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Why Do We Do Computing?




Answer

To Solve Problems

SAFARI



Answer Reworded

To Gain Insight

SAFARI  Hamming, “Numerical Methods for Scientists and Engineers,” 1962. *



Answer Extended

To Enable
a Better Life & Future

SAFARI



How Does a Computer
Solve Problems?




Answer

Orchestrating Electrons

In today’s dominant technologies
SAFARI



How Do Problems
Get Solved by Electrons?




The Transtormation Hierarchy

(expanded view) (narrow view)

Computer Architecture l SW/HW Interface I Computer Architecture

SAFARI



Axiom

To achieve the highest energy efficiency and performance
(and also dependability, security, safety):

we must take the expanded view
of computer architecture

Problem

Program/Language
System Software || Co-design across the hierarchy:
SW/HW Interface Algorithms to devices

Specialize as much as possible
within the design goals

SAFARI 10



Challenge and Opportunity for Future

Reliable, Secure, Safe

SAFARI



Challenge and Opportunity for Future

Sustainable
and
Energy Efficient

SAFARI



Challenge and Opportunity for Future

High Performance

(to solve
the toughest & all problems)

SAFARI
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Challenge and Opportunity for Future

Personalized and Private

(in every aspect of life:
health, medicine,
spaces, devices, robotics, ...)

SAFARI 14



Four Key Current Directions

Fundamentally Secure/Reliable/Safe Architectures

Fundamentally Energy-Efficient Architectures
o Memory-centric (Data-centric) Architectures

Fundamentally Low-Latency and Predictable Architectures

Architectures for AI/ML, Genomics, Medicine, Health, ...

SAFARI 15



Current Research Mission

Computer architecture, HW/SW, systems, bioinformatics, security

f— Hybrld Maln Memory —

Hterogenous Persistent Memory/Storage

Processors and

Accelerators

Graphics and Vision Processing

Build fundamentally better architectures

SAFARI



Panel Question 1

External or geographic influences on the microarchitecture
research environment.

What do you t
which you anc

nink is different about the environment in
your colleagues perform your research, and

what do you think is similar across multiple regions of the

globe.

For example —
of the world is

academic research funding in different parts
different; so are national or regional

priorities which may influence industrial policy and hence
the research environment.

SAFARI
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Panel Question 1

Globally and ideally, we should be working together freely
to solve the huge problems we face, exploring many
diverse and big ideas, without borders or external barriers

Unfortunately, funding issues & world+local politics &
academic “merit” systems & review systems affect this goal

Q

o O O 0O

Collaboration
Immigration

Focus on large advances
Funding

Reviewing biases

Switzerland & ETH: Relatively free, ample funding (so far),
yet still affected by global+local politics

SAFARI 18



Panel Question 2

= How do you see the similarities and/or difference
influencing the microarchitecture research community?

SAFARI
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Panel Question 2

Negative global+local politics is not good for collaboration,
funding and progress

Flawed academic merit systems are similarly problematic
Ditto for issues in review systems

All take useful cycles away from fast & large progress

SAFARI 20



Panel Question 3

= What do you think are the most important
microarchitecture research areas that researchers in your
region should invest in, and why?

SAFARI
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Challenge and Opportunity for Future

Reliable, Secure, Safe

SAFARI



Challenge and Opportunity for Future

Sustainable
and
Energy Efficient

SAFARI



Challenge and Opportunity for Future

High Performance

(to solve
the toughest & all problems)

SAFARI

24



Challenge and Opportunity for Future

Personalized and Private

(in every aspect of life:
health, medicine,
spaces, devices, robotics, ...)

SAFARI 25



Challenge and Opportunity for Future

Hardware systems that

fundamentally
guarantee

robustness
(security, safety, reliability)




Challenge and Opportunity for Future

Fundamentally
Energy-Efficient
(Data-Centric)

Computing Architectures




Challenge and Opportunity for Future

Fundamentally
High-Performance
(Data-Centric)
Computing Architectures




Challenge and Opportunity for Future

Computing Architectures
with
Maximal Efficiency

SAFARI



Challenge and Opportunity for Future

Computing systems for
Genomics
Medicine
Health
Climate

30



Challenge and Opportunity for Future

Data-Driven
(Self-Optimizing)
Computing Architectures

SAFARI



Challenge and Opportunity for Future

Data-Aware
(Expressive)
Computing Architectures

SAFARI



Fundamentally Better Architectures

Data-centric

Data-driven

Data-aware

SAFARI
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Panel Question 4

= What areas you think are less important for researchers to
investigate.

SAFARI 34



Challenge and Opportunity for Future

Diversity is good

Avoid bias against
any topic

SAFARI



Suggestions to Reviewers

= Be fair; you do not know it all
= Be open-minded; you do not know it all

= Be accepting of diverse research methods: there is no
single way of doing research or writing papers

= Be constructive, not destructive
= Enable heterogeneity, but do not have double standards...

Do not block or delay scientific progress for non-reasons

SAFARI
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Current Research Mission & Major Topics

Build fundamentally better architectures

= Data-centric arch. for low energy & high perf.
Problem a Proc. in Mem/DRAM, NVM, unified mem/storage

= Low-latency & predictable architectures
Program/Language o Low-latency, low-energy yet low-cost memory

System Software o QoS-aware and predictable memory systems
SW/HW Interface

= Fundamentally secure/reliable/safe arch.
a Tolerating all bit flips; patchable HW; secure mem

= Architectures for ML/Al/Genomics/Health/Med
a Algorithm/arch./logic co-design; full heterogeneity

Broad research = Data-driven and data-aware architectures
Spanning apps, systems: 109ic 4 ML/AI-driven architectural controllers and design
o Expressive memory and expressive systems

SAFARI 58




The Problem

Computing
IS Bottlenecked by Data

SAFARI



Data 1s Key for Al, ML, Genomics, ...

Important workloads are all data intensive

They require rapid and efficient processing of large amounts
of data

Data is increasing
o We can generate more than we can process

SAFARI 40



Data 1s Key for Future Workloads

In-memory Databases Graph/Tree Processing
[Mao+, EuroSys’12; [Xu+, ISWC’12; Umuroglu+, FPL’15]
Clapp+ (Intel), ISWC’ 5]

et N
Spark

In-Memory Data Analytics Datacenter Workloads
[Clapp+ (Intel), ISWC'I5; [Kanev+ (Google), ISCA’15]
Awan+, BDCloud’15]

SAFARI



Data Overwhelms Modern Machines

In-memory Databases Graph/Tree Processing

Data — performance & energy bottleneck

APACHE

Spark

In-Memory Data Analytics Datacenter Workloads
[Clappt (Intel), ISWC’I5; [Kanev+ (Google), ISCA’|5]
Awan+, BDCloud’ | 5]

SAFARI




Data is Key for Future Workloads

e T

Chrome TensorFlow Mobile
Google’s web browser Google’s machine learning
framework
@ O VouTube © O Voulube
Video Playback Video Capture
Google’s video codec Google’s video codec

SAFARI



Data Overwhelms Modern Machines

f

Chrome TensorFlow Mobile

Data — performance & energy bottleneck

@ O VouTube @ O YouTube
Video Playback Video Capture
Google’s video codec Google’s video codec

SAFARI



Data 1s Key for Future Workloads

development of high-throughput
sequencing (HTS) technologies

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Number of Genomes ’
1,62
Sequenced AN

2014 2015 2016 2017 Source: IHumina

SAFARI http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped ~ 4°
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Billions of Short Reads
"ATATATACGTACTAGTACGT

TTTAGTACGTACGT
ATACGTACTAGTACGT

G TACGTA

ACGTACTAGTACGT

TTAGTACGTACGT
TACGTACTAAAGTACGT
[ TACGTACTAGTACGT
TTTAAAACGTA

GTACTAGTACGT

GGGAGTACGTACGT

TATAATACG
0f1]2 ‘

OOP—B—AB—OD

Do |
Short Read o Read

Reference Genome

!l Sequencing Genome

Analysis

Read Mapping n

reference: TTTATCGCTTCCATGACGCAG

readl:
read2:
read3:
read4:
read5:
read6:

ATCGCATCC
TATCGCATC
CATCCATGA
CGCTTCCAT
CCATGACGC
TTCCATGAC

k) variant Calling

Scientific Discoveryn



Billions of Short Reads
"ATATATACGTACTAGTACGT

TTTAGTACGTACGT
ATACGTACTAGTACGT

CGCCCCTACGTA

ACGTACTAGTACGT
" TTAGTACGTACGT
TACGTACTAAAGTACGT
ATACGTACTAGTACGT
' TTTAAAACGTA

CGTACTAGTACGT

GGGAGTACGTACGT

CCTATAATACG
0f1]2 ‘

OOP—AP—AP—AODO

\
Short Read Read

ll Sequencing

Genome
Analysis

o Reference Genome o
Read Mapping n

read5: CCATGACGC
readé6: TTCCATGAC

k) variant Calling

Scientific Discoveryn



New Genome Sequencing Technologies

Nanopore sequencing technology and tools for genome assembly:
computational analysis of the current state, bottlenecks and
future directions

Damla Senol Cali ™=, Jeremie S Kim, Saugata Ghose, Can Alkan, Onur Mutlu

Briefings in Bioinformatics, bby017, https://doi.org/10.1093/bib/bby017
Published: 02 April 2018 Article history v

Oxford Nanopore MinION

Senol Cali+, "Nanopore Sequencing Technology and Tools for Genome
Assembly: Computational Analysis of the Current State, Bottlenecks
and Future Directions,” Briefings in Bioinformatics, 2018.

[Open arxiv.org version]

SAFARI 48


https://arxiv.org/pdf/1711.08774.pdf

New Genome Sequencing Technologies

Nanopore sequencing technology and tools for genome assembly:
computational analysis of the current state, bottlenecks and
future directions

Damla Senol Cali X, Jeremie S Kim, Saugata Ghose, Can Alkan, Onur Mutlu

Briefings in Bioinformatics, bby017, https://doi.org/10.1093/bib/bby017
Published: 02 April2018 Article history v

Oxford Nanopore MinION

Data — performance & energy bottleneck

SAFARI i
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Accelerating Genome Analysis [IEEE MICRO 2020]

= Mohammed Alser, Zulal Bingol, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can
Alkan, and Onur Mutlu,
"Accelerating Genome Analysis: A Primer on an Ongoing Journey"
IEEE Micro (TEEE MICRO), Vol. 40, No. 5, pages 65-75, September/October 2020.
[Slides (pptx)(pdf)]
[Talk Video (1 hour 2 minutes)]

Accelerating Genome
Analysis: A Primer on
an Ongoing Journey

Mohammed Alser Saugata Ghose

ETH Zlrich University of lllinois at Urbana—-Champaign and
Ziilal Bing Carnegie Mellon University

Bilkent University Can Alkan

Disinki Seiol Call Bilkent University

Carnegie Mellon University Onur Mutlu

oo ETH Zurich, Carnegie Mellon University, and

SAFARI ETH Zurich and Carnegie Mellon University PR nRoty 50


https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_ieeemicro20.pdf
http://www.computer.org/micro/
https://people.inf.ethz.ch/omutlu/pub/onur-AcceleratingGenomeAnalysis-AACBB-Keynote-Feb-16-2019-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-AcceleratingGenomeAnalysis-AACBB-Keynote-Feb-16-2019-FINAL.pdf
https://www.youtube.com/watch?v=hPnSmfwu2-A

GenASM Framework [MICRO 2020]

= Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S.
Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand,
Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,
"GenASM: A High-Performance, Low-Power Approximate String Matching
Acceleration Framework for Genome Sequence Analysis"

Proceedings of the 53rd International Symposium on Microarchitecture (MICRO), Virtual,
October 2020.

[Lighting Talk Video (1.5 minutes)]

[Lightning Talk Slides (pptx) (pdf)]

[Talk Video (18 minutes)]

[Slides (pptx) (pdf)]

GenASM: A High-Performance, Low-Power
Approximate String Matching Acceleration Framework
for Genome Sequence Analysis

Damla Senol Cali ™ Gurpreet S. Kalsi®  Ziilal BingolV Can Firtina® Lavanya Subramanian Jeremie S. Kim®1
Rachata Ausavarungnirun® Mohammed Alser® Juan Gomez-Luna® Amirali Boroumand! Anant Nori™
Allison Scibisz|  Sreenivas Subramoney™ Can Alkan” Saugata Ghose*T  Onur Mutlu®TV

TCarnegie Mellon University ™ Processor Architecture Research Lab, Intel Labs ¥ Bilkent University ~ °ETH Ziirich
YFacebook  ©King Mongkut’s University of Technology North Bangkok — * University of Illinois at Urbana—Champaign
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https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
http://www.microarch.org/micro53/
https://www.youtube.com/watch?v=nJs3RRnvk_k
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pdf
https://www.youtube.com/watch?v=srQVqPJFqjo
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pdf

FPGA-based Processing Near Memory

Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios
Diamantopoulos, Juan Gémez-Luna, Henk Corporaal, and Onur Mutlu,
"FPGA-based Near-Memory Acceleration of Modern Data-Intensive

Applications”
IEEE Micro (IEEE MICRO), 2021.

FPGA-based Near-Memory Acceleration
of Modern Data-Intensive Applications

Gagandeep Singh® Mohammed Alser® Damla Senol Cali”
Dionysios Diamantopoulos’ Juan Gémez-Luna®
Henk Corporaal* Onur Mutlu®™

°ETH Ziirich ™ Carnegie Mellon University
*Eindhoven University of Technology =~V IBM Research Europe
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https://arxiv.org/pdf/2106.06433.pdf
http://www.computer.org/micro/

Future of Genome Sequencing & Analysis

MinIlON from ONT

SmidglON from ONT

SAFARI  Aser+, "Accelerating Genome Analysis: A Primer on an Ongoing Journey”, IEEE Micro 2020.



More on Fast & Efficient Genome Analysts ...

Onur Mutlu,

"Accelerating Genome Analysis: A Primer on an Ongoing Journey"
Invited Lecture at Technion, Virtual, 26 January 2021.

[Slides (pptx) (pdf)]

[Talk Video (1 hour 37 minutes, including Q&A)]

[Related Invited Paper (at IEEE Micro, 2020)]

Population-Scale Microbiome Profiling

“‘%.ﬁﬁ,‘v _
‘,\ o

P Pl o 1535/1:37:37

Onur Mutlu - Invited Lecture @ Technion: Accelerating Genome Analysis: A Primer on an Ongoing Journey
740 views « Premiered Feb 6, 2021 |b 35

SA ‘ A R I e Onur Mutlu Lectures
Q 15.9K subscribers ANALYTICS EDIT VIDEO

& o » SHARE =} SAVE
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https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pptx
https://www.technion.ac.il/en/
https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pdf
https://www.youtube.com/watch?v=r7sn41lH-4A
https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_ieeemicro20.pdf

Detailed Lectures on Genome Analysis

Computer Architecture, Fall 2020, Lecture 3a
o Introduction to Genome Sequence Analysis (ETH Zirich, Fall 2020)

o https://www.youtube.com/watch?v=CrRb32v7S]c&list=PL50Q2s0XY2Zi9xidyIgBxUz7
XRPS-wisBN&index=5

Computer Architecture, Fall 2020, Lecture 8
o Intelligent Genome Analysis (ETH Zlrich, Fall 2020)

o https://www.youtube.com/watch?v=ygmQpdDTL70&list=PL50Q2s0XY2Zi9xidyIgBxU
Z7XRPS-wisBN&index=14

Computer Architecture, Fall 2020, Lecture 9a

o GenASM: Approx. String Matching Accelerator (ETH Zirich, Fall 2020)

o https://www.youtube.com/watch?v=XolLpzmN-
Pas&list=PL502s0XY2Zi9xidyIlgBxUz7xRPS-wisBN&index=15

Accelerating Genomics Project Course, Fall 2020, Lecture 1

o Accelerating Genomics (ETH Zurich, Fall 2020)

o https://www.youtube.com/watch?v=rgjl8ZyLsAg&list=PL50Q2s0XY2Zi9E2bBVAgCqgL
gwiDRODTyId

SAFARI https://www.youtube.com/onurmutlulectures 55


https://www.youtube.com/watch?v=CrRb32v7SJc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=5
https://www.youtube.com/watch?v=ygmQpdDTL7o&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=14
https://www.youtube.com/watch?v=gR7XR-Eepcg&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=10
https://www.youtube.com/watch?v=rgjl8ZyLsAg&list=PL5Q2soXY2Zi9E2bBVAgCqLgwiDRQDTyId
https://www.youtube.com/onurmutlulectures

Our Goal

Computing systems for
Genomics
Medicine
Health
AI/ML




Data Overwhelms Modern Machines ...

= Storage/memory capability

= Communication capability

= Computation capability

= Greatly impacts robustness, energy, performance, cost

SAFARI
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A Computing System

= Three key components
= Computation
= Communication

- Storage/ memory Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Computing System

A
Computing E 5 Communication E a Memory/Storage
Unit Unit Unit
\ J e
Memory System Storage System
SAFAR 58
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Perils of Processor-Centric Design

Shared Memory
Shared Shared
Memory Memory
Shared Control Control
Interconnect
\
\
72! 72!
= =3
-] (]
- "
o o
=7
\% =
E a
=] =)
- -
e
Shared Shared
Memory Memory
Control Control
Shared Memory

Most of the system is dedicated to storing and moving data

Yet, system is still bottlenecked by memory



Data Overwhelms Modern Machines

f

Chrome TensorFlow Mobile

Data — performance & energy bottleneck

@ O VouTube @ O YouTube
Video Playback Video Capture
Google’s video codec Google’s video codec
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Data Movement Overwhelms Modern Machines

Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul
Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

62.7% of the total system energy
Is spent on data movement

Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand* Saugata Ghose’ Youngsok Kim?
Rachata Ausavarungnirun’  Eric Shiv>  Rahul Thakur’>  Daehyun Kim*?
Aki Kuusela®>  Allan Knies®  Parthasarathy Ranganathan®  Onur Mutlu®!
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https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/

Data Movement vs. Computation Energy

Communication Dominates Arithmetic

Dally, HIPEAC 2015

64-bit DP DRAM
16 nJ * Rd/Wr

256-bit buses

500 PJ Efficient

off-chip link
256-bit access

8 kB SRAM




Axiom

An Intelligent Architecture
Handles Data Well

SAFARI



How to Handle Data Well

Ensure data does not overwhelm the components

o via intelligent algorithms

o via intelligent architectures

o via whole system designs: algorithm-architecture-devices

Take advantage of vast amounts of data and metadata
o to improve architectural & system-level decisions

Understand and exploit properties of (different) data
o to improve algorithms & architectures in various metrics

SAFARI
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Corollaries: Architectures Today ...

= JArchitectures are terrible at dealing with data

o Designed to mainly store and move data vs. to compute
a They are processor-centric as opposed to data-centric

= Architectures are terrible at taking advantage of vast
amounts of data (and metadata) available to them

o Designed to make simple decisions, ignoring lots of data
o They make human-driven decisions vs. data-driven

= Architectures are terrible at knowing and exploiting
different properties of application data

o Designed to treat all data as the same
o They make component-aware decisions vs. data-aware

SAFARI
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Fundamentally Better Architectures

Data-centric

Data-driven

Data-aware

SAFARI
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Data-Centric (Memory-Centric)
Architectures

67




Data-Centric Architectures: Properties

Process data where it resides (where it makes sense)

o Processing in and near memory structures

Low-latency and low-energy data access
o Low latency memory
o Low energy memory

Low-cost data storage and processing
o High capacity memory at low cost: hybrid memory, compression

Intelligent data management
o Intelligent controllers handling robustness, security, cost

SAFARI 68



Processing Data
Where It Makes Sense




Do We Want This?

SAFARI Source: V. Milutinovic
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Or This?

SA FARI Source: V. Milutinovic




Mindset: Memory-Centric Computing

CPU CPU core : |(throughput)| |throughput)] :
core core : core core :
video
core
CPU CPU :| GPU GPU :
} , | ! [throughput)] |throughput)] : :
core core 'maging i| core core | : Memory
LLC
. Specialized
Nemory Controller compute-capability
In_ memory

Memory Bus

Memory similar to a “conventional” accelerator



PIM Review and Open Problems

A Modern Primer on Processing in Memory

Onur Mutlu®?, Saugata Ghose®™°, Juan Gémez-Luna?, Rachata Ausavarungnirun®

SAFARI Research Group

ETH Ziirich
bCarnegie Mellon University
¢University of Illinois at Urbana-Champaign
4King Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,

"A Modern Primer on Processing in Memory"

Invited Book Chapter in Emerqging Computing: From Devices to Systems -
Looking Beyond Moore and Von Neumann, Springer, to be published in 2021.

SAFARI https: / /arxiv.org/pdf/1903.03988.pdf 73
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A Modern Primer on Processing in Memory

Onur Mutlu®®, Saugata Ghose"®, Juan Gémez-Luna?, Rachata Ausavarungnirun?
SAFARI Research Group

AETH Ziirich
bCarnegie Mellon University
“University of lllinois at Urbana-Champaign
4King Mongkut's University of Technology North Bangkok

Abstract

Modern computing systems are overwhelmingly designed to move data to computation. This design choice goes
directly against at least three key trends in computing that cause performance, scalability and energy bottlenecks:
(1) data access is a key bottleneck as many important applications are increasingly data-intensive, and memory
bandwidth and energy do not scale well, (2) energy consumption is a key limiter in almost all computing platforms,
especially server and mobile systems, (3) data movement, especially off-chip to on-chip, is very expensive in terms
of bandwidth, energy and latency, much more so than computation. These trends are especially severely-felt in the
data-intensive server and energy-constrained mobile systems of today.

At the same time, conventional memory technology is facing many technology scaling challenges in terms of
reliability, energy, and performance. As a result, memory system architects are open to organizing memory in different
ways and making it more intelligent, at the expense of higher cost. The emergence of 3D-stacked memory plus logic,
the adoption of error correcting codes inside the latest DRAM chips, proliferation of different main memory standards
and chips, specialized for different purposes (e.g., graphics, low-power, high bandwidth, low latency), and the necessity
of designing new solutions to serious reliability and security issues, such as the RowHammer phenomenon, are an
evidence of this trend.

This chapter discusses recent research that aims to practically enable computation close to data, an approach we call
processing-in-memory (PIM). PIM places computation mechanisms in or near where the data is stored (i.e., inside the
memory chips, in the logic layer of 3D-stacked memory, or in the memory controllers), so that data movement between
the computation units and memory is reduced or eliminated. While the general idea of PIM is not new, we discuss
motivating trends in applications as well as memory circuits/technology that greatly exacerbate the need for enabling
it in modern computing systems. We examine at least two promising new approaches to designing PIM systems
to accelerate important data-intensive applications: (1) processing using memory by exploiting analog operational
properties of DRAM chips to perform massively-parallel operations in memory, with low-cost changes, (2) processing
near memory by exploiting 3D-stacked memory technology design to provide high memory bandwidth and low memory
latency to in-memory logic. In both approaches, we describe and tackle relevant cross-layer research, design, and
adoption challenges in devices, architecture, systems, and programming models. Our focus is on the development of
in-memory processing designs that can be adopted in real computing platforms at low cost. We conclude by discussing
work on solving key challenges to the practical adoption of PIM.

Keywords: memory systems, data movement, main memory, processing-in-memory, near-data processing,
computation-in-memory, processing using memory, processing near memory, 3D-stacked memory, non-volatile
memory, energy efficiency, high-performance computing, computer architecture, computing paradigm, emerging
technologies, memory scaling, technology scaling, dependable systems, robust systems, hardware security, system
security, latency, low-latency computing
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1. Introduction

Main memory, built using the Dynamic Random Ac-
cess Memory (DRAM) technology, is a major compo-
nent in nearly all computing systems, including servers,
cloud platforms, mobile/embedded devices, and sensor
systems. Across all of these systems,the data working
set sizes of modern applications are rapidly growing,
while the need for fast analysis of such data is increas-
ing. Thus, main memory is becoming an increasingly
significant bottleneck across a wide variety of computing
systems and applications [1}2,3,/4, 5, 6,(7, 8, 9,10, 11,

12,113, 14,/15, 16]. Alleviating the main memory bot-

tleneck requires the memory capacity, energy, cost, and
performance to all scale in an efficient manner across
technology generations. Unfortunately, it has become
increasingly difficult in recent years, especially the past
decade, to scale all of these dimensions [1,2,/17, 18, 19,
20, 21,22, 23,24, 25,[26, 27,28, 29,130, 31, 32,/33, 34,
35,136,/37,138,39, 40, 41, 42,/43,|44, 45, 46, 47, 48,49],
and thus the main memory bottleneck has been worsen-
ing.

A major reason for the main memory bottleneck is the
high energy and latency cost associated with data move-
ment. In modern computers, to perform any operation
on data that resides in main memory, the processor must
retrieve the data from main memory. This requires the
memory controller to issue commands to a DRAM mod-
ule across a relatively slow and power-hungry off-chip
bus (known as the memory channel). The DRAM mod-
ule sends the requested data across the memory channel,
after which the data is placed in the caches and regis-
ters. The CPU can perform computation on the data
once the data is in its registers. Data movement from the
DRAM to the CPU incurs long latency and consumes
a significant amount of energy [7, 50, 51, 52, 53, 54].
These costs are often exacerbated by the fact that much
of the data brought into the caches is not reused by the
CPU [52, 53, 55,/56], providing little benefit in return
for the high latency and energy cost.

The cost of data movement is a fundamental issue
with the processor-centric nature of contemporary com-
puter systems. The CPU is considered to be the master
in the system, and computation is performed only in the
processor (and accelerators). In contrast, data storage
and communication units, including the main memory,
are treated as unintelligent workers that are incapable of
computation. As a result of this processor-centric design
paradigm, data moves a lot in the system between the
computation units and communication/ storage units so
that computation can be done on it. With the increasingly
data-centric nature of contemporary and emerging appli-
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