
Onur Mutlu
omutlu@gmail.com

https://people.inf.ethz.ch/omutlu
January 31, 2018

SAFARI Group:
Research Introduction

Brief Self Introduction
n Onur Mutlu

q Professor @ ETH Zurich CS, since September’15, started May’16
q Strecker Professor @ Carnegie Mellon University ECE (CS), 2009-2016, 2016-…
q PhD from UT-Austin, worked @ Google, VMware, Microsoft Research, Intel, AMD
q https://people.inf.ethz.ch/omutlu/
q omutlu@gmail.com (Best way to reach me)
q Publications: https://people.inf.ethz.ch/omutlu/projects.htm

n Research, Education, Consulting in
q Computer architecture and systems, bioinformatics
q Memory and storage systems, emerging technologies
q Many-core systems, heterogeneous systems, core design
q Interconnects
q Hardware/software interaction and co-design (PL, OS, Architecture)
q Predictable and QoS-aware systems
q Hardware fault tolerance and security
q Algorithms and architectures for genome analysis
q … 2

Brief Introduction: SAFARI Group
n 27+ researchers
n Multiple locations: ETH and CMU

n ETH researchers
q 4 post-PhD (postdocs, visiting faculty)
q 6 PhD students
q 2 post-masters students
q 2+ masters students

n CMU researchers
q 2 post-PhD (postdoc, research faculty)
q 7 PhD student
q 3 masters

3

Research Focus: Computer architecture, HW/SW, bioinformatics
• Memory and storage (DRAM, flash, emerging), interconnects
• Heterogeneous & parallel systems, GPUs, systems for data analytics
• System/architecture interaction, new execution models, new interfaces
• Energy efficiency, fault tolerance, hardware security, performance
• Genome sequence analysis & assembly algorithms and architectures
• Biologically inspired systems & system design for bio/medicine

General Purpose GPUs

Heterogeneous
Processors and

Accelerators

Hybrid Main Memory

Persistent Memory/Storage

Broad research
spanning apps, systems, logic
with architecture at the center

Current Research Focus Areas

Four Key Current Directions

n Fundamentally Secure/Reliable/Safe Architectures

n Fundamentally Energy-Efficient Architectures
q Memory-centric (Data-centric) Architectures

n Fundamentally Low-Latency Architectures

n Architectures for Genomics, Medicine, Health

5

In-Memory DNA Sequence Analysis
n Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata

Ghose, Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping
Using Processing-in-Memory Technologies"
to appear in BMC Genomics, 2018.
to also appear in Proceedings of the 16th Asia Pacific Bioinformatics
Conference (APBC), Yokohama, Japan, January 2018.
arxiv.org Version (pdf)

6

Memory/Storage Issues We Are Tackling
n (Enable and Exploit) In-Memory Computation

n (Reduce) Latency

n (Reduce) Energy

n (Improve) Reliability and Security

n (Make Sense of & Take Advantage of) Heterogeneity

n (Enable and Use) Persistence

n (Enable and Exploit) QoS and Predictability

n (Develop New and Reliable) Infrastructure
7

Topics Requested (by Email)

1. PIM enabled instructions

2. DRAM Reliability and Performance

3. Processing in Memory (Near-Data Computation)

8

Three Key Systems Trends
1. Data access is a major bottleneck

q Applications are increasingly data hungry

2. Energy consumption is a key limiter

3. Data movement energy dominates compute
q Especially true for off-chip to on-chip movement

9

The Need for More Memory Performance

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15;
Awan+, BDCloud’15]

Datacenter Workloads
[Kanev+ (Google), ISCA’15]

In-memory Databases
[Mao+, EuroSys’12;
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing
[Xu+, IISWC’12; Umuroglu+, FPL’15]

The Performance Perspective (1996-2005)

n “It’s the Memory, Stupid!” (Richard Sites, MPR, 1996)

Mutlu+, “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.

The Performance Perspective (Today)
n All of Google’s Data Center Workloads (2015):

12Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.

The Performance Perspective (Today)
n All of Google’s Data Center Workloads (2015):

13Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.

The Performance Perspective

n Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
"Runahead Execution: An Alternative to Very Large Instruction
Windows for Out-of-order Processors"
Proceedings of the 9th International Symposium on High-Performance
Computer Architecture (HPCA), pages 129-140, Anaheim, CA, February
2003. Slides (pdf)

14

The Energy Perspective

15

Dally, HiPEAC 2015

Data Movement vs. Computation Energy

16

Dally, HiPEAC 2015

A memory access consumes ~1000X
the energy of a complex addition

Data Movement vs. Computation Energy
n Data movement is a major system energy bottleneck

q Comprises 41% of mobile system energy during web browsing [2]
q Costs ~115 times as much energy as an ADD operation [1, 2]

17

[1]: Reducing data Movement Energy via Online Data Clustering and Encoding (MICRO’16)
[2]: Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms (IISWC’14)

The Problem

Data access is the major performance and energy bottleneck

Our current
design principles

cause great energy waste
(and great performance loss)

18

The Problem

Processing of data
is performed

far away from the data

19

A Computing System
n Three key components
n Computation
n Communication
n Storage/memory

20

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Image source: https://lbsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/

A Computing System
n Three key components
n Computation
n Communication
n Storage/memory

21

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Image source: https://lbsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/

Today’s Computing Systems
n Are overwhelmingly processor centric
n All data processed in the processor à at great system cost
n Processor is heavily optimized and is considered the master
n Data storage units are dumb and are largely unoptimized

(except for some that are on the processor die)

22

Yet …
n “It’s the Memory, Stupid!” (Richard Sites, MPR, 1996)

Mutlu+, “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.

Perils of Processor-Centric Design

n Grossly-imbalanced systems
q Processing done only in one place
q Everything else just stores and moves data: data moves a lot
à Energy inefficient
à Low performance
à Complex

n Overly complex and bloated processor (and accelerators)
q To tolerate data access from memory
q Complex hierarchies and mechanisms
à Energy inefficient
à Low performance
à Complex

24

Perils of Processor-Centric Design

25

Most of the system is dedicated to storing and moving data

We Do Not Want to Move Data!

26

Dally, HiPEAC 2015

A memory access consumes ~1000X
the energy of a complex addition

We Need A Paradigm Shift To …

n Enable computation with minimal data movement

n Compute where it makes sense (where data resides)

n Make computing architectures more data-centric

27

Goal: Processing Inside Memory

n Many questions … How do we design the:
q compute-capable memory & controllers?
q processor chip?
q software and hardware interfaces?
q system software and languages?
q algorithms?

Cache

Processor
Core

Interconnect

Memory
Database

Graphs

Media
Query

Results

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

Why In-Memory Computation Today?

n Push from Technology
q DRAM Scaling at jeopardy
à Controllers close to DRAM
à Industry open to new memory architectures

n Pull from Systems and Applications
q Data access is a major system and application bottleneck
q Systems are energy limited
q Data movement much more energy-hungry than computation

29

Dally, HiPEAC 2015

Processing in Memory:
Two Approaches

1. Minimally changing memory chips
2. Exploiting 3D-stacked memory

30

Opportunity: 3D-Stacked Logic+Memory

31

Logic

Memory

Other “True 3D” technologies
under development

DRAM Landscape (circa 2015)

32
Kim+, “Ramulator: A Flexible and Extensible DRAM Simulator”, IEEE CAL 2015.

Two Key Questions in 3D Stacked PIM

n What is the minimal processing-in-memory support we can
provide ?
q without changing the system significantly
q while achieving significant benefits of processing in 3D-

stacked memory

n How can we accelerate important applications if we use
3D-stacked memory as a coarse-grained accelerator?
q what is the architecture and programming model?
q what are the mechanisms for acceleration?

33

PEI: PIM-Enabled Instructions (Ideas)
n Goal: Develop mechanisms to get the most out of near-data

processing with minimal cost, minimal changes to the system, no
changes to the programming model

n Key Idea 1: Expose each PIM operation as a cache-coherent,
virtually-addressed host processor instruction (called PEI) that
operates on only a single cache block
q e.g., __pim_add(&w.next_rank, value) à pim.add r1, (r2)
q No changes sequential execution/programming model
q No changes to virtual memory
q Minimal changes to cache coherence
q No need for data mapping: Each PEI restricted to a single memory module

n Key Idea 2: Dynamically decide where to execute a PEI (i.e., the
host processor or PIM accelerator) based on simple locality
characteristics and simple hardware predictors
q Execute each operation at the location that provides the best performance

34

Simple PIM Operations as ISA Extensions (II)

35

Main Memory

w.next_rankw.next_rank

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {

w.next_rank += value;
}

}
Host Processor

w.next_rankw.next_rank
64 bytes in

64 bytes out

Conventional Architecture

Simple PIM Operations as ISA Extensions (III)

36

Main Memory

w.next_rankw.next_rank

Host Processor

value
8 bytes in

0 bytes out

In-Memory Addition

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {

__pim_add(&w.next_rank, value);
}

}

pim.add r1, (r2)

Always Executing in Memory? Not A Good Idea

37

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

p
2

p
-G

n
u

te
ll

a
3

1

so
c-

S
la

sh

d
o

t0
8

1
1

w
e

b
-

S
ta

n
fo

rd

a
m

a
zo

n
-

2
0

0
8

fr
w

ik
i-

2
0

1
3

w
ik

i-

T
a

lk

c
it

-

P
a

te
n

ts

so
c-

L
iv

e

Jo
u

rn
a

l1

lj
o

u
rn

a
l-

2
0

0
8

S
p

e
e

d
u

p

More Vertices

Increased
Memory Bandwidth

Consumption
Caching very effective

Reduced Memory Bandwidth
Consumption due to

In-Memory Computation

PEI: PIM-Enabled Instructions (Example)

38

n Executed either in memory or in the processor: dynamic decision
q Low-cost locality monitoring for a single instruction

n Cache-coherent, virtually-addressed, single cache block only
n Atomic between different PEIs
n Not atomic with normal instructions (use pfence for ordering)

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {

__pim_add(&w.next_rank, value);
}

}
pfence();

pim.add r1, (r2)

pfence

PIM-Enabled Instructions

n Key to practicality: single-cache-block restriction
q Each PEI can access at most one last-level cache block
q Similar restrictions exist in atomic instructions

n Benefits
q Localization: each PEI is bounded to one memory module
q Interoperability: easier support for cache coherence and

virtual memory
q Simplified locality monitoring: data locality of PEIs can be

identified simply by the cache control logic

Example PEI Microarchitecture

40

Out-Of-Order
Core

L1
 C

ac
he

L2
 C

ac
he

La
st

-L
ev

el

Ca
ch

e

HM
C

Co
nt

ro
lle

r

Ne
tw

or
k

DRAM
Controller

DRAM
Controller

DRAM
Controller

Host Processor 3D-stacked Memory
…

PCU (PEI
Computation Unit)

PCU

PCU

PCU

PIM
Directory

Locality
Monitor

PMU (PEI
Mgmt Unit)

Example PEI uArchitecture

PEI: Initial Evaluation Results
n Initial evaluations with 10 emerging data-intensive workloads

q Large-scale graph processing
q In-memory data analytics
q Machine learning and data mining
q Three input sets (small, medium, large)

for each workload to analyze the impact
of data locality

n Pin-based cycle-level x86-64 simulation

n Performance Improvement and Energy Reduction:
n 47% average speedup with large input data sets
n 32% speedup with small input data sets
n 25% avg. energy reduction in a single node with large input data sets

41

Evaluated Data-Intensive Applications

n Ten emerging data-intensive workloads
q Large-scale graph processing

n Average teenage follower, BFS, PageRank, single-source shortest
path, weakly connected components

q In-memory data analytics
n Hash join, histogram, radix partitioning

q Machine learning and data mining
n Streamcluster, SVM-RFE

n Three input sets (small, medium, large) for each workload
to show the impact of data locality

PEI Performance Delta: Large Data Sets

43

0%

10%

20%

30%

40%

50%

60%

70%

ATF BFS PR SP WCC HJ HG RP SC SVM GM
PIM-Only Locality-Aware

(Large Inputs, Baseline: Host-Only)

PEI Performance: Large Data Sets

44

0%

10%

20%

30%

40%

50%

60%

70%

ATF BFS PR SP WCC HJ HG RP SC SVM GM
PIM-Only Locality-Aware

(Large Inputs, Baseline: Host-Only)

0

0.2

0.4

0.6

0.8

1

1.2

ATF BFS PR SP WCC HJ HG RP SC SVM

Normalized Amount of Off-chip Transfer

Host-Only PIM-Only Locality-Aware

PEI Performance Delta: Small Data Sets

45

-60%

-40%

-20%

0%

20%

40%

60%

ATF BFS PR SP WCC HJ HG RP SC SVM GM
PIM-Only Locality-Aware

(Small Inputs, Baseline: Host-Only)

PEI Performance: Small Data Sets

46

-60%

-40%

-20%

0%

20%

40%

60%

ATF BFS PR SP WCC HJ HG RP SC SVM GM

PIM-Only Locality-Aware

(Small Inputs, Baseline: Host-Only)

0
1
2
3
4
5
6
7
8

ATF BFS PR SP WCC HJ HG RP SC SVM

Normalized Amount of Off-chip Transfer

Host-Only PIM-Only Locality-Aware

PEI Performance Delta: Medium Data Sets

47

-10%

0%

10%

20%

30%

40%

50%

60%

70%

ATF BFS PR SP WCC HJ HG RP SC SVM GM

PIM-Only Locality-Aware

(Medium Inputs, Baseline: Host-Only)

PEI Energy Consumption

48

0

0.5

1

1.5

Small Medium Large

Cache HMC Link DRAM
Host-side PCU Memory-side PCU PMU

Host-Only
PIM-Only
Locality-Aware

PEI: Advantages & Disadvantages

n Advantages
+ Simple and low cost approach to PIM
+ No changes to programming model, virtual memory
+ Dynamically decides where to execute an instruction

n Disadvantages
- Does not take full advantage of PIM potential

- Single cache block restriction is limiting

49

More on PIM-Enabled Instructions
n Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,

"PIM-Enabled Instructions: A Low-Overhead,
Locality-Aware Processing-in-Memory Architecture"
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

Two Key Questions in 3D Stacked PIM

n What is the minimal processing-in-memory support we can
provide ?
q without changing the system significantly
q while achieving significant benefits of processing in 3D-

stacked memory

n How can we accelerate important applications if we use
3D-stacked memory as a coarse-grained accelerator?
q what is the architecture and programming model?
q what are the mechanisms for acceleration?

51

Tesseract System for Graph Processing

Crossbar Network

…
…

…
…

DRAM
 Controller

NI

In-Order Core

Message Queue

PF Buffer

MTP

LP

Host Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Interconnected set of 3D-stacked memory+logic chips with simple cores

Logic

Memory

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Logic

Memory

Tesseract System for Graph Processing

53

Crossbar Network

…
…

…
…

DRAM
 Controller

NI

In-Order Core

Message Queue

PF Buffer

MTP

LP

Host Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Communications via
Remote Function Calls

Communications In Tesseract (I)

54

Communications In Tesseract (II)

55

Communications In Tesseract (III)

56

Remote Function Call (Non-Blocking)

57

Logic

Memory

Tesseract System for Graph Processing

58

Crossbar Network

…
…

…
…

DRAM
 Controller

NI

In-Order Core

Message Queue

PF Buffer

MTP

LP

Host Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Prefetching

Evaluated Systems

HMC-MC

128
In-Order
2GHz

128
In-Order
2GHz

128
In-Order
2GHz

128
In-Order
2GHz

102.4GB/s 640GB/s 640GB/s 8TB/s

HMC-OoO

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

DDR3-OoO Tesseract

32
Tesseract

Cores

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Tesseract Graph Processing Performance

+56% +25%

9.0x

11.6x

13.8x

0

2

4

6

8

10

12

14

16

DDR3-OoO HMC-OoO HMC-MC Tesseract Tesseract-
LP

Tesseract-
LP-MTP

Sp
ee
du

p

>13X Performance Improvement

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

On five graph processing algorithms

Tesseract Graph Processing Performance

61

+56% +25%

9.0x

11.6x

13.8x

0

2

4

6

8

10

12

14

16

DDR3-OoO HMC-OoO HMC-MC Tesseract Tesseract-

LP

Tesseract-

LP-MTP

S
p

e
e

d
u

p

80GB/s 190GB/s 243GB/s

1.3TB/s

2.2TB/s

2.9TB/s

0

0.5

1

1.5

2

2.5

3

3.5

DDR3-OoO HMC-OoO HMC-MC Tesseract Tesseract-

LP

Tesseract-

LP-MTP

M
e

m
o

ry
 B

a
n

d
w

id
th

 (
T

B
/s

)

Memory Bandwidth Consumption

Effect of Bandwidth & Programming Model

62

2.3x
3.0x

6.5x

0

1

2

3

4

5

6

7

HMC-MC HMC-MC +
PIM BW

Tesseract +
Conventional BW

Tesseract

Sp
ee

du
p

HMC-MC Bandwidth (640GB/s) Tesseract Bandwidth (8TB/s)

Bandwidth

Programming Model

(No Prefetching)

Tesseract Graph Processing System Energy

0

0.2

0.4

0.6

0.8

1

1.2

HMC-OoO Tesseract with Prefetching

Memory Layers Logic Layers Cores

> 8X Energy Reduction

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Tesseract: Advantages & Disadvantages

n Advantages
+ Specialized graph processing accelerator using PIM
+ Large system performance and energy benefits
+ Takes advantage of 3D stacking for an important workload

n Disadvantages
- Changes a lot in the system

- New programming model
- Specialized Tesseract cores for graph processing

- Cost
- Scalability limited by off-chip links or graph partitioning

64

More on Tesseract
n Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu,

and Kiyoung Choi,
"A Scalable Processing-in-Memory Accelerator for
Parallel Graph Processing"
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

65

Truly Distributed GPU Processing with PIM?

Logic layer
SM

Crossbar switch

Vault
Ctrl

…. Vault
Ctrl

Logic layer

Main GPU

3D-stacked memory
(memory stack) SM (Streaming Multiprocessor)

Accelerating GPU Execution with PIM (I)
n Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike

O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems"
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

67

Accelerating GPU Execution with PIM (II)
n Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.

Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities"
Proceedings of the 25th International Conference on Parallel
Architectures and Compilation Techniques (PACT), Haifa, Israel,
September 2016.

68

Automatic Code and Data Mapping?
n Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike

O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems"
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

69

Processing in Memory:
Two Approaches

1. Minimally changing memory chips
2. Exploiting 3D-stacked memory

70

Minimally Changing DRAM
n DRAM has great capability to perform bulk data movement and

computation internally with small changes
q Can exploit internal connectivity to move data
q Can exploit analog computation capability
q …

n Examples: RowClone, In-DRAM AND/OR, Gather/Scatter DRAM
q RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data

(Seshadri et al., MICRO 2013)
q Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)
q Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial

Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015)
q "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity

DRAM Technology” (Seshadri et al., MICRO 2017)

71

Memory as an Accelerator

CPU
core

CPU
core

CPU
core

CPU
core

mini-CPU
core

video
core

GPU
(throughput)

core
GPU

(throughput)
core

GPU
(throughput)

core
GPU

(throughput)
core

LLC

Memory Controller
Specialized

compute-capability
in memory

Memoryimaging
core

Memory Bus

Memory similar to a “conventional” accelerator

In-Memory Bulk Operations
n We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ

n At low cost

n Using analog computation capability of DRAM
q Idea: activating multiple rows performs computation

n 30-60X performance and energy improvement
q Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations

Using Commodity DRAM Technology,” MICRO 2017.

n New memory technologies enable even more opportunities
q Memristors, resistive RAM, phase change mem, STT-MRAM, …

q Can operate on data with minimal movement

73

Starting Simple: Data Copy and Initialization

74

Forking

00000
00000
00000

Zero initialization
(e.g., security)

VM Cloning
Deduplication

Checkpointing

Page Migration
Many more

memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ ISCA’15]

RowClone: In-DRAM Row Copy

Row Buffer (4 Kbytes)

Data Bus

8 bits

DRAM subarray

4 Kbytes

Step 1: Activate row A

Transfer
row

Step 2: Activate row B

Transfer
row

Negligible HW cost
Idea: Two consecutive ACTivates

RowClone: Latency and Energy Savings

0

0.2

0.4

0.6

0.8

1

1.2

Latency Energy

No
rm

al
ize

d
Sa

vi
ng

s

Baseline Intra-Subarray
Inter-Bank Inter-Subarray

11.6x 74x

76
Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and
Initialization of Bulk Data,” MICRO 2013.

More on RowClone
n Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata

Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A.
Kozuch, Phillip B. Gibbons, and Todd C. Mowry,
"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and
Initialization"
Proceedings of the 46th International Symposium on Microarchitecture
(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning Session
Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

77

Bulk Bitwise Operations in Workloads

[1] Li and Patel, BitWeaving, SIGMOD 2013
[2] Goodwin+, BitFunnel, SIGIR 2017

In-DRAM AND/OR: Triple Row Activation

79

½VDD

½VDD

dis

A

B

C

Final State
AB + BC + AC

½VDD+δ

C(A + B) +
~C(AB)en

0

VDD

Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015.

In-DRAM NOT: Dual Contact Cell

80

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

Idea:
Feed the

negated value
in the sense amplifier

into a special row

Energy of In-DRAM Bitwise Operations

81

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

Ambit vs. DDR3: Performance and Energy

82

0

10

20

30

40

50

60

70

not and/or nand/nor xor/xnor mean

Performance Improvement Energy Reduction

32X 35X

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

Performance: Bitmap Index on Ambit

83

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

Performance: BitWeaving on Ambit

84

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

More on In-DRAM Bulk AND/OR

n Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk
Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and
Todd C. Mowry,
"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015.

85

More on Ambit

n Vivek Seshadri et al., “Ambit: In-Memory Accelerator
for Bulk Bitwise Operations Using Commodity DRAM
Technology,” MICRO 2017.

86

Eliminating the Adoption Barriers

How to Enable Adoption
of Processing in Memory

87

Barriers to Adoption of PIM

1. Functionality of and applications for PIM

2. Ease of programming (interfaces and compiler/HW support)

3. System support: coherence & virtual memory

4. Runtime systems for adaptive scheduling, data mapping,
access/sharing control

5. Infrastructures to assess benefits and feasibility

88

We Need to Revisit the Entire Stack

89

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

Key Challenge 1: Code Mapping

Logic layer
SM

Crossbar switch

Vault
Ctrl

…. Vault
Ctrl

Logic layer

?

Main GPU

3D-stacked memory
(memory stack)

• Challenge 1: Which operations should be executed
in memory vs. in CPU?

?
SM (Streaming Multiprocessor)

Key Challenge 2: Data Mapping

Logic layer
SM

Crossbar switch

Vault
Ctrl

…. Vault
Ctrl

Logic layer

Main GPU

3D-stacked memory
(memory stack)

• Challenge 2: How should data be mapped to
different 3D memory stacks?

SM (Streaming Multiprocessor)

How to Do the Code and Data Mapping?
n Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike

O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems"
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

92

How to Schedule Code?
n Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.

Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities"
Proceedings of the 25th International Conference on Parallel
Architectures and Compilation Techniques (PACT), Haifa, Israel,
September 2016.

93

Challenge: Coherence for Hybrid CPU-PIM Apps

94

Traditional
coherence

No coherence
overhead

How to Maintain Coherence?

n Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism
for Processing-in-Memory"
IEEE Computer Architecture Letters (CAL), June 2016.

95

How to Support Virtual Memory?
n Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali

Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation"
Proceedings of the 34th IEEE International Conference on Computer
Design (ICCD), Phoenix, AZ, USA, October 2016.

96

How to Design Data Structures for PIM?
n Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu,

"Concurrent Data Structures for Near-Memory Computing"
Proceedings of the 29th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), Washington, DC, USA, July 2017.
[Slides (pptx) (pdf)]

97

Simulation Infrastructures for PIM

n Ramulator extended for PIM
q Flexible and extensible DRAM simulator
q Can model many different memory standards and proposals
q Kim+, “Ramulator: A Flexible and Extensible DRAM

Simulator”, IEEE CAL 2015.
q https://github.com/CMU-SAFARI/ramulator

98

An FPGA-based Test-bed for PIM?

n Hasan Hassan et al., SoftMC: A
Flexible and Practical Open-
Source Infrastructure for
Enabling Experimental DRAM
Studies HPCA 2017.

n Flexible
n Easy to Use (C++ API)
n Open-source

github.com/CMU-SAFARI/SoftMC

99

Topics Requested (by Email)

1. PIM enabled instructions

2. DRAM Reliability and Performance

3. Processing in Memory (Near-Data Computation)

100

Memory/Storage Issues We Are Tackling
n (Enable and Exploit) In-Memory Computation

n (Reduce) Latency

n (Reduce) Energy

n (Improve) Reliability and Security

n (Make Sense of & Take Advantage of) Heterogeneity

n (Enable and Use) Persistence

n (Enable and Exploit) QoS and Predictability

n (Develop New and Reliable) Infrastructure
101

DRAM Reliability, Security,
Refresh

102

The DRAM Scaling Problem
n DRAM stores charge in a capacitor (charge-based memory)

q Capacitor must be large enough for reliable sensing
q Access transistor should be large enough for low leakage and high

retention time
q Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

n As DRAM cell becomes smaller, it becomes more vulnerable
103

As Memory Scales, It Becomes Unreliable
n Data from all of Facebook’s servers worldwide
n Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers,” DSN’15.

104

Intuition:quadraticincrease
in

capacity

Testing DRAM Scaling Issues …

105

An Experimental Study of Data Retention
Behavior in Modern DRAM Devices:
Implications for Retention Time Profiling
Mechanisms (Liu et al., ISCA 2013)

The Efficacy of Error Mitigation Techniques
for DRAM Retention Failures: A
Comparative Experimental Study
(Khan et al., SIGMETRICS 2014)

Flipping Bits in Memory Without Accessing
Them: An Experimental Study of DRAM
Disturbance Errors (Kim et al., ISCA 2014)

Adaptive-Latency DRAM: Optimizing DRAM
Timing for the Common-Case (Lee et al.,
HPCA 2015)

AVATAR: A Variable-Retention-Time (VRT)
Aware Refresh for DRAM Systems (Qureshi
et al., DSN 2015)

Infrastructures to Understand Such Issues

106Kim+, “Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

HeaterFPGAs FPGAs

SoftMC: Open Source DRAM Infrastructure

n Hasan Hassan et al., “SoftMC: A
Flexible and Practical Open-
Source Infrastructure for
Enabling Experimental DRAM
Studies,” HPCA 2017.

n Flexible
n Easy to Use (C++ API)
n Open-source

github.com/CMU-SAFARI/SoftMC

107

SoftMC

n https://github.com/CMU-SAFARI/SoftMC

108

A Curious Discovery [Kim et al., ISCA 2014]

One can
predictably induce errors

in most DRAM memory chips

109

DRAM RowHammer

A simple hardware failure mechanism
can create a widespread

system security vulnerability

110

Row of Cells
Row
Row
Row
Row

Wordline

VLOWVHIGH
Victim Row

Victim Row
Hammered Row

Repeatedly reading a row enough times (before memory gets
refreshed) induces disturbance errors in adjacent rows in
most real DRAM chips you can buy today

OpenedClosed

111

Modern DRAM is Prone to Disturbance Errors

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM
Disturbance Errors, (Kim et al., ISCA 2014)

86%
(37/43)

83%
(45/54)

88%
(28/32)

A company B company C company

Up to
1.0×107

errors

Up to
2.7×106

errors

Up to
3.3×105

errors

112

Most DRAM Modules Are Vulnerable

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM
Disturbance Errors, (Kim et al., ISCA 2014)

113

Recent DRAM Is More Vulnerable

114

First
Appearance

Recent DRAM Is More Vulnerable

115
All modules from 2012–2013	are vulnerable

First
Appearance

Recent DRAM Is More Vulnerable

CPU

loop:
mov (X), %eax
mov (Y), %ebx
clflush (X)
clflush (Y)
mfence
jmp loop

Download from: https://github.com/CMU-SAFARI/rowhammer

DRAM Module

A Simple Program Can Induce Many Errors

Y

X

CPU

Download from: https://github.com/CMU-SAFARI/rowhammer

DRAM Module

A Simple Program Can Induce Many Errors

Y

X1. Avoid cache hits
– Flush X from cache

2. Avoid row hits to X
– Read Y in another row

CPU

loop:
mov (X), %eax
mov (Y), %ebx
clflush (X)
clflush (Y)
mfence
jmp loop

Download from: https://github.com/CMU-SAFARI/rowhammer

DRAM Module

A Simple Program Can Induce Many Errors

Y

X

CPU

loop:
mov (X), %eax
mov (Y), %ebx
clflush (X)
clflush (Y)
mfence
jmp loop

Download from: https://github.com/CMU-SAFARI/rowhammer

DRAM Module

A Simple Program Can Induce Many Errors

Y

X

CPU

loop:
mov (X), %eax
mov (Y), %ebx
clflush (X)
clflush (Y)
mfence
jmp loop

Y

X

Download from: https://github.com/CMU-SAFARI/rowhammer

DRAM Module

A Simple Program Can Induce Many Errors

A real reliability & security issue

CPU Architecture Errors Access-Rate

Intel Haswell (2013) 22.9K 12.3M/sec
Intel Ivy Bridge (2012) 20.7K 11.7M/sec
Intel Sandy Bridge (2011) 16.1K 11.6M/sec
AMD Piledriver (2012) 59 6.1M/sec

121Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of
DRAM Disturbance Errors,” ISCA 2014.

Observed Errors in Real Systems

One Can Take Over an Otherwise-Secure System

122

Exploiting the DRAM rowhammer bug to
gain kernel privileges (Seaborn, 2015)

Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors
(Kim et al., ISCA 2014)

RowHammer Security Attack Example
n “Rowhammer” is a problem with some recent DRAM devices in which

repeatedly accessing a row of memory can cause bit flips in adjacent rows
(Kim et al., ISCA 2014).
q Flipping Bits in Memory Without Accessing Them: An Experimental Study of

DRAM Disturbance Errors (Kim et al., ISCA 2014)

n We tested a selection of laptops and found that a subset of them
exhibited the problem.

n We built two working privilege escalation exploits that use this effect.
q Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn, 2015)

n One exploit uses rowhammer-induced bit flips to gain kernel privileges on
x86-64 Linux when run as an unprivileged userland process.

n When run on a machine vulnerable to the rowhammer problem, the
process was able to induce bit flips in page table entries (PTEs).

n It was able to use this to gain write access to its own page table, and
hence gain read-write access to all of physical memory.

123Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn, 2015)

Security Implications

124

More on RowHammer Analysis

125

n Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
"Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors"
Proceedings of the 41st International Symposium on Computer
Architecture (ISCA), Minneapolis, MN, June 2014.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code
and Data]

Future of Memory Reliability

126https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf

n Onur Mutlu,
"The RowHammer Problem and Other Issues We May Face as
Memory Becomes Denser"
Invited Paper in Proceedings of the Design, Automation, and Test in
Europe Conference (DATE), Lausanne, Switzerland, March 2017.
[Slides (pptx) (pdf)]

Future of Main Memory
n DRAM is becoming less reliable à more vulnerable

127

Large-Scale Failure Analysis of DRAM Chips
n Analysis and modeling of memory errors found in all of

Facebook’s server fleet

n Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"Revisiting Memory Errors in Large-Scale Production Data
Centers: Analysis and Modeling of New Trends from the Field"
Proceedings of the 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June
2015.
[Slides (pptx) (pdf)] [DRAM Error Model]

128

Intuition:quadraticincrease incapacity

DRAM Reliability Reducing

Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers,” DSN’15.

Future of Main Memory
n DRAM is becoming less reliable à more vulnerable

n Due to difficulties in DRAM scaling, other problems may
also appear (or they may be going unnoticed)

n Some errors may already be slipping into the field
q Read disturb errors (Rowhammer)
q Retention errors
q Read errors, write errors
q …

n These errors can also pose security vulnerabilities

130

DRAM Data Retention Time Failures

n Determining the data retention time of a cell/row is getting
more difficult

n Retention failures may already be slipping into the field

131

More on DRAM Data Retention

DRAM Refresh
n DRAM capacitor charge leaks over time

n The memory controller needs to refresh each row
periodically to restore charge
q Activate each row every N ms
q Typical N = 64 ms

n Downsides of refresh
-- Energy consumption: Each refresh consumes energy
-- Performance degradation: DRAM rank/bank unavailable while

refreshed
-- QoS/predictability impact: (Long) pause times during refresh
-- Refresh rate limits DRAM capacity scaling

133

Refresh Overhead: Performance

134

8%

46%

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

Refresh Overhead: Energy

135

15%

47%

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

Data Retention in Memory [Liu et al., ISCA 2013]

n Retention Time Profile of DRAM looks like this:

136

Location dependent
Stored value pattern dependent

Time dependent

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

RAIDR: Eliminating Unnecessary Refreshes
n Observation: Most DRAM rows can be refreshed much less often

without losing data [Kim+, EDL’09][Liu+ ISCA’13]

n Key idea: Refresh rows containing weak cells
more frequently, other rows less frequently
1. Profiling: Profile retention time of all rows
2. Binning: Store rows into bins by retention time in memory controller

Efficient storage with Bloom Filters (only 1.25KB for 32GB memory)
3. Refreshing: Memory controller refreshes rows in different bins at
different rates

n Results: 8-core, 32GB, SPEC, TPC-C, TPC-H
q 74.6% refresh reduction @ 1.25KB storage
q ~16%/20% DRAM dynamic/idle power reduction
q ~9% performance improvement
q Benefits increase with DRAM capacity

137
Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

n Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu,

"An Experimental Study of Data Retention Behavior in Modern DRAM
Devices: Implications for Retention Time Profiling Mechanisms"
Proceedings of the 40th International Symposium on Computer Architecture

(ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt) Slides (pdf)

138

Analysis of Data Retention Failures [ISCA’13]

Two Challenges to Retention Time Profiling
n Data Pattern Dependence (DPD) of retention time

n Variable Retention Time (VRT) phenomenon

139

Two Challenges to Retention Time Profiling
n Challenge 1: Data Pattern Dependence (DPD)

q Retention time of a DRAM cell depends on its value and the
values of cells nearby it

q When a row is activated, all bitlines are perturbed simultaneously

140

n Electrical noise on the bitline affects reliable sensing of a DRAM cell
n The magnitude of this noise is affected by values of nearby cells via

q Bitline-bitline coupling à electrical coupling between adjacent bitlines
q Bitline-wordline coupling à electrical coupling between each bitline and

the activated wordline

Data Pattern Dependence

141

n Electrical noise on the bitline affects reliable sensing of a DRAM cell
n The magnitude of this noise is affected by values of nearby cells via

q Bitline-bitline coupling à electrical coupling between adjacent bitlines
q Bitline-wordline coupling à electrical coupling between each bitline and

the activated wordline

n Retention time of a cell depends on data patterns stored in
nearby cells
à need to find the worst data pattern to find worst-case retention time
à this pattern is location dependent

Data Pattern Dependence

142

Two Challenges to Retention Time Profiling
n Challenge 2: Variable Retention Time (VRT)

q Retention time of a DRAM cell changes randomly over time

n a cell alternates between multiple retention time states

q Leakage current of a cell changes sporadically due to a charge

trap in the gate oxide of the DRAM cell access transistor

q When the trap becomes occupied, charge leaks more readily

from the transistor’s drain, leading to a short retention time

n Called Trap-Assisted Gate-Induced Drain Leakage

q This process appears to be a random process [Kim+ IEEE TED’11]

q Worst-case retention time depends on a random process

à need to find the worst case despite this

143

Modern DRAM Retention Time Distribution

144

0 1 2 3 4 5 6 7
Retention Time (s)

0.00000

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

0.00008
Fr

ac
tio

n
of

 C
el

ls
 w

ith
 R

et
en

tio
n

Ti
m

e
<

X-
Ax

is
Va

lu
e

C 2Gb

D 1Gb

D 2Gb

A 2Gb

A 1Gb

E 2Gb

B 2Gb

Newer device families have more weak cells than older ones
Likely a result of technology scaling

OLDER

NEWER

OLDER

NEWER

An Example VRT Cell

145

0 2 4 6 8 10
Time (Hours)

0

1

2

3

4

5

6

7
Re

te
nt

io
n

Ti
m

e
(s

)

A cell from E 2Gb chip family

Variable Retention Time

146

0 1 2 3 4 5 6 7
Minimum Retention Time (s)

0

1

2

3

4

5

6

7
M

ax
im

um
 R

et
en

tio
n

Ti
m

e
(s

)

6.0

5.4

4.8

4.2

3.6

3.0

2.4

1.8

1.2

0.6

0.0

lo
g1

0(
Fr

ac
tio

n
of

 C
el

ls
)

A 2Gb chip family

Min ret time = Max ret time
Expected if no VRT

Most failing cells
exhibit VRT

Many failing cells jump from
very high retention time to very low

Industry Is Writing Papers About It, Too

147

148

Industry Is Writing Papers About It, Too

n Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa Alameldeen, Chris Wilkerson,
and Onur Mutlu,
"The Efficacy of Error Mitigation Techniques for DRAM Retention
Failures: A Comparative Experimental Study"
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Austin, TX, June 2014. [Slides
(pptx) (pdf)] [Poster (pptx) (pdf)] [Full data sets]

149

Mitigation of Retention Issues [SIGMETRICS’14]

Key Observations:
• Testing alone cannot detect all possible failures
• Combination of ECC and other mitigation

techniques is much more effective
– But degrades performance

• Testing can help to reduce the ECC strength
– Even when starting with a higher strength ECC

Towards an Online Profiling System

Khan+, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative
Experimental Study,” SIGMETRICS 2014.

Run tests periodically after a short interval
at smaller regions of memory

Towards an Online Profiling System
Initially Protect DRAM

with Strong ECC 1
Periodically Test
Parts of DRAM 2

Test
Test
Test

Mitigate errors and
reduce ECC 3

n Moinuddin Qureshi, Dae Hyun Kim, Samira Khan, Prashant Nair, and Onur Mutlu,
"AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM
Systems"
Proceedings of the 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June 2015.
[Slides (pptx) (pdf)]

152

Handling Variable Retention Time [DSN’15]

n Samira Khan, Donghyuk Lee, and Onur Mutlu,
"PARBOR: An Efficient System-Level Technique to Detect Data-
Dependent Failures in DRAM"
Proceedings of the 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Toulouse, France, June 2016.
[Slides (pptx) (pdf)]

153

Handling Data-Dependent Failures [DSN’16]

n Samira Khan, Chris Wilkerson, Zhe Wang, Alaa R. Alameldeen, Donghyuk Lee,
and Onur Mutlu,
"Detecting and Mitigating Data-Dependent DRAM Failures by Exploiting
Current Memory Content"
Proceedings of the 50th International Symposium on Microarchitecture (MICRO),
Boston, MA, USA, October 2017.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

154

Handling Data-Dependent Failures [MICRO’17]

Handling Both DPD and VRT [ISCA’17]

155

n Minesh Patel, Jeremie S. Kim, and Onur Mutlu,
"The Reach Profiler (REAPER): Enabling the Mitigation of DRAM
Retention Failures via Profiling at Aggressive Conditions"
Proceedings of the 44th International Symposium on Computer
Architecture (ISCA), Toronto, Canada, June 2017.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

n First experimental analysis of (mobile) LPDDR4 chips

n Analyzes the complex tradeoff space of retention time profiling

n Idea: enable fast and robust profiling at higher refresh intervals & temperatures

How Do We Keep Memory Secure?

n Understand: Solid methodologies for failure modeling and
discovery
q Modeling based on real device data – small scale and large scale

n Architect: Principled co-architecting of system and memory
q Good partitioning of duties across the stack

n Design & Test: Principled electronic design, automation, testing
q High coverage and good interaction with system reliability

methods
156

157Kim+, “Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

HeaterFPGAs FPGAs

Understand and Model with Experiments (DRAM)

Understand and Model with Experiments (Flash)

USB Jack

Virtex-II Pro
(USB controller)

Virtex-V FPGA
(NAND Controller)

HAPS-52 Mother Board

USB Daughter Board

NAND Daughter Board

1x-nm
NAND Flash

[DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014,
HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017, PIEEE’17]

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.

NAND Flash Errors and Reliability

159

https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

Reducing Memory Latency

160

1

10

100

1999 2003 2006 2008 2011 2013 2014 2015 2016 2017

D
R

A
M

 Im
pr

ov
em

en
t

(lo
g)

Capacity Bandwidth Latency

Main Memory Latency Lags Behind

128x

20x

1.3x

Memory latency remains almost constant

A Closer Look …

162

Chang+, “Understanding Latency Variation in Modern DRAM Chips: Experimental
Characterization, Analysis, and Optimization",” SIGMETRICS 2016.

DRAM Latency Is Critical for Performance

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15;
Awan+, BDCloud’15]

Datacenter Workloads
[Kanev+ (Google), ISCA’15]

In-memory Databases
[Mao+, EuroSys’12;
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing
[Xu+, IISWC’12; Umuroglu+, FPL’15]

DRAM Latency Is Critical for Performance

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15;
Awan+, BDCloud’15]

Datacenter Workloads
[Kanev+ (Google), ISCA’15]

In-memory Databases
[Mao+, EuroSys’12;
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing
[Xu+, IISWC’12; Umuroglu+, FPL’15]

Long memory latency → performance bottleneck

Why the Long Latency?

n Design of DRAM uArchitecture
q Goal: Maximize capacity/area, not minimize latency

n “One size fits all” approach to latency specification
q Same latency parameters for all temperatures
q Same latency parameters for all DRAM chips (e.g., rows)
q Same latency parameters for all parts of a DRAM chip
q Same latency parameters for all supply voltage levels
q Same latency parameters for all application data
q …

165

Latency Variation in Memory Chips

166

HighLow
DRAM Latency

DRAM BDRAM A DRAM C

Slow cells

Heterogeneous manufacturing & operating conditions→	
latency variation in timing parameters

DRAM Characterization Infrastructure

167Kim+, “Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

HeaterFPGAs FPGAs

DRAM Characterization Infrastructure

n Hasan Hassan et al., SoftMC: A
Flexible and Practical Open-
Source Infrastructure for
Enabling Experimental DRAM
Studies, HPCA 2017.

n Flexible
n Easy to Use (C++ API)
n Open-source

github.com/CMU-SAFARI/SoftMC

168

SoftMC: Open Source DRAM Infrastructure

n https://github.com/CMU-SAFARI/SoftMC

169

Tackling the Fixed Latency Mindset
n Reliable operation latency is actually very heterogeneous

q Across temperatures, chips, parts of a chip, voltage levels, …

n Idea: Dynamically find out and use the lowest latency one
can reliably access a memory location with
q Adaptive-Latency DRAM [HPCA 2015]
q Flexible-Latency DRAM [SIGMETRICS 2016]
q Design-Induced Variation-Aware DRAM [SIGMETRICS 2017]
q Voltron [SIGMETRICS 2017]
q ...

n We would like to find sources of latency heterogeneity and
exploit them to minimize latency

170

171

Adaptive-Latency DRAM

• Key idea
– Optimize DRAM timing parameters online

• Two components
– DRAM manufacturer provides multiple sets of

reliable DRAM timing parameters at different
temperatures for each DIMM

– System monitors DRAM temperature & uses
appropriate DRAM timing parameters

reliable DRAM timing parameters

DRAM temperature

Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA
2015.

172

Latency Reduction Summary of 115 DIMMs
• Latency reduction for read & write (55°C)

– Read Latency: 32.7%
– Write Latency: 55.1%

• Latency reduction for each timing
parameter (55°C)
– Sensing: 17.3%
– Restore: 37.3% (read), 54.8% (write)
– Precharge: 35.2%

Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA
2015.

173

AL-DRAM: Real System Evaluation
• System

– CPU: AMD 4386 (8 Cores, 3.1GHz, 8MB LLC)
– DRAM: 4GByte DDR3-1600 (800Mhz Clock)
– OS: Linux
– Storage: 128GByte SSD

• Workload
– 35 applications from SPEC, STREAM, Parsec,

Memcached, Apache, GUPS

174

0%
5%

10%
15%
20%
25%

so
pl

ex m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
py

s.
cl

us
te

r

gu
ps

no
n-

in
te

ns
iv

e

in
te

ns
iv

e

al
l-w

or
kl

oa
ds

Single Core Multi Core

0%
5%

10%
15%
20%
25%

so
pl

ex m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
py

s.
cl

us
te

r

gu
ps

no
n-

in
te

ns
iv

e

in
te

ns
iv

e

al
l-w

or
kl

oa
ds

Single Core Multi Core

1.4%
6.7%

0%
5%

10%
15%
20%
25%

so
pl

ex m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
py

s.
cl

us
te

r

gu
ps

no
n-

in
te

ns
iv

e

in
te

ns
iv

e

al
l-w

or
kl

oa
ds

Single Core Multi Core

5.0%

AL-DRAM: Single-Core Evaluation

AL-DRAM improves single-core performance
on a real system

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t Average

Improvement

al
l-3

5-
w

or
kl

oa
d

175

0%
5%

10%
15%
20%
25%

so
pl

ex m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
py

s.
cl

us
te

r

gu
ps

no
n-

in
te

ns
iv

e

in
te

ns
iv

e

al
l-w

or
kl

oa
ds

Single Core Multi Core

0%
5%

10%
15%
20%
25%

so
pl

ex m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
py

s.
cl

us
te

r

gu
ps

no
n-

in
te

ns
iv

e

in
te

ns
iv

e

al
l-w

or
kl

oa
ds

Single Core Multi Core

0%
5%

10%
15%
20%
25%

so
pl

ex m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
py

s.
cl

us
te

r

gu
ps

no
n-

in
te

ns
iv

e

in
te

ns
iv

e

al
l-w

or
kl

oa
ds

Single Core Multi Core
14.0%

2.9%
0%
5%

10%
15%
20%
25%

so
pl

ex m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
py

s.
cl

us
te

r

gu
ps

no
n-

in
te

ns
iv

e

in
te

ns
iv

e

al
l-w

or
kl

oa
ds

Single Core Multi Core

10.4%

AL-DRAM: Multi-Core Evaluation

AL-DRAM provides higher performance on
multi-programmed & multi-threaded workloads

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t Average

Improvement

al
l-3

5-
w

or
kl

oa
d

Reducing Latency Also Reduces Energy

n AL-DRAM reduces DRAM power consumption by 5.8%

n Major reason: reduction in row activation time

176

More on Adaptive-Latency DRAM
n Donghyuk Lee, Yoongu Kim, Gennady Pekhimenko, Samira Khan,

Vivek Seshadri, Kevin Chang, and Onur Mutlu,
"Adaptive-Latency DRAM: Optimizing DRAM Timing for
the Common-Case"
Proceedings of the 21st International Symposium on High-
Performance Computer Architecture (HPCA), Bay Area, CA,
February 2015.
[Slides (pptx) (pdf)] [Full data sets]

177

Heterogeneous Latency within A Chip

178

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25
N

or
m

al
iz

ed
 P

er
fo

rm
an

ce

40 Workloads

Baseline (DDR3)
FLY-DRAM (D1)
FLY-DRAM (D2)
FLY-DRAM (D3)
Upper Bound

17.6%
19.5%19.7%

13.3%

Chang+, “Understanding Latency Variation in Modern DRAM Chips: Experimental
Characterization, Analysis, and Optimization",” SIGMETRICS 2016.

Analysis of Latency Variation in DRAM Chips
n Kevin Chang, Abhijith Kashyap, Hasan Hassan, Samira Khan, Kevin Hsieh,

Donghyuk Lee, Saugata Ghose, Gennady Pekhimenko, Tianshi Li, and

Onur Mutlu,

"Understanding Latency Variation in Modern DRAM Chips:
Experimental Characterization, Analysis, and Optimization"
Proceedings of the ACM International Conference on Measurement and

Modeling of Computer Systems (SIGMETRICS), Antibes Juan-Les-Pins,

France, June 2016.

[Slides (pptx) (pdf)]

[Source Code]

179

180

Inherently fast

inherently slow

What Is Design-Induced Variation?
slowfast

slow
fast

Systematic variation in cell access times
caused by the physical organization of DRAM

sense amplifiers

w
ordline

drivers

across row
distance from
sense amplifier

across column

distance from
wordline driver

181

DIVA Online Profiling
inherently slow

Profile only slow regions to determine min. latency
àDynamic & low cost latency optimization

sense amplifier

w
ordline

driver

Design-Induced-Variation-Aware

182

inherently slow

DIVA Online Profiling
slow cells

design-induced
variation

process
variation

localized errorrandom error

online profilingerror-correcting
code

Combine error-correcting codes & online profiling
à Reliably reduce DRAM latency

sense amplifier

w
ordline

driver

Design-Induced-Variation-Aware

183

DIVA-DRAM Reduces Latency
Read Write

31.2%
25.5%

35.1%34.6%36.6%35.8%

0%

10%

20%

30%

40%

50%

55°C 85°C 55°C 85°C 55°C 85°C

AL-DRAM AVA Profiling AVA Profiling
+ Shuffling

La
te

nc
y

Re
du

ct
io

n

DIVADIVA

36.6%

27.5%

39.4%38.7%
41.3%40.3%

0%

10%

20%

30%

40%

50%

55°C 85°C 55°C 85°C 55°C 85°C

AL-DRAM AVA Profiling AVA Profiling
+ Shuffling

DIVADIVA

DIVA-DRAM reduces latency more aggressively
and uses ECC to correct random slow cells

Design-Induced Latency Variation in DRAM
n Donghyuk Lee, Samira Khan, Lavanya Subramanian, Saugata Ghose,

Rachata Ausavarungnirun, Gennady Pekhimenko, Vivek Seshadri, and

Onur Mutlu,

"Design-Induced Latency Variation in Modern DRAM Chips:
Characterization, Analysis, and Latency Reduction Mechanisms"
Proceedings of the ACM International Conference on Measurement and

Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL,

USA, June 2017.

184

Voltron: Exploiting the
Voltage-Latency-Reliability

Relationship

185

Executive Summary
• DRAM (memory) power is significant in today’s systems

– Existing low-voltage DRAM reduces voltage conservatively

• Goal: Understand and exploit the reliability and latency behavior of
real DRAM chips under aggressive reduced-voltage operation

• Key experimental observations:
– Huge voltage margin -- Errors occur beyond some voltage
– Errors exhibit spatial locality
– Higher operation latency mitigates voltage-induced errors

• Voltron: A new DRAM energy reduction mechanism
– Reduce DRAM voltage without introducing errors
– Use a regression model to select voltage that does not degrade

performance beyond a chosen target à 7.3% system energy reduction

186

Analysis of Latency-Voltage in DRAM Chips
n Kevin Chang, A. Giray Yaglikci, Saugata Ghose, Aditya Agrawal, Niladrish

Chatterjee, Abhijith Kashyap, Donghyuk Lee, Mike O'Connor, Hasan
Hassan, and Onur Mutlu,
"Understanding Reduced-Voltage Operation in Modern DRAM
Devices: Experimental Characterization, Analysis, and
Mechanisms"
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL,
USA, June 2017.

187

And, What If …

n … we can sacrifice reliability of some data to access it with
even lower latency?

188

Onur Mutlu
omutlu@gmail.com

https://people.inf.ethz.ch/omutlu
January 31, 2018

SAFARI Group:
Research Introduction

