
Onur Mutlu

omutlu@gmail.com

https://people.inf.ethz.ch/omutlu

23 August 2024

Intel ArchFest

ML/AI for Memory System Design &

Memory System Design for AI/ML

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

The Problem

Computing

is Bottlenecked by Data

2

Data is Key for AI, ML, Genomics, …

◼ Important workloads are all data intensive

◼ They require rapid and efficient processing of large amounts

of data

◼ Data is increasing

❑ We can generate more than we can process

❑ We need to perform more sophisticated analyses on more data

3

Huge Demand for Performance & Efficiency

4Source: https://youtu.be/Bh13Idwcb0Q?t=283

Huge Demand for Performance & Efficiency

5

development of new
sequencing technologies

http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped

Number of Genomes
Sequenced

Oxford Nanopore MinION

http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped

Data Overwhelms Modern Machines …

◼ Storage/memory capability

◼ Communication capability

◼ Computation capability

◼ Greatly impacts robustness, energy, performance, cost

6

◼ Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul
Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

7

62.7% of the total system energy
is spent on data movement

Data Movement Overwhelms Modern Machines

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/
https://www.asplos2018.org/

Data Movement Overwhelms Accelerators
◼ Amirali Boroumand, Saugata Ghose, Berkin Akin, Ravi Narayanaswami, Geraldo F. Oliveira,

Xiaoyu Ma, Eric Shiu, and Onur Mutlu,
"Google Neural Network Models for Edge Devices: Analyzing and Mitigating Machine
Learning Inference Bottlenecks"
Proceedings of the 30th International Conference on Parallel Architectures and Compilation
Techniques (PACT), Virtual, September 2021.
[Slides (pptx) (pdf)]
[Talk Video (14 minutes)]

8

> 90% of the total system energy
is spent on memory in large ML models

https://arxiv.org/pdf/2109.14320

https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21.pdf
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21.pdf
http://pactconf.org/
http://pactconf.org/
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21-talk.pdf
https://www.youtube.com/watch?v=A5gxjDbLRAs&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=178
https://arxiv.org/pdf/2109.14320

0

0.25

0.5

0.75

1
B

as
e
lin

e

B
as

e
+

H
B

M
e
n
sa

B
as

e
lin

e

B
as

e
+

H
B

M
e
n
sa

B
as

e
lin

e

B
as

e
+

H
B

M
e
n
sa

B
as

e
lin

e

B
as

e
+

H
B

M
e
n
sa

B
as

e
lin

e

B
as

e
+

H
B

M
e
n
sa

B
as

e
lin

e

B
as

e
+

H
B

M
e
n
sa

B
as

e
lin

e

B
as

e
+

H
B

M
e
n
sa

B
as

e
lin

e

B
as

e
+

H
B

M
e
n
sa

B
as

e
lin

e

B
as

e
+

H
B

M
e
n
sa

B
as

e
lin

e

B
as

e
+

H
B

M
e
n
sa

LSTM1 Transd.1Transd.2 CNN5 CNN9 CNN10 CNN12 RCNN1 RCNN3 Average

N
o
rm

a
li
z
e
d

 E
n

e
rg

y

Total Static PE Param Buffer+NoC
Act Buffer+NoC Off-chip Interconnect DRAM

Example Energy Breakdowns

In LSTMs and Transducers used by Google,

>90% energy spent on off-chip interconnect and DRAM

https://arxiv.org/pdf/2109.14320

https://arxiv.org/pdf/2109.14320

Axiom

An Intelligent Architecture

Handles Data Well

10

Corollaries: Computing Systems Today …

◼ Are processor-centric vs. data-centric

◼ Make designer-dictated decisions vs. data-driven

◼ Make component-based myopic decisions vs. data-aware

11

Architectures for Intelligent Machines

Data-centric

Data-driven

Data-aware

12

A Blueprint for Fundamentally Better Architectures

◼ Onur Mutlu,
"Intelligent Architectures for Intelligent Computing Systems"
Invited Paper in Proceedings of the Design, Automation, and Test in
Europe Conference (DATE), Virtual, February 2021.
[Slides (pptx) (pdf)]
[IEDM Tutorial Slides (pptx) (pdf)]
[Short DATE Talk Video (11 minutes)]
[Longer IEDM Tutorial Video (1 hr 51 minutes)]

13

https://people.inf.ethz.ch/omutlu/pub/intelligent-architectures-for-intelligent-computingsystems-invited_paper_DATE21.pdf
http://www.date-conference.com/
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-DATE-InvitedTalk-IntelligentArchitecturesForIntelligentComputingSystems-January-22-2021.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-DATE-InvitedTalk-IntelligentArchitecturesForIntelligentComputingSystems-January-22-2021.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://www.youtube.com/watch?v=eAZZGDlsDAY
https://www.youtube.com/watch?v=H3sEaINPBOE

Our Goals: ML-Memory System Duo

1. Memory system design for AI/ML workloads/accelerators

 → in-depth exploration of memory system designs for

cutting-edge and emerging machine learning accelerators

 → more efficient on-chip and off-chip memory systems

2. AI/ML techniques for improving memory system designs

 → comprehensive look at memory system design to make

it data driven, i.e., based on machine learning

 → more effective cache/memory/prefetch/thread

controllers and data/resource management/mapping/scheduling
policies

14

Two Major Directions

1. Memory system design for AI/ML workloads/accelerators

2. AI/ML techniques for improving memory system designs

15

Data-Driven (Self-Optimizing)

Architectures

16

System Architecture Design Today

◼ Human-driven

❑ Humans design the policies (how to do things)

◼ Many (too) simple, short-sighted policies all over the system

◼ No automatic data-driven policy learning

◼ (Almost) no learning: cannot take lessons from past actions

17

Can we design
fundamentally intelligent architectures?

An Intelligent Architecture

◼ Data-driven

❑ Machine learns the “best” policies (how to do things)

◼ Sophisticated, workload-driven, changing, far-sighted policies

◼ Automatic data-driven policy learning

◼ All controllers are intelligent data-driven agents

18

We need to rethink design
(of all controllers)

Self-Optimizing Memory Controllers

◼ Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,
"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.
Selected to the ISCA-50 25-Year Retrospective Issue covering 1996-
2020 in 2023 (Retrospective (pdf) Full Issue).

19

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/
https://sites.coecis.cornell.edu/isca50retrospective/files/2023/06/Retrospective__RL.pdf
https://sites.coecis.cornell.edu/isca50retrospective/

Self-Optimizing Memory Prefetchers

20

Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu,

"Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, October 2021.

[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]

[Lightning Talk Slides (pptx) (pdf)]

[Talk Video (20 minutes)]
[Lightning Talk Video (1.5 minutes)]

[Pythia Source Code (Officially Artifact Evaluated with All Badges)]
[arXiv version]

Officially artifact evaluated as available, reusable and reproducible.

https://arxiv.org/pdf/2109.12021.pdf

https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=7
https://www.youtube.com/watch?v=kzL22FTz0vc&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=2
https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/abs/2109.12021
https://arxiv.org/pdf/2109.12021.pdf

Learning-Based Off-Chip Load Predictors
◼ Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk Olgun,

Mohammad Sadrosadati, and Onur Mutlu,
"Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load
Prediction"
Proceedings of the 55th International Symposium on Microarchitecture (MICRO), Chicago, IL, USA,
October 2022.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Talk Video (12 minutes)]
[Lecture Video (25 minutes)]
[arXiv version]
[Source Code (Officially Artifact Evaluated with All Badges)]
Officially artifact evaluated as available, reusable and reproducible.
Best paper award at MICRO 2022.

21https://arxiv.org/pdf/2209.00188.pdf

https://arxiv.org/pdf/2209.00188.pdf
https://arxiv.org/pdf/2209.00188.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pdf
https://www.youtube.com/watch?v=afGc1pWr-_Y
https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s
https://arxiv.org/abs/2209.00188
https://github.com/CMU-SAFARI/Hermes
https://arxiv.org/pdf/2209.00188.pdf

Self-Optimizing Hybrid SSD Controllers

Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar,
David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu,
"Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage
Systems Using Online Reinforcement Learning"
Proceedings of the 49th International Symposium on Computer
Architecture (ISCA), New York, June 2022.
[Slides (pptx) (pdf)]
[arXiv version]
[Sibyl Source Code]
[Talk Video (16 minutes)]

22https://arxiv.org/pdf/2205.07394.pdf

https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
http://iscaconf.org/isca2022/
http://iscaconf.org/isca2022/
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pdf
https://arxiv.org/pdf/2205.07394.pdf
https://github.com/CMU-SAFARI/Sibyl
https://www.youtube.com/watch?v=5-WedkiB000
https://arxiv.org/pdf/2205.07394.pdf

A Blueprint for Fundamentally Better Architectures

◼ Onur Mutlu,
"Intelligent Architectures for Intelligent Computing Systems"
Invited Paper in Proceedings of the Design, Automation, and Test in
Europe Conference (DATE), Virtual, February 2021.
[Slides (pptx) (pdf)]
[IEDM Tutorial Slides (pptx) (pdf)]
[Short DATE Talk Video (11 minutes)]
[Longer IEDM Tutorial Video (1 hr 51 minutes)]

23

https://people.inf.ethz.ch/omutlu/pub/intelligent-architectures-for-intelligent-computingsystems-invited_paper_DATE21.pdf
http://www.date-conference.com/
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-DATE-InvitedTalk-IntelligentArchitecturesForIntelligentComputingSystems-January-22-2021.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-DATE-InvitedTalk-IntelligentArchitecturesForIntelligentComputingSystems-January-22-2021.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://www.youtube.com/watch?v=eAZZGDlsDAY
https://www.youtube.com/watch?v=H3sEaINPBOE

Fundamentally Better Architectures

Data-centric

Data-driven

Data-aware

24

Pythia: Prefetching using

Reinforcement Learning

25

Self-Optimizing Memory Prefetchers

26

Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu,

"Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, October 2021.

[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]

[Lightning Talk Slides (pptx) (pdf)]

[Talk Video (20 minutes)]
[Lightning Talk Video (1.5 minutes)]

[Pythia Source Code (Officially Artifact Evaluated with All Badges)]
[arXiv version]

Officially artifact evaluated as available, reusable and reproducible.

https://arxiv.org/pdf/2109.12021.pdf

https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=7
https://www.youtube.com/watch?v=kzL22FTz0vc&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=2
https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/abs/2109.12021
https://arxiv.org/pdf/2109.12021.pdf

Rahul Bera, Konstantinos Kanellopoulos, Anant V. Nori,
Taha Shahroodi, Sreenivas Subramoney, Onur Mutlu

Pythia
A Customizable Hardware Prefetching Framework

Using Online Reinforcement Learning

https://github.com/CMU-SAFARI/Pythia

https://github.com/CMU-SAFARI/Pythia

28

Mainly use one
program context info.

for prediction

Lack inherent system
awareness

Lack in-silicon
customizability

1 2 3

Why do prefetchers
not perform well?

29

Lack of In-silicon Customizability
• Feature statically selected at design time

- Rigid hardware designed specifically to exploit that feature

• No way to change program feature and/or change
prefetcher’s objective in silicon

- Cannot adapt to a wide range of workload demands

Design from scratch Verify Fabricate

30

Our Goal

A prefetching framework that can:

1.Learn to prefetch using multiple features and
inherent system-level feedback information

2.Be easily customized in silicon to use different
features and/or change prefetcher’s objectives

31

Our Proposal

Pythia
Formulates prefetching as a

reinforcement learning problem

Pythia is named after the oracle of Delphi, who is known for her accurate prophecies
https://en.wikipedia.org/wiki/Pythia

32

Basics of Reinforcement Learning (RL)
• Algorithmic approach to learn to take an action in a

given situation to maximize a numerical reward

• Agent stores Q-values for every state-action pair
- Expected return for taking an action in a state

- Given a state, selects action that provides highest Q-value

33

Formulating Prefetching as RL

34

What is State?
• k-dimensional vector of features

• Feature = control-flow + data-flow

• Control-flow examples
- PC
- Branch PC
- Last-3 PCs, …

• Data-flow examples
- Cacheline address
- Physical page number
- Delta between two cacheline addresses
- Last 4 deltas, …

35

What is Action?
Given a demand access to address A

the action is to select prefetch offset “O”

• Action-space: 127 actions in the range [-63, +63]

- For a machine with 4KB page and 64B cacheline

• Upper and lower limits ensure prefetches do not cross
physical page boundary

• A zero offset means no prefetch is generated

• We further prune action-space by design-space exploration

36

What is Reward?
• Defines the objective of Pythia

• Encapsulates two metrics:
- Prefetch usefulness (e.g., accurate, late, out-of-page, …)

- System-level feedback (e.g., mem. b/w usage, cache
pollution, energy, …)

• We demonstrate Pythia with memory bandwidth
usage as the system-level feedback in the paper

37

What is Reward?
• Seven distinct reward levels

- Accurate and timely (RAT)

- Accurate but late (RAL)

- Loss of coverage (RCL)

- Inaccurate
• With low memory b/w usage (RIN-L)

• With high memory b/w usage (RIN-H)

- No-prefetch
• With low memory b/w usage (RNP-L)

• With high memory b/w usage(RNP-H)

• Values are set at design time via automatic design-
space exploration

- Can be customized further in silicon for higher performance

38

Steering Pythia’s Objective via Reward Values

• Example reward configuration for
- Generating accurate prefetches

- Making bandwidth-aware prefetch decisions

+20+12-2-4-8-14

RATRALRNP-HRNP-LRIN-LRIN-H

AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate;
H = High mem. b/w; L = Low mem. b/w

Highly prefers to generate accurate prefetches

Prefers not to prefetch if memory bandwidth usage is low

Strongly prefers not to prefetch if memory bandwidth usage is high

1
2
3

39

Steering Pythia’s Objective via Reward Values

• Customizing reward values to make Pythia conservative
towards prefetching

+20+12+2+1-20-22

RATRALRNP-HRNP-LRIN-LRIN-H

AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate;
H = High mem. b/w; L = Low mem. b/w

Highly prefers to generate accurate prefetches1
Otherwise prefers not to prefetch2

40

Basic Pythia Configuration
• Derived from automatic design-space exploration

• State: 2 features
- PC+Delta

- Sequence of last-4 deltas

• Actions: 16 prefetch offsets
- Ranging between -6 to +32. Including 0.

• Rewards:
- RAT = +20; RAL = +12; RNP-H=-2; RNP-L=-4;

- RIN-H=-14; RIN-L=-8; RCL=-12

41

More Detailed Pythia Overview
• Q-Value Store: Records Q-values for all state-action pairs

• Evaluation Queue: A FIFO queue of recently-taken actions

Evaluation Queue (EQ)

Demand
Request

1

Assign reward to
corresponding EQ entry

Look up
QVStoreState

Vector

Q-Value Store
(QVStore)

2

3

5

Insert prefetch action &
State-Action pair in EQ

6

Prefetch Fill

A1 A2 A3

Memory
Hierarchy

Generate
prefetch

Evict EQ entry and
update QVStore

4

Find the Action with max Q-Value

7

S1

S2

S3

S4

Set filled bit

Max

42

Simulation Methodology
• Champsim [3] trace-driven simulator

• 150 single-core memory-intensive workload traces
- SPEC CPU2006 and CPU2017
- PARSEC 2.1
- Ligra
- Cloudsuite

• Homogeneous and heterogeneous multi-core mixes

• Five state-of-the-art prefetchers
- SPP [Kim+, MICRO’16]

- Bingo [Bakhshalipour+, HPCA’19]

- MLOP [Shakerinava+, 3rd Prefetching Championship, 2019]

- SPP+DSPatch [Bera+, MICRO’19]

- SPP+PPF [Bhatia+, ISCA’20]

[3] https://github.com/ChampSim/ChampSim

https://github.com/ChampSim/ChampSim

43

1.1

1.15

1.2

1.25

1.3

1.35

0 2 4 6 8 10 12

G
eo

m
ea

n
 s

p
ee

d
u

p
o

ve
r

n
o

 p
re

fe
tc

h
in

g

Number of cores

Performance with Varying Core Count

Bingo
MLOP
SPP

Pythia

3.4% 7.7%

44

1.1

1.15

1.2

1.25

1.3

1.35

0 2 4 6 8 10 12

G
eo

m
ea

n
 s

p
ee

d
u

p
o

ve
r

n
o

 p
re

fe
tc

h
in

g

Number of cores

Performance with Varying Core Count

Bingo
MLOP
SPP

Pythia

3.4% 7.7%

1. Pythia consistently provides the highest
performance in all core configurations

2. Pythia’s gain increases with core count

45

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25
G

eo
m

ea
n

 s
p

ee
d

u
p

o

ve
r

n
o

 p
re

fe
tc

h
in

g

DRAM MTPS (in log scale)

Performance with Varying DRAM Bandwidth

~Intel Xeon 6258R
(Cascade Lake, 28C/6ch)

~AMD EPYC Rome 7702P
(Zen 2, 64C/8ch)

~AMD Threadripper 3990x (Zen 2, 64C/4ch)

SPP

Bingo
MLOP

Pythia

Baseline

3%

17%

46

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25
G

eo
m

ea
n

 s
p

ee
d

u
p

o

ve
r

n
o

 p
re

fe
tc

h
in

g

DRAM MTPS (in log scale)

Performance with Varying DRAM Bandwidth

~Intel Xeon 6258R
(Cascade Lake, 28C/6ch)

~AMD EPYC Rome 7702P
(Zen 2, 64C/8ch)

~AMD Threadripper 3990x (Zen 2, 64C/4ch)

SPP

Bingo
MLOP

Pythia

Baseline

3%

17%

Pythia outperforms prior best prefetchers for
a wide range of DRAM bandwidth configurations

47

1.0

1.2

1.4

1.6

1.8

2.0

IP
C

 n
o

rm
al

iz
ed

 t
o

 n
o

 p
re

fe
tc

h
in

g

Basic Pythia Strict Pythia

Performance Improvement via Customization

3.1%
2.8% 3.4%

7.8%

5.2%

2%

Customize reward values for graph analytics workloads

48

1.0

1.2

1.4

1.6

1.8

2.0

IP
C

 n
o

rm
al

iz
ed

 t
o

 n
o

 p
re

fe
tc

h
in

g

Basic Pythia Strict Pythia

Performance Improvement via Customization

3.1%
2.8% 3.4%

7.8%

5.2%

2%Pythia can extract even higher performance
via customization without changing hardware

49

Pythia’s Overhead
• 25.5 KB of total metadata storage per core

- Only simple tables

• We also model functionally-accurate Pythia with full
complexity in Chisel [4] HDL

1.03% area overhead

Satisfies prediction latency

0.4% power overhead

of a desktop-class 4-core Skylake processor (Xeon D2132IT, 60W)
[4] https://www.chisel-lang.org

https://www.chisel-lang.org/

50

Pythia is Open Source
https://github.com/CMU-SAFARI/Pythia

•MICRO’21 artifact evaluated

• Champsim source code + Chisel modeling code

• All traces used for evaluation

https://github.com/CMU-SAFARI/Pythia

Pythia Talk Video

https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=8

https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=8

A Lot More in the Pythia Paper

52

Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu,

"Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, October 2021.

[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]

[Lightning Talk Slides (pptx) (pdf)]

[Talk Video (20 minutes)]
[Lightning Talk Video (1.5 minutes)]

[Pythia Source Code (Officially Artifact Evaluated with All Badges)]
[arXiv version]

Officially artifact evaluated as available, reusable and reproducible.

https://arxiv.org/pdf/2109.12021.pdf

https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=7
https://www.youtube.com/watch?v=kzL22FTz0vc&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=2
https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/abs/2109.12021
https://arxiv.org/pdf/2109.12021.pdf

Rahul Bera, Konstantinos Kanellopoulos, Anant V. Nori,
Taha Shahroodi, Sreenivas Subramoney, Onur Mutlu

Pythia
A Customizable Hardware Prefetching Framework

Using Online Reinforcement Learning

https://github.com/CMU-SAFARI/Pythia

https://github.com/CMU-SAFARI/Pythia

Hermes: Perceptron-Based

Off-Chip Load Prediction

54

Learning-Based Off-Chip Load Predictors
◼ Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk Olgun,

Mohammad Sadrosadati, and Onur Mutlu,
"Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load
Prediction"
Proceedings of the 55th International Symposium on Microarchitecture (MICRO), Chicago, IL, USA,
October 2022.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Talk Video (12 minutes)]
[Lecture Video (25 minutes)]
[arXiv version]
[Source Code (Officially Artifact Evaluated with All Badges)]
Officially artifact evaluated as available, reusable and reproducible.
Best paper award at MICRO 2022.

55https://arxiv.org/pdf/2209.00188.pdf

https://arxiv.org/pdf/2209.00188.pdf
https://arxiv.org/pdf/2209.00188.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pdf
https://www.youtube.com/watch?v=afGc1pWr-_Y
https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s
https://arxiv.org/abs/2209.00188
https://github.com/CMU-SAFARI/Hermes
https://arxiv.org/pdf/2209.00188.pdf

Hermes Talk Video

https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s

https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s

Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran,

David Novo, Ataberk Olgun, Mohammad Sadrosadati, Onur Mutlu

Accelerating Long-Latency Load Requests
via Perceptron-Based Off-Chip Load Prediction

https://github.com/CMU-SAFARI/Hermes

https://github.com/CMU-SAFARI/Hermes

58

Problem

Long-latency off-chip load requests

Often stall processor by
blocking instruction retirement from

Reorder Buffer (ROB)

Limit performance

59

Traditional Solutions

Employ sophisticated prefetchers
1

Increase size of on-chip caches2

60

Key Observation 1

50%
successfully prefetched

off-chip loads without any prefetcher

50%

still go off-chip even with
a state-of-the-art prefetcher

70% of the off-chip loads

block the ROB

Many loads still go off-chip

61

40% of the stalls can be eliminated by removing

on-chip cache access latency from critical path

Key Observation 2

On-chip cache access latency
significantly contributes to off-chip load latency

L1 L2 LLC Main Memory

Saved cycles

50% still go off-chip

L1 L2 LLC Main Memory

62

Caches are Getting Bigger and Slower…

Hardavellas+, “Database Servers on Chip Multiprocessors: Limitations and Opportunities”, CIDR, 2007

O
n

-c
h

ip
 C

ac
h

e
 S

iz
e

 (
K

B
)

0

512

1024

1536

2048

2560

L2
 S

iz
e

 (
K

B
)

11

12

13

14

15

16

17

L2
 L

at
e

n
cy

 (
p

ro
ce

ss
o

r
cy

cl
e

s)

63

Improve processor performance
by removing on-chip cache access latency

from the critical path of off-chip loads

Our Goal

Predicts which load requests
are likely to go off-chip

Starts fetching data directly from main memory
while concurrently accessing the cache hierarchy

65

Hermes: Key Contribution

Hermes employs the first
perceptron-based off-chip load predictor

That predicts which loads are likely to go off-chip

By learning from

multiple program context information

66

Hermes Overview

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

L1 L2 LLC Main Memory

Baseline Processor is stalled

Latency tolerance limit of ROB

67

Hermes Overview

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

L1 L2 LLC Main Memory

POPET

L1 L2 LLC

Main Memory

Baseline

Hermes

Saved stall cycles

Processor is stalled

Latency tolerance limit of ROB

Predict

Issue a
Hermes
request

Wait

Train

Perceptron-based
off-chip load predictor

68

Designing the Off-Chip Load Predictor

Tracking cache contents

Learning from program behavior

Large metadata

▪ Metadata size increases with cache hierarchy size

May need to track all cache operations

▪ Gets complex depending on the cache hierarchy
configuration (e.g., inclusivity, bypassing,…)

Correlate different program features with off-chip loads

MissMap [Loh+, MICRO’11] for the DRAM cache,
D2D [Sembrant+, ISCA’14], D2M [Sembrant+, HPCA’17], LP [Jalili+, HPCA’22] for the cache hierarchy

History-based prediction
HMP [Yoaz+, ISCA’99] for the L1-D cache

Using branch-predictor-like hybrid predictor:
Global, Gshare, and GSkew

Low storage overhead Low design complexity

POPET provides

both higher accuracy and higher performance
than predictors inspired from these previous works

69

POPET: Perceptron-Based Off-Chip Predictor

• Multi-feature hashed perceptron model[1]

- Each feature has its own weight table

• Stores correlation between feature value and off-chip prediction

[1] D. Tarjan and K. Skadron, “Merging Path and Gshare Indexing in Perceptron Branch Prediction,” TACO, 2005

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

POPET

Predict

Issue
Hermes
request

Wait

Train

70

Predicting using POPET

• Uses simple table lookups, addition, and comparison

0x7ffe0+12

42 -4

12

3 3 >= -2

-5

Predict that
the load
would go
off-chip

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

POPET

Predict

Issue
Hermes
request

Wait

Train

Ex
tr

ac
t

fe
a

tu
re

s
fr

om
 t

he
 lo

ad

re
q

ue
st

71

Training POPET

• Uses simple increment or decrement of feature weights

0x7ffe0+12

42 -4

12

3 3 >= -2

-5

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

POPET

Predict

Issue
Hermes
request

Wait

Train

Predict that
the load
would go
off-chip

Shouldn’t be activated

Cumulative weight < 𝜏act

-1

-1

-1

Evaluation

73

Simulation Methodology

• ChampSim trace driven simulator

• 110 single-core memory-intensive traces
- SPEC CPU 2006 and 2017

- PARSEC 2.1

- Ligra

- Real-world applications

• 220 eight-core memory-intensive trace mixes

Off-Chip PredictorsLLC Prefetchers

• History-based: HMP [Yoaz+, ISCA’99]

• Tracking-based: Address Tag-

Tracking based Predictor (TTP)

• Ideal Off-chip Predictor

• Pythia [Bera+, MICRO’21]

• Bingo [Bakshalipour+, HPCA’19]

• MLOP [Shakerinava+, 3rd Prefetching Championship’19]

• SPP + Perceptron filter [Bhatia+, ISCA’20]

• SMS [Somogyi+, ISCA’06]

74

Single-Core Performance Improvement

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

SPEC06 SPEC17 PARSEC Ligra CVP GEOMEAN

G
eo

m
e

an
 s

p
ee

d
u

p
o

ve
r

th
e

N
o

-p
re

fe
tc

h
in

g
 s

ys
te

m

Hermes Pythia Pythia + Hermes Pythia + Ideal Hermes

11.5%

20.3%
5.4%

Hermes alone provides nearly

50% performance benefits of Pythia

with only 1/5th storage overhead

Hermes on top of Pythia
outperforms Pythia alone in every workload category

Hermes provides nearly 90% of performance benefit of

Ideal Hermes that has an ideal off-chip load predictor

75

Increase in Main Memory Requests

0%

10%

20%

30%

40%

50%

60%

70%

SPEC06 SPEC17 PARSEC Ligra CVP AVG

%
 in

cr
ea

se
 in

 m
ai

n
 m

em
o

ry
 r

eq
u

es
ts

o
ve

r
th

e
N

o
-p

re
fe

tc
h

in
g

 s
y

st
em

Hermes Pythia Pythia + Hermes

5.5%

38.5%

5.9%

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

SPEC06 SPEC17 PARSEC Ligra CVP GEOMEAN

G
eo

m
ea

n
 s

p
ee

d
u

p
o

ve
r

th
e

N
o

-p
re

fe
tc

h
in

g
 s

ys
te

m

Hermes Pythia Pythia + Hermes Pythia + Ideal Hermes

11.5%
20.3% 5.4%

For every 1% performance benefit,

increase in main memory requests

Pythia

Hermes on top of Pythia

Hermes alone

2%

1%

0.5%

Hermes is more bandwidth-efficient
than even an efficient prefetcher like Pythia

76

Performance with Varying Memory Bandwidth

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

200 400 800 1600 3200 6400 12800

G
eo

m
ea

n
 s

p
e

ed
up

o

ve
r

th
e

N
o

-p
re

fe
tc

h
in

g
 s

ys
te

m

Main Memory Bandwidth (in MT/s)

~AMD Threadripper 3990x (Zen 2, 64C/4ch, 2020)

~AMD EPYC Rome 7702P (Zen 2, 64C/8ch, 2019)

~Intel Xeon 6258R
(Cascade Lake, 28C/6ch, 2020)

Pythia

Hermes

Pythia+Hermes

In bandwidth-constrained configurations,
Hermes alone outperforms Pythia
Hermes+Pythia outperforms Pythia

across all bandwidth configurations

Baseline

77

1

1.05

1.1

1.15

1.2

1.25

1.3

Pythia Bingo SPP MLOP SMS

G
eo

m
ea

n
 s

p
e

ed
up

o

ve
r

th
e

N
o

-p
re

fe
tc

h
in

g
 s

ys
te

m

Prefetcher-only Prefetcher + Hermes

Performance with Varying Baseline Prefetcher

5.4% 6.2%

5.1%
7.6%

7.7%
Hermes consistently improves performance

on top of a wide range of baseline prefetchers

78

Overhead of Hermes

4 KB storage overhead

1.5% power overhead*

*On top of an Intel Alder Lake-like performance-core [2] configuration

[2] https://www.anandtech.com/show/16881/a-deep-dive-into-intels-alder-lake-microarchitectures/3

79

A Lot More in the Hermes Paper

• Performance sensitivity to:
- Cache hierarchy access latency
- Hermes request issue latency
- Activation threshold
- ROB size (in extended version at arXiv)
- LLC size (in extended version at arXiv)

• Accuracy, coverage, and performance analysis against HMP and TTP

• Understanding usefulness of each program feature

• Effect on stall cycle reduction

• Performance analysis in eight-core systemhttps://arxiv.org/pdf/2209.00188.pdf

https://arxiv.org/pdf/2209.00188.pdf

80

A New Approach to Latency Reduction

Hermes advocates for off-chip load prediction,
a different form of speculation than

load address prediction employed by prefetchers

Off-chip load prediction can be applied by itself
or combined with load address prediction

to provide performance improvement

81

Hermes: Summary

Hermes employs the first

perceptron-based off-chip load predictor

High coverage
(74%)

High accuracy
(77%)

Low storage
overhead
(4KB/core)

High performance improvement
over best prior baseline

(5.4%)

High performance
per bandwidth

82

Hermes is Open Source

https://github.com/CMU-SAFARI/Hermes

All workload traces

13 prefetchers 9 off-chip predictors

https://github.com/CMU-SAFARI/Hermes

83

Easy To Define Your Own Off-Chip Predictor

• Just extend the OffchipPredBase class

84

Easy To Define Your Own Off-Chip Predictor

• Define your own train() and predict() functions

• Get statistics like accuracy (stat name precision) and
coverage (stat name recall) out of the box

85

Off-Chip Prediction Can Further Enable…

Prioritizing loads that are likely go off-chip
in cache queues and on-chip network routing

Better instruction scheduling
of data-dependent instructions

Other ideas to improve performance and

fairness in multi-core system design...

Learning-Based Off-Chip Load Predictors
◼ Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk Olgun,

Mohammad Sadrosadati, and Onur Mutlu,
"Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load
Prediction"
Proceedings of the 55th International Symposium on Microarchitecture (MICRO), Chicago, IL, USA,
October 2022.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Talk Video (12 minutes)]
[Lecture Video (25 minutes)]
[arXiv version]
[Source Code (Officially Artifact Evaluated with All Badges)]
Officially artifact evaluated as available, reusable and reproducible.
Best paper award at MICRO 2022.

86https://arxiv.org/pdf/2209.00188.pdf

https://arxiv.org/pdf/2209.00188.pdf
https://arxiv.org/pdf/2209.00188.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pdf
https://www.youtube.com/watch?v=afGc1pWr-_Y
https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s
https://arxiv.org/abs/2209.00188
https://github.com/CMU-SAFARI/Hermes
https://arxiv.org/pdf/2209.00188.pdf

Hermes Talk Video

https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s

https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s

Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran,

David Novo, Ataberk Olgun, Mohammad Sadrosadati, Onur Mutlu

Accelerating Long-Latency Load Requests
via Perceptron-Based Off-Chip Load Prediction

https://github.com/CMU-SAFARI/Hermes

https://github.com/CMU-SAFARI/Hermes

Reinforcement Learning Based

DRAM Controllers

89

DRAM Controller: Functions

■ Ensure correct operation of DRAM (refresh and timing)

■ Service DRAM requests while obeying timing constraints of
DRAM chips

❑ Constraints: resource conflicts (bank, bus, channel), minimum

write-to-read delays

❑ Translate requests to DRAM command sequences

■ Buffer and schedule requests for high performance + QoS

❑ Reordering, row-buffer, bank, rank, bus management

■ Manage power consumption and thermals in DRAM

❑ Turn on/off DRAM chips, manage power modes

90

Why Are DRAM Controllers Difficult to Design?

■ Need to obey DRAM timing constraints for correctness
❑ There are many (50+) timing constraints in DRAM

❑ tWTR: Minimum number of cycles to wait before issuing a read
command after a write command is issued

❑ tRC: Minimum number of cycles between the issuing of two
consecutive activate commands to the same bank

❑ …

■ Need to keep track of many resources to prevent conflicts

❑ Channels, banks, ranks, data bus, address bus, row buffers

■ Need to handle DRAM refresh

■ Need to manage power consumption

■ Need to optimize performance & QoS (in the presence of constraints)

❑ Reordering is not simple

❑ Fairness and QoS needs complicates the scheduling problem

91

Many DRAM Timing Constraints

■ From Lee et al., “DRAM-Aware Last-Level Cache Writeback: Reducing
Write-Caused Interference in Memory Systems,” HPS Technical Report,
April 2010.

92

More on DRAM Operation

■ Kim et al., “A Case for Exploiting Subarray-Level Parallelism
(SALP) in DRAM,” ISCA 2012.

■ Lee et al., “Tiered-Latency DRAM: A Low Latency and Low

Cost DRAM Architecture,” HPCA 2013.

93

DRAM Scheduling Policies (I)

■ FCFS (first come first served)

❑ Oldest request first

■ FR-FCFS (first ready, first come first served)

1. Row-hit first

2. Oldest first

Goal: Maximize row buffer hit rate → maximize DRAM throughput

DRAM Scheduling Policies (II)

■ A scheduling policy is a request prioritization order

■ Prioritization can be based on

❑ Request age

❑ Row buffer hit/miss status

❑ Request type (prefetch, read, write)

❑ Requestor type (load miss or store miss)

❑ Request criticality

■ Oldest miss in the core?

■ How many instructions in core are dependent on it?

■ Will it stall the processor?

❑ Interference caused to other cores

❑ …

95

Memory Performance Attacks [USENIX SEC’07]

◼ Thomas Moscibroda and Onur Mutlu,
"Memory Performance Attacks: Denial of Memory Service

in Multi-Core Systems"
Proceedings of the 16th USENIX Security Symposium (USENIX
SECURITY), pages 257-274, Boston, MA, August 2007. Slides
(ppt)

http://users.ece.cmu.edu/~omutlu/pub/mph_usenix_security07.pdf
http://users.ece.cmu.edu/~omutlu/pub/mph_usenix_security07.pdf
http://www.usenix.org/events/sec07/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_usenix-security07_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/mutlu_usenix-security07_talk.ppt

STFM [MICRO’07]

◼ Onur Mutlu and Thomas Moscibroda,
"Stall-Time Fair Memory Access Scheduling for Chip

Multiprocessors"
Proceedings of the 40th International Symposium on
Microarchitecture (MICRO), pages 146-158, Chicago, IL,
December 2007. [Summary] [Slides (ppt)]

http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.microarch.org/micro40/
http://www.microarch.org/micro40/
http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/mutlu_micro07_talk.ppt

PAR-BS [ISCA’08]

◼ Onur Mutlu and Thomas Moscibroda,
"Parallelism-Aware Batch Scheduling: Enhancing both

Performance and Fairness of Shared DRAM Systems"
Proceedings of the 35th International Symposium on Computer
Architecture (ISCA), pages 63-74, Beijing, China, June 2008.
[Summary] [Slides (ppt)]

http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca08_talk.ppt

On PAR-BS

◼ Variants implemented in Samsung SoC memory controllers

Review from ISCA 2008

ATLAS Memory Scheduler [HPCA’10]

◼ Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter,
"ATLAS: A Scalable and High-Performance Scheduling

Algorithm for Multiple Memory Controllers"
Proceedings of the 16th International Symposium on High-
Performance Computer Architecture (HPCA), Bangalore, India,
January 2010. Slides (pptx)

http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://www.cse.psu.edu/hpcl/hpca16.html
http://www.cse.psu.edu/hpcl/hpca16.html
http://users.ece.cmu.edu/~omutlu/pub/kim_hpca10_talk.pptx

Thread Cluster Memory Scheduling [MICRO’10]

◼ Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-
Balter,

"Thread Cluster Memory Scheduling: Exploiting
Differences in Memory Access Behavior"
Proceedings of the 43rd International Symposium on
Microarchitecture (MICRO), pages 65-76, Atlanta, GA,
December 2010. Slides (pptx) (pdf)

http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://www.microarch.org/micro43/
http://www.microarch.org/micro43/
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pdf

BLISS [ICCD’14, TPDS’16]

◼ Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha
Rastogi, and Onur Mutlu,

"The Blacklisting Memory Scheduler: Achieving High
Performance and Fairness at Low Cost"
Proceedings of the 32nd IEEE International Conference on
Computer Design (ICCD), Seoul, South Korea, October 2014.
[Slides (pptx) (pdf)]

http://users.ece.cmu.edu/~omutlu/pub/bliss-memory-scheduler_iccd14.pdf
http://users.ece.cmu.edu/~omutlu/pub/bliss-memory-scheduler_iccd14.pdf
http://www.iccd-conf.com/
http://www.iccd-conf.com/
http://users.ece.cmu.edu/~omutlu/pub/bliss_lavanya_iccd14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/bliss_lavanya_iccd14-talk.pdf

Staged Memory Scheduling: CPU-GPU [ISCA’12]

◼ Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian,
Gabriel Loh, and Onur Mutlu,

"Staged Memory Scheduling: Achieving High
Performance and Scalability in Heterogeneous Systems"
Proceedings of the 39th International Symposium on Computer
Architecture (ISCA), Portland, OR, June 2012. Slides (pptx)

http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://isca2012.ittc.ku.edu/
http://isca2012.ittc.ku.edu/
http://users.ece.cmu.edu/~omutlu/pub/rachata_isca12_talk.pptx

DASH: Heterogeneous Systems [TACO’16]

◼ Hiroyuki Usui, Lavanya Subramanian, Kevin Kai-Wei Chang, and
Onur Mutlu,
"DASH: Deadline-Aware High-Performance Memory
Scheduler for Heterogeneous Systems with Hardware
Accelerators"

ACM Transactions on Architecture and Code Optimization (TACO),
Vol. 12, January 2016.
Presented at the 11th HiPEAC Conference, Prague, Czech Republic,

January 2016.
[Slides (pptx) (pdf)]
[Source Code]

https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_taco16.pdf
https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_taco16.pdf
https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_taco16.pdf
http://taco.acm.org/
https://www.hipeac.net/2016/prague/
https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_usui_hipeac16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_usui_hipeac16-talk.pdf
https://github.com/CMU-SAFARI/HWASim

MISE: Predictable Performance [HPCA’13]

◼ Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen,
and Onur Mutlu,

"MISE: Providing Performance Predictability and
Improving Fairness in Shared Main Memory Systems"
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China,
February 2013. Slides (pptx)

http://users.ece.cmu.edu/~omutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_hpca13_talk.pptx

ASM: Predictable Performance [MICRO’15]

◼ Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and
Onur Mutlu,
"The Application Slowdown Model: Quantifying and Controlling
the Impact of Inter-Application Interference at Shared Caches
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture
(MICRO), Waikiki, Hawaii, USA, December 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster
(pptx) (pdf)]
[Source Code]

https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
http://www.microarch.org/micro48/
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pdf
https://github.com/CMU-SAFARI/ASMSim

The Future

Memory Controllers

are critical to research

They will become

even more important

Memory Control is Getting More Complex

◼ Heterogeneous agents: CPUs, GPUs, and HWAs

◼ Main memory interference between CPUs, GPUs, HWAs

CPU CPU CPU CPU

Shared Cache

GPU

HWA HWA

DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

Many goals, many constraints, many metrics …

Reality and Dream

■ Reality: It is difficult to design a policy that maximizes
performance, QoS, energy-efficiency, …

❑ Too many things to think about

❑ Continuously changing workload and system behavior

■ Dream: Wouldn’t it be nice if the DRAM controller
automatically found a good scheduling policy on its own?

109

Ipek+, “Self Optimizing Memory Controllers: A Reinforcement Learning Approach,” ISCA 2008.

Self-Optimizing DRAM Controllers

■ Problem: DRAM controllers are difficult to design

❑ It is difficult for human designers to design a policy that can adapt
itself very well to different workloads and different system conditions

■ Idea: A memory controller that adapts its scheduling policy to
workload behavior and system conditions using machine learning.

■ Observation: Reinforcement learning maps nicely to memory
control.

■ Design: Memory controller is a reinforcement learning agent

❑ It dynamically and continuously learns and employs the best
scheduling policy to maximize long-term performance.

Self-Optimizing DRAM Controllers

■ Engin Ipek, Onur Mutlu, José F. Martínez, and Rich
Caruana,

"Self Optimizing Memory Controllers: A
Reinforcement Learning Approach"
Proceedings of the 35th International Symposium on
Computer Architecture (ISCA), pages 39-50, Beijing,
China, June 2008.

111

Goal: Learn to choose actions to maximize r0 + γr1 + γ2r2 + … (0 ≤ γ < 1)

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/

Self-Optimizing DRAM Controllers

■ Dynamically adapt the memory scheduling policy via
interaction with the system at runtime

❑ Associate system states and actions (commands) with long term
reward values: each action at a given state leads to a learned reward

❑ Schedule command with highest estimated long-term reward value in
each state

❑ Continuously update reward values for <state, action> pairs based on
feedback from system

112

Self-Optimizing DRAM Controllers

■ Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,
"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.

113

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

States, Actions, Rewards

114

● Reward function

• +1 for scheduling
Read and Write
commands

• 0 at all other
times

Goal is to maximize
long-term
data bus
utilization

● State attributes

• Number of reads,
writes, and load
misses in
transaction queue

• Number of pending
writes and ROB
heads waiting for
referenced row

• Request’s relative
ROB order

● Actions

• Activate

• Write

• Read - load miss

• Read - store miss

• Precharge - pending

• Precharge - preemptive

• NOP

Performance Results

115

Large, robust performance improvements
over many human-designed policies

Self Optimizing DRAM Controllers

+ Continuous learning in the presence of changing environment

+ Reduced designer burden in finding a good scheduling policy.
Designer specifies:

 1) What system variables might be useful

 2) What target to optimize, but not how to optimize it

-- How to specify different objectives? (e.g., fairness, QoS, …)

-- Hardware complexity?

-- Design mindset and flow

116

More on Self-Optimizing DRAM Controllers (I)

■ Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,
"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.

117

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

More on Self-Optimizing DRAM Controllers (II)

■ Janani Mukundan and José F. Martinez
“MORSE: Multi-Objective Reconfigurable Self-Optimizing Memory Scheduler”
Proceedings of the 18th International Symposium on High Performance
Computer Architecture (HPCA), New Orleans, Louisiana, February 2012.

118

https://ieeexplore.ieee.org/abstract/document/6168945
https://www.ece.lsu.edu/hpca-18/
https://www.ece.lsu.edu/hpca-18/

The Future

Memory Controllers

are critical to research

They will become

even more important

Sibyl: Reinforcement Learning based

Data Placement in Hybrid SSDs

120

Self-Optimizing Hybrid SSD Controllers

Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar,
David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu,
"Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage
Systems Using Online Reinforcement Learning"
Proceedings of the 49th International Symposium on Computer
Architecture (ISCA), New York, June 2022.
[Slides (pptx) (pdf)]
[arXiv version]
[Sibyl Source Code]
[Talk Video (16 minutes)]

121https://arxiv.org/pdf/2205.07394.pdf

https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
http://iscaconf.org/isca2022/
http://iscaconf.org/isca2022/
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pdf
https://arxiv.org/pdf/2205.07394.pdf
https://github.com/CMU-SAFARI/Sibyl
https://www.youtube.com/watch?v=5-WedkiB000
https://arxiv.org/pdf/2205.07394.pdf

Sibyl
Adaptive and Extensible Data Placement

in Hybrid Storage Systems
Using Online Reinforcement Learning

Gagandeep Singh, Rakesh Nadig, Jisung Park,
Rahul Bera, Nastaran Hajinazar, David Novo,

Juan Gómez Luna, Sander Stuijk, Henk Corporaal,
Onur Mutlu

122
122

Executive Summary
• Background: A hybrid storage system (HSS) uses multiple different storage devices to

provide high and scalable storage capacity at high performance

• Problem: Two key shortcomings of prior data placement policies:
- Lack of adaptivity to:

• Workload changes

• Changes in device types and configurations

- Lack of extensibility to more devices

• Goal: Design a data placement technique that provides:
- Adaptivity, by continuously learning and adapting to the application and underlying device

characteristics

- Easy extensibility to incorporate a wide range of hybrid storage configurations

• Contribution: Sibyl, the first reinforcement learning-based data placement technique in
hybrid storage systems that:

- Provides adaptivity to changing workload demands and underlying device characteristics

- Can easily extend to any number of storage devices

- Provides ease of design and implementation that requires only a small computation overhead

• Key Results: Evaluate on real systems using a wide range of workloads
- Sibyl improves performance by 21.6% compared to the best previous data placement technique in

dual-HSS configuration

- In a tri-HSS configuration, Sibyl outperforms the state-of-the-art-policy policy by 48.2%

- Sibyl achieves 80% of the performance of an oracle policy with storage overhead of only 124.4 KiB

https://github.com/CMU-SAFARI/Sibyl 123

https://github.com/CMU-SAFARI/Sibyl

Storage Management Layer

Hybrid Storage System Basics

WriteRead

Read Write Read Write

Promotion

Eviction

Hybrid Storage System
Fast Device Slow Device

Address Space (Application/File System View)

124

Hybrid Storage System Basics

WriteRead

Read Write Read Write

Promotion

Eviction

Hybrid Storage System

Performance of a hybrid storage system
highly depends on the

storage management layer’s ability to
manage diverse devices and workloads

125

Key Shortcomings in Prior Techniques

We observe two key shortcomings that significantly
limit the performance benefits of prior techniques

1. Lack of adaptivity to:
a) Workload changes
b) Changes in device types and configuration

2. Lack of extensibility to more devices

126

Lack of Extensibility (1/2)
Rigid techniques that require significant effort to
accommodate more than two devices

Change in storage configuration

Dual-HSS

127

Lack of Extensibility (2/2)
Rigid techniques that require significant effort to
accommodate more than two devices

Change in storage configuration Design a new policy

Tri-HSS

128

Our Goal

A data-placement mechanism
that can provide:

1.Adaptivity, by continuously learning and
adapting to the application and underlying

device characteristics

2.Easy extensibility to incorporate a wide
range of hybrid storage configurations

129

Our Proposal

Sibyl
Formulates data placement in

hybrid storage systems as a
reinforcement learning problem

Sibyl is an oracle that makes accurate prophecies
https://en.wikipedia.org/wiki/Sibyl 130

Basics of Reinforcement Learning (RL)

Agent learns to take an action in a given state

to maximize a numerical reward

131

Formulating Data Placement as RL

Agent

Environment

State (St) Action (At)Reward (Rt+1)

Hybrid Storage
System

Sibyl

Features of the
current request

and system

Request latency
(of last served request)

Select storage device to
place the current page

132

What is State?
• Limited number of state features:

- Reduce the implementation overhead

- RL agent is more sensitive to reward

• 6-dimensional vector of state features

• We quantize the state representation into bins to
reduce storage overhead

133

Hybrid Storage
System

Sibyl

Features of
the current
request and

system

Request latency
(of last served
request)

Select storage
device to place
the current page

What is Reward?
• Defines the objective of Sibyl

• We formulate the reward as a function of the
request latency

• Encapsulates three key aspects:
- Internal state of the device (e.g., read/write latencies, the
latency of garbage collection, queuing delays, …)

- Throughput

- Evictions

• More details in the paper
134

Hybrid Storage
System

Sibyl

Features of
the current
request and

system

Request latency
(of last served
request)

Select storage
device to place
the current page

What is Action?
• At every new page request, the

action is to select a storage device

• Action can be easily extended to any number of
storage devices

• Sibyl evicts a page when the fast device utilization is
100%

• Sibyl promotes a page when there is an update from
the application

135

Hybrid Storage
System

Sibyl

Features of
the current
request and

system

Request latency
(of last served
request)

Select storage
device to place
the current page

Talk Outline

Key Shortcomings of Prior Data Placement Techniques

Formulating Data Placement as Reinforcement Learning

Sibyl: Overview

Evaluation of Sibyl and Key Results

Conclusion

136

RL Decision
Thread

Sibyl Execution

Storage
Request

(from OS)

RL Training
Thread

Periodic Policy
Weight Update

State, Reward,
and Action
Information

Data
Placement
Decision

Asynchronous
Execution

Sibyl

137

Sibyl Design: Overview

Inference
Network

Max

HSS Collect
Experiences

Experience Buffer
(in host DRAM)

Observation
Vector

Storage
Request

(from OS)

State

State

Action

Reward

RL Decision
Thread

Sibyl Policy

Periodic Weights
update 10

Training
Network

RL Training
ThreadBatchTraining

Dataset
Periodic Policy
Weight Update

138

RL Decision Thread

Inference
Network

Max

HSS Collect
Experiences

Experience Buffer
(in host DRAM)

Observation
Vector

Storage
Request

(from OS)

State

State

Action

Reward

RL Decision
Thread

Sibyl Policy

139

RL Decision Thread

Observation
Vector

Storage
Request

(from OS)

State

State

RL Decision
Thread

140

RL Decision Thread

Inference
Network

Max

HSS

State Action

RL Decision
Thread

Sibyl Policy

141

RL Decision Thread

HSS Collect
Experiences

Observation
Vector

Storage
Request

(from OS)

State

Reward

RL Decision
Thread

142

RL Decision Thread

HSS Collect
Experiences

Experience Buffer
(in host DRAM)

Observation
Vector

Storage
Request

(from OS)

State

Reward

RL Decision
Thread

143

RL Training Thread

Periodic Weights
update 10

RL Training
ThreadBatchTraining

Dataset

Experience Buffer
(in host DRAM)

RL Decision
Thread

Periodic Policy
Weight Update

Training
Network

144

Periodic Weight Transfer

Inference
Network

Max

HSS Collect
Experiences

Experience Buffer
(in host DRAM)

Observation
Vector

Storage
Request

(from OS)

State

State

Action

Reward

RL Decision
Thread

Sibyl Policy

Periodic Weights
update 10

Training
Network

Periodic Policy
Weight Update

RL Training
ThreadBatchTraining

Dataset

145

Evaluation Methodology (1/3)
• Real system with various HSS configurations

- Dual-hybrid and tri-hybrid systems

AMD Ryzen7
2700G CPU

Seagate HDD
ST1000DM010

Intel Optane
SSD P4800X

Intel SSD
D3-S4510

ADATA
SU630 SSD

146

Evaluation Methodology (2/3)
Cost-Oriented HSS Configuration

High-end SSD Low-end HDD

Performance-Oriented HSS Configuration

High-end SSD Middle-end SSD 147

Evaluation Methodology (3/3)
• 18 different workloads from:

- MSR Cambridge and Filebench Suites

• Four state-of-the-art data placement baselines:
- CDE [Matsui+, Proc. IEEE’17]

- HPS [Meswani+, HPCA’15]

- Archivist [Ren+, ICCD’19]

- RNN-HSS [Doudali+, HPDC’19]

Heuristic-based

Learning-based

148

Performance Analysis
Cost-Oriented HSS Configuration

Slow-Only CDE HPS Archivist RNN-HSS Sibyl Oracle

High-end SSD Low-end HDD

149

Performance Analysis

Sibyl consistently outperforms all the baselines

for all the workloads

Cost-Oriented HSS Configuration

Slow-Only CDE HPS Archivist RNN-HSS Sibyl Oracle

High-end SSD Low-end HDD

150

Performance Analysis

RNN-HSS Sibyl OracleSlow-Only CDE HPS Archivist

Performance-Oriented HSS Configuration
High-end SSD Mid-end SSD

151

Performance Analysis

RNN-HSS Sibyl OracleSlow-Only CDE HPS Archivist

Performance-Oriented HSS Configuration

Sibyl provides 21.6% performance improvement by
dynamically adapting its data placement policy

High-end SSD Mid-end SSD

152

Performance Analysis

RNN-HSS Sibyl OracleSlow-Only CDE HPS Archivist

Performance-Oriented HSS Configuration
High-end SSD Mid-end SSD

153

Sibyl achieves 80% of the performance
of an oracle policy that has

complete knowledge of future access patterns

Performance on Tri-HSS

Extending Sibyl for more devices:

SibylTri-hybridHeuristicTri-hybrid

High-end SSD Low-end HDDMid-end SSD

Extending Sibyl for more devices:
1. Add a new action
2. Add the remaining capacity of the new device as a

state feature

154

Performance on Tri-HSS

SibylTri-hybridHeuristicTri-hybrid

Extending Sibyl for more devices:
1. Add a new action
2. Add the remaining capacity of the new device as a

state feature

High-end SSD Low-end HDDMid-end SSD

155

Performance on Tri-HSS

SibylTri-hybridHeuristicTri-hybrid

Extending Sibyl for more devices:
1. Add a new action
2. Add the remaining capacity of the new device as a

state feature
Sibyl outperforms the state-of-the-art

data placement policy by
48.2% in a real tri-hybrid system

Sibyl reduces the system architect's burden
by providing ease of extensibility

High-end SSD Low-end HDDMid-end SSD

156

Sibyl’s Overhead
• 124.4 KiB of total storage cost

- Experience buffer, inference and training network

• 40-bit metadata overhead per page for state features

• Inference latency of ~10ns

• Training latency of ~2us

Small inference overhead

Satisfies prediction latency

157

More in the Paper (1/3)
• Throughput (IOPS) evaluation

- Sibyl provides high IOPS compared to baseline policies because it
indirectly captures throughput (size/latency)

• Evaluation on unseen workloads
- Sibyl can effectively adapt its policy to highly dynamic workloads

• Evaluation on mixed workloads
- Sibyl provides equally-high performance benefits as in single

workloads

158

More in the Paper (2/3)
• Evaluation on different features

- Sibyl autonomously decides which features are important to
maximize the performance

• Evaluation with different hyperparameter values

• Sensitivity to fast storage capacity
- Sibyl provides scalability by dynamically adapting its policy to

available storage size

• Explainability analysis of Sibyl's decision making
- Explain Sibyl’s actions for different workload characteristics and

device configurations

159

More in the Paper (3/3)

https://arxiv.org/pdf/2205.07394.pdf

https://github.com/CMU-SAFARI/Sibyl

160

https://arxiv.org/pdf/2205.07394.pdf
https://github.com/CMU-SAFARI/Sibyl

Conclusion
• We introduced Sibyl, the first reinforcement learning-

based data placement technique in hybrid storage
systems that provides
- Adaptivity

- Easily extensibility

- Ease of design and implementation

•We evaluated Sibyl on real systems using many
different workloads

- Sibyl improves performance by 21.6% compared to the best prior
data placement policy in a dual-HSS configuration

- In a tri-HSS configuration, Sibyl outperforms the state-of-the-art-
data placement policy by 48.2%

- Sibyl achieves 80% of the performance of an oracle policy with a
storage overhead of only 124.4 KiB

https://github.com/CMU-SAFARI/Sibyl 161

https://github.com/CMU-SAFARI/Sibyl

Major Directions
• Consider other optimization objectives

- Energy consumption, endurance of storage devices…..
- Design better reward structures

• Optimize data migration in hybrid storage systems
- Explore machine learning (ML) techniques to make

data migration adaptive and extensible
- How do we coordinate multiple ML techniques?

• How do we improve these policies in other
heterogeneous memory systems?

- DRAM + NVM, CPU Caches + DRAM
- Design RL models keeping latency constraints in mind

162

ISCA 2022 Paper, Slides, Videos

◼ Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar,
David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu,
"Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage
Systems Using Online Reinforcement Learning"
Proceedings of the 49th International Symposium on Computer
Architecture (ISCA), New York, June 2022.
[Slides (pptx) (pdf)]
[arXiv version]
[Sibyl Source Code]
[Talk Video (16 minutes)]

163https://arxiv.org/pdf/2205.07394.pdf

https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
http://iscaconf.org/isca2022/
http://iscaconf.org/isca2022/
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pdf
https://arxiv.org/pdf/2205.07394.pdf
https://github.com/CMU-SAFARI/Sibyl
https://www.youtube.com/watch?v=5-WedkiB000
https://arxiv.org/pdf/2205.07394.pdf

SSD Course (Spring 2023)

◼ Spring 2023 Edition:

❑ https://safari.ethz.ch/projects_and_seminars/spring2023/
doku.php?id=modern_ssds

◼ Fall 2022 Edition:

❑ https://safari.ethz.ch/projects_and_seminars/fall2022/do

ku.php?id=modern_ssds

◼ Youtube Livestream (Spring 2023):

❑ https://www.youtube.com/watch?v=4VTwOMmsnJY&list
=PL5Q2soXY2Zi_8qOM5Icpp8hB2SHtm4z57&pp=iAQB

◼ Youtube Livestream (Fall 2022):

❑ https://www.youtube.com/watch?v=hqLrd-
Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4JI5bwhAMpAp13&p
p=iAQB

◼ Project course

❑ Taken by Bachelor’s/Master’s students

❑ SSD Basics and Advanced Topics

❑ Hands-on research exploration

❑ Many research readings

164https://www.youtube.com/onurmutlulectures

https://safari.ethz.ch/projects_and_seminars/spring2023/doku.php?id=modern_ssds
https://safari.ethz.ch/projects_and_seminars/spring2023/doku.php?id=modern_ssds
https://safari.ethz.ch/projects_and_seminars/spring2023/doku.php?id=modern_ssds
https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=modern_ssds
https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=modern_ssds
https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=modern_ssds
https://www.youtube.com/watch?v=4VTwOMmsnJY&list=PL5Q2soXY2Zi_8qOM5Icpp8hB2SHtm4z57&pp=iAQB
https://www.youtube.com/watch?v=4VTwOMmsnJY&list=PL5Q2soXY2Zi_8qOM5Icpp8hB2SHtm4z57&pp=iAQB
https://www.youtube.com/watch?v=4VTwOMmsnJY&list=PL5Q2soXY2Zi_8qOM5Icpp8hB2SHtm4z57&pp=iAQB
https://www.youtube.com/watch?v=_q4rm71DsY4&list=PL5Q2soXY2Zi8vabcse1kL22DEcgMl2RAq
https://www.youtube.com/watch?v=hqLrd-Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4JI5bwhAMpAp13&pp=iAQB
https://www.youtube.com/watch?v=hqLrd-Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4JI5bwhAMpAp13&pp=iAQB
https://www.youtube.com/watch?v=hqLrd-Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4JI5bwhAMpAp13&pp=iAQB
https://www.youtube.com/watch?v=hqLrd-Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4JI5bwhAMpAp13&pp=iAQB
https://www.youtube.com/onurmutlulectures

Comp Arch (Fall 2021)

◼ Fall 2021 Edition:

❑ https://safari.ethz.ch/architecture/fall2021/doku.
php?id=schedule

◼ Fall 2020 Edition:

❑ https://safari.ethz.ch/architecture/fall2020/doku.
php?id=schedule

◼ Youtube Livestream (2021):

❑ https://www.youtube.com/watch?v=4yfkM_5EFg
o&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF

◼ Youtube Livestream (2020):

❑ https://www.youtube.com/watch?v=c3mPdZA-
Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN

◼ Master’s level course

❑ Taken by Bachelor’s/Masters/PhD students

❑ Cutting-edge research topics + fundamentals in
Computer Architecture

❑ 5 Simulator-based Lab Assignments

❑ Potential research exploration

❑ Many research readings

165https://www.youtube.com/onurmutlulectures

https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2020/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2020/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2020/doku.php?id=schedule
https://www.youtube.com/watch?v=4yfkM_5EFgo&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF
https://www.youtube.com/watch?v=4yfkM_5EFgo&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF
https://www.youtube.com/watch?v=4yfkM_5EFgo&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF
https://www.youtube.com/watch?v=c3mPdZA-Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN
https://www.youtube.com/watch?v=c3mPdZA-Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN
https://www.youtube.com/watch?v=c3mPdZA-Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN
https://www.youtube.com/onurmutlulectures

Two Major Directions

1. Memory system design for AI/ML workloads/accelerators

2. AI/ML techniques for improving memory system designs

166

Goal: Processing Inside Memory/Storage

◼ Many questions … How do we design the:

❑ compute-capable memory & controllers?

❑ processors & communication units?

❑ software & hardware interfaces?

❑ system software, compilers, languages?

❑ algorithms & theoretical foundations?

Cache

Processor
Core

Interconnect

Memory/Storage
Database

Graphs

Media
Query

Results

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons

Why In-Memory Computation Today?

◼ Huge demand from Applications & Systems

❑ Data access bottleneck

❑ Energy & power bottlenecks

❑ Data movement energy dominates computation energy

❑ Need all at the same time: performance, energy, sustainability

❑ We can improve all metrics by minimizing data movement

◼ Huge problems with Memory Technology

❑ Memory technology scaling is not going well (e.g., RowHammer)

❑ Scaling issues demand intelligence in memory + new technology

◼ Designs are squeezed in the middle

168

169

Processing-in-Memory:
Nature of Computation

Processing-Near-Bank

DRAM Bank
DRAM

(e.g., 3D-Stacked Memory)

Vault
Controller

PHY
Processing-
Near-Vault

DRAM Vault

Two main approaches for Processing-in-Memory:

1 Processing-Near-Memory: Design compute logic and memory separately (as
today) and integrate logic closer to memory

2 Processing-Using-Memory: Use analog operational principles of
memory circuitry to perform computation (no compute logic)

Processing-
Using-DRAM

…

…

A PIM Taxonomy

◼ Nature (of computation)

❑ Using: Use operational properties of memory structures

❑ Near: Add logic close to memory structures

◼ Technology

❑ Flash, DRAM, SRAM, RRAM, MRAM, FeRAM, PCM, 3D, …

◼ Location

❑ Sensor, Cold Storage, Hard Disk, SSD, Main Memory, Cache,
Register File, Memory Controller, Interconnect, …

◼ A tuple of the three determines “PIM type”

◼ One can combine multiple “PIM types” in a system
170

Mindset: Memory as an Accelerator

CPU
core

CPU
core

CPU
core

CPU
core

mini-CPU
core

video
core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

LLC

Memory Controller
Specialized

compute-capability
in memory

Memoryimaging
core

Memory Bus

Memory similar to a “conventional” accelerator

Accelerating Neural Network Inference

◼ Amirali Boroumand, Saugata Ghose, Berkin Akin, Ravi Narayanaswami, Geraldo
F. Oliveira, Xiaoyu Ma, Eric Shiu, and Onur Mutlu,
"Google Neural Network Models for Edge Devices: Analyzing and
Mitigating Machine Learning Inference Bottlenecks"
Proceedings of the 30th International Conference on Parallel Architectures and
Compilation Techniques (PACT), Virtual, September 2021.
[Slides (pptx) (pdf)]
[Talk Video (14 minutes)]

172

https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21.pdf
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21.pdf
http://pactconf.org/
http://pactconf.org/
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21-talk.pdf
https://www.youtube.com/watch?v=A5gxjDbLRAs&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=178

Google Neural Network Models for Edge Devices:

Analyzing and Mitigating

Machine Learning Inference Bottlenecks

Amirali Boroumand Saugata Ghose Berkin Akin

Ravi Narayanaswami Geraldo F. Oliveira Xiaoyu Ma

Eric Shiu Onur Mutlu

PACT 2021

Executive Summary
Context: We extensively analyze a state-of-the-art edge ML accelerator
(Google Edge TPU) using 24 Google edge models

– Wide range of models (CNNs, LSTMs, Transducers, RCNNs)

Problem: The Edge TPU accelerator suffers from three challenges:

– It operates significantly below its peak throughput

– It operates significantly below its theoretical energy efficiency

– It inefficiently handles memory accesses

Key Insight: These shortcomings arise from the monolithic design of the
Edge TPU accelerator

– The Edge TPU accelerator design does not account for layer heterogeneity

Key Mechanism: A new framework called Mensa

– Mensa consists of heterogeneous accelerators whose dataflow and
hardware are specialized for specific families of layers

Key Results: We design a version of Mensa for Google edge ML models

– Mensa improves performance and energy by 3.0X and 3.1X

– Mensa reduces cost and improves area efficiency

Google Edge Neural Network Models

We analyze inference execution using 24 edge NN models

Face Detection

Speech Recognition
Language Translation

Image Captioning

Google Edge TPU

Diversity Across the Models

Insight 1: there is significant variation in terms of

layer characteristics across the models

1

10

100

1000

10000

100000

0.001 0.01 0.1 1 10 100

F
L

O
P

/B
y
te

Parameter Footprint (MB)

CNN3

CNN4

CNN11

CNN9

CNN13

LSTM1

Layers from

LSTMs and Transducers

Layers from

CNNs and RCNNs

Diversity Within the Models

For example, our analysis of edge CNN models shows:

1

2

Insight 2: even within each model, layers exhibit

significant variation in terms of layer characteristics

0

50

100

150

200

1 11 21 31 41 51

M
A

C
s

(M
)

Layers

CNN5

0

2000

4000

6000

1 11 21 31 41 51 61 71
F

L
O

P
/B

y
te

Layers

CNN13

Variation in FLOP/Byte: up to 244x across layers

Variation in MAC intensity: up to 200x across layers

Mensa High-Level Overview
Edge TPU Accelerator Mensa

Monolithic Accelerator

B
u
ff

e
r

N
o
C

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

Model A Model B Model C Model A Model B Model C

Acc. 1 Acc. 2

Family 2 Family 3

Runtime

Family 1

Acc. 3

CPU 3D-Stacked DRAM

Buffer
Buffer Buffer

NoC
NoCNoC

Heterogeneous Accelerators

Identifying Layer Families

1

10

100

1000

10000

100000

0.001 0.01 0.1 1 10 100

F
L

O
P

/B
y
te

Parameter Footprint

1

10

100

1000

10000

100000

0.01 1 100
F

L
O

P
/B

y
te

MAC (Millions)

CNN3 CNN4 CNN11 CNN9 CNN13

Key observation: the majority of layers group into

a small number of layer families

Family 1

Family 2

Family 3

Family 4

Family 5

Family 1

Family 2

Family 3 Family 4

Family 5

Families 1 & 2: low parameter footprint, high data reuse and MAC intensity

→ compute-centric layers

Families 3, 4 & 5: high parameter footprint, low data reuse and MAC intensity

→ data-centric layers

0

0.25

0.5

0.75

1
B

as
e
lin

e

B
as

e
+

H
B

M
e
n
sa

B
as

e
lin

e

B
as

e
+

H
B

M
e
n
sa

B
as

e
lin

e

B
as

e
+

H
B

M
e
n
sa

B
as

e
lin

e

B
as

e
+

H
B

M
e
n
sa

B
as

e
lin

e

B
as

e
+

H
B

M
e
n
sa

B
as

e
lin

e

B
as

e
+

H
B

M
e
n
sa

B
as

e
lin

e

B
as

e
+

H
B

M
e
n
sa

B
as

e
lin

e

B
as

e
+

H
B

M
e
n
sa

B
as

e
lin

e

B
as

e
+

H
B

M
e
n
sa

B
as

e
lin

e

B
as

e
+

H
B

M
e
n
sa

LSTM1 Transd.1Transd.2 CNN5 CNN9 CNN10 CNN12 RCNN1 RCNN3 Average

N
o
rm

a
li
z
e
d

 E
n

e
rg

y

Total Static PE Param Buffer+NoC
Act Buffer+NoC Off-chip Interconnect DRAM

Mensa: Energy Reduction

Mensa-G reduces energy consumption by 3.0X

compared to the baseline Edge TPU

Mensa: Throughput Improvement

0

2

4

6

8

LSTM1 Trans.1 Trans.2 CNN5 CNN9 CNN10 CNN12 RCNN1 RCNN3 Average

N
o

rm
a
li

z
e

d
 T

h
ro

u
g

h
p

u
t

Base Base+HB Mensa

Mensa-G improves inference throughput by 3.1X

compared to the baseline Edge TPU

Mensa: Highly-Efficient ML Inference

◼ Amirali Boroumand, Saugata Ghose, Berkin Akin, Ravi Narayanaswami, Geraldo
F. Oliveira, Xiaoyu Ma, Eric Shiu, and Onur Mutlu,
"Google Neural Network Models for Edge Devices: Analyzing and
Mitigating Machine Learning Inference Bottlenecks"
Proceedings of the 30th International Conference on Parallel Architectures and
Compilation Techniques (PACT), Virtual, September 2021.
[Slides (pptx) (pdf)]
[Talk Video (14 minutes)]

182

https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21.pdf
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21.pdf
http://pactconf.org/
http://pactconf.org/
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21-talk.pdf
https://www.youtube.com/watch?v=A5gxjDbLRAs&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=178

Accelerating In-Memory Graph Analytics

183

◼ Large graphs are everywhere (circa 2015)

◼ Scalable large-scale graph processing is challenging

36 Million
Wikipedia Pages

1.4 Billion
Facebook Users

300 Million
Twitter Users

30 Billion
Instagram Photos

+42%

0 1 2 3 4

128…

32 Cores

Speedup

Key Bottlenecks in Graph Processing

184

for (v: graph.vertices) {

 for (w: v.successors) {

 w.next_rank += weight * v.rank;

 }

}

weight * v.rank

v

w

&w

1. Frequent random memory accesses

2. Little amount of computation

w.rank

w.next_rank

w.edges

…

Opportunity: 3D-Stacked Logic+Memory

185

Logic

Memory

Other “True 3D” technologies
under development

Tesseract System for Graph Processing

Crossbar Network

…

…

…
…

D
R

A
M

 C
on

tro
ller

NI

In-Order Core

Message Queue

PF Buffer

MTP

LP

Host Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Interconnected set of 3D-stacked memory+logic chips with simple cores

Logic

Memory

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Logic

Memory

Tesseract System for Graph Processing

187

Crossbar Network

…

…

…
…

D
R

A
M

 C
on

tro
ller

NI

In-Order Core

Message Queue

PF Buffer

MTP

LP

Host Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Communications via
Remote Function Calls

Logic

Memory

Tesseract System for Graph Processing

188

Crossbar Network

…

…

…
…

D
R

A
M

 C
on

tro
ller

NI

In-Order Core

Message Queue

PF Buffer

MTP

LP

Host Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Prefetching

Evaluated Systems

HMC-MC

128
In-Order
2GHz

128
In-Order
2GHz

128
In-Order
2GHz

128
In-Order
2GHz

102.4GB/s 640GB/s 640GB/s 8TB/s

HMC-OoO

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

DDR3-OoO Tesseract

32
Tesseract

Cores

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Tesseract Graph Processing Performance

+56% +25%

9.0x

11.6x

13.8x

0

2

4

6

8

10

12

14

16

DDR3-OoO HMC-OoO HMC-MC Tesseract Tesseract-
LP

Tesseract-
LP-MTP

Sp
e

ed
u

p

>13X Performance Improvement

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

On five graph processing algorithms

Tesseract Graph Processing System Energy

0

0.2

0.4

0.6

0.8

1

1.2

HMC-OoO Tesseract with Prefetching

Memory Layers Logic Layers Cores

> 8X Energy Reduction

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

More on Tesseract

◼ Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and
Kiyoung Choi,

"A Scalable Processing-in-Memory Accelerator for Parallel
Graph Processing"
Proceedings of the 42nd International Symposium on Computer
Architecture (ISCA), Portland, OR, June 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]

Top Picks Honorable Mention by IEEE Micro.
Selected to the ISCA-50 25-Year Retrospective Issue
covering 1996-2020 in 2023 (Retrospective (pdf) Full
Issue).

192

https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://www.ece.cmu.edu/calcm/isca2015/
https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-lightning-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Tesseract_50YearsOfISCA-Retrospective_isca23.pdf
https://sites.coecis.cornell.edu/isca50retrospective/
https://sites.coecis.cornell.edu/isca50retrospective/

A Short Retrospective @ 50 Years of ISCA

193
https://arxiv.org/pdf/2306.16093

https://arxiv.org/pdf/2306.16093

Accelerating Graph Pattern Mining
◼ Maciej Besta, Raghavendra Kanakagiri, Grzegorz Kwasniewski, Rachata Ausavarungnirun, Jakub

Beránek, Konstantinos Kanellopoulos, Kacper Janda, Zur Vonarburg-Shmaria, Lukas Gianinazzi,
Ioana Stefan, Juan Gómez-Luna, Marcin Copik, Lukas Kapp-Schwoerer, Salvatore Di Girolamo,
Nils Blach, Marek Konieczny, Onur Mutlu, and Torsten Hoefler,
"SISA: Set-Centric Instruction Set Architecture for Graph Mining on Processing-in-
Memory Systems"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual,
October 2021.
[Slides (pdf)]
[Talk Video (22 minutes)]
[Lightning Talk Video (1.5 minutes)]
[Full arXiv version]

194

https://people.inf.ethz.ch/omutlu/pub/SISA-GraphMining-on-PIM_micro21.pdf
https://people.inf.ethz.ch/omutlu/pub/SISA-GraphMining-on-PIM_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/SISA-GraphMining-on-PIM_micro21-talk.pdf
https://www.youtube.com/watch?v=VL5K1t2qTDU&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=9
https://www.youtube.com/watch?v=6k89Ph2qgRA&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=4
https://arxiv.org/abs/2104.07582

Processing using DRAM

Background Work: RowClone

◼ Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata
Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A.
Kozuch, Phillip B. Gibbons, and Todd C. Mowry,
"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and
Initialization"
Proceedings of the 46th International Symposium on Microarchitecture
(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning Session
Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

196

http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://www.microarch.org/micro46/
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pdf

Background Work: PiDRAM
◼ Ataberk Olgun, Juan Gomez Luna, Konstantinos Kanellopoulos, Behzad Salami,

Hasan Hassan, Oguz Ergin, and Onur Mutlu,
"PiDRAM: A Holistic End-to-end FPGA-based Framework for
Processing-in-DRAM"
ACM Transactions on Architecture and Code Optimization (TACO), March 2023.
[arXiv version]
Presented at the 18th HiPEAC Conference, Toulouse, France, January 2023.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Lecture Video (40 minutes)]
[PiDRAM Source Code]

197

https://people.inf.ethz.ch/omutlu/pub/PiDRAM_taco23.pdf
https://people.inf.ethz.ch/omutlu/pub/PiDRAM_taco23.pdf
http://taco.acm.org/
https://arxiv.org/abs/2111.00082
https://www.hipeac.net/2023/toulouse/
https://people.inf.ethz.ch/omutlu/pub/PiDRAM_hipeac23-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/PiDRAM_hipeac23-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/PiDRAM_comparch22-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/PiDRAM_comparch22-lecture-slides.pdf
https://www.youtube.com/watch?v=JyWxkeQA0W8
https://github.com/CMU-SAFARI/PiDRAM

Background Work: In-DRAM Bulk AND/OR

◼ Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk
Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and

Todd C. Mowry,
"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015.

198

http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://www.computer.org/web/cal

Background Work: Ambit

◼ Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali
Boroumand, Jeremie Kim, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons,
and Todd C. Mowry,
"Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using
Commodity DRAM Technology"
Proceedings of the 50th International Symposium on
Microarchitecture (MICRO), Boston, MA, USA, October 2017.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

199

https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
http://www.microarch.org/micro50/
http://www.microarch.org/micro50/
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-lightning-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-poster.pdf

Background: In-DRAM Bulk Bitwise Execution

◼ Vivek Seshadri and Onur Mutlu,
"In-DRAM Bulk Bitwise Execution Engine"

Invited Book Chapter in Advances in Computers, to appear
in 2020.
[Preliminary arXiv version]

200

https://arxiv.org/pdf/1905.09822.pdf
https://arxiv.org/pdf/1905.09822.pdf

Background: SIMDRAM Framework

◼ Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, Joao Dinis Ferreira, Nika Mansouri
Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose, Juan Gomez-Luna, and Onur Mutlu,
"SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in DRAM"
Proceedings of the 26th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Virtual, March-April 2021.
[2-page Extended Abstract]
[Short Talk Slides (pptx) (pdf)]
[Talk Slides (pptx) (pdf)]
[Short Talk Video (5 mins)]
[Full Talk Video (27 mins)]

201

https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21.pdf
https://asplos-conference.org/
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-extended-abstract.pdf
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-talk.pdf
https://www.youtube.com/watch?v=g0fE1c7w0xk&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=115
https://www.youtube.com/watch?v=bas9U7djW_8&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=116

In-DRAM Lookup-Table Based Execution

João Dinis Ferreira, Gabriel Falcao, Juan Gómez-Luna, Mohammed Alser, Lois Orosa, Mohammad
Sadrosadati, Jeremie S. Kim, Geraldo F. Oliveira, Taha Shahroodi, Anant Nori, and Onur Mutlu,
"pLUTo: Enabling Massively Parallel Computation in DRAM via Lookup Tables"
Proceedings of the 55th International Symposium on Microarchitecture (MICRO), Chicago, IL, USA,
October 2022.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Lecture Video (26 minutes)]
[arXiv version]
[Source Code (Officially Artifact Evaluated with All Badges)]
Officially artifact evaluated as available, reusable and reproducible.

202https://arxiv.org/pdf/2104.07699.pdf

https://arxiv.org/pdf/2104.07699.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/pLUTo_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/pLUTo_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/pLUTo_lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/pLUTo_lecture-slides.pdf
https://youtu.be/JyWxkeQA0W8?t=2495
https://arxiv.org/abs/2104.07699
https://github.com/CMU-SAFARI/pLUTo
https://arxiv.org/pdf/2104.07699.pdf

MIMDRAM: More Flexible Processing using DRAM

◼ Appears at HPCA 2024

203

https://arxiv.org/pdf/2402.19080.pdf

https://arxiv.org/pdf/2402.19080.pdf

204

Key Mechanism: MIMDRAM, a hardware/software co-design PUD system
• Key idea: leverage fine-grained DRAM for PUD operation
• HW: - simple changes to the DRAM array, enabling concurrent PUD operations

 - low-cost interconnects at the DRAM peripherals for data reduction
• SW: - compiler and OS support to generate and map PUD instructions

Goal: Design a flexible PUD system that overcomes the three limitations caused by
DRAM’s large and rigid access granularity

Key Results: MIMDRAM achieves
• 14.3x, 30.6x, and 6.8x the energy efficiency of state-of-the-art PUD systems, a high-end

CPU and GPU, respectively
• Small area cost to a DRAM chip (1.11%) and CPU die (0.6%)

https://github.com/CMU-SAFARI/MIMDRAM

Problem: Processing-Using-DRAM (PUD) suffers from three issues caused by
DRAM’s large and rigid access granularity
• Underutilization due to data parallelism variation in (and across) applications
• Limited computation support due to a lack of interconnects
• Challenging programming model due to a lack of compilers

MIMDRAM: Executive Summary

https://github.com/CMU-SAFARI/MIMDRAM

Real DRAM Chips

Are Already Quite Capable:

FC-DRAM & SiMRA

DRAM Chips Are Already (Quite) Capable!

◼ Appears at HPCA 2024

206

https://arxiv.org/pdf/2402.18736.pdf

https://arxiv.org/pdf/2402.18736.pdf

DRAM Chips Are Already (Quite) Capable!

◼ https://arxiv.org/pdf/2312.02880.pdf

207

https://arxiv.org/pdf/2312.02880.pdf

DRAM Chips Are Already (Quite) Capable!

◼ Appears at DSN 2024

208https://arxiv.org/pdf/2405.06081

https://arxiv.org/pdf/2405.06081

The Capability of COTS DRAM Chips

209

We demonstrate that COTS DRAM chips:

Can simultaneously activate up to
48 rows in two neighboring subarrays1

Can perform NOT operation
with up to 32 output operands2

Can perform up to 16-input
AND, NAND, OR, and NOR operations3

36ns

210

ACT Row A PRE ACT Row B
<3ns <3ns

Activating two rows in quick succession
can simultaneously activate

multiple rows in neighboring subarrays

Finding: SiMRA Across Subarrays

Neighboring
Subarrays

Subarray X

Subarray Y

Row A

Row B

DRAM Bank

Shared Sense Amplifiers

14ns

ACT

ACT

211

Connect rows in neighboring subarrays
through a NOT gate by simultaneously activating rows

Key Idea: NOT Operation

SA

A

src

dst

ACT src ACT dstSA

A

src

dst

SA

A

src

dst

~A

NOT gate

212

Manipulate the bitline voltage to express
a wide variety of functions using

multiple-row activation in neighboring subarrays

Key Idea: NAND, NOR, AND, OR

Multiple Row ACT

V(A,B)

SA

B

X

Y

V(X,Y)

X

SA

B

Y

VREF

VREF

A A

sense amp.
compares

V(A,B) and V(X,Y)

Two-Input AND and NAND Operations

213

Reference
Subarray

(REF)

Compute
Subarray

(COM)

X

Y

ACT PRE ACT
<3ns<3ns

AVG(VDD,VDD/2)

AVG(X,Y)

*Gao et al., "FracDRAM: Fractional Values in Off-the-Shelf DRAM," in MICRO, 2022.

VDD

VDD/2*

Two-Input AND and NAND Operations

VDD=1 & GND = 0

X Y COM

0 0 0
0 1 0

1 0 0

1 1 1

REF

1
1

1

0

214

ACT PRE ACT
<3ns<3ns

3VDD/4

GND

sense amp.
compares

the voltages on
the bitlines

VDD

GND

0 1

Two-Input AND and NAND Operations

VDD=1 & GND = 0

215

ACT PRE ACT
<3ns<3ns

3VDD/4

VDD/2

X Y COM

0
0 1 0

1 0 0

1 1 1

REF

1
1

1

0

sense amp.
compares

the voltages on
the bitlines

VDD

GND

0 1 0 1

0 0 0 1

Two-Input AND and NAND Operations

VDD=1 & GND = 0

216

ACT PRE ACT
<3ns<3ns

3VDD/4

VDD/2

sense amp.
compares

the voltages on
the bitlines

VDD

GND

X Y COM

0
0 1 0

1 0 0

1 1 1

REF

1
1

1

0

1 0 0 1

0 0 0 1

0 1 0 1

Two-Input AND and NAND Operations

VDD=1 & GND = 0

217

ACT PRE ACT
<3ns<3ns

3VDD/4

VDD

X Y COM

0
0 1 0

1 0 0

1 1 1

REF

1
1

1

0

sense amp.
compares

the voltages on
the bitlines

GND

VDD

1 1 1 0

0 1 0 1

1 0 0 1

0 0 0 1

VDD=1 & GND = 0

Two-Input AND and NAND Operations

218

Reference
Subarray

(REF)

Compute
Subarray

(COM)

X

Y

ACT PRE ACT
<3ns<3ns

AVG(VDD,VDD/2)

AVG(X,Y)

*Gao et al., "FracDRAM: Fractional Values in Off-the-Shelf DRAM," in MICRO, 2022.

AND NAND

VDD

VDD/2*
X Y COM REF

1 1 1 0

0 1 0 1

1 0 0 1

0 0 0 1

Many-Input AND, NAND, OR, and NOR Operations

VDD=1 & GND = 0

X Y AND

0 0 0

0 1 0

1 0 0

1 1 1

NAND

1

1

1

0

219

Reference
Subarray

(REF)

Compute
Subarray

(COM)

VDD/2

VDD

X

Y

ACT REF PRE ACT COM
<3ns<3ns

AVG(VDD,VDD/2)

AVG(X,Y)

We can express AND, NAND, OR, and NOR operations
by carefully manipulating the reference voltage

(More details in the paper)

https://arxiv.org/pdf/2402.18736.pdf

DRAM Testing Infrastructure
• Developed from DRAM Bender [Olgun+, TCAD’23]*

• Fine-grained control over DRAM commands, timings,
and temperature

220*Olgun et al., "DRAM Bender: An Extensible and Versatile FPGA-based Infrastructure
to Easily Test State-of-the-art DRAM Chips," TCAD, 2023.

https://arxiv.org/pdf/2211.05838
https://arxiv.org/pdf/2211.05838

• 256 DDR4 chips from two major DRAM manufacturers

• Covers different die revisions and chip densities

DRAM Chips Tested

221

Performing AND, NAND, OR, and NOR

COTS DRAM chips can perform
{2, 4, 8, 16}-input AND, NAND, OR, and NOR operations

222

Performing AND, NAND, OR, and NOR

COTS DRAM chips can perform
16-input AND, NAND, OR, and NOR operations

with very high success rate (>94%)

223

Impact of Data Pattern

224

1.98% variation in average success rate
across all number of input operands

Impact of Data Pattern

225

Impact of data pattern is consistent
across all tested operations

Impact of Data Pattern

Data pattern slightly affects
the reliability of AND, NAND, OR, and NOR operations

226

https://arxiv.org/pdf/2402.18736.pdf

227

Available on arXiv

• We experimentally demonstrate that commercial off-the-shelf (COTS)
DRAM chips can perform:

– Functionally-complete Boolean operations: NOT, NAND, and NOR

– Up to 16-input AND, NAND, OR, and NOR operations

• We characterize the success rate of these operations on
256 COTS DDR4 chips from two major manufacturers

• We highlight two key results:

– We can perform NOT and
{2, 4, 8, 16}-input AND, NAND, OR, and NOR operations
on COTS DRAM chips with very high success rates (>94%)

– Data pattern and temperature only slightly affect
the reliability of these operations

228

Summary

We believe these empirical results demonstrate
the promising potential of using DRAM as a computation substrate

Simultaneous Many-Row Activation
in Off-the-Shelf DRAM Chips

Experimental Characterization and Analysis

Juan Gómez–Luna Mohammad Sadr Onur Mutlu

İsmail Emir Yüksel

Yahya C. Tuğrul F. Nisa Bostancı Geraldo F. Oliveira

A. Giray Yağlıkçı Ataberk Olgun Melina Soysal Haocong Luo

230

In-DRAM Multiple Row Copy (Multi-RowCopy)

d s t

r cs

Simultaneously activate many rows to
copy one row’s content to multiple destination rows

d s t
s r c

RowClone

s r c

r cs

s r c

d s t
d s t

d s t

Multi-RowCopy

s r c
s r c

s r c

[Seshadri+ MICRO’13]

231

Key Takeaways from Multi-RowCopy

COTS DRAM chips are capable of copying one row’s data
to 1, 3, 7, 15, and 31 other rows at very high success rates

Key Takeaway 1

Multi-RowCopy in COTS DRAM chips is highly resilient to changes in
data pattern, temperature, and wordline voltage

Key Takeaway 2

232

Robustness of Multi-RowCopy

COTS DRAM chips can copy one row’s content
to up to 31 rows with a very high success rate

Average: >99.98%

233

Impact of Data Pattern

Data pattern has a small effect
on the success rate of the Multi-RowCopy operation

At most 0.79% decrease in
average success rate

234

Also in the Paper: Impact of Temperature & Voltage

Increasing temperature up to 90◦C
has a very small effect on

the success rate of the Multi-RowCopy operation

Reducing the wordline voltage
only slightly affects

the success rate of the Multi-RowCopy operation

Temperature

50 ◦C 90 ◦C

Wordline Voltage

2.5V 2.1V

235

Available on arXiv

https://arxiv.org/pdf/2405.06081

236

Our Work is Open Source and Artifact Evaluated

https://github.com/CMU-SAFARI/SiMRA-DRAM

PIM Review and Open Problems

237

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"A Modern Primer on Processing in Memory"
Invited Book Chapter in Emerging Computing: From Devices to Systems -
Looking Beyond Moore and Von Neumann, Springer, to be published in 2021.

https://arxiv.org/pdf/2012.03112.pdf

https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21-extended.pdf
https://people.inf.ethz.ch/omutlu/projects.htm
https://people.inf.ethz.ch/omutlu/projects.htm
https://arxiv.org/pdf/2012.03112.pdf

PIM Review and Open Problems (II)

238

Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu,

"Processing-in-Memory: A Workload-Driven Perspective"

Invited Article in IBM Journal of Research & Development, Special Issue on
Hardware for Artificial Intelligence, to appear in November 2019.

[Preliminary arXiv version]

https://arxiv.org/pdf/1907.12947.pdf

https://arxiv.org/pdf/1907.12947.pdf
https://www.research.ibm.com/journal/
https://arxiv.org/pdf/1907.12947.pdf
https://arxiv.org/pdf/1907.12947.pdf

Processing in Memory:

 Adoption Challenges

1. Processing using Memory

2. Processing near Memory

239

Eliminating the Adoption Barriers

How to Enable Adoption
of Processing in Memory

240

Potential Barriers to Adoption of PIM

1. Applications & software for PIM

2. Ease of programming (interfaces and compiler/HW support)

3. System and security support: coherence, synchronization,

virtual memory, isolation, communication interfaces, …

4. Runtime and compilation systems for adaptive scheduling,
data mapping, access/sharing control, …

5. Infrastructures to assess benefits and feasibility

241

All can be solved with change of mindset

We Need to Revisit the Entire Stack

◼ With a memory-centric mindset

242

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons

We can get there step by step

Processing-in-Memory Landscape Today

243

[UPMEM 2019][Samsung 2021][SK Hynix 2022]

[Samsung 2021]

And, many other experimental chips and startups

[Alibaba 2022]

Adoption: How to Keep It Simple?

◼ Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,
"PIM-Enabled Instructions: A Low-Overhead,

Locality-Aware Processing-in-Memory Architecture"
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.

[Slides (pdf)] [Lightning Session Slides (pdf)]

http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-lightning-talk.pdf

Adoption: How to Keep It Simple?

◼ Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,
"PIM-Enabled Instructions: A Low-Overhead,

Locality-Aware Processing-in-Memory Architecture"
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.

[Slides (pdf)] [Lightning Session Slides (pdf)]

http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-lightning-talk.pdf

Adoption: How to Ease Programmability? (I)

◼ Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems"
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

246

https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf

Truly Distributed GPU Processing with PIM

Logic layer

SM

Crossbar switch

Vault

Ctrl

…. Vault

Ctrl

Logic layer

Main GPU

3D-stacked memory

(memory stack) SM (Streaming Multiprocessor)

Adoption: How to Ease Programmability? (II)

◼ Geraldo F. Oliveira, Alain Kohli, David Novo,
Juan Gómez-Luna, Onur Mutlu,

“DaPPA: A Data-Parallel Framework for Processing-
in-Memory Architectures,”
in PACT SRC Student Competition, Vienna, Austria, October

2023.

https://arxiv.org/pdf/2310.10168.pdf
https://arxiv.org/pdf/2310.10168.pdf

Adoption: How to Ease Programmability? (III)

◼ Jinfan Chen, Juan Gómez-Luna, Izzat El Hajj, YuXin Guo,
and Onur Mutlu,

"SimplePIM: A Software Framework for Productive
and Efficient Processing in Memory"
Proceedings of the 32nd International Conference on
Parallel Architectures and Compilation Techniques (PACT),
Vienna, Austria, October 2023.

https://people.inf.ethz.ch/omutlu/pub/SimplePIM_pact23.pdf
https://people.inf.ethz.ch/omutlu/pub/SimplePIM_pact23.pdf
http://pactconf.org/
http://pactconf.org/

Adoption: How to Ease Programmability? (IV)

◼ Geraldo F. Oliveira, Juan Gomez-Luna, Lois Orosa, Saugata Ghose, Nandita
Vijaykumar, Ivan fernandez, Mohammad Sadrosadati, and Onur Mutlu,

"DAMOV: A New Methodology and Benchmark Suite for Evaluating Data
Movement Bottlenecks"
IEEE Access, 8 September 2021.

Preprint in arXiv, 8 May 2021.
[arXiv preprint]

[IEEE Access version]
[DAMOV Suite and Simulator Source Code]
[SAFARI Live Seminar Video (2 hrs 40 mins)]

[Short Talk Video (21 minutes)]

250

https://people.inf.ethz.ch/omutlu/pub/DAMOV-Bottleneck-Analysis-and-DataMovement-Benchmarks_arxiv21.pdf
https://people.inf.ethz.ch/omutlu/pub/DAMOV-Bottleneck-Analysis-and-DataMovement-Benchmarks_arxiv21.pdf
https://doi.org/10.1109/ACCESS.2021.3110993
https://arxiv.org/abs/2105.03725
https://arxiv.org/pdf/2105.03725.pdf
https://doi.org/10.1109/ACCESS.2021.3110993
https://github.com/CMU-SAFARI/DAMOV
https://www.youtube.com/watch?v=GWideVyo0nM&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=156
https://www.youtube.com/watch?v=HkMYuYMuZOg&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=161

Adoption: How to Ease Programmability? (V)

◼ Appears in IEEE TETC 2023

251
https://arxiv.org/pdf/2212.06292

https://arxiv.org/pdf/2212.06292

Adoption: How to Maintain Coherence? (I)

◼ Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,

Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism
for Processing-in-Memory"

IEEE Computer Architecture Letters (CAL), June 2016.

252

https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
http://www.computer.org/web/cal

Challenge: Coherence for Hybrid CPU-PIM Apps

253

Traditional

coherence

No coherence

overhead

Adoption: How to Maintain Coherence? (II)

◼ Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,

Hongzhong Zheng, and Onur Mutlu,
"CoNDA: Efficient Cache Coherence Support for Near-
Data Accelerators"
Proceedings of the 46th International Symposium on Computer
Architecture (ISCA), Phoenix, AZ, USA, June 2019.

254

https://people.inf.ethz.ch/omutlu/pub/CONDA-coherence-for-near-data-accelerators_isca19.pdf
https://people.inf.ethz.ch/omutlu/pub/CONDA-coherence-for-near-data-accelerators_isca19.pdf
http://iscaconf.org/isca2019/
http://iscaconf.org/isca2019/

Adoption: How to Support Synchronization?

◼ Christina Giannoula, Nandita Vijaykumar, Nikela Papadopoulou, Vasileios Karakostas, Ivan

Fernandez, Juan Gómez-Luna, Lois Orosa, Nectarios Koziris, Georgios Goumas, Onur Mutlu,
"SynCron: Efficient Synchronization Support for Near-Data-Processing

Architectures"

Proceedings of the 27th International Symposium on High-Performance Computer
Architecture (HPCA), Virtual, February-March 2021.

[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]

[Talk Video (21 minutes)]

[Short Talk Video (7 minutes)]

255

https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21.pdf
https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21.pdf
https://www.hpca-conf.org/2021/
https://www.hpca-conf.org/2021/
https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21-short-talk.pdf
https://www.youtube.com/watch?v=2DNDjQjNDTw
https://www.youtube.com/watch?v=kGiN-YjeUUA

Adoption: How to Support Virtual Memory?

◼ Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation"
Proceedings of the 34th IEEE International Conference on Computer
Design (ICCD), Phoenix, AZ, USA, October 2016.

256

https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
http://www.iccd-conf.com/
http://www.iccd-conf.com/

Adoption: Evaluation Infrastructures

◼ Haocong Luo, Yahya Can Tugrul, F. Nisa Bostanci, Ataberk Olgun, A. Giray
Yaglikci, and Onur Mutlu,
"Ramulator 2.0: A Modern, Modular, and Extensible DRAM Simulator"
Preprint on arxiv, August 2023.
[arXiv version]
[Ramulator 2.0 Source Code]

257

https://arxiv.org/pdf/2308.11030.pdf

https://github.com/CMU-SAFARI/ramulator2

https://people.inf.ethz.ch/omutlu/pub/Ramulator2_arxiv23.pdf
https://arxiv.org/abs/2308.11030
https://github.com/CMU-SAFARI/ramulator2
https://arxiv.org/pdf/2308.11030.pdf
https://github.com/CMU-SAFARI/ramulator2

258

Processing-in-Memory:
Challenges

To fully support PIM systems, we need to develop:

1 Workload characterization methodologies and
benchmark suites targeting PIM architectures

2 Frameworks that can facilitate the implementation of
complex operations and algorithms using PIM primitives

3 Compiler support and compiler optimizations
targeting PIM architectures

4 Operating system support for PIM-aware virtual memory, memory
management, data allocation and mapping

5 End-to-End System-on-Chip Design Beyond DRAM

The lack of tools and system support for
PIM architectures limit the adoption of PIM systems

An Example: SimplePIM Framework

◼ Jinfan Chen, Juan Gómez-Luna, Izzat El Hajj, YuXin Guo,
and Onur Mutlu,

"SimplePIM: A Software Framework for Productive
and Efficient Processing in Memory"
Proceedings of the 32nd International Conference on
Parallel Architectures and Compilation Techniques (PACT),
Vienna, Austria, October 2023.

https://people.inf.ethz.ch/omutlu/pub/SimplePIM_pact23.pdf
https://people.inf.ethz.ch/omutlu/pub/SimplePIM_pact23.pdf
http://pactconf.org/
http://pactconf.org/

260

Executive Summary
• Real PIM hardware is now available, e.g., UPMEM PIM

• However, programming real PIM hardware is challenging, e.g., need to:
- Distribute data across PIM memory banks,
- Manage data transfers between host cores and PIM cores, between PIM

cores, and between DRAM bank and PIM scratchpad
- Launch PIM kernels on the PIM cores, etc.
- Synchronize properly between threads

• SimplePIM is a high-level programming framework for real PIM hardware
- Iterators such as map, reduce, and zip
- Collective communication with broadcast, scatter, and gather

• Implementation on UPMEM and evaluation with six different
workloads

- Reduction, vector add, histogram, linear/logistic regression, K-means
- 4.4x fewer lines of code compared to hand-optimized code
- Between 15% and 43% faster than hand-optimized code for three workloads

• Source code: https://github.com/CMU-SAFARI/SimplePIM

https://github.com/CMU-SAFARI/SimplePIM

Concluding Remarks

Challenge and Opportunity for Future

Fundamentally

Energy-Efficient

(Data-Centric)

Computing Architectures
262

Challenge and Opportunity for Future

Fundamentally

High-Performance

(Data-Centric)

Computing Architectures
263

Challenge and Opportunity for Future

Computing Architectures

with

Minimal Data Movement

264

Concluding Remarks
◼ It is time to design principled system architectures to solve the

memory problem

◼ We must design systems to be balanced, high-performance,
and energy-efficient → memory-centric

❑ Enable computation capabilities in memory

◼ This can

❑ Lead to orders-of-magnitude improvements

❑ Enable new applications & computing platforms

❑ Enable better understanding of nature

❑ …

◼ Future of truly memory-centric computing is bright

❑ We need to do research & design across the computing stack
265

Fundamentally Better Architectures

Data-centric

Data-driven

Data-aware

266

We Need to Revisit the Entire Stack

◼ With a memory-centric mindset

267

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons

We can get there step by step

PIM Review and Open Problems

268

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"A Modern Primer on Processing in Memory"
Invited Book Chapter in Emerging Computing: From Devices to Systems -
Looking Beyond Moore and Von Neumann, Springer, to be published in 2021.

https://arxiv.org/pdf/2012.03112.pdf

https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21-extended.pdf
https://people.inf.ethz.ch/omutlu/projects.htm
https://people.inf.ethz.ch/omutlu/projects.htm
https://arxiv.org/pdf/2012.03112.pdf

Referenced Papers, Talks, Artifacts

◼ All are available at

https://people.inf.ethz.ch/omutlu/projects.htm

https://www.youtube.com/onurmutlulectures

https://github.com/CMU-SAFARI/

269

https://people.inf.ethz.ch/omutlu/projects.htm
https://www.youtube.com/onurmutlulectures

Acknowledgments

Think BIG, Aim HIGH!

https://safari.ethz.ch

http://www.safari.ethz.ch/

40+ Researchers

Think BIG, Aim HIGH!
https://safari.ethz.ch

SAFARI Research Group
Computer architecture, HW/SW, systems, bioinformatics, security, memory

https://safari.ethz.ch/safari-newsletter-january-2021/

http://www.safari.ethz.ch/
https://safari.ethz.ch/safari-newsletter-january-2021/

SAFARI Research Group: December 2021

◼ https://safari.ethz.ch/safari-newsletter-december-2021/

272

https://safari.ethz.ch/safari-newsletter-december-2021/

SAFARI Newsletter June 2023 Edition

◼ https://safari.ethz.ch/safari-newsletter-june-2023/

273

https://safari.ethz.ch/safari-newsletter-june-2023/

SAFARI Newsletter July 2024 Edition

◼ https://safari.ethz.ch/safari-newsletter-july-2024/

274

https://safari.ethz.ch/safari-newsletter-july-2024/

Think BIG, Aim HIGH!
https://www.youtube.com/watch?v=mV2OuB2djEs

SAFARI Introduction & Research
Computer architecture, HW/SW, systems, bioinformatics, security, memory

https://www.youtube.com/watch?v=mV2OuB2djEs

Open Source Tools: SAFARI GitHub

276https://github.com/CMU-SAFARI/

https://github.com/CMU-SAFARI/

Onur Mutlu

omutlu@gmail.com

https://people.inf.ethz.ch/omutlu

23 August 2024

Intel ArchFest

ML/AI for Memory System Design &

Memory System Design for AI/ML

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

Backup Slides

279

Processing-in-Memory:
Challenges

To fully support PIM systems, we need to develop:

1 Workload characterization methodologies and
benchmark suites targeting PIM architectures

2 Frameworks that can facilitate the implementation of
complex operations and algorithms using PIM primitives

3 Compiler support and compiler optimizations
targeting PIM architectures

4 Operating system support for PIM-aware virtual memory, memory
management, data allocation and mapping

5 End-to-End System-on-Chip Design Beyond DRAM

The lack of tools and system support for
PIM architectures limit the adoption of PIM systems

Security Issues in Processing in Memory

◼ Does PIM make security better or easier?

◼ Does PIM make security worse?

◼ Many interesting questions here

◼ Topic of a separate talk, but we highlight some papers
◼ Evaluating Homomorphic Operations on a Real-World Processing-In-Memory

System [IISWC 2023]

◼ Amplifying Main Memory-Based Timing Covert and Side Channels using
Processing-in-Memory Operations [arxiv 2024]

280

MIMDRAM

MIMDRAM: More Flexible Processing using DRAM

◼ Appears at HPCA 2024

282

https://arxiv.org/pdf/2402.19080.pdf

https://arxiv.org/pdf/2402.19080.pdf

283

Processing-in-Memory:
Challenges

To fully support PIM systems, we need to develop:

1 Workload characterization methodologies and
benchmark suites targeting PIM architectures

2 Frameworks that can facilitate the implementation of
complex operations and algorithms using PIM primitives

3 Compiler support and compiler optimizations
targeting PIM architectures

4 Operating system support for PIM-aware virtual memory, memory
management, data allocation and mapping

5 End-to-End System-on-Chip Design Beyond DRAM

The lack of tools and system support for
PIM architectures limit the adoption of PIM systems

MIMDRAM
 An End-to-End Processing-Using-DRAM System for

High-Throughput, Energy-Efficient and Programmer-Transparent
Multiple-Instruction Multiple-Data Computing

Geraldo F. Oliveira

Ataberk Olgun A. Giray Yağlıkçı F. Nisa Bostancı

Saugata Ghose Juan Gómez-Luna Onur Mutlu

285

Key Mechanism: MIMDRAM, a hardware/software co-design PUD system
• Key idea: leverage fine-grained DRAM for PUD operation
• HW: - simple changes to the DRAM array, enabling concurrent PUD operations

 - low-cost interconnects at the DRAM peripherals for data reduction
• SW: - compiler and OS support to generate and map PUD instructions

Goal: Design a flexible PUD system that overcomes the three limitations caused by
DRAM’s large and rigid access granularity

Key Results: MIMDRAM achieves
• 14.3x, 30.6x, and 6.8x the energy efficiency of state-of-the-art PUD systems, a high-end

CPU and GPU, respectively
• Small area cost to a DRAM chip (1.11%) and CPU die (0.6%)

https://github.com/CMU-SAFARI/MIMDRAM

Problem: Processing-Using-DRAM (PUD) suffers from three issues caused by
DRAM’s large and rigid access granularity
• Underutilization due to data parallelism variation in (and across) applications
• Limited computation support due to a lack of interconnects
• Challenging programming model due to a lack of compilers

Executive Summary

https://github.com/CMU-SAFARI/MIMDRAM

Recall: Processing using DRAM

◼ We can support

❑ Bulk bitwise AND, OR, NOT, MAJ

❑ Bulk bitwise COPY and INIT/ZERO

❑ True Random Number Generation; Physical Unclonable Functions

❑ Lookup Table based more complex computation

◼ At low cost

◼ Using analog computation capability of DRAM

❑ Idea: activating (multiple) rows performs computation

◼ Even in commodity off-the-shelf DRAM chips!

◼ 30-77X performance and energy improvement
❑ Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity

DRAM Technology,” MICRO 2017.

❑ Seshadri+“RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,”

MICRO 2013.

286

Background Work: RowClone

◼ Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata
Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A.
Kozuch, Phillip B. Gibbons, and Todd C. Mowry,
"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and
Initialization"
Proceedings of the 46th International Symposium on Microarchitecture
(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning Session
Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

287

http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://www.microarch.org/micro46/
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pdf

Background Work: PiDRAM
◼ Ataberk Olgun, Juan Gomez Luna, Konstantinos Kanellopoulos, Behzad Salami,

Hasan Hassan, Oguz Ergin, and Onur Mutlu,
"PiDRAM: A Holistic End-to-end FPGA-based Framework for
Processing-in-DRAM"
ACM Transactions on Architecture and Code Optimization (TACO), March 2023.
[arXiv version]
Presented at the 18th HiPEAC Conference, Toulouse, France, January 2023.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Lecture Video (40 minutes)]
[PiDRAM Source Code]

288

https://people.inf.ethz.ch/omutlu/pub/PiDRAM_taco23.pdf
https://people.inf.ethz.ch/omutlu/pub/PiDRAM_taco23.pdf
http://taco.acm.org/
https://arxiv.org/abs/2111.00082
https://www.hipeac.net/2023/toulouse/
https://people.inf.ethz.ch/omutlu/pub/PiDRAM_hipeac23-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/PiDRAM_hipeac23-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/PiDRAM_comparch22-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/PiDRAM_comparch22-lecture-slides.pdf
https://www.youtube.com/watch?v=JyWxkeQA0W8
https://github.com/CMU-SAFARI/PiDRAM

Background Work: In-DRAM Bulk AND/OR

◼ Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk
Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and

Todd C. Mowry,
"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015.

289

http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://www.computer.org/web/cal

Background Work: Ambit

◼ Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali
Boroumand, Jeremie Kim, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons,
and Todd C. Mowry,
"Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using
Commodity DRAM Technology"
Proceedings of the 50th International Symposium on
Microarchitecture (MICRO), Boston, MA, USA, October 2017.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

290

https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
http://www.microarch.org/micro50/
http://www.microarch.org/micro50/
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-lightning-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-poster.pdf

Background: In-DRAM Bulk Bitwise Execution

◼ Vivek Seshadri and Onur Mutlu,
"In-DRAM Bulk Bitwise Execution Engine"

Invited Book Chapter in Advances in Computers, to appear
in 2020.
[Preliminary arXiv version]

291

https://arxiv.org/pdf/1905.09822.pdf
https://arxiv.org/pdf/1905.09822.pdf

Recall: SIMDRAM Framework

◼ Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, Joao Dinis Ferreira, Nika Mansouri
Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose, Juan Gomez-Luna, and Onur Mutlu,
"SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in DRAM"
Proceedings of the 26th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Virtual, March-April 2021.
[2-page Extended Abstract]
[Short Talk Slides (pptx) (pdf)]
[Talk Slides (pptx) (pdf)]
[Short Talk Video (5 mins)]
[Full Talk Video (27 mins)]

292

https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21.pdf
https://asplos-conference.org/
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-extended-abstract.pdf
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-talk.pdf
https://www.youtube.com/watch?v=g0fE1c7w0xk&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=115
https://www.youtube.com/watch?v=bas9U7djW_8&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=116

293

← src3

← src2

← src1

ro
w

 d
ec

od
er

IO interface

64 bits

8 bits

global sense amplifier

Background:
In-DRAM Copy/Init, Majority & NOT Operations

Introduction & Background Limitations of PUD MIMDRAM Hardware Overview Software Support Evaluation Conclusion
●

Seshadri, Vivek, et al. " Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology," in MICRO, 2017

In-DRAM majority is performed by
simultaneously activating three DRAM rows

← src3

← src2

← src1

294

ro
w

 d
ec

od
er

IO interface

64 bits

8 bits

global sense amplifier

Background:
In-DRAM Majority Operations

Seshadri, Vivek, et al. "Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology," in MICRO, 2017

Processing-Using-DRAM architectures (e.g., SIMDRAM) are
very-wide (e.g., 65,536 wide) bit-serial SIMD engines

Introduction & Background Limitations of PUD MIMDRAM Hardware Overview Software Support Evaluation Conclusion
●

Oliveira, Geraldo F., et al. " SIMDRAM: An End-to-End Framework for
Bit-Serial SIMD Computing in DRAM," in ASPLOS, 2021

295

Limitations of PUD Systems:
Overview

PUD systems suffer from three sources of inefficiency
due to the large and rigid DRAM access granularity

1 SIMD Underutilization
- due to data parallelism variation within and across applications
- leads to throughput and energy waste

2 Limited Computation Support
- due to a lack of low-cost interconnects across columns
- limits PUD operations to only parallel map constructs

3 Challenging Programming Model
- due to a lack of compiler support for PUD systems
- creates a burden on programmers, limiting PUD adoption

Introduction & Background Limitations of PUD MIMDRAM Hardware Overview Software Support Evaluation Conclusion
●

296

Limitations of PUD Systems:
Challenging Programming Model

Map & align
data structures

Just write
my kernel

Programmer’s Tasks: Goal:

Introduction & Background Limitations of PUD MIMDRAM Hardware Overview Software Support Evaluation Conclusion
●

for (int i = 0; i < size ; ++ i){
bool cond = A[i] > pred[i];
if (cond) C[i] = A[i] + B[i];
else C[i] = A[i] - B[i];

}

High-level code for
C[i] = (A[i] > pred[i])? A[i] + B[i] : A[i] – B[i]

297

Limitations of PUD Systems:
Challenging Programming Model

Map & align
data structures

Identify
array boundaries

Just write
my kernel

Programmer’s Tasks: Goal:

Introduction & Background Limitations of PUD MIMDRAM Hardware Overview Software Support Evaluation Conclusion
●

for (int i = 0; i < size ; ++ i){
bool cond = A[i] > pred[i];
if (cond) C[i] = A[i] + B[i];
else C[i] = A[i] - B[i];

}

High-level code for
C[i] = (A[i] > pred[i])? A[i] + B[i] : A[i] – B[i]

298

Limitations of PUD Systems:
Challenging Programming Model

Map & align
data structures

Identify
array boundaries

Manually
unroll loop

Map C to
PUD instructions

Just write
my kernel

Programmer’s Tasks: Goal:

Introduction & Background Limitations of PUD MIMDRAM Hardware Overview Software Support Evaluation Conclusion
●

for (int i = 0; i < size ; ++ i){
bool cond = A[i] > pred[i];
if (cond) C[i] = A[i] + B[i];
else C[i] = A[i] - B[i];

}

High-level code for
C[i] = (A[i] > pred[i])? A[i] + B[i] : A[i] – B[i]

299

Limitations of PUD Systems:
Challenging Programming Model

Map & align
data structures

Identify
array boundaries

Manually
unroll loop

Map C to
PUD instructions

Orchestrate
data movement

Just write
my kernel

Programmer’s Tasks: Goal:

Introduction & Background Limitations of PUD MIMDRAM Hardware Overview Software Support Evaluation Conclusion
●

for (int i = 0; i < size ; ++ i){
bool cond = A[i] > pred[i];
if (cond) C[i] = A[i] + B[i];
else C[i] = A[i] - B[i];

}

High-level code for
C[i] = (A[i] > pred[i])? A[i] + B[i] : A[i] – B[i]

300

Limitations of PUD Systems:
Challenging Programming Model

bbop_trsp_init(A , size , elm_size);

bbop_trsp_init(B , size , elm_size);
bbop_trsp_init(C , size , elm_size);

bbop_add(D , A , B , size , elm_size);
bbop_sub(E , A , B , size , elm_size);
bbop_greater(F , A , pred , size , elm_size);
bbop_if_else(C , D , E , F , size , elm_size);

Map & align
data structures

Identify
array boundaries

Manually
unroll loop

Map C to
PUD instructions

Orchestrate
data movement

Just write
my kernel

Programmer’s Tasks: Goal:

Introduction & Background Limitations of PUD MIMDRAM Hardware Overview Software Support Evaluation Conclusion
●

PUD’s assembly-like code for
C[i] = (A[i] > pred[i])? A[i] + B[i] : A[i] – B[i]

301

Problem & Goal

Processing-Using-DRAM’s large and rigid granularity
limits its applicability and

efficiency for different applicationsPr
ob

le
m

Design a flexible PUD system that
overcomes the three limitations caused by

large and rigid DRAM access granularity

G
o

al

Introduction & Background Limitations of PUD MIMDRAM Hardware Overview Software Support Evaluation Conclusion
●

302

MIMDRAM:
Key Idea (I)

DRAM’s hierarchical organization can enable
fine-grained access

ro
w

 d
ec

od
er

global wordlineDRAM mat

Key Issue:
on a DRAM access, the global wordline propagates across all DRAM mats

Fine-Grained DRAM:
segments the global wordline to access individual DRAM mats

global sense amplifier

303

MIMDRAM:
Key Idea (II)

ro
w

 d
ec

o
d

er
Fine-Grained DRAM:

segments the global wordline to access individual DRAM mats

segmented global wordline

Fine-grained DRAM for energy-efficient DRAM access:
[Cooper-Balis+, 2010]: Fine-Grained Activation for Power Reduction in DRAM

[Udipi+, 2010]: Rethinking DRAM Design and Organization for Energy-Constrained Multi-Cores

[Zhang+, 2014]: Half-DRAM

[Ha+, 2016]: Improving Energy Efficiency of DRAM by Exploiting Half Page Row Access

[O’Connor+, 2017]: Fine-Grained DRAM

[Olgun+, 2024]: Sectored DRAM

global sense amplifier

Sectored DRAM

◼ Ataberk Olgun, F. Nisa Bostanci, Geraldo F. Oliveira, Yahya Can Tugrul,
Rahul Bera, A. Giray Yaglikci, Hasan Hassan, Oguz Ergin, and Onur Mutlu,
"Sectored DRAM: A Practical Energy-Efficient and High-
Performance Fine-Grained DRAM Architecture"
ACM Transactions on Architecture and Code Optimization (TACO),
[online] June 2024.
[arXiv version]
[ACM Digital Library version]

304
https://arxiv.org/pdf/2207.13795

https://arxiv.org/pdf/2207.13795
https://arxiv.org/pdf/2207.13795
http://taco.acm.org/
https://arxiv.org/abs/2207.13795
https://doi.org/10.1145/3673653
https://arxiv.org/pdf/2207.13795

305

MIMDRAM:
Key Idea (III)
ro

w
 d

ec
o

d
er

segmented global wordline

Fine-grained DRAM for processing-using-DRAM:

1 Improves SIMD utilization
- for a single PUD operation, only access the DRAM mats with target data
- for multiple PUD operations, execute independent operations concurrently

global sense amplifier

306

MIMDRAM:
Key Idea (III)
ro

w
 d

ec
o

d
er

segmented global wordline

Fine-grained DRAM for processing-using-DRAM:

1 Improves SIMD utilization
- for a single PUD operation, only access the DRAM mats with target data
- for multiple PUD operations, execute independent operations concurrently

→ multiple instruction, multiple data (MIMD) execution model

global sense amplifier

307

MIMDRAM:
Key Idea (III)

segmented global wordline

Fine-grained DRAM for processing-using-DRAM:

1 Improves SIMD utilization
- for a single PUD operation, only access the DRAM mats with target data
- for multiple PUD operations, execute independent operations concurrently

→ multiple instruction, multiple data (MIMD) execution model

global sense amplifier

2 Enables low-cost interconnects for vector reduction
- global and local data buses can be used for inter-/intra-mat communication

global sense amplifier

ro
w

 d
ec

o
d

er

308

MIMDRAM:
Key Idea (III)
ro

w
 d

ec
o

d
er

segmented global wordline

Fine-grained DRAM for processing-using-DRAM:

1 Improves SIMD utilization
- for a single PUD operation, only access the DRAM mats with target data
- for multiple PUD operations, execute independent operations concurrently

→ multiple instruction, multiple data (MIMD) execution model

global sense amplifier

2 Enables low-cost interconnects for vector reduction
- global and local data buses can be used for inter-/intra-mat communication

3 Eases programmability
- SIMD parallelism in a DRAM mat is on par with vector ISAs’ SIMD width

512 columns

309

Transparently:
extract SIMD parallelism from an application, and

schedule PUD instructions while maximizing utilization

G
o

al

Three new LLVM-based passes targeting PUD execution

MIMDRAM:
Compiler Support (I)

1 3 final binary

code generation

*A=pim_malloc(s,mati)

*D=pim_malloc(s,matj)

bbop_add(C,A,B,mati)

bbop_mul(F,D,E,matj)

bbop_mov(t,F)

bbop_sub(G,C,t,mati)

*t=pim_malloc(s,mati)
…

source code

for(i; i<1024;i++)
{
C[i]=A[i]+B[i];
F[i]=D[i]*E[i];
G[i]=C[i]-F[i];

}

loop auto-vectorization

code identification

%3=add<1024 x i32> %1,%2

%6=mul<1024 x i32> %4,%5

%7=sub<1024 x i32> %3,%6

%1=load<1024 x i32*> %A

store %3,<1024 x i32*> %C

…

…

…

…
for(){} A

mat
i

movi←j

+

B

*

D E

-

G

matj

DDG

code scheduling & data mapping

A

+

B

*

D E

-

G

scheduling 2 4

a

b

c

310

MIMDRAM:
Compiler Support (II)

1 3 final binary

code generation

*A=pim_malloc(s,mati)

*D=pim_malloc(s,matj)

bbop_add(C,A,B,mati)

bbop_mul(F,D,E,matj)

bbop_mov(t,F)

bbop_sub(G,C,t,mati)

*t=pim_malloc(s,mati)
…

source code

for(i; i<1024;i++)
{
C[i]=A[i]+B[i];
F[i]=D[i]*E[i];
G[i]=C[i]-F[i];

}

loop auto-vectorization

code identification

%3=add<1024 x i32> %1,%2

%6=mul<1024 x i32> %4,%5

%7=sub<1024 x i32> %3,%6

%1=load<1024 x i32*> %A

store %3,<1024 x i32*> %C

…

…

…

…
for(){} A

mat
i

movi←j

+

B

*

D E

-

G

matj

DDG

code scheduling & data mapping

A

+

B

*

D E

-

G

scheduling 2 4

a

b

c

Identify SIMD parallelism, generate PUD instructions,
 and set the appropriate vectorization factor G

o
al

311

MIMDRAM:
Compiler Support (II)

1 3 final binary

code generation

*A=pim_malloc(s,mati)

*D=pim_malloc(s,matj)

bbop_add(C,A,B,mati)

bbop_mul(F,D,E,matj)

bbop_mov(t,F)

bbop_sub(G,C,t,mati)

*t=pim_malloc(s,mati)
…

source code

for(i; i<1024;i++)
{
C[i]=A[i]+B[i];
F[i]=D[i]*E[i];
G[i]=C[i]-F[i];

}

loop auto-vectorization

code identification

%3=add<1024 x i32> %1,%2

%6=mul<1024 x i32> %4,%5

%7=sub<1024 x i32> %3,%6

%1=load<1024 x i32*> %A

store %3,<1024 x i32*> %C

…

…

…

…
for(){} A

mat
i

movi←j

+

B

*

D E

-

G

matj

DDG

code scheduling & data mapping

A

+

B

*

D E

-

G

scheduling 2 4

a

b

c

Improve SIMD utilization by allowing the distribution of independent PUD
instructions across DRAM matsG

o
al

Identify SIMD parallelism, generate PUD instructions,
 and set the appropriate vectorization factor G

o
al

312

Generate the appropriate binary for
data allocation and PUD instructions G

o
al

MIMDRAM:
Compiler Support (III)

1 3 final binary

code generation

*A=pim_malloc(s,mati)

*D=pim_malloc(s,matj)

bbop_add(C,A,B,mati)

bbop_mul(F,D,E,matj)

bbop_mov(t,F)

bbop_sub(G,C,t,mati)

*t=pim_malloc(s,mati)
…

source code

for(i; i<1024;i++)
{
C[i]=A[i]+B[i];
F[i]=D[i]*E[i];
G[i]=C[i]-F[i];

}

loop auto-vectorization

code identification

%3=add<1024 x i32> %1,%2

%6=mul<1024 x i32> %4,%5

%7=sub<1024 x i32> %3,%6

%1=load<1024 x i32*> %A

store %3,<1024 x i32*> %C

…

…

…

…
for(){} A

mat
i

movi←j

+

B

*

D E

-

G

matj

DDG

code scheduling & data mapping

A

+

B

*

D E

-

G

scheduling 2 4

a

b

c

Improve SIMD utilization by allowing the distribution of independent PUD
instructions across DRAM matsG

o
al

Identify SIMD parallelism, generate PUD instructions,
 and set the appropriate vectorization factor G

o
al

313

• Instruction set architecture

• Execution & data transposition

• Data coherence

• Address translation

• Data allocation & alignment

• Mat label translation

MIMDRAM:
System Support

314

Evaluation:
Methodology Overview

• Evaluation Setup
- CPU: Intel Skylake CPU

- GPU: NVIDIA A100 GPU

- PUD: SIMDRAM [Oliveira+, 2021] and DRISA [Li+, 2017]

- PND: Fulcrum [Lenjani+, 2020]

- https://github.com/CMU-SAFARI/MIMDRAM

• Workloads:
- 12 workloads from Polybench, Rodinia, Phoenix, and SPEC2017

- 495 multi-programmed application mixes

• Two-Level Analysis
- Single application → leverages intra-application data parallelism
- Multi-programmed workload → leverages inter-application

 data parallelism

https://github.com/CMU-SAFARI/MIMDRAM

315

Evaluation:
Single Application Analysis – Energy Efficiency

MIMDRAM significantly improves
energy efficiency compared to

CPU (30.6x), GPU (6.8x), and SIMDRAM (14.3x) Ta
ke

a
w

ay

0.001

0.01

0.1

1

10

100

1000

10000

C
P

U
-N

o
rm

al
iz

e
d

P
er

fo
rm

an
ce

/W
at

t

GPU SIMDRAM MIMDRAM

316

0

0.5

1

1.5

2

2.5

SIMDRAM:1 SIMDRAM:2 SIMDRAM:4 SIMDRAM:8 MIMDRAM

N
o

rm
al

iz
e

d
 W

e
ig

h
te

d

Sp
ee

d
u

p

(H
ig

h
er

 is
 B

et
te

r)

(bank) (banks) (banks) (banks)

Evaluation:
Multi-Programmed Workload Analysis

MIMDRAM significantly improves
system throughput (1.68x)

compared to SIMDRAMTa
ke

a
w

ay

317

• MIMDRAM with subarray and bank-level parallelism
- MIMDRAM provides significant performance gains compared to the baseline

CPU (13.2x) and GPU (2x)

• Comparison to DRISA and Fulcrum for multi-programmed
workloads

- MIMDRAM achieves system throughput on par with DRISA and Fulcrum

• MIMDRAM’s SIMD utilization versus SIMDRAM
- MIMDRAM provides 15.6x the utilization of SIMDRAM

• Area analysis
- MIMDRAM adds small area cost to a DRAM chip (1.11%) and

CPU die (0.6%)

Evaluation:
More in the Paper

318

MIMDRAM: Summary

We introduced MIMDRAM,
a hardware/software co-designed processing-using-DRAM system

• Key idea: leverage fine-grained DRAM for processing-using-DRAM operation

• HW: - simple changes to DRAM, enabling concurrent instruction execution
 - low-cost interconnects at the DRAM peripherals for data reduction

• SW: - compiler and OS support to generate and map instructions

Our evaluation demonstrates that MIMDRAM

• significantly improves performance, energy efficiency, and throughput compared to
processor-centric (CPU and GPU) and
memory-centric (SIMDRAM, DRISA, and Fulcrum) architectures

• incurs small area cost to a DRAM chip and CPU die

Introduction & Background Limitations of PUD Systems MIMDRAM Overview Evaluation Conclusion
●

https://github.com/CMU-SAFARI/MIMDRAM

https://github.com/CMU-SAFARI/MIMDRAM

Two Other Works

on PIM Programmability

Adoption: How to Ease Programmability? (I)

◼ Geraldo F. Oliveira, Alain Kohli, David Novo,
Juan Gómez-Luna, Onur Mutlu,

“DaPPA: A Data-Parallel Framework for Processing-
in-Memory Architectures,”
in PACT SRC Student Competition, Vienna, Austria, October

2023.

https://arxiv.org/pdf/2310.10168.pdf
https://arxiv.org/pdf/2310.10168.pdf

Adoption: How to Ease Programmability? (II)

◼ Jinfan Chen, Juan Gómez-Luna, Izzat El Hajj, YuXin Guo,
and Onur Mutlu,

"SimplePIM: A Software Framework for Productive
and Efficient Processing in Memory"
Proceedings of the 32nd International Conference on
Parallel Architectures and Compilation Techniques (PACT),
Vienna, Austria, October 2023.

https://people.inf.ethz.ch/omutlu/pub/SimplePIM_pact23.pdf
https://people.inf.ethz.ch/omutlu/pub/SimplePIM_pact23.pdf
http://pactconf.org/
http://pactconf.org/

SimplePIM

Adoption: How to Ease Programmability? (II)

◼ Jinfan Chen, Juan Gómez-Luna, Izzat El Hajj, YuXin Guo,
and Onur Mutlu,

"SimplePIM: A Software Framework for Productive
and Efficient Processing in Memory"
Proceedings of the 32nd International Conference on
Parallel Architectures and Compilation Techniques (PACT),
Vienna, Austria, October 2023.

https://people.inf.ethz.ch/omutlu/pub/SimplePIM_pact23.pdf
https://people.inf.ethz.ch/omutlu/pub/SimplePIM_pact23.pdf
http://pactconf.org/
http://pactconf.org/

Jinfan Chen, Juan Gómez Luna, Izzat El Hajj, Yuxin Guo, Onur Mutlu

SimplePIM:
A Software Framework for Productive

and Efficient Processing-in-Memory

https://arxiv.org/pdf/2310.01893.pdf

https://github.com/CMU-SAFARI/SimplePIM

https://arxiv.org/pdf/2310.01893.pdf
https://github.com/CMU-SAFARI/SimplePIM

325

Executive Summary
• Processing-in-Memory (PIM) promises to alleviate the data movement

bottleneck

• Real PIM hardware is now available, e.g., UPMEM PIM

• However, programming real PIM hardware is challenging, e.g.:
- Distribute data across PIM memory banks,
- Manage data transfers between host cores and PIM cores, and between PIM

cores,
- Launch PIM kernels on the PIM cores, etc.

• SimplePIM is a high-level programming framework for real PIM hardware
- Iterators such as map, reduce, and zip
- Collective communication with broadcast, scatter, and gather

• Implementation on UPMEM and evaluation with six different
workloads

- Reduction, vector add, histogram, linear/logistic regression, K-means
- 4.4x fewer lines of code compared to hand-optimized code
- Between 15% and 43% faster than hand-optimized code for three workloads

• Source code: https://github.com/CMU-SAFARI/SimplePIM

https://github.com/CMU-SAFARI/SimplePIM

Real DRAM Chips

Are Already Quite Capable:

FC-DRAM & SiMRA

DRAM Chips Are Already (Quite) Capable!

◼ Appears at HPCA 2024

327

https://arxiv.org/pdf/2402.18736.pdf

https://arxiv.org/pdf/2402.18736.pdf

DRAM Chips Are Already (Quite) Capable!

◼ https://arxiv.org/pdf/2312.02880.pdf

328

https://arxiv.org/pdf/2312.02880.pdf

DRAM Chips Are Already (Quite) Capable!

◼ Appears at DSN 2024

329https://arxiv.org/pdf/2405.06081

https://arxiv.org/pdf/2405.06081

The Capability of COTS DRAM Chips

330

We demonstrate that COTS DRAM chips:

Can simultaneously activate up to
48 rows in two neighboring subarrays1

Can perform NOT operation
with up to 32 output operands2

Can perform up to 16-input
AND, NAND, OR, and NOR operations3

36ns

331

ACT Row A PRE ACT Row B
<3ns <3ns

Activating two rows in quick succession
can simultaneously activate

multiple rows in neighboring subarrays

Finding: SiMRA Across Subarrays

Neighboring
Subarrays

Subarray X

Subarray Y

Row A

Row B

DRAM Bank

Shared Sense Amplifiers

14ns

ACT

ACT

332

Connect rows in neighboring subarrays
through a NOT gate by simultaneously activating rows

Key Idea: NOT Operation

SA

A

src

dst

ACT src ACT dstSA

A

src

dst

SA

A

src

dst

~A

NOT gate

333

Manipulate the bitline voltage to express
a wide variety of functions using

multiple-row activation in neighboring subarrays

Key Idea: NAND, NOR, AND, OR

Multiple Row ACT

V(A,B)

SA

B

X

Y

V(X,Y)

X

SA

B

Y

VREF

VREF

A A

sense amp.
compares

V(A,B) and V(X,Y)

Two-Input AND and NAND Operations

334

Reference
Subarray

(REF)

Compute
Subarray

(COM)

X

Y

ACT PRE ACT
<3ns<3ns

AVG(VDD,VDD/2)

AVG(X,Y)

*Gao et al., "FracDRAM: Fractional Values in Off-the-Shelf DRAM," in MICRO, 2022.

VDD

VDD/2*

Two-Input AND and NAND Operations

VDD=1 & GND = 0

X Y COM

0 0 0
0 1 0

1 0 0

1 1 1

REF

1
1

1

0

335

ACT PRE ACT
<3ns<3ns

3VDD/4

GND

sense amp.
compares

the voltages on
the bitlines

VDD

GND

0 1

Two-Input AND and NAND Operations

VDD=1 & GND = 0

336

ACT PRE ACT
<3ns<3ns

3VDD/4

VDD/2

X Y COM

0
0 1 0

1 0 0

1 1 1

REF

1
1

1

0

sense amp.
compares

the voltages on
the bitlines

VDD

GND

0 1 0 1

0 0 0 1

Two-Input AND and NAND Operations

VDD=1 & GND = 0

337

ACT PRE ACT
<3ns<3ns

3VDD/4

VDD/2

sense amp.
compares

the voltages on
the bitlines

VDD

GND

X Y COM

0
0 1 0

1 0 0

1 1 1

REF

1
1

1

0

1 0 0 1

0 0 0 1

0 1 0 1

Two-Input AND and NAND Operations

VDD=1 & GND = 0

338

ACT PRE ACT
<3ns<3ns

3VDD/4

VDD

X Y COM

0
0 1 0

1 0 0

1 1 1

REF

1
1

1

0

sense amp.
compares

the voltages on
the bitlines

GND

VDD

1 1 1 0

0 1 0 1

1 0 0 1

0 0 0 1

VDD=1 & GND = 0

Two-Input AND and NAND Operations

339

Reference
Subarray

(REF)

Compute
Subarray

(COM)

X

Y

ACT PRE ACT
<3ns<3ns

AVG(VDD,VDD/2)

AVG(X,Y)

*Gao et al., "FracDRAM: Fractional Values in Off-the-Shelf DRAM," in MICRO, 2022.

AND NAND

VDD

VDD/2*
X Y COM REF

1 1 1 0

0 1 0 1

1 0 0 1

0 0 0 1

Many-Input AND, NAND, OR, and NOR Operations

VDD=1 & GND = 0

X Y AND

0 0 0

0 1 0

1 0 0

1 1 1

NAND

1

1

1

0

340

Reference
Subarray

(REF)

Compute
Subarray

(COM)

VDD/2

VDD

X

Y

ACT REF PRE ACT COM
<3ns<3ns

AVG(VDD,VDD/2)

AVG(X,Y)

We can express AND, NAND, OR, and NOR operations
by carefully manipulating the reference voltage

(More details in the paper)

https://arxiv.org/pdf/2402.18736.pdf

DRAM Testing Infrastructure
• Developed from DRAM Bender [Olgun+, TCAD’23]*

• Fine-grained control over DRAM commands, timings,
and temperature

341*Olgun et al., "DRAM Bender: An Extensible and Versatile FPGA-based Infrastructure
to Easily Test State-of-the-art DRAM Chips," TCAD, 2023.

https://arxiv.org/pdf/2211.05838
https://arxiv.org/pdf/2211.05838

• 256 DDR4 chips from two major DRAM manufacturers

• Covers different die revisions and chip densities

DRAM Chips Tested

342

Performing AND, NAND, OR, and NOR

COTS DRAM chips can perform
{2, 4, 8, 16}-input AND, NAND, OR, and NOR operations

343

Performing AND, NAND, OR, and NOR

COTS DRAM chips can perform
16-input AND, NAND, OR, and NOR operations

with very high success rate (>94%)

344

Impact of Data Pattern

345

1.98% variation in average success rate
across all number of input operands

Impact of Data Pattern

346

Impact of data pattern is consistent
across all tested operations

Impact of Data Pattern

Data pattern slightly affects
the reliability of AND, NAND, OR, and NOR operations

347

• Detailed hypotheses & key ideas to perform

– NOT operation

– Many-input AND, NAND, OR, and NOR operations

• How the reliability of bitwise operations are affected by

– The location of activated rows

– Temperature (for AND, NAND, OR, and NOR)

– DRAM speed rate

– Chip density and die revision

• Discussion on the limitations of COTS DRAM chips

348

More in the Paper

https://arxiv.org/pdf/2402.18736.pdf

349

Available on arXiv

• We experimentally demonstrate that commercial off-the-shelf (COTS)
DRAM chips can perform:

– Functionally-complete Boolean operations: NOT, NAND, and NOR

– Up to 16-input AND, NAND, OR, and NOR operations

• We characterize the success rate of these operations on
256 COTS DDR4 chips from two major manufacturers

• We highlight two key results:

– We can perform NOT and
{2, 4, 8, 16}-input AND, NAND, OR, and NOR operations
on COTS DRAM chips with very high success rates (>94%)

– Data pattern and temperature only slightly affect
the reliability of these operations

350

Summary

We believe these empirical results demonstrate
the promising potential of using DRAM as a computation substrate

Simultaneous Many-Row Activation
in Off-the-Shelf DRAM Chips

Experimental Characterization and Analysis

Juan Gómez–Luna Mohammad Sadr Onur Mutlu

İsmail Emir Yüksel

Yahya C. Tuğrul F. Nisa Bostancı Geraldo F. Oliveira

A. Giray Yağlıkçı Ataberk Olgun Melina Soysal Haocong Luo

352

Experimental Study: 120 DDR4 chips from two major manufacturers
• COTS DRAM chips can perform MAJ5, MAJ7, and MAJ9 operations

and copy one DRAM row to up to 31 different rows at once
• Storing multiple redundant copies of MAJ’s input operands (i.e., input replication)

drastically increases robustness (>30% higher success rate)
• Operating conditions (temperature, voltage, and data pattern)

affect the robustness of in-DRAM operations (by up to 11.52% success rate)

Goal: To experimentally analyze and understand
• The computational capability of COTS DRAM chips beyond that of prior works
• The robustness of such capability under various operating conditions

Executive Summary
Motivation:
• Processing-Using-DRAM (PUD) alleviates data movement bottlenecks
• Commercial off-the-shelf (COTS) DRAM chips can perform

three-input majority (MAJ3) and in-DRAM copy operations

https://github.com/CMU-SAFARI/SiMRA-DRAM

353

Leveraging Simultaneous Many-Row Activation

Perform MAJX (where X>3) operations1

Increase the robustness of MAJX operations2

Copy one row’s content to multiple rows3

354

In-DRAM Multiple Row Copy (Multi-RowCopy)

d s t

r cs

Simultaneously activate many rows to
copy one row’s content to multiple destination rows

d s t
s r c

RowClone

s r c

r cs

s r c

d s t
d s t

d s t

Multi-RowCopy

s r c
s r c

s r c

[Seshadri+ MICRO’13]

355

Key Takeaways from Multi-RowCopy

COTS DRAM chips are capable of copying one row’s data
to 1, 3, 7, 15, and 31 other rows at very high success rates

Key Takeaway 1

Multi-RowCopy in COTS DRAM chips is highly resilient to changes in
data pattern, temperature, and wordline voltage

Key Takeaway 2

356

Robustness of Multi-RowCopy

COTS DRAM chips can copy one row’s content
to up to 31 rows with a very high success rate

Average: >99.98%

357

Impact of Data Pattern

Data pattern has a small effect
on the success rate of the Multi-RowCopy operation

At most 0.79% decrease in
average success rate

358

Also in the Paper: Impact of Temperature & Voltage

Increasing temperature up to 90◦C
has a very small effect on

the success rate of the Multi-RowCopy operation

Reducing the wordline voltage
only slightly affects

the success rate of the Multi-RowCopy operation

Temperature

50 ◦C 90 ◦C

Wordline Voltage

2.5V 2.1V

359

More in the Paper
• Detailed hypotheses and key ideas on
• Hypothetical row decoder circuitry
• Input Replication

• More characterization results
• Power consumption of simultaneous many-row activation
• Effect of timing delays between ACT-PRE and PRE-ACT commands
• Effect of temperature and wordline voltage

• Circuit-level (SPICE) experiments for input replication
• Potential performance benefits of enabling new in-DRAM operations
• Majority-based computation
• Content destruction-based cold-boot attack prevention

• Discussions on the limitations of tested COTS DRAM chips

360

Available on arXiv

https://arxiv.org/pdf/2405.06081

361

Our Work is Open Source and Artifact Evaluated

https://github.com/CMU-SAFARI/SiMRA-DRAM

MegIS: Metagenomics In Storage

Background: GenStore

◼ Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid

Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata
Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu,

"GenStore: A High-Performance and Energy-Efficient In-Storage Computing

System for Genome Sequence Analysis"
Proceedings of the 27th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Virtual, February-March
2022.

[Lightning Talk Slides (pptx) (pdf)]

[Lightning Talk Video (90 seconds)]

363

https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://asplos-conference.org/
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pdf
https://www.youtube.com/watch?v=Vi1af8KY0g8

MegIS

High-Performance, Energy-Efficient, and Low-Cost

Metagenomic Analysis with In-Storage Processing

Nika Mansouri Ghiasi

Mohammed Alser Jisung Park Onur Mutlu

Mohammad Sadrosadati Harun Mustafa Arvid Gollwitzer Can Firtina

Julien Eudine Haiyu Mao Joël Lindegger Meryem Banu Cavlak

365

What is Metagenomics?

• Metagenomics: Study of genome sequences of diverse organisms
 within a shared environment (e.g., blood, ocean, soil)

• Overcomes the limitations of traditional genomics
- Bypasses the need for culturing individual species in isolation

366

What is Metagenomics?

Has led to groundbreaking advances

• Precision medicine

• Understanding microbial diversity of an environment

• Discovering early warnings of communicable diseases

• Metagenomics: Study of genome sequences of diverse organisms
 within a shared environment (e.g., blood, ocean, soil)

367

Metagenomic Analysis

A large database
containing information

on many species

Metagenomic sample
with species that

are not known in advance

Preparation
of Input Queries Q

ue
ry

K

-m
er

s

…

GCTCA

CTCAT

TCATG

Presence/Absence
Identification

Abundance
Estimation

V. cholerae

E. coli

SARS-CoV-2

(e.g., > 100 TBs in emerging databases)

368

Motivation

• Case study of the performance of metagenomic analysis tools

• With various state-of-the-art SSD configurations

N
o

rm
a

li
ze

d
 T

h
ro

u
g

h
p

u
t

Database Size (Terabyte)

I/O data movement causes significant performance overhead

0

0.2

0.4

0.6

0.8

1

0.7 1.4

No I/O Performance-Optimized Cost-Optimized

3.
2x

4.
1x

27
.6

x

39
.2

x

369

Motivation

• Case study on the throughput of metagenomic analysis tools

• With Various state-of-the-art SSD configurations

N
o

rm
a

li
ze

d
 T

h
ro

u
g

h
p

u
t

Database Size (Terabyte)

0

0.2

0.4

0.6

0.8

1

0.7 1.4

I/O data movement causes significant performance overhead

Cost-Optimized Performance-Optimized No I/O

I/O becomes an even larger overhead (by 2.7x)

in systems where other bottlenecks are alleviated

370

I/O Overhead is Hard to Avoid

I/O overhead due to accessing large, low-reuse data is hard to avoid

Sampling techniques to shrink database sizes

Keeping all data required by metagenomic analysis
completely and always resident in main memory

Reduce accuracy to levels unacceptable for many use cases

Energy inefficient, costly, unscalable, and unsustainable

• Database sizes increase rapidly (doubling every few months)

• Different analyses need different databases

371

Our Goal

Improve metagenomic analysis performance

by reducing large data movement overhead

from the storage system

in a cost-effective manner

372

Challenges of In-Storage Processing

Existing metagenomic analysis approaches cannot be implemented as
an in-storage processing system due to SSD hardware limitations

- Long latency of NAND flash chips

- Limited DRAM capacity inside the SSD

- Limited DRAM bandwidth inside the SSD

SSD DRAM

⋯

SSD
ControllerCoresFTL

⋯

S
S

D

CntrlCntrl

Channel#NChannel#1

373

MegIS: Metagenomics In-Storage

• First in-storage system for end-to-end metagenomic analysis

• Idea: Cooperative in-storage processing for metagenomic analysis

- Hardware/software co-design between the storage system and host system

H
o

st
 S

y
st

e
m

SSD DRAM

Standard
Metadata

⋯

SSD
ControllerCoresFTL

⋯

M
e

g
IS

-E
n

a
b

le
d

 S
S

D

CntrlCntrl

Channel#NChannel#1

374

MegIS’s Steps

A large database
containing information

on many species

Metagenomic sample
with species that

are not known in advance

Preparation
of Input Queries Q

ue
ry

K

-m
er

s

…

GCTCA

CTCAT

TCATG

Presence/Absence
Identification

V. cholerae

E. coli

SARS-CoV-2

Abundance
Estimation

Step 1

Step 2

Step 3

375

MegIS Hardware-Software Co-Design
H

o
st

 S
y

st
e

m

SSD DRAM

Standard
Metadata

⋯

SSD
ControllerCoresFTL

⋯

M
e

g
IS

-E
n

a
b

le
d

 S
S

D

CntrlCntrl

Channel#NChannel#1

376

MegIS Hardware-Software Co-Design
H

o
st

 S
y

st
e

m

SSD DRAM

Standard
Metadata

⋯

SSD
ControllerCoresFTL

⋯

M
e

g
IS

-E
n

a
b

le
d

 S
S

D

CntrlCntrl

Channel#NChannel#1

Step 1

Task partitioning and mapping
• Each step executes

in its most suitable system

Step 2 Step 3

377

MegIS Hardware-Software Co-Design
H

o
st

 S
y

st
e

m

SSD DRAM

Standard
Metadata

⋯

SSD
ControllerCoresFTL

⋯

M
e

g
IS

-E
n

a
b

le
d

 S
S

D

CntrlCntrl

Channel#NChannel#1

Data/computation flow coordination
• Reduce communication overhead
• Reduce #writes to flash chips

Step 1 Step 2 Step 3

Task partitioning and mapping
• Each step executes

in its most suitable system

378

MegIS Hardware-Software Co-Design
H

o
st

 S
y

st
e

m

SSD DRAM

Standard
Metadata

⋯

SSD
ControllerCoresFTL

⋯

M
e

g
IS

-E
n

a
b

le
d

 S
S

D

CntrlCntrl

Channel#NChannel#1

Storage-aware algorithms
• Enable efficient

access patterns to the SSD

Step 1 Step 2 Step 3

Data/computation flow coordination
• Reduce communication overhead
• Reduce #writes to flash chips

Task partitioning and mapping
• Each step executes

in its most suitable system

379

MegIS Hardware-Software Co-Design
H

o
st

 S
y

st
e

m

SSD DRAM

Standard
Metadata

⋯

SSD
ControllerCoresFTL

⋯

M
e

g
IS

-E
n

a
b

le
d

 S
S

D

ACCACC

CntrlCntrl

Channel#NChannel#1

Lightweight in-storage accelerators
• Minimize SRAM/DRAM buffer spaces

needed inside the SSD

Step 1 Step 2 Step 3

Storage-aware algorithms
• Enable efficient

access patterns to the SSD

Data/computation flow coordination
• Reduce communication overhead
• Reduce #writes to flash chips

Task partitioning and mapping
• Each step executes

in its most suitable system

380

MegIS Hardware-Software Co-Design
H

o
st

 S
y

st
e

m

SSD DRAM

Standard
Metadata

⋯

SSD
ControllerCoresFTL

⋯

M
e

g
IS

-E
n

a
b

le
d

 S
S

D

MegIS
FTL

MegIS
Metadata

CntrlCntrl

Channel#NChannel#1

Data mapping scheme and Flash Translation Layer (FTL)
• Specialize to the characteristics of metagenomic analysis

• Leverage the SSD’s full internal bandwidth

Step 1 Step 2 Step 3

Storage-aware algorithms
• Enable efficient

access patterns to the SSD

Lightweight in-storage accelerators
• Minimize SRAM/DRAM buffer spaces

needed inside the SSD

Data/computation flow coordination
• Reduce communication overhead
• Reduce #writes to flash chips

Task partitioning and mapping
• Each step executes

in its most suitable system

ACCACC

381

Evaluation: Methodology Overview
Performance, Energy, and Power Analysis

Baseline Comparison Points

• Performance-optimized software, Kraken2 [Genome Biology’19]

• Accuracy-optimized software, Metalign [Genome Biology’20]

• PIM hardware-accelerated tool (using processing-in-memory), Sieve [ISCA’21]

SSD Configurations

• SSD-C: with SATA3 interface (0.5 GB/s sequential read bandwidth)

• SSD-P: with PCIe Gen4 interface (7 GB/s sequential read bandwidth)

Hardware Components

• Synthesized Verilog model for the in-storage accelerators

• MQSim [Tavakkol+, FAST’18] for SSD’s internal operations

• Ramulator [Kim+, CAL’15] for SSD’s internal DRAM

Software Components

Measure on a real system:

• AMD® EPYC® CPU with
128 physical cores

• 1-TB DRAM

382

Evaluation: Speedup over the Software Baselines

MegIS provides significant speedup over both

Performance-Optimized and Accuracy-Optimized baselines

S
p

ee
d

u
p

Performance-Optimized MegISAccuracy-Optimized

Sample Genetic Diversity

0
1
2
3
4
5
6
7

Low Med High GMean

SSD-C

5
.8

x
1

4
.9

x

0
1
2
3
4
5
6
7

Low Med High GMean

SSD-C

5
.8

x

Sample Genetic Diversity

1
4

.9
x

383

Evaluation: Speedup over the Software Baselines

MegIS provides significant speedup over both

Performance-Optimized and Accuracy-Optimized baselines

S
p

ee
d

u
p

Performance-Optimized MegISAccuracy-Optimized

Sample Genetic Diversity

0
1
2
3
4
5
6
7

Low Med High GMean

SSD-P

4
.0

x

1
2

.1
x

MegIS improves performance on both

cost-optimized and performance-optimized SSDs

384

4.
9x

0

2

4

6

Low Med High GMean

0

1

2

3

Low Med High GMean

S
p

e
e

d
u

p

SSD-C

PIM MegIS

1.
9x

SSD-P

Sample Genetic Diversity Sample Genetic Diversity

PIM MegIS

MegIS provides significant speedup over the PIM baseline

Evaluation: Speedup over the PIM Baseline

385

• On average across different input sets and SSDs

0

1

2

3

4

5

6

Perf-Opt Acc-Opt PIM MegISG
e

o
M

e
a

n
 E

n
e

rg
y

 R
e

d
u

ct
io

n
(H

ig
h

e
r

is
 B

e
tt

e
r)

MegIS provides significant energy reduction over

the Performance-Optimized, Accuracy-Optimized, and PIM baselines

5.
4x

1
5

.2
x

1.
9x

Evaluation: Reduction in Energy Consumption

386

Evaluation: Accuracy, Area, and Power

Accuracy

• Same accuracy as the accuracy-optimized baseline

• Significantly higher accuracy than the performance-optimized and
PIM baselines

- 4.6 – 5.2× higher F1 scores

- 3 – 24% lower L1 norm error

Area and Power

Total for an 8-channel SSD:

• Area: 0.04 mm2 (Only 1.7% of the area of three ARM Cortex R4 cores
in an SSD controller)

• Power: 7.658 mW

387

Evaluation: System Cost-Efficiency
G

M
e

a
n

 S
p

e
e

d
u

p

0

5

10

15

20

Perf-Opt ($) Acc-Opt ($) Perf-Opt($$$) Acc-Opt ($$$) MegIS ($)

• Cost-optimized system ($): With SSD-C and 64-GB DRAM

• Performance-optimized system ($$$): With SSD-P and 1-TB DRAM

MegIS outperforms the baselines

even when running on a much less costly system

($) ($) ($$$) ($$$) ($)

7
.2

x

2
.4

x

388

Evaluation: System Cost-Efficiency
G

M
e

a
n

 S
p

e
e

d
u

p

0

5

10

15

20

Perf-Opt ($) Acc-Opt ($) Perf-Opt($$$) Acc-Opt ($$$) MegIS ($)

• Cost-optimized system ($): With SSD-C and 64-GB DRAM

• Performance-optimized system ($$$): With SSD-P and 1-TB DRAM

MegIS outperforms the baselines

even when running on a much less costly system

($) ($) ($$$) ($$$) ($)

7
.2

x

2
.4

xMegIS improves system cost-efficiency

and makes metagenomics more accessible

for wider adoption

389

More in the Paper

•MegIS’s performance when running in-storage processing
operations on the cores existing in the SSD controller

•MegIS’s performance when using the same accelerators
outside SSD

• Sensitivity analysis with varying

- Database sizes

- Memory capacities

- #SSDs

- #Channels

- #Samples

•MegIS’s performance for abundance estimation

390

More in the Paper

• MegIS’s performance with the cores in the SSD controller

• MegIS’s performance outside SSD

• Sensitivity analysis with varying

- Database sizes

- Memory capacities

- #SSDs

- #Channels

- #Samples

• MegIS’s performance for abundance estimation
https://arxiv.org/abs/2406.19113

https://arxiv.org/abs/2406.19113

391

Metagenomic analysis suffers from
significant storage I/O data movement overhead

Conclusion

The first in-storage processing system for end-to-end metagenomic analysis

Leverages and orchestrates processing inside and outside the storage system

MegIS

Improves performance
2.7×–37.2× over performance-optimized software

6.9×–100.2× over accuracy-optimized software

1.5×–5.1× over hardware-accelerated PIM baseline

Low area overhead
1.7% of the three cores

in an SSD controller

Reduces energy consumption
5.4× over performance-optimized software

15.2× over accuracy-optimized software

1.9× over hardware-accelerated PIM baseline

High accuracy
Same as accuracy-optimized

4.8× higher F1 scores

 over performance-optimized/PIM

Homomorphic Operations on

Real PIM Systems

Homomorphic Operations on Real PIM Systems

◼ Harshita Gupta, Mayank Kabra, Juan Gómez-Luna, Konstantinos Kanellopoulos,
and Onur Mutlu,
"Evaluating Homomorphic Operations on a Real-World Processing-In-
Memory System"
Proceedings of the 2023 IEEE International Symposium on Workload
Characterization Poster Session (IISWC), Ghent, Belgium, October 2023.
[arXiv version]
[Lightning Talk Slides (pptx) (pdf)]
[Poster (pptx) (pdf)]

393https://arxiv.org/pdf/2309.06545.pdf

https://people.inf.ethz.ch/omutlu/pub/HEonRealPIM_iiswc23.pdf
https://people.inf.ethz.ch/omutlu/pub/HEonRealPIM_iiswc23.pdf
https://iiswc.org/iiswc2023/
https://iiswc.org/iiswc2023/
https://arxiv.org/abs/2309.06545
https://people.inf.ethz.ch/omutlu/pub/HEonRealPIM_iiswc23-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/HEonRealPIM_iiswc23-lightning-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/HEonRealPIM_iiswc23-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/HEonRealPIM_iiswc23-poster.pdf
https://arxiv.org/pdf/2309.06545.pdf

Side Channels on PIM Systems

PIM Amplifies Covert & Side Channels

395

https://arxiv.org/pdf/2404.11284

https://arxiv.org/pdf/2404.11284

Distributed ML Training on

Real PIM Systems

Accelerating ML Training on Real PIM Systems

◼ To appear at PACT 2024

397https://arxiv.org/pdf/2404.07164

https://arxiv.org/pdf/2404.07164

Reinforcement Learning on

Real PIM Systems

SwiftRL
◼ Kailash Gogineni, Sai Santosh Dayapule, Juan Gomez-Luna, Karthikeya Gogineni, Peng

Wei, Tian Lan, Mohammad Sadrosadati, Onur Mutlu, Guru Venkataramani,
"SwiftRL: Towards Efficient Reinforcement Learning on Real Processing-In-

Memory Systems"

Proceedings of the 2024 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), Indianapolis, Indiana, May 2024.

[Slides (pptx) (pdf)]
[arXiv version]

399
https://arxiv.org/pdf/2405.03967

https://arxiv.org/pdf/2405.03967
https://arxiv.org/pdf/2405.03967
https://ispass.org/ispass2024/
https://ispass.org/ispass2024/
https://safari.ethz.ch/wp-content/uploads/UPMEM_Kailash_2024.pptx
https://safari.ethz.ch/wp-content/uploads/UPMEM_Kailash_2024.pdf
https://arxiv.org/abs/2405.03967
https://arxiv.org/pdf/2405.03967

SwiftRL: Summary

George Washington University | ETH Zürich

ISPASS'24
400

• Adapted and implemented RL algorithms on a PIM architecture for exploring

memory-centric systems in RL training

• Explored optimization strategies for enhancing RL workload performance across

• various data types,

• sampling strategies (SEQ, RAN, STR)

• Compared PIM-based Q-learning & SARSA on UPMEM PIM (2000 cores) to CPU &

GPU

• Achieved near-linear scaling of 15x in performance with a 16x increase in PIM cores

(125 to 2000)

MATSA

MATSA

◼ Ivan Fernandez, Christina Giannoula, Aditya Manglik, Ricardo Quislant,
Nika Mansouri Ghiasi, Juan Gomez Luna, Eladio Gutierrez, Oscar Plata
and Onur Mutlu,
"MATSA: An MRAM-Based Energy-Efficient Accelerator for Time
Series Analysis"
IEEE Access, March 2024.
[arXiv version]
[IEEE Access version]

402
https://arxiv.org/pdf/2211.04369

https://arxiv.org/pdf/2211.04369
https://arxiv.org/pdf/2211.04369
https://doi.org/10.1109/ACCESS.2023.3252002
https://arxiv.org/abs/2211.04369
https://ieeexplore.ieee.org/document/10458946
https://arxiv.org/pdf/2211.04369

ApHMM

ApHMM

◼ Can Firtina, Kamlesh Pillai, Gurpreet S. Kalsi, Bharathwaj Suresh, Damla Senol Cali,
Jeremie S. Kim, Taha Shahroodi, Meryem Banu Cavlak, Joel Lindegger, Mohammed
Alser, Juan Gomez Luna, Sreenivas Subramoney and Onur Mutlu,
"ApHMM: Accelerating Profile Hidden Markov Models for Fast and Energy-
efficient Genome Analysis"
ACM Transactions on Architecture and Code Optimization (TACO), February 2024.
[arXiv version]
[ApHMM Source Code]
[ACM Digital Library version]
[Talk Video HiPEAC]

404https://arxiv.org/pdf/2207.09765

https://arxiv.org/pdf/2207.09765
https://arxiv.org/pdf/2207.09765
http://taco.acm.org/
https://arxiv.org/abs/2207.09765
https://github.com/CMU-SAFARI/ApHMM-GPU
https://dl.acm.org/doi/10.1145/3632950
https://www.youtube.com/watch?v=a8RFca-jXPk&list=PL5Q2soXY2Zi8KM0Ga7QZ9tY2TiyudbLrK&index=7
https://arxiv.org/pdf/2207.09765

405

Executive Summary

Key Results: Our ASIC implementation compared to CPU, GPU, and FPGA baselines
across 3 workloads
– 15.55×–260.03×, 1.83×–5.34×, and 27.97× better performance

– Up to 2622.94× reduction in energy consumption

ApHMM: the first flexible and hardware-software accelerator for pHMMs that can

1) Substantially reduce unnecessary data storage, data movement, and computations by
effectively co-designing hardware and software together

2) Provide a flexible design to support several genomics workloads that use pHMMs

Goal: Enable rapid, power-efficient, and flexible use of pHMMs for genomics workloads

Problem: The parameters used in pHMMs are mainly trained and used with a
computationally intensive Baum-Welch algorithm, causing major performance and
energy overhead for many genomics workloads

Motivation: Graph structures such as profile Hidden Markov Models (pHMMs) are
commonly used to accurately analyze biological sequences

https://github.com/CMU-SAFARI/ApHMM-GPU

https://github.com/CMU-SAFARI/ApHMM-GPU

RUBICON

RUBICON

◼ Gagandeep Singh, Mohammed Alser, Kristof Denolf, Can Firtina, Alireza
Khodamoradi, Meryem Banu Cavlak, Henk Corporaal and Onur Mutlu,
"RUBICON: A Framework for Designing Efficient Deep
Learning-Based Genomic Basecallers"
Genome Biology, February 2024.
[arXiv version]
[Journal Article]
[RUBICON Source Code]

407
https://arxiv.org/pdf/2211.03079

https://arxiv.org/pdf/2211.03079
https://arxiv.org/pdf/2211.03079
https://www.nature.com/nprot/
https://arxiv.org/abs/2211.03079
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-024-03181-2
https://github.com/CMU-SAFARI/Rubicon
https://arxiv.org/pdf/2211.03079

Utopia

Better Virtual Memory: Utopia

Konstantinos Kanellopoulos, Rahul Bera, Kosta Stojiljkovic, Nisa Bostanci, Can Firtina,
Rachata Ausavarungnirun, Rakesh Kumar, Nastaran Hajinazar, Mohammad Sadrosadati,
Nandita Vijaykumar, and Onur Mutlu,
"Utopia: Fast and Efficient Address Translation via Hybrid Restrictive & Flexible
Virtual-to-Physical Address Mappings"

Proceedings of the 56th International Symposium on Microarchitecture (MICRO), Toronto,
ON, Canada, November 2023.
[Slides (pptx) (pdf)]
[arXiv version]
[Utopia Source Code]

409
https://arxiv.org/abs/2211.12205

https://arxiv.org/pdf/2211.12205.pdf
https://arxiv.org/pdf/2211.12205.pdf
http://www.microarch.org/micro56/
https://people.inf.ethz.ch/omutlu/pub/Utopia_micro23-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Utopia_micro23-talk.pdf
https://arxiv.org/abs/2211.12205
https://github.com/CMU-SAFARI/Utopia
https://arxiv.org/abs/2211.12205

Utopia: Executive Summary
Problem: Conventional virtual memory (VM) frameworks enable a virtual address to flexibly map
to any physical address. This flexibility necessitates large translation structures leading to:

(1) high translation latency and (2) large translation-induced interference in the memory hierarchy

410

Motivation: Restricting the address mapping leads to compact translation structures and reduces
the overheads of address translation. Doing so across the entire memory has two major drawbacks:

(1) Limits core VM functionalities (e.g., data sharing)

(2) Increases swapping activity in the presence of free physical memory

Key Idea: Utopia is a new hybrid virtual-to-physical address mapping scheme that allows both
flexible and restrictive hash-based address mappings to harmoniously co-exist in the system

Utopia manages physical memory using two types of physical memory segments:

Flexible Segment

Page
Table

Page

X86-64
Radix PT

Restrictive Segment

Page
Hash

Function

Modulo
Hash

Fast Translation Limited VM features Supports all VM featuresSlow Translation

Key Results: Outperforms (i) the state-of-the-art contiguity-aware translation scheme by 13%,
and (ii) achieves 95% of the performance of an ideal perfect-TLB

https://github.com/CMU-SAFARI/Utopia

Victima

Better Virtual Memory: Victima
Konstantinos Kanellopoulos, Hong Chul Nam, F. Nisa Bostanci, Rahul Bera, Mohammad Sadrosadati,
Rakesh Kumar, Davide Basilio Bartolini, and Onur Mutlu,
"Victima: Drastically Increasing Address Translation Reach by Leveraging Underutilized
Cache Resources"
Proceedings of the 56th International Symposium on Microarchitecture (MICRO), Toronto, ON, Canada,
November 2023.
[Slides (pptx) (pdf)]
[arXiv version]
[Victima Source Code (Officially Artifact Evaluated with All Badges)]
Officially artifact evaluated as available, functional, reusable and reproducible.
Distinguished artifact award at MICRO 2023.

412
https://arxiv.org/pdf/2310.04158

https://arxiv.org/pdf/2310.04158.pdf
https://arxiv.org/pdf/2310.04158.pdf
http://www.microarch.org/micro56/
https://people.inf.ethz.ch/omutlu/pub/Victima_micro23-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Victima_micro23-talk.pdf
https://arxiv.org/abs/2310.04158
https://github.com/CMU-SAFARI/Victima
https://arxiv.org/pdf/2310.04158

Executive Summary
Problem: Address translation is a major performance bottleneck in data-intensive workloads

Large datasets and irregular memory access patterns lead to frequent L2 TLB misses (e.g., 20-50
MPKI) and frequent high-latency (e.g., 100-150 cycles) page table walks (PTW)

Motivation: Increasing the translation reach (i.e., memory covered by the TLBs) reduces PTWs.
However, employing large TLBs leads to increased area, power and latency overheads.

Victima: New software-transparent scheme that drastically increases the address translation
reach of the processor’s TLB hierarchy by leveraging the underutilized cache resources

https://github.com/CMU-SAFARI/Victima

Key Results: Victima (i) outperforms by 5.1% a state-of-the-art large TLB design and (ii) achieves
similar performance to an optimistically fast 128K-entry L2 TLB

Key Idea: Key Benefits:

+ Efficient in native/virtualized environments

+ Fully transparent to application/OS software

+ Compatible with huge page schemes

Transform L2 cache blocks
that store PTEs into blocks
that store TLB entries

PTEs

TLB Entries

L2 Cache

413

Opportunity: Increase the translation reach of the TLB hierarchy by storing the existing TLB entries
within the existing cache hierarchy

Sectored DRAM

Sectored DRAM

◼ Ataberk Olgun, F. Nisa Bostanci, Geraldo F. Oliveira, Yahya Can Tugrul,
Rahul Bera, A. Giray Yaglikci, Hasan Hassan, Oguz Ergin, and Onur Mutlu,
"Sectored DRAM: A Practical Energy-Efficient and High-
Performance Fine-Grained DRAM Architecture"
ACM Transactions on Architecture and Code Optimization (TACO),
[online] June 2024.
[arXiv version]
[ACM Digital Library version]

415
https://arxiv.org/pdf/2207.13795

https://arxiv.org/pdf/2207.13795
https://arxiv.org/pdf/2207.13795
http://taco.acm.org/
https://arxiv.org/abs/2207.13795
https://doi.org/10.1145/3673653
https://arxiv.org/pdf/2207.13795

SimplePIM

Adoption: How to Ease Programmability? (II)

◼ Jinfan Chen, Juan Gómez-Luna, Izzat El Hajj, YuXin Guo,
and Onur Mutlu,

"SimplePIM: A Software Framework for Productive
and Efficient Processing in Memory"
Proceedings of the 32nd International Conference on
Parallel Architectures and Compilation Techniques (PACT),
Vienna, Austria, October 2023.

https://people.inf.ethz.ch/omutlu/pub/SimplePIM_pact23.pdf
https://people.inf.ethz.ch/omutlu/pub/SimplePIM_pact23.pdf
http://pactconf.org/
http://pactconf.org/

Jinfan Chen, Juan Gómez Luna, Izzat El Hajj, Yuxin Guo, Onur Mutlu

SimplePIM:
A Software Framework for Productive

and Efficient Processing-in-Memory

https://arxiv.org/pdf/2310.01893.pdf

https://github.com/CMU-SAFARI/SimplePIM

https://arxiv.org/pdf/2310.01893.pdf
https://github.com/CMU-SAFARI/SimplePIM

419

Executive Summary
• Processing-in-Memory (PIM) promises to alleviate the data movement

bottleneck

• Real PIM hardware is now available, e.g., UPMEM PIM

• However, programming real PIM hardware is challenging, e.g.:
- Distribute data across PIM memory banks,
- Manage data transfers between host cores and PIM cores, and between PIM

cores,
- Launch PIM kernels on the PIM cores, etc.

• SimplePIM is a high-level programming framework for real PIM hardware
- Iterators such as map, reduce, and zip
- Collective communication with broadcast, scatter, and gather

• Implementation on UPMEM and evaluation with six different
workloads

- Reduction, vector add, histogram, linear/logistic regression, K-means
- 4.4x fewer lines of code compared to hand-optimized code
- Between 15% and 43% faster than hand-optimized code for three workloads

• Source code: https://github.com/CMU-SAFARI/SimplePIM

https://github.com/CMU-SAFARI/SimplePIM

420

A State-of-the-Art PIM System

• In our work, we use the UPMEM PIM architecture
- General-purpose processing cores called DRAM Processing

Units (DPUs)
• Up to 24 PIM threads, called tasklets
• 32-bit integer arithmetic, but multiplication/division are

emulated*, as well as floating-point operations

- 64-MB DRAM bank (MRAM), 64-KB scratchpad (WRAM)

* 8-bit integer multiplication is natively supported

Host	
CPU

DRAM	
Chip

DRAM	
Chip

DRAM	
Chip

DRAM	
Chip

DRAM	
Chip

DRAM	
Chip

DRAM	
Chip

DRAM	
Chip

DRAM	
Chip

DRAM	
Chip

DRAM	
Chip

DRAM	
Chip

DRAM	
Chip

DRAM	
Chip

DRAM	
Chip

DRAM	
Chip

Host	DRAM

xN

xM

PIM	DRAM

PIM	DRAM	

Bank

PIM	Core

PIM	DRAM	

Bank

PIM	Core

PIM	DRAM	

Bank

PIM	Core

PIM	DRAM	

Bank

PIM	Core

PIM	DRAM	
Bank	(64MB)

PIM	Core

Instruction	

Memory	(24KB)

Scratchpad	

(64KB)

421

Programming a PIM System (I)

• Example: Hand-optimized histogram with UPMEM SDK
... // Initialize global variables and functions for histogram

int main_kernel() {

 if (tasklet_id == 0)

 mem_reset(); // Reset the heap

 ... // Initialize variables and the histogram

 T *input_buff_A = (T*)mem_alloc(2048); // Allocate buffer in scratchpad memory

 for (unsigned int byte_index = base_tasklet; byte_index < input_size; byte_index += stride) {

 // Boundary checking

 uint32_t l_size_bytes = (byte_index + 2048 >= input_size) ? (input_size - byte_index) : 2048;

 // Load scratchpad with a DRAM block

 mram_read((const __mram_ptr void*)(mram_base_addr_A + byte_index), input_buff_A, l_size_bytes);

 // Histogram calculation

 histogram(hist, bins, input_buff_A, l_size_bytes/sizeof(uint32_t));

 }

 ...

 barrier_wait(&my_barrier); // Barrier to synchronize PIM threads

 ... // Merging histograms from different tasklets into one histo_dpu

 // Write result from scratchpad to DRAM

 if (tasklet_id == 0)

 if (bins * sizeof(uint32_t) <= 2048)

 mram_write(histo_dpu, (__mram_ptr void*)mram_base_addr_histo, bins * sizeof(uint32_t));

 else

 for (unsigned int offset = 0; offset < ((bins * sizeof(uint32_t)) >> 11); offset++) {

 mram_write(histo_dpu + (offset << 9), (__mram_ptr void*)(mram_base_addr_histo +

 (offset << 11)), 2048);

 }

 return 0;

}

422

Programming a PIM System (II)

• PIM programming is challenging
- Manage data movement between host DRAM and PIM DRAM

• Parallel, serial, broadcast, and gather/scatter transfers

- Manage data movement between PIM DRAM bank and
scratchpad
• 8-byte aligned and maximum of 2,048 bytes

- Multithreaded programming model

- Inter-thread synchronization
• Barriers, handshakes, mutexes, and semaphores

Our Goal
Design a high-level programming framework that abstracts these
hardware-specific complexities and provides a clean yet powerful

interface for ease of use and high program performance

423

The SimplePIM Programming Framework

• SimplePIM provides standard abstractions to build and
deploy applications on PIM systems

- Management interface
• Metadata for PIM-resident arrays

- Communication interface
• Abstractions for host-PIM and PIM-PIM communication

- Processing interface
• Iterators (map, reduce, zip) to implement workloads

424

Management Interface

• Metadata for PIM-resident arrays
- array_meta_data_t describes a PIM-resident array

- simple_pim_management_t for managing PIM-resident arrays

• lookup: Retrieves all relevant information of an array

• register: Registers the metadata of an array

• free: Removes the metadata of an array

void simple_pim_array_free(const char* id, simple_pim_management_t* management);

array_meta_data_t* simple_pim_array_lookup(const char* id,

simple_pim_management_t* management);

void simple_pim_array_register(array_meta_data_t* meta_data,

simple_pim_management_t* management);

425

The SimplePIM Programming Framework

• SimplePIM provides standard abstractions to build and
deploy applications on PIM systems

- Management interface
• Metadata for PIM-resident arrays

- Communication interface
• Abstractions for host-PIM and PIM-PIM communication

- Processing interface
• Iterators (map, reduce, zip) to implement workloads

426

Host-to-PIM Communication: Broadcast

• SimplePIM Broadcast
- Transfers a host array to all PIM cores in the system

void simple_pim_array_broadcast(char* const id, void* arr, uint64_t len,

uint32_t type_size, simple_pim_management_t* management);

427

Host-to-PIM Communication: Scatter/Gather

• SimplePIM Scatter
- Distributes an array to PIM DRAM banks

• SimplePIM Gather
- Collects portions of an array from PIM DRAM banks

void* simple_pim_array_gather(char* const id, simple_pim_management_t*

management);

void simple_pim_array_scatter(char* const id, void* arr, uint64_t len,

uint32_t type_size, simple_pim_management_t* management);

428

PIM-PIM Communication: AllReduce

• SimplePIM AllReduce
- Used for algorithm synchronization

- The programmer specifies an accumulative function

void simple_pim_array_allreduce(char* const id, handle_t* handle,

simple_pim_management_t* management);

429

PIM-PIM Communication: AllGather

• SimplePIM AllGather
- Combines array pieces and distributes the complete array to

all PIM cores

void simple_pim_array_allgather(char* const id, char* new_id,

simple_pim_management_t* management);

430

The SimplePIM Programming Framework

• SimplePIM provides standard abstractions to build and
deploy applications on PIM systems

- Management interface
• Metadata for PIM-resident arrays

- Communication interface
• Abstractions for host-PIM and PIM-PIM communication

- Processing interface
• Iterators (map, reduce, zip) to implement workloads

431

Processing Interface: Map

• Array Map
- Applies map_func to every element of the data array

Input	Array
(src_id)

Output	Array	
(dest_id)

…

…

map_func

void simple_pim_array_map(const char* src_id, const char* dest_id,

uint32_t output_type, handle_t* handle, simple_pim_management_t* management);

432

Processing Interface: Reduction

• Array Reduction
- The map_to_val_func function transforms an input

element to an output value and an output index

- The acc_func function accumulates the output values onto
the output array

…

…1 0 2 0

10 2

map_to_val_func

acc_func

Input	Array
(src_id)

Output	Array	(dest_id)

void simple_pim_array_red(const char* src_id, const char* dest_id,

uint32_t output_type, uint32_t output_len, handle_t* handle,

simple_pim_management_t* management);

433

Processing Interface: Zip

• Array Zip
- Takes two input arrays and combines their elements into an

output array

…

…

…

zip_func

Input	Array
(src1_id)

Output	Array	
(dest_id)

Input	Array
(src2_id)

void simple_pim_array_zip(const char* src1_id, const char* src2_id,

const char* dest_id, simple_pim_management_t* management);

434

General Code Optimizations

• Strength reduction

• Loop unrolling

• Avoiding boundary checks

• Function inlining

• Adjustment of data transfer sizes

435

More in the Paper

• Strength reduction

• Loop unrolling

• Avoiding boundary checks

• Function inlining

• Adjustment of data transfer sizeshttps://arxiv.org/pdf/2310.01893.pdf

https://arxiv.org/pdf/2310.01893.pdf

436

Evaluation Methodology

• Evaluated system
- UPMEM PIM system with 2,432 PIM cores with 159 GB of

PIM DRAM

• Real-world Benchmarks
- Vector addition

- Reduction

- Histogram

- K-Means

- Linear regression

- Logistic regression

• Comparison to hand-optimized codes in terms of
programming productivity and performance

437

Productivity Improvement (I)

• Example: Hand-optimized histogram with UPMEM SDK
... // Initialize global variables and functions for histogram

int main_kernel() {

 if (tasklet_id == 0)

 mem_reset(); // Reset the heap

 ... // Initialize variables and the histogram

 T *input_buff_A = (T*)mem_alloc(2048); // Allocate buffer in scratchpad memory

 for (unsigned int byte_index = base_tasklet; byte_index < input_size; byte_index += stride) {

 // Boundary checking

 uint32_t l_size_bytes = (byte_index + 2048 >= input_size) ? (input_size - byte_index) : 2048;

 // Load scratchpad with a DRAM block

 mram_read((const __mram_ptr void*)(mram_base_addr_A + byte_index), input_buff_A, l_size_bytes);

 // Histogram calculation

 histogram(hist, bins, input_buff_A, l_size_bytes/sizeof(uint32_t));

 }

 ...

 barrier_wait(&my_barrier); // Barrier to synchronize PIM threads

 ... // Merging histograms from different tasklets into one histo_dpu

 // Write result from scratchpad to DRAM

 if (tasklet_id == 0)

 if (bins * sizeof(uint32_t) <= 2048)

 mram_write(histo_dpu, (__mram_ptr void*)mram_base_addr_histo, bins * sizeof(uint32_t));

 else

 for (unsigned int offset = 0; offset < ((bins * sizeof(uint32_t)) >> 11); offset++) {

 mram_write(histo_dpu + (offset << 9), (__mram_ptr void*)(mram_base_addr_histo +

 (offset << 11)), 2048);

 }

 return 0;

}

438

Productivity Improvement (II)

• Example: SimplePIM histogram

// Programmer-defined functions in the file "histo_filepath"

void init_func (uint32_t size, void* ptr) {

 char* casted_value_ptr = (char*) ptr;

 for (int i = 0; i < size; i++)

 casted_value_ptr[i] = 0;

}

void acc_func (void* dest, void* src) {

 (uint32_t)dest += *(uint32_t*)src;

}

void map_to_val_func (void* input, void* output, uint32_t* key) {

 uint32_t d = *((uint32_t*)input);

 (uint32_t)output = 1;

 *key = d * bins >> 12;

}

// Host side handle creation and iterator call

handle_t* handle = simple_pim_create_handle("histo_filepath", REDUCE, NULL, 0);

// Transfer (scatter) data to PIM, register as "t1"

simple_pim_array_scatter("t1", src, bins, sizeof(T), management);

// Run histogram on "t1" and produce "t2"

simple_pim_array_red("t1", "t2", sizeof(T), bins, handle, management);

439

Productivity Improvement (III)

• Lines of code (LoC) reduction

SimplePIM Hand-optimized LoC Reduction

Reduction 14 83 5.93×

Vector Addition 14 82 5.86×

Histogram 21 114 5.43×

Linear Regression 48 157 3.27×

Logistic Regression 59 176 2.98×

K-Means 68 206 3.03×

SimplePIM reduces the number of lines of effective code
by a factor of 2.98× to 5.93×

440

Performance Evaluation (I)

• Weak scaling analysis

SimplePIM achieves comparable performance for
reduction, histogram, and linear regression

SimplePIM outperforms hand-optimized implementations for
vector addition, logistic regression,

and k-means by 10%-37%

441

Performance Evaluation (II)

• Strong scaling analysis

SimplePIM scales better than hand-optimized implementations
for reduction, histogram, and linear regression

SimplePIM outperforms hand-optimized implementations for
vector addition, logistic regression,

and k-means by 15%-43%

442

Discussion

• SimplePIM is devised for PIM architectures with
- A host processor with access to standard main memory and

PIM-enabled memory
- PIM processing elements (PEs) that communicate via the

host processor
- The number of PIM PEs scales with memory capacity

• SimplePIM emulates the communication between PIM
cores via the host processor

• Other parallel patterns can be incorporated in future
work

- Prefix sum and filter can be easily added
- Stencil and convolution would require fine-grained scatter-

gather for halo cells
- Random access patterns would be hard to support

443

SimplePIM: arXiv Version

https://arxiv.org/pdf/2310.01893.pdf

https://arxiv.org/pdf/2310.01893.pdf

444

https://github.com/CMU-
SAFARI/SimplePIM

Source Code

https://github.com/CMU-SAFARI/SimplePIM
https://github.com/CMU-SAFARI/SimplePIM

445

SimplePIM: Summary
• Processing-in-Memory (PIM) promises to alleviate the data movement

bottleneck

• Real PIM hardware is now available, e.g., UPMEM PIM

• However, programming real PIM hardware is challenging, e.g.:
- Distribute data across PIM memory banks,
- Manage data transfers between host cores and PIM cores, and between PIM

cores,
- Launch PIM kernels on the PIM cores, etc.

• SimplePIM is a high-level programming framework for real PIM hardware
- Iterators such as map, reduce, and zip
- Collective communication with broadcast, scatter, and gather

• Implementation on UPMEM and evaluation with six different
workloads

- Reduction, vector add, histogram, linear/logistic regression, K-means
- 4.4x fewer lines of code compared to hand-optimized code
- Between 15% and 43% faster than hand-optimized code for three workloads

• Source code: https://github.com/CMU-SAFARI/SimplePIM

https://github.com/CMU-SAFARI/SimplePIM

Constable

Rahul Bera* Adithya Ranganathan* Joydeep Rakshit Sujit Mahto

Anant V. Nori Jayesh Gaur Ataberk Olgun Konstantinos Kanellopoulos

Mohammad Sadrosadati Sreenivas Subramoney Onur Mutlu

Improving Performance and Power Efficiency
by Safely Eliminating Load Instruction Execution

448

Stall other loads due to contention
in load execution resources

Stall load-dependent instructions
due to long load execution latency

Key Problem

Load instructions are a key limiter of

instruction-level parallelism (ILP)

Data Dependence Resource Dependence

L I

L1

L2

R

(e.g., address generation unit,
load port, ...)

449

Prior Works on Tolerating Load Latency

• Load value prediction (LVP) [Lipasti+, ASPLOS’96; Sazeides+, MICRO’96; ...]

• Memory renaming (MRN) [Moshovos+, ISCA’97; Tyson+, MICRO’97; ...]

By speculatively executing
load-dependent instructions
using a predicted load value

Mitigate
Data Dependence

L I

Predicted load still gets executed
to verify speculation,

consuming execution resources

Do Not Mitigate
Resource Dependence

L1

L2

R

450

Motivation

Safely breaking load data dependency
without executing a load instruction

may provide additional performance benefits

By finding load instructions that repeatedly produce
identical results across dynamic instances

How do we start?

451

Key Finding I: Global-Stable Loads

• Some loads repeatedly fetch the same data value
from same load address across entire workload

- Both operations, address generation & data fetch,
produce identical results across all dynamic instances

- Prime targets for breaking data dependency without
execution

Global-Stable Load

452

Key Finding I: Global-Stable Loads

0%

10%

20%

30%

40%

50%

60%

Client Enterprise FSPEC17 ISPEC17 Server AVG

Fr
ac

ti
o

n
 o

f
d

yn
a

m
ic

 lo
ad

s

34.2%

Nearly 1 in every 3 dynamic loads

is a global-stable load

Global-Stable Loads

Across a wide range of 90 workloads

453

In the Paper: Analysis of Global-Stable Loads

• Why do these loads even exist in well-optimized
real-world workloads?

- Accessing global-scope variables

- Accessing local variables of inline functions

- Limited set of architectural registers

• Can increasing architectural registers help?
- Very small change even after doubling x64 registers

• Deeper characterization of global-stable loads
- Which addressing mode do they use?

- How far away do they appear in a workload?

454

In the Paper: Analysis of Global-Stable Loads

• Why do these loads even exist in well-optimized
real-world workloads?

- Accessing global-scope variables

- Accessing local variables of inline functions

- Limited set of architectural registers

• Can increasing architectural registers help?
- Very small change even after doubling x64 registers

• Deeper characterization of global-stable loads
- Which addressing mode do they use?

- How far away do they appear in a workload?https://arxiv.org/pdf/2406.18786

https://arxiv.org/pdf/2406.18786

But do they limit ILP even when using

load value prediction and memory renaming?

A significant fraction of loads are global-stable

455

456

Key Finding II: Global-Stable Loads Cause
Resource Dependence

In an aggressive OoO processor with 6-wide issue, 3 load ports,
a load value predictor (EVES [Seznec, CVP’18]), and memory renaming enabled

All execution cycles where
at least one load port is utilized

457

Key Finding II: Global-Stable Loads Cause
Resource Dependence

In an aggressive OoO processor with 6-wide issue, 3 load ports,
a load value predictor (EVES [Seznec, CVP’18]), and memory renaming enabled

All execution cycles where
at least one load port is utilized

23%
A global-stable load utilizes a load port

blocking a non-global-stable load

458

Key Finding II: Global-Stable Loads Cause
Resource Dependence

In an aggressive OoO processor with 6-wide issue, 3 load ports,
a load value predictor (EVES [Seznec, CVP’18]), and memory renaming enabled

All execution cycles where
at least one load port is utilized

23%
A global-stable load utilizes a load port

blocking a non-global-stable load

Even when using load value prediction and memory renaming,
global-stable loads limit ILP due to resource dependence

What’s the performance headroom of
mitigating the resource dependence?

459

Key Finding III: High Performance Headroom

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

1.18

Client Enterprise FSPEC17 ISPEC17 Server GEOMEAN

G
eo

m
e

an
 s

p
e

ed
u

p
 o

ve
r

th
e

b
as

e
lin

e

Ideally eliminating all global-stable loads
(mitigating load data + resource dependence)

Ideally value-predicting all global-stable loads
(mitigating only load data dependence)

2x load execution width

4.3%

9.1% 8.8%

Mitigating both data and resource dependence has

more than 2x the performance benefit
of mitigating only data dependence of global-stable loads

Ideal elimination of global-stable loads exceeds performance

of a processor with 2x wider load execution

460

Load Execution Resources Lag Behind

0

0.5

1

1.5

2

2.5

3

3.5

4

Sandy
Bridge
(2010)

Haswell
(2014)

Skylake
(2015)

Sunny
Cove

(2019)

Golden
Cove
(2021)

Lion
Cove

(2024)

P
ar

am
e

te
r

sc
al

in
g

Reorder Buffer size

Total execution ports

Load execution ports

3.4x

3x

1.5x

461

Load Execution Resources Lag Behind

0

0.5

1

1.5

2

2.5

3

3.5

4

Sandy
Bridge
(2010)

Haswell
(2014)

Skylake
(2015)

Sunny
Cove

(2019)

Golden
Cove
(2021)

Lion
Cove

(2024)

P
ar

am
e

te
r

sc
al

in
g

Reorder Buffer size

Total execution ports

Load execution ports

3.4x

3x

1.5x
Mitigating load resource dependence has

high performance potential
in recent and future generation processors

462

Our Goal

To improve instruction-level parallelism by mitigating

both load data dependence and resource dependence

Mitigates both load data dependence
and load resource dependence

By safely eliminating
the entire execution of a load instruction

A purely-microarchitectural technique

463

464

Constable: Key Insight

mov r8, [rbp+0x8]

sub rax, r8

cmp rsi, rax

jle 0x40230e

add rax, 0x10

mov r8, [rbp+0x8]

sub rax, r8

cmp rsi, rax

jle 0x40230e

D
yn

am
ic

 in
st

ru
ct

io
n

 s
tr

ea
m

add rax, 0x10

add rax, 0x10

Two successive dynamic instances
of the same static load instruction

LD1

LD2

465

If the source register rbp
has not been modified

Constable: Key Insight

mov r8, [rbp+0x8]

sub rax, r8

cmp rsi, rax

jle 0x40230e

add rax, 0x10

mov r8, [rbp+0x8]

sub rax, r8

cmp rsi, rax

jle 0x40230e

D
yn

am
ic

 in
st

ru
ct

io
n

 s
tr

ea
m

add rax, 0x10

add rax, 0x10

LD2 would have the same address as LD1

Address generation of LD2
can be eliminated

If no store or snoop request
to address [rbp+0x8]

LD2 would fetch the same data as LD1

Data fetching of LD2
can be eliminated

LD1

LD2

466

Constable: Key Steps

Dynamically identify load instructions
that have historically fetched

the same data from the same load address
(i.e., likely-stable)

Eliminate execution of likely-stable loads
by tracking modifications to

their source registers and their load addresses

467

Prior Related Literature

Rich literature on skipping redundant computations
by memoizing previously-computed results

[Michie, Nature’68; Harbison+, ASPLOS’82; Richardson, SCA’93; Sodani+, ISCA’97; González+, ICPP’99; ...]

Aim to memoize every instruction
including multiple dynamic instances of each instruction

Require large memoization buffer
Often bigger than the size of L1 data cache

468

Key Improvements over Literature

Rich literature on skipping redundant computations
by memoizing previously-computed results

[Michie, Nature’68; Harbison+, ASPLOS’82; Richardson, SCA’93; Sodani+, ISCA’97; González+, ICPP’99; ...]

Focus only on loads that are likely stable

Lower storage overhead
with high load elimination coverage

Lower design complexity
Fewer port requirements, lower power

469

Key Improvements over Literature

Focus only on loads that are likely stable

Eliminate loads early in the pipeline

Elimination at rename stage
by explicitly monitoring changes to the source registers

and load address of a likely-stable load

Rich literature on skipping redundant computations
by memoizing previously-computed results

[Michie, Nature’68; Harbison+, ASPLOS’82; Richardson, SCA’93; Sodani+, ISCA’97; González+, ICPP’99; ...]

470

Key Improvements over Literature

Focus only on loads that are likely stable

Eliminate loads early in the pipeline

Ensure correctness in today’s processors

• Maintain correctness in presence of out-of-order load issue
• Maintain coherence in multi-threaded & multi-core execution

Rich literature on skipping redundant computations
by memoizing previously-computed results

[Michie, Nature’68; Harbison+, ASPLOS’82; Richardson, SCA’93; Sodani+, ISCA’97; González+, ICPP’99; ...]

Design Overview

471

472

Constable: Key Steps

Identify
likely-stable loads

Eliminate
by tracking modifications

473

Identify a Likely-Stable Load

• Using a stability confidence
counter per load instructionmov r8, [rbp+0x8]

sub rax, r8

cmp rsi, rax

add rax, 0x10

mov r8, [rbp+0x8]

sub rax, r8

cmp rsi, rax

ret

add rax, 0x10

mov r8, [rbp+0x8]

sub rax, r8

cmp rsi, rax

jle 0x40230e

Stability
Confidence

+1

/2

5

6

3

Same data & address
as last dynamic instance

Different data or
different address

474

Eliminate a Likely-Stable Load

mov r8, [rbp+0x8]

sub rax, r8

cmp rsi, rax

add rax, 0x10

mov r8, [rbp+0x8]

sub rax, r8

cmp rsi, rax

add rax, 0x10

add rax, 0x10

mov r8, [rbp+0x8]

sub rax, r8

cmp rsi, rax

30

30

30

Stability confidence crosses thresholdjle 0x40230e

rbp 0x4200e0PCx PCx

Elimination Table

PCx

Register Monitor Address Monitor

• No reservation station
• No address generation unit
• No load port
• Still takes ROB and load buffer

0x2ae last value

eliminate flag

to handle correct elimination of in-flight loads

In
se

rt

In
se

rt

In
se

rt
Lo

ok
up

475

rbp 0x4200e0PCx PCx

Elimination Table

PCx

Register Monitor Address Monitor

0x2ae

Stop Elimination of a Likely-Stable Load

mov r8, [rbp+0x8]

sub rax, r8

cmp rsi, rax

pop rbx

mov r8, [rbp+0x8]

sub rax, r8

cmp rsi, rax

jle 0x40230e

add rax, 0x10

30

30

jle 0x40230e

add rbp, 0xd8
.
.
.

add rax, 0x10

Elimination flag not set.
Gets executed

15

476

More in the Paper
• Ensuring safe and correct elimination in presence of

- Out-of-order load issue
- Multi-threaded & multi-core execution
- Wrong-path execution

• Integration of Constable into the processor pipeline

• Microarchitecture for breaking data dependence on the
eliminated loads

• Microarchitecture of Constable’s own structures
- Read and write port requirements

Elimina on
 able Register

Monitor

Address
Monitor

477

More in the Paper
• Ensuring safe and correct elimination in presence of

- Out-of-order load issue
- Multi-core execution
- Wrong-path execution

• Integration of Constable into the processor pipeline

• Microarchitecture for breaking data dependence on the
eliminated loads

• Microarchitecture of Constable’s own structures
- Read and write port requirements

Elimina on
 able Register

Monitor

Address
Monitor

https://arxiv.org/pdf/2406.18786

https://arxiv.org/pdf/2406.18786

Evaluation

478

479

Methodology
• Industry-grade x86-64 simulator modeling aggressive OoO processor

- 8-wide fetch, 6-wide issue to 3 load ports, 512-entry ROB

- With memory renaming, zero/constant/move elimination, branch folding

- Five prefetchers throughout cache hierarchy

• 90 workloads of wide variety

- All from SPEC CPU 2017

- Client (SYSMark, DaCapo, ...)

- Enterprise (SPECjbb, SPECjEnterprise, ...)

- Server (BigBench, Hadoop, ...)

• EVES, the state-of-the-art load value predictor
[Seznec, CVP’18]

• Early Load Address Resolution [Bekerman+, ISCA’00]

• Register File Prefetching [Shukla+, ISCA’22]

Mechanisms compared against

• No simultaneous
multi-threading (SMT)

• 2-way SMT

Configurations

480

Performance Improvement in noSMT

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

G
e

o
m

e
an

 s
p

e
e

d
u

p
 o

ve
r

th
e

 b
as

e
lin

e

4.7%

5.1%
3.4%

EVES (the state-of-the-art load value predictor)

Constable

EVES + Constable

Constable alone provides similar performance as EVES

with only ½ of EVES’ storage overhead

Constable on top of EVES outperforms EVES alone

481

Performance Improvement in 2-way SMT

1.00

1.05

1.10

1.15

1.20

G
e

o
m

e
an

 s
p

e
e

d
u

p
 o

ve
r

th
e

 b
as

e
lin

e

3.6%

8.8%

11.3%

EVES (the state-of-the-art load value predictor)

Constable

EVES + Constable

482

Performance Improvement in 2-way SMT

1.00

1.05

1.10

1.15

1.20

G
e

o
m

e
an

 s
p

e
e

d
u

p
 o

ve
r

th
e

 b
as

e
lin

e

3.6%

8.8%

11.3%

EVES (the state-of-the-art load value predictor)

Constable

EVES + Constable

Constable provides higher performance benefits
in a 2-way SMT processor

483

Improvement in Resource Efficiency

Cl
ie
nt

 n
te
rp
ris
e

 S
P
C1
7

IS
P
C1
7

Se
r
er

%
 r

e
d

u
ct

io
n

 in
 R

S
 a

llo
ca

ti
o

n
s

 1

 10

0

10

1

20

2

30

3

 0

Cl
ie
nt

 n
te
rp
ris
e

 S
P
C1
7

IS
P
C1
7

Se
r
er

%
 r

e
d

u
ct

io
n

 in
 L

1-
D

 a
cc

e
ss

e
s

 20

0

20

 0

60

80

100

Reduction in Reservation
Station Allocation

Reduction in
L1 Data Cache Accesses

8.8% average26% average

484

Improvement in Resource Efficiency

Cl
ie
nt

 n
te
rp
ris
e

 S
P
C1
7

IS
P
C1
7

Se
r
er

%
 r

e
d

u
ct

io
n

 in
 R

S
 a

llo
ca

ti
o

n
s

 1

 10

0

10

1

20

2

30

3

 0

Cl
ie
nt

 n
te
rp
ris
e

 S
P
C1
7

IS
P
C1
7

Se
r
er

%
 r

e
d

u
ct

io
n

 in
 L

1-
D

 a
cc

e
ss

e
s

 20

0

20

 0

60

80

100

Reduction in Reservation
Station Allocation

Reduction in
L1 Data Cache Accesses

8.8% average26% average

Constable significantly improves resource efficiency
by eliminating load instruction execution

485

Reduction in Dynamic Power

0%

20%

40%

60%

80%

100%

Fr
ac

ti
o

n
 o

f
to

ta
l O

O
O

 p
o

w
e

r

RS RAT ROB Others

0%

20%

40%

60%

80%

100%

Fr
ac

ti
o

n
 o

f
to

ta
l M

EU
 p

o
w

er

L1-D DTLB Others

OoO Unit PowerMemory Execution Unit Power

5.1% average
reduction

9.1% average
reduction

486

Reduction in Dynamic Power

0%

20%

40%

60%

80%

100%

Fr
ac

ti
o

n
 o

f
to

ta
l O

O
O

 p
o

w
e

r

RS RAT ROB Others

0%

20%

40%

60%

80%

100%

Fr
ac

ti
o

n
 o

f
to

ta
l M

EU
 p

o
w

er

L1-D DTLB Others

OoO Unit PowerMemory Execution Unit Power

5.1% reduction9.1% reductionBy eliminating load instruction execution,
Constable reduces dynamic power consumption

487

Area and Power Overhead
of Constable’s Own Structures

12.4 KB
Storage overhead per core

0.232 mm2

0.0061% area of Intel Alderlake-S processor

Low Energy
Up to 10.8 pJ/read and 16.7 pJ/write

488

More in the Paper
• Load elimination coverage of Constable

- 23.5% of all dynamic loads are eliminated

• Per-workload performance analysis
- Up to 31.2% over baseline
- 60/90 workloads outperforms EVES by more than 5%

• Performance contribution per load category
- Stack loads contribute the highest

• Performance improvement over prior works
- 4.7% over Early load address resolution
- 3.6% over Register file prefetching

• Performance sensitivity:
- Higher performance in every configuration up to 2X load execution width
- Higher performance in every configuration up to 2X pipeline depth

489

More in the Paper
• Load elimination coverage of Constable

- 23.5% of all dynamic loads are eliminated

• Per-workload performance analysis
- Up to 31.2% over baseline
- 60/90 workloads outperforms EVES by more than 5%

• Performance contribution per load category
- Stack loads contributes the highest

• Performance improvement over prior works
- 4.7% over Early load address resolution
- 3.6% over Register file prefetching

• Performance sensitivity:
- Higher performance in every configuration up to 2X load execution width
- Higher performance in every configuration up to 2X pipeline depthhttps://arxiv.org/pdf/2406.18786

https://arxiv.org/pdf/2406.18786

To Summarize...

490

491

Our Key Findings

A large fraction (34%) of dynamic loads fetch
the same data from the same address

throughout the entire workload

These global-stable loads cause significant ILP loss
due to resource dependence

Eliminating global-stable load execution provides

more than 2x the performance benefit

of just breaking their load data dependency

492

Our Proposal

Identifies and eliminates loads
that repeatedly fetch same data from same address

Constable

High performance benefit
over a strong baseline system

without (5.1%) and with SMT (8.8%)

Improves resource efficiency
L1-D access reduction by 26%

RS allocation reduction by 8.8%

Reduces dynamic power
L1-D power by 9.1%
RS power by 5.1%

Low storage overhead
Only 12.4 KB/core,

0.232 mm2 in 14-nm technology

493

43% of global-stable loads
do not get eliminated

There’s Still Headroom...

We need to understand more

software primitives that generate global-stable loads

Constable successfully eliminates

57% of all global-stable loads at runtime

494

Open-Source Tool

A tool to analyze load instructions in any off-the-shelf x86(-64) program

https://github.com/CMU-SAFARI/Load-Inspector

https://github.com/CMU-SAFARI/Load-Inspector

495

Open-Source Tool

A tool to analyze load instructions in any off-the-shelf x86(-64) program

https://github.com/CMU-SAFARI/Load-Inspector

Study global-stable loads

Study the effects of increasing architectural registers
using APX extension to x64 ISA

https://github.com/CMU-SAFARI/Load-Inspector

Improving Performance and Power Efficiency
by Safely Eliminating Load Instruction Execution

arXiv Load Inspector

	Slide 1: ML/AI for Memory System Design & Memory System Design for AI/ML
	Slide 2: The Problem
	Slide 3: Data is Key for AI, ML, Genomics, …
	Slide 4: Huge Demand for Performance & Efficiency
	Slide 5: Huge Demand for Performance & Efficiency
	Slide 6: Data Overwhelms Modern Machines …
	Slide 7
	Slide 8: Data Movement Overwhelms Accelerators
	Slide 9: Example Energy Breakdowns
	Slide 10: Axiom
	Slide 11: Corollaries: Computing Systems Today …
	Slide 12: Architectures for Intelligent Machines
	Slide 13: A Blueprint for Fundamentally Better Architectures
	Slide 14: Our Goals: ML-Memory System Duo
	Slide 15: Two Major Directions
	Slide 16: Data-Driven (Self-Optimizing) Architectures
	Slide 17: System Architecture Design Today
	Slide 18: An Intelligent Architecture
	Slide 19: Self-Optimizing Memory Controllers
	Slide 20: Self-Optimizing Memory Prefetchers
	Slide 21: Learning-Based Off-Chip Load Predictors
	Slide 22: Self-Optimizing Hybrid SSD Controllers
	Slide 23: A Blueprint for Fundamentally Better Architectures
	Slide 24: Fundamentally Better Architectures
	Slide 25: Pythia: Prefetching using Reinforcement Learning
	Slide 26: Self-Optimizing Memory Prefetchers
	Slide 27
	Slide 28
	Slide 29: Lack of In-silicon Customizability
	Slide 30: Our Goal
	Slide 31: Our Proposal
	Slide 32: Basics of Reinforcement Learning (RL)
	Slide 33: Formulating Prefetching as RL
	Slide 34: What is State?
	Slide 35: What is Action?
	Slide 36: What is Reward?
	Slide 37: What is Reward?
	Slide 38: Steering Pythia’s Objective via Reward Values
	Slide 39: Steering Pythia’s Objective via Reward Values
	Slide 40: Basic Pythia Configuration
	Slide 41: More Detailed Pythia Overview
	Slide 42: Simulation Methodology
	Slide 43: Performance with Varying Core Count
	Slide 44: Performance with Varying Core Count
	Slide 45: Performance with Varying DRAM Bandwidth
	Slide 46: Performance with Varying DRAM Bandwidth
	Slide 47: Performance Improvement via Customization
	Slide 48: Performance Improvement via Customization
	Slide 49: Pythia’s Overhead
	Slide 50: Pythia is Open Source
	Slide 51: Pythia Talk Video
	Slide 52: A Lot More in the Pythia Paper
	Slide 53
	Slide 54: Hermes: Perceptron-Based Off-Chip Load Prediction
	Slide 55: Learning-Based Off-Chip Load Predictors
	Slide 56: Hermes Talk Video
	Slide 57
	Slide 58: Problem
	Slide 59: Traditional Solutions
	Slide 60: Key Observation 1
	Slide 61: Key Observation 2
	Slide 62: Caches are Getting Bigger and Slower…
	Slide 63: Our Goal
	Slide 64
	Slide 65: Hermes: Key Contribution
	Slide 66: Hermes Overview
	Slide 67: Hermes Overview
	Slide 68: Designing the Off-Chip Load Predictor
	Slide 69: POPET: Perceptron-Based Off-Chip Predictor
	Slide 70: Predicting using POPET
	Slide 71: Training POPET
	Slide 72: Evaluation
	Slide 73: Simulation Methodology
	Slide 74: Single-Core Performance Improvement
	Slide 75: Increase in Main Memory Requests
	Slide 76: Performance with Varying Memory Bandwidth
	Slide 77: Performance with Varying Baseline Prefetcher
	Slide 78: Overhead of Hermes
	Slide 79: A Lot More in the Hermes Paper
	Slide 80: A New Approach to Latency Reduction
	Slide 81: Hermes: Summary
	Slide 82: Hermes is Open Source
	Slide 83: Easy To Define Your Own Off-Chip Predictor
	Slide 84: Easy To Define Your Own Off-Chip Predictor
	Slide 85: Off-Chip Prediction Can Further Enable…
	Slide 86: Learning-Based Off-Chip Load Predictors
	Slide 87: Hermes Talk Video
	Slide 88
	Slide 89: Reinforcement Learning Based DRAM Controllers
	Slide 90: DRAM Controller: Functions
	Slide 91: Why Are DRAM Controllers Difficult to Design?
	Slide 92: Many DRAM Timing Constraints
	Slide 93: More on DRAM Operation
	Slide 94: DRAM Scheduling Policies (I)
	Slide 95: DRAM Scheduling Policies (II)
	Slide 96: Memory Performance Attacks [USENIX SEC’07]
	Slide 97: STFM [MICRO’07]
	Slide 98: PAR-BS [ISCA’08]
	Slide 99: On PAR-BS
	Slide 100: ATLAS Memory Scheduler [HPCA’10]
	Slide 101: Thread Cluster Memory Scheduling [MICRO’10]
	Slide 102: BLISS [ICCD’14, TPDS’16]
	Slide 103: Staged Memory Scheduling: CPU-GPU [ISCA’12]
	Slide 104: DASH: Heterogeneous Systems [TACO’16]
	Slide 105: MISE: Predictable Performance [HPCA’13]
	Slide 106: ASM: Predictable Performance [MICRO’15]
	Slide 107: The Future
	Slide 108: Memory Control is Getting More Complex
	Slide 109: Reality and Dream
	Slide 110: Self-Optimizing DRAM Controllers
	Slide 111: Self-Optimizing DRAM Controllers
	Slide 112: Self-Optimizing DRAM Controllers
	Slide 113: Self-Optimizing DRAM Controllers
	Slide 114: States, Actions, Rewards
	Slide 115: Performance Results
	Slide 116: Self Optimizing DRAM Controllers
	Slide 117: More on Self-Optimizing DRAM Controllers (I)
	Slide 118: More on Self-Optimizing DRAM Controllers (II)
	Slide 119: The Future
	Slide 120: Sibyl: Reinforcement Learning based Data Placement in Hybrid SSDs
	Slide 121: Self-Optimizing Hybrid SSD Controllers
	Slide 122
	Slide 123: Executive Summary
	Slide 124: Hybrid Storage System Basics
	Slide 125: Hybrid Storage System Basics
	Slide 126: Key Shortcomings in Prior Techniques
	Slide 127: Lack of Extensibility (1/2)
	Slide 128: Lack of Extensibility (2/2)
	Slide 129: Our Goal
	Slide 130: Our Proposal
	Slide 131: Basics of Reinforcement Learning (RL)
	Slide 132: Formulating Data Placement as RL
	Slide 133: What is State?
	Slide 134: What is Reward?
	Slide 135: What is Action?
	Slide 136: Talk Outline
	Slide 137: Sibyl Execution
	Slide 138: Sibyl Design: Overview
	Slide 139: RL Decision Thread
	Slide 140: RL Decision Thread
	Slide 141: RL Decision Thread
	Slide 142: RL Decision Thread
	Slide 143: RL Decision Thread
	Slide 144: RL Training Thread
	Slide 145: Periodic Weight Transfer
	Slide 146: Evaluation Methodology (1/3)
	Slide 147: Evaluation Methodology (2/3)
	Slide 148: Evaluation Methodology (3/3)
	Slide 149: Performance Analysis
	Slide 150: Performance Analysis
	Slide 151: Performance Analysis
	Slide 152: Performance Analysis
	Slide 153: Performance Analysis
	Slide 154: Performance on Tri-HSS
	Slide 155: Performance on Tri-HSS
	Slide 156: Performance on Tri-HSS
	Slide 157: Sibyl’s Overhead
	Slide 158: More in the Paper (1/3)
	Slide 159: More in the Paper (2/3)
	Slide 160: More in the Paper (3/3)
	Slide 161: Conclusion
	Slide 162: Major Directions
	Slide 163: ISCA 2022 Paper, Slides, Videos
	Slide 164: SSD Course (Spring 2023)
	Slide 165: Comp Arch (Fall 2021)
	Slide 166: Two Major Directions
	Slide 167: Goal: Processing Inside Memory/Storage
	Slide 168: Why In-Memory Computation Today?
	Slide 169: Processing-in-Memory: Nature of Computation
	Slide 170: A PIM Taxonomy
	Slide 171: Mindset: Memory as an Accelerator
	Slide 172: Accelerating Neural Network Inference
	Slide 173: Google Neural Network Models for Edge Devices: Analyzing and Mitigating Machine Learning Inference Bottlenecks
	Slide 174: Executive Summary
	Slide 175: Google Edge Neural Network Models
	Slide 176: Diversity Across the Models
	Slide 177: Diversity Within the Models
	Slide 178: Mensa High-Level Overview
	Slide 179: Identifying Layer Families
	Slide 180: Mensa: Energy Reduction
	Slide 181: Mensa: Throughput Improvement
	Slide 182: Mensa: Highly-Efficient ML Inference
	Slide 183: Accelerating In-Memory Graph Analytics
	Slide 184: Key Bottlenecks in Graph Processing
	Slide 185: Opportunity: 3D-Stacked Logic+Memory
	Slide 186: Tesseract System for Graph Processing
	Slide 187: Tesseract System for Graph Processing
	Slide 188: Tesseract System for Graph Processing
	Slide 189: Evaluated Systems
	Slide 190: Tesseract Graph Processing Performance
	Slide 191: Tesseract Graph Processing System Energy
	Slide 192: More on Tesseract
	Slide 193: A Short Retrospective @ 50 Years of ISCA
	Slide 194: Accelerating Graph Pattern Mining
	Slide 195: Processing using DRAM
	Slide 196: Background Work: RowClone
	Slide 197: Background Work: PiDRAM
	Slide 198: Background Work: In-DRAM Bulk AND/OR
	Slide 199: Background Work: Ambit
	Slide 200: Background: In-DRAM Bulk Bitwise Execution
	Slide 201: Background: SIMDRAM Framework
	Slide 202: In-DRAM Lookup-Table Based Execution
	Slide 203: MIMDRAM: More Flexible Processing using DRAM
	Slide 204: MIMDRAM: Executive Summary
	Slide 205: Real DRAM Chips Are Already Quite Capable: FC-DRAM & SiMRA
	Slide 206: DRAM Chips Are Already (Quite) Capable!
	Slide 207: DRAM Chips Are Already (Quite) Capable!
	Slide 208: DRAM Chips Are Already (Quite) Capable!
	Slide 209: The Capability of COTS DRAM Chips
	Slide 210: Finding: SiMRA Across Subarrays
	Slide 211: Key Idea: NOT Operation
	Slide 212: Key Idea: NAND, NOR, AND, OR
	Slide 213: Two-Input AND and NAND Operations
	Slide 214: Two-Input AND and NAND Operations
	Slide 215: Two-Input AND and NAND Operations
	Slide 216: Two-Input AND and NAND Operations
	Slide 217: Two-Input AND and NAND Operations
	Slide 218: Two-Input AND and NAND Operations
	Slide 219: Many-Input AND, NAND, OR, and NOR Operations
	Slide 220: DRAM Testing Infrastructure
	Slide 221: DRAM Chips Tested
	Slide 222: Performing AND, NAND, OR, and NOR
	Slide 223: Performing AND, NAND, OR, and NOR
	Slide 224: Impact of Data Pattern
	Slide 225: Impact of Data Pattern
	Slide 226: Impact of Data Pattern
	Slide 227: Available on arXiv
	Slide 228: Summary
	Slide 229: Simultaneous Many-Row Activation in Off-the-Shelf DRAM Chips Experimental Characterization and Analysis
	Slide 230: In-DRAM Multiple Row Copy (Multi-RowCopy)
	Slide 231: Key Takeaways from Multi-RowCopy
	Slide 232: Robustness of Multi-RowCopy
	Slide 233: Impact of Data Pattern
	Slide 234: Also in the Paper: Impact of Temperature & Voltage
	Slide 235: Available on arXiv
	Slide 236: Our Work is Open Source and Artifact Evaluated
	Slide 237: PIM Review and Open Problems
	Slide 238: PIM Review and Open Problems (II)
	Slide 239: Processing in Memory: Adoption Challenges
	Slide 240: Eliminating the Adoption Barriers
	Slide 241: Potential Barriers to Adoption of PIM
	Slide 242: We Need to Revisit the Entire Stack
	Slide 243: Processing-in-Memory Landscape Today
	Slide 244: Adoption: How to Keep It Simple?
	Slide 245: Adoption: How to Keep It Simple?
	Slide 246: Adoption: How to Ease Programmability? (I)
	Slide 247: Truly Distributed GPU Processing with PIM
	Slide 248: Adoption: How to Ease Programmability? (II)
	Slide 249: Adoption: How to Ease Programmability? (III)
	Slide 250: Adoption: How to Ease Programmability? (IV)
	Slide 251: Adoption: How to Ease Programmability? (V)
	Slide 252: Adoption: How to Maintain Coherence? (I)
	Slide 253: Challenge: Coherence for Hybrid CPU-PIM Apps
	Slide 254: Adoption: How to Maintain Coherence? (II)
	Slide 255: Adoption: How to Support Synchronization?
	Slide 256: Adoption: How to Support Virtual Memory?
	Slide 257: Adoption: Evaluation Infrastructures
	Slide 258: Processing-in-Memory: Challenges
	Slide 259: An Example: SimplePIM Framework
	Slide 260: Executive Summary
	Slide 261: Concluding Remarks
	Slide 262: Challenge and Opportunity for Future
	Slide 263: Challenge and Opportunity for Future
	Slide 264: Challenge and Opportunity for Future
	Slide 265: Concluding Remarks
	Slide 266: Fundamentally Better Architectures
	Slide 267: We Need to Revisit the Entire Stack
	Slide 268: PIM Review and Open Problems
	Slide 269: Referenced Papers, Talks, Artifacts
	Slide 270: Acknowledgments
	Slide 271
	Slide 272: SAFARI Research Group: December 2021
	Slide 273: SAFARI Newsletter June 2023 Edition
	Slide 274: SAFARI Newsletter July 2024 Edition
	Slide 275
	Slide 276: Open Source Tools: SAFARI GitHub
	Slide 277: ML/AI for Memory System Design & Memory System Design for AI/ML
	Slide 278: Backup Slides
	Slide 279: Processing-in-Memory: Challenges
	Slide 280: Security Issues in Processing in Memory
	Slide 281: MIMDRAM
	Slide 282: MIMDRAM: More Flexible Processing using DRAM
	Slide 283: Processing-in-Memory: Challenges
	Slide 284
	Slide 285: Executive Summary
	Slide 286: Recall: Processing using DRAM
	Slide 287: Background Work: RowClone
	Slide 288: Background Work: PiDRAM
	Slide 289: Background Work: In-DRAM Bulk AND/OR
	Slide 290: Background Work: Ambit
	Slide 291: Background: In-DRAM Bulk Bitwise Execution
	Slide 292: Recall: SIMDRAM Framework
	Slide 293: Background: In-DRAM Copy/Init, Majority & NOT Operations
	Slide 294: Background: In-DRAM Majority Operations
	Slide 295: Limitations of PUD Systems: Overview
	Slide 296: Limitations of PUD Systems: Challenging Programming Model
	Slide 297: Limitations of PUD Systems: Challenging Programming Model
	Slide 298: Limitations of PUD Systems: Challenging Programming Model
	Slide 299: Limitations of PUD Systems: Challenging Programming Model
	Slide 300: Limitations of PUD Systems: Challenging Programming Model
	Slide 301: Problem & Goal
	Slide 302: MIMDRAM: Key Idea (I)
	Slide 303: MIMDRAM: Key Idea (II)
	Slide 304: Sectored DRAM
	Slide 305: MIMDRAM: Key Idea (III)
	Slide 306: MIMDRAM: Key Idea (III)
	Slide 307: MIMDRAM: Key Idea (III)
	Slide 308: MIMDRAM: Key Idea (III)
	Slide 309: MIMDRAM: Compiler Support (I)
	Slide 310: MIMDRAM: Compiler Support (II)
	Slide 311: MIMDRAM: Compiler Support (II)
	Slide 312: MIMDRAM: Compiler Support (III)
	Slide 313: MIMDRAM: System Support
	Slide 314: Evaluation: Methodology Overview
	Slide 315: Evaluation: Single Application Analysis – Energy Efficiency
	Slide 316: Evaluation: Multi-Programmed Workload Analysis
	Slide 317: Evaluation: More in the Paper
	Slide 318: MIMDRAM: Summary
	Slide 319: Two Other Works on PIM Programmability
	Slide 320: Adoption: How to Ease Programmability? (I)
	Slide 321: Adoption: How to Ease Programmability? (II)
	Slide 322: SimplePIM
	Slide 323: Adoption: How to Ease Programmability? (II)
	Slide 324
	Slide 325: Executive Summary
	Slide 326: Real DRAM Chips Are Already Quite Capable: FC-DRAM & SiMRA
	Slide 327: DRAM Chips Are Already (Quite) Capable!
	Slide 328: DRAM Chips Are Already (Quite) Capable!
	Slide 329: DRAM Chips Are Already (Quite) Capable!
	Slide 330: The Capability of COTS DRAM Chips
	Slide 331: Finding: SiMRA Across Subarrays
	Slide 332: Key Idea: NOT Operation
	Slide 333: Key Idea: NAND, NOR, AND, OR
	Slide 334: Two-Input AND and NAND Operations
	Slide 335: Two-Input AND and NAND Operations
	Slide 336: Two-Input AND and NAND Operations
	Slide 337: Two-Input AND and NAND Operations
	Slide 338: Two-Input AND and NAND Operations
	Slide 339: Two-Input AND and NAND Operations
	Slide 340: Many-Input AND, NAND, OR, and NOR Operations
	Slide 341: DRAM Testing Infrastructure
	Slide 342: DRAM Chips Tested
	Slide 343: Performing AND, NAND, OR, and NOR
	Slide 344: Performing AND, NAND, OR, and NOR
	Slide 345: Impact of Data Pattern
	Slide 346: Impact of Data Pattern
	Slide 347: Impact of Data Pattern
	Slide 348: More in the Paper
	Slide 349: Available on arXiv
	Slide 350: Summary
	Slide 351: Simultaneous Many-Row Activation in Off-the-Shelf DRAM Chips Experimental Characterization and Analysis
	Slide 352: Executive Summary
	Slide 353: Leveraging Simultaneous Many-Row Activation
	Slide 354: In-DRAM Multiple Row Copy (Multi-RowCopy)
	Slide 355: Key Takeaways from Multi-RowCopy
	Slide 356: Robustness of Multi-RowCopy
	Slide 357: Impact of Data Pattern
	Slide 358: Also in the Paper: Impact of Temperature & Voltage
	Slide 359: More in the Paper
	Slide 360: Available on arXiv
	Slide 361: Our Work is Open Source and Artifact Evaluated
	Slide 362: MegIS: Metagenomics In Storage
	Slide 363: Background: GenStore
	Slide 364: MegIS High-Performance, Energy-Efficient, and Low-Cost Metagenomic Analysis with In-Storage Processing
	Slide 365: What is Metagenomics?
	Slide 366: What is Metagenomics?
	Slide 367: Metagenomic Analysis
	Slide 368: Motivation
	Slide 369: Motivation
	Slide 370: I/O Overhead is Hard to Avoid
	Slide 371: Our Goal
	Slide 372: Challenges of In-Storage Processing
	Slide 373: MegIS: Metagenomics In-Storage
	Slide 374: MegIS’s Steps
	Slide 375: MegIS Hardware-Software Co-Design
	Slide 376: MegIS Hardware-Software Co-Design
	Slide 377: MegIS Hardware-Software Co-Design
	Slide 378: MegIS Hardware-Software Co-Design
	Slide 379: MegIS Hardware-Software Co-Design
	Slide 380: MegIS Hardware-Software Co-Design
	Slide 381: Evaluation: Methodology Overview
	Slide 382: Evaluation: Speedup over the Software Baselines
	Slide 383: Evaluation: Speedup over the Software Baselines
	Slide 384: Evaluation: Speedup over the PIM Baseline
	Slide 385: Evaluation: Reduction in Energy Consumption
	Slide 386: Evaluation: Accuracy, Area, and Power
	Slide 387: Evaluation: System Cost-Efficiency
	Slide 388: Evaluation: System Cost-Efficiency
	Slide 389: More in the Paper
	Slide 390: More in the Paper
	Slide 391: Conclusion
	Slide 392: Homomorphic Operations on Real PIM Systems
	Slide 393: Homomorphic Operations on Real PIM Systems
	Slide 394: Side Channels on PIM Systems
	Slide 395: PIM Amplifies Covert & Side Channels
	Slide 396: Distributed ML Training on Real PIM Systems
	Slide 397: Accelerating ML Training on Real PIM Systems
	Slide 398: Reinforcement Learning on Real PIM Systems
	Slide 399: SwiftRL
	Slide 400: SwiftRL: Summary
	Slide 401: MATSA
	Slide 402: MATSA
	Slide 403: ApHMM
	Slide 404: ApHMM
	Slide 405: Executive Summary
	Slide 406: RUBICON
	Slide 407: RUBICON
	Slide 408: Utopia
	Slide 409: Better Virtual Memory: Utopia
	Slide 410: Utopia: Executive Summary
	Slide 411: Victima
	Slide 412: Better Virtual Memory: Victima
	Slide 413: Executive Summary
	Slide 414: Sectored DRAM
	Slide 415: Sectored DRAM
	Slide 416: SimplePIM
	Slide 417: Adoption: How to Ease Programmability? (II)
	Slide 418
	Slide 419: Executive Summary
	Slide 420: A State-of-the-Art PIM System
	Slide 421: Programming a PIM System (I)
	Slide 422: Programming a PIM System (II)
	Slide 423: The SimplePIM Programming Framework
	Slide 424: Management Interface
	Slide 425: The SimplePIM Programming Framework
	Slide 426: Host-to-PIM Communication: Broadcast
	Slide 427: Host-to-PIM Communication: Scatter/Gather
	Slide 428: PIM-PIM Communication: AllReduce
	Slide 429: PIM-PIM Communication: AllGather
	Slide 430: The SimplePIM Programming Framework
	Slide 431: Processing Interface: Map
	Slide 432: Processing Interface: Reduction
	Slide 433: Processing Interface: Zip
	Slide 434: General Code Optimizations
	Slide 435: More in the Paper
	Slide 436: Evaluation Methodology
	Slide 437: Productivity Improvement (I)
	Slide 438: Productivity Improvement (II)
	Slide 439: Productivity Improvement (III)
	Slide 440: Performance Evaluation (I)
	Slide 441: Performance Evaluation (II)
	Slide 442: Discussion
	Slide 443: SimplePIM: arXiv Version
	Slide 444: Source Code
	Slide 445: SimplePIM: Summary
	Slide 446: Constable
	Slide 447
	Slide 448: Key Problem
	Slide 449: Prior Works on Tolerating Load Latency
	Slide 450: Motivation
	Slide 451: Key Finding I: Global-Stable Loads
	Slide 452: Key Finding I: Global-Stable Loads
	Slide 453: In the Paper: Analysis of Global-Stable Loads
	Slide 454: In the Paper: Analysis of Global-Stable Loads
	Slide 455
	Slide 456: Key Finding II: Global-Stable Loads Cause Resource Dependence
	Slide 457: Key Finding II: Global-Stable Loads Cause Resource Dependence
	Slide 458: Key Finding II: Global-Stable Loads Cause Resource Dependence
	Slide 459: Key Finding III: High Performance Headroom
	Slide 460: Load Execution Resources Lag Behind
	Slide 461: Load Execution Resources Lag Behind
	Slide 462: Our Goal
	Slide 463
	Slide 464: Constable: Key Insight
	Slide 465: Constable: Key Insight
	Slide 466: Constable: Key Steps
	Slide 467: Prior Related Literature
	Slide 468: Key Improvements over Literature
	Slide 469: Key Improvements over Literature
	Slide 470: Key Improvements over Literature
	Slide 471: Design Overview
	Slide 472: Constable: Key Steps
	Slide 473: Identify a Likely-Stable Load
	Slide 474: Eliminate a Likely-Stable Load
	Slide 475: Stop Elimination of a Likely-Stable Load
	Slide 476: More in the Paper
	Slide 477: More in the Paper
	Slide 478: Evaluation
	Slide 479: Methodology
	Slide 480: Performance Improvement in noSMT
	Slide 481: Performance Improvement in 2-way SMT
	Slide 482: Performance Improvement in 2-way SMT
	Slide 483: Improvement in Resource Efficiency
	Slide 484: Improvement in Resource Efficiency
	Slide 485: Reduction in Dynamic Power
	Slide 486: Reduction in Dynamic Power
	Slide 487: Area and Power Overhead of Constable’s Own Structures
	Slide 488: More in the Paper
	Slide 489: More in the Paper
	Slide 490: To Summarize...
	Slide 491: Our Key Findings
	Slide 492: Our Proposal
	Slide 493: There’s Still Headroom...
	Slide 494: Open-Source Tool
	Slide 495: Open-Source Tool
	Slide 496

