SAFARI Group:

Research Introduction

==

Systems @ ETH ziricr
SAFARI

Onur Mutlu
omutlu@gmail.com

https://people.inf.ethz.ch/omutlu
January 31, 2018

ETH:zurich

Brief Self Introduction @
Onur Mutlu ‘/j

o 0O 0o 0o O O

Professor @ ETH Zurich CS, since September’l5, started May’16

Strecker Professor @ Carnegie Mellon University ECE (CS), 2009-2016, 2016-...
PhD from UT-Austin, worked @ Google, VMware, Microsoft Research, Intel, AMD
https://people.inf.ethz.ch/omutlu/

omutlu@gmail.com (Best way to reach me)

Publications: https://people.inf.ethz.ch/omutlu/projects.htm

Research, Education, Consulting in

o 0O 0O 0O 0O O O

a

Computer architecture and systems, bioinformatics

Memory and storage systems, emerging technologies

Many-core systems, heterogeneous systems, core design
Interconnects

Hardware/software interaction and co-design (PL, OS, Architecture)
Predictable and QoS-aware systems

Hardware fault tolerance and security

Algorithms and architectures for genome analysis

SAFARI 2

Briet Introduction: SAFARI Group

27+ researchers
Multiple locations: ETH and CMU

ETH researchers

o 4 post-PhD (postdocs, visiting faculty)
o 6 PhD students

o 2 post-masters students

o 2+ masters students

CMU researchers
o 2 post-PhD (postdoc, research faculty)
o 7 PhD student

o 3 masters
SAFARI

Current Research Focus Areas

Research Focus: Computer architecture, HW/SW, bioinformatics
interconnects

* Heterogeneous & parallel systems, GPUs, systems for data analytics
 System/architecture interaction, new execution models, new interfaces
* Energy efficiency, fault tolerance, hardware security, performance

« Genome sequence analysis & assembly algorithms and architectures

* Biologically inspired systems & system design for bio/medicine

Hybrid Main Memory

Hterogenous Persistent Memory/Storage

Processors and

Accelerators Broad research

1 spanning apps, systems, logic
with architecture at the center

General Purpose GPUs

Four Key Current Directions

=| Fundamentally Secure/Reliable/Safe Architectures

= | Fundamentally Energy-Efficient Architectures
o Memory-centric (Data-centric) Architectures

= | Fundamentally Low-Latency Architectures

= Architectures for Genomics, Medicine, Health

SAFARI

In-Memory DNA Sequence Analysis

Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata
Ghose, Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping
Using Processing-in-Memory Technologies”

to appear in BMC Genormics, 2018.

to also appear in Proceedings of the 16th Asia Pacific Bioinformatics

Conference (APBC), Yokohama, Japan, January 2018.
arxiv.org Version (pdf)

GRIM-Filter: Fast Seed Location Filtering
in DNA Read Mapping

Using Processing-in-Memory Technologies

Jeremie S. Kim'®", Damla Senol Cali', Hongyi Xin?, Donghyuk Lee®, Saugata Ghose!,
Mohammed Alser*, Hasan Hassan®, Oguz Ergin®, Can Alkan**, and Onur Mutlu*®:!

SAFARI 6

Memory/Storage Issues We Are Tackling
(Enable and Exploit) In-Memory Computation

(Reduce) Latency

(Reduce) Energy

(Improve) Reliability and Security

(Make Sense of & Take Advantage of) Heterogeneity
(Enable and Use) Persistence

(Enable and Exploit) QoS and Predictability

(Develop New and Reliable) Infrastructure
SAFARI

Topics Requested (by Email)

1.JPIM enabled instructions

2. DRAM Reliability and Performance

3.|Processing in Memory (Near-Data Computation)

SAFARI

Three Key Systems Trends

1. Data access is a major bottleneck
o Applications are increasingly data hungry

2. Energy consumption is a key limiter

3. Data movement energy dominates compute
o Especially true for off-chip to on-chip movement

The Need for More Memory Performance

=

—

In-memory Databases Graph/Tree Processing
[Mao+, EuroSys’ | 2; [Xu+, ISWC’12; Umuroglu+, FPL 1 5]
Clapp+ (Intel), ISWC’|5]

. N
SPOK

In-Memory Data Analytics Datacenter Workloads
[Clappt (Intel), ISWC’I5; [Kanev+ (Google), ISCA’|5]
Awan+, BDCloud’ | 5]

SAFARI

The Performance Perspective (1996-2005)

=« “It's the Memory, Stupid!” (Richard Sites, MPR, 1996)

100
95
90
85
80
75
70
65
60
55
50
45 A
40 -
35 -
30
25 -
20 -
15
10

5 -
0

@ Non-stall (compute) time

B Full-window stall time

Normalized Execution Time

128-entry window Data from Runahead Execution [HPCA 2003]

Mutlu+, "Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.

The Performance Perspective (Today)

= All of Google’s Data Center Workloads (2015):

B Retiring I Bad speculation
[Front-end bound [EEH Back-end bound
ads S~ —
bigtable
disk
flight-search =-_ H
gmail IS A

indexingl
indexing2 | E
searchl I
search2

search3
video IE——

400.perlbench
445.gobmk
429.mcf
471.omnetpp
433.milc

0 20 40 60 80 100
Pipeline slot breakdown (%)

120

Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.

12

The Performance Perspective (Today)

= All of Google’s Data Center Workloads (2015):

adsF T T T - — L — -) —_ _ T,]
bigtable} t— — = T - =1 .
disk - -8 i
flight-search } —) - - .
gmail | & 31 .
gmail-fe | - %) 4 -
indexingl| R D === e -
indexing2}|- e . -
searchlf L —i i
search2} & - — —1 .
search3f LW N
video |- | = ; | me— , -
0 10 20 30 40 50 60 70 80
Cache-bound cycles (%)
Figure 11: Half of cycles are spent stalled on caches.
13

Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.

The Performance Perspective

= Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
"Runahead Execution: An Alternative to Very Large Instruction
Windows for Out-of-order Processors"
Proceedings of the 9th International Symposium on High-Performance
Computer Architecture (HPCA), pages 129-140, Anaheim, CA, February
2003. Slides (pdf)

Runahead Execution: An Alternative to Very Large
Instruction Windows for OQut-of-order Processors

Onur Mutlu § Jared Stark 1 Chris Wilkerson { Yale N. Patt §

§ECE Department TMicroprocessor Research tDesktop Platforms Group
The University of Texas at Austin Intel Labs Intel Corporation

{onur,patt} @ece.utexas.edu jared.w.stark @intel.com chris.wilkerson @intel.com

14

The Energy Perspective

Communication Dominates Arithmetic

Dally, HIPEAC 2015

64-bit DP .

256-bit buses

256-bit access
8 kB SRAM

SAFARI

Data Movement vs. Computation Energy

Communication Dominates Arithmetic

Dally, HIPEAC 2015

64-bit DP

256-bit buses

Efficient
off-chip link
256-bit access
8 kB SRAM

16

Data Movement vs. Computation Energy

= Data movement is a major system energy bottleneck
o Comprises 41% of mobile system energy during web browsing [2]
o Costs ~115 times as much energy as an ADD operation [1, 2]

Data Movement

P

—

R . R R R —
NN NN W - - - -

[1]: Reducing data Movement Energy via Online Data Clustering and Encoding (MICRO’16)
[2]: Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms (IISWC’14)

SAFARI 17

The Problem

Data access is the major performance and energy bottleneck

Our current
design principles
cause great energy waste

(and great performance loss)

SAFARI 18

The Problem

Processing of data
IS performed
far away from the data

SAFARI

19

A Computing System

= Three key components

= Computation
= Communication
= Storage/memory

Computing System

—
=
-

—

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Computing E 9 Communication E a Memory/Storage
Unit Unit Unit
Memory System Storage System

Image source: https://Ibsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/

20

A Computing System

= Three key components
= Computation

= Communication

= Storage/memory

—
=
-

—

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Communication e a\ Memory’”

Computing System

9 1rrTrIRIIITIPI RIE IR IPR I RIRLAARARAR RARIRIARIRIS d2 ks — _I ‘

Image source: https://Ibsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/

Today’s Computing Systems

Are overwhelmingly processor centric
All data processed in the processor - at great system cost
Processor is heavily optimized and is considered the master

Data storage units are dumb and are largely unoptimized
(except for some that are on the processor die)

Computing System
4)

Computing E a Communication E a Memory/Storage
Unit Unit Unit

k R

v

Y

-
-
a®

-
-
an”
-
-

-

-

Memory System Storage System

22

Yet ...

=« “It's the Memory, Stupid!” (Richard Sites, MPR, 1996)

100
95
90
85
80
75
70
65
60
55
50
45 A
40 -
35 -
30
25 -
20 -
15
10

5 -
0

@ Non-stall (compute) time

@ Full-window stall time

Normalized Execution Time

128-entry window Data from Runahead Execution [HPCA 2003]

Mutlu+, "Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.

Perils of Processor-Centric Design

Grossly-imbalanced systems

o Processing done only in one place

o Everything else just stores and moves data: data moves a lot
- Energy inefficient

- Low performance

- Complex

Overly complex and bloated processor (and accelerators)
o To tolerate data access from memory

o Complex hierarchies and mechanisms

- Energy inefficient

- Low performance

- Complex

24

Perils of Processor-Centric Design

Shared
Interconnect

Most of the system is dedicated to storing and moving data

AJIOWRA] paaeys

Shared Memory
Shared Shared
Memo Memo
Contro Contro
Shared Shared
Memo Memo
Contro Contro
Shared Memory

We Do Not Want to Move Datal

Communication Dominates Arithmetic

Dally, HIPEAC 2015

64-bit DP

256-bit buses

Efficient
off-chip link
256-bit access
8 kB SRAM

26

We Need A Paradigm Shift To ...

Enable computation with minimal data movement
Compute where it makes sense (where data resides)

Make computing architectures more data-centric

27

Goal: Processing Inside Memory

Processor 1 Database

Core

Graphs

I Media

)
Interconnect

Results Problem
Many questions ... How do we design the: Program/Language
o compute-capable memory & controllers? System Software
a processor chip? SW/HW Interface
o software and hardware interfaces? Micro-architecture
o system software and languages? i
o algorithms?

Electrons

Why In-Memory Computation Today?

= Pull from Systems and Applications
o Data access is a major system and application bottleneck
o Systems are energy limited
o Data movement much more energy-hungry than computation

SAFARI 29

Processing in Memory:

Two Approaches

1. Minimally changing memory chips
2. Exploiting 3D-stacked memory

Opportunity: 3D-Stacked Logic+Memory

Hybrld Memory Cube

Logic

Other “True 3D" technologies
under development

SAFARI 31

DRAM Landscape (circa 2015)

Segment DRAM Standards & Architectures
Commodity DDR3 (2007) [14]; DDR4 (2012) [1¥]
Low-Power LPDDR3 (2012) [17]; LPDDR4 (2014) [20]
Graphics GDDRS5 (2009) [15]

Performance eDRAM [2%], [22]; RLDRAM3 (2011) [2Y]

SBA/SSA (2010) [3%]; Staged Reads (2012) [%]; RAIDR (2012) [27];
SALP (2012) [24]; TL-DRAM (2013) [26]: RowClone (2013) [37];
Half-DRAM (2014) [39]; Row-Buffer Decoupling (2014) [33];

SARP (2014) [6]; AL-DRAM (2015) [25]

Academic

Table 1. Landscape of DRAM-based memory

Kim+, "Ramulator: A Flexible and Extensible DRAM Simulator”, IEEE CAL 2015.

SAFARI 32

Two Key Questions in 3D Stacked PIM

What is the minimal processing-in-memory support we can
provide ?

o without changing the system significantly

o while achieving significant benefits of processing in 3D-
stacked memory

How can we accelerate important applications if we use
3D-stacked memory as a coarse-grained accelerator?

o what is the architecture and programming model?
o what are the mechanisms for acceleration?

SAFARI 33

PEI: PIM-Enabled Instructions (Ideas)

Goal: Develop mechanisms to get the most out of near-data
processing with minimal cost, minimal changes to the system, no
changes to the programming model

Key Idea 1: Expose each PIM operation as a cache-coherent,
virtually-addressed host processor instruction (called PEI) that
operates on only a single cache block

o e.d., __pim_add(&w.next_rank, value) = pim.add r1, (r2)

No changes sequential execution/programming model

No changes to virtual memory

Minimal changes to cache coherence

No need for data mapping: Each PEI restricted to a single memory module

o 0O O O

Key Idea 2: Dynamically decide where to execute a PEI (i.e., the
host processor or PIM accelerator) based on simple locality
characteristics and simple hardware predictors

o Execute each operation at the location that provides the best performance

SAFARI 34

Simple PIM Operations as ISA Extensions (II)

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {

w.next_rank += value;

Host Processor Main Memory

;

64 bytes in ST
64 bytes out |

Conventional Architecture

w.next_rank

SAFARI

35

Simple PIM Operations as ISA Extensions (111

for (v: graph.vertices) {
value = weight * v.rank; sim.add 1, (r2)
for (w: v.successors) {

__pim_add(&w.next_rank, value);

Main Memory

;

w.next_rank

8 bytes in ST
0 bytes out

In-Memory Addition

SAFARI 36

Always Executing in Memory? Not A Good Idea

60%

50%
0,
40% Increased
30% = Memory Bandwidth
20% Consumption
10% - Caching very effective _ I
0% —

e 15

-20%

Speedup

Reduced Memory Bandwidth

Consumption due to
In-Memory Computation

2008

o N
G

p2p-Gnu
tella31l
soc-Slash
dot0811
web-
Stanford
amazon-

More Vertices

—
SAFARI 37

PEIL: PIM-Enabled Instructions (Example)

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {
__pim_add(&w.next_rank, value);

pim.add r1, (r2)

} Table 1: Summary of Supported PIM Operations
} f Operation R W Input Output Applications
ence . . -
P 8-byte integer increment O O Obytes Obytes Al
pfe nce () . 8-byte integer min O O 8bytes Obytes BFS, SP, WCC
4 Floating-point add O O S8bytes Obytes PR
Hash table probing O X S8bytes 9bytes HJ
Histogram bin index O X Ibyte I16bytes HG, RP
Euclidean distance O X 64bytes 4bytes SC
Dot product O X 32bytes 8bytes SVM

Executed either in memory or in the processor: dynamic decision

o Low-cost locality monitoring for a single instruction

Cache-coherent, virtually-addressed, single cache block only

Atomic between different PEIs

Not atomic with normal instructions (use pfence for ordering)

SAFARI

38

PIM-Enabled Instructions

Key to practicality: single-cache-block restriction
o Each PEI can access at most one /last-level cache block
o Similar restrictions exist in atomic instructions

Benefits
o Localization: each PEI is bounded to one memory module

o Interoperability: easier support for cache coherence and
virtual memory

o Simplified locality monitoring: data locality of PEIs can be
identified simply by the cache control logic

SAFARI

Example PEI Microarchitecture

Host Processor

Out-Of-Order

)) K]
Core = S o
4] (4°) - O
@) ©) 4= (@©
— ~ L8
PCU (PEl = = ay
Computation Unit)
PMU (PEI[—
Mgmt Umt) Directory
Locality
Monitor

HMC Controller

3D-stacked Memory

DRAM
PCU Controller

DRAM
PCU Controller

Network

DRAM
PCU Controller

Example PEI uArchitecture

SAFARI

40

PEI: Initial Evaluation Results

= Initial evaluations with 10 emerging data-intensive workloads
o Large-scale graph processing

Q In-memory data ana |yt|CS Table 2: Baseline Simulation Configuration
. . . . C A Configurati
o Machine learning and data mining omponcst Configuration
Core 16 out-of-order cores, 4 GHz, 4-issue
i i L1 V/D-Cache Private, 32 KB, 4/8-way, 64 B blocks, 16 MSHRs
= Th ree in pUt SetS (Sma l l’ med I ml Ia rge) L2 Cache Private, 256 KB, 8-way, 64 B blocks, 16 MSHRs
i L3 Cache Shared. 16 MB. 16-way. 64 B blocks, 64 MSHRs
for eaCh Workload to analyze the ImpaCt On-Chip Network Crossbar, 2 GHz, 144-bit links
I Main Memory 32 GB. 8 HMCs, daisy-chain (80 GB/s full-duplex)
Of data Ioca I Ity HMC 4GB. 16 vaults, 256 DRAM banks [20]
- DRAM FR-FCFS, tCL = tRCD = (RP = 13.75 ns [27]

— Vertical Links 64 TSVs per vault with 2 Gb/s signaling rate [23]

= Pin-based cycle-level x86-64 simulation

= Performance Improvement and Energy Reduction:

= 47% average speedup with large input data sets
= 32% speedup with small input data sets
= 25% avg. energy reduction in a single node with large input data sets

SAFARI 41

Evaluated Data-Intensive Applications

Ten emerging data-intensive workloads

o Large-scale graph processing

Average teenage follower, BFS, PageRank, single-source shortest
path, weakly connected components

o In-memory data analytics
Hash join, histogram, radix partitioning
o Machine learning and data mining
Streamcluster, SVM-RFE

Three input sets (small, medium, large) for each workload
to show the impact of data locality

SAFARI

PEI Performance Delta: Large Data Sets

70%

60%

50%

40%

30%

20%

10%

0%

(Large Inputs, Baseline: Host-Only)

WCC

M PIM-Only [Locality-Aware

SVM GM

SAFARI

43

Normalized Amount of Off-chip Transfer

ATF BFS PR SP WCC HJ HG RP SC
M Host-Only B PIM-Only [Locality-Aware

PEI Performance Delta: Small Data Sets

60%

40%

20%

0%

-20%

-40%

-60%

ATF

(Small Inputs, Baseline: Host-Only)

BFS

PR

SP WCC HJ HG
M PIM-Only [Locality-Aware

RP

SAFARI

45

Normalized Amount of Off-chip Transfer

8
7
6
5
4
3
2
1
0

phldd].]

M Host-Only B PIM-Only [Locality-Aware

SC

PEI Performance Delta: Medium Data Sets

(Medium Inputs, Baseline: Host-Only)
70%

60%
50%
40%

30%

20%
f o f [f {
ATF BFS PR SP WCC HJ HG RP SC SVM GM

)

-10%
M PIM-Only [Locality-Aware

SAFARI 47

PEI Energy Consumption

1.5 Host-Only
PIM-Only
Locality-Aware
1
0.5
0
Small Medium Large
MW Cache W HMC Link I DRAM
[0 Host-side PCU [0 Memory-side PCU [PMU

SAFARI

48

PEI: Advantages & Disadvantages

Advantages

+ Simple and low cost approach to PIM

+ No changes to programming model, virtual memory
+ Dynamically decides where to execute an instruction

Disadvantages

- Does not take full advantage of PIM potential
- Single cache block restriction is limiting

SAFARI

49

More on PIM-Enabled Instructions

= Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,
"PIM-Enabled Instructions: A Low-Overhead,
Locality-Aware Processing-in-Memory Architecture"
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

PIM-Enabled Instructions: A Low-Overhead, Locality-Aware
Processing-in-Memory Architecture

Junwhan Ahn Sungjoo Yoo Onur Mutlu' Kiyoung Choi
junwhan @snu.ac.kr, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi @snu.ac.kr

Seoul National University J’Camegie Mellon University

SAFARI

Two Key Questions in 3D Stacked PIM

What is the minimal processing-in-memory support we can
provide ?
o without changing the system significantly

o while achieving significant benefits of processing in 3D-
stacked memory

How can we accelerate important applications if we use
o what is the architecture and programming model?
o what are the mechanisms for acceleration?

SAFARI >1

Tesseract System tor Graph Processing

Interconnected set of 3D-stacked memory+logic chips with simple cores

Host Processor

Memory-Mapped
Accelerator Interface

Noncacheable, Physically Addressed)

§

> Logic

iy

iy iy

’
I ’

Crossbar Network

1

1t

1t it

1t

In-Order Core

LP PF Buffer

MTP

Message Queue

19][043U0D INVYA

[

-

SAFARI Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Communications via

Remote Function Calls

Message Queue

Communications In Tesseract (1)

for (v: graph.vertices) {
for (w: v.successors) {
~w.next_rank += weight * v.rank;

}
}

SAFARI

54

Communications In Tesseract (1I)

for

(v: graph.vertices) {

for (w: v.successors) {

}
}

] w.next_rank += weight * v.rank;

Vault #1

\\
-~
~
-~

Vault #2

-— G w—

——

—
—
—

SAFARI

55

Communications In Tesseract (I11)

for (v: graph.vertices) {
for (w: v.successors) { Non-blocking Remote Function Call

put(w.id, function() { w.next_rank += weight * v.rank; });

i Can be delayed
} until the nearest barrier
barrier();
Vault #1 Vault #2
put
v > &w
// \
- \
put Ny
S put
TS~ W
pu;__—’

SAFARI 56

Remote Function Call (Non-Blocking)

1. Send function address & args to the remote core
2. Store the incoming message to the message queue
3. Flush the message queue when it is full or a

synchronization barrier is reached

Local

/ | Core

N

&func, &w, value

Remote
Core

S NL- MQ

put(w.id, function() { w.next_rank += value; })

SAFARI

57

Prefetching

LP PF Buffer

MTP

Evaluated Systems

DDR3-000 HMC-000 HMC-MC Tesseract

I | | | | | | |
CBCE CBCD | : :
| I T I | | I | I | : A A A A : A A A A : 32
| ! | ! | ! | | ! | . Tesseract
A 4 \ 4 \ 4 v VI: v:I VII VII VII VI: VI: VII I Cores
128 128
8000=;8000 . 8000‘78000 | InOrder [+ InOrder .
 y y § I y § X i X 3 i t ¢ ¢ ’
\ 4 \ 4 ! \ 4 \ 4 ! 1;8 1;8 ! P P
8 000 - 8 000 8 000 R 8 000 nOrder k| InOrder 1 1
4GHz 4GHz : 4GHz 4GHz : 2GHz 2GHz | - <
X X X X i i X 1: X 1: X 1: X :I i t c ¢ t
| VIV | | VIV | | VIV | | VIV | : : : > ||]
I | | | | | | |
1 1 1 1 v v v \ 4 v v v v
I | | | | | | |
[[[[
I | | | | | | |
102.4GB/s 640GB/s 640GB/s 8TB/s

SAFAR]I Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Tesseract Graph Processing Performance

>13X Performance Improvement

16
” On five graph processing algorithms 13.8x
17 11.6x
o 10 9.0x
>
o 8
Q
Q.
Y 6
4
5 +56% 4+25%
, == [l
DDR3-000 HMC-Oo0 HMC-MC Tesseract Tesseract- Tesseract-

LP LP-MTP

SAFARI Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Memory Bandwidth Consumption

2.9TB/s

Memory Bandwidth (TB/s)

2.2TB/s
1.3TB/s
190GB/s 243GB/s
80GB/s
— T

DDR3-000 HMC-O00 HMC-MC Tesseract Tesseract- Tesseract-
LP LP-MTP

Ettect of Bandwidth & Programming Model

] HMC-MC Bandwidth (640GB/s)] Tesseract Bandwidth (8TB/s)
7 6.5x

Programming Model

3.0x

Speedup

2.3X v

- E
0
HMC-MC HMC-MC + Tesseract + Tesseract
PIM BW Conventional BW (No Prefetching)

SAFARI 62

Tesseract Graph Processing System Energy

B Memory Layers M Logic Layers [Cores
1.2

0.8
0.6
0.4

> 8X Energy Reduction

HMC-000 Tesseract with Prefetching

0.2

SAFARI Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Tesseract: Advantages & Disadvantages

Advantages

+ Specialized graph processing accelerator using PIM
+ Large system performance and energy benefits
+ Takes advantage of 3D stacking for an important workload

Disadvantages
- Changes a lot in the system
- New programming model

- Specialized Tesseract cores for graph processing
- Cost

- Scalability limited by off-chip links or graph partitioning

SAFARI 64

More on Tesseract

= Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu,
and Kiyoung Choi,

"A Scalable Processing-in-Memory Accelerator for
Parallel Graph Processing”

Proceedings of the 42nd International Symposium orn
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing

Junwhan Ahn Sungpack Hong® Sungjoo Yoo Onur Mutlu’ Kiyoung Choi

junwhan@snu.ac.kr, sungpack.hong @oracle.com, sungjoo.yoo @ gmail.com, onur@cmu.edu, kchoi @snu.ac.kr

Seoul National University YOracle Labs fCarnegie Mellon University

SAFARI 65

Truly Distributed GPU Processing with PIM?

__global__

void applyScaleFactorsKernel(uint8 T * const out,
uint8_T const * const in, const double *factor,
size_t const numRows, size_t const numCols)

// Work out which pixel we are working on.

const int rowIdx = blockIdx.x * blockDim.x + threadIdx.x:;
const int colldx = blockIdx.y:

const int sliceldx = threadIdx.z;

// Check this thread isn't off the image
if(rowIdx >= numRows) return;

// Compute the index of my element
3 D-StaCked memory size_t linearIdx = rowIdx + colIdx*numRows +

sliceIdx*numRows*numCols;

(memory stack) SM (Streaming Multiprocessor)

[

|

I
|

------ Logic layer

Logic layer
SM
I

Crossbar switch
[I

Vault| ... |Vault
Ctrl Ctrl

Main GPU

Accelerating GPU Execution with PIM (I)

= Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems"”
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.

Slides (pptx) (pdf)]

Lightning Session Slides (pptx) (pdf)]

Transparent Offloading and Mapping (TOM):
Enabling Programmer-Transparent Near-Data Processing in GPU Systems

Kevin Hsieh* Eiman Ebrahimi' Gwangsun Kim* Niladrish Challerjchr Mike O’Connor!

Nandita Vijaykumari Onur Mutlu®? Stephen W. Keckler!
J:Carnegie Mellon University NVIDIA *KAIST SETH Ziirich

Accelerating GPU Execution with PIM (II)

= Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.
Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities”

Proceedings of the 25th International Conference on Parallel
Architectures and Compilation Technigues (PACT), Haifa, Israel,
September 2016.

Scheduling Techniques for GPU Architectures
with Processing-In-Memory Capabilities

Ashutosh Pattnaik® Xulong Tang* Adwait Jog> Onur Kayiran®
Asit K. Mishra* Mahmut T. Kandemir? Onur Mutlus:¢ Chita R. Das!

'Pennsylvania State University ~ ?College of William and Mary
3Advanced Micro Devices, Inc. “Intel Labs °ETH Zirich °Carnegie Mellon University

SAFARI 08

Automatic Code and Data Mapping?

= Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems"”
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.

Slides (pptx) (pdf)]

Lightning Session Slides (pptx) (pdf)]

Transparent Offloading and Mapping (TOM):
Enabling Programmer-Transparent Near-Data Processing in GPU Systems

Kevin Hsieh* Eiman Ebrahimi' Gwangsun Kim* Niladrish Challerjchr Mike O’Connor!

Nandita Vijaykumari Onur Mutlu®? Stephen W. Keckler!
J:Carnegie Mellon University NVIDIA *KAIST SETH Ziirich

Processing in Memory:

Two Approaches

1. Minimally changing memory chips
2. Exploiting 3D-stacked memory

Minimally Changing DRAM

= DRAM has great capability to perform bulk data movement and
computation internally with small changes

o Can exploit internal connectivity to move data
o Can exploit analog computation capability

Q ...

= Examples: RowClone, In-DRAM AND/OR, Gather/Scatter DRAM

o RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data
(Seshadri et al., MICRO 2013)

o Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)

o Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial
Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015)

o "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity
DRAM Technology” (Seshadri et al., MICRO 2017)

SAFARI 7

Memory as an Accelerator

mini-CPU
: GPU GPU :
CPU CPU core (throughput) | |(throughput)| :
core core core core :
video
core
cPU — : GPU GPU :
— : | (throughput) | |(throughput) | :
core core In'::?)%g‘g : core core : Memo i
LLC
N Specialized
Memory Controller compute-capability
in memory

Memory similar to a “conventiona

Memory Bus

III

accelerator

In-Memory Bulk Operations

We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ
At low cost

Using analog computation capability of DRAM

o Idea: activating multiple rows performs computation

30-60X performance and energy improvement

o Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology,” MICRO 2017.

New memory technologies enable even more opportunities
o Memristors, resistive RAM, phase change mem, STT-MRAM, ...
o Can operate on data with minimal movement

73

Starting Simple: Data Copy and Initialization

memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ ISCA’15]

- Zero initialization ' '

Forking (e.g., security) Checkpointing

00000

00000
00000

Many more

VM Cloning page Migration
Deduplication

SAFARI 74

RowClone: In-DRAM Row Copy

Transfer
row

Transfer,
row

4 Kbytes

Idea: Two consecutive ACTivates

Negligible HW cost

Step 1: Activate row A

Step 2: Activate row B

DRAM subarray

Row Buffer (4 Kbytes)

Data Bus

RowClone: Latency and Energy Savings

1.2 M Baseline M Intra-Subarray

W Inter-Bank M Inter-Subarray

=
|

A

74x

o
(00
|

Normalized Savings
o o
I o))

o
N
|

Latency Energy

Seshadri et al., "RowClone: Fast and Efficient In-DRAM Copy and
Initialization of Bulk Data,” MICRO 2013.

76

More on RowClone

= Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata
Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A.
Kozuch, Phillip B. Gibbons, and Todd C. Mowry,
"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and
Initialization"
Proceedings of the 46th International Symposium on Microarchitecture
(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning Session
Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

RowClone: Fast and Energy-Efficient
In-DRAM Bulk Data Copy and Initialization

Vivek Seshadri Yoongu Kim Chris Fallin® Donghyuk Lee

vseshadr@cs.cmu.edu yoongukim@cmu.edu cfallin@cif.net donghyuki@cmu.edu

Rachata Ausavarungnirun Gennady Pekhimenko Yixin Luo
rachata@cmu.edu gpekhime@cs.cmu.edu yixinluo@andrew.cmu.edu

Onur Mutlu Phillip B. Gibbonst Michael A. Kozucht Todd C. Mowry

onur@cmu.edu phillip.b.gibbons@intel.com michael.a.kozuch@intel.com tcm@cs.cmu.edu

Carnegie Mellon University tIntel Pittsburgh

Bulk Bitwise Operations in Workloads

BitWeaving

Bitmap indices (database queries)
(database indexing)

BitFunnel

Bulk Bitwise (web search)

Set operations Operations

DNA
sequence mapping
Encryption algorithms

[1] Li and Patel, BitWeaving, SIGMOD 2013
SA FARI [2] Goodwin+, BitFunnel, SIGIR 2017

In-DRAM AND/OR: Triple Row Activation

YV t+0
A‘l’l/). bo

I el Final State
B v AB + BC + AC

c

| %0,

SAFARI Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015.

79

In-DRAM NOT: Dual Contact Cell

d-wordline

dual-contact [|
cell (DCC) | | E .
n-wordline :_J_l__l_ { Idea i
T ' Feed the
amplifer ANV negated value
in the sense amplifier

into a special row

bitline

bitline
Figure 5: A dual-contact

cell connected to both
ends of a sense amplifier

Seshadri+, “"Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

SAFARI 80

Energy of In-DRAM Bitwise Operations

Design not and/or nand/nor xor/xnor

DRAM & DDR3 93.7 137.9 137.9 137.9
Channel Energy =~ Ambit 1.6 3.2 4.0 5.5
(nJ/KB) () 595X 439X 35.1X 25.1X

Table 3: Energy of bitwise operations. (|) indicates energy
reduction of Ambit over the traditional DDR3-based design.

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

SAFARI 81

Ambit vs. DDR3: Performance and Energy

Performance Improvement B Energy Reduction
70

60
50 32X 35X

40
30
20
m |
0

and/or nand/nor xor/xnor mean

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017. 82

Performance: Bitmap Index on Ambit

~~ 110 R RPN m AP
QE) g 100 = Baseline I Ambit b b,
C S o0A4L—] o,
- Z’ o) DT T TTTTR OO NTITNISTTITORTN || WNTRTNN | N
c S 40 T RSO UUSUSUSSUSPURSRSUSSSIUOSSRRORY () NSRRI B SO
9 =3 60 ISP [NSRRI (R S
.5: O‘ [T T TS WU INRRNNGIRN W —
8 -qc) £318 S DU UTUUURUURTURRR L PPRRS NN UUUUURSTRRRRRY N FERURURTURRTY N ASURUURRURRIN! I BTSRRI

wmposssssssssssccsssnscsccsd Heesscsccssssscs] Becsescscccssss] Jeseccrcssccnes oo L 6.6X

LI>.I< : %8 - 54X 6.3X | |5.7X 6.2X | |.2:9

O —e]] T eeeiiiiiiienn] beviiiiiiiinied] bmmmiiieieeeed B

2-weeks 3-weeks 4-weeks 2-weeks 3-weeks 4-weeks
8 million users 16 million users

Figure 10: Bitmap index performance. The value above each
bar indicates the reduction in execution time due to Ambit.

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

SAFARI 83

Performance: BitWeaving on Ambit

‘'select count(*) from T where cl <= val <= c2’

13 _. ROW Count (r) _ D 1m . 2m D 4m . 8m

Speedup offered by Ambit

4 12 16 20 24 28 32
Number of Bits per Column (b)

Figure 11: Speedup offered by Ambit over baseline CPU with
SIMD for BitWeaving

Seshadri+, “"Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

SAFARI 54

More on In-DRAM Bulk AND/OR

= Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk

Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and
Todd C. Mowry,

"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015.

Fast Bulk Bitwise AND and OR in DRAM

Vivek Seshadri*, Kevin Hsieh*, Amirali Boroumand*, Donghyuk Lee*,
Michael A. Kozuch', Onur Mutlu*, Phillip B. Gibbons', Todd C. Mowry*

*Carnegie Mellon University TIntel Pittsburgh

SAFARI 85

More on Ambit

= Vivek Seshadri et al., "Ambit: In-Memory Accelerator
for Bulk Bitwise Operations Using Commodity DRAM
Technoloqgy,” MICRO 2017.

Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology

Vivek Seshadri'® Donghyuk Lee*® Thomas Mullins®® Hasan Hassan! ~Amirali Boroumand®
Jeremie Kim*® Michael A. Kozuch® Onur Mutlu®® Phillip B. Gibbons® Todd C. Mowry®

'Microsoft Research India *NVIDIA Research “Intel “ETH Ziirich °Carnegie Mellon University

SAFARI 86

Eliminating the Adoption Barriers

How to Enable Adoption
of Processing in Memory

SAFARI

Barriers to Adoption of PIM

1. Functionality of and applications for PIM
2. Ease of programming (interfaces and compiler/HW support)
3. System support: coherence & virtual memory

4. Runtime systems for adaptive scheduling, data mapping,
access/sharing control

5. Infrastructures to assess benefits and feasibility

SAFARI 38

We Need to Revisit the Entire Stack

SW/HW Interface

SAFARI

89

Key Challenge 1: Code Mapping

* Challenge 1: Which operations should be executed
in memory vs. in CPU!? e

void applyScaleFactorsKernel(uint8_ T * const out,
uint8_T const * const in, const double *factor,
size_t const numRows, size_t const numCols)

{

e // Work out which pixel we are working on.
const int rowIdx = blockIdx.x * blockDim.x + threadIdx.x:;
EEEEEEEERENm const int colldx = blockIdx.y:

const int sliceldx = threadIdx.z;

// Check this thread isn't off the image
if(rowIdx >= numRows) return;

// Compute the index of my element

size_t linearIdx = rowIdx + colIdx*numRows +
sliceIdx*numRows*numCols;

SM (Streaming Multiprocessor)

7.

<. Logic layer

\ 4

Logic layer
SM
I

Crossbar switch
[I

Vault| |Vault
Ctrl Ctrl

3D-stacked memory
(memory stack)

?

JIIIIIIIIIIII

Key Challenge 2: Data Mapping

* Challenge 2: How should data be mapped to
different 3D memory stacks?

3D-stacked memory
(memory stack) SM (Streammg Multiprocessor)

SM

Logic layer

Crossbar switch

[
Vault
Ctrl

Vault
Ctrl

How to Do the Code and Data Mapping?

= Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems"”
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.

Slides (pptx) (pdf)]

Lightning Session Slides (pptx) (pdf)]

Transparent Offloading and Mapping (TOM):
Enabling Programmer-Transparent Near-Data Processing in GPU Systems

.t

Kevin Hsieh* Eiman Ebrahimi' Gwangsun Kim* Niladrish Challerjchr Mike O’Connor
Nandita Vijaykumari Onur Mutlu®? Stephen W. Keckler!
ICarnegie Mellon University NVIDIA *KAIST SETH Ziirich

How to Schedule Code?

= Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.
Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities”

Proceedings of the 25th International Conference on Parallel
Architectures and Compilation Technigues (PACT), Haifa, Israel,
September 2016.

Scheduling Techniques for GPU Architectures
with Processing-In-Memory Capabilities

Ashutosh Pattnaik® Xulong Tang* Adwait Jog> Onur Kayiran®
Asit K. Mishra* Mahmut T. Kandemir? Onur Mutlus:¢ Chita R. Das!

'Pennsylvania State University ~ ?College of William and Mary
3Advanced Micro Devices, Inc. “Intel Labs °ETH Zlrich ¢Carnegie Mellon University

SAFARI 93

Coherence for Hybrid CPU-PIM Apps

Challenge

Traditional

(]
® > > 2
1) o | L 5 2
3 2o o 0| NS .fm 2
S ol © 2|38 o°o%
© 3 5 o
BN B B|2|O >3
.............. UEB3aND
8¢T-dV1H o
[a)
=
9S¢-dV1H =
yueyasded
c
npey 2
wi
T ollisiiiid sjuauodwo)
LB R B N R
| yueyased
L
o
lpey s
-
(C)
sjuauodwo)
SR eyaSed
=
lIpey x
4
.............. sjuauodwo)

1 1
oONoONonNnNowno
ONWNANONWINANO
N~ = OO OO

94

SAFARI

How to Maintain Coherence?

= Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism
for Processing-in-Memory"
TEEE Computer Architecture Letters (CAL), June 2016.

LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory

Amirali Boroumand', Saugata Ghose', Minesh Patel’, Hasan Hassan'¥, Brandon Luciaf,
Kevin Hsieh', Krishna T. Malladi*, Hongzhong Zheng*, and Onur Mutlu#t

t Carnegie Mellon University *Samsung Semiconductor, Inc. $TOBB ETU *ETH Ziirich

SAFARI 95

How to Support Virtual Memory?

= Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation”
Proceedings of the 34th IEEE International Conference on Computer
Design (ICCD), Phoenix, AZ, USA, October 2016.

Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation

Kevin Hsieh! Samira Khan* Nandita Vijaykumar'
Kevin K. Chang’ Amirali Boroumand’ Saugata Ghose! Onur Mutlu®f
TCarnegie Mellon University — *University of Virginia SETH Ziirich

SAFARI 96

How to Design Data Structures tor PIM?

= Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu,
"Concurrent Data Structures for Near-Memory Computing"
Proceedings of the 29th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), Washington, DC, USA, July 2017.
[Slides (pptx) (pdf)]

Concurrent Data Structures for Near-Memory Computing

Zhiyu Liu Irina Calciu
Computer Science Department VMware Research Group
Brown University icalciu@vmware.com
zhiyu_liu@brown.edu
Maurice Herlihy Onur Mutlu
Computer Science Department Computer Science Department
Brown University ETH Ziirich
mph@cs.brown.edu onur.mutlu@inf.ethz.ch

SAFARI o7

Simulation Infrastructures for PIM

Ramulator extended for PIM
o Flexible and extensible DRAM simulator
o Can model many different memory standards and proposals

o Kim+, "Ramulator: A Flexible and Extensible DRAM
Simulator”, IEEE CAL 2015.

o https://aithub.com/CMU-SAFARI/ramulator

Ramulator: A Fast and Extensible DRAM Simulator

Yoongu Kim' Weikun Yang’? Onur Mutlu!
1Carnegie Mellon University 2Peking University

SAFARI 78

An FPGA-based Test-bed for PIM?

= Hasan Hassan et al., SoftMC: A
Flexible and Practical Open- Chamber
Source Infrastructure for ‘\ | |
Enabling Experimental DRAM
Studies HPCA 2017.

= Flexible

= Easy to Use (C++ API)

= Open-source
github.com/CMU-SAFARIL/SoftMC

SAFARI 9

Topics Requested (by Email)

1. PIM enabled instructions

2.JDRAM Reliability and Performance

3. Processing in Memory (Near-Data Computation)

SAFARI 100

Memory/Storage Issues We Are Tackling

= (Enable and Exploit) In-Memory Computation

= [(Reduce) Latency
= [(Reduce) Energy
= |(Improve) Reliability and Security

= (Make Sense of & Take Advantage of) Heterogeneity

= (Enable and Use) Persistence
= (Enable and Exploit) QoS and Predictability

= (Develop New and Reliable) Infrastructure

SAFARI 101

DRAM Reliability, Security,
Refresh

The DRAM Scaling Problem

DRAM stores charge in a capacitor (charge-based memory)
o Capacitor must be large enough for reliable sensing

o Access transistor should be large enough for low leakage and high
retention time

o Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

WL BL

.

CAP

-

= SENSE

As DRAM cell becomes smaller, it becomes more vulnerable

SAFARI 103

As Memory Scales, It Becomes Unreliable

= Data from all of Facebook’s servers worldwide
= Meza+, “"Revisiting Memory Errors in Large-Scale Production Data Centers,” DSN'15.

) o

S 2

()

- —

T / 72217170
— o

g B - [adrass
s °© 777

o Credse
> - 77

© o | ca y

> S LPacity
o T [[

SAFARI Chip density (Gb) 104

Testing DRAM Scaling Issues

':Q') ,-'b|”M

Fan over

Flipping Bits in Memory Without Accessing
Them: An Experimental Study of DRAM
Disturbance Errors (Kim et al., ISCA 2014)

Adaptive-Latency DRAM: Optimizing DRAM

Timing for the Common-Case (Lee et al.,
HPCA 2015)

AVATAR: A Variable-Retention-Time (VRT)
Aware Refresh for DRAM Systems (Qureshi
et al., DSN 2015)

SAFARI

An Experimental Study of Data Retention
Behavior in Modern DRAM Devices:
Implications for Retention Time Profiling
Mechanisms (Liu et al., ISCA 2013)

The Efficacy of Error Mitigation Technigues
for DRAM Retention Failures: A
Comparative Experimental Study

(Khan et al., SIGMETRICS 2014)

Infrastructures to Understand Such Issues

SAFARI Kim+, “Flipping Bits in Memory Without Accessing Them: An 106
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

SottMC: Open Source DRAM Infrastructure

= Hasan Hassan et al., "SoftMC: A]

Flexible and Practical Open- Chamber
Source Infrastructure for ‘\ | |
Enabling Experimental DRAM
Studies,” HPCA 2017.

= Flexible

= Easy to Use (C++ API)

= Open-source
github.com/CMU-SAFARIL/SoftMC

SAFARI 107

SoftMC

= https://github.com/CMU-SAFARI/SoftMC

SoftMC: A Flexible and Practical Open-Source Infrastructure
for Enabling Experimental DRAM Studies

Hasan Hassan!'%3 Nandita Vijaykumar® Samira Khan*? Saugata Ghose® Kevin Chang?
Gennady Pekhimenko®> Donghyuk Lee®® Oguz Ergin?> Onur Mutlu!-3

YETH Zirich ~ 2TOBB University of Economics & Technology >Carnegie Mellon University
Y University of Virginia > Microsoft Research SNVIDIA Research

SAFARI 108

A Curious Discovery [Kim et al., ISCA 2014]

One can
predictably induce errors
in most DRAM memory chips

SAFARI 109

DRAM RowHammer

A simple hardware failure mechanism
can create a widespread
system security vulnerability

MIGIEB Forget Software—Now Hackers Are Exploiting Physics

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

SHARE FORGETSOFTWARE—NOW
g: HACKRERY ARE EXPLOITING
PHYSICS

Modern DRAM is Prone to Disturbance Etrrors
— Row of Cells = Wordline
= Victim Row -
Hammer(: 1. V oew
= Victim Row -
== Row [

Repeatedly reading a row enough times (before memory gets

refreshed) induces disturbance errors in adjacent rows
most real DRAM chips you can buy today

N

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM 111

Disturbance Errors, (Kim et al., ISCA 2014)

Most DRAM Modules Are Vulnerable

A company B company C company

Up to Up to Up to
1.0x107 2.7x10% 3.3x10°
errors errors errors

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM

Disturbance Errors, (Kim et al., ISCA 2014) 112

Recent DRAM Is More Vulnerable

e A Modules = B Modules ¢ C Modules

100

Errors per 10° Cells
e e e T e T =
o R [- (S < (N
—_ [\ U8} +~ W

[—
)
(e}

-

2008 2009 2010 2011 2012 2013 2014
Module Vintage

113

Recent DRAM Is More Vulnerable

e A Modules = B Modules ¢ C Modules

100

[
-
[@,]

ja—
=
~

[
-
(8]
>
S
™
Q

' '
R R

[
-
[\

Errors per 10° Cells
2

[—
)
(e}

-
[|

2008 2009 2010 2011 2012 2013 2014
Module Vintage

114

Recent DRAM Is More Vulnerable

Errors per 10° Cells

100

S G SO w—t
<us S <us R e SR <o (R <u> SRR cus
) () — &) W) ~)

e A Modules = B Modules ¢ C Modules

| N B
1 \\| .
"""""""""""" }'""‘"!E{.]“"‘jt"‘“"”‘”“
ffffffffffffffff SR R
First T P l'..
_______________________ :___”‘________~~A--__
Ap/:)earance . "
AUt G I ZZ 2020909090909 =
NEIEP i
Bk N
""""" BT 4 4
I I - ‘ . .
--------- DU e
M‘I ¢

2008 2009 2010 2011 2012 2013 2014

Module Vintage

All modules from 2012-2013 are vulnerable

115

A Simple Program Can Induce Many Errors

RAM Module

.';5--';::- -*-uuini lnm uu.

loop:

mov (), %Teax

mov (), %Tebx
clflush ()

clflush ()
mfence
Jmp loop

Download from: https://github.com/CMU-SAFARI/rowhammer

A Simple Program Can Induce Many Errors

| i, ummi-t .

RAI\/I I\/Iodule

" ! | .
C IS gt -mu HH NH

1. Avoid cache hits ¥ =
— Flush X from cache

2. Avoid row hits to X Y >
— Read Y in another row

Download from: https://github.com/CMU-SAFARI/rowhammer

A Simple Program Can Induce Many Errors

RAM Module

.".-'--';::- -*-uuini um uu‘

loop:

mov (), %Teax

mov (), %Tebx
clflush ()

clflush ()
mfence
Jmp loop

Download from: https://github.com/CMU-SAFARI/rowhammer

A Simple Program Can Induce Many Errors

RAM Module

.".-'--';::- -*-uuini um uu‘

loop:

mov (), %Teax

mov (), %Tebx
clflush ()

clflush ()
mfence
Jmp loop

Download from: https://github.com/CMU-SAFARI/rowhammer

A Simple Program Can Induce Many Errors

RAM Module

.".-'--';::- -*-mui um uu‘
| |

loop:

mov (), %Teax

mov (), %Tebx
clflush ()

clflush ()
mfence
Jmp loop

Download from: https://github.com/CMU-SAFARI/rowhammer

Observed Errors in Real Systems

CPU Architecture Errors Access-Rate
Intel Haswell (2013) 22.9K 12.3M/sec

Intel lvy Bridge (2012) 20.7K 11.7M/sec
Intel Sandy Bridge (2011) 16.1K 11.6M/sec
AMD Piledriver (2012) 59 6.1M/sec

A real reliability & security issue

Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of 121
DRAM Disturbance Errors,” ISCA 2014.

One Can Take Over an Otherwise-Secure System

Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors

Abstract. Memory isolation is a key property of a reliable

and secure computing system — an access to one memory ad-
dress should not have unintended side effects on data stored

in other addresses. However, as DRAM process technology

Flipping Bits in Memory Without Accessing Them:

P rOj ect Ze r'o An Experimental Study of DRAM Disturbance Errors

(Kim et al., ISCA 2014)

News and updates from the Project Zero team at Google

Exploiting the DRAM rowhammer bug to
gain kernel privileges (Seaborn, 2015)

Exploiting the DRAM rowhammer bug to gain kernel privileges

RowHammer Security Attack Example

= "Rowhammer” is a problem with some recent DRAM devices in which
repeatedly accessing a row of memory can cause bit flips in adjacent rows
(Kim et al., ISCA 2014).

o Flipping Bits in Memory Without Accessing Them: An Experimental Study of
DRAM Disturbance Errors (Kim et al., ISCA 2014)

= We tested a selection of laptops and found that a subset of them
exhibited the problem.

= We built two working privilege escalation exploits that use this effect.
o Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn, 2015)

= One exploit uses rowvhammer-induced bit flips to gain kernel privileges on
x86-64 Linux when run as an unprivileged userland process.

= When run on a machine vulnerable to the rowhammer problem, the
process was able to induce bit flips in page table entries (PTES).

= It was able to use this to gain write access to its own page table, and
hence gain read-write access to all of physical memory.

Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn, 2015) 123

Security Implications

-
SR ‘ .

s
at quuh\\u\\‘\.\.\ \.u L4N | g
\\ . — .
\

.4

\.
LU
> v

It's like breaking into an apartment by
repeatedly slamming a neighbor’s door until
the vibrations open the door you were after

More on RowHammer Analysis

= Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
"Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors”
Proceedings of the 41st International Symposium on Computer
Architecture (ISCA), Minneapolis, MN, June 2014.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code
and Data]

Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors

Yoongu Kim' Ross Daly* Jeremie Kim' Chris Fallin®* Ji Hye Lee'
Donghyuk Lee' Chris Wilkerson? Konrad Lai Onur Mutlu!

!Carnegie Mellon University ~ *Intel Labs

SAFARI 125

Future of Memory Reliability

= Onur Mutluy,
"The RowHammer Problem and Other Issues We May Face as
Memory Becomes Denser"
Invited Paper in Proceedings of the Design, Automation, and Test in
Europe Conference (DATE), Lausanne, Switzerland, March 2017.
[Slides (pptx) (pdf)]

The RowHammer Problem
and Other Issues We May Face as Memory Becomes Denser

Onur Mutlu
ETH Ziirich
onur.mutlu @inf.ethz.ch
https://people.inf.ethz.ch/omutlu

SAFAR| https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues datel7.pdf 126

Future of Main Memory

= DRAM is becoming less reliable > more vulnerable

SAFARI 127

Large-Scale Failure Analysis of DRAM Chips

= Analysis and modeling of memory errors found in all of
Facebook’s server fleet

= Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"Revisiting Memory Errors in Large-Scale Production Data
Centers: Analysis and Modeling of New Trends from the Field"
Proceedings of the 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June
2015.

[Slides (pptx) (pdf)] [DRAM Error Model]

Revisiting Memory Errors in Large-Scale Production Data Centers:
Analysis and Modeling of New Trends from the Field

Justin Meza Qiang Wu* Sanjeev Kumar® Onur Mutlu
Carnegie Mellon University * Facebook, Inc.

SAFARI 128

DRAM Reliability Reducing

0.50
I

Relative server failure rate

0.00
|

| I I
1 2 4

Chip density (Gb)

Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers,” DSN'15.

Future of Main Memory

DRAM is becoming less reliable > more vulnerable

Due to difficulties in DRAM scaling, other problems may
also appear (or they may be going unnoticed)

Some errors may already be slipping into the field
o Read disturb errors (Rowhammer)

w | Retention errors |

o Read errors, write errors

a ...

These errors can also pose security vulnerabilities

SAFARI 130

DRAM Data Retention Time Failures

Determining the data retention time of a cell/row is getting
more difficult

Retention failures may already be slipping into the field

SAFARI 131

More on DRAM Data Retention

DRAM Refresh 1 T

DRAM capacitor charge leaks over time CAP ——

s

The memory controller needs to refresh each row V
periodically to restore charge

o Activate each row every N ms
o Typical N = 64 ms

SENSE

Downsides of refresh
-- Energy consumption: Each refresh consumes energy

-- Performance degradation: DRAM rank/bank unavailable while
refreshed

-- QoS/predictability impact: (Long) pause times during refresh
-- Refresh rate limits DRAM capacity scaling

133

Refresh Overhead: Performance

100

Present

+— o) o0
S S S
=T
-
E .
=~
¢’

% time spent refreshing

o
S

2Gb 4Gb 8Gb 16Gb 32Gb 64 Gb
Device capacity

1
Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 34

Refresh Overhead: Energy

100

Present

o0
=
T
c
E- i
-
@

4 o)\
S S

()
S

% DRAM energy spent refreshing

S

2Gb 4Gb 8Gb 16Gb 32Gb 64 Gb
Device capacity

1
Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 3

Data Retention in Memoty [Liu et al., ISCA 2013]

= Retention Time Profile of DRAM looks like this:

04-128ms

Location dependent

1 2 8 - 2 5 6 m S Stored v_la_\ilnt:: g:;tei?e I?tependent

1
Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 36

RAIDR: Eliminating Unnecessary Refreshes

= Observation: Most DRAM rows can be refreshed much Iess often

10 ’;
10 ";r

10-7}
108 | ~ 1000 cells @ 256 lll,\|

1077

more frequently, other rows less frequently :w"

without losing data [kim+, EDL'09][Liu+ ISCA’13]

= Key idea: Refresh rows containing weak cells

cell failure probability

~ 30 cells @ 128 ms

e . . . S [Cutoff @ 64 ms 77777777777777777
1. Profiling: Profile retention time of all rows et o

Refresh interval (s)

2. Binning: Store rows into bins by retention time |n memory controller
Efficient storage with Bloom Filters (only 1.25KB for 32GB memory)

3. Refreshing: Memory controller refreshes rows in different bins at
different rates 160:

El Auto
= Results: 8-core, 32GB, SPEC, TPC-C, TPC-H Z 50 =~
74.6% refresh reduction @ 1.25KB storage
~16%/20% DRAM dynamic/idle power reduction
~9% performance improvement
Benefits increase with DRAM capacity

SAFARI

140!
120
100!
80

Energy per access (nJ)

o 0O 0O O

4Gb 8Gb 16Gb
Device capacity

Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

32Gb 64 Gb

50%

Analysis of Data Retention Failures [ISCA’13]

= Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu,
"An Experimental Study of Data Retention Behavior in Modern DRAM
Devices: Implications for Retention Time Profiling Mechanisms"
Proceedings of the 40th International Symposium on Computer Architecture
(ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt) Slides (pdf)

An Experimental Study of Data Retention Behavior in
Modern DRAM Devices:

Implications for Retention Time Profiling Mechanisms

Jamie Liu Ben Jaiyen Yoongu Kim
Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University
5000 Forbes Ave. 5000 Forbes Ave. 5000 Forbes Ave.
Pittsburgh, PA 15213 Pittsburgh, PA 15213 Pittsburgh, PA 15213

jamiel@alumni.cmu.edu bjaiyen@alumni.cmu.edu yoonguk@ece.cmu.edu

Chris Wilkerson Onur Mutlu
Intel Corporation Carnegie Mellon University
2200 Mission College Blvd. 5000 Forbes Ave.
Santa Clara, CA 95054 Pittsburgh, PA 15213
chris.wilkerson@intel.com onur@cmt edu

Two Challenges to Retention Time Profiling

= Data Pattern Dependence (DPD) of retention time

= Variable Retention Time (VRT) phenomenon

SAFARI 139

Two Challenges to Retention Time Profiling

= Challenge 1: Data Pattern Dependence (DPD)

o Retention time of a DRAM cell depends on its value and the
values of cells nearby it

o When a row is activated, all bitlines are perturbed simultaneously

Bitlines
ﬁ_I_‘T Y_I_I_: | l_l_I_ROW
3 |[]cen T E2
Word) s | |
\ . .
1 1 1
s T s R e I
< < <
Sense Sense Sense Row

SAFARI e emaammestmmmmetaeaammeL s smmmaen e mmmnL s emmaaaar s e mEEdessmamnLd mmmanass aamnntamaannts s onnn ; 140

Data Pattern Dependence

= Electrical noise on the bitline affects reliable sensing of a DRAM cell
= The magnitude of this noise is affected by values of nearby cells via
o Bitline-bitline coupling - electrical coupling between adjacent bitlines

o Bitline-wordline coupling - electrical coupling between each bitline and
the activated wordline

Bitlines
: < Cell & : <
Wordline- s-.....-...-.w. .-......-:-..---.------..----. U -.-----.5.--..----------------'
\ * .
1 1 1
1 I 1
< < <
Sense Sense Sense Row
amp amp amp buffer

SAFARI e emaammestmmmmetaeaammeL s smmmaen e mmmnL s emmaaaar s e mEEdessmamnLd mmmanass aamnntamaannts s onnn ; 141

Data Pattern Dependence

= Electrical noise on the bitline affects reliable sensing of a DRAM cell
= The magnitude of this noise is affected by values of nearby cells via
o Bitline-bitline coupling - electrical coupling between adjacent bitlines

o Bitline-wordline coupling - electrical coupling between each bitline and
the activated wordline

= Retention time of a cell depends on data patterns stored in
nearby cells

- need to find the worst data pattern to find worst-case retention time
—> this pattern is location dependent

SAFARI 142

Two Challenges to Retention Time Profiling

Challenge 2: Variable Retention Time (VRT)

o Retention time of a DRAM cell changes randomly over time
a cell alternates between multiple retention time states

o Leakage current of a cell changes sporadically due to a charge
trap in the gate oxide of the DRAM cell access transistor

o When the trap becomes occupied, charge leaks more readily
from the transistor’s drain, leading to a short retention time
Called 7rap-Assisted Gate-Induced Drain Leakage

o This process appears to be a random process [ﬁnﬁTB’—l—l—]—

o Worst-case retention time depends on a random prpcess
- need to find the worst case despite this 1

N

143

SAFARI

Modern DRAM Retention Time Distribution

0.00008

0.00007}

0.00006f

Time < X-Axis Value

0.00005¢

ion

o
o
o
o
o
D

o
o
S
S
S
W

0.00002}

0.00007F

Fraction of Cells with Retent

NEWER

NEWER

1OLDER

OLDER

O.OOOOOO

3 4 5 6 7
Retention Time (s)

Newer device families have more weak cells than older ones

Likely a result of technology scaling

144

An Example VRT Cell

7 | | | | |
LRI
: |

% |

) 5|
1 A cell from E 2Gb chip family
% 2 4 6 8 10

Time (Hours)

SAFARI 145

Variable Retention Time

7 Many failing cells jump from 0.0
very high retention time to very low .

=6l 0.6
o 125
E 51 Most failing cells 188
c exhibit VRT —
2 -24 °
+— 4 . c
< S
= ~3.0°5
v o
c . o . —-3.6
= Min ret time = Max ret time S
=) Expected if no VRT . 1—4.2 5,
= 8
S 4.8

¥ A 2Gb chip family | | |_s4

1 3 3 4 5 6 7 0

Minimum Retention Time (s)

SAFARI 146

Industry Is Writing Papers About It, Too

DRAM Process Scaling Challenges

% Refresh
» Difficult to build high-aspect ratio cell capacitors decreasing cell capacitance
» Leakage current of cell access transistors increasing

<+ tWR
» Contact resistance between the cell capacitor and access transistor increasing
* On-current of the cell access transistor decreasing
+ Bit-line resistance increasing

<+ VRT
* Occurring more frequently with cell capacitance decreasing

WI/L

I oca b < 8 ‘ 4 s g 4
t ik s 5 8 UL UL
'1' l Data . D GIo It . osW g‘ esm 5
= - =
el Plate Do 08— t 3 N
O Time
Refresh tWR VRT

”;gﬁm«emory 3/12 w (I@ 147

Industry Is Writing Papers About It, Too

DRAM Process Scaling Challenges

+* Refresh

« Nifficult to build hiah-asnect ratio ecell canacitore decreasina cell canacitance
THE MEMORY FORUM 2014

Co-Architecting Controllers and DRAM
to Enhance DRAM Process Scaling

Uksong Kang, Hak-soo Yu, Churoo Park, *Hongzhong Zheng,
**John Halbert, **Kuljit Bains, SeongJin Jang, and Joo Sun Choi

Samsung Electronics, Hwasung, Korea / *Samsung Electronics, San Jose / **Intel

I ,’/ 0sw g L= s = = = 1" 3
1 Daa . D . e % °Su=;e E
. = s =
— Plate o ! B R
o Time
Refresh tWR VRT

T .
The Memory 3/12 w ‘l@ 148

Forum

Mitigation of Retention Issues [SIGMETRICS’14]

= Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa Alameldeen, Chris Wilkerson,
and Onur Mutlu,
"The Efficacy of Error Mitigation Techniques for DRAM Retention
Failures: A Comparative Experimental Study"”
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Austin, TX, June 2014. [Slides
(pptx) (pdf)] [Poster (pptx) (pdf)] [Full data sets]

The Efficacy of Error Mitigation Techniques for DRAM
Retention Failures: A Comparative Experimental Study

Samira Khant+ Donghyuk Leet Yoongu Kimt
samirakhan@cmu.edu donghyuki@cmu.edu yoongukim@cmu.edu
Alaa R. Alameldeen* Chris Wilkerson* Onur Mutlut
alaa.r.alameldeen@intel.com chris.wilkerson@intel.com onur@cmu.edu
fCarnegie Mellon University *Intel Labs

SAFARI 149

Towards an Online Profiling System

Key Observations:
* Testing alone cannot detect all possible failures

* Combination of ECC and other mitigation
techniques is much more effective

— But degrades performance

* Testing can help to reduce the ECC strength
— Even when starting with a higher strength ECC

Khan+, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative
Experimental Study,” SIGMETRICS 2014.

Towards an Online Profiling System
Initially Protect DRAM Periodically Test
with Strong ECC 1 Parts of DRAM 2
Tes
Tes
est

T
‘ Mitigate errors and
reduce ECC 3

Run tests periodically after a short interval
at smaller regions of memory

Handling Variable Retention Time [psNe15]

= Moinuddin Qureshi, Dae Hyun Kim, Samira Khan, Prashant Nair, and Onur Mutlu,
"AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM
Systems”
Proceedings of the 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June 2015.

[Slides (pptx) (pdf)]

AVATAR: A Variable-Retention-Time (VRT) Aware
Refresh for DRAM Systems

Moinuddin K. Qureshi’ Dae-Hyun Kim' Samira Khan* Prashant J. Nair® Onur Mutlu?
"Georgia Institute of Technology *Carnegie Mellon University
{moin, dhkim, pnair6}@ece.gatech.edu {samirakhan, onur}@cmu.edu

SAFARI 152

Handling Data-Dependent Failures [psnie)

= Samira Khan, Donghyuk Lee, and Onur Mutlu,
"PARBOR: An Efficient System-Level Technique to Detect Data-
Dependent Failures in DRAM"
Proceedings of the 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Toulouse, France, June 2016.
[Slides (pptx) (pdf)]

PARBOR: An Efficient System-Level Technique
to Detect Data-Dependent Failures in DRAM

Samira Khan* Donghyuk Lee'* Onur Mutlu**
*University of Virginia TCarnegie Mellon University *Nvidia *ETH Ziirich

SAFARI 153

Handling Data-Dependent Failures [MICRO17]

= Samira Khan, Chris Wilkerson, Zhe Wang, Alaa R. Alameldeen, Donghyuk Lee,
and Onur Mutlu,
"Detecting and Mitigating Data-Dependent DRAM Failures by Exploiting
Current Memory Content"
Proceedings of the 50th International Symposium on Microarchitecture (MICRO),
Boston, MA, USA, October 2017.

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

Detecting and Mitigating Data-Dependent DRAM Failures
by Exploiting Current Memory Content

Samira Khan* Chris Wilkerson' Zhe Wang' Alaa R. Alameldeen” Donghyuk Lee* Onur Mutlu*
*University of Virginia "Intel Labs *Nvidia Research *ETH Ziirich

SAFARI 154

Handling Both DPD and VRT [1sca17]

Minesh Patel, Jeremie S. Kim, and Onur Mutlu,

"The Reach Profiler (REAPER): Enabling the Mitigation of DRAM
Retention Failures via Profiling at Aggressive Conditions"
Proceedings of the 44th International Symposium on Computer
Architecture (ISCA), Toronto, Canada, June 2017.

[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

First experimental analysis of (mobile) LPDDR4 chips
Analyzes the complex tradeoff space of retention time profiling
Idea: enable fast and robust profiling at higher refresh intervals & temperatures

The Reach Profiler (REAPER):

Enabling the Mitigation of DRAM Retention Failures

via Profiling at Aggressive Conditions

Minesh Patel’* Jeremie S. Kim*® Onur Mutlu®*
YETH Ziirich *Carnegie Mellon University

SAFARI 155

How Do We Keep Memory Secure?

Understand: Solid methodologies for failure modeling and
discovery

o Modeling based on real device data — small scale and large scale

Architect: Principled co-architecting of system and memory
o Good partitioning of duties across the stack

Design & Test: Principled electronic design, automation, testing

o High coverage and good interaction with system reliability
methods

SAFARI 156

Understand and Model with Experiments (DRAM)

SAFARI Kim+, “Flipping Bits in Memory Without Accessing Them: An 157
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Understand and Model with Experiments (Flash)

~USB Jack
/

E

‘ “Virtex-Il Pro
»(USB cd htroller)
. ™ 200 enm

Lo Vifex-VEFPGA ““NAND Flash

(NAND-Controller) .« =]

1)
L}

THAR R~
SdYH ’

e n

[DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014, NAND Daughter Board
HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017, PIEEE’17]

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017

NAND Flash Errors and Reliability

§'|+H+ Proceedings of the IEEE, Sept, 2017

Error Characterization,
Mitigation, and Recovery
in Flash-Memory-Based
Solid-State Drives

This paper reviews the most recent advances in solid-state drive (SSD) error

characterization, mitigation, and data recovery techniques to improve both SSD’s

reliability and lifetime.

By Yu Car, SauGcaTta GHOSE, EricH F. HARATSCH, YiXIN Luo, AND ONUR MUTLU

https:/ /arxiv.org/pdf/1706.08642

159

Reducing Memory Latency

Main Memory Latency LLags Behind

4-Capacity #Bandwidth @-Latency 128x
By
= 100
)
c
)
£
v
>
O
a |0
=
2
<
v
a

1999 2003 2006 2008 2011 2013 2014 2015 2016 2017

Memory latency remains almost constant
SAFARI

A Closer Look ...

50 @ Activation » Precharge A Restoration
’g +21% 2704
E 40 =
>
o 30
e -17% 0
% 20 N +12%

1999 2003 2006 2008 2011 2013 2014 2015

Year
Figure 1: DRAM latency trends over time [20, 21, 23, 51].

Chang+, "Understanding Latency Variation in Modern DRAM Chips: Experimental
Characterization, Analysis, and Optimization",” SIGMETRICS 2016.

SAFARI 162

DRAM Latency Is Critical for Performance

In-memory Databases Graph/Tree Processing
[Mao+, EuroSys’ | 2; [Xu+, ISWC’12; Umuroglu+, FPL 1 5]
Clapp+ (Intel), ISWC’|5]

. N
SPOK

In-Memory Data Analytics Datacenter Workloads
[Clappt (Intel), ISWC’I5; [Kanev+ (Google), ISCA’|5]
Awan+, BDCloud’ | 5]

SAFARI

DRAM Latency Is Critical for Performance

In-memory Databases Graph/Tree Processing

Long memory latency — performance bottleneck

APACHE

Spark

In-Memory Data Analytics Datacenter Workloads
[Clappt (Intel), ISWC’I5; [Kanev+ (Google), ISCA’|5]
Awan+, BDCloud’ | 5]

SAFARI

Why the Long Latency?

Design of DRAM uArchitecture
o Goal: Maximize capacity/area, not minimize latency

“One size fits all” approach to latency specification
Same latency parameters for all temperatures

Same latency parameters for all DRAM chips (e.g., rows)
Same latency parameters for all parts of a DRAM chip
Same latency parameters for all supply voltage levels
Same latency parameters for all application data

o O 0 0O 0O O

SAFARI 165

Latency Variation in Memory Chips

Heterogeneous manufacturing & operating conditions —
latency variation in timing parameters

DRAM A DRAM B DRAM C

. ISIow cells

Low High

DRAM Latency

SAFARI 166

DRAM Characterization Infrastructure

SAFARI Kim+, “Flipping Bits in Memory Without Accessing Them: An 147
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

DRAM Characterization Infrastructure

= Hasan Hassan et al., SoftMC: A
Flexible and Practical Open- Chamber
Source Infrastructure for ‘\ | |
Enabling Experimental DRAM
Studies, HPCA 2017.

= Flexible

= Easy to Use (C++ API)

= Open-source
github.com/CMU-SAFARIL/SoftMC

SAFARI 168

SottMC: Open Source DRAM Infrastructure

= https://github.com/CMU-SAFARI/SoftMC

SoftMC: A Flexible and Practical Open-Source Infrastructure
for Enabling Experimental DRAM Studies

Hasan Hassan!'%3 Nandita Vijaykumar® Samira Khan*? Saugata Ghose® Kevin Chang?
Gennady Pekhimenko®> Donghyuk Lee®® Oguz Ergin?> Onur Mutlu!-3

YETH Zirich ~ 2TOBB University of Economics & Technology >Carnegie Mellon University
Y University of Virginia > Microsoft Research SNVIDIA Research

SAFARI 169

Tackling the Fixed Latency Mindset

Reliable operation latency is actually very heterogeneous
o Across temperatures, chips, parts of a chip, voltage levels, ...

Idea: Dynamically find out and use the lowest latency one
can reliably access a memory location with

o Adaptive-Latency DRAM [HPCA 2015]

Flexible-Latency DRAM [SIGMETRICS 2016]
Design-Induced Variation-Aware DRAM [SIGMETRICS 2017]
Voltron [SIGMETRICS 2017]

o O 0O O

We would like to find sources of latency heterogeneity and
exploit them to minimize latency

SAFARI 170

Adaptive-Latency DRAM

e Key idea
— Optimize DRAM timing parameters online

* Jwo components
— DRAM manufacturer provides multiple sets of

CUELIEIBLYAVY/ RIS EIEIEE ot different

temperatures for each DIMM

— System monitors [BRAWRTEIIEIEINEE] & uses

appropriate DRAM timing parameters

SAFARI Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 171
2015.

Latency Reduction Summary of 115 DIMMs

e [atency reduction for read & write (55°C)

— Read Latency: 32.7%
— Write Latency: 55.1%

* [atency reduction for each timing
parameter (55°C)
—Sensing: 17.3%
— Restore: 37.3% (read), 54.8% (write)
— Precharge: 35.2%

SAFARI Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA
2015.

AL-DRAM: Real System Evaluation

System
— CPU: AMD 4386 (8 Cores, 3.1GHz, 8MB LLC)

D18F2x200 dct[0] mp[1:0] DDR3 DRAM Timing 0
Reset: 0F05_0505h. See 2.9.3 [DCT Configuration Registers].

Bits

Description

31:30

Reserved.

29:24

Tras: row active strobe. Read-write. BIOS: See 2.9.7.5 [SPD ROM-Based Configuration]. Specifies
the minimum time in memory clock cycles from an activate command to a precharge command. both

to the same chip select bank.
Bits Description
07h-00h Reserved
2Ah-08h <Tras> clocks
3Fh-2Bh Reserved

Reserved.

Trp: row precharge time. Read-write. BIOS: See 2.9.7.5 [SPD ROM-Based Configuration]. Speci-
fies the minimum time in memory clock cycles from a precharge command to an activate command or
auto refresh command. both to the same bank.

AL-DRAM: Single-Core Evaluation

- Average
G 25%
€ 509, H Single Core Improvement
QL (o
S 15% -
Q. 0 -
g7 6.2% 5.0%
L % _________________________ =l
3 l 2
S 0% —
g &) n > -)) O
D = 3 c 2 g & = = 8
B (@) E — — Q O 4(7; - wn wn 9
= o) 0 © =S W c c ¥
o v c £ =
- LN
@) o
c —
q0)

AL-DRAM improves single-core performance

on a real system
SAFARI 174

AL-DRAM: Multi-Core Evaluation

Average

Performance Improvement

soplex
mcf

milc

libg

lbm
gems
copy

s.cluster

gups
non-intensive
intensive

all-35-workload

AL-DRAM provides higher performance on

multi-programmed & multi-threaded workloads
SAFARI 175

Reducing Latency Also Reduces Energy

AL-DRAM reduces DRAM power consumption by 5.8%

Major reason: reduction in row activation time

SAFARI 176

More on Adaptive-Latency DRAM

= Donghyuk Lee, Yoongu Kim, Gennady Pekhimenko, Samira Khan,
Vivek Seshadri, Kevin Chang, and Onur Mutlu,
"Adaptive-Latency DRAM: Optimizing DRAM Timing for
the Common-Case"
Proceedings of the 21st International Symposium on High-
Performance Computer Architecture (HPCA), Bay Area, CA,
February 2015.
[Slides (pptx) (pdf)] [Full data sets]

Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case

Donghyuk Lee ~ Yoongu Kim Gennady Pekhimenko
Samira Khan Vivek Seshadri Kevin Chang Onur Mutlu

Carnegie Mellon University

SAFARI b7

Heterogeneous Latency within A Chip

25
o |2 19.5%19'7%
‘:’) 17.6
s 115 13.3
£ B Baseline (DDR3)
T .1 mFLY-DRAM (DI)
& 105 = FLY-DRAM (D2)
8 m FLY-DRAM (D3)
IS m Upper Bound
§ 0.95
Z 09

40 Workloads
Chang+, "Understanding Latency Variation in Modern DRAM Chips: Experimental

Characterization, Analysis, and Optimization",” SIGMETRICS 2016.
SAFARI 178

Analysts of Latency Variation in DRAM Chips

= Kevin Chang, Abhijith Kashyap, Hasan Hassan, Samira Khan, Kevin Hsieh,
Donghyuk Lee, Saugata Ghose, Gennady Pekhimenko, Tianshi Li, and
Onur Mutluy,
"Understanding Latency Variation in Modern DRAM Chips:
Experimental Characterization, Analysis, and Optimization"
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Antibes Juan-Les-Pins,
France, June 2016.

Slides (pptx) (pdf)]

[Source Code]

Understanding Latency Variation in Modern DRAM Chips:
Experimental Characterization, Analysis, and Optimization

Kevin K. Chang' Abhijith Kashyap' Hasan Hassan'?
Saugata Ghose' Kevin Hsieh' Donghyuk Lee' Tianshi Li*?
Gennady Pekhimenko' Samira Khan* Onur Mutlu®

Carnegie Mellon University 2TOBB ETU *Peking University *University of Virginia °ETH Zirich
SAFARI L

What Is Design-Induced Variation?

fast slow

—/—nnherently slow

across column

distance from =
wordline driver

@
@
@
@
(
(U
MO|S

dClross row

distance from
sense amplifier

SIDAIIP BUI|p

15e]

Inherently fast

sense amplifiers

Systematic variation in cell access times

caused by the physical organization of DRAM

SAFARI 180

DIVA Online Profiling

Design-Induced-Variation-Aware

inherently slow

J9AIIP SUIPIOM

sense amplifier

Profile only slow regions to determine min. latency
— Dynamic & low cost latency optimization

SAFARI 181

DIVA Online Profiling

Design-Induced-Variation-Aware

slow cells inherently slow
pProcess design-induced
variation variation

localized error

random error

8

: 2

online profiling

error-correcting
code

sense amplifier

Combine error-correcting codes & online profiling
—> Reliably reduce DRAM latency

SAFARI 182

DIVA-DRAM Reduces Latency

Read Write
510 S —— 10
41.3% 0
c 39.4%38.7% >’ 40-3%
_8 40% oo 35.1%34.6% 36.6%35.8% 40% B% "
O 31.2%
= 30% Bl 2559 - 30% |-
Q
D; 20% |- - 20% |-
@)
o 10% |- - 10% |-
4+
S
0% 0%
55°C 85°C|55°C 85°C |55°C 85°C 55°C 85°C | 55°C 85°C|55°C 85°C
AL-DRAM [DIVA Profiling|DIVA Profiling AL-DRAM [DIVA Profiling|[DIVA Profiling
+ Shuffling + Shuffling

DIVA-DRAM reduces latency more aggressively

and uses ECC to correct random slow cells

SAFARI 183

Design-Induced Latency Variation in DRAM

= Donghyuk Lee, Samira Khan, Lavanya Subramanian, Saugata Ghose,
Rachata Ausavarungnirun, Gennady Pekhimenko, Vivek Seshadri, and
Onur Mutly,
"Design-Induced Latency Variation in Modern DRAM Chips:
Characterization, Analysis, and Latency Reduction Mechanisms"
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL,
USA, June 2017.

Design-Induced Latency Variation in Modern DRAM Chips:
Characterization, Analysis, and Latency Reduction Mechanisms

Donghyuk Lee, NVIDIA and Carnegie Mellon University

Samira Khan, University of Virginia

Lavanya Subramanian, Saugata Ghose, Rachata Ausavarungnirun, Carnegie Mellon University
Gennady Pekhimenko, Vivek Seshadri, Microsoft Research

Onur Mutlu, ETH Ziirich and Carnegie Mellon University

SAFARI 184

Voltron: Exploiting the
Voltage-Latency-Reliability
Relationship

Executive Summary

* DRAM (memory) power is significant in today’s systems
— Existing low-voltage DRAM reduces voltage conservatively

* Goal: Understand and exploit the reliability and latency behavior of
real DRAM chips under aggressive reduced-voltage operation

* Key experimental observations:

— Huge voltage margin -- Errors occur beyond some voltage
— Errors exhibit spatial locality

— Higher operation latency mitigates voltage-induced errors

* Voltron:A new DRAM energy reduction mechanism
— Reduce DRAM voltage without introducing errors

— Use a regression model to select voltage that does not degrade
performance beyond a chosen target = 7.3% system energy reduction

SAFARI 186

Analysis of Latency-Voltage in DRAM Chips

= Kevin Chang, A. Giray Yaglikci, Saugata Ghose, Aditya Agrawal, Niladrish
Chatterjee, Abhijith Kashyap, Donghyuk Lee, Mike O'Connor, Hasan
Hassan, and Onur Mutluy,
"Understanding Reduced-Voltage Operation in Modern DRAM
Devices: Experimental Characterization, Analysis, and
Mechanisms"
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL,
USA, June 2017.

Understanding Reduced-Voltage Operation in Modern DRAM Chips:
Characterization, Analysis, and Mechanisms

Kevin K. Chang' Abdullah Giray Yaghke" Saugata Ghose” Aditya Agrawall Niladrish Chatterjee™
Abhijith Kashyap' Donghyuk Leel =~ Mike O’Connor** Hasan Hassan® Onur Mutlu®"

Carnegie Mellon University INVIDIA *The University of Texas at Austin SETH Ziirich

SAFARI 187

And, What If ...

= ... we can sacrifice reliability of some data to access it with
even lower latency?

SAFARI 188

SAFARI Group:

Research Introduction

==

Systems @ ETH ziricr
SAFARI

Onur Mutlu
omutlu@gmail.com

https://people.inf.ethz.ch/omutlu
January 31, 2018

ETH:zurich

