika Mansouri
Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose, Juan Gomez-Luna, and Onur Mutlu,
"SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in DRAM"
Proceedings of the 26th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Virtual, March-April 2021.
[2-page Extended Abstract]
[Short Talk Slides (pptx) (pdf)]
[Talk Slides (pptx) (pdf)]
[Short Talk Video (5 mins)]
[Full Talk Video (27 mins)]

SIMDRAM: A Framework for
Bit-Serial SIMD Processing using DRAM

*Nastaran Hajinazar!2 *Geraldo F. Oliveira' Sven Gregorio® Jodo Dinis Ferreira’
Nika Mansouri Ghiasi' Minesh Patel’ Mohammed Alser! Saugata Ghose?
Juan Gémez-Luna! Onur Mutlu?
1ETH Ziirich 2Simon Fraser University 3University of Illinois at Urbana—Champaign
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https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21.pdf
https://asplos-conference.org/
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-extended-abstract.pdf
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-talk.pdf
https://www.youtube.com/watch?v=g0fE1c7w0xk&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=115
https://www.youtube.com/watch?v=bas9U7djW_8&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=116

Background:
In-DRAM Copy/Init, Majority & NOT Operations

In-DRAM majority is performed by
simultaneously activating three DRAM rows

Lol il L il
T brbd L

64 bits

8 bits

Seshadri, Vivek, et al. " Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology," in MICRO, 2017
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Background:
In-DRAM Majority Operations

Processing-Using-DRAM architectures (e.g., SIMDRAM) are
very-wide (e.g., 65,536 wide) bit-serial SIMD engines

Oliveira, Geraldo F., et al. " SIMDRAM: An End-to-End Framework for
Bit-Serial SIMD Computing in DRAM," in ASPLOS, 2021
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Limitations of PUD Systems:
Overview

PUD systems suffer from three sources of inefficiency
due to the large and rigid DRAM access granularity

1 SIMD Underutilization

- due to data parallelism variation within and across applications
- leads to throughput and energy waste

2 Limited Computation Support
- due to a lack of low-cost interconnects across columns
- limits PUD operations to only parallel map constructs

3 Challenging Programming Model

- due to alack of compiler support for PUD systems
- creates a burden on programmers, limiting PUD adoption

SA FAR’ Lir.nitaﬁons of PUD
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Limitations of PUD Systems:
Challenging Programming Model

Programmer’s Tasks: Goal:
Map & align Just write
data structures my kemel

High-level code for
C[i] = (A[i] > pred[i])? A[i] + B[i] : A[i] — BJ[i]

for (int 1 = 0; i < size ; ++ 1){
bool cond = A[i] > pred[i];
if (cond) C[i] = A[i] + B[i];
else C[i] = A[i] - B[i];
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Limitations of PUD Systems:
Challenging Programming Model

Programmer’s Tasks:

Map & align Identify
data structures array boundaries

High-level code for
C[i] = (A[i] > pred[i])? A[i] + B[i] : A[i] — BJ[i]

for (int i = @; i < size ; ++ i){
bool cond = A[i] > pred[i];
if (cond) C[i] = A[i] + B[i];
else C[i] = A[i] - B[i];

SA FA R’ Introduction & Background Limitations of PUD MIMDRAM Hardware Overview Software Support Evaluation
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Limitations of PUD Systems:
Challenging Programming Model

Programmer’s Tasks:

Map & align Identify Manually Map Cto
data structures array boundaries unroll loop PUD instructions

High-level code for
C[i] = (A[i] > pred[i])? A[i] + B[i] : A[i] — BJ[i]

for (int i = 9; i < size ; ++ i){
bool cond = A[i] > pred[i];
if (cond) C[i] = A[i] + B[i];
else C[i] = A[i] - B[i];

SAFAR’ Introduction & Background Limitations of PUD MIMDRAM Hardware Overview Software Support Evaluation
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Limitations of PUD Systems:
Challenging Programming Model

Programmer’s Tasks:

Map & align Identify Manually Map Cto Orchestrate
data structures array boundaries unroll loop PUD instructions datamovement

High-level code for
C[i] = (A[i] > pred[i])? A[i] + B[i] : A[i] — BJ[i]

for (int i = @; i < size ; ++ 1i){
bool cond = A[i] > pred[i];
if (cond) C[i] = A[i] + B[i];
else C[i] = A[i] - B[i];
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Limitations of PUD Systems:
Challenging Programming Model

Programmer’s Tasks:

Map & align

data structures

SAFARI

Goal:
Identify Manually Map Cto Orchestrate Just write
array boundaries unroll loop PUD instructions datamovement my kemel

PUD’s assembly-like code for
Cl[i] = (A[i] > pred[i])? A[i] + B[i] : A[i] — Bi]

bbop_trsp init(A ,
bbop_trsp init(B ,
bbop_trsp _init(C ,

bbop add(D , A
bbop sub(E , A
bbop_greater(F
bbop if else(C

Introduction & Background
oooooo

“. v .
O > W w

A

Limitations of PUD
oooooooo

size , elm size);
size , elm_size);
size , elm_size);

size , elm size);
, Size , elm size);
, pred , size , elm size);
, E, F, size , elm size);

o

MIMDRAM Hardware Overview Software Support Evaluation Conclusion
o000 300



Problem & Goal

4 ™
Processing-Using-DRAM'’s large and rigid granularity
limits its applicability and
efficiency for different applications
\. y,
Design a flexible PUD system that
overcomes the three limitations caused by
large and rigid DRAM access granularity
. y,
S A FA R ’ Introduc.ti:n.S: B.ac.kground Lir:ni:a:i:.:s :)f.P:lD MI.NI.D:QA.M Hard.w.ar.e (.)\:e:view Soft.w.ar.e .Sl:pfort E:Ia.lu.at.io.n Conclusion 301



MIMDRAM:
Key Idea (I)

row decoder

on a DRAM access, the global wordline propagates across all DRAM mats

segments the global wordline to access individual DRAM mats

SAFARI

DRAM’s hierarchical organization can enable

DRAM mat

llllllllllllllllll
* .‘

llllllllllllll

D
D¢
D

D
D¢
D

D

D

fine-grained access

global wordline

DPDC
DO P
D

D(

—T

[ ] ‘.*.*.*.ﬁ.

it

global sense amplifier

Key Issue:

Fine-Grained DRAM:
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MIMDRAM:
Key Idea (II)

Fine-Grained DRAM:
segments the global wordline to access individual DRAM mats

segmented global wordline

| - (e ————— -

z 10l0l00/0
9 0.0,0.0,0.
) 0.0,0.0,0.
© 0.0,0.0,0.
% 0.0,0,0,0.

|

global sense amplifier

Fine-grained DRAM for energy-efficient DRAM access:

[Cooper-Balis+, 2010]: Fine-Grained Activation for Power Reduction in DRAM

[Udipi+, 2010]: Rethinking DRAM Design and Organization for Energy-Constrained Multi-Cores
[Zhang+, 2014]: Half-DRAM

[Ha+, 2016]: Improving Energy Efficiency of DRAM by Exploiting Half Page Row Access
[O’Connor+, 2017]: Fine-Grained DRAM

[Olgun+, 2024]: Sectored DRAM

SAFARI
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Sectored DRAM

Ataberk Olgun, F. Nisa Bostanci, Geraldo F. Oliveira, Yahya Can Tugrul,
Rahul Bera, A. Giray Yaglikci, Hasan Hassan, Oguz Ergin, and Onur Mutlu,

"Sectored DRAM: A Practical Energy-Efficient and High-
Performance Fine-Grained DRAM Architecture”

ACM Transactions on Architecture and Code Optimization (TACO),
[online] June 2024.

[arXiv version]
[ACM Digital Library version]

Sectored DRAM: A Practical Energy-Efficient and
High-Performance Fine-Grained DRAM Architecture

Ataberk Olgun®  F.Nisa Bostanci’”  Geraldo F. Oliveira®  Yahya Can Tugrul’t  Rahul Bera®
A. Giray Yaglikci® Hasan Hassan$ Oguz Ergin' Onur Mutlu®

SAFARI https: //arxiv.orq/pdf/2207.13795 S04


https://arxiv.org/pdf/2207.13795
https://arxiv.org/pdf/2207.13795
http://taco.acm.org/
https://arxiv.org/abs/2207.13795
https://doi.org/10.1145/3673653
https://arxiv.org/pdf/2207.13795

MIMDRAM:
Key Idea (1)

segmented global wordline

() () ()
[

global sense amplifier

Fine-grained DRAM for processing-using-DRAM:

1 Improves SIMD utilization
for a single PUD operation, only access the DRAM mats with target data

SAFARI
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MIMDRAM:
Key Idea (lll)

segmented global wordline

bt

global sense amplifier

Fine-grained DRAM for processing-using-DRAM:

1 Improves SIMD utilization

for a single PUD operation, only access the DRAM mats with target data
for multiple PUD operations, execute independent operations concurrently
—> multiple instruction, multiple data (MIMD) execution model

SAFARI
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MIMDRAM:
Key Idea (1)

segmented global wordline

row decoder

| ke s | |

global sense amplifier

Fine-grained DRAM for processing-using-DRAM:

2 Enables low-cost interconnects for vector reduction
- global and local data buses can be used for inter-/intra-mat communication

SAFARI
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MIMDRAM:
Key Idea (1)

512 columns segmented global wordline

bt

global sense amplifier

Fine-grained DRAM for processing-using-DRAM:

Eases programmability

- SIMD parallelism in a DRAM mat is on par with vector ISAs’ SIMD width
SAFARI 308



MIMDRAM:
Compiler Support (l)

Transparently:
extract SIMD parallelism from an application, and
schedule PUD instructions while maximizing utilization

Three new LLVM-based passes targeting PUD execution

code identification code scheduling & data mapping code generation
source code loop auto-vectorization 3 DDG final binary
( N\ ™ .

for(i; i<1024;7++) G *xA=pim_malloc(s,mat;)
{ *D=pim_malloc(s,mat;)

Cli1=A[i]1+B[i]; %3=add<1024 x 132> %1,%2 *t=p'im_ma1.1"oc(s,mat1-)

F[i]=D[i]l*E[1]; | —>| bbop_add(C,A,B,mat;)
) GLil=clil-FL1l; %6=mul<1024 X 132> %4,%5 bbop_mul(F,D,E,mat;)

bbop_mov (t,F)
%7=sub<1024 i32> %3,%6

for(){} e X oA B D E) bbop_sub (G,C,t,mat;)
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MIMDRAM:
Compiler Support (ll)

_____________________________________________________________

source code loop auto-vectorization

for(i; i<1024;1++) e s

{ e
Cli]=A[i]+B[i];
F[‘i]:D[‘i]*E['i]; _> Stote %3, 10:.4 >z %% _»

G[i]=C[i]-F[i];
3 LHSELTL=L? %6=mu1<1024 x 132> %4,%5

%3=add<1024 x 132> %1,%2

for(){} %7=5ub<1024 x i32> %3,%6

Identify SIMD parallelism, generate PUD instructions,
and set the appropriate vectorization factor

SAFARI 310



MIMDRAM:
Compiler Support (ll)

Improve SIMD utilization by allowing the distribution of independent PUD
instructions across DRAM mats
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MIMDRAM:
Compiler Support (lll)

) final binary
*A=pim_malloc(s,mat;)
*D=pim_malloc(s,mat;)
*t=pim_malloc(s,mat;)

"W bbop_add(C,A,B,mat;)
bbop_mul(F,D,E,mat;)
bbop_mov (t,F)

bbop_sub(G,C,t,mat;)

Generate the appropriate binary for
data allocation and PUD instructions
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MIMDRAM:
System Support

* Instruction set architecture

* Execution & data transposition
* Data coherence

* Address translation

* Data allocation & alighment

e Mat label translation

SAFARI 313



Evaluation:
Methodology Overview

e Evaluation Setup

CPU: Intel Skylake CPU

GPU: NVIDIA A100 GPU

PUD: SIMDRAM [Oliveira+, 2021] and DRISA [Li+, 2017]
PND: Fulcrum [Lenjani+, 2020]
https://github.com/CMU-SAFARI/MIMDRAM

e Workloads:

- 12 workloads from Polybench, Rodinia, Phoenix, and SPEC2017
- 495 multi-programmed application mixes

 Two-Level Analysis

- Single application - leverages intra-application data parallelism

- Multi-programmed workload - leverages inter-application
data parallelism
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Evaluation:
Single Application Analysis — Energy Efficiency

O GPU E SIMDRAM = MIMDRAM
. 10000
E f;!’ 1000 A
= . 100 -
1INy 1 d 0l
Bé 1U.IU. ] .I IIUIII - N I-I M
2
S U e |
& 5 001
% 0.001
S & & & 8‘6 S & & & K & &
a4 R
MIMDRAM significantly improves
energy efficiency compared to
CPU (30.6x), GPU (6.8x), and SIMDRAM (14.3x)
\L J
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Evaluation:
Multi-Programmed Workload Analysis

2.5
©
B2
s 5815
o (%2}
T o 2
UV U s
288
5
- =
£ Zo05
2
0
SIMDRAM:1 ~ SIMDRAM:2  SIMDRAM:4  SIMDRAM:8  MIMDRAM
(bank) (banks) (banks) (banks)
MIMDRAM significantly improves
system throughput (1.68x)
compared to SIMDRAM
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Evaluation:
More in the Paper

MIMDRAM with subarray and bank-level parallelism

- MIMDRAM provides significant performance gains compared to the baseline
CPU (13.2x) and GPU (2x)

Comparison to DRISA and Fulcrum for multi-programmed
workloads
- MIMDRAM achieves system throughput on par with DRISA and Fulcrum

MIMDRAM'’s SIMD utilization versus SIMDRAM
- MIMDRAM provides 15.6x the utilization of SSIMDRAM

Area analysis

- MIMDRAM adds small area cost to a DRAM chip (1.11%) and
CPU die (0.6%)

SAFARI 317



MIMDRAM: Summary

We introduced MIMDRAM,
a hardware/software co-designed processing-using-DRAM system

 Keyidea: leverage fine-grained DRAM for processing-using-DRAM operation

e HW: - simple changes to DRAM, enabling concurrent instruction execution
- low-cost interconnects at the DRAM peripherals for data reduction

e SW: - compiler and OS support to generate and map instructions

( R
Our evaluation demonstrates that MIMDRAM
» significantly improves performance, energy efficiency, and throughput compared to
processor-centric (CPU and GPU) and
memory-centric (SIMDRAM, DRISA, and Fulcrum) architectures
* incurs small area cost to a DRAM chip and CPU die
. J

https://github.com/CMU-SAFARI/MIMDRAM
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Two Other Works
on PIM Programmability




Adoption: How to FEase Programmability? (1)

Geraldo F. Oliveira, Alain Kohli, David Novo,
Juan Gomez-Luna, Onur Mutlu,
“"DaPPA: A Data-Parallel Framework for Processing-

in-Memory Architectures,”
in PACT SRC Student Competition, Vienna, Austria, October
2023.

DaPPA: A Data-Parallel Framework for Processing-in-Memory Architectures

Geraldo F. Oliveira*® Alain Kohli* David Novo* Juan Gémez-Luna* Onur Mutlu*
*ETH Ziirich *LIRMM, Univ. Montpellier, CNRS
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https://arxiv.org/pdf/2310.10168.pdf
https://arxiv.org/pdf/2310.10168.pdf

Adoption: How to Fase Programmability? (1I)

Jinfan Chen, Juan Gomez-Luna, Izzat El Hajj, YuXin Guo,
and Onur Mutluy,
"SimplePIM: A Software Framework for Productive

and Efficient Processing in Memory"

Proceedings of the 32nd International Conference on
Parallel Architectures and Compilation Techniques (PACT),
Vienna, Austria, October 2023.

SimplePIM: A Software Framework for
Productive and Efficient Processing-in-Memory

Jinfan Chen' Juan Gémez-Luna' Izzat El Hajj* Yuxin Guo' Onur Mutlu'
1ETH Ziirich  2American University of Beirut
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SimplePIM




Adoption: How to Fase Programmability? (1I)

Jinfan Chen, Juan Gomez-Luna, Izzat El Hajj, YuXin Guo,
and Onur Mutluy,
"SimplePIM: A Software Framework for Productive

and Efficient Processing in Memory"

Proceedings of the 32nd International Conference on
Parallel Architectures and Compilation Techniques (PACT),
Vienna, Austria, October 2023.

SimplePIM: A Software Framework for
Productive and Efficient Processing-in-Memory

Jinfan Chen' Juan Gémez-Luna' Izzat El Hajj* Yuxin Guo' Onur Mutlu'
1ETH Ziirich  2American University of Beirut
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http://pactconf.org/

SimplePIM:

A Software Framework for Productive
and Efficient Processing-in-Memory

Jinfan Chen, Juan Gédmez Luna, Izzat El Hajj, Yuxin Guo, Onur Mutlu

https://arxiv.org/pdf/2310.01893.pdf
https://github.com/CMU-SAFARI/SimplePIM
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https://github.com/CMU-SAFARI/SimplePIM

Executive Summary

* Processing-in-Memory (PIM) promises to alleviate the data movement
bottleneck

* Real PIM hardware is now available, e.g., UPMEM PIM

* However, programming real PIM hardware is challenging, e.g.:

- Distribute data across PIM memory banks,

- Manage data transfers between host cores and PIM cores, and between PIM
cores,

- Launch PIM kernels on the PIM cores, etc.

SimplePIM is a high-level programming framework for real PIM hardware

- lterators such asmap, reduce, and zip
- Collective communication with broadcast, scatter,and gather

Implementation on UPMEM and evaluation with six different
workloads

- Reduction, vector add, histogram, linear/logistic regression, K-means

- 4.4x fewer lines of code compared to hand-optimized code

- Between 15% and 43% faster than hand-optimized code for three workloads

Source code: https://github.com/CMU-SAFARI/SimplePIM
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Real DRAM Chips
Are Already Quite Capable:
FC-DRAM & SiMRA




DRAM Chips Are Already (Quite) Capable!

Appears at HPCA 2024

https://arxiv.orq/pdf/2402.18736.pdf

Functionally-Complete Boolean Logic in Real DRAM Chips:
Experimental Characterization and Analysis

Ismail Emir Yiiksel

Yahya Can Tugrul

Ataberk Olgun F. Nisa Bostanci

A. Giray Yaglike¢1

Geraldo F. Oliveira Haocong Luo Juan Gomez-Luna Mohammad Sadrosadati  Onur Mutlu

SAFARI

ETH Ziirich

We experimentally demonstrate that COTS DRAM chips are
capable of performing 1) functionally-complete Boolean opera-
tions: NOT, NAND, and NOR and 2) many-input (i.e., more than
two-input) AND and OR operations. We present an extensive
characterization of new bulk bitwise operations in 256 off-the-
shelf modern DDR4 DRAM chips. We evaluate the reliability of
these operations using a metric called success rate: the fraction
of correctly performed bitwise operations. Among our 19 new
observations, we highlight four major results. First, we can
perform the NOT operation on COTS DRAM chips with 98.37%
success rate on average. Second, we can perform up to 16-input
NAND, NOR, AND, and OR operations on COTS DRAM chips
with high reliability (e.g., 16-input NAND, NOR, AND, and
OR with average success rate of 94.94%, 95.87%, 94.94%,
and 95.85%, respectively). Third, data pattern only slightly
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DRAM Chips Are Already (Quite) Capable!
https://arxiv.org/pdf/2312.02880.pdf

PULSAR: Simultaneous Many-Row Activation
for Reliable and High-Performance Computing
in Off-the-Shelf DRAM Chips

Ismail Emir Yuksel Yahya Can Tugrul F Nisa Bostanci Abdullah Giray Yaglikci Ataberk Olgun
Geraldo F. Oliveira Melina Soysal Haocong Luo Juan Gomez Luna Mohammad Sadrosadati
Onur Mutlu

ETH Zurich

We propose PULSAR, a new technique to enable high-
success-rate and high-performance PuM operations in off-the-
shelf DRAM chips. PULSAR leverages our new observation
that a carefully-crafted sequence of DRAM commands simul-
taneously activates up to 32 DRAM rows. PULSAR over-
comes the limitations of existing techniques by 1) replicating
the input data to improve the success rate and 2) enabling
new bulk bitwise operations (e.g., many-input majority, Multi-
Rowlnit, and Bulk-Write) to improve the performance.
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DRAM Chips Are Already (Quite) Capable!

Appears at DSN 2024

Simultaneous Many-Row Activation in Off-the-Shelf DRAM Chips:
Experimental Characterization and Analysis

Ismail Emir Yiiksel! Yahya Can Tugrul'> F. Nisa Bostanc1'! Geraldo F. Oliveira!
A. Giray Yaglik¢ci! Ataberk Olgun! Melina Soysal! Haocong Luo!
Juan Gémez-Luna! Mohammad Sadrosadati! ~ Onur Mutlu!

VETH Ziirich 2TOBB University of Economics and Technology
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The Capability of COTS DRAM Chips
We demonstrate that COTS DRAM chips:

1 Can simultaneously activate up to
48 rows in two neighboring subarrays

2 Can perform NOT operation
with up to 32 output operands

3 Can perform up to 16-input
AND, NAND, OR, and NOR operations
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Finding: SIMRA Across Subarrays

Activating two rows in quick succession
can simultaneously activate
multiple rows in neighboring subarrays

ACT Row A ACT Row B
<3ns <3ns
Subarray X
ACT = Row A
1 1 1 1 1 1T 1T 1T 1T 11 Neighboring
_Shared Sense Amplifiers Subarrays
Subarray Y
ACT =pepe—p Row B
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Key Idea: NOT Operation

Connect rows in neighboring subarrays
through a NOT gate by simultaneously activating rows

SI'C SI'C SIc

dst
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Key Idea: NAND, NOR, AND, OR

Manipulate the bitline voltage to express
a wide variety of functions using
multiple-row activation in neighboring subarrays

VREF V(A,B)

sense amp.
compares

V(A,B) and V(X,Y)

Multiple Row ACT :
—
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Two-Input AND and NAND Operations
X X

<3ns <3ns

ACT PRE ACT

AVG(Vpp,Vpp/2)
VDD
1 Reference
Voo/?2 } Subarray
(REF)

® Compute
: }Subarray

S (COM)
AVG(X,Y)

SAFAR]/ *Gaoetal, "FracDRAM: Fractional Values in Off-the-Shelf DRAM," in MICRO, 2022. 334



Two-Input AND and NAND Operations

ACT X X

<3ns — <3ns ——

Vpp=1 & GND = 0

X Y COM REF

3VDD/4‘ }‘
1VDD

sense amp

compares

t

he voltages on

the bitlines
Jow O L
9

00 O 1

I
/

/
/

GND <~

w)

SAFARI
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Two-Input AND and NAND Operations

ACT X X

<3ns PR

ACT
<3ns

1VDD '

X Y COM REF

sense amp. O O 0 i |
compares y
the voltages on 0 1 0 i |
the bltllnes
‘GND —O' i
N ,
VDD/Z‘ g

SAFARI
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Two-Input AND and NAND Operations
X X

<3ns <3ns

ACT PRE ACT

3VDD/4‘ i‘ VDD=1 & GND — O

\
1
1
1

X Y COM REF

1VDD ! ' '
sense amp. 00 0 i |

compares Y Y Y
the voltages on 0 1 0 1

the bltlmes Y Y Y
‘GND —( , 1 0 O 1

\ ,
Vpp/24 g
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Two-Input AND and NAND Operations
X X

ACT PRE ACT
<3ns <3ns
3Vpp/4 i‘ VDD=1 & GND - O
‘. Y COM REF
1GND ' ' '
sense amp. 0 0 1
compares Y Y Y
the voltages on 1 0 1
the bltllnes Y Y
‘VDD —() , 0O O 1
A 1 1 0
VDD <~
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Two-Input AND and NAND Operations
X X

<3ns <3ns

ACT PRE ACT

AVG (Vpp,Vpp/2) Vpp=1 & GND O

}Reference COM REF

VDD

Vpp/2*

Subarray
(REF)

® Compute
C }Subarray

Y (COM)
AVG(X,Y)

S A FA R l *Gao et al., "FracDRAM: Fractional Values in Off-the-Shelf DRAM," in MICRO, 2022.




Many-Input AND, NAND, OR, and NOR Operations

We can express AND, NAND, OR, and NOR operations

by carefully manipulating the reference voltage

Functionally-Complete Boolean Logic in Real DRAM Chips:
Experimental Characterization and Analysis

Ismail Emir Yiiksel Yahya Can Tugrul Ataberk Olgun F. Nisa Bostanc1  A. Giray Yaglikci
Geraldo E. Oliveira Haocong Luo Juan Gomez-Luna Mohammad Sadrosadati  Onur Mutlu

ETH Ziirich

(More details in the paper)

https://arxiv.org/pdf/2402.18736.pdf
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DRAM Testing Infrastructure

* Developed from DRAM Bender [Olgun+, TCAD’23|*

* Fine-grained control over DRAM commands, timings,
and temperature

4) Temperature |
Controller

341


https://arxiv.org/pdf/2211.05838
https://arxiv.org/pdf/2211.05838

DRAM Chips Tested

* 256 DDR4 chips from two major DRAM manufacturers

* Covers different die revisions and chip densities

. #Modules Die  Mir. Chip Chip Speed

LD i (#Chips) Rev. Date® Density Org. Rate
9(72) M N/A 4Gb X8 2666M'T/s
5 (40) A N/A 4Gb X8 2133MT/s
SK Hvnix 1 (16) A N/A 8Gb X8 2666MT/s
Y 1 (32) A 18-14  4Gb x4 2400MT/s
1(32) A 16-49 8Gb x4 2400MT/s
1 (32) M 16-22 8Gb x4 2666MT/s
I (8) F 21-02 4Gb X8 2666M'T/s
Samsung 2 (16) D 21-10 8Gb X8 2133MT/s
I (8) A 22-12 8Gb X8 3200MT/s

SAFARI
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Performing AND, NAND, OR, and NOR

T

Operatlon
I AND
I NAND
[TIOR
[ NOR

2 4 8 16
Number of Input Operands

100-

Success Rate (%)
~d
on

0
o

COTS DRAM chips can perform
{2, 4, 8, 16}-input AND, NAND, OR, and NOR operations

SAFARI 343




Performing AND, NAND, OR, and NOR

100+ ¢ ’%%

Operation |
B AND
B NAND
[I10R
[ NOR

2 4 8 16
Number of Input Operands

Success Rate (%)
~d
on

Ul
o

COTS DRAM chips can perform
16-input AND, NAND, OR, and NOR operations
with very high success rate (>94%)
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Impact of Data Pattern

—~ 100

§

Q

-

o

= 75

n

Q

8 Data Pattern
- ¢ ¢ B All 1s/0s
Y 5o NOR |mmRandom

4 38 16
Number of Input Operands

1.98% variation in average success rate

across all number of input operands
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Impact of Data Pattern

Success Rate (%)

SAFARI

100 -

75

50 1

o=
T

100 1

75

50 1

4

7 v+
| |

¢

8 16 2 4
Number of Input Operands

8

!HT'?'“"

NAND

T

Data Pattern
I All 1s/0s
[ Random

16

Impact of data pattern is consistent

across all tested operations
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Impact of Data Pattern

Success Rate (%)

100

50 1

I

50 1

100

75

!gﬁ@

75 -

AND

!HT'?“*

NAND

7 v+
| |
OR

’
. Data Pattern
¢ ¢ [ All 1s/0s
NOR I Random

2 4 8 16

2 4 8 16

Number of Input Operands

Data pattern slightly affects
the reliability of AND, NAND, OR, and NOR operations
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More in the Paper

* Detailed hypotheses & key ideas to perform
— NOT operation
— Many-input AND, NAND, OR, and NOR operations

* How the reliability of bitwise operations are affected by
— The location of activated rows
— Temperature (for AND, NAND, OR, and NOR)

— DRAM speed rate
— Chip density and die revision

* Discussion on the limitations of COTS DRAM chips
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Available on arXiv

Functionally-Complete Boolean Logic in Real DRAM Chips:
Experimental Characterization and Analysis

Ismail Emir Yiiksel
Geraldo F. Oliveira

Yahya Can Tugrul
Haocong Luo

Ataberk Olgun F Nisa Bostanci
Juan Gomez-Luna Mohammad Sadrosadati

A. Giray Yaghker
Onur Mutlu

ETH Ziirich

Processing-using-DRAM (PuD) is an emerging paradigm
that leverages the analog operational properties of DRAM cir-
cuitry to enable massively parallel in-DRAM computation. PuD
has the potential to significantly reduce or eliminate costly
data movement between processing elements and main memory.
A common approach for PuD architectures is to make use of
bulk bitwise computation (e.g., AND, OR, NOT). Prior works
experimentally demonstrate three-input MAJ (i.e., MAJ3) and
two-input AND and OR operations in commercial off-the-shelf
(COTS) DRAM chips. Yet, demonstrations on COTS DRAM
chips do not provide a functionally complete set of operations
(e.g., NAND or AND and NOT).

We experimentally demonstrate that COTS DRAM chips are
capable of performing 1) functionally-complete Boolean opera-
tions: NOT, NAND, and NOR and 2) many-input (i.e., more than
two-input) AND and OR operations. We present an extensive

systems and applications [12, 13]. Processing-using-DRAM
(PuD) [29-32] is a promising paradigm that can alleviate the
data movement bottleneck. PuD uses the analog operational
properties of the DRAM circuitry to enable massively parallel
in-DRAM computation. Many prior works [29-53] demonstrate
that PuD can greatly reduce or eliminate data movement.

A widely used approach for PuD is to perform bulk bitwise
operations, i.e., bitwise operations on large bit vectors. To per-
form bulk bitwise operations using DRAM, prior works pro-
pose modifications to the DRAM circuitry [29-31,33,35,36,
43,44,46,48-58]. Recent works [38,41,42,45] experimentally
demonstrate the feasibility of executing data copy & initializa-
tion [42,45], i.e., the RowClone operation [49], and a subset
of bitwise operations, i.e., three-input bitwise majority (MAJ3)
and two-input AND and OR operations in unmodified commer-
cial off-the-shelf (COTS) DRAM chips by operatine bevond

https://arxiv.org/pdf/2402.18736.pdf

SAFARI
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Summary

* We experimentally demonstrate that commercial off-the-shelf (COTS)
DRAM chips can perform:

— Functionally-complete Boolean operations: NOT, NAND, and NOR
— Up to 16-input AND, NAND, OR, and NOR operations

* We characterize the success rate of these operations on
256 COTS DDR4 chips from two major manufacturers
* We highlight two key results:
— We can perform NOT and
{2, 4,8, 16}-input AND, NAND, OR, and NOR operations
on COTS DRAM chips with very high success rates (>94%)

— Data pattern and temperature only slightly affect
the reliability of these operations

We believe these empirical results demonstrate
the promising potential of using DRAM as a computation substrate
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Simultaneous Many-Row Activation

in Off-the-Shelf DRAM Chips

Experimental Characterization and Analysis

Code Dataset
Reproducible Reproducible

Ismail Emir Yiiksel
Yahya C. Tugrul F. Nisa Bostanci Geraldo F. Oliveira
A. Giray Yaglikci Ataberk Olgun Melina Soysal Haocong Luo

Juan GoOmez-Luna Mohammad Sadr Onur Mutlu

SAFARI ETHzurich




Executive Summary

Motivation:
* Processing-Using-DRAM (PUD) alleviates data movement bottlenecks

* Commercial off-the-shelf (COTS) DRAM chips can perform
three-input majority (MAJ3) and in-DRAM copy operations

\ S

(Goal: To experimentally analyze and understand
* The computational capability of COTS DRAM chips beyond that of prior works
* The robustness of such capability under various operating conditions

\ v

Experimental Study: 120 DDR4 chips from two major manufacturers

e COTS DRAM chips can perform MAJ5, MAJ7, and MAJ9 operations
and copy one DRAM row to up to 31 different rows at once

» Storing multiple redundant copies of MAJ’s input operands (i.e., input replication)
drastically increases robustness (>30% higher success rate)

affect the robustness of in-DRAM operatlons (by up to 11.52% success rate)

SAFARI https://github.com/CMU-SAFARI/SiMRA-DRAM 352



Leveraging Simultaneous Many-Row Activation

1 Perform MAJX (where X>3) operations

2 Increase the robustness of MAJX operations

3 Copy one row’s content to multiple rows

SAFARI 353



In-DRAM Multiple Row Copy (Multi-RowCopy)

Simultaneously activate many rows to
copy one row’s content to multiple destination rows

RowClone Multi-RowCopy

SAFARI [Seshadri+ MICRO’13] 354



Key Takeaways from Multi-RowCopy

Key Takeaway 1

COTS DRAM chips are capable of copying one row’s data
to1, 3,7,15, and 31 other rows at very high success rates

Key Takeaway 2

Multi-RowCopy in COTS DRAM chips is highly resilient to changes in
data pattern, temperature, and wordline voltage
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Robustness of Multi-RowCopy

Success Rate (%)
Ul
o

1 3 7 15 31
Number of Destination Rows

Average: >99.98%

COTS DRAM chips can copy one row’s content
to up to 31 rows with a very high success rate

SAFARI
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Impact of Data Pattern

Data Pattern
O-All 1s -O-Random

3 7
Number of Destination Rows

Success Rate (%)
O
(o]

15

At most 0.79% decrease in
average success rate

Data pattern has a small effect
on the success rate of the Multi-RowCopy operation
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Also in the Paper: Impact of Temperature & Voltage

Temperature

Increasing temperature up to 90°C
has a very small effect on
the success rate of the Multi-RowCopy operation

50°C = 90°C

Wordline Voltage

Reducing the wordline voltage
only slightly affects
the success rate of the Multi-RowCopy operation

2.5V =P 21V

SAFARI 358



More in the Paper

* Detailed hypotheses and key ideas on
* Hypothetical row decoder circuitry
* Input Replication
* More characterization results
* Power consumption of simultaneous many-row activation
* Effect of timing delays between ACT-PRE and PRE-ACT commands
 Effect of temperature and wordline voltage
* Circuit-level (SPICE) experiments for input replication
* Potential performance benefits of enabling new in-DRAM operations
* Majority-based computation
* Content destruction-based cold-boot attack prevention
* Discussions on the limitations of tested COTS DRAM chips
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Available on arXiv

Ismail Emir Yiiksel'  Yahya Can Tugrul'?
A. Giray Yaghkgt'  Ataberk Olgun’

VETH Ziirich

We experimentally analyze the compurational capability of
commercial off-the-shelf (COTS) DRAM chips and the robust-
ness of these capabilities under various timing delavs between
DRAM commandy, data patterns, temperature, and voltage
levels. We extensively characterize 120 COTS DDR4 chips
from two major manufacturers. We highlight four key results of
our study. First, COTS DRAM chips are capable of 1) simulta-
neously activaring up 1o 32 rows (i.e.. simultaneous many-row
activation), 2) executing a majority of X (MAJX) operation where
X>3 (e, MAIS, MAD7, and MAJS operations), and 3) copying
a DRAM row (concurrently) to up to 31 other DRAM rows,
which we call Multi-RowCopy. Second, storing multiple copies
of MAIX's input operands on all simultaneously activated rows
drastically increases the success rate (i.e., the percentage of
DRAM cells that correctly perform the computation) of the
MAJX operation, For example, MAJ3 with 32-row activation (i.e.,

Code Datasot
Roproducible Reproducitile

Simultaneous Many-Row Activation in Off-the-Shelf DRAM Chips:
Experimental Characterization and Analysis

F. Nisa Bostancr'  Geraldo F. Oliveira'
Melina Soysal'  Haocong Luo'

Juan Gémez-Luna'  Mohammad Sadrosadati’ ~ Onur Mutlu!
3 g . . . » » g
“TOBB University of Economics and Technology

A subset of PIM proposals devise mechanisms that en-
able PUM using DRAM cells for computation, including data
copy and initalizaton [67,72,77, 78,89, 104, 127], Boolean
logic [56,64-66,68,70,72,76,79,122, 127-129], majority-
based anthmetic [64.66,69,72.91, 127, 130, 131]. and lookup
table based operations [82, 106, 107, 132], We refer to DRAM-
based PUM as Processing-Using-DRAM (PUD) and the com-
putation performed using DRAM cells as PUD operations,

PUD benefits from the bulk data parallelism in DRAM de-
vices to perform bulk bitwise PUD operations. Prior works show
that bulk bitwise operations are used in a wide variety of impor-
tant applications, including databases and web scarch [64, 67,
79, 130, 133-140), data analytics [64, 141144, graph process-
ing [56, 80,94, 130, 145], genome analysis [60,99, 146-149],
cryptography [ 150, 151], set operations [S6,64], and hyper-
dimensional cnmlpllling [152-154].

https://arxiv.org/pdf/2405.06081
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Our Work is Open Source and Artifact Evaluated

Code Dataset
Reproducible Reproducible

=2 SIMRA-DRAM  public P Edit Pins { Watch 4 ~ % Fork 0 v Starred 6 v

¥ main ~ ¥ 1Branch > 0 Tags Q Go to file t Add file ~ <> Code ~ About b

Source code & scripts for experimental

& unrealismail Update README.md astabfa-lastmonth ) 5 Commits characterization and demonstration of 1)

simultaneous many-row activation, 2) up
[ DRAM-Bender initial comit last month to nine-input majority operations and 3)
B9 analysis initial comit last month copying one row's content to up 31 rows

in real DDR4 DRAM chips. Described in
B0 experimental_data initial comit last month our DSN'24 paper by Yuksel et al. at
https://arxiv.org/abs/2405.06081

[ LICENSE initial comit last month
[0 Readme
[ README.md Update README.md last month 52 View license
A Activity
[0 README  &[3 License 7 = B Custom properties
Y¢ 6stars
. . . . & 4 watching
Simultaneous Many-Row Activation in Off-the-Shelf N

DRAM Chips: Experimental Characterization and Analysis Report repository

https://github.com/CMU-SAFARI/SiMRA-DRAM
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MeglS: Metagenomics In Storage




Background: GenStore

Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid
Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata
Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu,
"GenStore: A High-Performance and Energy-Efficient In-Storage Computin
System for Genome Sequence Analysis"

Proceedings of the 2/th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Virtual, February-March
2022.

[Lightning Talk Slides (pptx) (pdf)]

[Lightning Talk Video (90 seconds)]

GenStore: A High-Performance In-Storage Processing System
for Genome Sequence Analysis

Nika Mansouri Ghiasi' Jisung Park! Harun Mustafa! Jeremie Kim' Ataberk Olgun!
Arvid Gollwitzer! Damla Senol Cali? Can Firtina! Haiyu Mao' Nour Almadhoun Alserr!
Rachata Ausavarungnirun® Nandita Vijaykumar?* Mohammed Alser! Onur Mutlu!

1ETH Ziirich “Bionano Genomics *KMUTNB *University of Toronto
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MeglS

High-Performance, Energy-Efficient, and Low-Cost

Metagenomic Analysis with In-Storage Processing

Nika Mansouri Ghiasi

Mohammad Sadrosadati Harun Mustafa Arvid Gollwitzer Can Firtina
Julien Eudine Haiyu Mao Joél Lindegger Meryem Banu Cavlak

Mohammed Alser Jisung Park Onur Mutlu

SAFARI

ETH:-urich POSTECH



What is Metagenomics?

* Metagenomics: Study of genome sequences of diverse organisms
within a shared environment (e.g., blood, ocean, soil)

* Overcomes the limitations of traditional genomics
- Bypasses the need for culturing individual species in isolation
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What is Metagenomics?

* Metagenomics: Study of genome sequences of diverse organisms
within a shared environment (e.g., blood, ocean, soil)

Has led to groundbreaking advances

* Precision medicine
* Understanding microbial diversity of an environment

* Discovering early warnings of communicable diseases
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Metagenomic Analysis

Preparation
of Input Queries

Query
K-mers

|

N

_|

E I

Metagenomic sample l V. cholerae

with species that
are not known in advance Presence/Absence

j Identification

SARS-CoV-2

E. coli

Abundance

A large database Estimation
containing information
Oon many species

SAFARI (e.g.,> 100 TBs in emerging databases) 367




Motivation

* Case study of the performance of metagenomic analysis tools
* With various state-of-the-art SSD configurations

. ONol/O [EPerformance-Optimized @O Cost-Optimized

o 1

I T 1 T 1

(o) 0.8 n ¢>\|< L>p< ﬁ ¢>\I<

< : o N < )

= 0.6 | N )

o g

v :

N 04 F

g :

Z X v v
0 I

0.7 _ 1.4
Database Size (Terabyte)

1/O data movement causes significant performance overhead
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Motivation

I/O becomes an even larger overhead (by 2.7x)

In systems where other bottlenecks are alleviated
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/O Overhead is Hard to Avoid

/O overhead due to accessing large, low-reuse data is hard to avoid

Sampling techniques to shrink database sizes

X Reduce accuracy to levels unacceptable for many use cases

Keeping all data required by metagenomic analysis
completely and always resident in main memory

x Energy inefficient, costly, unscalable, and unsustainable

» Database sizes increase rapidly (doubling every few months)

» Different analyses need different databases
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Our Goal

Improve metagenomic analysis performance
by reducing large data movement overhead
from the storage system
in a cost-effective manner

SAFARI
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Challenges of In-Storage Processing

Existing metagenomic analysis approaches cannot be implemented as
an in-storage processing system due to SSD hardware limitations

- Long latency of NAND flash chips
- Limited DRAM capacity inside the SSD
- Limited DRAM bandwidth inside the SSD

SSD DRAM

— SSD
Cores Controller

FTL

Cntrl |

Channel#1 Channel#N

SAFARI 372




MeglS: Metagenomics In-Storage

* First in-storage system for end-to-end metagenomic analysis

* Idea: Cooperative in-storage processing for metagenomic analysis

- Hardware/software co-design between

@@

[MegIS-EnabIed SSD )

SAFARI

FTL b
Cores Controller
? Cntrl a CntrII:|
Channel#1 Channel#N

SSD DRAM

Standard
Metadata
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MegIS’s Steps

Preparation

of Input Queries

Metagenomic sample
with species that

are not known in advance

Abundance
A large database Estimation

containing information
Oon many species
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MeglS Hardware-Software Co-Design

SAFARI

/MegIS-EnabIed SSD |

FTL 25D
Cores Controller
! Cntrl Cntrl |
Channel#1 Channel#N

SSD DRAM

Standard
Metadata
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MeglS Hardware-Software Co-Design

Task partitioning and mapping

* Each step executes

in its most suitable system

aﬁ

Host System

SAFARI

[D )
(- L SSD SSD DRAM
= Cores Controller Standard

% a ™| Metadata

5 [ Cntrl a Cntrl |

L L

o)

§ Channel#1 Channel#N

\_ ,
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MeglS Hardware-Software Co-Design

Data/computation flow coordination
* Reduce communication overhead
* Reduce #writes to flash chips

[D )
3 (— L SSD SSD DRAM

GEJ - Cores Controller Standard

+ ) o

<2 a B a ™| Metadata

- ;

— Cntrl a Cntrl

I 5
§ Channel#1 Channel#N

L \_ J
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MeglS Hardware-Software Co-Design

—)
&

[D )
(- L SSD SSD DRAM
= Cores Controller Standard

% a ™| Metadata

5 [ Cntrl a Cntrl |

L L

o)

§ Channel#1 Channel#N

\_ ,

Storage-aware algorithms
* Enable efficient
access patterns to the SSD

SAFARI
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MeglS Hardware-Software Co-Design

[D )
a L — SSD SSD DRAM
GEJ ‘ - Fl Cores Controller Standard
v
4‘;{ a % ACC a ACC |™| Metadata
g a _ 5 | Cntrl a Cntrl
:CE’ 7
§ Channel#1 Channel#N
L \_ J

SAFARI

Lightweight in-storage accelerators
* Minimize SRAM/DRAM buffer spaces

needed inside the SSD
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MeglS Hardware-Software Co-Design

.

-
(|
7l Megis L, SSD SSD DRAM
= o FTL Cores Controller
e ) o Standard
- a < |[AcC Q ACC || Metadata
B a 5 | Cntrl a Cntrl
% C— " Megis
o) - - Metadata
s Channel#1 Channel#N
L \_ J

Data mapping scheme and Flash Translation Layer (FTL)
* Specialize to the characteristics of metagenomic analysis
* Leverage the SSD’s full internal bandwidth
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Evaluation: Methodology Overview

Performance, Energy, and Power Analysis

Hardware Components Software Components

* Synthesized Verilog model for the in-storage accelerators  Measure on a real system:
« MQSim [Tavakkol+, FAST28] for SSD's internal operations ¢ AMD® EPYC® CPU with

128 physical cores
* Ramulator [Kim+, CAL’15] for SSD’s internal DRAM PaY>!
 1-TB DRAM

Baseline Comparison Points

* Performance-optimized software, Kraken2 [Genome Biology'19]
* Accuracy-optimized software, Metalign [Genome Biology’20]
e PIM hardware-accelerated tool (using processing-in-memory), Sieve [ISCA’21]

SSD Configurations
* SSD-C: with SATA3 interface (0.5 GB/s sequential read bandwidth)

* SSD-P: with PCle Gen4 interface (7 GB/s sequential read bandwidth)
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Evaluation: Speedup over the Software Baselines

Performance-Optimized W Accuracy-Optimized @ MeglS
7
6 [ SSD-C R
a 5 | t
=) B (<)
T 4r ¥
3 3¢ , l
v 2 i
1 i
o H— | BN | B ||
Low Med High GMean
Sample Genetic Diversity
MeglS provides significant speedup over both
Performance-Optimized and baselines
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Evaluation: Speedup over the Software Baselines

Performance-Optimized W Accuracy-Optimized @ MeglS
7
6 - SSD-P
: 5|
E 4 _$ ___________
4 3 8
s 2 K ; <
1 E
o L — | B | B || ﬁ—
Low Med High GMean
Sample Genetic Diversity
MeglS provides significant speedup over both
Performance-Optimized and baselines

MeglS improves performance on both

cost-optimized and performance-optimized SSDs
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Evaluation: Speedup over the PIM Baseline

PIM O MeglS W PIM O MeglS B
T 3 1
° r SSD-C : . SSD-P i
B VN - i
o4 2 [ i
= : :
° 0 & : 5‘{
a | 1 [ |
n - : [ I :
N BN BN BH o I | W | W |

Low Med High GMean Low Med High GMean

Sample Genetic Diversity Sample Genetic Diversity

MeglS provides significant speedup over the PIM baseline
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Evaluation: Reduction in Energy Consumption

* On average across different input sets and SSDs

©C = N W ~ U1 O
T

GeoMean Energy Reduction
(Higher is Better)

Perf-Opt Acc-Opt PIM MeglIS

MeglS provides significant energy reduction over

the Performance-Optimized, Accuracy-Optimized, and PIM baselines
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Evaluation: Accuracy, Area, and Power

Accuracy

* Same accuracy as the accuracy-optimized baseline

* Significantly higher accuracy than the performance-optimized and
PIM baselines

- 4.6 —5.2x higher F1 scores
- 3—-24% lower L1 norm error

Area and Power
Total for an 8-channel SSD:

* Area: 0.04 mm? (Only 1.7% of the area of three ARM Cortex R4 cores
in an SSD controller)

e Power: 7.658 mW
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Evaluation: System Cost-Efficiency

* Cost-optimized system ($): With SSD-C and 64-GB DRAM

* Performance-optimized system ($$$): With SSD-P and 1-TB DRAM

20

[
19))
T

%))

GMean Speedup
=
S

[ |

o

—1

Perf-Opt (%)

Acc-Opt (%)

Perf-Opt ($$3) Acc-Opt ($$%)

MeglS outperforms the baselines

MegIS ()

even when running on a much less costly system

SAFARI
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Evaluation: System Cost-Efficiency

MegIS improves system cost-efficiency

and makes metagenomics more accessible

for wider adoption
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More in the Paper

* MeglS's performance when running in-storage processing
operations on the cores existing in the SSD controller

* MeglS’s performance when using the same accelerators
outside SSD

* Sensitivity analysis with varying
- Database sizes
- Memory capacities
- #5SDs
- #Channels
- #Samples

* MeglS’s performance for abundance estimation
SAFARI 389



More in the Paper

MeglS: High-Performance, Energy-Efficient, and Low-Cost
Metagenomic Analysis with In-Storage Processing

Nika Mansouri Ghiasi' Mohammad Sadrosadati’ Harun Mustafa'! Arvid Gollwitzer!
Can Firtina' Julien Eudine! Haiyu Mao! Joél Lindegger! Meryem Banu Cavlak!
Mohammed Alser! Jisung Park® Onur Mutlu!

'ETH Zirich ?POSTECH
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Conclusion

Metagenomic analysis suffers from
significant storage 1/O data movement overhead

MeglS

The first in-storage processing system for end-to-end metagenomic analysis
Leverages and orchestrates processing inside and outside the storage system

(N Improves performance
2.7x—-37.2x over performance-optimized software
6.9x—100.2x over accuracy-optimized software
1.5%-5.1x over hardware-accelerated PIM baseline

@ High accuracy

Same as accuracy-optimized
4.8x higher F1 scores
over performance-optimized/PIM

\

S

Reduces energy consumption
5.4x over performance-optimized software
15.2x over accuracy-optimized software
1.9x over hardware-accelerated PIM baseline

@ Low area overhead
1.7% of the three cores
in an SSD controller

\
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Homomorphic Operations on Real PIM Systems

= Harshita Gupta, Mayank Kabra, Juan Gomez-Luna, Konstantinos Kanellopoulos,
and Onur Mutlu,
"Evaluating Homomorphic Operations on a Real-World Processing-In-
Memory System"
Proceedings of the 2023 IEEE Intemational Symposium on Workload
Characterization Poster Session (IISWC), Ghent, Belgium, October 2023.
[arXiv version]
[Lightning Talk Slides (pptx) (pdf)]
[Poster (pptx) (pdf)]

Evaluating Homomorphic Operations
on a Real-World Processing-In-Memory System

Harshita Gupta* Mayank Kabra* Juan Gémez-Luna Konstantinos Kanellopoulos = Onur Mutlu
ETH Zirich
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PIM Amplities Covert & Side Channels

Amplifying Main Memory-Based Timing Covert and Side Channels
using Processing-in-Memory Operations

Konstantinos Kanellopoulos™ F. Nisa Bostanc1™  Ataberk Olgun’
A. Giray Yaglikci?  Ismail Emir Yiiksel’  Nika Mansouri Ghiasi'
Ziilal Bing6l™*  Mohammad Sadrosadati’ ~ Onur Mutlu®

TETH Ziirich *Bilkent University

https://arxiv.or df/2404.11284
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Accelerating ML Training on Real PIM Systems

To appear at PACT 2024

Analysis of Distributed Optimization Algorithms
on a Real Processing-In-Memory System

Steve Rhyner! Haocong Luo! Juan Gémez-Luna?  Mohammad Sadrosadati!
Jiawei Jiang®  Ataberk Olgun' Harshita Gupta! Ce Zhang* Onur Mutlu'

'ETH Zurich 2NVIDIA >Wuhan University “University of Chicago
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SwiftRI.

Kailash Gogineni, Sai Santosh Dayapule, Juan Gomez-Luna, Karthikeya Gogineni, Peng
Wei, Tian Lan, Mohammad Sadrosadati, Onur Mutlu, Guru Venkataramani,

"SwiftRL: Towards Efficient Reinforcement Learning on Real Processing-In-
Memory Systems"

Proceedings of the 2024 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), Indianapolis, Indiana, May 2024.

[Slides (pptx) (pdf)]

[arXiv version]

SwiftRL: Towards Efficient Reinforcement Learning on Real
Processing-In-Memory Systems

Kailash Gogineni' Sai Santosh Dayapule' Juan Gémez-Luna® Karthikeya Gogineni’
Peng Wei' Tian Lan’ Mohammad Sadrosadati® Onur Mutlu® Guru Venkataramani'

!George Washington University, USA  2ETH Ziirich, Switzerland  *Independent
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SwiftRL: Summary

Adapted and implemented RL algorithms on a PIM architecture for exploring

memory-centric systems in RL training

Explored optimization strategies for enhancing RL workload performance across
* various data types,

 sampling strategies (SEQ, RAN, STR)

Compared PIM-based Q-learning & SARSA on UPMEM PIM (2000 cores) to CPU &
GPU

Achieved near-linear scaling of 15x in performance with a 16x increase in PIM cores

(125 to 2000)

George Washington University | ETH Ziirich 400
ISPASS 24



MATSA




MATSA

Ivan Fernandez, Christina Giannoula, Aditya Manglik, Ricardo Quislant,
Nika Mansouri Ghiasi, Juan Gomez Luna, Eladio Gutierrez, Oscar Plata
and Onur Mutlu,

"MATSA: An MRAM-Based Energy-Efficient Accelerator for Time

Series Analysis"”
TEEE Access, March 2024.

[arXiv version]
[IEEE Access version]

Accelerating Time Series Analysis via
Processing using Non-Volatile Memories

Ivan Fernandez®'1 *Christina Giannoula' *Aditya Manglik! Ricardo Quislant® Nika Mansouri Ghiasi'
Juan Gémez-Luna' Eladio Gutierrez® Oscar Plata® Onur Mutluf

$University of Malaga "ETH Ziirich "Barcelona Supercomputing Center *National Technical University of Athens
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ApHMM

Can Firtina, Kamlesh Pillai, Gurpreet S. Kalsi, Bharathwaj Suresh, Damla Senol Cali,
Jeremie S. Kim, Taha Shahroodi, Meryem Banu Cavlak, Joel Lindegger, Mohammed
Alser, Juan Gomez Luna, Sreenivas Subramoney and Onur Mutlu,

"ApHMM: Accelerating Profile Hidden Markov Models for Fast and Energy-
efficient Genome Analysis"”

ACM Transactions on Architecture and Code Optimization (TACO), February 2024.
[arXiv version]

[ApHMM Source Code]

[ACM Digital Library version]

[Talk Video HIPEAC]

ApHMM: Accelerating Profile Hidden Markov Models for Fast and

Energy-Efficient Genome Analysis

Can Firtina' Kamlesh Pillai® Gurpreet S. Kalsi* Bharathwaj Suresh’ Damla Senol Cali?
Jeremie S. Kim' Taha Shahroodi* Meryem Banu Cavlak' Joel Lindegger' Mohammed Alser!
Juan Gémez Luna' Sreenivas Subramoney®* Onur Mutlu’
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Executive Summary

g

Motivation: Graph structures such as profile Hidden Markov Models (pHMMSs) are
commonly used to accurately analyze biological sequences

\

Problem: The parameters used in pHMMs are mainly trained and used with a
computationally intensive Baum-Welch algorithm, causing major performance and

energy overhead for many genomics workloads
.

Goal: Enable rapid, power-efficient, and flexible use of pHMMs for genomics workloads

,

ApHMM: the first flexible and hardware-software accelerator for pHMMs that can

1) Substantially reduce unnecessary data storage, data movement, and computations by
effectively co-designing hardware and software together

2) Provide a flexible design to support several genomics workloads that use pHMMs
\.

Key Results: Our ASIC implementation compared to CPU, GPU, and FPGA baselines

across 3 workloads
— 15.55%-260.03%, 1.83%x—5.34%, and 27.97 x better performance

— Up to 2622.94 x reduction in energy consumption

\
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RUBICON

Gagandeep Singh, Mohammed Alser, Kristof Denolf, Can Firtina, Alireza
Khodamoradi, Meryem Banu Cavlak, Henk Corporaal and Onur Mutlu,

"RUBICON: A Framework for Designing Efficient Deep
Learning-Based Genomic Basecallers"

Genome Biology, February 2024.
[arXiv version]

[ Journal Article]
[RUBICON Source Code]

RUBICON: A Framework for Designing Efficient
Deep Learning-Based Genomic Basecallers

Gagandeep Singh®®  Mohammed Alser”  Kristof Denolf*
Can Firtina®»*  Alireza Khodamoradi® = Meryem Banu Cavlak®
Henk Corporaal®  Onur Mutlu®*
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®Department of Electrical Engineering, Eindhoven University of Technology, The Netherlands
“Research and Advanced Development, AMD, USA
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Better Virtual Memory: Utopia

Konstantinos Kanellopoulos, Rahul Bera, Kosta Stojiljkovic, Nisa Bostanci, Can Firtina,
Rachata Ausavarungnirun, Rakesh Kumar, Nastaran Hajinazar, Mohammad Sadrosadati,
Nandita Vijaykumar, and Onur Mutlu,

"Utopia: Fast and Efficient Address Translation via Hybrid Restrictive & Flexible
Virtual-to-Physical Address Mappings"

Proceedings of the 56th International Symposium on Microarchitecture (MICRO), Toronto,
ON, Canada, November 2023.

[Slides (pptx) (pdf)]

[arXiv version]

[Utopia Source Code]

Utopia: Fast and Efficient Address Translation via Hybrid
Restrictive & Flexible Virtual-to-Physical Address Mappings

Konstantinos Kanellopoulos! Rahul Bera! Kosta Stojiljkovic! Nisa Bostanci’ Can Firtina!
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'ETH Ziirich ?King Mongkut’s University of Technology North Bangkok
3Norwegian University of Science and Technology “Intel Labs >University of Toronto
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Utopia: Executive Summary

Problem: Conventional virtual memory (VM) frameworks enable a virtual address to flexibly map
to any physical address. This flexibility necessitates large translation structures leading to:

(1) high translation latency and (2) large translation-induced interference in the memory hierarchy
Motivation: Restricting the address mapping leads to compact translation structures and reduces
the overheads of address translation. Doing so across the entire memory has two major drawbacks:

(1) Limits core VM functionalities (e.g., data sharing)
(2) Increases swapping activity in the presence of free physical memory

Key Idea: Utopia is a new hybrid virtual-to-physical address mapping scheme that allows both
flexible and restrictive hash-based address mappings to harmoniously co-exist in the system

Utopia manages physical memory using two types of physical memory segments:

estrictive Segment Flexible Segment

[\Y; oYe [V][o) X86-64
Hash Radix PT ¢
Function et Igbll)é N

Fast Translation Limited VM features Slow Translation Supports all VM features

Key Results: Outperforms (i) the state-of-the-art contiguity-aware translation scheme by 13%,
and (ii) achieves 95% of the performance of an ideal perfect-TLB

https://github.com/CMU-SAFARI/Utopia 410
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Better Virtual Memory: Victima

Konstantinos Kanellopoulos, Hong Chul Nam, F. Nisa Bostanci, Rahul Bera, Mohammad Sadrosadati,
Rakesh Kumar, Davide Basilio Bartolini, and Onur Mutlu,

"Victima: Drastically Increasing Address Translation Reach by Leveraging Underutilized
Cache Resources"

Proceedings of the 56th International Symposium on Microarchitecture (MICRO), Toronto, ON, Canada,
November 2023.

[Slides (pptx) (pdf)]

[arXiv version]

[Victima Source Code (Officially Artifact Evaluated with All Badges)]

Officially artifact evaluated as available, functional, reusable and reproducible.
Distinguished artifact award at MICRO 2023.

Victima: Drastically Increasing Address Translation Reach
by Leveraging Underutilized Cache Resources

Konstantinos Kanellopoulos! Hong Chul Nam! F. Nisa Bostanci! Rahul Bera!
Mohammad Sadrosadati! Rakesh Kumar? Davide Basilio Bartolini® Onur Mutlu!

'ETH Ziirich 2Norwegian University of Science and Technology *Huawei Zurich Research Center
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Executive Summary

Problem: Address translation is a major performance bottleneck in data-intensive workloads
Large datasets and irregular memory access patterns lead to frequent L2 TLB misses (e.g., 20-50
MPKI) and frequent high-latency (e.g., 100-150 cycles) page table walks (PTW)

Motivation: Increasing the translation reach (i.e., memory covered by the TLBs) reduces PTWs.
However, employing large TLBs leads to increased area, power and latency overheads.

Opportunity: Increase the translation reach of the TLB hierarchy by storing the existing TLB entries
within the existing cache hierarchy

Victima: New software-transparent scheme that drastically increases the address translation
reach of the processor’s TLB hierarchy by leveraging the underutilized cache resources

Key Idea: L2 Cache Key Benefits:
Transform L2 cache blocks PTEs + Efficient in native/virtualized environments
that store PTEs into blocks

I TLB Entries + Fully transparent to application/OS software
at store entries

+ Compatible with huge page schemes

Key Results: Victima (i) outperforms by 5.1% a state-of-the-art large TLB design and (ii) achieves
similar performance to an optimistically fast 128K-entry L2TLB

https://github.com/CMU-SAFARI/Victima
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Sectored DRAM

Ataberk Olgun, F. Nisa Bostanci, Geraldo F. Oliveira, Yahya Can Tugrul,
Rahul Bera, A. Giray Yaglikci, Hasan Hassan, Oguz Ergin, and Onur Mutlu,

"Sectored DRAM: A Practical Energy-Efficient and High-
Performance Fine-Grained DRAM Architecture”

ACM Transactions on Architecture and Code Optimization (TACO),
[online] June 2024.

[arXiv version]
[ACM Digital Library version]

Sectored DRAM: A Practical Energy-Efficient and
High-Performance Fine-Grained DRAM Architecture
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Adoption: How to Fase Programmability? (1I)

Jinfan Chen, Juan Gomez-Luna, Izzat El Hajj, YuXin Guo,
and Onur Mutluy,
"SimplePIM: A Software Framework for Productive

and Efficient Processing in Memory"

Proceedings of the 32nd International Conference on
Parallel Architectures and Compilation Techniques (PACT),
Vienna, Austria, October 2023.
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Productive and Efficient Processing-in-Memory
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Executive Summary

* Processing-in-Memory (PIM) promises to alleviate the data movement
bottleneck

* Real PIM hardware is now available, e.g., UPMEM PIM

* However, programming real PIM hardware is challenging, e.g.:

- Distribute data across PIM memory banks,

- Manage data transfers between host cores and PIM cores, and between PIM
cores,

- Launch PIM kernels on the PIM cores, etc.

 SimplePIM is a high-level programming framework for real PIM hardware
- lterators such asmap, reduce, and zip
- Collective communication with broadcast, scatter,and gather

* Implementation on UPMEM and evaluation with six different
workloads
- Reduction, vector add, histogram, linear/logistic regression, K-means
- 4.4x fewer lines of code compared to hand-optimized code
- Between 15% and 43% faster than hand-optimized code for three workloads

Source code: https://github.com/CMU-SAFARI/SimplePIM
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A State-of-the-Art PIM System
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* In our work, we use the UPMEM PIM architecture

- General-purpose processing cores called DRAM Processing
Units (DPUs)
* Up to 24 PIM threads, called tasklets

* 32-bit integer arithmetic, but multiplication/division are
emulated®*, as well as floating-point operations

- 64-MB DRAM bank (MRAM), 64-KB scratchpad (WRAM)

SAFARI

* 8-bit integer multiplication is natively supported
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Programming a PIM System (1)

* Example: Hand-optimized histogram with UPMEM SDK

// Initialize global variables and functions for histogram
int main kernel () {
if (tasklet id == 0)
mem reset(); // Reset the heap
// Initialize variables and the histogram
T *input buff A = (T*)mem alloc(2048); // Allocate buffer in scratchpad memory

for (unsigned int byte index = base tasklet; byte index < input size; byte index += stride) ({
// Boundary checking
uint32 t 1 size bytes = (byte index + 2048 >= input size) ? (input size - byte index) : 2048;
// Load scratchpad with a DRAM block
mram read( (const mram ptr void*) (mram base addr A + byte index), input buff A, 1 size bytes);
// HIstogram calculation B - B B
histogram(hist, bins, input buff A, 1 size bytes/sizeof (uint32 t));

barrier wait (&my barrier); // Barrier to synchronize PIM threads
// Merging hzstograms from different tasklets into one histo dpu
// Write result from scratchpad to DRAM
if (tasklet id == 0)
if (bins * sizeof (uint32 t) <= 2048)

mram write(histo dpu, ( mram ptr void*)mram base addr histo, bins * sizeof (uint32 t));
else
for (unsigned int offset = 0; offset < ((bins * sizeof (uint32 t)) >> 11); offset++) {
mram write(histo dpu + (offset << 9), (_ mram ptr void*) (mram base addr histo +

(offset << 11)), 2048);
}

return O;
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Programming a PIM System (lI)

* PIM programming is challenging
- Manage data movement between host DRAM and PIM DRAM

* Parallel, serial, broadcast, and gather/scatter transfers

- Manage data movement between PIM DRAM bank and
scratchpad

 8-byte aligned and maximum of 2,048 bytes
- Multithreaded programming model

- Inter-thread synchronization
* Barriers, handshakes, mutexes, and semaphores

Our Goal
Design a high-level programming framework that abstracts these

hardware-specific complexities and provides a clean yet powerful
interface for ease of use and high program performance
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The SimplePIM Programming Framework

* SimplePIM provides standard abstractions to build and
deploy applications on PIM systems

- Management interface
* Metadata for PIM-resident arrays

- Communication interface
* Abstractions for host-PIM and PIM-PIM communication

- Processing interface
* Iterators (map, reduce, zip) to implement workloads
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Management Interface

* Metadata for PIM-resident arrays
- array meta data t describesa PIM-resident array
- simple pim management t for managing PIM-resident arrays

* lookup: Retrieves all relevant information of an array

array meta data t* simple pim array lookup (const char* id,
simple pim management t* management);

* register: Registers the metadata of an array

vold simple pim array register (array meta data t* meta data,
simple pim management t* management);

 free: Removes the metadata of an array

volid simple pim array free (const char* id, simple pim management t* management);
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The SimplePIM Programming Framework

* SimplePIM provides standard abstractions to build and
deploy applications on PIM systems

- Management interface
* Metadata for PIM-resident arrays

- Communication interface
* Abstractions for host-PIM and PIM-PIM communication

- Processing interface
* Iterators (map, reduce, zip) to implement workloads
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Host-to-PIM Communication: Broadcast

* SimplePIM Broadcast
- Transfers a host array to all PIM cores in the system

vold simple pim array broadcast (char* const id, void* arr, uint64 t len,
uint3Z2 t type size, simple pim management t* management);

1234{ ————————————————— —[1][2][3
s [[Z][3] »

_| B 4([5]|6
Host DRAM 451161 .. pimDRAM
S °
SimplePIM Broadcast CINEEAT Bank
t t [PIMCoren]

[ Host CPU ] [PIMCoreo]
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Host-to-PIM Communication: Scatter/Gather

* SimplePIM Scatter
- Distributes an array to PIM DRAM banks

void simple pim array scatter(char* const id, void* arr, uinte4 t len,
uint32 t type size, simple pim management t* management);

* SimplePIM Gather
- Collects portions of an array from PIM DRAM banks

void* simple pim array gather(char* const id, simple pim management t*
management) ;

-— e == = S e e e e
— - _— e e
— _— e
==
§§.
3

1
7 SimplePIM Scatter 2] » 6
il B
— 5 .+*  PIMDRAM
Host DRAM ~——__ - %]\A DRAM t Bank
t . tBank [PIM Coren]
[ Host CPU ] SimplePIM Gather [puvl cOreo]
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PIM-PIM Communication: AllIReduce

* SimplePIM AllReduce
- Used for algorithm synchronization
- The programmer specifies an accumulative function

void simple pim array allreduce (char* const id, handle t* handle,
simple pim management t* management);

Before PIM-PIM communication After PIM-PIM communication

P—
1 N 11[4]]2
211 - —--———__ ~ 1[4]21m™™
nex E1; L0 E3 S it st » [3][1][3
OJLLI{L)), .- " PIMDRA —D~ 3[{11[3]f,.* ~ PIMDRAM
~PIM DRAM Bank "PIM DRAM t Bank

Bank

[ PIM Core o ]

) SimplePIM AllReduce  ~ $ san (P Coren )

[ PIM Core o ]

[ PIM Core n
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PIM-PIM Communication: AllGather

* SimplePIM AllGather
- Combines array pieces and distributes the complete array to
all PIM cores

void simple pim array allgather (char* const id, char* new id,
simple pim management t* management);

After PIM-PIM communication

Before PIM-PIM communication
/

- ~-_ 1][2][3
LGBk ""z====acae_____ 1213 ™

s » [4][5][6

. _+*  PIM.DRAM 4][5][6]| .- =Fimpram

PIM DRAM Bank _PIM DRAM Bank

tBank [PIMCore”] SImplePlMA”Gather _ tBank [PIMCoren]

[PIM Coreo] [PIM Coreo]
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The SimplePIM Programming Framework

* SimplePIM provides standard abstractions to build and
deploy applications on PIM systems

- Management interface
* Metadata for PIM-resident arrays

- Communication interface
* Abstractions for host-PIM and PIM-PIM communication

- Processing interface
* [terators (map, reduce, zip)toimplement workloads
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Processing Interface: Map

* Array Map
- Appliesmap func to every element of the data array

void simple pim array map (const char* src id, const char* dest id,
uint32 t output type, handle t* handle, simple pim management t* management);

mputtrray () () () ) ) -~

(src id)

o fung

OutputfArray Vv v

vV
(dest id) ( ) ( ) u ( ) ( )
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Processing Interface: Reduction

* Array Reduction

- Themap to val func function transforms aninput
element to an output value and an output index

- The acc func function accumulates the output values onto
the output array

void simple pim array red(const char* src id, const char* dest id,
uint32 t output type, uint32 t output len, handle t* handle,
simple pim management t* management);

Input@rray (:) C) C)
(src_id) /\ ap_to_vyi func /
y v 4 ¥ v

A @ D) @) @ )
\L acc C

Y
OutputfArrayfdest id)(@® ) @ @_)
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Processing Interface: Zip

* Array Zip
- Takes two input arrays and combines their elements into an
output array

void simple pim array zip (const char* srcl id, const char* src2 id,
const char* dest id, simple pim management t* management) ;

InputfArray . . .. .. .. L —
(srcl id)
Inputfrray
(src2 id)

z1lp func

Outputf@rray?
(dest id)
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General Code Optimizations

* Strength reduction

* Loop unrolling

* Avoiding boundary checks
* Function inlining

* Adjustment of data transfer sizes
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More in the Paper

SimplePIM: A Software Framework for
Productive and Efficient Processing-in-Memory

Jinfan Chen! Juan Gémez-Luna' Izzat E1Hajj®* Yuxin Guo! Onur Mutlu!
1ETH Ziirich  ?American University of Beirut

https://arxiv.org/pdf/2310.01893.pdf
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Evaluation Methodology

* Evaluated system

- UPMEM PIM system with 2,432 PIM cores with 159 GB of
PIM DRAM

* Real-world Benchmarks
- Vector addition

Reduction

Histogram

K-Means

Linear regression

Logistic regression

* Comparison to hand-optimized codes in terms of
programming productivity and performance
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Productivity Improvement (1)

* Example: Hand-optimized histogram with UPMEM SDK

// Initialize global variables and functions for histogram
int main kernel () {
if (tasklet id == 0)
mem reset(); // Reset the heap
// Initialize variables and the histogram
T *input buff A = (T*)mem alloc(2048); // Allocate buffer in scratchpad memory

for (unsigned int byte index = base tasklet; byte index < input size; byte index += stride) ({
// Boundary checking
uint32 t 1 size bytes = (byte index + 2048 >= input size) ? (input size - byte index) : 2048;
// Load scratchpad with a DRAM block
mram read( (const mram ptr void*) (mram base addr A + byte index), input buff A, 1 size bytes);
// HIstogram calculation B - B B B B B B
histogram(hist, bins, input buff A, 1 size bytes/sizeof (uint32 t));

barrier wait (&my barrier); // Barrier to synchronize PIM threads
// Merging hzstograms from different tasklets into one histo dpu
// Write result from scratchpad to DRAM
if (tasklet id == 0)
if (bins * sizeof (uint32 t) <= 2048)

mram write(histo dpu, ( mram ptr void*)mram base addr histo, bins * sizeof (uint32 t));
else
for (unsigned int offset = 0; offset < ((bins * sizeof (uint32 t)) >> 11); offset++) {
mram write(histo dpu + (offset << 9), (_ mram ptr void*) (mram base addr histo +

(offset << 11)), 2048);
}

return O;
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Productivity Improvement (1)

* Example: SimplePIM histogram

// Programmer-defined functions in the file "histo filepath"
void init func (uint32 t size, void* ptr) {

char* casted value ptr = (char*) ptr;
for (int 1 = 0; 1 < size; 1i++)
casted value ptr[i] = 0;

void acc_func (void* dest, void* src) {
* (uint32 t*)dest += *(uint32 t*)src;
}

void map to val func (void* input, void* output, uint32 t* key) {
uint32 t d = *((uint32 t*)input);
* (uint32 t*)output = 1;
*key = d * bins >> 12;

}

// Host side handle creation and iterator call
handle t* handle = simple pim create handle ("histo filepath", REDUCE, NULL, O);

// Transfer (scatter) data to PIM, register as "tl1"
simple pim array scatter("tl", src, bins, sizeof (T), management);

// Run histogram on "tl" and produce "t2"
simple pim array red("tl", "t2", sizeof(T), bins, handle, management);
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Productivity Improvement (llI)

* Lines of code (LoC) reduction

Reduction 14 83 5.93x
Vector Addition 14 82 5.86x
Histogram 21 14 5.43x
Linear Regression 48 157 3.27x
Logistic Regression 59 176 2.98x
K-Means 68 206 3.03x

( )

W Hand-optimized LoC Reduction

\.

SimplePIM reduces the number of lines of effective code
by a factor of 2.98x t0 5.93x

SAFARI
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Performance Evaluation (1)

* Weak scaling analysis
Vector Addition Reduction Histogram
30 —
- 20 50
E 20
— 10 25
o 10
E oy oL | | 0 |
= 1216 2432 608 1216 2432 608 1216 2432
£ K-Means Linear Regression Logistic Regression
B 150 50 100
o 100
% 25 50
w 50
0 ] | 0 \ \
1216 2432 608 1216 2432 608 1216 2432
Number of PIM Cores
E SimplePIM (CPU Time) B Hand-optimized Impl. (CPU Time)

1 SimplePIM (PIM Kernel Time) Hand-optimized Impl. (PIM Kernel Time)

.

SimplePIM achieves comparable performance for
reduction, histogram,and linear regression

SimplePIM outperforms hand-optimized implementations for

vector addition, logistic regression,
and k-means by 10%-37%
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Performance Evaluation (lI)

* Strong scaling analysis

Execution Time (ms)

30
20
10

0o

150
100

u
o O

EEE SimplePIM (CPU Time)
1 SimplePIM (PIM Kernel Time)

Vector Addition
1.0

NN
2_01.9
N
608 1216 2432
K-Means
1.0
1.0
1.8
T_9§ 3.0
m
608 1216 2432

Reduction
1.01.0
20
1.71.7
. o
o ‘
608 1216 2432
Linear Regression
50/ 1L%1.0
25 E220 2.3
I\
0 ! !
608 1216 2432

Number of PIM Cores

BN Hand-optimized Impl. (CPU Time)

Histogram
-01.0
50
1.81.6
25 3.0
0 k
608 1216 2432
Logistic Regression
1.0
100 10
2.0
50 1.9
s
o ‘ !
608 1216 2432

Hand-optimized Impl. (PIM Kernel Time)

.

SimplePIM outperforms hand-optimized implementations for
vector addition, logistic regression,

and k-means by 15%-43%

rSimpIePIl\/l scales better than hand-optimized implementations‘
for reduction,histogram,and linear regression

SAFARI
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Discussion

* SimplePIM is devised for PIM architectures with

- A host processor with access to standard main memory and
PIM-enabled memory

- PIM processing elements (PEs) that communicate via the
host processor

- The number of PIM PEs scales with memory capacity

* SimplePIM emulates the communication between PIM
cores via the host processor

* Other parallel patterns can be incorporated in future
work
- Prefix sum and filter can be easily added

- Stencil and convolution would require fine-grained scatter-
gather for halo cells

- Random access patterns would be hard to support
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SimplePIM: arXiv Version

SimplePIM: A Software Framework for
Productive and Efficient Processing-in-Memory

Jinfan Chen! Juan Gémez-Luna' Izzat E1Hajj®* Yuxin Guo! Onur Mutlu!
1ETH Ziirich  ?American University of Beirut

https://arxiv.org/pdf/2310.01893.pdf
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Source Code

https://github.com/CMU-

SAFARI/SimplePIM

“= SimplePIM  Private 57 EditPins ~

¥ main ~ ¥ 1branch © 0tags Go to file Add file ~
Wangsitu98 interface cleanups, added allreduce and allgather 3421614 2 days ago

B benchmarks interface cleanups, added allreduce and allgather

W b interface cleanups, added allreduce and allgather

[ .gitignore some cleanups

[ README.md pushed SimplePIM

‘= README.md

SimplePIM ~

¢ Unwatch 3

@7 commits

2 days ago
2 days ago
3 weeks ago

last month

z

This project implements SimplePIM, a software framework for easy and efficient in-memory-hardware
programming. The code is implemented on UPMEM, an actual, commercially available PIM hardware that
combines traditional DRAM memory with general-purpose in-order cores inside the same chip. SimplePIM
processes arrays of arbitrary elements on a PIM device by calling iterator functions from the host and
provides primitives for communication among PIM cores and between PIM and the host system.

We implement six applications with SimplePIM on UPMEM:

e \Vector Addtition

Reduction

K-Means Clustering

Histogram

Linear Regression

e Logistic Regression

Previous manual UPMEM implementations of the same applications can be found in PriM benchmark

(https://github.com/CMU-SAFARI/prim-benchmarks), dpu_kmeans (https://github.com/upmem/dpu_kmeans)
and prim-ml (https://github.com/CMU-SAFARI/pim-ml). These previous implementations can serve as
baseline for measuring SimplePIM's performance as well as productivity improvements.

SAFARI
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SimplePIM: Summary

* Processing-in-Memory (PIM) promises to alleviate the data movement
bottleneck

* Real PIM hardware is now available, e.g., UPMEM PIM

* However, programming real PIM hardware is challenging, e.g.:
- Distribute data across PIM memory banks,

- Manage data transfers between host cores and PIM cores, and between PIM
cores,

- Launch PIM kernels on the PIM cores, etc.

 SimplePIM is a high-level programming framework for real PIM hardware
- lterators such asmap, reduce, and zip
- Collective communication with broadcast, scatter,and gather

* Implementation on UPMEM and evaluation with six different
workloads
- Reduction, vector add, histogram, linear/logistic regression, K-means
- 4.4x fewer lines of code compared to hand-optimized code
- Between 15% and 43% faster than hand-optimized code for three workloads

Source code: https://github.com/CMU-SAFARI/SimplePIM
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Improving Performance and Power Efficiency
by Safely Eliminating Load Instruction Execution
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Key Problem

Load instructions are a key limiter of
instruction-level parallelism (ILP)

Data Dependence

Stall load-dependent instructions
due to long load execution latency

OO
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Resource Dependence

Stall other loads due to contention
in load execution resources

(e.g., address generation unit,
load port, ...)

O8N
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Prior Works on Tolerating Load Latency

* Load value prediction (LVP) [Lipasti+, ASPLOS’96; Sazeides+, MICRO’96; ...]
* Memory renaming (N\ RN) [Moshovos+, ISCA’97; Tyson+, MICRO’97; ...]

Do Not Mitigate
Resource Dependence

Predicted load still gets executed
to verify speculation,
consuming execution resources

Mitigate
Data Dependence

By speculatively executing
load-dependent instructions
using a predicted load value

OL0

SAFARI
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Motivation

Safely breaking load data dependency
without executing a load instruction
may provide additional performance benefits

@ How do we start?

By finding load instructions that repeatedly produce
identical results across dynamic instances
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Key Finding I: Global-Stable Loads

* Some loads repeatedly fetch the same data value
from same load address across entire workload

- Both operations, address generation & data fetch,
produce identical results across all dynamic instances

- Prime targets for breaking data dependency without
execution

Global-Stable Load
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Key Finding I: Global-Stable Loads

60%

T 50%
° Il Clobal-Stable Loads
2 0% 34.2%
49)
_% 30%
S 20%
cC
S
B 10%
O
- 0%
Client  Enterprise FSPEC17  ISPEC17 Server AVG
Nearly 1 in every 3 dynamic loads
is a global-stable load
SAFARI Across a wide range of 90 workloads




In the Paper: Analysis of Global-Stable Loads

* Why do these loads even exist in well-optimized
real-world workloads?

- Accessing global-scope variables
- Accessing local variables of inline functions
- Limited set of architectural registers

* Can increasing architectural registers help?
- Very small change even after doubling x64 registers

* Deeper characterization of global-stable loads

- Which addressing mode do they use?
- How far away do they appear in a workload?

SAFARI 453



In the Paper: Analysis of Global-Stable Loads

Constable: Improving Performance and Power Efficiency
by Safely Eliminating Load Instruction Execution

*Rahul Bera!
Anant V. Nori?
Mohammad Sadrosadati!

L'ETH Ziirich

Load instructions often limit instruction-level parallelism (ILP)
in modern processors due to data and resource dependences they
cause. Prior techniques like Load Value Prediction (LVP) and
Memory Renaming (MRN) mitigate load data dependence by
predicting the data value of a load instruction. However, they
fail to mitigate load resource dependence as the predicted load in-
struction gets executed nonetheless (even on a correct prediction),
which consumes hard-to-scale pipeline resources that otherwise
could have been used to execute other load instructions.

Our goal in this work is to improve ILP by mitigating both
load data dependence and resource dependence. To this end, we
propose a purely-microarchitectural technique called Consta-
ble, that safely eliminates the execution of load instructions.
Constable dvnamicallv identifies load instructions that have re-

*Adithya Ranganathan® Joydeep Rakshit?
Jayesh Gaur? Ataberk Olgun!
Sreenivas Subramoney? Onur Mutlu!

Sujit Mahto?
Konstantinos Kanellopoulos®

2Intel Processor Architecture Research Lab

stall for multiple cycles, which can limit ILP. On the other
hand, a load instruction consumes multiple hard-to-scale hard-
ware resources (e.g., reservation station entry, port to address
generation unit, L1-data cache read port) which often causes
resource dependence in the pipeline, also limiting ILP.

Prior works propose many latency tolerance techniques to
improve ILP by mitigating load data dependence. Load Value
Prediction (LVP) [32,42,43,71,98,107,114,139-143,151,153-155,
159,160] and Memory Renaming (MRN) [120,121,147,177,178]
are two such widely-studied techniques that mitigate load
data dependence via data value speculation. LVP and MRN
speculatively execute load-data-dependent instructions using

the predicted value of the load instruction, thus improving ILP.

https://arxiv.org/pdf/2406.18786

SAFARI
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A significant fraction of loads are global-stable

®

But do they limit ILP even when using

load value prediction and memory renaming?

455



Key Finding Il: Global-Stable Loads Cause
Resource Dependence

All execution cycles where
at least one load port is utilized

In an aggressive 000 processor with 6-wide issue, 3 load ports,
a load value predictor (EVES [seznec, cvp18]), and memory renaming enabled
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Key Finding Il: Global-Stable Loads Cause
Resource Dependence

All execution cycles where
at least one load port is utilized

A global-stable load utilizes a load port
blocking a non-global-stable load

In an aggressive 000 processor with 6-wide issue, 3 load ports,
a load value predictor (EVES [seznec, cvp18]), and memory renaming enabled
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Key Finding Il: Global-Stable Loads Cause
Resource Dependence

Even when using load value prediction and memory renaming,
global-stable loads limit ILP due to resource dependence

®

What'’s the performance headroom of

mitigating the resource dependence?
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Key Finding Ill: High Performance Headroom

Mitigating both data and resource dependence has

more than 2X the performance benefit
of mitigating only data dependence of global-stable loads

Ideal elimination of global-stable loads exceeds performance
of a processor with 2x wider load execution
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Load Execution Resources Lag Behind

4
3.4x

3.5 -
p 3°
'E >.5 | | <®load execution ports 3X
wn
| - 2 |
()
o 1.5x
c 1.5 7
[40)
T 1 -
(e

0.5 -

0] | | | | |

Sandy Haswell Skylake Sunny Golden  Lion
Bridge (2014) (2015) Cove Cove Cove

(2010) (2019)  (2021) (2024)
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Load Execution Resources Lag Behind

Mitigating load resource dependence has
high performance potential
in recent and future generation processors

SQAFAKI 401



Our Goal

To improve instruction-level parallelism by mitigating
both load data dependence and resource dependence
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CONSTABLE

A purely-microarchitectural technique

Mitigates both load data dependence
and load resource dependence

By safely eliminating
the entire execution of a load instruction

463



Constable: Key Insight

LD,

mov r8, [rbp+0x8]

Two successive dynamic instances
of the same static load instruction

mov r8, [rbp+0x8]
LD,
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Constable: Key Insight

If the source register rbp
has not been modified

mov r8, [rbp+0x8] Y-

LD, would have the same address as LD,

LD,

Y-

Address generation of LD,
can be eliminated

mov r8, [rbp+0x8]
If no store or snoop request

to address [ rbp+0x8]
Y-

LD, would fetch the same data as LD,

o
Data fetching of LD,

LD,

can be eliminated
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Constable: Key Steps

Dynamically identify load instructions
@ that have historically fetched
\/ the same data from the same load address
(i.e., likely-stable)

- Eliminate execution of likely-stable loads
by tracking modifications to

their source registers and their load addresses
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Prior Related Literature

Rich literature on skipping redundant computations

by memoizing previously-computed results
[ Michie, Nature’68; Harbison+, ASPLOS’82; Richardson, SCA’93; Sodani+, ISCA’97; Gonzalez+, ICPP’9g; ...]

KA Aim to memoize every instruction
W including multiple dynamic instances of each instruction

(® Require large memoization buffer
Often bigger than the size of L1 data cache
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Key Improvements over Literature

Rich literature on skipping redundant computations

by memoizing previously-computed results
[ Michie, Nature’68; Harbison+, ASPLOS’82; Richardson, SCA’93; Sodani+, ISCA’97; Gonzalez+, ICPP’9g; ...]

322 » SN

a Focus only on loads that are likely stable

" Al

Lower storage overhead Lower design complexity
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Key Improvements over Literature

Rich literature on skipping redundant computations

by memoizing previously-computed results
[ Michie, Nature’68; Harbison+, ASPLOS’82; Richardson, SCA’93; Sodani+, ISCA’97; Gonzalez+, ICPP’9g; ...]

G Focus only on loads that are likely stable

RXC

e Eliminate loads early in the pipeline

Elimination at rename stage
by explicitly monitoring changes to the source registers
and load address of a likely-stable load
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Key Improvements over Literature

Rich literature on skipping redundant computations

by memoizing previously-computed results
[ Michie, Nature’68; Harbison+, ASPLOS’82; Richardson, SCA’93; Sodani+, ISCA’97; Gonzalez+, ICPP’9g; ...]

G Focus only on loads that are likely stable

e Eliminate loads early in the pipeline

9 Ensure correctness in today’s processors

* Maintain correctness in presence of out-of-order load issue
* Maintain coherence in multi-threaded & multi-core execution
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Design Overview



Constable: Key Steps

o) ldentify
likely-stable loads

@9 Eliminate
{0

by tracking modifications
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Identify a Likely-Stable Load

* Using a stability confidence
mov r8, [rbp+ox8] [ 5 ) counter per load instruction

Same data & address
as last dynamic instance

/\ +1

Stability
Confidence

AIA
V2 /2
mov r8, [rbp+0x8] @ v

Different data or
different address

mov r8, [rbp+0x8] [ & |
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Eliminate a Likely-Stable Load

.---- Stability confidence crosses threshold

mov r8, [ rbp +0X8] { Register Monitor ] Address Monitor

28| rbp | PC | S| exa2eeeo | PC,
Elimination Table
“ §§:ﬁ PC, | Ox2ae | [T | Jastvalue
- eliminate flag
/"
mov—85—frbp+ox8t [ 30

* No reservation station
~aJ *No address generation unit
* No load port

* Still takes ROB and load buffer
SAFARI
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Stop Elimination of a Likely-Stable Load

add rbp, 0xd8

[ Register Monitor ]

Address Monitor

S | _rbp

PC,

0x4200e0

PC,

[ Elimination Table ]

PC,

Ox2ae

mov r8, [rbp+0x8] *

Elimination flag not set.

SAFARI
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More in the Paper

* Ensuring safe and correct elimination in presence of

- Qut-of-order load issue
- Multi-threaded & multi-core execution
- Wrong-path execution

* Integration of Constable into the processor pipeline

e e e, 1 ]
Table | Register ! | ':/Iddr'iss :
' Monitor !

-----------
_____________________

' Monitor 1
Fetch Decode Rename | Allocate Issue Execute | Memory | Writeback m

* Microarchitecture for breaking data dependence on the
eliminated loads

* Microarchitecture of Constable’s own structures
- Read and write port requirements
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More in the Paper

Constable: Improving Performance and Power Efficiency
by Safely Eliminating Load Instruction Execution

*Rahul Bera!
Anant V. Nori? Jayesh Gaur?
Mohammad Sadrosadati!

*Adithya Ranganathan? Joydeep Rakshit?
Ataberk Olgun’
Sreenivas Subramoney? Onur Mutlu!

Sujit Mahto?
Konstantinos Kanellopoulos®

LETH Ziirich 2Intel Processor Architecture Research Lab

Load instructions often limit instruction-level parallelism (ILP)
in modern processors due to data and resource dependences they
cause. Prior techniques like Load Value Prediction (LVP) and
Memory Renaming (MRN) mitigate load data dependence by
predicting the data value of a load instruction. However, they
fail to mitigate load resource dependence as the predicted load in-
struction gets executed nonetheless (even on a correct prediction),
which consumes hard-to-scale pipeline resources that otherwise
could have been used to execute other load instructions.

Our goal in this work is to improve ILP by mitigating both
load data dependence and resource dependence. To this end, we
propose a purely-microarchitectural technique called Consta-
ble, that safely eliminates the execution of load instructions.
_Constable dvnamically identifies load instructions that have re-

stall for multiple cycles, which can limit ILP. On the other
hand, a load instruction consumes multiple hard-to-scale hard-
ware resources (e.g., reservation station entry, port to address
generation unit, L1-data cache read port) which often causes
resource dependence in the pipeline, also limiting ILP.

Prior works propose many latency tolerance techniques to
improve ILP by mitigating load data dependence. Load Value
Prediction (LVP) [32,42,43,71,98,107,114,139-143,151,153-155,
159,160] and Memory Renaming (MRN) [120,121,147,177,178]
are two such widely-studied techniques that mitigate load
data dependence via data value speculation. LVP and MRN
speculatively execute load-data-dependent instructions using

the predicted value of the load instruction, thus improving ILP.

https://arxiv.org/pdf/2406.18786
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Methodology

* Industry-grade x86-64 simulator modeling aggressive OoO processor
8-wide fetch, 6-wide issue to 3 load ports, 512-entry ROB

With memory renaming, zero/constant/move elimination, branch folding
Five prefetchers throughout cache hierarchy

of wide variety
All from 2017
(SYSMark, DaCapo, ...)
- (SPECjbb, SPECjEnterprise, ...)
- (BigBench, Hadoop, ...)

Mechanisms compared against Configurations

* EVES, the state-of-the-art load value predictor
[Seznec, CVP’18]

* Early Load Address Resolution [Bekermans+, ISCA’00]
* Register File Prefetching [shukia+, Isca22]

* No simultaneous
multi-threading (SMT)
* 2-way SMT
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Performance Improvement in noSMT

Constable alone provides similar performance as EVES

with only %2 of EVES’ storage overhead

Constable on top of EVES outperforms EVES alone

-~
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Performance Improvement in 2-way SMT

v 1.20
£ Bl EVES (the state-of-the-drt load value predictor)
?é ] Constable
0 i
E 115 11.3%
g 8.8% \
5 110 - \
o
-
©
3 3,6%
o 1.05 -
c
©
)
=
O
8 1.00 -
Q A & S
& AN (§</O
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Performance Improvement in 2-way SMT

Constable provides higher performance benefits
in a 2-way SMT processor
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Improvement in Resource Efficiency

Reduction in Reduction in Reservation
L1 Data Cache Accesses Station Allocation
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Improvement in Resource Efficiency

Constable significantly improves resource efficiency
by eliminating load instruction execution

p— " B s | B ' ' ' ' T— - '
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Reduction in Dynamic Power

Memory Execution Unit Power 000 Unit Power

mL1-D EDTLB O Others @RS DRAT OROB 0OOthers

100% 5 5 5 100%
Z [

9.1% average
reduction

so% 1 5.1% average

reduction

60%

Fraction of total MEU power
Fraction of total OO0 power

485

SAFARI




Reduction in Dynamic Power

By eliminating load instruction execution,
Constable reduces dynamic power consumption

- ' y T y - y T y T ' -

SAFARI & &
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Area and Power Overhead
of Constable’s Own Structures

—)D(— 12.4 KB

Storage overhead per core

o3 0.232 mm?

o7

0.0061% area of Intel Alderlake-S processor

) Low Energy

Up to 10.8 pJ/read and 16.7 pJ/write
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More in the Paper

* Load elimination coverage of Constable
- 23.5% of all dynamic loads are eliminated

Per-workload performance analysis
- Up to 31.2% over baseline
- 60/90 workloads outperforms EVES by more than 5%

Performance contribution per load category
- Stack loads contribute the highest

Performance improvement over prior works

- 4.7% over Early load address resolution
- 3.6% over Register file prefetching

Performance sensitivity:
- Higher performance in every configuration up to 2X load execution width
- Higher performance in every configuration up to 2X pipeline depth
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More in the Paper

Constable: Improving Performance and Power Efficiency
by Safely Eliminating Load Instruction Execution

*Rahul Bera!
Anant V. Nori? Jayesh Gaur?
Mohammad Sadrosadati!

*Adithya Ranganathan? Joydeep Rakshit?
Ataberk Olgun’
Sreenivas Subramoney? Onur Mutlu!

Sujit Mahto?
Konstantinos Kanellopoulos®

LETH Ziirich 2Intel Processor Architecture Research Lab

Load instructions often limit instruction-level parallelism (ILP)
in modern processors due to data and resource dependences they
cause. Prior techniques like Load Value Prediction (LVP) and
Memory Renaming (MRN) mitigate load data dependence by
predicting the data value of a load instruction. However, they
fail to mitigate load resource dependence as the predicted load in-
struction gets executed nonetheless (even on a correct prediction),
which consumes hard-to-scale pipeline resources that otherwise
could have been used to execute other load instructions.

Our goal in this work is to improve ILP by mitigating both
load data dependence and resource dependence. To this end, we
propose a purely-microarchitectural technique called Consta-
ble, that safely eliminates the execution of load instructions.
Constable dvnamicallv identifies load instructions that have re-

stall for multiple cycles, which can limit ILP. On the other
hand, a load instruction consumes multiple hard-to-scale hard-
ware resources (e.g., reservation station entry, port to address
generation unit, L1-data cache read port) which often causes
resource dependence in the pipeline, also limiting ILP.

Prior works propose many latency tolerance techniques to
improve ILP by mitigating load data dependence. Load Value
Prediction (LVP) [32,42,43,71,98,107,114,139-143,151,153-155,
159,160] and Memory Renaming (MRN) [120,121,147,177,178]
are two such widely-studied techniques that mitigate load
data dependence via data value speculation. LVP and MRN
speculatively execute load-data-dependent instructions using

the predicted value of the load instruction, thus improving ILP.

https://arxiv.org/pdf/2406.18786
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To Summarize...



Our Key Findings

the same data from the same address

a A large fraction (34%) of dynamic loads fetch
throughout the entire workload

e These global-stable loads cause significant ILP loss

Eliminating global-stable load execution provides

more than 2X the performance benefit
of just breaking their load data dependency

due to resource dependence
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Our Proposal

Constable

Identifies and eliminates loads
that repeatedly fetch same data from same address

ANA

£A

High performance benefit

over a strong baseline system
without (5.1%) and with SMT (8.8%)

2

Improves resource efficiency

L1-D access reduction by 26%
RS allocation reduction by 8.8%

)

L 2
> e

Reduces dynamic power
L1-D power by 9.1%
RS power by 5.1%

L
Low storage overhead

Only 12.4 KB/core,
0.232 mm? in 14-nm technology
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There’s Still Headroom...

Constable successfully eliminates
57% of all global-stable loads at runtime

43% of global-stable loads
do not get eliminated

We need to understand more

software primitives that generate global-stable loads
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Open-Source Tool
ah

Load
Inspector

A tool to analyze load instructions in any off-the-shelf x86(-64) program

nnnnnn Load-Inspector Public ®Unwatch 5 ~ % Fork 0 - Starred 2 -
¥ main ~ ¥ 1Branch © 1Tags Q Gotofile Add file ~ <> Code ~ About Q3
A binary instrumentation tool to analyze
Rahul Bera Updated README 183460c - last week  {©) 5 Commits load instructions in any off-the-shelf
x86(-64) program.
M logo First commit last month
compiler emulation microarchitecture
B src Added post-processing script last month A eIt amentatian
0 test/fft First commit last month
/ 0 Readme
M tools Added post-processing script last month &5 MIT license
A~ Activity
[ .gitignore Added post-processing script last month
= Custom properties
[ LICENSE First commit last month ¥ 2 stars
(3 README.md Updated README last week © G watching
% 0 forks
[ inspector Added post-processing script last month Report repository
[ install.sh First commit last month

SAFARI
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Open-Source Tool

ah
() Load
Inspector

Study global-stable loads

Study the effects of increasing architectural registers
using APX extension to x64 ISA
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