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The Problem

Computing

is Bottlenecked by Data
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Data is Key for AI, ML, Genomics, …

◼ Important workloads are all data intensive

◼ They require rapid and efficient processing of large amounts 

of data

◼ Data is increasing

❑ We can generate more than we can process

❑ We need to perform more sophisticated analyses on more data
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Huge Demand for Performance & Efficiency

4Source: https://youtu.be/Bh13Idwcb0Q?t=283



Huge Demand for Performance & Efficiency
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development of new 
sequencing technologies

http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped 

Number of Genomes 
Sequenced

Oxford Nanopore MinION

http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped


Data Overwhelms Modern Machines …

◼ Storage/memory capability

◼ Communication capability

◼ Computation capability

◼ Greatly impacts robustness, energy, performance, cost
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◼ Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul 
Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming 
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.
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62.7% of the total system energy 
is spent on data movement

Data Movement Overwhelms Modern Machines 

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/
https://www.asplos2018.org/


Data Movement Overwhelms Accelerators
◼ Amirali Boroumand, Saugata Ghose, Berkin Akin, Ravi Narayanaswami, Geraldo F. Oliveira, 

Xiaoyu Ma, Eric Shiu, and Onur Mutlu,
"Google Neural Network Models for Edge Devices: Analyzing and Mitigating Machine 
Learning Inference Bottlenecks"
Proceedings of the 30th International Conference on Parallel Architectures and Compilation 
Techniques (PACT), Virtual, September 2021.
[Slides (pptx) (pdf)]
[Talk Video (14 minutes)]
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> 90% of the total system energy 
is spent on memory in large ML models

https://arxiv.org/pdf/2109.14320 

https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21.pdf
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21.pdf
http://pactconf.org/
http://pactconf.org/
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21-talk.pdf
https://www.youtube.com/watch?v=A5gxjDbLRAs&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=178
https://arxiv.org/pdf/2109.14320
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Example Energy Breakdowns

In LSTMs and Transducers used by Google, 

>90% energy spent on off-chip interconnect and DRAM 

https://arxiv.org/pdf/2109.14320 

https://arxiv.org/pdf/2109.14320


Axiom

An Intelligent Architecture

Handles Data Well
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Corollaries: Computing Systems Today …

◼ Are processor-centric vs. data-centric

◼ Make designer-dictated decisions vs. data-driven

◼ Make component-based myopic decisions vs. data-aware
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Architectures for Intelligent Machines

Data-centric

Data-driven

Data-aware
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A Blueprint for Fundamentally Better Architectures

◼ Onur Mutlu,
"Intelligent Architectures for Intelligent Computing Systems"
Invited Paper in Proceedings of the Design, Automation, and Test in 
Europe Conference (DATE), Virtual, February 2021.
[Slides (pptx) (pdf)]
[IEDM Tutorial Slides (pptx) (pdf)]
[Short DATE Talk Video (11 minutes)]
[Longer IEDM Tutorial Video (1 hr 51 minutes)]
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https://people.inf.ethz.ch/omutlu/pub/intelligent-architectures-for-intelligent-computingsystems-invited_paper_DATE21.pdf
http://www.date-conference.com/
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-DATE-InvitedTalk-IntelligentArchitecturesForIntelligentComputingSystems-January-22-2021.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-DATE-InvitedTalk-IntelligentArchitecturesForIntelligentComputingSystems-January-22-2021.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://www.youtube.com/watch?v=eAZZGDlsDAY
https://www.youtube.com/watch?v=H3sEaINPBOE


Our Goals: ML-Memory System Duo

1. Memory system design for AI/ML workloads/accelerators

 → in-depth exploration of memory system designs for 

cutting-edge and emerging machine learning accelerators 

 → more efficient on-chip and off-chip memory systems

2. AI/ML techniques for improving memory system designs

 → comprehensive look at memory system design to make 

it data driven, i.e., based on machine learning 

 → more effective cache/memory/prefetch/thread 

controllers and data/resource management/mapping/scheduling 
policies

14



Two Major Directions

1. Memory system design for AI/ML workloads/accelerators

 

2. AI/ML techniques for improving memory system designs

 

15



Data-Driven (Self-Optimizing) 

Architectures

16



System Architecture Design Today

◼ Human-driven

❑ Humans design the policies (how to do things)

◼ Many (too) simple, short-sighted policies all over the system

◼ No automatic data-driven policy learning

◼ (Almost) no learning: cannot take lessons from past actions

17

Can we design 
fundamentally intelligent architectures?



An Intelligent Architecture

◼ Data-driven

❑ Machine learns the “best” policies (how to do things)

◼ Sophisticated, workload-driven, changing, far-sighted policies

◼ Automatic data-driven policy learning

◼ All controllers are intelligent data-driven agents

18

We need to rethink design 
(of all controllers)



Self-Optimizing Memory Controllers

◼ Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana, 
"Self Optimizing Memory Controllers: A Reinforcement Learning 
Approach"
Proceedings of the 35th International Symposium on Computer Architecture 
(ISCA), pages 39-50, Beijing, China, June 2008.                                
Selected to the ISCA-50 25-Year Retrospective Issue covering 1996-
2020 in 2023 (Retrospective (pdf) Full Issue).
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http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/
https://sites.coecis.cornell.edu/isca50retrospective/files/2023/06/Retrospective__RL.pdf
https://sites.coecis.cornell.edu/isca50retrospective/


Self-Optimizing Memory Prefetchers

20

Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu,

"Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, October 2021.

[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]

[Lightning Talk Slides (pptx) (pdf)]

[Talk Video (20 minutes)]
[Lightning Talk Video (1.5 minutes)]

[Pythia Source Code (Officially Artifact Evaluated with All Badges)]
[arXiv version]

Officially artifact evaluated as available, reusable and reproducible.

https://arxiv.org/pdf/2109.12021.pdf 

https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=7
https://www.youtube.com/watch?v=kzL22FTz0vc&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=2
https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/abs/2109.12021
https://arxiv.org/pdf/2109.12021.pdf


Learning-Based Off-Chip Load Predictors
◼ Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk Olgun, 

Mohammad Sadrosadati, and Onur Mutlu,
"Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load 
Prediction"
Proceedings of the 55th International Symposium on Microarchitecture (MICRO), Chicago, IL, USA, 
October 2022.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Talk Video (12 minutes)]
[Lecture Video (25 minutes)]
[arXiv version]
[Source Code (Officially Artifact Evaluated with All Badges)]
Officially artifact evaluated as available, reusable and reproducible.
Best paper award at MICRO 2022.

21https://arxiv.org/pdf/2209.00188.pdf 

https://arxiv.org/pdf/2209.00188.pdf
https://arxiv.org/pdf/2209.00188.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pdf
https://www.youtube.com/watch?v=afGc1pWr-_Y
https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s
https://arxiv.org/abs/2209.00188
https://github.com/CMU-SAFARI/Hermes
https://arxiv.org/pdf/2209.00188.pdf


Self-Optimizing Hybrid SSD Controllers

Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar, 
David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu,
"Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage 
Systems Using Online Reinforcement Learning"
Proceedings of the 49th International Symposium on Computer 
Architecture (ISCA), New York, June 2022.
[Slides (pptx) (pdf)]
[arXiv version]
[Sibyl Source Code]
[Talk Video (16 minutes)]

22https://arxiv.org/pdf/2205.07394.pdf 

https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
http://iscaconf.org/isca2022/
http://iscaconf.org/isca2022/
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pdf
https://arxiv.org/pdf/2205.07394.pdf
https://github.com/CMU-SAFARI/Sibyl
https://www.youtube.com/watch?v=5-WedkiB000
https://arxiv.org/pdf/2205.07394.pdf


A Blueprint for Fundamentally Better Architectures

◼ Onur Mutlu,
"Intelligent Architectures for Intelligent Computing Systems"
Invited Paper in Proceedings of the Design, Automation, and Test in 
Europe Conference (DATE), Virtual, February 2021.
[Slides (pptx) (pdf)]
[IEDM Tutorial Slides (pptx) (pdf)]
[Short DATE Talk Video (11 minutes)]
[Longer IEDM Tutorial Video (1 hr 51 minutes)]
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https://people.inf.ethz.ch/omutlu/pub/intelligent-architectures-for-intelligent-computingsystems-invited_paper_DATE21.pdf
http://www.date-conference.com/
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-DATE-InvitedTalk-IntelligentArchitecturesForIntelligentComputingSystems-January-22-2021.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-DATE-InvitedTalk-IntelligentArchitecturesForIntelligentComputingSystems-January-22-2021.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://www.youtube.com/watch?v=eAZZGDlsDAY
https://www.youtube.com/watch?v=H3sEaINPBOE


Fundamentally Better Architectures

Data-centric

Data-driven

Data-aware

24



Pythia: Prefetching using

Reinforcement Learning 

25



Self-Optimizing Memory Prefetchers
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Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu,

"Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, October 2021.

[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]

[Lightning Talk Slides (pptx) (pdf)]

[Talk Video (20 minutes)]
[Lightning Talk Video (1.5 minutes)]

[Pythia Source Code (Officially Artifact Evaluated with All Badges)]
[arXiv version]

Officially artifact evaluated as available, reusable and reproducible.

https://arxiv.org/pdf/2109.12021.pdf 

https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=7
https://www.youtube.com/watch?v=kzL22FTz0vc&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=2
https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/abs/2109.12021
https://arxiv.org/pdf/2109.12021.pdf


Rahul Bera,  Konstantinos Kanellopoulos,  Anant V. Nori,
Taha Shahroodi,  Sreenivas Subramoney,  Onur Mutlu

Pythia
A Customizable Hardware Prefetching Framework 

Using Online Reinforcement Learning

https://github.com/CMU-SAFARI/Pythia

https://github.com/CMU-SAFARI/Pythia
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Mainly use one 
program context info. 

for prediction

Lack inherent system 
awareness

Lack in-silicon 
customizability

1 2 3

Why do prefetchers 
not perform well?
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Lack of In-silicon Customizability
• Feature statically selected at design time

- Rigid hardware designed specifically to exploit that feature

• No way to change program feature and/or change 
prefetcher’s objective in silicon

- Cannot adapt to a wide range of workload demands

Design from scratch Verify Fabricate
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Our Goal

A prefetching framework that can:

1.Learn to prefetch using multiple features and 
inherent system-level feedback information

2.Be easily customized in silicon to use different 
features and/or change prefetcher’s objectives
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Our Proposal

Pythia
Formulates prefetching as a 

reinforcement learning problem

Pythia is named after the oracle of Delphi, who is known for her accurate prophecies
https://en.wikipedia.org/wiki/Pythia
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Basics of Reinforcement Learning (RL)
• Algorithmic approach to learn to take an action in a 

given situation to maximize a numerical reward

• Agent stores Q-values for every state-action pair
- Expected return for taking an action in a state

- Given a state, selects action that provides highest Q-value



33

Formulating Prefetching as RL
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What is State?
• k-dimensional vector of features

• Feature = control-flow + data-flow

• Control-flow examples
- PC
- Branch PC
- Last-3 PCs, …

• Data-flow examples
- Cacheline address
- Physical page number
- Delta between two cacheline addresses
- Last 4 deltas, …
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What is Action?
Given a demand access to address A

the action is to select prefetch offset “O”

• Action-space: 127 actions in the range [-63, +63] 

- For a machine with 4KB page and 64B cacheline

• Upper and lower limits ensure prefetches do not cross 
physical page boundary

• A zero offset means no prefetch is generated

• We further prune action-space by design-space exploration
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What is Reward?
• Defines the objective of Pythia

• Encapsulates two metrics:
- Prefetch usefulness (e.g., accurate, late, out-of-page, …)

- System-level feedback (e.g., mem. b/w usage, cache 
pollution, energy, …)

• We demonstrate Pythia with memory bandwidth 
usage as the system-level feedback in the paper
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What is Reward?
• Seven distinct reward levels

- Accurate and timely (RAT)

- Accurate but late (RAL)

- Loss of coverage (RCL)

- Inaccurate
• With low memory b/w usage (RIN-L)

• With high memory b/w usage (RIN-H)

- No-prefetch
• With low memory b/w usage (RNP-L)

• With high memory b/w usage(RNP-H)

• Values are set at design time via automatic design-
space exploration

- Can be customized further in silicon for higher performance
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Steering Pythia’s Objective via Reward Values

• Example reward configuration for
- Generating accurate prefetches

- Making bandwidth-aware prefetch decisions

+20+12-2-4-8-14

RATRALRNP-HRNP-LRIN-LRIN-H

AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate;
H = High mem. b/w; L = Low mem. b/w

Highly prefers to generate accurate prefetches

Prefers not to prefetch if memory bandwidth usage is low

Strongly prefers not to prefetch if memory bandwidth usage is high

1
2
3
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Steering Pythia’s Objective via Reward Values

• Customizing reward values to make Pythia conservative 
towards prefetching

+20+12+2+1-20-22

RATRALRNP-HRNP-LRIN-LRIN-H

AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate;
H = High mem. b/w; L = Low mem. b/w

Highly prefers to generate accurate prefetches1
Otherwise prefers not to prefetch2
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Basic Pythia Configuration
• Derived from automatic design-space exploration

• State: 2 features
- PC+Delta

- Sequence of last-4 deltas

• Actions: 16 prefetch offsets
- Ranging between -6 to +32. Including 0.

• Rewards:
- RAT = +20; RAL = +12; RNP-H=-2; RNP-L=-4;

- RIN-H=-14; RIN-L=-8; RCL=-12
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More Detailed Pythia Overview
• Q-Value Store: Records Q-values for all state-action pairs

• Evaluation Queue: A FIFO queue of recently-taken actions

Evaluation Queue (EQ)

Demand 
Request

1

Assign reward to 
corresponding EQ entry

Look up 
QVStoreState

Vector

Q-Value Store
(QVStore)

2

3

5

Insert prefetch action & 
State-Action pair in EQ

6

Prefetch Fill 

A1 A2 A3

Memory 
Hierarchy

Generate
prefetch

Evict EQ entry and 
update QVStore

4

Find the Action with max Q-Value

7

S1

S2

S3

S4

Set filled bit

Max



42

Simulation Methodology
• Champsim [3] trace-driven simulator

• 150 single-core memory-intensive workload traces
- SPEC CPU2006 and CPU2017
- PARSEC 2.1
- Ligra
- Cloudsuite

• Homogeneous and heterogeneous multi-core mixes

• Five state-of-the-art prefetchers
- SPP [Kim+, MICRO’16]

- Bingo [Bakhshalipour+, HPCA’19]

- MLOP [Shakerinava+, 3rd Prefetching Championship, 2019 ]

- SPP+DSPatch [Bera+, MICRO’19]

- SPP+PPF [Bhatia+, ISCA’20]

[3] https://github.com/ChampSim/ChampSim

https://github.com/ChampSim/ChampSim
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1. Pythia consistently provides the highest 
performance in all core configurations

2. Pythia’s gain increases with core count
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3.1%
2.8% 3.4%

7.8%

5.2%

2%Pythia can extract even higher performance 
via customization without changing hardware
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Pythia’s Overhead
• 25.5 KB of total metadata storage per core

- Only simple tables

• We also model functionally-accurate Pythia with full 
complexity in Chisel [4] HDL

1.03% area overhead

Satisfies prediction latency

0.4% power overhead

of a desktop-class 4-core Skylake processor (Xeon D2132IT, 60W)
[4] https://www.chisel-lang.org

https://www.chisel-lang.org/
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Pythia is Open Source
https://github.com/CMU-SAFARI/Pythia

•MICRO’21 artifact evaluated

• Champsim source code + Chisel modeling code

• All traces used for evaluation

https://github.com/CMU-SAFARI/Pythia


Pythia Talk Video

https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=8 

https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=8


A Lot More in the Pythia Paper
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Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu,

"Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, October 2021.

[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]

[Lightning Talk Slides (pptx) (pdf)]

[Talk Video (20 minutes)]
[Lightning Talk Video (1.5 minutes)]

[Pythia Source Code (Officially Artifact Evaluated with All Badges)]
[arXiv version]

Officially artifact evaluated as available, reusable and reproducible.

https://arxiv.org/pdf/2109.12021.pdf 

https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=7
https://www.youtube.com/watch?v=kzL22FTz0vc&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=2
https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/abs/2109.12021
https://arxiv.org/pdf/2109.12021.pdf


Rahul Bera,  Konstantinos Kanellopoulos,  Anant V. Nori,
Taha Shahroodi,  Sreenivas Subramoney,  Onur Mutlu

Pythia
A Customizable Hardware Prefetching Framework 

Using Online Reinforcement Learning

https://github.com/CMU-SAFARI/Pythia

https://github.com/CMU-SAFARI/Pythia


Hermes: Perceptron-Based 

Off-Chip Load Prediction 
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Learning-Based Off-Chip Load Predictors
◼ Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk Olgun, 

Mohammad Sadrosadati, and Onur Mutlu,
"Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load 
Prediction"
Proceedings of the 55th International Symposium on Microarchitecture (MICRO), Chicago, IL, USA, 
October 2022.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Talk Video (12 minutes)]
[Lecture Video (25 minutes)]
[arXiv version]
[Source Code (Officially Artifact Evaluated with All Badges)]
Officially artifact evaluated as available, reusable and reproducible.
Best paper award at MICRO 2022.

55https://arxiv.org/pdf/2209.00188.pdf 

https://arxiv.org/pdf/2209.00188.pdf
https://arxiv.org/pdf/2209.00188.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pdf
https://www.youtube.com/watch?v=afGc1pWr-_Y
https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s
https://arxiv.org/abs/2209.00188
https://github.com/CMU-SAFARI/Hermes
https://arxiv.org/pdf/2209.00188.pdf


Hermes Talk Video

https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s 

https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s


Rahul Bera,  Konstantinos Kanellopoulos,  Shankar Balachandran,

David Novo,  Ataberk Olgun, Mohammad Sadrosadati,  Onur Mutlu

Accelerating Long-Latency Load Requests 
via Perceptron-Based Off-Chip Load Prediction

https://github.com/CMU-SAFARI/Hermes

https://github.com/CMU-SAFARI/Hermes
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Problem

Long-latency off-chip load requests

Often stall processor by 
blocking instruction retirement from 

Reorder Buffer (ROB)

Limit performance
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Traditional Solutions

Employ sophisticated prefetchers
1

Increase size of on-chip caches2
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Key Observation 1

50% 
successfully prefetched

# off-chip loads without any prefetcher

50% 

still go off-chip even with 
a state-of-the-art prefetcher

70% of the off-chip loads 

block the ROB

Many loads still go off-chip 



61

40% of the stalls can be eliminated by removing 

on-chip cache access latency from critical path

Key Observation 2

On-chip cache access latency 
significantly contributes to off-chip load latency

L1 L2 LLC Main Memory

Saved cycles

50% still go off-chip

L1 L2 LLC Main Memory
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Caches are Getting Bigger and Slower…

Hardavellas+, “Database Servers on Chip Multiprocessors: Limitations and Opportunities”, CIDR, 2007
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Improve processor performance 
by removing on-chip cache access latency 

from the critical path of off-chip loads

Our Goal



Predicts which load requests 
are likely to go off-chip

Starts fetching data directly from main memory 
while concurrently accessing the cache hierarchy
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Hermes: Key Contribution

Hermes employs the first 
perceptron-based off-chip load predictor

That predicts which loads are likely to go off-chip

By learning from 

multiple program context information
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Hermes Overview

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

L1 L2 LLC Main Memory

Baseline Processor is stalled

Latency tolerance limit of ROB
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Hermes Overview

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

L1 L2 LLC Main Memory

POPET

L1 L2 LLC

Main Memory

Baseline

Hermes

Saved stall cycles

Processor is stalled

Latency tolerance limit of ROB

Predict

Issue a  
Hermes 
request

Wait

Train

Perceptron-based 
off-chip load predictor
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Designing the Off-Chip Load Predictor

Tracking cache contents

Learning from program behavior

Large metadata

▪ Metadata size increases with cache hierarchy size

May need to track all cache operations

▪ Gets complex depending on the cache hierarchy 
configuration (e.g., inclusivity, bypassing,…)

Correlate different program features with off-chip loads

MissMap [Loh+, MICRO’11] for the DRAM cache,
D2D [Sembrant+, ISCA’14], D2M [Sembrant+, HPCA’17], LP [Jalili+, HPCA’22] for the cache hierarchy

History-based prediction
HMP [Yoaz+, ISCA’99] for the L1-D cache

Using branch-predictor-like hybrid predictor:
Global, Gshare, and GSkew

Low storage overhead Low design complexity

POPET provides 

both higher accuracy and higher performance 
than predictors inspired from these previous works



69

POPET: Perceptron-Based Off-Chip Predictor

• Multi-feature hashed perceptron model[1]

- Each feature has its own weight table

• Stores correlation between feature value and off-chip prediction

[1] D. Tarjan and K. Skadron, “Merging Path and Gshare Indexing in Perceptron Branch Prediction,” TACO, 2005

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

POPET

Predict

Issue 
Hermes 
request

Wait

Train
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Predicting using POPET

• Uses simple table lookups, addition, and comparison

0x7ffe0+12

42 -4

12

3 3 >= -2

-5

Predict that 
the load 
would go 
off-chip

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

POPET
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Hermes 
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Train
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Training POPET

• Uses simple increment or decrement of feature weights

0x7ffe0+12

42 -4

12

3 3 >= -2

-5

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

POPET

Predict

Issue 
Hermes 
request

Wait

Train

Predict that 
the load 
would go 
off-chip

Shouldn’t be activated

Cumulative weight < 𝜏act

-1

-1

-1



Evaluation
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Simulation Methodology

• ChampSim trace driven simulator

• 110 single-core memory-intensive traces
- SPEC CPU 2006 and 2017

- PARSEC 2.1

- Ligra

- Real-world applications

• 220 eight-core memory-intensive trace mixes

Off-Chip PredictorsLLC Prefetchers

• History-based: HMP [Yoaz+, ISCA’99]

• Tracking-based: Address Tag-

Tracking based Predictor (TTP)

• Ideal Off-chip Predictor

• Pythia [Bera+, MICRO’21]

• Bingo [Bakshalipour+, HPCA’19]

• MLOP [Shakerinava+, 3rd Prefetching Championship’19]

• SPP + Perceptron filter [Bhatia+, ISCA’20]

• SMS [Somogyi+, ISCA’06]
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Single-Core Performance Improvement
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20.3%
5.4%

Hermes alone provides nearly 

50% performance benefits of Pythia 

with only 1/5th storage overhead

Hermes on top of Pythia 
outperforms Pythia alone in every workload category 

Hermes provides nearly 90% of performance benefit of 

Ideal Hermes that has an ideal off-chip load predictor
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Increase in Main Memory Requests
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20.3% 5.4%

For every 1% performance benefit, 

increase in main memory requests 

Pythia

Hermes on top of Pythia

Hermes alone

2%

1%

0.5%

Hermes is more bandwidth-efficient
than even an efficient prefetcher like Pythia
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Performance with Varying Memory Bandwidth
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~AMD Threadripper 3990x (Zen 2, 64C/4ch, 2020) 

~AMD EPYC Rome 7702P (Zen 2, 64C/8ch, 2019)

~Intel Xeon 6258R 
(Cascade Lake, 28C/6ch, 2020)

Pythia

Hermes

Pythia+Hermes

In bandwidth-constrained configurations,
Hermes alone outperforms Pythia 
Hermes+Pythia outperforms Pythia 

across all bandwidth configurations

Baseline
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Performance with Varying Baseline Prefetcher

5.4% 6.2%

5.1%
7.6%

7.7%
Hermes consistently improves performance 

on top of a wide range of baseline prefetchers
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Overhead of Hermes

4 KB storage overhead

1.5% power overhead*

*On top of an Intel Alder Lake-like performance-core [2] configuration

[2] https://www.anandtech.com/show/16881/a-deep-dive-into-intels-alder-lake-microarchitectures/3
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A Lot More in the Hermes Paper 

• Performance sensitivity to:
- Cache hierarchy access latency
- Hermes request issue latency
- Activation threshold
- ROB size (in extended version at arXiv)
- LLC size (in extended version at arXiv)

• Accuracy, coverage, and performance analysis against HMP and TTP

• Understanding usefulness of each program feature

• Effect on stall cycle reduction

• Performance analysis in eight-core systemhttps://arxiv.org/pdf/2209.00188.pdf

https://arxiv.org/pdf/2209.00188.pdf
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A New Approach to Latency Reduction

Hermes advocates for off-chip load prediction, 
a different form of speculation than

load address prediction employed by prefetchers

Off-chip load prediction can be applied by itself 
or combined with load address prediction 

to provide performance improvement
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Hermes: Summary

Hermes employs the first 

perceptron-based off-chip load predictor

High coverage
(74%)

High accuracy
(77%)

Low storage 
overhead
(4KB/core)

High performance improvement 
over best prior baseline

(5.4%)

High performance 
per bandwidth
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Hermes is Open Source

https://github.com/CMU-SAFARI/Hermes

All workload traces

13 prefetchers 9 off-chip predictors

https://github.com/CMU-SAFARI/Hermes
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Easy To Define Your Own Off-Chip Predictor

• Just extend the OffchipPredBase class
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Easy To Define Your Own Off-Chip Predictor

• Define your own train() and predict() functions

• Get statistics like accuracy (stat name precision) and 
coverage (stat name recall) out of the box
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Off-Chip Prediction Can Further Enable…

Prioritizing loads that are likely go off-chip 
in cache queues and on-chip network routing

Better instruction scheduling 
of data-dependent instructions

Other ideas to improve performance and 

fairness in multi-core system design...



Learning-Based Off-Chip Load Predictors
◼ Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk Olgun, 

Mohammad Sadrosadati, and Onur Mutlu,
"Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load 
Prediction"
Proceedings of the 55th International Symposium on Microarchitecture (MICRO), Chicago, IL, USA, 
October 2022.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Talk Video (12 minutes)]
[Lecture Video (25 minutes)]
[arXiv version]
[Source Code (Officially Artifact Evaluated with All Badges)]
Officially artifact evaluated as available, reusable and reproducible.
Best paper award at MICRO 2022.

86https://arxiv.org/pdf/2209.00188.pdf 

https://arxiv.org/pdf/2209.00188.pdf
https://arxiv.org/pdf/2209.00188.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pdf
https://www.youtube.com/watch?v=afGc1pWr-_Y
https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s
https://arxiv.org/abs/2209.00188
https://github.com/CMU-SAFARI/Hermes
https://arxiv.org/pdf/2209.00188.pdf


Hermes Talk Video

https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s 

https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s


Rahul Bera,  Konstantinos Kanellopoulos,  Shankar Balachandran,

David Novo,  Ataberk Olgun, Mohammad Sadrosadati,  Onur Mutlu

Accelerating Long-Latency Load Requests 
via Perceptron-Based Off-Chip Load Prediction

https://github.com/CMU-SAFARI/Hermes

https://github.com/CMU-SAFARI/Hermes


Reinforcement Learning Based 

DRAM Controllers
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DRAM Controller: Functions

■ Ensure correct operation of DRAM (refresh and timing)

■ Service DRAM requests while obeying timing constraints of 
DRAM chips

❑ Constraints: resource conflicts (bank, bus, channel), minimum 

write-to-read delays

❑ Translate requests to DRAM command sequences

■ Buffer and schedule requests for high performance + QoS

❑ Reordering, row-buffer, bank, rank, bus management

■ Manage power consumption and thermals in DRAM

❑ Turn on/off DRAM chips, manage power modes
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Why Are DRAM Controllers Difficult to Design?

■ Need to obey DRAM timing constraints for correctness
❑ There are many (50+) timing constraints in DRAM

❑ tWTR: Minimum number of cycles to wait before issuing a read 
command after a write command is issued

❑ tRC: Minimum number of cycles between the issuing of two 
consecutive activate commands to the same bank

❑ …

■ Need to keep track of many resources to prevent conflicts

❑ Channels, banks, ranks, data bus, address bus, row buffers

■ Need to handle DRAM refresh

■ Need to manage power consumption

■ Need to optimize performance & QoS (in the presence of constraints)

❑ Reordering is not simple

❑ Fairness and QoS needs complicates the scheduling problem
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Many DRAM Timing Constraints

■ From Lee et al., “DRAM-Aware Last-Level Cache Writeback: Reducing 
Write-Caused Interference in Memory Systems,” HPS Technical Report, 
April 2010.
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More on DRAM Operation

■ Kim et al., “A Case for Exploiting Subarray-Level Parallelism 
(SALP) in DRAM,” ISCA 2012.

■ Lee et al., “Tiered-Latency DRAM: A Low Latency and Low 

Cost DRAM Architecture,” HPCA 2013.
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DRAM Scheduling Policies (I)

■ FCFS (first come first served)

❑ Oldest request first

■ FR-FCFS (first ready, first come first served)

1. Row-hit first

2. Oldest first

Goal: Maximize row buffer hit rate → maximize DRAM throughput



DRAM Scheduling Policies (II)

■ A scheduling policy is a request prioritization order

■ Prioritization can be based on

❑ Request age

❑ Row buffer hit/miss status

❑ Request type (prefetch, read, write)

❑ Requestor type (load miss or store miss)

❑ Request criticality

■ Oldest miss in the core?

■ How many instructions in core are dependent on it?

■ Will it stall the processor?

❑ Interference caused to other cores

❑ …
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Memory Performance Attacks [USENIX SEC’07]  

◼ Thomas Moscibroda and Onur Mutlu, 
"Memory Performance Attacks: Denial of Memory Service 

in Multi-Core Systems" 
Proceedings of the 16th USENIX Security Symposium (USENIX 
SECURITY), pages 257-274, Boston, MA, August 2007. Slides 
(ppt) 

http://users.ece.cmu.edu/~omutlu/pub/mph_usenix_security07.pdf
http://users.ece.cmu.edu/~omutlu/pub/mph_usenix_security07.pdf
http://www.usenix.org/events/sec07/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_usenix-security07_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/mutlu_usenix-security07_talk.ppt


STFM [MICRO’07] 

◼ Onur Mutlu and Thomas Moscibroda, 
"Stall-Time Fair Memory Access Scheduling for Chip 

Multiprocessors" 
Proceedings of the 40th International Symposium on 
Microarchitecture (MICRO), pages 146-158, Chicago, IL, 
December 2007. [Summary] [Slides (ppt)] 

http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.microarch.org/micro40/
http://www.microarch.org/micro40/
http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/mutlu_micro07_talk.ppt


PAR-BS [ISCA’08] 

◼ Onur Mutlu and Thomas Moscibroda, 
"Parallelism-Aware Batch Scheduling: Enhancing both 

Performance and Fairness of Shared DRAM Systems"
Proceedings of the 35th International Symposium on Computer 
Architecture (ISCA), pages 63-74, Beijing, China, June 2008. 
[Summary] [Slides (ppt)]

http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca08_talk.ppt


On PAR-BS

◼ Variants implemented in Samsung SoC memory controllers

Review from ISCA 2008



ATLAS Memory Scheduler [HPCA’10] 

◼ Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter,
"ATLAS: A Scalable and High-Performance Scheduling 

Algorithm for Multiple Memory Controllers" 
Proceedings of the 16th International Symposium on High-
Performance Computer Architecture (HPCA), Bangalore, India, 
January 2010. Slides (pptx)

http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://www.cse.psu.edu/hpcl/hpca16.html
http://www.cse.psu.edu/hpcl/hpca16.html
http://users.ece.cmu.edu/~omutlu/pub/kim_hpca10_talk.pptx


Thread Cluster Memory Scheduling [MICRO’10] 

◼ Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-
Balter,

"Thread Cluster Memory Scheduling: Exploiting 
Differences in Memory Access Behavior" 
Proceedings of the 43rd International Symposium on 
Microarchitecture (MICRO), pages 65-76, Atlanta, GA, 
December 2010. Slides (pptx) (pdf) 

http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://www.microarch.org/micro43/
http://www.microarch.org/micro43/
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pdf


BLISS [ICCD’14, TPDS’16] 

◼ Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha 
Rastogi, and Onur Mutlu,

"The Blacklisting Memory Scheduler: Achieving High 
Performance and Fairness at Low Cost"
Proceedings of the 32nd IEEE International Conference on 
Computer Design (ICCD), Seoul, South Korea, October 2014. 
[Slides (pptx) (pdf)] 

http://users.ece.cmu.edu/~omutlu/pub/bliss-memory-scheduler_iccd14.pdf
http://users.ece.cmu.edu/~omutlu/pub/bliss-memory-scheduler_iccd14.pdf
http://www.iccd-conf.com/
http://www.iccd-conf.com/
http://users.ece.cmu.edu/~omutlu/pub/bliss_lavanya_iccd14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/bliss_lavanya_iccd14-talk.pdf


Staged Memory Scheduling: CPU-GPU [ISCA’12] 

◼ Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian, 
Gabriel Loh, and Onur Mutlu,

"Staged Memory Scheduling: Achieving High 
Performance and Scalability in Heterogeneous Systems"
Proceedings of the 39th International Symposium on Computer 
Architecture (ISCA), Portland, OR, June 2012. Slides (pptx) 

http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://isca2012.ittc.ku.edu/
http://isca2012.ittc.ku.edu/
http://users.ece.cmu.edu/~omutlu/pub/rachata_isca12_talk.pptx


DASH: Heterogeneous Systems [TACO’16] 

◼ Hiroyuki Usui, Lavanya Subramanian, Kevin Kai-Wei Chang, and 
Onur Mutlu,
"DASH: Deadline-Aware High-Performance Memory 
Scheduler for Heterogeneous Systems with Hardware 
Accelerators" 

ACM Transactions on Architecture and Code Optimization (TACO), 
Vol. 12, January 2016. 
Presented at the 11th HiPEAC Conference, Prague, Czech Republic, 

January 2016. 
[Slides (pptx) (pdf)] 
[Source Code] 

https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_taco16.pdf
https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_taco16.pdf
https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_taco16.pdf
http://taco.acm.org/
https://www.hipeac.net/2016/prague/
https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_usui_hipeac16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_usui_hipeac16-talk.pdf
https://github.com/CMU-SAFARI/HWASim


MISE: Predictable Performance [HPCA’13] 

◼ Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen, 
and Onur Mutlu,

"MISE: Providing Performance Predictability and 
Improving Fairness in Shared Main Memory Systems" 
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China, 
February 2013. Slides (pptx)  

http://users.ece.cmu.edu/~omutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_hpca13_talk.pptx


ASM: Predictable Performance [MICRO’15] 

◼ Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and 
Onur Mutlu,
"The Application Slowdown Model: Quantifying and Controlling 
the Impact of Inter-Application Interference at Shared Caches 
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture 
(MICRO), Waikiki, Hawaii, USA, December 2015. 
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster 
(pptx) (pdf)] 
[Source Code] 

https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
http://www.microarch.org/micro48/
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pdf
https://github.com/CMU-SAFARI/ASMSim


The Future

Memory Controllers

are critical to research

They will become 

even more important



Memory Control is Getting More Complex

◼ Heterogeneous agents: CPUs, GPUs, and HWAs 

◼ Main memory interference between CPUs, GPUs, HWAs

CPU CPU CPU CPU

Shared Cache

GPU

HWA HWA

DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

Many goals, many constraints, many metrics …



Reality and Dream

■ Reality: It is difficult to design a policy that maximizes 
performance, QoS, energy-efficiency, … 

❑ Too many things to think about

❑ Continuously changing workload and system behavior

■ Dream: Wouldn’t it be nice if the DRAM controller 
automatically found a good scheduling policy on its own?
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Ipek+, “Self Optimizing Memory Controllers: A Reinforcement Learning Approach,” ISCA 2008.

Self-Optimizing DRAM Controllers

■ Problem: DRAM controllers are difficult to design

❑ It is difficult for human designers to design a policy that can adapt 
itself very well to different workloads and different system conditions

■ Idea: A memory controller that adapts its scheduling policy to 
workload behavior and system conditions using machine learning.

■ Observation: Reinforcement learning maps nicely to memory 
control.

■ Design: Memory controller is a reinforcement learning agent

❑ It dynamically and continuously learns and employs the best 
scheduling policy to maximize long-term performance.



Self-Optimizing DRAM Controllers

■ Engin Ipek, Onur Mutlu, José F. Martínez, and Rich 
Caruana, 

"Self Optimizing Memory Controllers: A 
Reinforcement Learning Approach"
Proceedings of the 35th International Symposium on 
Computer Architecture (ISCA), pages 39-50, Beijing, 
China, June 2008.
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Goal: Learn to choose actions to maximize r0 + γr1 + γ2r2 + … ( 0 ≤ γ < 1) 

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/


Self-Optimizing DRAM Controllers

■ Dynamically adapt the memory scheduling policy via 
interaction with the system at runtime 

❑ Associate system states and actions (commands) with long term 
reward values: each action at a given state leads to a learned reward

❑ Schedule command with highest estimated long-term reward value in 
each state

❑ Continuously update reward values for <state, action> pairs based on 
feedback from system
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Self-Optimizing DRAM Controllers

■ Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana, 
"Self Optimizing Memory Controllers: A Reinforcement Learning 
Approach"
Proceedings of the 35th International Symposium on Computer Architecture 
(ISCA), pages 39-50, Beijing, China, June 2008.
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http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/


States, Actions, Rewards

114

● Reward function

• +1 for scheduling 
Read and Write 
commands

• 0 at all other 
times

Goal is to maximize 
long-term       
data bus 
utilization

 

● State attributes

• Number of reads, 
writes, and load 
misses in 
transaction queue

• Number of pending 
writes and ROB 
heads waiting for 
referenced row

• Request’s relative 
ROB order

 

● Actions

• Activate

• Write

• Read - load miss

• Read - store miss

• Precharge - pending

• Precharge - preemptive

• NOP

 



Performance Results
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Large, robust performance improvements 
over many human-designed policies 



Self Optimizing DRAM Controllers

+ Continuous learning in the presence of changing environment

+ Reduced designer burden in finding a good scheduling policy. 
Designer specifies:

 1) What system variables might be useful

 2) What target to optimize, but not how to optimize it

-- How to specify different objectives? (e.g., fairness, QoS, …)

-- Hardware complexity?

-- Design mindset and flow
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More on Self-Optimizing DRAM Controllers (I)

■ Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana, 
"Self Optimizing Memory Controllers: A Reinforcement Learning 
Approach"
Proceedings of the 35th International Symposium on Computer Architecture 
(ISCA), pages 39-50, Beijing, China, June 2008.
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http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/


More on Self-Optimizing DRAM Controllers (II)

■ Janani Mukundan and José F. Martinez 
“MORSE: Multi-Objective Reconfigurable Self-Optimizing Memory Scheduler”
Proceedings of the 18th International Symposium on High Performance 
Computer Architecture (HPCA), New Orleans, Louisiana, February 2012.
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https://ieeexplore.ieee.org/abstract/document/6168945
https://www.ece.lsu.edu/hpca-18/
https://www.ece.lsu.edu/hpca-18/


The Future

Memory Controllers

are critical to research

They will become 

even more important



Sibyl: Reinforcement Learning based

Data Placement in Hybrid SSDs
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Self-Optimizing Hybrid SSD Controllers

Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar, 
David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu,
"Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage 
Systems Using Online Reinforcement Learning"
Proceedings of the 49th International Symposium on Computer 
Architecture (ISCA), New York, June 2022.
[Slides (pptx) (pdf)]
[arXiv version]
[Sibyl Source Code]
[Talk Video (16 minutes)]

121https://arxiv.org/pdf/2205.07394.pdf 

https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
http://iscaconf.org/isca2022/
http://iscaconf.org/isca2022/
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pdf
https://arxiv.org/pdf/2205.07394.pdf
https://github.com/CMU-SAFARI/Sibyl
https://www.youtube.com/watch?v=5-WedkiB000
https://arxiv.org/pdf/2205.07394.pdf


Sibyl 
Adaptive and Extensible Data Placement 

in Hybrid Storage Systems 
Using Online Reinforcement Learning

Gagandeep Singh, Rakesh Nadig, Jisung Park, 
Rahul Bera, Nastaran Hajinazar, David Novo, 

Juan Gómez Luna, Sander Stuijk, Henk Corporaal,  
Onur Mutlu
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Executive Summary
• Background: A hybrid storage system (HSS) uses multiple different storage devices to 

provide high and scalable storage capacity at high performance 

• Problem: Two key shortcomings of prior data placement policies:
- Lack of adaptivity to:

• Workload changes

• Changes in device types and configurations

- Lack of extensibility to more devices

• Goal: Design a data placement technique that provides:
- Adaptivity, by continuously learning and adapting to the application and underlying device 

characteristics

- Easy extensibility to incorporate a wide range of hybrid storage configurations

• Contribution: Sibyl, the first reinforcement learning-based data placement technique in 
hybrid storage systems that:

- Provides adaptivity to changing workload demands and underlying device characteristics 

- Can easily extend to any number of storage devices 

- Provides ease of design and implementation that requires only a small computation overhead                                          

• Key Results: Evaluate on real systems using a wide range of workloads
- Sibyl improves performance by 21.6% compared to the best previous data placement technique in 

dual-HSS configuration

- In a tri-HSS configuration, Sibyl outperforms the state-of-the-art-policy policy by 48.2% 

- Sibyl achieves 80% of the performance of an oracle policy with storage overhead of only 124.4 KiB

https://github.com/CMU-SAFARI/Sibyl 123

https://github.com/CMU-SAFARI/Sibyl


Storage Management Layer

Hybrid Storage System Basics

WriteRead

Read Write Read Write

Promotion

Eviction

Hybrid Storage System
Fast Device Slow Device

Address Space (Application/File System View) 
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Hybrid Storage System Basics

WriteRead

Read Write Read Write

Promotion

Eviction

Hybrid Storage System

Performance of a hybrid storage system 
highly depends on the 

storage management layer’s ability to 
manage diverse devices and workloads
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Key Shortcomings in Prior Techniques

We observe two key shortcomings that significantly 
limit the performance benefits of prior techniques

1. Lack of adaptivity to:
a) Workload changes
b) Changes in device types and configuration

2. Lack of extensibility to more devices 
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Lack of Extensibility (1/2)
Rigid techniques that require significant effort to 
accommodate more than two devices

Change in storage configuration

Dual-HSS
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Lack of Extensibility (2/2)
Rigid techniques that require significant effort to 
accommodate more than two devices

Change in storage configuration Design a new policy

Tri-HSS
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Our Goal

A data-placement mechanism 
that can provide:

1.Adaptivity, by continuously learning and 
adapting to the application and underlying 

device characteristics

2.Easy extensibility to incorporate a wide 
range of hybrid storage configurations
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Our Proposal

Sibyl
Formulates data placement in 

hybrid storage systems as a 
reinforcement learning problem

Sibyl is an oracle that makes accurate prophecies
https://en.wikipedia.org/wiki/Sibyl 130



Basics of Reinforcement Learning (RL)

Agent learns to take an action in a given state 

to maximize a numerical reward
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Formulating Data Placement as RL

Agent

Environment

State (St) Action (At)Reward (Rt+1)

Hybrid Storage 
System

Sibyl

Features of the 
current request 

and system

Request latency
(of last served request)

Select storage device to 
place the current page
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What is State?
• Limited number of state features:

- Reduce the implementation overhead

- RL agent is more sensitive to reward

• 6-dimensional vector of state features

• We quantize the state representation into bins to 
reduce storage overhead

133

Hybrid Storage 
System

Sibyl

Features of 
the current 
request and 

system

Request latency
(of last served 
request)

Select storage 
device to place 
the current page



What is Reward?
• Defines the objective of Sibyl

• We formulate the reward as a function of the     
request latency

• Encapsulates three key aspects:
- Internal state of the device (e.g., read/write latencies, the 
latency of garbage collection, queuing delays, …)

- Throughput

- Evictions

 

• More details in the paper
134

Hybrid Storage 
System

Sibyl

Features of 
the current 
request and 

system

Request latency
(of last served 
request)

Select storage 
device to place 
the current page



What is Action?
• At every new page request, the                                     

action is to select a storage device

• Action can be easily extended to any number of 
storage devices

• Sibyl evicts a page when the fast device utilization is 
100%

• Sibyl promotes a page when there is an update from 
the application
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Hybrid Storage 
System

Sibyl

Features of 
the current 
request and 

system

Request latency
(of last served 
request)

Select storage 
device to place 
the current page



Talk Outline

Key Shortcomings of Prior Data Placement Techniques

Formulating Data Placement as Reinforcement Learning

Sibyl: Overview

Evaluation of Sibyl and Key Results

Conclusion
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RL Decision 
Thread

Sibyl Execution

Storage
Request

(from OS)

RL Training 
Thread

Periodic Policy
Weight Update

State, Reward, 
and Action 
Information

Data 
Placement 
Decision

Asynchronous 
Execution

Sibyl
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Sibyl Design: Overview

Inference 
Network

Max

HSS Collect
Experiences

Experience Buffer 
(in host DRAM)

Observation 
Vector

Storage
Request

(from OS)

State

State

Action

Reward

RL Decision 
Thread

Sibyl Policy

Periodic Weights 
update 10

Training 
Network

RL Training 
ThreadBatchTraining 

Dataset
Periodic Policy 
Weight Update
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RL Decision Thread

Inference 
Network

Max

HSS Collect
Experiences

Experience Buffer 
(in host DRAM)

Observation 
Vector

Storage
Request

(from OS)

State

State

Action

Reward

RL Decision 
Thread

Sibyl Policy
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RL Decision Thread

Observation 
Vector

Storage
Request

(from OS)

State

State

RL Decision 
Thread
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RL Decision Thread

Inference 
Network

Max

HSS

State Action

RL Decision 
Thread

Sibyl Policy
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RL Decision Thread

HSS Collect
Experiences

Observation 
Vector

Storage
Request

(from OS)

State

Reward

RL Decision 
Thread
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RL Decision Thread

HSS Collect
Experiences

Experience Buffer 
(in host DRAM)

Observation 
Vector

Storage
Request

(from OS)

State

Reward

RL Decision 
Thread
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RL Training Thread

Periodic Weights 
update 10

RL Training 
ThreadBatchTraining 

Dataset

Experience Buffer 
(in host DRAM)

RL Decision 
Thread

Periodic Policy 
Weight Update

Training 
Network
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Periodic Weight Transfer

Inference 
Network

Max

HSS Collect
Experiences

Experience Buffer 
(in host DRAM)

Observation 
Vector

Storage
Request

(from OS)

State

State

Action

Reward

RL Decision 
Thread

Sibyl Policy

Periodic Weights 
update 10

Training 
Network

Periodic Policy 
Weight Update

RL Training 
ThreadBatchTraining 

Dataset
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Evaluation Methodology (1/3)
• Real system with various HSS configurations

- Dual-hybrid and tri-hybrid systems

AMD Ryzen7 
2700G CPU

Seagate HDD 
ST1000DM010

Intel Optane 
SSD P4800X

Intel SSD         
D3-S4510

ADATA 
SU630 SSD 
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Evaluation Methodology (2/3)
Cost-Oriented HSS Configuration

High-end SSD Low-end HDD

Performance-Oriented HSS Configuration

High-end SSD Middle-end SSD 147



Evaluation Methodology (3/3)
• 18 different workloads from:

- MSR Cambridge and Filebench Suites

• Four state-of-the-art data placement baselines:
- CDE [Matsui+, Proc. IEEE’17] 

- HPS [Meswani+, HPCA’15]

- Archivist [Ren+, ICCD’19]

- RNN-HSS [Doudali+, HPDC’19]

Heuristic-based

Learning-based
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Performance Analysis
Cost-Oriented HSS Configuration

Slow-Only CDE HPS Archivist RNN-HSS Sibyl Oracle

High-end SSD Low-end HDD
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Performance Analysis

Sibyl consistently outperforms all the baselines 

for all the workloads

Cost-Oriented HSS Configuration

Slow-Only CDE HPS Archivist RNN-HSS Sibyl Oracle

High-end SSD Low-end HDD
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Performance Analysis

RNN-HSS Sibyl OracleSlow-Only CDE HPS Archivist

Performance-Oriented HSS Configuration
High-end SSD Mid-end SSD
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Performance Analysis

RNN-HSS Sibyl OracleSlow-Only CDE HPS Archivist

Performance-Oriented HSS Configuration

Sibyl provides 21.6% performance improvement by 
dynamically adapting its data placement policy 

High-end SSD Mid-end SSD
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Performance Analysis

RNN-HSS Sibyl OracleSlow-Only CDE HPS Archivist

Performance-Oriented HSS Configuration
High-end SSD Mid-end SSD
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Sibyl achieves 80% of the performance 
of an oracle policy that has 

complete knowledge of future access patterns



Performance on Tri-HSS

Extending Sibyl for more devices:

SibylTri-hybridHeuristicTri-hybrid

High-end SSD Low-end HDDMid-end SSD

Extending Sibyl for more devices:
1. Add a new action
2. Add the remaining capacity of the new device as a 

state feature
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Performance on Tri-HSS

SibylTri-hybridHeuristicTri-hybrid

Extending Sibyl for more devices:
1. Add a new action
2. Add the remaining capacity of the new device as a 

state feature

High-end SSD Low-end HDDMid-end SSD
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Performance on Tri-HSS

SibylTri-hybridHeuristicTri-hybrid

Extending Sibyl for more devices:
1. Add a new action
2. Add the remaining capacity of the new device as a 

state feature
Sibyl outperforms the state-of-the-art 

data placement policy by 
48.2% in a real tri-hybrid system

Sibyl reduces the system architect's burden 
by providing ease of extensibility

High-end SSD Low-end HDDMid-end SSD
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Sibyl’s Overhead
• 124.4 KiB of total storage cost 

- Experience buffer, inference and training network

• 40-bit metadata overhead per page for state features

• Inference latency of ~10ns

• Training latency of ~2us

Small inference overhead

Satisfies prediction latency
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More in the Paper (1/3)
• Throughput (IOPS) evaluation

- Sibyl provides high IOPS compared to baseline policies because it 
indirectly captures throughput (size/latency)

• Evaluation on unseen workloads
- Sibyl can effectively adapt its policy to highly dynamic workloads

• Evaluation on mixed workloads
- Sibyl provides equally-high performance benefits as in single 

workloads

158



More in the Paper (2/3)
• Evaluation on different features

- Sibyl autonomously decides which features are important to 
maximize the performance

• Evaluation with different hyperparameter values

• Sensitivity to fast storage capacity
- Sibyl provides scalability by dynamically adapting its policy to 

available storage size

• Explainability analysis of Sibyl's decision making
- Explain Sibyl’s actions for different workload characteristics and 

device configurations
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More in the Paper (3/3)

https://arxiv.org/pdf/2205.07394.pdf

https://github.com/CMU-SAFARI/Sibyl
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Conclusion
• We introduced Sibyl, the first reinforcement learning-

based data placement technique in hybrid storage 
systems that provides
- Adaptivity 

- Easily extensibility 

- Ease of design and implementation

•We evaluated Sibyl on real systems using many 
different workloads

- Sibyl improves performance by 21.6% compared to the best prior 
data placement policy in a dual-HSS configuration

- In a tri-HSS configuration, Sibyl outperforms the state-of-the-art-
data placement policy by 48.2% 

- Sibyl achieves 80% of the performance of an oracle policy with a 
storage overhead of only 124.4 KiB

https://github.com/CMU-SAFARI/Sibyl 161
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Major Directions
• Consider other optimization objectives

- Energy consumption, endurance of storage devices….. 
- Design better reward structures 

• Optimize data migration in hybrid storage systems
- Explore machine learning (ML) techniques to make 

data migration adaptive and extensible
- How do we coordinate multiple ML techniques?

• How do we improve these policies in other 
heterogeneous memory systems?

- DRAM + NVM, CPU Caches + DRAM
- Design RL models keeping latency constraints in mind
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ISCA 2022 Paper, Slides, Videos

◼ Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar, 
David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu,
"Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage 
Systems Using Online Reinforcement Learning"
Proceedings of the 49th International Symposium on Computer 
Architecture (ISCA), New York, June 2022.
[Slides (pptx) (pdf)]
[arXiv version]
[Sibyl Source Code]
[Talk Video (16 minutes)]

163https://arxiv.org/pdf/2205.07394.pdf 

https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
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https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pdf
https://arxiv.org/pdf/2205.07394.pdf
https://github.com/CMU-SAFARI/Sibyl
https://www.youtube.com/watch?v=5-WedkiB000
https://arxiv.org/pdf/2205.07394.pdf


SSD Course (Spring 2023)

◼ Spring 2023 Edition: 

❑ https://safari.ethz.ch/projects_and_seminars/spring2023/
doku.php?id=modern_ssds

◼ Fall 2022 Edition: 

❑ https://safari.ethz.ch/projects_and_seminars/fall2022/do

ku.php?id=modern_ssds 

◼ Youtube Livestream (Spring 2023):

❑ https://www.youtube.com/watch?v=4VTwOMmsnJY&list
=PL5Q2soXY2Zi_8qOM5Icpp8hB2SHtm4z57&pp=iAQB

◼ Youtube Livestream (Fall 2022):

❑ https://www.youtube.com/watch?v=hqLrd-
Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4JI5bwhAMpAp13&p
p=iAQB

◼ Project course

❑ Taken by Bachelor’s/Master’s students

❑ SSD Basics and Advanced Topics

❑ Hands-on research exploration

❑ Many research readings
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Comp Arch (Fall 2021)

◼ Fall 2021 Edition: 

❑ https://safari.ethz.ch/architecture/fall2021/doku.
php?id=schedule 

◼ Fall 2020 Edition: 

❑ https://safari.ethz.ch/architecture/fall2020/doku.
php?id=schedule 

◼ Youtube Livestream (2021):

❑ https://www.youtube.com/watch?v=4yfkM_5EFg
o&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF 

◼ Youtube Livestream (2020):

❑ https://www.youtube.com/watch?v=c3mPdZA-
Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN 

◼ Master’s level course

❑ Taken by Bachelor’s/Masters/PhD students

❑ Cutting-edge research topics + fundamentals in 
Computer Architecture

❑ 5 Simulator-based Lab Assignments

❑ Potential research exploration

❑ Many research readings
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Two Major Directions

1. Memory system design for AI/ML workloads/accelerators

 

2. AI/ML techniques for improving memory system designs
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Goal: Processing Inside Memory/Storage

◼ Many questions … How do we design the:

❑ compute-capable memory & controllers?

❑ processors & communication units?

❑ software & hardware interfaces?

❑ system software, compilers, languages?

❑ algorithms & theoretical foundations?

Cache

Processor
Core

Interconnect

Memory/Storage
Database

Graphs

Media 
Query

Results

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons



Why In-Memory Computation Today?

◼ Huge demand from Applications & Systems

❑ Data access bottleneck

❑ Energy & power bottlenecks

❑ Data movement energy dominates computation energy

❑ Need all at the same time: performance, energy, sustainability

❑ We can improve all metrics by minimizing data movement

◼ Huge problems with Memory Technology

❑ Memory technology scaling is not going well (e.g., RowHammer)

❑ Scaling issues demand intelligence in memory + new technology

◼ Designs are squeezed in the middle
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Processing-in-Memory:
Nature of Computation

Processing-Near-Bank

DRAM Bank
DRAM

(e.g., 3D-Stacked Memory)

Vault
Controller

PHY
Processing-
Near-Vault

DRAM Vault

Two main approaches for Processing-in-Memory:

1 Processing-Near-Memory: Design compute logic and memory separately (as 
today) and integrate logic closer to memory

2 Processing-Using-Memory: Use analog operational principles of 
memory circuitry to perform computation (no compute logic)

Processing-
Using-DRAM

…

…



A PIM Taxonomy

◼ Nature (of computation)

❑ Using: Use operational properties of memory structures

❑ Near: Add logic close to memory structures

◼ Technology

❑ Flash, DRAM, SRAM, RRAM, MRAM, FeRAM, PCM, 3D, …

◼ Location

❑ Sensor, Cold Storage, Hard Disk, SSD, Main Memory, Cache, 
Register File, Memory Controller, Interconnect, …

◼ A tuple of the three determines “PIM type”

◼ One can combine multiple “PIM types” in a system
170



Mindset: Memory as an Accelerator

CPU
core

CPU
core

CPU
core

CPU
core

mini-CPU
core

video
core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

LLC

Memory Controller
Specialized

compute-capability
in memory

Memoryimaging
core

Memory Bus

Memory similar to a “conventional” accelerator



Accelerating Neural Network Inference

◼ Amirali Boroumand, Saugata Ghose, Berkin Akin, Ravi Narayanaswami, Geraldo 
F. Oliveira, Xiaoyu Ma, Eric Shiu, and Onur Mutlu,
"Google Neural Network Models for Edge Devices: Analyzing and 
Mitigating Machine Learning Inference Bottlenecks"
Proceedings of the 30th International Conference on Parallel Architectures and 
Compilation Techniques (PACT), Virtual, September 2021.
[Slides (pptx) (pdf)]
[Talk Video (14 minutes)]
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Google Neural Network Models for Edge Devices: 

Analyzing and Mitigating 

Machine Learning Inference Bottlenecks

Amirali Boroumand  Saugata Ghose  Berkin Akin 

Ravi Narayanaswami  Geraldo F. Oliveira  Xiaoyu Ma
 

Eric Shiu  Onur Mutlu

PACT 2021



Executive Summary
Context:  We extensively analyze a state-of-the-art edge ML accelerator 
(Google Edge TPU) using 24 Google edge models

–  Wide range of models (CNNs, LSTMs, Transducers, RCNNs)

Problem:  The Edge TPU accelerator suffers from three challenges:

– It operates significantly below its peak throughput

– It operates significantly below its theoretical energy efficiency

– It inefficiently handles memory accesses

Key Insight:  These shortcomings arise from the monolithic design of the 
Edge TPU accelerator

– The Edge TPU accelerator design does not account for layer heterogeneity 

Key Mechanism:  A new framework called Mensa

– Mensa consists of heterogeneous accelerators whose dataflow and 
hardware are specialized for specific families of layers

Key Results:  We design a version of Mensa for Google edge ML models

– Mensa improves performance and energy by 3.0X and 3.1X

– Mensa reduces cost and improves area efficiency



Google Edge Neural Network Models

We analyze inference execution using 24 edge NN models 

Face Detection

Speech Recognition
Language Translation

Image Captioning

Google Edge TPU



Diversity Across the Models

Insight 1: there is significant variation in terms of 

layer characteristics across the models
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Diversity Within the Models

For example, our analysis of edge CNN models shows: 

1

2

Insight 2: even within each model, layers exhibit 

significant variation in terms of layer characteristics
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Variation in FLOP/Byte: up to 244x across layers

Variation in MAC intensity: up to 200x across layers



Mensa High-Level Overview
Edge TPU Accelerator Mensa

Monolithic Accelerator
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Identifying Layer Families
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Key observation:  the majority of layers group into 

a small number of layer families
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Families 1 & 2: low parameter footprint, high data reuse and MAC intensity 

→ compute-centric layers 

Families 3, 4 & 5: high parameter footprint, low data reuse and MAC intensity 

→ data-centric layers 
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Mensa: Energy Reduction

Mensa-G reduces energy consumption by 3.0X 

compared to the baseline Edge TPU



Mensa:  Throughput Improvement
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Mensa-G improves inference throughput by 3.1X 

compared to the baseline Edge TPU



Mensa: Highly-Efficient ML Inference

◼ Amirali Boroumand, Saugata Ghose, Berkin Akin, Ravi Narayanaswami, Geraldo 
F. Oliveira, Xiaoyu Ma, Eric Shiu, and Onur Mutlu,
"Google Neural Network Models for Edge Devices: Analyzing and 
Mitigating Machine Learning Inference Bottlenecks"
Proceedings of the 30th International Conference on Parallel Architectures and 
Compilation Techniques (PACT), Virtual, September 2021.
[Slides (pptx) (pdf)]
[Talk Video (14 minutes)]
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Accelerating In-Memory Graph Analytics

183

◼ Large graphs are everywhere (circa 2015)

◼ Scalable large-scale graph processing is challenging

36 Million 
Wikipedia Pages

1.4 Billion
Facebook Users

300 Million
Twitter Users

30 Billion
Instagram Photos

+42%

0 1 2 3 4

128…

32 Cores

Speedup



Key Bottlenecks in Graph Processing
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for (v: graph.vertices) {

    for (w: v.successors) {

        w.next_rank += weight * v.rank;

    }

}

weight * v.rank

v

w

&w

1. Frequent random memory accesses

2. Little amount of computation

w.rank

w.next_rank

w.edges

…



Opportunity: 3D-Stacked Logic+Memory

185

Logic

Memory

Other “True 3D” technologies
under development



Tesseract System for Graph Processing
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Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Logic

Memory

Tesseract System for Graph Processing
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Logic

Memory

Tesseract System for Graph Processing
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Evaluated Systems

HMC-MC
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Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Tesseract Graph Processing Performance

+56% +25%
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>13X Performance Improvement

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

On five graph processing algorithms



Tesseract Graph Processing System Energy
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HMC-OoO Tesseract with Prefetching

Memory Layers Logic Layers Cores

> 8X Energy Reduction

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



More on Tesseract

◼ Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and 
Kiyoung Choi,

"A Scalable Processing-in-Memory Accelerator for Parallel 
Graph Processing"
Proceedings of the 42nd International Symposium on Computer 
Architecture (ISCA), Portland, OR, June 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]

Top Picks Honorable Mention by IEEE Micro.
Selected to the ISCA-50 25-Year Retrospective Issue 
covering 1996-2020 in 2023 (Retrospective (pdf) Full 
Issue).
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A Short Retrospective @ 50 Years of ISCA
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https://arxiv.org/pdf/2306.16093 

https://arxiv.org/pdf/2306.16093


Accelerating Graph Pattern Mining
◼ Maciej Besta, Raghavendra Kanakagiri, Grzegorz Kwasniewski, Rachata Ausavarungnirun, Jakub 

Beránek, Konstantinos Kanellopoulos, Kacper Janda, Zur Vonarburg-Shmaria, Lukas Gianinazzi, 
Ioana Stefan, Juan Gómez-Luna, Marcin Copik, Lukas Kapp-Schwoerer, Salvatore Di Girolamo, 
Nils Blach, Marek Konieczny, Onur Mutlu, and Torsten Hoefler,
"SISA: Set-Centric Instruction Set Architecture for Graph Mining on Processing-in-
Memory Systems"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, 
October 2021.
[Slides (pdf)]
[Talk Video (22 minutes)]
[Lightning Talk Video (1.5 minutes)]
[Full arXiv version]

194

https://people.inf.ethz.ch/omutlu/pub/SISA-GraphMining-on-PIM_micro21.pdf
https://people.inf.ethz.ch/omutlu/pub/SISA-GraphMining-on-PIM_micro21.pdf
http://www.microarch.org/micro54/
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https://www.youtube.com/watch?v=VL5K1t2qTDU&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=9
https://www.youtube.com/watch?v=6k89Ph2qgRA&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=4
https://arxiv.org/abs/2104.07582


Processing using DRAM



Background Work: RowClone

◼ Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata 
Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A. 
Kozuch, Phillip B. Gibbons, and Todd C. Mowry,
"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and 
Initialization"
Proceedings of the 46th International Symposium on Microarchitecture 
(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning Session 
Slides (pptx) (pdf)] [Poster (pptx) (pdf)] 
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http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://www.microarch.org/micro46/
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Background Work: PiDRAM
◼ Ataberk Olgun, Juan Gomez Luna, Konstantinos Kanellopoulos, Behzad Salami, 

Hasan Hassan, Oguz Ergin, and Onur Mutlu,
"PiDRAM: A Holistic End-to-end FPGA-based Framework for 
Processing-in-DRAM"
ACM Transactions on Architecture and Code Optimization (TACO), March 2023.
[arXiv version]
Presented at the 18th HiPEAC Conference, Toulouse, France, January 2023.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Lecture Video (40 minutes)]
[PiDRAM Source Code]
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https://people.inf.ethz.ch/omutlu/pub/PiDRAM_taco23.pdf
https://people.inf.ethz.ch/omutlu/pub/PiDRAM_taco23.pdf
http://taco.acm.org/
https://arxiv.org/abs/2111.00082
https://www.hipeac.net/2023/toulouse/
https://people.inf.ethz.ch/omutlu/pub/PiDRAM_hipeac23-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/PiDRAM_hipeac23-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/PiDRAM_comparch22-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/PiDRAM_comparch22-lecture-slides.pdf
https://www.youtube.com/watch?v=JyWxkeQA0W8
https://github.com/CMU-SAFARI/PiDRAM


Background Work: In-DRAM Bulk AND/OR

◼ Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk 
Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and 

Todd C. Mowry,
"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015. 
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http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://www.computer.org/web/cal


Background Work: Ambit

◼ Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali 
Boroumand, Jeremie Kim, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, 
and Todd C. Mowry,
"Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using 
Commodity DRAM Technology"
Proceedings of the 50th International Symposium on 
Microarchitecture (MICRO), Boston, MA, USA, October 2017.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]
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https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
http://www.microarch.org/micro50/
http://www.microarch.org/micro50/
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-lightning-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-poster.pdf


Background: In-DRAM Bulk Bitwise Execution

◼ Vivek Seshadri and Onur Mutlu,
"In-DRAM Bulk Bitwise Execution Engine"

Invited Book Chapter in Advances in Computers, to appear 
in 2020.
[Preliminary arXiv version]
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https://arxiv.org/pdf/1905.09822.pdf
https://arxiv.org/pdf/1905.09822.pdf


Background: SIMDRAM Framework

◼ Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, Joao Dinis Ferreira, Nika Mansouri 
Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose, Juan Gomez-Luna, and Onur Mutlu,
"SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in DRAM"
Proceedings of the 26th International Conference on Architectural Support for Programming 
Languages and Operating Systems (ASPLOS), Virtual, March-April 2021.
[2-page Extended Abstract]
[Short Talk Slides (pptx) (pdf)]
[Talk Slides (pptx) (pdf)]
[Short Talk Video (5 mins)]
[Full Talk Video (27 mins)]

201

https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21.pdf
https://asplos-conference.org/
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-extended-abstract.pdf
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-talk.pdf
https://www.youtube.com/watch?v=g0fE1c7w0xk&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=115
https://www.youtube.com/watch?v=bas9U7djW_8&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=116


In-DRAM Lookup-Table Based Execution

João Dinis Ferreira, Gabriel Falcao, Juan Gómez-Luna, Mohammed Alser, Lois Orosa, Mohammad 
Sadrosadati, Jeremie S. Kim, Geraldo F. Oliveira, Taha Shahroodi, Anant Nori, and Onur Mutlu,
"pLUTo: Enabling Massively Parallel Computation in DRAM via Lookup Tables"
Proceedings of the 55th International Symposium on Microarchitecture (MICRO), Chicago, IL, USA, 
October 2022.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Lecture Video (26 minutes)]
[arXiv version]
[Source Code (Officially Artifact Evaluated with All Badges)]
Officially artifact evaluated as available, reusable and reproducible.

202https://arxiv.org/pdf/2104.07699.pdf 

https://arxiv.org/pdf/2104.07699.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/pLUTo_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/pLUTo_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/pLUTo_lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/pLUTo_lecture-slides.pdf
https://youtu.be/JyWxkeQA0W8?t=2495
https://arxiv.org/abs/2104.07699
https://github.com/CMU-SAFARI/pLUTo
https://arxiv.org/pdf/2104.07699.pdf


MIMDRAM: More Flexible Processing using DRAM

◼ Appears at HPCA 2024
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https://arxiv.org/pdf/2402.19080.pdf 

https://arxiv.org/pdf/2402.19080.pdf
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Key Mechanism: MIMDRAM, a hardware/software co-design PUD system
• Key idea: leverage fine-grained DRAM for PUD operation
• HW: - simple changes to the DRAM array, enabling concurrent PUD operations

           - low-cost interconnects at the DRAM peripherals for data reduction
• SW:  - compiler and OS support to generate and map PUD instructions

Goal: Design a flexible PUD system that overcomes the three limitations caused by 
DRAM’s large and rigid access granularity

Key Results: MIMDRAM achieves
• 14.3x, 30.6x, and 6.8x the energy efficiency of state-of-the-art PUD systems, a high-end 

CPU and GPU, respectively  
• Small area cost to a DRAM chip (1.11%) and CPU die (0.6%) 

https://github.com/CMU-SAFARI/MIMDRAM 

Problem: Processing-Using-DRAM (PUD) suffers from three issues caused by 
DRAM’s large and rigid access granularity
• Underutilization due to data parallelism variation in (and across) applications
• Limited computation support due to a lack of interconnects
• Challenging programming model due to a lack of compilers 

MIMDRAM: Executive Summary

https://github.com/CMU-SAFARI/MIMDRAM


Real DRAM Chips 

Are Already Quite Capable: 

FC-DRAM & SiMRA



DRAM Chips Are Already (Quite) Capable!

◼ Appears at HPCA 2024
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https://arxiv.org/pdf/2402.18736.pdf 

https://arxiv.org/pdf/2402.18736.pdf


DRAM Chips Are Already (Quite) Capable!

◼ https://arxiv.org/pdf/2312.02880.pdf 
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https://arxiv.org/pdf/2312.02880.pdf


DRAM Chips Are Already (Quite) Capable!

◼ Appears at DSN 2024

208https://arxiv.org/pdf/2405.06081 

https://arxiv.org/pdf/2405.06081


The Capability of COTS DRAM Chips

209

We demonstrate that COTS DRAM chips:

Can simultaneously activate up to 
48 rows in two neighboring subarrays1

Can perform NOT operation 
with up to 32 output operands2

Can perform up to 16-input
AND, NAND, OR, and NOR operations3



36ns
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ACT Row A PRE ACT Row B
<3ns <3ns

Activating two rows in quick succession 
can simultaneously activate 

multiple rows in neighboring subarrays

Finding: SiMRA Across Subarrays

Neighboring 
Subarrays

Subarray X

Subarray Y

Row A

Row B

DRAM Bank

Shared Sense Amplifiers

14ns

ACT

ACT
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Connect rows in neighboring subarrays
through a NOT gate by simultaneously activating rows

Key Idea: NOT Operation

SA

A

src

dst

ACT src ACT dstSA

A

src

dst

SA

A

src

dst

~A

NOT gate 
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Manipulate the bitline voltage to express 
a wide variety of functions using

multiple-row activation in neighboring subarrays

Key Idea: NAND, NOR, AND, OR

Multiple Row ACT

V(A,B)

SA

B

X

Y

V(X,Y)

X

SA

B

Y

VREF

VREF

A A

sense amp.
compares

V(A,B) and V(X,Y)



Two-Input AND and NAND Operations
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Reference 
Subarray 

(REF)

Compute 
Subarray 

(COM)

X

Y

ACT PRE ACT
<3ns<3ns

AVG(VDD,VDD/2)

AVG(X,Y)

*Gao et al., "FracDRAM: Fractional Values in Off-the-Shelf DRAM," in MICRO, 2022.

VDD

VDD/2*



Two-Input AND and NAND Operations

VDD=1 & GND = 0 

 
X Y COM

0 0 0
0 1 0

1 0 0

1 1 1

REF

1
1

1

0
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ACT PRE ACT
<3ns<3ns

3VDD/4

GND

sense amp.
compares 

the voltages on 
the bitlines

VDD

GND

0 1



Two-Input AND and NAND Operations

VDD=1 & GND = 0 
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ACT PRE ACT
<3ns<3ns

3VDD/4

VDD/2

X Y COM

0
0 1 0

1 0 0

1 1 1

REF

1
1

1

0

sense amp.
compares 

the voltages on 
the bitlines

VDD

GND

0 1 0 1

0 0 0 1



Two-Input AND and NAND Operations

VDD=1 & GND = 0 
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ACT PRE ACT
<3ns<3ns

3VDD/4

VDD/2

sense amp.
compares 

the voltages on 
the bitlines

VDD

GND

X Y COM

0
0 1 0

1 0 0

1 1 1

REF

1
1

1

0

1 0 0 1

0 0 0 1

0 1 0 1



Two-Input AND and NAND Operations

VDD=1 & GND = 0 
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ACT PRE ACT
<3ns<3ns

3VDD/4

VDD

X Y COM

0
0 1 0

1 0 0

1 1 1

REF

1
1

1

0

sense amp.
compares 

the voltages on 
the bitlines

GND

VDD

1 1 1 0

0 1 0 1

1 0 0 1

0 0 0 1



VDD=1 & GND = 0 

Two-Input AND and NAND Operations
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Reference 
Subarray 

(REF)

Compute 
Subarray 

(COM)

X

Y

ACT PRE ACT
<3ns<3ns

AVG(VDD,VDD/2)

AVG(X,Y)

*Gao et al., "FracDRAM: Fractional Values in Off-the-Shelf DRAM," in MICRO, 2022.

AND NAND

VDD

VDD/2*
X Y COM REF

1 1 1 0

0 1 0 1

1 0 0 1

0 0 0 1



Many-Input AND, NAND, OR, and NOR Operations

VDD=1 & GND = 0 

 
X Y AND

0 0 0

0 1 0

1 0 0

1 1 1

NAND

1

1

1

0

219

Reference 
Subarray 

(REF)

Compute 
Subarray 

(COM)

VDD/2

VDD

X

Y

ACT REF PRE ACT COM
<3ns<3ns

AVG(VDD,VDD/2)

AVG(X,Y)

We can express AND, NAND, OR, and NOR operations 
by carefully manipulating the reference voltage

(More details in the paper)

https://arxiv.org/pdf/2402.18736.pdf



DRAM Testing Infrastructure
• Developed from DRAM Bender [Olgun+, TCAD’23]*

• Fine-grained control over DRAM commands, timings, 
and temperature

220*Olgun et al., "DRAM Bender: An Extensible and Versatile FPGA-based Infrastructure 
to Easily Test State-of-the-art DRAM Chips," TCAD, 2023.

https://arxiv.org/pdf/2211.05838
https://arxiv.org/pdf/2211.05838


• 256 DDR4 chips from two major DRAM manufacturers

• Covers different die revisions and chip densities

DRAM Chips Tested

221



Performing AND, NAND, OR, and NOR

COTS DRAM chips can perform 
{2, 4, 8, 16}-input AND, NAND, OR, and NOR operations

222



Performing AND, NAND, OR, and NOR

COTS DRAM chips can perform 
16-input AND, NAND, OR, and NOR operations

with very high success rate (>94%)

223



Impact of Data Pattern

224

1.98% variation in average success rate 
across all number of input operands



Impact of Data Pattern

225

Impact of data pattern is consistent
across all tested operations



Impact of Data Pattern

Data pattern slightly affects 
the reliability of AND, NAND, OR, and NOR operations

226



https://arxiv.org/pdf/2402.18736.pdf

227

Available on arXiv



• We experimentally demonstrate that commercial off-the-shelf (COTS) 
DRAM chips can perform:

– Functionally-complete Boolean operations: NOT, NAND, and NOR

– Up to 16-input AND, NAND, OR, and NOR operations

• We characterize the success rate of these operations on
256 COTS DDR4 chips from two major manufacturers

• We highlight two key results:

– We can perform NOT and 
{2, 4, 8, 16}-input AND, NAND, OR, and NOR operations 
on COTS DRAM chips with very high success rates (>94%)

– Data pattern and temperature only slightly affect
the reliability of these operations

228

Summary

We believe these empirical results demonstrate 
the promising potential of using DRAM as a computation substrate



Simultaneous Many-Row Activation 
in Off-the-Shelf DRAM Chips

Experimental Characterization and Analysis

Juan Gómez–Luna    Mohammad Sadr    Onur Mutlu

İsmail Emir Yüksel    

Yahya C. Tuğrul    F. Nisa Bostancı    Geraldo F. Oliveira 

A. Giray Yağlıkçı    Ataberk Olgun    Melina Soysal    Haocong Luo 
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In-DRAM Multiple Row Copy (Multi-RowCopy)

d s t

r cs

Simultaneously activate many rows to 
copy one row’s content to multiple destination rows 

d s t
s r c

RowClone

s r c

r cs

s r c

d s t
d s t

d s t

Multi-RowCopy

s r c
s r c

s r c

[Seshadri+ MICRO’13]
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Key Takeaways from Multi-RowCopy

COTS DRAM chips are capable of copying one row’s data 
to 1, 3, 7, 15, and 31 other rows at very high success rates

Key Takeaway 1

Multi-RowCopy in COTS DRAM chips is highly resilient to changes in 
data pattern, temperature, and wordline voltage

Key Takeaway 2
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Robustness of Multi-RowCopy

COTS DRAM chips can copy one row’s content 
to up to 31 rows with a very high success rate

Average: >99.98%
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Impact of Data Pattern

Data pattern has a small effect 
on the success rate of the Multi-RowCopy operation

At most 0.79% decrease in 
average success rate 
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Also in the Paper: Impact of Temperature & Voltage

Increasing temperature up to 90◦C 
has a very small effect on 

the success rate of the Multi-RowCopy operation

Reducing the wordline voltage 
only slightly affects 

the success rate of the Multi-RowCopy operation

Temperature

50 ◦C 90 ◦C 

Wordline Voltage

2.5V 2.1V
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Available on arXiv

https://arxiv.org/pdf/2405.06081
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Our Work is Open Source and Artifact Evaluated

https://github.com/CMU-SAFARI/SiMRA-DRAM



PIM Review and Open Problems

237

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"A Modern Primer on Processing in Memory"
Invited Book Chapter in Emerging Computing: From Devices to Systems - 
Looking Beyond Moore and Von Neumann, Springer, to be published in 2021.

https://arxiv.org/pdf/2012.03112.pdf 

https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21-extended.pdf
https://people.inf.ethz.ch/omutlu/projects.htm
https://people.inf.ethz.ch/omutlu/projects.htm
https://arxiv.org/pdf/2012.03112.pdf


PIM Review and Open Problems (II)

238

Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu,

"Processing-in-Memory: A Workload-Driven Perspective"

Invited Article in IBM Journal of Research & Development, Special Issue on 
Hardware for Artificial Intelligence, to appear in November 2019.

[Preliminary arXiv version]

https://arxiv.org/pdf/1907.12947.pdf

https://arxiv.org/pdf/1907.12947.pdf
https://www.research.ibm.com/journal/
https://arxiv.org/pdf/1907.12947.pdf
https://arxiv.org/pdf/1907.12947.pdf


Processing in Memory:

 Adoption Challenges

1. Processing using Memory

2. Processing near Memory

239



Eliminating the Adoption Barriers

How to Enable Adoption 
of Processing in Memory

240



Potential Barriers to Adoption of PIM

1. Applications & software for PIM

2. Ease of programming (interfaces and compiler/HW support)

3. System and security support: coherence, synchronization, 

virtual memory, isolation, communication interfaces, …

4. Runtime and compilation systems for adaptive scheduling, 
data mapping, access/sharing control, …

5. Infrastructures to assess benefits and feasibility

241

All can be solved with change of mindset



We Need to Revisit the Entire Stack

◼ With a memory-centric mindset

242

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons

We can get there step by step



Processing-in-Memory Landscape Today

243

[UPMEM 2019][Samsung 2021][SK Hynix 2022]

[Samsung 2021]

And, many other experimental chips and startups

[Alibaba 2022]



Adoption: How to Keep It Simple?

◼ Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,
"PIM-Enabled Instructions: A Low-Overhead, 

Locality-Aware Processing-in-Memory Architecture"
Proceedings of the 42nd International Symposium on 
Computer Architecture (ISCA), Portland, OR, June 2015. 

[Slides (pdf)] [Lightning Session Slides (pdf)]  

http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-lightning-talk.pdf


Adoption: How to Keep It Simple?

◼ Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,
"PIM-Enabled Instructions: A Low-Overhead, 

Locality-Aware Processing-in-Memory Architecture"
Proceedings of the 42nd International Symposium on 
Computer Architecture (ISCA), Portland, OR, June 2015. 

[Slides (pdf)] [Lightning Session Slides (pdf)]  

http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-lightning-talk.pdf


Adoption: How to Ease Programmability? (I)

◼ Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike 
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling 
Programmer-Transparent Near-Data Processing in GPU 
Systems"
Proceedings of the 43rd International Symposium on Computer 
Architecture (ISCA), Seoul, South Korea, June 2016. 
[Slides (pptx) (pdf)] 
[Lightning Session Slides (pptx) (pdf)] 
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https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf


Truly Distributed GPU Processing with PIM

Logic layer 

SM

Crossbar switch

Vault 

Ctrl

…. Vault 

Ctrl

Logic layer

Main GPU

3D-stacked memory

(memory stack) SM (Streaming Multiprocessor)



Adoption: How to Ease Programmability? (II)

◼ Geraldo F. Oliveira, Alain Kohli, David Novo, 
Juan Gómez-Luna, Onur Mutlu,

“DaPPA: A Data-Parallel Framework for Processing-
in-Memory Architectures,”
in PACT SRC Student Competition, Vienna, Austria, October 

2023. 

https://arxiv.org/pdf/2310.10168.pdf
https://arxiv.org/pdf/2310.10168.pdf


Adoption: How to Ease Programmability? (III)

◼ Jinfan Chen, Juan Gómez-Luna, Izzat El Hajj, YuXin Guo, 
and Onur Mutlu,

"SimplePIM: A Software Framework for Productive 
and Efficient Processing in Memory"
Proceedings of the 32nd International Conference on 
Parallel Architectures and Compilation Techniques (PACT), 
Vienna, Austria, October 2023.

https://people.inf.ethz.ch/omutlu/pub/SimplePIM_pact23.pdf
https://people.inf.ethz.ch/omutlu/pub/SimplePIM_pact23.pdf
http://pactconf.org/
http://pactconf.org/


Adoption: How to Ease Programmability? (IV)

◼ Geraldo F. Oliveira, Juan Gomez-Luna, Lois Orosa, Saugata Ghose, Nandita 
Vijaykumar, Ivan fernandez, Mohammad Sadrosadati, and Onur Mutlu,

"DAMOV: A New Methodology and Benchmark Suite for Evaluating Data 
Movement Bottlenecks"
IEEE Access, 8 September 2021.

Preprint in arXiv, 8 May 2021.
[arXiv preprint]

[IEEE Access version]
[DAMOV Suite and Simulator Source Code]
[SAFARI Live Seminar Video (2 hrs 40 mins)]

[Short Talk Video (21 minutes)]
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https://people.inf.ethz.ch/omutlu/pub/DAMOV-Bottleneck-Analysis-and-DataMovement-Benchmarks_arxiv21.pdf
https://people.inf.ethz.ch/omutlu/pub/DAMOV-Bottleneck-Analysis-and-DataMovement-Benchmarks_arxiv21.pdf
https://doi.org/10.1109/ACCESS.2021.3110993
https://arxiv.org/abs/2105.03725
https://arxiv.org/pdf/2105.03725.pdf
https://doi.org/10.1109/ACCESS.2021.3110993
https://github.com/CMU-SAFARI/DAMOV
https://www.youtube.com/watch?v=GWideVyo0nM&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=156
https://www.youtube.com/watch?v=HkMYuYMuZOg&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=161


Adoption: How to Ease Programmability? (V)

◼ Appears in IEEE TETC 2023

251
https://arxiv.org/pdf/2212.06292 

https://arxiv.org/pdf/2212.06292


Adoption: How to Maintain Coherence? (I)

◼ Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan 
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, 

Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism 
for Processing-in-Memory"

IEEE Computer Architecture Letters (CAL), June 2016.
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https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
http://www.computer.org/web/cal


Challenge: Coherence for Hybrid CPU-PIM Apps
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Traditional

coherence

No coherence

overhead



Adoption: How to Maintain Coherence? (II)

◼ Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan 
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, 

Hongzhong Zheng, and Onur Mutlu,
"CoNDA: Efficient Cache Coherence Support for Near-
Data Accelerators"
Proceedings of the 46th International Symposium on Computer 
Architecture (ISCA), Phoenix, AZ, USA, June 2019.
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https://people.inf.ethz.ch/omutlu/pub/CONDA-coherence-for-near-data-accelerators_isca19.pdf
https://people.inf.ethz.ch/omutlu/pub/CONDA-coherence-for-near-data-accelerators_isca19.pdf
http://iscaconf.org/isca2019/
http://iscaconf.org/isca2019/


Adoption: How to Support Synchronization?

◼ Christina Giannoula, Nandita Vijaykumar, Nikela Papadopoulou, Vasileios Karakostas, Ivan 

Fernandez, Juan Gómez-Luna, Lois Orosa, Nectarios Koziris, Georgios Goumas, Onur Mutlu,
"SynCron: Efficient Synchronization Support for Near-Data-Processing 

Architectures"

Proceedings of the 27th International Symposium on High-Performance Computer 
Architecture (HPCA), Virtual, February-March 2021.

[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]

[Talk Video (21 minutes)]

[Short Talk Video (7 minutes)]
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https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21.pdf
https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21.pdf
https://www.hpca-conf.org/2021/
https://www.hpca-conf.org/2021/
https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21-short-talk.pdf
https://www.youtube.com/watch?v=2DNDjQjNDTw
https://www.youtube.com/watch?v=kGiN-YjeUUA


Adoption: How to Support Virtual Memory?

◼ Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali 
Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory: 
Challenges, Mechanisms, Evaluation"
Proceedings of the 34th IEEE International Conference on Computer 
Design (ICCD), Phoenix, AZ, USA, October 2016. 
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https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
http://www.iccd-conf.com/
http://www.iccd-conf.com/


Adoption: Evaluation Infrastructures

◼ Haocong Luo, Yahya Can Tugrul, F. Nisa Bostanci, Ataberk Olgun, A. Giray 
Yaglikci, and Onur Mutlu,
"Ramulator 2.0: A Modern, Modular, and Extensible DRAM Simulator"
Preprint on arxiv, August 2023.
[arXiv version]
[Ramulator 2.0 Source Code]
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https://arxiv.org/pdf/2308.11030.pdf 

https://github.com/CMU-SAFARI/ramulator2 

https://people.inf.ethz.ch/omutlu/pub/Ramulator2_arxiv23.pdf
https://arxiv.org/abs/2308.11030
https://github.com/CMU-SAFARI/ramulator2
https://arxiv.org/pdf/2308.11030.pdf
https://github.com/CMU-SAFARI/ramulator2
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Processing-in-Memory: 
Challenges

To fully support PIM systems, we need to develop:

1 Workload characterization methodologies and 
benchmark suites targeting PIM architectures

2 Frameworks that can facilitate the implementation of 
complex operations and algorithms using PIM primitives

3 Compiler support and compiler optimizations 
targeting PIM architectures

4 Operating system support for PIM-aware virtual memory, memory 
management, data allocation and mapping

5 End-to-End System-on-Chip Design Beyond DRAM

The lack of tools and system support for 
PIM architectures limit the adoption of PIM systems



An Example: SimplePIM Framework

◼ Jinfan Chen, Juan Gómez-Luna, Izzat El Hajj, YuXin Guo, 
and Onur Mutlu,

"SimplePIM: A Software Framework for Productive 
and Efficient Processing in Memory"
Proceedings of the 32nd International Conference on 
Parallel Architectures and Compilation Techniques (PACT), 
Vienna, Austria, October 2023.

https://people.inf.ethz.ch/omutlu/pub/SimplePIM_pact23.pdf
https://people.inf.ethz.ch/omutlu/pub/SimplePIM_pact23.pdf
http://pactconf.org/
http://pactconf.org/
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Executive Summary
• Real PIM hardware is now available, e.g., UPMEM PIM

• However, programming real PIM hardware is challenging, e.g., need to:
- Distribute data across PIM memory banks,
- Manage data transfers between host cores and PIM cores, between PIM 

cores, and between DRAM bank and PIM scratchpad
- Launch PIM kernels on the PIM cores, etc.
- Synchronize properly between threads

• SimplePIM is a high-level programming framework for real PIM hardware
- Iterators such as map, reduce, and zip
- Collective communication with broadcast, scatter, and gather

• Implementation on UPMEM and evaluation with six different 
workloads

- Reduction, vector add, histogram, linear/logistic regression, K-means
- 4.4x fewer lines of code compared to hand-optimized code
- Between 15% and 43% faster than hand-optimized code for three workloads

• Source code: https://github.com/CMU-SAFARI/SimplePIM

https://github.com/CMU-SAFARI/SimplePIM


Concluding Remarks



Challenge and Opportunity for Future

Fundamentally

Energy-Efficient

(Data-Centric)

Computing Architectures
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Challenge and Opportunity for Future

Fundamentally

High-Performance

(Data-Centric)

Computing Architectures
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Challenge and Opportunity for Future

Computing Architectures

with 

Minimal Data Movement
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Concluding Remarks
◼ It is time to design principled system architectures to solve the 

memory problem

◼ We must design systems to be balanced, high-performance, 
and energy-efficient → memory-centric

❑ Enable computation capabilities in memory 

◼ This can

❑ Lead to orders-of-magnitude improvements 

❑ Enable new applications & computing platforms

❑ Enable better understanding of nature

❑ …

◼ Future of truly memory-centric computing is bright

❑ We need to do research & design across the computing stack
265



Fundamentally Better Architectures

Data-centric

Data-driven

Data-aware
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We Need to Revisit the Entire Stack

◼ With a memory-centric mindset

267

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons

We can get there step by step



PIM Review and Open Problems
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Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"A Modern Primer on Processing in Memory"
Invited Book Chapter in Emerging Computing: From Devices to Systems - 
Looking Beyond Moore and Von Neumann, Springer, to be published in 2021.

https://arxiv.org/pdf/2012.03112.pdf 

https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21-extended.pdf
https://people.inf.ethz.ch/omutlu/projects.htm
https://people.inf.ethz.ch/omutlu/projects.htm
https://arxiv.org/pdf/2012.03112.pdf


Referenced Papers, Talks, Artifacts

◼ All are available at

https://people.inf.ethz.ch/omutlu/projects.htm 

https://www.youtube.com/onurmutlulectures 

https://github.com/CMU-SAFARI/ 
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https://people.inf.ethz.ch/omutlu/projects.htm
https://www.youtube.com/onurmutlulectures
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SAFARI Research Group: December 2021

◼ https://safari.ethz.ch/safari-newsletter-december-2021/ 
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https://safari.ethz.ch/safari-newsletter-december-2021/


SAFARI Newsletter June 2023 Edition

◼ https://safari.ethz.ch/safari-newsletter-june-2023/
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https://safari.ethz.ch/safari-newsletter-june-2023/


SAFARI Newsletter July 2024 Edition

◼ https://safari.ethz.ch/safari-newsletter-july-2024/
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https://safari.ethz.ch/safari-newsletter-july-2024/


Think BIG, Aim HIGH!
https://www.youtube.com/watch?v=mV2OuB2djEs 

SAFARI Introduction & Research
Computer architecture, HW/SW, systems, bioinformatics, security, memory

https://www.youtube.com/watch?v=mV2OuB2djEs


Open Source Tools: SAFARI GitHub

276https://github.com/CMU-SAFARI/

https://github.com/CMU-SAFARI/
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Processing-in-Memory: 
Challenges

To fully support PIM systems, we need to develop:

1 Workload characterization methodologies and 
benchmark suites targeting PIM architectures

2 Frameworks that can facilitate the implementation of 
complex operations and algorithms using PIM primitives

3 Compiler support and compiler optimizations 
targeting PIM architectures

4 Operating system support for PIM-aware virtual memory, memory 
management, data allocation and mapping

5 End-to-End System-on-Chip Design Beyond DRAM

The lack of tools and system support for 
PIM architectures limit the adoption of PIM systems



Security Issues in Processing in Memory

◼ Does PIM make security better or easier?

◼ Does PIM make security worse?

◼ Many interesting questions here

◼ Topic of a separate talk, but we highlight some papers
◼ Evaluating Homomorphic Operations on a Real-World Processing-In-Memory 

System [IISWC 2023]

◼ Amplifying Main Memory-Based Timing Covert and Side Channels using 
Processing-in-Memory Operations [arxiv 2024]
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MIMDRAM



MIMDRAM: More Flexible Processing using DRAM

◼ Appears at HPCA 2024
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https://arxiv.org/pdf/2402.19080.pdf 

https://arxiv.org/pdf/2402.19080.pdf


283

Processing-in-Memory: 
Challenges

To fully support PIM systems, we need to develop:

1 Workload characterization methodologies and 
benchmark suites targeting PIM architectures

2 Frameworks that can facilitate the implementation of 
complex operations and algorithms using PIM primitives

3 Compiler support and compiler optimizations 
targeting PIM architectures

4 Operating system support for PIM-aware virtual memory, memory 
management, data allocation and mapping

5 End-to-End System-on-Chip Design Beyond DRAM

The lack of tools and system support for 
PIM architectures limit the adoption of PIM systems



MIMDRAM 
 An End-to-End Processing-Using-DRAM System for 

High-Throughput, Energy-Efficient and Programmer-Transparent 
Multiple-Instruction Multiple-Data Computing

Geraldo F. Oliveira

Ataberk Olgun A. Giray Yağlıkçı F. Nisa Bostancı

Saugata Ghose Juan Gómez-Luna Onur Mutlu
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Key Mechanism: MIMDRAM, a hardware/software co-design PUD system
• Key idea: leverage fine-grained DRAM for PUD operation
• HW: - simple changes to the DRAM array, enabling concurrent PUD operations

           - low-cost interconnects at the DRAM peripherals for data reduction
• SW:  - compiler and OS support to generate and map PUD instructions

Goal: Design a flexible PUD system that overcomes the three limitations caused by 
DRAM’s large and rigid access granularity

Key Results: MIMDRAM achieves
• 14.3x, 30.6x, and 6.8x the energy efficiency of state-of-the-art PUD systems, a high-end 

CPU and GPU, respectively  
• Small area cost to a DRAM chip (1.11%) and CPU die (0.6%) 

https://github.com/CMU-SAFARI/MIMDRAM 

Problem: Processing-Using-DRAM (PUD) suffers from three issues caused by 
DRAM’s large and rigid access granularity
• Underutilization due to data parallelism variation in (and across) applications
• Limited computation support due to a lack of interconnects
• Challenging programming model due to a lack of compilers 

Executive Summary

https://github.com/CMU-SAFARI/MIMDRAM


Recall: Processing using DRAM

◼ We can support 

❑ Bulk bitwise AND, OR, NOT, MAJ

❑ Bulk bitwise COPY and INIT/ZERO

❑ True Random Number Generation; Physical Unclonable Functions

❑ Lookup Table based more complex computation

◼ At low cost

◼ Using analog computation capability of DRAM

❑ Idea: activating (multiple) rows performs computation

◼ Even in commodity off-the-shelf DRAM chips!

◼ 30-77X performance and energy improvement
❑ Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity 

DRAM Technology,” MICRO 2017.

❑ Seshadri+“RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” 

MICRO 2013.
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Background Work: RowClone

◼ Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata 
Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A. 
Kozuch, Phillip B. Gibbons, and Todd C. Mowry,
"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and 
Initialization"
Proceedings of the 46th International Symposium on Microarchitecture 
(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning Session 
Slides (pptx) (pdf)] [Poster (pptx) (pdf)] 
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http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://www.microarch.org/micro46/
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pdf


Background Work: PiDRAM
◼ Ataberk Olgun, Juan Gomez Luna, Konstantinos Kanellopoulos, Behzad Salami, 

Hasan Hassan, Oguz Ergin, and Onur Mutlu,
"PiDRAM: A Holistic End-to-end FPGA-based Framework for 
Processing-in-DRAM"
ACM Transactions on Architecture and Code Optimization (TACO), March 2023.
[arXiv version]
Presented at the 18th HiPEAC Conference, Toulouse, France, January 2023.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Lecture Video (40 minutes)]
[PiDRAM Source Code]
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https://people.inf.ethz.ch/omutlu/pub/PiDRAM_taco23.pdf
https://people.inf.ethz.ch/omutlu/pub/PiDRAM_taco23.pdf
http://taco.acm.org/
https://arxiv.org/abs/2111.00082
https://www.hipeac.net/2023/toulouse/
https://people.inf.ethz.ch/omutlu/pub/PiDRAM_hipeac23-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/PiDRAM_hipeac23-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/PiDRAM_comparch22-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/PiDRAM_comparch22-lecture-slides.pdf
https://www.youtube.com/watch?v=JyWxkeQA0W8
https://github.com/CMU-SAFARI/PiDRAM


Background Work: In-DRAM Bulk AND/OR

◼ Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk 
Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and 

Todd C. Mowry,
"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015. 
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http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://www.computer.org/web/cal


Background Work: Ambit

◼ Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali 
Boroumand, Jeremie Kim, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, 
and Todd C. Mowry,
"Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using 
Commodity DRAM Technology"
Proceedings of the 50th International Symposium on 
Microarchitecture (MICRO), Boston, MA, USA, October 2017.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]
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https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
http://www.microarch.org/micro50/
http://www.microarch.org/micro50/
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-lightning-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-poster.pdf


Background: In-DRAM Bulk Bitwise Execution

◼ Vivek Seshadri and Onur Mutlu,
"In-DRAM Bulk Bitwise Execution Engine"

Invited Book Chapter in Advances in Computers, to appear 
in 2020.
[Preliminary arXiv version]

291

https://arxiv.org/pdf/1905.09822.pdf
https://arxiv.org/pdf/1905.09822.pdf


Recall: SIMDRAM Framework

◼ Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, Joao Dinis Ferreira, Nika Mansouri 
Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose, Juan Gomez-Luna, and Onur Mutlu,
"SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in DRAM"
Proceedings of the 26th International Conference on Architectural Support for Programming 
Languages and Operating Systems (ASPLOS), Virtual, March-April 2021.
[2-page Extended Abstract]
[Short Talk Slides (pptx) (pdf)]
[Talk Slides (pptx) (pdf)]
[Short Talk Video (5 mins)]
[Full Talk Video (27 mins)]
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https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21.pdf
https://asplos-conference.org/
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-extended-abstract.pdf
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-talk.pdf
https://www.youtube.com/watch?v=g0fE1c7w0xk&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=115
https://www.youtube.com/watch?v=bas9U7djW_8&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=116
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Background: 
In-DRAM Copy/Init, Majority & NOT Operations

Introduction & Background Limitations of PUD MIMDRAM Hardware Overview Software Support Evaluation Conclusion
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 

Seshadri, Vivek, et al. " Ambit: In-Memory Accelerator for Bulk Bitwise Operations 
Using Commodity DRAM Technology," in MICRO, 2017

In-DRAM majority is performed by 
simultaneously activating three DRAM rows

← src3

← src2

← src1
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Background: 
In-DRAM Majority Operations

Seshadri, Vivek, et al. "Ambit: In-Memory Accelerator for Bulk Bitwise Operations 
Using Commodity DRAM Technology," in MICRO, 2017

Processing-Using-DRAM architectures (e.g., SIMDRAM) are  
very-wide (e.g., 65,536 wide) bit-serial SIMD engines 

Introduction & Background Limitations of PUD MIMDRAM Hardware Overview Software Support Evaluation Conclusion
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 

Oliveira, Geraldo F., et al. " SIMDRAM: An End-to-End Framework for 
Bit-Serial SIMD Computing in DRAM," in ASPLOS, 2021
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Limitations of PUD Systems: 
Overview

PUD systems suffer from three sources of inefficiency 
due to the large and rigid DRAM access granularity

1 SIMD Underutilization 
- due to data parallelism variation within and across applications 
- leads to throughput and energy waste 

2 Limited Computation Support 
- due to a lack of low-cost interconnects across columns 
- limits PUD operations to only parallel map constructs 

3 Challenging Programming Model 
- due to a lack of compiler support for PUD systems 
- creates a burden on programmers, limiting PUD adoption  

Introduction & Background Limitations of PUD MIMDRAM Hardware Overview Software Support Evaluation Conclusion
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 
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Limitations of PUD Systems: 
Challenging Programming Model

Map & align  
data structures

Just write 
my kernel

Programmer’s Tasks: Goal:

Introduction & Background Limitations of PUD MIMDRAM Hardware Overview Software Support Evaluation Conclusion
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 

for (int i = 0; i < size ; ++ i){
bool cond = A[i] > pred[i];
if (cond) C[i] = A[i] + B[i];
else  C[i] = A[i] - B[i];

}

High-level code for 
C[i] = (A[i] > pred[i])? A[i] + B[i] : A[i] – B[i]
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Limitations of PUD Systems: 
Challenging Programming Model

Map & align  
data structures

Identify 
array boundaries

Just write 
my kernel

Programmer’s Tasks: Goal:

Introduction & Background Limitations of PUD MIMDRAM Hardware Overview Software Support Evaluation Conclusion
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 

for (int i = 0; i < size ; ++ i){
bool cond = A[i] > pred[i];
if (cond) C[i] = A[i] + B[i];
else  C[i] = A[i] - B[i];

}

High-level code for 
C[i] = (A[i] > pred[i])? A[i] + B[i] : A[i] – B[i]
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Limitations of PUD Systems: 
Challenging Programming Model

Map & align  
data structures

Identify 
array boundaries

Manually 
unroll loop

Map C to 
PUD instructions

Just write 
my kernel

Programmer’s Tasks: Goal:

Introduction & Background Limitations of PUD MIMDRAM Hardware Overview Software Support Evaluation Conclusion
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 

for (int i = 0; i < size ; ++ i){
bool cond = A[i] > pred[i];
if (cond) C[i] = A[i] + B[i];
else  C[i] = A[i] - B[i];

}

High-level code for 
C[i] = (A[i] > pred[i])? A[i] + B[i] : A[i] – B[i]
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Limitations of PUD Systems: 
Challenging Programming Model

Map & align  
data structures

Identify 
array boundaries

Manually 
unroll loop

Map C to 
PUD instructions

Orchestrate
data movement 

Just write 
my kernel

Programmer’s Tasks: Goal:

Introduction & Background Limitations of PUD MIMDRAM Hardware Overview Software Support Evaluation Conclusion
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 

for (int i = 0; i < size ; ++ i){
bool cond = A[i] > pred[i];
if (cond) C[i] = A[i] + B[i];
else  C[i] = A[i] - B[i];

}

High-level code for 
C[i] = (A[i] > pred[i])? A[i] + B[i] : A[i] – B[i]
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Limitations of PUD Systems: 
Challenging Programming Model

bbop_trsp_init(A , size , elm_size); 

bbop_trsp_init(B , size , elm_size);
bbop_trsp_init(C , size , elm_size);

bbop_add(D , A , B , size , elm_size);
bbop_sub(E , A , B , size , elm_size);
bbop_greater(F , A , pred , size , elm_size);
bbop_if_else(C , D , E , F , size , elm_size);

Map & align  
data structures

Identify 
array boundaries

Manually 
unroll loop

Map C to 
PUD instructions

Orchestrate
data movement 

Just write 
my kernel

Programmer’s Tasks: Goal:

Introduction & Background Limitations of PUD MIMDRAM Hardware Overview Software Support Evaluation Conclusion
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 

PUD’s assembly-like code for 
C[i] = (A[i] > pred[i])? A[i] + B[i] : A[i] – B[i]
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Problem & Goal

Processing-Using-DRAM’s large and rigid granularity
limits its applicability and 

efficiency for different applicationsPr
ob

le
m

Design a flexible PUD system that 
overcomes the three limitations caused by 

large and rigid DRAM access granularity

G
o

al

Introduction & Background Limitations of PUD MIMDRAM Hardware Overview Software Support Evaluation Conclusion
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 
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MIMDRAM: 
Key Idea (I)

DRAM’s hierarchical organization can enable
fine-grained access

ro
w

 d
ec

od
er

global wordlineDRAM mat

Key Issue:
on a DRAM access, the global wordline propagates across all DRAM mats

Fine-Grained DRAM: 
segments the global wordline to access individual DRAM mats

global sense amplifier 
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MIMDRAM: 
Key Idea (II)

ro
w

 d
ec

o
d

er
Fine-Grained DRAM: 

segments the global wordline to access individual DRAM mats

segmented global wordline

Fine-grained DRAM for energy-efficient DRAM access: 
[Cooper-Balis+, 2010]: Fine-Grained Activation for Power Reduction in DRAM

[Udipi+, 2010]: Rethinking DRAM Design and Organization for Energy-Constrained Multi-Cores

[Zhang+, 2014]: Half-DRAM

[Ha+, 2016]: Improving Energy Efficiency of DRAM by Exploiting Half Page Row Access

[O’Connor+, 2017]: Fine-Grained DRAM

[Olgun+, 2024]: Sectored DRAM

global sense amplifier 



Sectored DRAM

◼ Ataberk Olgun, F. Nisa Bostanci, Geraldo F. Oliveira, Yahya Can Tugrul, 
Rahul Bera, A. Giray Yaglikci, Hasan Hassan, Oguz Ergin, and Onur Mutlu,
"Sectored DRAM: A Practical Energy-Efficient and High-
Performance Fine-Grained DRAM Architecture"
ACM Transactions on Architecture and Code Optimization (TACO), 
[online] June 2024.
[arXiv version]
[ACM Digital Library version]

304
https://arxiv.org/pdf/2207.13795 

https://arxiv.org/pdf/2207.13795
https://arxiv.org/pdf/2207.13795
http://taco.acm.org/
https://arxiv.org/abs/2207.13795
https://doi.org/10.1145/3673653
https://arxiv.org/pdf/2207.13795
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MIMDRAM: 
Key Idea (III)
ro

w
 d

ec
o

d
er

segmented global wordline

Fine-grained DRAM for processing-using-DRAM: 

1 Improves SIMD utilization 
- for a single PUD operation, only access the DRAM mats with target data
- for multiple PUD operations, execute independent operations concurrently

global sense amplifier 
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MIMDRAM: 
Key Idea (III)
ro

w
 d

ec
o

d
er

segmented global wordline

Fine-grained DRAM for processing-using-DRAM: 

1 Improves SIMD utilization 
- for a single PUD operation, only access the DRAM mats with target data
- for multiple PUD operations, execute independent operations concurrently

→ multiple instruction, multiple data (MIMD) execution model 

global sense amplifier 
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MIMDRAM: 
Key Idea (III)

segmented global wordline

Fine-grained DRAM for processing-using-DRAM: 

1 Improves SIMD utilization 
- for a single PUD operation, only access the DRAM mats with target data
- for multiple PUD operations, execute independent operations concurrently

→ multiple instruction, multiple data (MIMD) execution model 

global sense amplifier 

2 Enables low-cost interconnects for vector reduction 
- global and local data buses can be used for inter-/intra-mat communication    

global sense amplifier 

ro
w

 d
ec

o
d

er
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MIMDRAM: 
Key Idea (III)
ro

w
 d

ec
o

d
er

segmented global wordline

Fine-grained DRAM for processing-using-DRAM: 

1 Improves SIMD utilization 
- for a single PUD operation, only access the DRAM mats with target data
- for multiple PUD operations, execute independent operations concurrently

→ multiple instruction, multiple data (MIMD) execution model 

global sense amplifier 

2 Enables low-cost interconnects for vector reduction 
- global and local data buses can be used for inter-/intra-mat communication    

3 Eases programmability 
- SIMD parallelism in a DRAM mat is on par with vector ISAs’ SIMD width 

512 columns



309

Transparently: 
extract SIMD parallelism from an application, and

schedule PUD instructions while maximizing utilization 

G
o

al

Three new LLVM-based passes targeting PUD execution

MIMDRAM: 
Compiler Support (I)

1 3 final binary

code generation

*A=pim_malloc(s,mati)

*D=pim_malloc(s,matj)

bbop_add(C,A,B,mati)

bbop_mul(F,D,E,matj)

bbop_mov(t,F)

bbop_sub(G,C,t,mati)

*t=pim_malloc(s,mati)
…

source code

for(i; i<1024;i++)
{
C[i]=A[i]+B[i];
F[i]=D[i]*E[i];
G[i]=C[i]-F[i]; 

}

loop auto-vectorization

code identification

%3=add<1024 x i32> %1,%2

%6=mul<1024 x i32> %4,%5

%7=sub<1024 x i32> %3,%6

%1=load<1024 x i32*> %A

store %3,<1024 x i32*> %C

…

…

…

…
for(){} A

mat
i
 

movi←j

+

B

*

D E

-

G

matj

DDG

code scheduling & data mapping

A

+

B

*

D E

-

G

scheduling 2 4

a

b

c
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MIMDRAM: 
Compiler Support (II)

1 3 final binary

code generation

*A=pim_malloc(s,mati)

*D=pim_malloc(s,matj)

bbop_add(C,A,B,mati)

bbop_mul(F,D,E,matj)

bbop_mov(t,F)

bbop_sub(G,C,t,mati)

*t=pim_malloc(s,mati)
…

source code

for(i; i<1024;i++)
{
C[i]=A[i]+B[i];
F[i]=D[i]*E[i];
G[i]=C[i]-F[i]; 

}

loop auto-vectorization

code identification

%3=add<1024 x i32> %1,%2

%6=mul<1024 x i32> %4,%5

%7=sub<1024 x i32> %3,%6

%1=load<1024 x i32*> %A

store %3,<1024 x i32*> %C

…

…

…

…
for(){} A

mat
i
 

movi←j

+

B

*

D E

-

G

matj

DDG

code scheduling & data mapping

A

+

B

*

D E

-

G

scheduling 2 4

a

b

c

Identify SIMD parallelism, generate PUD instructions,
 and set the appropriate vectorization factor G

o
al
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MIMDRAM: 
Compiler Support (II)

1 3 final binary

code generation

*A=pim_malloc(s,mati)

*D=pim_malloc(s,matj)

bbop_add(C,A,B,mati)

bbop_mul(F,D,E,matj)

bbop_mov(t,F)

bbop_sub(G,C,t,mati)

*t=pim_malloc(s,mati)
…

source code

for(i; i<1024;i++)
{
C[i]=A[i]+B[i];
F[i]=D[i]*E[i];
G[i]=C[i]-F[i]; 

}

loop auto-vectorization

code identification

%3=add<1024 x i32> %1,%2

%6=mul<1024 x i32> %4,%5

%7=sub<1024 x i32> %3,%6

%1=load<1024 x i32*> %A

store %3,<1024 x i32*> %C

…

…

…

…
for(){} A

mat
i
 

movi←j

+

B

*

D E

-

G

matj

DDG

code scheduling & data mapping

A

+

B

*

D E

-

G

scheduling 2 4

a

b

c

Improve SIMD utilization by allowing the distribution of independent PUD 
instructions across DRAM matsG

o
al

Identify SIMD parallelism, generate PUD instructions,
 and set the appropriate vectorization factor G

o
al
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Generate the appropriate binary for 
data allocation and PUD instructions  G

o
al

MIMDRAM: 
Compiler Support (III)

1 3 final binary

code generation

*A=pim_malloc(s,mati)

*D=pim_malloc(s,matj)

bbop_add(C,A,B,mati)

bbop_mul(F,D,E,matj)

bbop_mov(t,F)

bbop_sub(G,C,t,mati)

*t=pim_malloc(s,mati)
…

source code

for(i; i<1024;i++)
{
C[i]=A[i]+B[i];
F[i]=D[i]*E[i];
G[i]=C[i]-F[i]; 

}

loop auto-vectorization

code identification

%3=add<1024 x i32> %1,%2

%6=mul<1024 x i32> %4,%5

%7=sub<1024 x i32> %3,%6

%1=load<1024 x i32*> %A

store %3,<1024 x i32*> %C

…

…

…

…
for(){} A

mat
i
 

movi←j

+

B

*

D E

-

G

matj

DDG

code scheduling & data mapping

A

+

B

*

D E

-

G

scheduling 2 4

a

b

c

Improve SIMD utilization by allowing the distribution of independent PUD 
instructions across DRAM matsG

o
al

Identify SIMD parallelism, generate PUD instructions,
 and set the appropriate vectorization factor G

o
al
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• Instruction set architecture

• Execution & data transposition 

• Data coherence

• Address translation

• Data allocation & alignment 

• Mat label translation  

MIMDRAM: 
System Support
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Evaluation: 
Methodology Overview

• Evaluation Setup 
- CPU: Intel Skylake CPU 

- GPU: NVIDIA A100 GPU

- PUD: SIMDRAM [Oliveira+, 2021] and DRISA [Li+, 2017]

- PND: Fulcrum [Lenjani+, 2020] 

- https://github.com/CMU-SAFARI/MIMDRAM

• Workloads: 
- 12 workloads from Polybench, Rodinia, Phoenix, and SPEC2017

- 495 multi-programmed application mixes  

• Two-Level Analysis
- Single application → leverages intra-application data parallelism 
- Multi-programmed workload → leverages inter-application

      data parallelism

https://github.com/CMU-SAFARI/MIMDRAM
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Evaluation: 
Single Application Analysis – Energy Efficiency

MIMDRAM significantly improves 
energy efficiency compared to 

CPU (30.6x), GPU (6.8x), and SIMDRAM (14.3x) Ta
ke

a
w
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Evaluation: 
Multi-Programmed Workload Analysis

MIMDRAM significantly improves 
system throughput (1.68x) 

compared to SIMDRAMTa
ke

a
w

ay
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• MIMDRAM with subarray and bank-level parallelism
- MIMDRAM provides significant performance gains compared to the baseline 

CPU (13.2x) and GPU (2x)

• Comparison to DRISA and Fulcrum for multi-programmed 
workloads 

- MIMDRAM achieves system throughput on par with DRISA and Fulcrum

• MIMDRAM’s SIMD utilization versus SIMDRAM
- MIMDRAM provides 15.6x the utilization of SIMDRAM

• Area analysis 
- MIMDRAM adds small area cost to a DRAM chip (1.11%) and 

CPU die (0.6%)

Evaluation: 
More in the Paper
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MIMDRAM: Summary

We introduced MIMDRAM, 
a hardware/software co-designed processing-using-DRAM system

• Key idea: leverage fine-grained DRAM for processing-using-DRAM operation

• HW: - simple changes to DRAM, enabling concurrent instruction execution 
           - low-cost interconnects at the DRAM peripherals for data reduction

• SW:  - compiler and OS support to generate and map instructions 

Our evaluation demonstrates that MIMDRAM

• significantly improves performance, energy efficiency, and throughput compared to 
processor-centric (CPU and GPU) and 
memory-centric (SIMDRAM, DRISA, and Fulcrum) architectures 

• incurs small area cost to a DRAM chip and CPU die

Introduction & Background Limitations of PUD Systems MIMDRAM Overview Evaluation Conclusion
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 

https://github.com/CMU-SAFARI/MIMDRAM 

https://github.com/CMU-SAFARI/MIMDRAM


Two Other Works 

on PIM Programmability



Adoption: How to Ease Programmability? (I)

◼ Geraldo F. Oliveira, Alain Kohli, David Novo, 
Juan Gómez-Luna, Onur Mutlu,

“DaPPA: A Data-Parallel Framework for Processing-
in-Memory Architectures,”
in PACT SRC Student Competition, Vienna, Austria, October 

2023. 

https://arxiv.org/pdf/2310.10168.pdf
https://arxiv.org/pdf/2310.10168.pdf


Adoption: How to Ease Programmability? (II)

◼ Jinfan Chen, Juan Gómez-Luna, Izzat El Hajj, YuXin Guo, 
and Onur Mutlu,

"SimplePIM: A Software Framework for Productive 
and Efficient Processing in Memory"
Proceedings of the 32nd International Conference on 
Parallel Architectures and Compilation Techniques (PACT), 
Vienna, Austria, October 2023.

https://people.inf.ethz.ch/omutlu/pub/SimplePIM_pact23.pdf
https://people.inf.ethz.ch/omutlu/pub/SimplePIM_pact23.pdf
http://pactconf.org/
http://pactconf.org/


SimplePIM



Adoption: How to Ease Programmability? (II)

◼ Jinfan Chen, Juan Gómez-Luna, Izzat El Hajj, YuXin Guo, 
and Onur Mutlu,

"SimplePIM: A Software Framework for Productive 
and Efficient Processing in Memory"
Proceedings of the 32nd International Conference on 
Parallel Architectures and Compilation Techniques (PACT), 
Vienna, Austria, October 2023.

https://people.inf.ethz.ch/omutlu/pub/SimplePIM_pact23.pdf
https://people.inf.ethz.ch/omutlu/pub/SimplePIM_pact23.pdf
http://pactconf.org/
http://pactconf.org/


Jinfan Chen, Juan Gómez Luna, Izzat El Hajj, Yuxin Guo, Onur Mutlu

SimplePIM:
A Software Framework for Productive 

and Efficient Processing-in-Memory

https://arxiv.org/pdf/2310.01893.pdf

https://github.com/CMU-SAFARI/SimplePIM

https://arxiv.org/pdf/2310.01893.pdf
https://github.com/CMU-SAFARI/SimplePIM
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Executive Summary
• Processing-in-Memory (PIM) promises to alleviate the data movement 

bottleneck

• Real PIM hardware is now available, e.g., UPMEM PIM

• However, programming real PIM hardware is challenging, e.g.:
- Distribute data across PIM memory banks,
- Manage data transfers between host cores and PIM cores, and between PIM 

cores,
- Launch PIM kernels on the PIM cores, etc.

• SimplePIM is a high-level programming framework for real PIM hardware
- Iterators such as map, reduce, and zip
- Collective communication with broadcast, scatter, and gather

• Implementation on UPMEM and evaluation with six different 
workloads

- Reduction, vector add, histogram, linear/logistic regression, K-means
- 4.4x fewer lines of code compared to hand-optimized code
- Between 15% and 43% faster than hand-optimized code for three workloads

• Source code: https://github.com/CMU-SAFARI/SimplePIM

https://github.com/CMU-SAFARI/SimplePIM


Real DRAM Chips 

Are Already Quite Capable: 

FC-DRAM & SiMRA



DRAM Chips Are Already (Quite) Capable!

◼ Appears at HPCA 2024
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https://arxiv.org/pdf/2402.18736.pdf 

https://arxiv.org/pdf/2402.18736.pdf


DRAM Chips Are Already (Quite) Capable!

◼ https://arxiv.org/pdf/2312.02880.pdf 

328

https://arxiv.org/pdf/2312.02880.pdf


DRAM Chips Are Already (Quite) Capable!

◼ Appears at DSN 2024

329https://arxiv.org/pdf/2405.06081 

https://arxiv.org/pdf/2405.06081


The Capability of COTS DRAM Chips

330

We demonstrate that COTS DRAM chips:

Can simultaneously activate up to 
48 rows in two neighboring subarrays1

Can perform NOT operation 
with up to 32 output operands2

Can perform up to 16-input
AND, NAND, OR, and NOR operations3



36ns
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ACT Row A PRE ACT Row B
<3ns <3ns

Activating two rows in quick succession 
can simultaneously activate 

multiple rows in neighboring subarrays

Finding: SiMRA Across Subarrays

Neighboring 
Subarrays

Subarray X

Subarray Y

Row A

Row B

DRAM Bank

Shared Sense Amplifiers

14ns

ACT

ACT
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Connect rows in neighboring subarrays
through a NOT gate by simultaneously activating rows

Key Idea: NOT Operation

SA

A

src

dst

ACT src ACT dstSA

A

src

dst

SA

A

src

dst

~A

NOT gate 
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Manipulate the bitline voltage to express 
a wide variety of functions using

multiple-row activation in neighboring subarrays

Key Idea: NAND, NOR, AND, OR

Multiple Row ACT

V(A,B)

SA

B

X

Y

V(X,Y)

X

SA

B

Y

VREF

VREF

A A

sense amp.
compares

V(A,B) and V(X,Y)



Two-Input AND and NAND Operations
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Reference 
Subarray 

(REF)

Compute 
Subarray 

(COM)

X

Y

ACT PRE ACT
<3ns<3ns

AVG(VDD,VDD/2)

AVG(X,Y)

*Gao et al., "FracDRAM: Fractional Values in Off-the-Shelf DRAM," in MICRO, 2022.

VDD

VDD/2*



Two-Input AND and NAND Operations

VDD=1 & GND = 0 

 
X Y COM

0 0 0
0 1 0

1 0 0

1 1 1

REF

1
1

1

0
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ACT PRE ACT
<3ns<3ns

3VDD/4

GND

sense amp.
compares 

the voltages on 
the bitlines

VDD

GND

0 1



Two-Input AND and NAND Operations

VDD=1 & GND = 0 
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ACT PRE ACT
<3ns<3ns

3VDD/4

VDD/2

X Y COM

0
0 1 0

1 0 0

1 1 1

REF

1
1

1

0

sense amp.
compares 

the voltages on 
the bitlines

VDD

GND

0 1 0 1

0 0 0 1



Two-Input AND and NAND Operations

VDD=1 & GND = 0 
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ACT PRE ACT
<3ns<3ns

3VDD/4

VDD/2

sense amp.
compares 

the voltages on 
the bitlines

VDD

GND

X Y COM

0
0 1 0

1 0 0

1 1 1

REF

1
1

1

0

1 0 0 1

0 0 0 1

0 1 0 1



Two-Input AND and NAND Operations

VDD=1 & GND = 0 
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ACT PRE ACT
<3ns<3ns

3VDD/4

VDD

X Y COM

0
0 1 0

1 0 0

1 1 1

REF

1
1

1

0

sense amp.
compares 

the voltages on 
the bitlines

GND

VDD

1 1 1 0

0 1 0 1

1 0 0 1

0 0 0 1



VDD=1 & GND = 0 

Two-Input AND and NAND Operations
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Reference 
Subarray 

(REF)

Compute 
Subarray 

(COM)

X

Y

ACT PRE ACT
<3ns<3ns

AVG(VDD,VDD/2)

AVG(X,Y)

*Gao et al., "FracDRAM: Fractional Values in Off-the-Shelf DRAM," in MICRO, 2022.

AND NAND

VDD

VDD/2*
X Y COM REF

1 1 1 0

0 1 0 1

1 0 0 1

0 0 0 1



Many-Input AND, NAND, OR, and NOR Operations

VDD=1 & GND = 0 

 
X Y AND

0 0 0

0 1 0

1 0 0

1 1 1

NAND

1

1

1

0
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Reference 
Subarray 

(REF)

Compute 
Subarray 

(COM)

VDD/2

VDD

X

Y

ACT REF PRE ACT COM
<3ns<3ns

AVG(VDD,VDD/2)

AVG(X,Y)

We can express AND, NAND, OR, and NOR operations 
by carefully manipulating the reference voltage

(More details in the paper)

https://arxiv.org/pdf/2402.18736.pdf



DRAM Testing Infrastructure
• Developed from DRAM Bender [Olgun+, TCAD’23]*

• Fine-grained control over DRAM commands, timings, 
and temperature

341*Olgun et al., "DRAM Bender: An Extensible and Versatile FPGA-based Infrastructure 
to Easily Test State-of-the-art DRAM Chips," TCAD, 2023.

https://arxiv.org/pdf/2211.05838
https://arxiv.org/pdf/2211.05838


• 256 DDR4 chips from two major DRAM manufacturers

• Covers different die revisions and chip densities

DRAM Chips Tested

342



Performing AND, NAND, OR, and NOR

COTS DRAM chips can perform 
{2, 4, 8, 16}-input AND, NAND, OR, and NOR operations

343



Performing AND, NAND, OR, and NOR

COTS DRAM chips can perform 
16-input AND, NAND, OR, and NOR operations

with very high success rate (>94%)

344



Impact of Data Pattern
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1.98% variation in average success rate 
across all number of input operands



Impact of Data Pattern
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Impact of data pattern is consistent
across all tested operations



Impact of Data Pattern

Data pattern slightly affects 
the reliability of AND, NAND, OR, and NOR operations
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• Detailed hypotheses & key ideas to perform

– NOT operation

– Many-input AND, NAND, OR, and NOR operations

• How the reliability of bitwise operations are affected by

– The location of activated rows

– Temperature (for AND, NAND, OR, and NOR)

– DRAM speed rate

– Chip density and die revision

• Discussion on the limitations of COTS DRAM chips

348

More in the Paper



https://arxiv.org/pdf/2402.18736.pdf
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Available on arXiv



• We experimentally demonstrate that commercial off-the-shelf (COTS) 
DRAM chips can perform:

– Functionally-complete Boolean operations: NOT, NAND, and NOR

– Up to 16-input AND, NAND, OR, and NOR operations

• We characterize the success rate of these operations on
256 COTS DDR4 chips from two major manufacturers

• We highlight two key results:

– We can perform NOT and 
{2, 4, 8, 16}-input AND, NAND, OR, and NOR operations 
on COTS DRAM chips with very high success rates (>94%)

– Data pattern and temperature only slightly affect
the reliability of these operations
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Summary

We believe these empirical results demonstrate 
the promising potential of using DRAM as a computation substrate



Simultaneous Many-Row Activation 
in Off-the-Shelf DRAM Chips

Experimental Characterization and Analysis

Juan Gómez–Luna    Mohammad Sadr    Onur Mutlu

İsmail Emir Yüksel    

Yahya C. Tuğrul    F. Nisa Bostancı    Geraldo F. Oliveira 

A. Giray Yağlıkçı    Ataberk Olgun    Melina Soysal    Haocong Luo 



352

Experimental Study: 120 DDR4 chips from two major manufacturers  
• COTS DRAM chips can perform MAJ5, MAJ7, and MAJ9 operations 

and copy one DRAM row to up to 31 different rows at once
• Storing multiple redundant copies of MAJ’s input operands (i.e., input replication) 

drastically increases robustness (>30% higher success rate)
• Operating conditions (temperature, voltage, and data pattern) 

affect the robustness of in-DRAM operations (by up to 11.52% success rate)

Goal: To experimentally analyze and understand
• The computational capability of COTS DRAM chips beyond that of prior works
• The robustness of such capability under various operating conditions

Executive Summary
Motivation: 
• Processing-Using-DRAM (PUD) alleviates data movement bottlenecks
• Commercial off-the-shelf (COTS) DRAM chips can perform 

three-input majority (MAJ3) and in-DRAM copy operations

https://github.com/CMU-SAFARI/SiMRA-DRAM
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Leveraging Simultaneous Many-Row Activation

Perform MAJX (where X>3) operations1

Increase the robustness of MAJX operations2

Copy one row’s content to multiple rows3
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In-DRAM Multiple Row Copy (Multi-RowCopy)

d s t

r cs

Simultaneously activate many rows to 
copy one row’s content to multiple destination rows 

d s t
s r c

RowClone

s r c

r cs

s r c

d s t
d s t

d s t

Multi-RowCopy

s r c
s r c

s r c

[Seshadri+ MICRO’13]
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Key Takeaways from Multi-RowCopy

COTS DRAM chips are capable of copying one row’s data 
to 1, 3, 7, 15, and 31 other rows at very high success rates

Key Takeaway 1

Multi-RowCopy in COTS DRAM chips is highly resilient to changes in 
data pattern, temperature, and wordline voltage

Key Takeaway 2
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Robustness of Multi-RowCopy

COTS DRAM chips can copy one row’s content 
to up to 31 rows with a very high success rate

Average: >99.98%
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Impact of Data Pattern

Data pattern has a small effect 
on the success rate of the Multi-RowCopy operation

At most 0.79% decrease in 
average success rate 
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Also in the Paper: Impact of Temperature & Voltage

Increasing temperature up to 90◦C 
has a very small effect on 

the success rate of the Multi-RowCopy operation

Reducing the wordline voltage 
only slightly affects 

the success rate of the Multi-RowCopy operation

Temperature

50 ◦C 90 ◦C 

Wordline Voltage

2.5V 2.1V
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More in the Paper
• Detailed hypotheses and key ideas on
• Hypothetical row decoder circuitry
• Input Replication

• More characterization results
• Power consumption of simultaneous many-row activation
• Effect of timing delays between ACT-PRE and PRE-ACT commands 
• Effect of temperature and wordline voltage 

• Circuit-level (SPICE) experiments for input replication
• Potential performance benefits of enabling new in-DRAM operations 
• Majority-based computation 
• Content destruction-based cold-boot attack prevention

• Discussions on the limitations of tested COTS DRAM chips
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Available on arXiv

https://arxiv.org/pdf/2405.06081
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Our Work is Open Source and Artifact Evaluated

https://github.com/CMU-SAFARI/SiMRA-DRAM



MegIS: Metagenomics In Storage



Background: GenStore

◼ Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid 

Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata 
Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu,

"GenStore: A High-Performance and Energy-Efficient In-Storage Computing 

System for Genome Sequence Analysis"
Proceedings of the 27th International Conference on Architectural Support for 
Programming Languages and Operating Systems (ASPLOS), Virtual, February-March 
2022.

[Lightning Talk Slides (pptx) (pdf)]

[Lightning Talk Video (90 seconds)]
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https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://asplos-conference.org/
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pdf
https://www.youtube.com/watch?v=Vi1af8KY0g8


MegIS 

High-Performance, Energy-Efficient, and Low-Cost 

Metagenomic Analysis with In-Storage Processing

Nika Mansouri Ghiasi

Mohammed Alser    Jisung Park    Onur Mutlu

Mohammad Sadrosadati    Harun Mustafa    Arvid Gollwitzer    Can Firtina 

Julien Eudine   Haiyu Mao    Joël Lindegger    Meryem Banu Cavlak 
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What is Metagenomics?

• Metagenomics: Study of genome sequences of diverse organisms
   within a shared environment (e.g., blood, ocean, soil)

• Overcomes the limitations of traditional genomics
- Bypasses the need for culturing individual species in isolation
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What is Metagenomics?

Has led to groundbreaking advances

• Precision medicine

• Understanding microbial diversity of an environment

• Discovering early warnings of communicable diseases 

• Metagenomics: Study of genome sequences of diverse organisms
   within a shared environment (e.g., blood, ocean, soil)
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Metagenomic Analysis

A large database 
containing information

on many species 

Metagenomic sample
with species that 

are not known in advance

Preparation 
of Input Queries Q

ue
ry
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GCTCA
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TCATG

Presence/Absence 
Identification

Abundance
Estimation

V. cholerae

E. coli

SARS-CoV-2

(e.g., > 100 TBs in emerging databases)
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Motivation

• Case study of the performance of metagenomic analysis tools

• With various state-of-the-art SSD configurations
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Motivation

• Case study on the throughput of metagenomic analysis tools

• With Various state-of-the-art SSD configurations
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I/O data movement causes significant performance overhead

Cost-Optimized Performance-Optimized No I/O

I/O becomes an even larger overhead (by 2.7x)

in systems where other bottlenecks are alleviated
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I/O Overhead is Hard to Avoid

I/O overhead due to accessing large, low-reuse data is hard to avoid

Sampling techniques to shrink database sizes

Keeping all data required by metagenomic analysis 
completely and always resident in main memory

Reduce accuracy to levels unacceptable for many use cases

Energy inefficient, costly, unscalable, and unsustainable

• Database sizes increase rapidly (doubling every few months)

• Different analyses need different databases
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Our Goal

Improve metagenomic analysis performance 

by reducing large data movement overhead

from the storage system 

in a cost-effective manner 
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Challenges of In-Storage Processing

Existing metagenomic analysis approaches cannot be implemented as 
an in-storage processing system due to SSD hardware limitations

- Long latency of NAND flash chips

- Limited DRAM capacity inside the SSD

- Limited DRAM bandwidth inside the SSD

SSD DRAM

⋯

SSD 
ControllerCoresFTL

⋯

S
S

D
 

CntrlCntrl

Channel#NChannel#1
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MegIS: Metagenomics In-Storage

• First in-storage system for end-to-end metagenomic analysis

• Idea: Cooperative in-storage processing for metagenomic analysis

- Hardware/software co-design between the storage system and host system
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MegIS’s Steps

A large database 
containing information

on many species 

Metagenomic sample
with species that 
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Step 3
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MegIS Hardware-Software Co-Design
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MegIS Hardware-Software Co-Design
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Step 1

Task partitioning and mapping
•  Each step executes 

in its most suitable system 

Step 2 Step 3
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MegIS Hardware-Software Co-Design
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Data/computation flow coordination
• Reduce communication overhead
• Reduce #writes to flash chips

Step 1 Step 2 Step 3

Task partitioning and mapping
•  Each step executes 

in its most suitable system 
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MegIS Hardware-Software Co-Design
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Storage-aware algorithms
• Enable efficient 

access patterns to the SSD 

Step 1 Step 2 Step 3

Data/computation flow coordination
• Reduce communication overhead
• Reduce #writes to flash chips

Task partitioning and mapping
•  Each step executes 

in its most suitable system 



379

MegIS Hardware-Software Co-Design
H

o
st

 S
y

st
e

m

SSD DRAM

Standard
Metadata

⋯

SSD 
ControllerCoresFTL

⋯

M
e

g
IS

-E
n

a
b

le
d

 S
S

D
 

ACCACC

CntrlCntrl

Channel#NChannel#1

Lightweight in-storage accelerators 
• Minimize SRAM/DRAM buffer spaces 

needed inside the SSD

Step 1 Step 2 Step 3

Storage-aware algorithms
• Enable efficient 

access patterns to the SSD 

Data/computation flow coordination
• Reduce communication overhead
• Reduce #writes to flash chips

Task partitioning and mapping
•  Each step executes 

in its most suitable system 
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MegIS Hardware-Software Co-Design
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MegIS
FTL
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Metadata
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Channel#NChannel#1

Data mapping scheme and Flash Translation Layer (FTL) 
• Specialize to the characteristics of metagenomic analysis

• Leverage the SSD’s full internal bandwidth

Step 1 Step 2 Step 3

Storage-aware algorithms
• Enable efficient 

access patterns to the SSD 

Lightweight in-storage accelerators 
• Minimize SRAM/DRAM buffer spaces 

needed inside the SSD

Data/computation flow coordination
• Reduce communication overhead
• Reduce #writes to flash chips

Task partitioning and mapping
•  Each step executes 

in its most suitable system 

ACCACC
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Evaluation: Methodology Overview
Performance, Energy, and Power Analysis

Baseline Comparison Points

• Performance-optimized software, Kraken2 [Genome Biology’19]

• Accuracy-optimized software, Metalign [Genome Biology’20]

• PIM hardware-accelerated tool (using processing-in-memory), Sieve [ISCA’21]

SSD Configurations

• SSD-C: with SATA3 interface (0.5 GB/s sequential read bandwidth)

• SSD-P: with PCIe Gen4 interface (7 GB/s sequential read bandwidth)

Hardware Components

• Synthesized Verilog model for the in-storage accelerators

• MQSim [Tavakkol+, FAST’18] for SSD’s internal operations

• Ramulator [Kim+, CAL’15] for SSD’s internal DRAM

Software Components

Measure on a real system: 

• AMD® EPYC® CPU with 
128 physical cores

• 1-TB DRAM 
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Evaluation: Speedup over the Software Baselines

MegIS provides significant speedup over both 

Performance-Optimized and Accuracy-Optimized baselines
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Evaluation: Speedup over the Software Baselines

MegIS provides significant speedup over both 

Performance-Optimized and Accuracy-Optimized baselines
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MegIS improves performance on both 

cost-optimized and performance-optimized SSDs
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Evaluation: Speedup over the PIM Baseline
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• On average across different input sets and SSDs
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Evaluation: Accuracy, Area, and Power

Accuracy

• Same accuracy as the accuracy-optimized baseline

• Significantly higher accuracy than the performance-optimized and 
PIM baselines

- 4.6 – 5.2× higher F1 scores

- 3 – 24% lower L1 norm error

Area and Power

Total for an 8-channel SSD:

• Area: 0.04 mm2 (Only 1.7% of the area of three ARM Cortex R4 cores 
in an SSD controller)

• Power: 7.658 mW
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Evaluation: System Cost-Efficiency
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Evaluation: System Cost-Efficiency
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even when running on a much less costly system

($) ($) ($$$) ($$$) ($)

7
.2

x

2
.4

xMegIS improves system cost-efficiency

and makes metagenomics more accessible 
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More in the Paper

•MegIS’s performance when running in-storage processing 
operations on the cores existing in the SSD controller

•MegIS’s performance when using the same accelerators 
outside SSD

• Sensitivity analysis with varying 

- Database sizes

- Memory capacities

- #SSDs

- #Channels

- #Samples

•MegIS’s performance for abundance estimation
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More in the Paper

• MegIS’s performance with the cores in the SSD controller

• MegIS’s performance outside SSD

• Sensitivity analysis with varying 

- Database sizes

- Memory capacities

- #SSDs

- #Channels

- #Samples

• MegIS’s performance for abundance estimation
https://arxiv.org/abs/2406.19113

https://arxiv.org/abs/2406.19113
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Metagenomic analysis suffers from 
significant storage I/O data movement overhead 

Conclusion

The first in-storage processing system for end-to-end metagenomic analysis

Leverages and orchestrates processing inside and outside the storage system

MegIS

Improves performance
2.7×–37.2× over performance-optimized software 

6.9×–100.2×  over accuracy-optimized software

1.5×–5.1× over hardware-accelerated PIM baseline

Low area overhead
1.7% of the three cores

in an SSD controller

Reduces energy consumption
5.4× over performance-optimized software 

15.2×  over accuracy-optimized software

1.9× over hardware-accelerated PIM baseline

High accuracy
Same as accuracy-optimized

4.8× higher F1 scores

 over performance-optimized/PIM



Homomorphic Operations on 

Real PIM Systems



Homomorphic Operations on Real PIM Systems

◼ Harshita Gupta, Mayank Kabra, Juan Gómez-Luna, Konstantinos Kanellopoulos, 
and Onur Mutlu,
"Evaluating Homomorphic Operations on a Real-World Processing-In-
Memory System"
Proceedings of the 2023 IEEE International Symposium on Workload 
Characterization Poster Session (IISWC), Ghent, Belgium, October 2023.
[arXiv version]
[Lightning Talk Slides (pptx) (pdf)]
[Poster (pptx) (pdf)]
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https://people.inf.ethz.ch/omutlu/pub/HEonRealPIM_iiswc23.pdf
https://people.inf.ethz.ch/omutlu/pub/HEonRealPIM_iiswc23.pdf
https://iiswc.org/iiswc2023/
https://iiswc.org/iiswc2023/
https://arxiv.org/abs/2309.06545
https://people.inf.ethz.ch/omutlu/pub/HEonRealPIM_iiswc23-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/HEonRealPIM_iiswc23-lightning-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/HEonRealPIM_iiswc23-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/HEonRealPIM_iiswc23-poster.pdf
https://arxiv.org/pdf/2309.06545.pdf


Side Channels on PIM Systems



PIM Amplifies Covert & Side Channels
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https://arxiv.org/pdf/2404.11284 

https://arxiv.org/pdf/2404.11284


Distributed ML Training on 

Real PIM Systems



Accelerating ML Training on Real PIM Systems

◼ To appear at PACT 2024

397https://arxiv.org/pdf/2404.07164 

https://arxiv.org/pdf/2404.07164


Reinforcement Learning on 

Real PIM Systems



SwiftRL
◼ Kailash Gogineni, Sai Santosh Dayapule, Juan Gomez-Luna, Karthikeya Gogineni, Peng 

Wei, Tian Lan, Mohammad Sadrosadati, Onur Mutlu, Guru Venkataramani,
"SwiftRL: Towards Efficient Reinforcement Learning on Real Processing-In-

Memory Systems"

Proceedings of the 2024 IEEE International Symposium on Performance Analysis of 
Systems and Software (ISPASS), Indianapolis, Indiana, May 2024.

[Slides (pptx) (pdf)]
[arXiv version]
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https://arxiv.org/pdf/2405.03967 

https://arxiv.org/pdf/2405.03967
https://arxiv.org/pdf/2405.03967
https://ispass.org/ispass2024/
https://ispass.org/ispass2024/
https://safari.ethz.ch/wp-content/uploads/UPMEM_Kailash_2024.pptx
https://safari.ethz.ch/wp-content/uploads/UPMEM_Kailash_2024.pdf
https://arxiv.org/abs/2405.03967
https://arxiv.org/pdf/2405.03967


SwiftRL: Summary

George Washington University | ETH Zürich                                                  

ISPASS'24
400

• Adapted and implemented RL algorithms on a PIM architecture for exploring 

memory-centric systems in RL training

• Explored optimization strategies for enhancing RL workload performance across 

• various data types,

• sampling strategies (SEQ, RAN, STR)

• Compared PIM-based Q-learning & SARSA on UPMEM PIM (2000 cores) to CPU & 

GPU

• Achieved near-linear scaling of 15x in performance with a 16x increase in PIM cores 

(125 to 2000)
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MATSA

◼ Ivan Fernandez, Christina Giannoula, Aditya Manglik, Ricardo Quislant, 
Nika Mansouri Ghiasi, Juan Gomez Luna, Eladio Gutierrez, Oscar Plata 
and Onur Mutlu,
"MATSA: An MRAM-Based Energy-Efficient Accelerator for Time 
Series Analysis"
IEEE Access, March 2024.
[arXiv version]
[IEEE Access version]
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https://arxiv.org/pdf/2211.04369 

https://arxiv.org/pdf/2211.04369
https://arxiv.org/pdf/2211.04369
https://doi.org/10.1109/ACCESS.2023.3252002
https://arxiv.org/abs/2211.04369
https://ieeexplore.ieee.org/document/10458946
https://arxiv.org/pdf/2211.04369
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ApHMM

◼ Can Firtina, Kamlesh Pillai, Gurpreet S. Kalsi, Bharathwaj Suresh, Damla Senol Cali, 
Jeremie S. Kim, Taha Shahroodi, Meryem Banu Cavlak, Joel Lindegger, Mohammed 
Alser, Juan Gomez Luna, Sreenivas Subramoney and Onur Mutlu,
"ApHMM: Accelerating Profile Hidden Markov Models for Fast and Energy-
efficient Genome Analysis"
ACM Transactions on Architecture and Code Optimization (TACO), February 2024.
[arXiv version]
[ApHMM Source Code]
[ACM Digital Library version]
[Talk Video HiPEAC]

404https://arxiv.org/pdf/2207.09765 

https://arxiv.org/pdf/2207.09765
https://arxiv.org/pdf/2207.09765
http://taco.acm.org/
https://arxiv.org/abs/2207.09765
https://github.com/CMU-SAFARI/ApHMM-GPU
https://dl.acm.org/doi/10.1145/3632950
https://www.youtube.com/watch?v=a8RFca-jXPk&list=PL5Q2soXY2Zi8KM0Ga7QZ9tY2TiyudbLrK&index=7
https://arxiv.org/pdf/2207.09765
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Executive Summary

Key Results: Our ASIC implementation compared to CPU, GPU, and FPGA baselines 
across 3 workloads
– 15.55×–260.03×, 1.83×–5.34×, and 27.97× better performance

– Up to 2622.94× reduction in energy consumption 

ApHMM: the first flexible and hardware-software accelerator for pHMMs that can

1) Substantially reduce unnecessary data storage, data movement, and computations by 
effectively co-designing hardware and software together

2) Provide a flexible design to support several genomics workloads that use pHMMs

Goal: Enable rapid, power-efficient, and flexible use of pHMMs for genomics workloads

Problem: The parameters used in pHMMs are mainly trained and used with a 
computationally intensive Baum-Welch algorithm, causing major performance and 
energy overhead for many genomics workloads

Motivation: Graph structures such as profile Hidden Markov Models (pHMMs) are 
commonly used to accurately analyze biological sequences

https://github.com/CMU-SAFARI/ApHMM-GPU

https://github.com/CMU-SAFARI/ApHMM-GPU
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RUBICON

◼ Gagandeep Singh, Mohammed Alser, Kristof Denolf, Can Firtina, Alireza 
Khodamoradi, Meryem Banu Cavlak, Henk Corporaal and Onur Mutlu,
"RUBICON: A Framework for Designing Efficient Deep 
Learning-Based Genomic Basecallers"
Genome Biology, February 2024.
[arXiv version]
[Journal Article]
[RUBICON Source Code]
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Utopia: Executive Summary
Problem: Conventional virtual memory (VM) frameworks enable a virtual address to flexibly map                                         
to any physical address. This flexibility necessitates large translation structures leading to: 

(1) high translation latency and (2) large translation-induced interference in the memory hierarchy 
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Motivation: Restricting the address mapping leads to compact translation structures and reduces 
the overheads of address translation. Doing so across the entire memory has two major drawbacks: 

(1) Limits core VM functionalities (e.g., data sharing) 

(2) Increases swapping activity in the presence of free physical memory 

Key Idea: Utopia is a new hybrid virtual-to-physical address mapping scheme  that allows both 
flexible and restrictive hash-based address mappings to harmoniously co-exist in the system

Utopia manages physical memory using two types of physical memory segments:

Flexible Segment

Page
Table

Page

X86-64 
Radix PT

Restrictive Segment

Page
Hash 

Function

Modulo 
Hash

Fast Translation Limited VM features Supports all VM featuresSlow Translation

Key Results: Outperforms (i) the state-of-the-art contiguity-aware translation scheme by 13%,  
and (ii) achieves  95% of the performance of an ideal perfect-TLB

https://github.com/CMU-SAFARI/Utopia



Victima



Better Virtual Memory: Victima
Konstantinos Kanellopoulos, Hong Chul Nam, F. Nisa Bostanci, Rahul Bera, Mohammad Sadrosadati, 
Rakesh Kumar, Davide Basilio Bartolini, and Onur Mutlu,
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[arXiv version]
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Executive Summary
Problem: Address translation is a major performance bottleneck in data-intensive workloads

Large datasets and irregular memory access patterns lead to frequent L2 TLB misses (e.g., 20-50 
MPKI) and frequent high-latency (e.g., 100-150 cycles) page table walks (PTW)

Motivation: Increasing the translation reach  (i.e., memory covered by the TLBs) reduces PTWs. 
However, employing large TLBs leads to increased area, power and latency overheads.                                               

Victima: New software-transparent scheme that drastically increases the address  translation 
reach of the processor’s TLB hierarchy by leveraging the underutilized cache resources

https://github.com/CMU-SAFARI/Victima

Key Results: Victima (i) outperforms by 5.1% a state-of-the-art large TLB design and (ii) achieves 
similar performance to an optimistically fast  128K-entry L2 TLB

Key Idea:  Key Benefits:

+ Efficient in native/virtualized environments

+ Fully transparent to application/OS software

+ Compatible with huge page schemes

 

Transform L2 cache blocks 
that store PTEs into blocks 
that store TLB entries

PTEs

TLB Entries

L2 Cache
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Opportunity: Increase the translation reach of the TLB hierarchy by storing the existing TLB entries 
within the existing cache hierarchy 
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ACM Transactions on Architecture and Code Optimization (TACO), 
[online] June 2024.
[arXiv version]
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Adoption: How to Ease Programmability? (II)
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Jinfan Chen, Juan Gómez Luna, Izzat El Hajj, Yuxin Guo, Onur Mutlu

SimplePIM:
A Software Framework for Productive 
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Executive Summary
• Processing-in-Memory (PIM) promises to alleviate the data movement 

bottleneck

• Real PIM hardware is now available, e.g., UPMEM PIM

• However, programming real PIM hardware is challenging, e.g.:
- Distribute data across PIM memory banks,
- Manage data transfers between host cores and PIM cores, and between PIM 

cores,
- Launch PIM kernels on the PIM cores, etc.

• SimplePIM is a high-level programming framework for real PIM hardware
- Iterators such as map, reduce, and zip
- Collective communication with broadcast, scatter, and gather

• Implementation on UPMEM and evaluation with six different 
workloads

- Reduction, vector add, histogram, linear/logistic regression, K-means
- 4.4x fewer lines of code compared to hand-optimized code
- Between 15% and 43% faster than hand-optimized code for three workloads

• Source code: https://github.com/CMU-SAFARI/SimplePIM

https://github.com/CMU-SAFARI/SimplePIM
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A State-of-the-Art PIM System

• In our work, we use the UPMEM PIM architecture
- General-purpose processing cores called DRAM Processing 

Units (DPUs)
• Up to 24 PIM threads, called tasklets
• 32-bit integer arithmetic, but multiplication/division are 

emulated*, as well as floating-point operations

- 64-MB DRAM bank (MRAM), 64-KB scratchpad (WRAM)

* 8-bit integer multiplication is natively supported
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Programming a PIM System (I)

• Example: Hand-optimized histogram with UPMEM SDK
... // Initialize global variables and functions for histogram 

int main_kernel() {

  if (tasklet_id == 0) 

    mem_reset(); // Reset the heap 

  ... // Initialize variables and the histogram 

  T *input_buff_A = (T*)mem_alloc(2048); // Allocate buffer in scratchpad memory 

  for (unsigned int byte_index = base_tasklet; byte_index < input_size; byte_index += stride) { 

    // Boundary checking 

    uint32_t l_size_bytes = (byte_index + 2048 >= input_size) ? (input_size - byte_index) : 2048; 

    // Load scratchpad with a DRAM block 

    mram_read((const __mram_ptr void*)(mram_base_addr_A + byte_index), input_buff_A, l_size_bytes); 

    // Histogram calculation 

    histogram(hist, bins, input_buff_A, l_size_bytes/sizeof(uint32_t)); 

  } 

  ... 

  barrier_wait(&my_barrier); // Barrier to synchronize PIM threads 

  ... // Merging histograms from different tasklets into one histo_dpu 

  // Write result from scratchpad to DRAM 

  if (tasklet_id == 0)

    if (bins * sizeof(uint32_t) <= 2048) 

      mram_write(histo_dpu, (__mram_ptr void*)mram_base_addr_histo, bins * sizeof(uint32_t)); 

    else 

      for (unsigned int offset = 0; offset < ((bins * sizeof(uint32_t)) >> 11); offset++) { 

        mram_write(histo_dpu + (offset << 9), (__mram_ptr void*)(mram_base_addr_histo + 

                  (offset << 11)), 2048); 

      } 

  return 0; 

} 



422

Programming a PIM System (II)

• PIM programming is challenging
- Manage data movement between host DRAM and PIM DRAM

• Parallel, serial, broadcast, and gather/scatter transfers

- Manage data movement between PIM DRAM bank and 
scratchpad
• 8-byte aligned and maximum of 2,048 bytes

- Multithreaded programming model

- Inter-thread synchronization
• Barriers, handshakes, mutexes, and semaphores

Our Goal
Design a high-level programming framework that abstracts these 
hardware-specific complexities and provides a clean yet powerful 

interface for ease of use and high program performance
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The SimplePIM Programming Framework

• SimplePIM provides standard abstractions to build and 
deploy applications on PIM systems

- Management interface
• Metadata for PIM-resident arrays

- Communication interface
• Abstractions for host-PIM and PIM-PIM communication

- Processing interface
• Iterators (map, reduce, zip) to implement workloads
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Management Interface

• Metadata for PIM-resident arrays
- array_meta_data_t describes a PIM-resident array

- simple_pim_management_t for managing PIM-resident arrays

• lookup: Retrieves all relevant information of an array

• register: Registers the metadata of an array

• free: Removes the metadata of an array

void simple_pim_array_free(const char* id, simple_pim_management_t* management);

array_meta_data_t* simple_pim_array_lookup(const char* id, 

simple_pim_management_t* management);

void simple_pim_array_register(array_meta_data_t* meta_data, 

simple_pim_management_t* management);
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The SimplePIM Programming Framework

• SimplePIM provides standard abstractions to build and 
deploy applications on PIM systems

- Management interface
• Metadata for PIM-resident arrays

- Communication interface
• Abstractions for host-PIM and PIM-PIM communication

- Processing interface
• Iterators (map, reduce, zip) to implement workloads
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Host-to-PIM Communication: Broadcast

• SimplePIM Broadcast
- Transfers a host array to all PIM cores in the system

void simple_pim_array_broadcast(char* const id, void* arr, uint64_t len, 

uint32_t type_size, simple_pim_management_t* management);
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Host-to-PIM Communication: Scatter/Gather

• SimplePIM Scatter
- Distributes an array to PIM DRAM banks 

• SimplePIM Gather
- Collects portions of an array from PIM DRAM banks

void* simple_pim_array_gather(char* const id, simple_pim_management_t* 

management);

void simple_pim_array_scatter(char* const id, void* arr, uint64_t len, 

uint32_t type_size, simple_pim_management_t* management);
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PIM-PIM Communication: AllReduce

• SimplePIM AllReduce
- Used for algorithm synchronization

- The programmer specifies an accumulative function

void simple_pim_array_allreduce(char* const id, handle_t* handle, 

simple_pim_management_t* management);
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PIM-PIM Communication: AllGather

• SimplePIM AllGather
- Combines array pieces and distributes the complete array to 

all PIM cores

void simple_pim_array_allgather(char* const id, char* new_id, 

simple_pim_management_t* management);
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The SimplePIM Programming Framework

• SimplePIM provides standard abstractions to build and 
deploy applications on PIM systems

- Management interface
• Metadata for PIM-resident arrays

- Communication interface
• Abstractions for host-PIM and PIM-PIM communication

- Processing interface
• Iterators (map, reduce, zip) to implement workloads
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Processing Interface: Map

• Array Map
- Applies map_func to every element of the data array

Input	Array
(src_id)

Output	Array	
(dest_id)

…

…

map_func

void simple_pim_array_map(const char* src_id, const char* dest_id, 

uint32_t output_type, handle_t* handle, simple_pim_management_t* management);
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Processing Interface: Reduction

• Array Reduction
- The map_to_val_func function transforms an input 

element to an output value and an output index

- The acc_func function accumulates the output values onto 
the output array

…

…1 0 2 0

10 2

map_to_val_func

acc_func

Input	Array
(src_id)

Output	Array	(dest_id)

void simple_pim_array_red(const char* src_id, const char* dest_id, 

uint32_t output_type, uint32_t output_len, handle_t* handle, 

simple_pim_management_t* management);
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Processing Interface: Zip

• Array Zip
- Takes two input arrays and combines their elements into an 

output array

…

…

…

zip_func

Input	Array
(src1_id)

Output	Array	
(dest_id)

Input	Array
(src2_id)

void simple_pim_array_zip(const char* src1_id, const char* src2_id, 

const char* dest_id, simple_pim_management_t* management);
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General Code Optimizations

• Strength reduction

• Loop unrolling

• Avoiding boundary checks

• Function inlining

• Adjustment of data transfer sizes



435

More in the Paper

• Strength reduction

• Loop unrolling

• Avoiding boundary checks

• Function inlining

• Adjustment of data transfer sizeshttps://arxiv.org/pdf/2310.01893.pdf

https://arxiv.org/pdf/2310.01893.pdf
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Evaluation Methodology

• Evaluated system
- UPMEM PIM system with 2,432 PIM cores with 159 GB of 

PIM DRAM

• Real-world Benchmarks
- Vector addition

- Reduction

- Histogram

- K-Means

- Linear regression

- Logistic regression

• Comparison to hand-optimized codes in terms of 
programming productivity and performance
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Productivity Improvement (I)

• Example: Hand-optimized histogram with UPMEM SDK
... // Initialize global variables and functions for histogram 

int main_kernel() {

  if (tasklet_id == 0) 

    mem_reset(); // Reset the heap 

  ... // Initialize variables and the histogram 

  T *input_buff_A = (T*)mem_alloc(2048); // Allocate buffer in scratchpad memory 

  for (unsigned int byte_index = base_tasklet; byte_index < input_size; byte_index += stride) { 

    // Boundary checking 

    uint32_t l_size_bytes = (byte_index + 2048 >= input_size) ? (input_size - byte_index) : 2048; 

    // Load scratchpad with a DRAM block 

    mram_read((const __mram_ptr void*)(mram_base_addr_A + byte_index), input_buff_A, l_size_bytes); 

    // Histogram calculation 

    histogram(hist, bins, input_buff_A, l_size_bytes/sizeof(uint32_t)); 

  } 

  ... 

  barrier_wait(&my_barrier); // Barrier to synchronize PIM threads 

  ... // Merging histograms from different tasklets into one histo_dpu 

  // Write result from scratchpad to DRAM 

  if (tasklet_id == 0)

    if (bins * sizeof(uint32_t) <= 2048) 

      mram_write(histo_dpu, (__mram_ptr void*)mram_base_addr_histo, bins * sizeof(uint32_t)); 

    else 

      for (unsigned int offset = 0; offset < ((bins * sizeof(uint32_t)) >> 11); offset++) { 

        mram_write(histo_dpu + (offset << 9), (__mram_ptr void*)(mram_base_addr_histo + 

                  (offset << 11)), 2048); 

      } 

  return 0; 

} 
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Productivity Improvement (II)

• Example: SimplePIM histogram

// Programmer-defined functions in the file "histo_filepath"

void init_func (uint32_t size, void* ptr) { 

  char* casted_value_ptr = (char*) ptr;

  for (int i = 0; i < size; i++)

    casted_value_ptr[i] = 0;

}

void acc_func (void* dest, void* src) { 

  *(uint32_t*)dest += *(uint32_t*)src; 

}

void map_to_val_func (void* input, void* output, uint32_t* key) {

  uint32_t d = *((uint32_t*)input);

  *(uint32_t*)output = 1;

  *key = d * bins >> 12;

}

// Host side handle creation and iterator call

handle_t* handle = simple_pim_create_handle("histo_filepath", REDUCE, NULL, 0);

// Transfer (scatter) data to PIM, register as "t1"

simple_pim_array_scatter("t1", src, bins, sizeof(T), management);

// Run histogram on "t1" and produce "t2"

simple_pim_array_red("t1", "t2", sizeof(T), bins, handle, management);
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Productivity Improvement (III)

• Lines of code (LoC) reduction

SimplePIM Hand-optimized LoC Reduction

Reduction 14 83 5.93×

Vector Addition 14 82 5.86×

Histogram 21 114 5.43×

Linear Regression 48 157 3.27×

Logistic Regression 59 176 2.98×

K-Means 68 206 3.03×

SimplePIM reduces the number of lines of effective code 
by a factor of 2.98× to 5.93×
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Performance Evaluation (I)

• Weak scaling analysis

SimplePIM achieves comparable performance for 
reduction, histogram, and linear regression

SimplePIM outperforms hand-optimized implementations for 
vector addition, logistic regression, 

and k-means by 10%-37%



441

Performance Evaluation (II)

• Strong scaling analysis

SimplePIM scales better than hand-optimized implementations 
for reduction, histogram, and linear regression

SimplePIM outperforms hand-optimized implementations for 
vector addition, logistic regression, 

and k-means by 15%-43%
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Discussion

• SimplePIM is devised for PIM architectures with
- A host processor with access to standard main memory and 

PIM-enabled memory
- PIM processing elements (PEs) that communicate via the 

host processor
- The number of PIM PEs scales with memory capacity

• SimplePIM emulates the communication between PIM 
cores via the host processor

• Other parallel patterns can be incorporated in future 
work

- Prefix sum and filter can be easily added
- Stencil and convolution would require fine-grained scatter-

gather for halo cells
- Random access patterns would be hard to support
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SimplePIM: arXiv Version

https://arxiv.org/pdf/2310.01893.pdf

https://arxiv.org/pdf/2310.01893.pdf
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https://github.com/CMU-
SAFARI/SimplePIM

Source Code

https://github.com/CMU-SAFARI/SimplePIM
https://github.com/CMU-SAFARI/SimplePIM
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SimplePIM: Summary
• Processing-in-Memory (PIM) promises to alleviate the data movement 

bottleneck

• Real PIM hardware is now available, e.g., UPMEM PIM

• However, programming real PIM hardware is challenging, e.g.:
- Distribute data across PIM memory banks,
- Manage data transfers between host cores and PIM cores, and between PIM 

cores,
- Launch PIM kernels on the PIM cores, etc.

• SimplePIM is a high-level programming framework for real PIM hardware
- Iterators such as map, reduce, and zip
- Collective communication with broadcast, scatter, and gather

• Implementation on UPMEM and evaluation with six different 
workloads

- Reduction, vector add, histogram, linear/logistic regression, K-means
- 4.4x fewer lines of code compared to hand-optimized code
- Between 15% and 43% faster than hand-optimized code for three workloads

• Source code: https://github.com/CMU-SAFARI/SimplePIM

https://github.com/CMU-SAFARI/SimplePIM
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Stall other loads due to contention
in load execution resources

Stall load-dependent instructions 
due to long load execution latency

Key Problem

Load instructions are a key limiter of

instruction-level parallelism (ILP)

Data Dependence Resource Dependence

L I

L1

L2

R

(e.g., address generation unit, 
load port, ...)
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Prior Works on Tolerating Load Latency

• Load value prediction (LVP) [Lipasti+, ASPLOS’96; Sazeides+, MICRO’96; ...]

• Memory renaming (MRN) [Moshovos+, ISCA’97; Tyson+, MICRO’97; ...]

By speculatively executing 
load-dependent instructions 
using a predicted load value

Mitigate
Data Dependence

L I

Predicted load still gets executed
to verify speculation,

consuming execution resources

Do Not Mitigate
Resource Dependence

L1

L2

R
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Motivation

Safely breaking load data dependency 
without executing a load instruction 

may provide additional performance benefits

By finding load instructions that repeatedly produce
identical results across dynamic instances

How do we start?
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Key Finding I: Global-Stable Loads

• Some loads repeatedly fetch the same data value 
from same load address across entire workload

- Both operations, address generation & data fetch, 
produce identical results across all dynamic instances

- Prime targets for breaking data dependency without 
execution

Global-Stable Load
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Key Finding I: Global-Stable Loads
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Across a wide range of 90 workloads
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In the Paper: Analysis of Global-Stable Loads

• Why do these loads even exist in well-optimized 
real-world workloads?

- Accessing global-scope variables

- Accessing local variables of inline functions

- Limited set of architectural registers

• Can increasing architectural registers help?
- Very small change even after doubling x64 registers

• Deeper characterization of global-stable loads
- Which addressing mode do they use?

- How far away do they appear in a workload?
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In the Paper: Analysis of Global-Stable Loads

• Why do these loads even exist in well-optimized 
real-world workloads?

- Accessing global-scope variables

- Accessing local variables of inline functions

- Limited set of architectural registers

• Can increasing architectural registers help?
- Very small change even after doubling x64 registers

• Deeper characterization of global-stable loads
- Which addressing mode do they use?

- How far away do they appear in a workload?https://arxiv.org/pdf/2406.18786

https://arxiv.org/pdf/2406.18786


But do they limit ILP even when using

load value prediction and memory renaming? 

A significant fraction of loads are global-stable
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456

Key Finding II: Global-Stable Loads Cause 
Resource Dependence

In an aggressive OoO processor with 6-wide issue, 3 load ports,
a load value predictor (EVES [Seznec, CVP’18]), and memory renaming enabled

All execution cycles where 
at least one load port is utilized
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Key Finding II: Global-Stable Loads Cause 
Resource Dependence

In an aggressive OoO processor with 6-wide issue, 3 load ports,
a load value predictor (EVES [Seznec, CVP’18]), and memory renaming enabled

All execution cycles where 
at least one load port is utilized

23%
A global-stable load utilizes a load port

blocking a non-global-stable load
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Key Finding II: Global-Stable Loads Cause 
Resource Dependence

In an aggressive OoO processor with 6-wide issue, 3 load ports,
a load value predictor (EVES [Seznec, CVP’18]), and memory renaming enabled

All execution cycles where 
at least one load port is utilized

23%
A global-stable load utilizes a load port

blocking a non-global-stable load

Even when using load value prediction and memory renaming,
global-stable loads limit ILP due to resource dependence

What’s the performance headroom of 
mitigating the resource dependence?
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Key Finding III: High Performance Headroom
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Ideal elimination of global-stable loads exceeds performance 

of a processor with 2x wider load execution
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Load Execution Resources Lag Behind
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Load Execution Resources Lag Behind
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Mitigating load resource dependence has

high performance potential 
in recent and future generation processors
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Our Goal

To improve instruction-level parallelism by mitigating

both load data dependence and resource dependence



Mitigates both load data dependence 
and load resource dependence

By safely eliminating 
the entire execution of a load instruction

A purely-microarchitectural technique
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Constable: Key Insight

mov r8, [rbp+0x8]

sub rax, r8

cmp rsi, rax

jle 0x40230e

add rax, 0x10

mov r8, [rbp+0x8]

sub rax, r8

cmp rsi, rax

jle 0x40230e

D
yn

am
ic

 in
st
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ct

io
n
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m

add rax, 0x10

add rax, 0x10

Two successive dynamic instances 
of the same static load instruction  

LD1

LD2
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If the source register rbp
has not been modified

Constable: Key Insight

mov r8, [rbp+0x8]

sub rax, r8

cmp rsi, rax

jle 0x40230e

add rax, 0x10

mov r8, [rbp+0x8]

sub rax, r8

cmp rsi, rax

jle 0x40230e

D
yn

am
ic

 in
st
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ct
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n

 s
tr
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m

add rax, 0x10

add rax, 0x10

LD2 would have the same address as LD1

Address generation of LD2 
can be eliminated

If no store or snoop request 
to address [rbp+0x8]

LD2 would fetch the same data as LD1

Data fetching of LD2 
can be eliminated

LD1

LD2
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Constable: Key Steps

Dynamically identify load instructions 
that have historically fetched 

the same data from the same load address
(i.e., likely-stable)

Eliminate execution of likely-stable loads
by tracking modifications to 

their source registers and their load addresses                     
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Prior Related Literature

Rich literature on skipping redundant computations 
by memoizing previously-computed results

[Michie, Nature’68; Harbison+, ASPLOS’82; Richardson, SCA’93; Sodani+, ISCA’97; González+, ICPP’99; ...]

                      
                     

                         
                     

Aim to memoize every instruction
including multiple dynamic instances of each instruction

Require large memoization buffer
Often bigger than the size of L1 data cache
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Key Improvements over Literature

Rich literature on skipping redundant computations 
by memoizing previously-computed results

[Michie, Nature’68; Harbison+, ASPLOS’82; Richardson, SCA’93; Sodani+, ISCA’97; González+, ICPP’99; ...]

Focus only on loads that are likely stable

Lower storage overhead
with high load elimination coverage

Lower design complexity
Fewer port requirements, lower power
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Key Improvements over Literature

Focus only on loads that are likely stable

Eliminate loads early in the pipeline

Elimination at rename stage 
by explicitly monitoring changes to the source registers

and load address of a likely-stable load

Rich literature on skipping redundant computations 
by memoizing previously-computed results

[Michie, Nature’68; Harbison+, ASPLOS’82; Richardson, SCA’93; Sodani+, ISCA’97; González+, ICPP’99; ...]
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Key Improvements over Literature

Focus only on loads that are likely stable

Eliminate loads early in the pipeline

Ensure correctness in today’s processors

• Maintain correctness in presence of out-of-order load issue
• Maintain coherence in multi-threaded & multi-core execution

Rich literature on skipping redundant computations 
by memoizing previously-computed results

[Michie, Nature’68; Harbison+, ASPLOS’82; Richardson, SCA’93; Sodani+, ISCA’97; González+, ICPP’99; ...]



Design Overview
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Constable: Key Steps

Identify
likely-stable loads

Eliminate
by tracking modifications                     
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Identify a Likely-Stable Load

• Using a stability confidence 
counter per load instructionmov r8, [rbp+0x8]

sub rax, r8

cmp rsi, rax

add rax, 0x10

mov r8, [rbp+0x8]

sub rax, r8

cmp rsi, rax

ret

add rax, 0x10

mov r8, [rbp+0x8]

sub rax, r8

cmp rsi, rax

jle 0x40230e

Stability 
Confidence

+1

                       
                     

/2

5

6

3

Same data & address
as last dynamic instance

Different data or 
different address
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Eliminate a Likely-Stable Load

mov r8, [rbp+0x8]

sub rax, r8

cmp rsi, rax

add rax, 0x10

mov r8, [rbp+0x8]

sub rax, r8

cmp rsi, rax

add rax, 0x10

add rax, 0x10

mov r8, [rbp+0x8]

sub rax, r8

cmp rsi, rax

30

30

30

Stability confidence crosses thresholdjle 0x40230e

rbp 0x4200e0PCx PCx

Elimination Table

PCx

Register Monitor Address Monitor

• No reservation station
• No address generation unit
• No load port
• Still takes ROB and load buffer

0x2ae last value

eliminate flag

to handle correct elimination of in-flight loads

                     
                     

                  
                 

In
se

rt

In
se

rt

In
se

rt
Lo

ok
up



475

rbp 0x4200e0PCx PCx

Elimination Table

PCx

Register Monitor Address Monitor

0x2ae

Stop Elimination of a Likely-Stable Load

mov r8, [rbp+0x8]

sub rax, r8

cmp rsi, rax

pop rbx

mov r8, [rbp+0x8]

sub rax, r8

cmp rsi, rax

jle 0x40230e

add rax, 0x10

30

30

jle 0x40230e

add rbp, 0xd8
.
.
.

add rax, 0x10

Elimination flag not set.
Gets executed

15
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More in the Paper
• Ensuring safe and correct elimination in presence of

- Out-of-order load issue
- Multi-threaded & multi-core execution
- Wrong-path execution

• Integration of Constable into the processor pipeline

• Microarchitecture for breaking data dependence on the 
eliminated loads

• Microarchitecture of Constable’s own structures
- Read and write port requirements

Elimina on 
 able Register 

Monitor

Address 
Monitor
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More in the Paper
• Ensuring safe and correct elimination in presence of

- Out-of-order load issue
- Multi-core execution
- Wrong-path execution

• Integration of Constable into the processor pipeline

• Microarchitecture for breaking data dependence on the 
eliminated loads

• Microarchitecture of Constable’s own structures
- Read and write port requirements

Elimina on 
 able Register 

Monitor

Address 
Monitor

https://arxiv.org/pdf/2406.18786

https://arxiv.org/pdf/2406.18786


Evaluation
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Methodology
• Industry-grade x86-64 simulator modeling aggressive OoO processor

- 8-wide fetch, 6-wide issue to 3 load ports, 512-entry ROB

- With memory renaming, zero/constant/move elimination, branch folding

- Five prefetchers throughout cache hierarchy

• 90 workloads of wide variety

- All from SPEC CPU 2017

- Client (SYSMark, DaCapo, ...)

- Enterprise (SPECjbb, SPECjEnterprise, ...)

- Server (BigBench, Hadoop, ...)

• EVES, the state-of-the-art load value predictor 
[Seznec, CVP’18]

• Early Load Address Resolution [Bekerman+, ISCA’00]

• Register File Prefetching [Shukla+, ISCA’22]

Mechanisms compared against

• No simultaneous 
multi-threading (SMT)

• 2-way SMT

Configurations
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Performance Improvement in noSMT
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3.4%

EVES (the state-of-the-art load value predictor)

Constable

EVES + Constable

Constable alone provides similar performance as EVES 

with only ½ of EVES’ storage overhead

Constable on top of EVES outperforms EVES alone
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Performance Improvement in 2-way SMT
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Performance Improvement in 2-way SMT
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EVES (the state-of-the-art load value predictor)

Constable

EVES + Constable

Constable provides higher performance benefits 
in a 2-way SMT processor
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Improvement in Resource Efficiency
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Improvement in Resource Efficiency
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Constable significantly improves resource efficiency
by eliminating load instruction execution
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Reduction in Dynamic Power
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Reduction in Dynamic Power
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5.1% reduction9.1% reductionBy eliminating load instruction execution,
Constable reduces dynamic power consumption
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Area and Power Overhead 
of Constable’s Own Structures

                        
                     

12.4 KB
Storage overhead per core

                        
                 

0.232 mm2

0.0061% area of Intel Alderlake-S processor

                             
                     

Low Energy
Up to 10.8 pJ/read and 16.7 pJ/write
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More in the Paper
• Load elimination coverage of Constable

- 23.5% of all dynamic loads are eliminated

• Per-workload performance analysis
- Up to 31.2% over baseline
- 60/90 workloads outperforms EVES by more than 5%

• Performance contribution per load category
- Stack loads contribute the highest

• Performance improvement over prior works
- 4.7% over Early load address resolution
- 3.6% over Register file prefetching

• Performance sensitivity:
- Higher performance in every configuration up to 2X load execution width
- Higher performance in every configuration up to 2X pipeline depth
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More in the Paper
• Load elimination coverage of Constable

- 23.5% of all dynamic loads are eliminated

• Per-workload performance analysis
- Up to 31.2% over baseline
- 60/90 workloads outperforms EVES by more than 5%

• Performance contribution per load category
- Stack loads contributes the highest

• Performance improvement over prior works
- 4.7% over Early load address resolution
- 3.6% over Register file prefetching

• Performance sensitivity:
- Higher performance in every configuration up to 2X load execution width
- Higher performance in every configuration up to 2X pipeline depthhttps://arxiv.org/pdf/2406.18786

https://arxiv.org/pdf/2406.18786


To Summarize...
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Our Key Findings

A large fraction (34%) of dynamic loads fetch 
the same data from the same address 

throughout the entire workload

These global-stable loads cause significant ILP loss 
due to resource dependence

Eliminating global-stable load execution provides 

more than 2x the performance benefit 

of just breaking their load data dependency



492

Our Proposal

Identifies and eliminates loads 
that repeatedly fetch same data from same address

Constable

High performance benefit
over a strong baseline system 

without (5.1%) and with SMT (8.8%)

Improves resource efficiency
L1-D access reduction by 26%

RS allocation reduction by 8.8%

Reduces dynamic power 
L1-D power by 9.1%
RS power by 5.1%

Low storage overhead
Only 12.4 KB/core,

0.232 mm2 in 14-nm technology
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43% of global-stable loads 
do not get eliminated

There’s Still Headroom...

We need to understand more

software primitives that generate global-stable loads

Constable successfully eliminates 

57% of all global-stable loads at runtime
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Open-Source Tool

A tool to analyze load instructions in any off-the-shelf x86(-64) program

https://github.com/CMU-SAFARI/Load-Inspector

https://github.com/CMU-SAFARI/Load-Inspector
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Open-Source Tool

A tool to analyze load instructions in any off-the-shelf x86(-64) program

https://github.com/CMU-SAFARI/Load-Inspector

Study global-stable loads

Study the effects of increasing architectural registers
using APX extension to x64 ISA

https://github.com/CMU-SAFARI/Load-Inspector


Improving Performance and Power Efficiency 
by Safely Eliminating Load Instruction Execution

arXiv Load Inspector
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