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Research Focus: Computer architecture, HW/SW, security, bioinformatics
• Memory and storage (DRAM, flash, emerging), interconnects
• Heterogeneous & parallel systems, GPUs, systems for data analytics
• System/architecture interaction, new execution models, new interfaces
• Hardware security, energy efficiency, fault tolerance, performance 
• Genome sequence analysis & assembly algorithms and architectures
• Biologically inspired systems & system design for bio/medicine

Graphics and Vision Processing

Heterogeneous
Processors and 

Accelerators

Hybrid Main Memory

Persistent Memory/Storage

Broad research 
spanning apps, systems, logic
with architecture at the center

Current Research Focus Areas



Our Dream

n An embedded device that performs complex genome analysis 
in real time
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What Is a Genome Made Of?
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Cell
Nucleus

The discovery of DNA’s double-helical structure (Watson+, 1953) 



DNA Sequencing

n Goal: 
q Find the complete sequence of A, C, G, T’s in DNA.

n Challenge: 
q There is no machine that takes long DNA as an input, and gives 

the complete sequence as output
q All sequencing machines chop DNA into pieces and identify 

relatively small pieces (but not how they fit together)
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Untangling Yarn Balls & DNA Sequencing

6



Genome Sequencers

… and more! All produce data with 
different properties.

Roche/454

Illumina HiSeq2000

Ion Torrent PGM

Ion Torrent Proton

AB SOLiD

Oxford Nanopore GridION

Oxford Nanopore MinION

Complete
Genomics

Illumina MiSeq

Pacific Biosciences RS
Illumina 
NovaSeq
6000
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Billions of Short Reads

1 2Sequencing Read Mapping

3 4Variant Calling Scientific Discovery
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2 M
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on average

(0.6%)

Bottlenecked in Mapping!!



Genome Sequence Alignment: Example

9Source: By Aaron E. Darling, István Miklós, Mark A. Ragan - Figure 1 from Darling AE, Miklós I, Ragan MA (2008). 
"Dynamics of Genome Rearrangement in Bacterial Populations". PLOS Genetics. DOI:10.1371/journal.pgen.1000128., CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=30550950

https://commons.wikimedia.org/w/index.php?curid=30550950


Hash Table Based Read Mappers
n + Guaranteed to find all mappings à sensitive
n + Can tolerate up to e errors
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http://mrfast.sourceforge.net/

Alkan+, "Personalized copy number and segmental duplication 
maps using next-generation sequencing”, Nature Genetics 2009.

http://mrfast.sourceforge.net/


candidate alignment 
locations (CAL)

4%

Read Alignment
(Edit-distance comp)

93%

SAM printing
3%

Read Mapping Execution Time Breakdown 



Idea

Filter fast before you align

Minimize costly 
“approximate string comparisons”
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Our First Filter: Pure Software Approach
n Download source code and try for yourself

q Download link to FastHASH
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http://mrfast.sourceforge.net/


Shifted Hamming Distance: SIMD Acceleration

14

Xin+, "Shifted Hamming Distance: A Fast and Accurate SIMD-friendly Filter 
to Accelerate Alignment Verification in Read Mapping”, Bioinformatics 2015.
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High throughput DNA 
sequencing (HTS) technologies 

Read Pre-Alignment Filtering 
Fast & Low False Positive Rate1 2

Read Alignment
Slow & Zero False Positives3

Billions of Short Reads

Hardware Acceleratorx1012
mappings

x103
mappings

Low Speed & High Accuracy
Medium Speed, Medium Accuracy

High Speed, Low Accuracy

An Example Solution: GateKeeper

Alignment 
Filter

st1
FPGA-based 

Alignment Filter.



FPGA-Based Alignment Filtering
n Mohammed Alser, Hasan Hassan, Hongyi Xin, Oguz Ergin, Onur 

Mutlu, and Can Alkan
"GateKeeper: A New Hardware Architecture for 
Accelerating Pre-Alignment in DNA Short Read Mapping"
Bioinformatics, [published online, May 31], 2017.
[Source Code]
[Online link at Bioinformatics Journal]
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https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf
http://bioinformatics.oxfordjournals.org/
https://github.com/BilkentCompGen/GateKeeper
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx342


DNA Read Mapping & Filtering

n Problem: Heavily bottlenecked by Data Movement

n GateKeeper FPGA performance limited by DRAM bandwidth 
[Alser+, Bioinformatics 2017]

n Ditto for SHD on SIMD [Xin+, Bioinformatics 2015]

n Solution: Processing-in-memory can alleviate the bottleneck

n However, we need to design mapping & filtering algorithms 
to fit processing-in-memory
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In-Memory DNA Sequence Analysis
n Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, 

Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using 
Processing-in-Memory Technologies"
BMC Genomics, 2018.
Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC), 
Yokohama, Japan, January 2018.
arxiv.org Version (pdf)
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http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
https://arxiv.org/pdf/1711.01177.pdf


New Genome Sequencing Technologies

19

Senol Cali+, “Nanopore Sequencing Technology and Tools for Genome 
Assembly: Computational Analysis of the Current State, Bottlenecks 
and Future Directions,” Briefings in Bioinformatics, 2018.
[Preliminary arxiv.org version]

Oxford Nanopore MinION

https://arxiv.org/pdf/1711.08774.pdf


Nanopore Genome Assembly Pipeline

20
Senol Cali+, “Nanopore Sequencing Technology and Tools for Genome 
Assembly,” Briefings in Bioinformatics, 2018.



More on Genome Analysis: Another Talk

21



Four Key Directions

n Fundamentally Secure/Reliable/Safe Architectures

n Fundamentally Energy-Efficient Architectures
q Memory-centric (Data-centric) Architectures

n Fundamentally Low-Latency Architectures

n Architectures for Genomics, Medicine, Health

22



Memory & Storage

23



The Main Memory System

n Main memory is a critical component of all computing 
systems: server, mobile, embedded, desktop, sensor

n Main memory system must scale (in size, technology, 
efficiency, cost, and management algorithms) to maintain 
performance growth and technology scaling benefits

24

Processors
and caches

Main Memory Storage (SSD/HDD)



The Main Memory System

n Main memory is a critical component of all computing 
systems: server, mobile, embedded, desktop, sensor

n Main memory system must scale (in size, technology, 
efficiency, cost, and management algorithms) to maintain 
performance growth and technology scaling benefits

25

Main Memory Storage (SSD/HDD)FPGAs



The Main Memory System

n Main memory is a critical component of all computing 
systems: server, mobile, embedded, desktop, sensor

n Main memory system must scale (in size, technology, 
efficiency, cost, and management algorithms) to maintain 
performance growth and technology scaling benefits

26

Main Memory Storage (SSD/HDD)GPUs



Memory System: A Shared Resource View

27

Storage

Most of the system is dedicated to storing and moving data 



State of the Main Memory System
n Recent technology, architecture, and application trends

q lead to new requirements
q exacerbate old requirements

n DRAM and memory controllers, as we know them today, 
are (will be) unlikely to satisfy all requirements

n Some emerging non-volatile memory technologies (e.g., 
PCM) enable new opportunities: memory+storage merging

n We need to rethink the main memory system
q to fix DRAM issues and enable emerging technologies 
q to satisfy all requirements

28



Agenda

n Major Trends Affecting Main Memory
n Key Challenges and Solution Directions

q Robustness: Reliability and Security
q Low Latency/Energy and Latency/Energy/Reliability Tradeoffs
q Energy and Performance: In-Memory Computation

n Concluding Remarks
n Summary

29



Major Trends Affecting Main Memory (I)
n Need for main memory capacity, bandwidth, QoS increasing 

n Main memory energy/power is a key system design concern

n DRAM technology scaling is ending 

30



Major Trends Affecting Main Memory (II)
n Need for main memory capacity, bandwidth, QoS increasing 

q Multi-core: increasing number of cores/agents
q Data-intensive applications: increasing demand/hunger for data
q Consolidation: cloud computing, GPUs, mobile, heterogeneity

n Main memory energy/power is a key system design concern

n DRAM technology scaling is ending 

31



Example: The Memory Capacity Gap

n Memory capacity per core expected to drop by 30% every two years
n Trends worse for memory bandwidth per core!

32

Core count doubling ~ every 2 years 
DRAM DIMM capacity doubling ~ every 3 years

Lim et al., ISCA 2009
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DRAM Latency Is Critical for Performance

In-Memory Data Analytics 
[Clapp+ (Intel), IISWC’15;  
Awan+, BDCloud’15]

Datacenter Workloads 
[Kanev+ (Google), ISCA’15]

In-memory Databases 
[Mao+, EuroSys’12; 
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing 
[Xu+, IISWC’12; Umuroglu+, FPL’15]



DRAM Latency Is Critical for Performance

In-Memory Data Analytics 
[Clapp+ (Intel), IISWC’15;  
Awan+, BDCloud’15]

Datacenter Workloads 
[Kanev+ (Google), ISCA’15]

In-memory Databases 
[Mao+, EuroSys’12; 
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing 
[Xu+, IISWC’12; Umuroglu+, FPL’15]

Long memory latency → performance bottleneck



Major Trends Affecting Main Memory (III)
n Need for main memory capacity, bandwidth, QoS increasing 

n Main memory energy/power is a key system design concern
q ~40-50% energy spent in off-chip memory hierarchy [Lefurgy, 

IEEE Computer’03] >40% power in DRAM [Ware, HPCA’10][Paul,ISCA’15]

q DRAM consumes power even when not used (periodic refresh)

n DRAM technology scaling is ending 
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Major Trends Affecting Main Memory (IV)
n Need for main memory capacity, bandwidth, QoS increasing 

n Main memory energy/power is a key system design concern

n DRAM technology scaling is ending 
q ITRS projects DRAM will not scale easily below X nm 
q Scaling has provided many benefits: 

n higher capacity (density), lower cost, lower energy

37



Major Trends Affecting Main Memory (V)
n DRAM scaling has already become increasingly difficult

q Increasing cell leakage current, reduced cell reliability, 

increasing manufacturing difficulties [Kim+ ISCA 2014],
[Liu+ ISCA 2013], [Mutlu IMW 2013], [Mutlu DATE 2017]

q Difficult to significantly improve capacity, energy

n Emerging memory technologies are promising

3D-Stacked DRAM higher bandwidth smaller capacity

Reduced-Latency DRAM
(e.g., RLDRAM, TL-DRAM) lower latency higher cost

Low-Power DRAM
(e.g., LPDDR3, LPDDR4) lower power

higher latency
higher cost

Non-Volatile Memory (NVM) 
(e.g., PCM, STTRAM, ReRAM, 
3D Xpoint)

larger capacity
higher latency

higher dynamic power 
lower endurance
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Major Trends Affecting Main Memory (V)
n DRAM scaling has already become increasingly difficult

q Increasing cell leakage current, reduced cell reliability, 
increasing manufacturing difficulties [Kim+ ISCA 2014],
[Liu+ ISCA 2013], [Mutlu IMW 2013], [Mutlu DATE 2017]

q Difficult to significantly improve capacity, energy

n Emerging memory technologies are promising

3D-Stacked DRAM higher bandwidth smaller capacity
Reduced-Latency DRAM
(e.g., RL/TL-DRAM, FLY-RAM) lower latency higher cost

Low-Power DRAM
(e.g., LPDDR3, LPDDR4, Voltron) lower power higher latency

higher cost
Non-Volatile Memory (NVM) 
(e.g., PCM, STTRAM, ReRAM, 3D 
Xpoint)

larger capacity
higher latency

higher dynamic power 
lower endurance
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Major Trend: Hybrid Main Memory

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
Yoon+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best 
Paper Award.

CPU
DRAM
Ctrl

Fast, durable
Small, 

leaky, volatile, 
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM 
CtrlDRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement 
to achieve the best of multiple technologies



One Foreshadowing

Main Memory Needs 
Intelligent Controllers

41



Industry Is Writing Papers About It, Too

42



Call for Intelligent Memory Controllers

43



Agenda

n Major Trends Affecting Main Memory
n Key Challenges and Solution Directions

q Robustness: Reliability and Security
q Low Latency/Energy and Latency/Energy/Reliability Tradeoffs
q Energy and Performance: In-Memory Computation

n Concluding Remarks
n Summary
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Four Key Issues in Future Platforms

n Fundamentally Secure/Reliable/Safe Architectures

n Fundamentally Energy-Efficient Architectures
q Memory-centric (Data-centric) Architectures

n Fundamentally Low-Latency Architectures

n Architectures for Genomics, Medicine, Health

45



Maslow’s (Human) Hierarchy of Needs

n We need to start with reliability and security…

46

Maslow, “A Theory of Human Motivation,” 
Psychological Review, 1943. 

Source: https://w w w .sim plypsychology.org/m aslow .htm l

Maslow, “A Theory of Human Motivation,” 
Psychological Review, 1943. 

Maslow, “Motivation and Personality,”
Book, 1954-1970.



How Reliable/Secure/Safe is This Bridge?

47Source: http://w w w .technologystudent.com /struct1/tacom 1.png



Collapse of the “Galloping Gertie”

48Source: AP



How Secure Are These People?

49Source: https://s-m edia-cache-ak0.p in im g.com /orig inals/48/09/54/4809543a9c7700246a0cf8acdae27abf.jpg

Security is about preventing unforeseen consequences



The DRAM Scaling Problem
n DRAM stores charge in a capacitor (charge-based memory)

q Capacitor must be large enough for reliable sensing
q Access transistor should be large enough for low leakage and high 

retention time
q Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

n DRAM capacity, cost, and energy/power hard to scale
50



As Memory Scales, It Becomes Unreliable
n Data from all of Facebook’s servers worldwide
n Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers,” DSN’15.

51

Intuition:quadraticincrease in
capacity



Large-Scale Failure Analysis of DRAM Chips
n Analysis and modeling of memory errors found in all of 

Facebook’s server fleet

n Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"Revisiting Memory Errors in Large-Scale Production Data 
Centers: Analysis and Modeling of New Trends from the Field"
Proceedings of the 45th Annual IEEE/IFIP International Conference on 
Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June 
2015. 
[Slides (pptx) (pdf)] [DRAM Error Model] 

52

http://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15.pdf
http://2015.dsn.org/
http://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15-talk.pdf
https://www.ece.cmu.edu/~safari/tools/memerr/index.html


Infrastructures to Understand Such Issues

53

An Experimental Study of Data Retention 
Behavior in Modern DRAM Devices: 
Implications for Retention Time Profiling 
Mechanisms (Liu et al., ISCA 2013)

The Efficacy of Error Mitigation Techniques 
for DRAM Retention Failures: A 
Comparative Experimental Study
(Khan et al., SIGMETRICS 2014)

Flipping Bits in Memory Without Accessing 
Them: An Experimental Study of DRAM 
Disturbance Errors (Kim et al., ISCA 2014)

Adaptive-Latency DRAM: Optimizing DRAM 
Timing for the Common-Case (Lee et al., 
HPCA 2015)

AVATAR: A Variable-Retention-Time (VRT) 
Aware Refresh for DRAM Systems (Qureshi
et al., DSN 2015)

http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_sigmetrics14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15.pdf


Infrastructures to Understand Such Issues

54Kim+, “Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

HeaterFPGAs FPGAs



SoftMC: Open Source DRAM Infrastructure

n Hasan Hassan et al., “SoftMC: A 
Flexible and Practical Open-
Source Infrastructure for 
Enabling Experimental DRAM 
Studies,” HPCA 2017.

n Flexible
n Easy to Use (C++ API)
n Open-source 

github.com/CMU-SAFARI/SoftMC 

55

https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf


SoftMC

n https://github.com/CMU-SAFARI/SoftMC

56

https://github.com/CMU-SAFARI/SoftMC


Data Retention in Memory [Liu et al., ISCA 2013]

n Retention Time Profile of DRAM looks like this:

57

Location dependent
Stored value pattern dependent

Time dependent



A Curious Discovery [Kim et al., ISCA 2014]

One can 
predictably induce errors 

in most DRAM memory chips
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DRAM RowHammer

A simple hardware failure mechanism 
can create a widespread 

system security vulnerability
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Row of Cells
Row
Row
Row
Row

Wordline

VLOWVHIGH
Victim Row

Victim Row
Hammered Row

Repeatedly reading a row enough times (before memory gets 
refreshed) induces disturbance errors in adjacent rows in 
most real DRAM chips you can buy today

OpenedClosed
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Modern DRAM is Prone to Disturbance Errors

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM 
Disturbance Errors, (Kim et al., ISCA 2014)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf


86%
(37/43)

83%
(45/54)

88%
(28/32)

A company B company C company

Up to
1.0×107

errors 

Up to
2.7×106

errors 

Up to
3.3×105

errors 
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Most DRAM Modules Are Vulnerable

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM 
Disturbance Errors, (Kim et al., ISCA 2014)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
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Recent DRAM Is More Vulnerable
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First
Appearance

Recent DRAM Is More Vulnerable



64
All modules from 2012–2013	are vulnerable

First
Appearance

Recent DRAM Is More Vulnerable



CPU

loop:
mov (X), %eax
mov (Y), %ebx
clflush (X)  
clflush (Y)
mfence
jmp loop

Download from: https://github.com/CMU-SAFARI/rowhammer

DRAM Module

A Simple Program Can Induce Many Errors

Y

X

https://github.com/CMU-SAFARI/rowhammer


CPU

Download from: https://github.com/CMU-SAFARI/rowhammer

DRAM Module

A Simple Program Can Induce Many Errors

Y

X1. Avoid cache hits
– Flush X from cache

2. Avoid row hits to X
– Read Y in another row

https://github.com/CMU-SAFARI/rowhammer
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CPU

loop:
mov (X), %eax
mov (Y), %ebx
clflush (X)  
clflush (Y)
mfence
jmp loop

Y

X

Download from: https://github.com/CMU-SAFARI/rowhammer

DRAM Module

A Simple Program Can Induce Many Errors

https://github.com/CMU-SAFARI/rowhammer


A real reliability & security issue 

CPU Architecture Errors Access-Rate
Intel Haswell (2013) 22.9K 12.3M/sec
Intel Ivy Bridge (2012) 20.7K 11.7M/sec
Intel Sandy Bridge (2011) 16.1K 11.6M/sec
AMD Piledriver (2012) 59 6.1M/sec

70Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of 
DRAM Disturbance Errors,” ISCA 2014.

Observed Errors in Real Systems



One Can Take Over an Otherwise-Secure System

71

Exploiting the DRAM rowhammer bug to 
gain kernel privileges (Seaborn, 2015)

Flipping Bits in Memory Without Accessing Them: 
An Experimental Study of DRAM Disturbance Errors
(Kim et al., ISCA 2014)

http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf


RowHammer Security Attack Example
n “Rowhammer” is a problem with some recent DRAM devices in which 

repeatedly accessing a row of memory can cause bit flips in adjacent rows 
(Kim et al., ISCA 2014). 
q Flipping Bits in Memory Without Accessing Them: An Experimental Study of 

DRAM Disturbance Errors (Kim et al., ISCA 2014)

n We tested a selection of laptops and found that a subset of them 
exhibited the problem. 

n We built two working privilege escalation exploits that use this effect. 
q Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn+, 2015)

n One exploit uses rowhammer-induced bit flips to gain kernel privileges on 
x86-64 Linux when run as an unprivileged userland process. 

n When run on a machine vulnerable to the rowhammer problem, the 
process was able to induce bit flips in page table entries (PTEs). 

n It was able to use this to gain write access to its own page table, and 
hence gain read-write access to all of physical memory.

72
Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn & Dullien, 2015)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html


Security Implications

73



Security Implications

74



Selected Readings on RowHammer (I)
n Our first detailed study: Rowhammer analysis and solutions (June 2014)

n Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, 

Chris Wilkerson, Konrad Lai, and Onur Mutlu,

"Flipping Bits in Memory Without Accessing Them: An Experimental 
Study of DRAM Disturbance Errors"
Proceedings of the 41st International Symposium on Computer Architecture

(ISCA), Minneapolis, MN, June 2014. [Slides (pptx) (pdf)] [Lightning Session 

Slides (pptx) (pdf)] [Source Code and Data] 

n Our Source Code to Induce Errors in Modern DRAM Chips (June 2014)

n https://github.com/CMU-SAFARI/rowhammer

n Google Project Zero’s Attack to Take Over a System (March 2015)

n Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn+, 2015)

n https://github.com/google/rowhammer-test

n Double-sided Rowhammer
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http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://cag.engr.uconn.edu/isca2014/
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_kim_talk_isca14.pptx
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_kim_talk_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pptx
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pdf
https://github.com/CMU-SAFARI/rowhammer
https://github.com/CMU-SAFARI/rowhammer
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://github.com/google/rowhammer-test


Selected Readings on RowHammer (II)
n Remote RowHammer Attacks via JavaScript (July 2015)

n http://arxiv.org/abs/1507.06955
n https://github.com/IAIK/rowhammerjs
n Gruss et al., DIMVA 2016.
n CLFLUSH-free Rowhammer
n “A fully automated attack that requires nothing but a website with 

JavaScript to trigger faults on remote hardware.” 
n “We can gain unrestricted access to systems of website visitors.”

n ANVIL: Software-Based Protection Against Next-Generation 
Rowhammer Attacks (March 2016)
q http://dl.acm.org/citation.cfm?doid=2872362.2872390
q Aweke et al., ASPLOS 2016
q CLFLUSH-free Rowhammer
q Software based monitoring for rowhammer detection
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http://arxiv.org/abs/1507.06955
https://github.com/IAIK/rowhammerjs
http://dl.acm.org/citation.cfm?doid=2872362.2872390


Selected Readings on RowHammer (III)
n Dedup Est Machina: Memory Deduplication as an Advanced Exploitation 

Vector (May 2016)

n https://www.ieee-security.org/TC/SP2016/papers/0824a987.pdf

n Bosman et al., IEEE S&P 2016.

n Exploits Rowhammer and Memory Deduplication to overtake a browser 

n “We report on the first reliable remote exploit for the Rowhammer
vulnerability running entirely in Microsoft Edge.” 

n “[an attacker] … can reliably “own” a system with all defenses up, even if 

the software is entirely free of bugs.”
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https://www.ieee-security.org/TC/SP2016/papers/0824a987.pdf


Selected Readings on RowHammer (IV)
n Flip Feng Shui: Hammering a Needle in the Software Stack (August 2016)

n https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper
_razavi.pdf

n Razavi et al., USENIX Security 2016.
n Combines memory deduplication and RowHammer
n “A malicious VM can gain unauthorized access to a co-hosted VM 

running OpenSSH.”
n Breaks OpenSSH public key authentication 

n Drammer: Deterministic Rowhammer Attacks on Mobile Platforms 
(October 2016)
q http://dl.acm.org/citation.cfm?id=2976749.2978406
q Van Der Veen et al., CCS 2016
q Can take over an ARM-based Android system deterministically
q Exploits predictable physical memory allocator behavior

n Can deterministically place security-sensitive data (e.g., page table) in an attacker-
chosen, vulnerable location in memory
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https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_razavi.pdf
http://dl.acm.org/citation.cfm?id=2976749.2978406


Selected Readings on RowHammer (V)
n Grand Pwning Unit: Accelerating Microarchitectural Attacks with the 

GPU (May 2018)
n https://www.vusec.net/wp-content/uploads/2018/05/glitch.pdf
n Frigo et al., IEEE S&P 2018.
n The first end-to-end remote Rowhammer exploit on mobile platforms that 

use our GPU-based primitives in orchestration to compromise browsers 
on mobile devices in under two minutes.

n Throwhammer: Rowhammer Attacks over the Network and Defenses 
(July 2018)
n https://www.cs.vu.nl/~herbertb/download/papers/throwhammer_atc18.pdf
n Tatar et al., USENIX ATC 2018.
n “[We] show that an attacker can trigger and exploit Rowhammer bit 

flips directly from a remote machine by only sending network 
packets.”
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https://www.vusec.net/wp-content/uploads/2018/05/glitch.pdf
https://www.cs.vu.nl/~herbertb/download/papers/throwhammer_atc18.pdf


Selected Readings on RowHammer (VI)
n Nethammer: Inducing Rowhammer Faults through Network Requests 

(July 2018)
n https://arxiv.org/pdf/1805.04956.pdf
n Lipp et al., arxiv.org 2018.
n “Nethammer is the first truly remote Rowhammer attack, without a 

single attacker-controlled line of code on the targeted system.”
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https://arxiv.org/pdf/1805.04956.pdf


More Security Implications (I)

81
Source: https://lab.dsst.io/32c3-slides/7197.htm l

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript (DIMVA’16)

“We can gain unrestricted access to systems of website visitors.”

https://lab.dsst.io/32c3-slides/7197.html


More Security Implications (II)

82
Source: https://fossbytes.com /dram m er-row ham m er-attack-android-root-devices/

Drammer: Deterministic Rowhammer
Attacks on Mobile Platforms, CCS’16 

“Can gain control of a smart phone deterministically”



More Security Implications (III)
n Using an integrated GPU in a mobile system to remotely 

escalate privilege via the WebGL interface 
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More Security Implications (IV)
n Rowhammer over RDMA (I)
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More Security Implications (V)
n Rowhammer over RDMA (II)
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More Security Implications?
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Some Potential Solutions

87

Cost• Make better DRAM chips

Cost, Power• Sophisticated ECC

Power, Performance• Refresh frequently

Cost, Power, Complexity• Access counters 



Apple’s Patch for RowHammer
n https://support.apple.com/en-gb/HT204934

HP, Lenovo, and other vendors released similar patches

https://support.apple.com/en-gb/HT204934


Our Solution to RowHammer
• PARA: Probabilistic Adjacent Row Activation

• Key Idea
– After closing a row, we activate (i.e., refresh) one of 

its neighbors with a low probability: p	=	0.005

• Reliability Guarantee
– When p=0.005, errors in one year: 9.4×10-14
– By adjusting the value of p, we can vary the strength 

of protection against errors
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Advantages of PARA
• PARA refreshes rows infrequently

– Low power
– Low performance-overhead
• Average slowdown: 0.20% (for 29 benchmarks)
• Maximum slowdown: 0.75%

• PARA is stateless
– Low cost
– Low complexity

• PARA is an effective and low-overhead solution 
to prevent disturbance errors

90



Requirements for PARA
• If implemented in DRAM chip

– Enough slack in timing parameters
– Plenty of slack today: 

• Lee et al., “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common Case,” HPCA 2015.
• Chang et al., “Understanding Latency Variation in Modern DRAM Chips,” SIGMETRICS 2016.
• Lee et al., “Design-Induced Latency Variation in Modern DRAM Chips,” SIGMETRICS 2017.
• Chang et al., “Understanding Reduced-Voltage Operation in Modern DRAM Devices,” SIGMETRICS 

2017.
• Ghose et al., “What Your DRAM Power Models Are Not Telling You: Lessons from a Detailed 

Experimental Study,” SIGMETRICS 2018.

• If implemented in memory controller
– Better coordination between memory controller and 

DRAM
– Memory controller should know which rows are 

physically adjacent 91



More on RowHammer Analysis
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n Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
"Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors"
Proceedings of the 41st International Symposium on Computer 
Architecture (ISCA), Minneapolis, MN, June 2014. 
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code 
and Data]

https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_isca14.pdf
http://cag.engr.uconn.edu/isca2014/
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_talk_isca14.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_talk_isca14.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pdf
https://github.com/CMU-SAFARI/rowhammer


Future of Memory Reliability/Security

93https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf

n Onur Mutlu,
"The RowHammer Problem and Other Issues We May Face as 
Memory Becomes Denser"
Invited Paper in Proceedings of the Design, Automation, and Test in 
Europe Conference (DATE), Lausanne, Switzerland, March 2017. 
[Slides (pptx) (pdf)] 

https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pdf


Industry Is Writing Papers About It, Too

94



Call for Intelligent Memory Controllers
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Aside: Intelligent Controller for NAND Flash

USB Jack

Virtex-II Pro
(USB controller)

Virtex-V FPGA
(NAND Controller)

HAPS-52 Mother Board

USB Daughter Board

NAND Daughter Board

1x-nm
NAND Flash

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.

[DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014, 
HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017, 
PIEEE 2017, HPCA 2018, SIGMETRICS 2018]



Aside: Intelligent Controller for NAND Flash
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https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

https://arxiv.org/pdf/1706.08642


A Key Takeaway

Main Memory Needs 
Intelligent Controllers

98



Solution Direction: Principled Designs

Design fundamentally secure
computing architectures 

Predict and prevent 
such safety issues

99



Architecting for Security 
n Understand: Methods for vulnerability modeling & discovery

q Modeling and prediction based on real (device) data and analysis
q Understanding vulnerabilities
q Developing reliable metrics

n Architect: Principled architectures with security as key concern
q Good partitioning of duties across the stack
q Cannot give up performance and efficiency
q Patch-ability in the field

n Design & Test: Principled design, automation, (online) testing
q Design for security
q High coverage and good interaction with system reliability 

methods
100



101Kim+, “Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

HeaterFPGAs FPGAs

Understand and Model with Experiments (DRAM)



Understand and Model with Experiments (Flash)

USB Jack

Virtex-II Pro
(USB controller)

Virtex-V FPGA
(NAND Controller)

HAPS-52 Mother Board

USB Daughter Board

NAND Daughter Board

1x-nm
NAND Flash

[DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014, 
HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017, 
PIEEE’17, HPCA’18]

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.



Understanding Flash Memory Reliability

103
https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

https://arxiv.org/pdf/1706.08642


Understanding Flash Memory Reliability
n Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,

"A Large-Scale Study of Flash Memory Errors in the Field"
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Portland, OR, June 
2015.
[Slides (pptx) (pdf)] [Coverage at ZDNet] [Coverage on The Register] 
[Coverage on TechSpot] [Coverage on The Tech Report]
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https://people.inf.ethz.ch/omutlu/pub/flash-memory-failures-in-the-field-at-facebook_sigmetrics15.pdf
http://www.sigmetrics.org/sigmetrics2015/
https://people.inf.ethz.ch/omutlu/pub/flash-memory-failures-in-the-field-at-facebook_sigmetrics15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/flash-memory-failures-in-the-field-at-facebook_sigmetrics15-talk.pdf
http://www.zdnet.com/article/facebooks-ssd-experience/
http://www.theregister.co.uk/2015/06/22/facebook_reveals_ssd_failure_rate_trough/
http://www.techspot.com/news/61090-researchers-publish-first-large-scale-field-ssd-reliability.html
http://techreport.com/news/28519/facebook-ssd-reliability-study-shows-early-burnouts


NAND Flash Vulnerabilities [HPCA’17]
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https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities_hpca17.pdf

HPCA, Feb. 2017

https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities_hpca17.pdf


3D NAND Flash Reliability I [HPCA’18]
n Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu,

"HeatWatch: Improving 3D NAND Flash Memory Device 
Reliability by Exploiting Self-Recovery and Temperature-
Awareness"
Proceedings of the 24th International Symposium on High-Performance 
Computer Architecture (HPCA), Vienna, Austria, February 2018.
[Lightning Talk Video]
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]
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https://people.inf.ethz.ch/omutlu/pub/heatwatch-3D-nand-errors-and-self-recovery_hpca18.pdf
https://hpca2018.ece.ucsb.edu/
https://www.youtube.com/watch?v=7ZpGozzEVpY&feature=youtu.be
https://people.inf.ethz.ch/omutlu/pub/heatwatch-3D-nand-errors-and-self-recovery_hpca18_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/heatwatch-3D-nand-errors-and-self-recovery_hpca18_talk.pdf
https://people.inf.ethz.ch/omutlu/pub/heatwatch-3D-nand-errors-and-self-recovery_hpca18_lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/heatwatch-3D-nand-errors-and-self-recovery_hpca18_lightning-talk.pdf


3D NAND Flash Reliability II [SIGMETRICS’18]
n Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu,

"Improving 3D NAND Flash Memory Lifetime by Tolerating 
Early Retention Loss and Process Variation"
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Irvine, CA, USA, June 
2018.
[Abstract]
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http://www.sigmetrics.org/sigmetrics2018/
https://people.inf.ethz.ch/omutlu/pub/3D-NAND-flash-lifetime-early-retention-loss-and-process-variation_sigmetrics18-abstract.pdf


Another Talk: NAND Flash Memory Robustness
n Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu,

"Error Characterization, Mitigation, and Recovery in Flash Memory Based 
Solid State Drives"
to appear in Proceedings of the IEEE, 2017. 

Cai+, “Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis,” DATE 2012.
Cai+, “Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory Lifetime,” ICCD 2012.
Cai+, “Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization, Analysis and Modeling,” DATE 2013.
Cai+, “Error Analysis and Retention-Aware Error Management for NAND Flash Memory,” Intel Technology Journal 2013.
Cai+, “Program Interference in MLC NAND Flash Memory: Characterization, Modeling, and Mitigation,” ICCD 2013.
Cai+, “Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories,” SIGMETRICS 2014.
Cai+,”Data Retention in MLC NAND Flash Memory: Characterization, Optimization and Recovery,” HPCA 2015.
Cai+, “Read Disturb Errors in MLC NAND Flash Memory: Characterization and Mitigation,” DSN 2015. 
Luo+, “WARM: Improving NAND Flash Memory Lifetime with Write-hotness Aware Retention Management,” MSST 2015.
Meza+, “A Large-Scale Study of Flash Memory Errors in the Field,” SIGMETRICS 2015.
Luo+, “Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory,” IEEE JSAC 
2016.
Cai+, “Vulnerabilities in MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and Mitigation 
Techniques,” HPCA 2017.
Fukami+, “Improving the Reliability of Chip-Off Forensic Analysis of NAND Flash Memory Devices,” DFRWS EU 2017. 
Luo+, “HeatWatch: Improving 3D NAND Flash Memory Device Reliability by Exploiting Self-Recovery and Temperature-
Awareness," HPCA 2018.
Luo+, “Improving 3D NAND Flash Memory Lifetime by Tolerating Early Retention Loss and Process Variation," SIGMETRICS 
2018.

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.

http://proceedingsoftheieee.ieee.org/


There are Two Other Solution Directions
n New Technologies: Replace or (more likely) augment DRAM 

with a different technology
q Non-volatile memories

n Embracing Un-reliability:
Design memories with different reliability
and store data intelligently across them

n …
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Fundamental solutions to security 
require co-design across the hierarchy

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons
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Exploiting Memory Error Tolerance 

with Hybrid Memory Systems

Heterogeneous-Reliability Memory [DSN 2014]

Low-cost memoryReliable memory

Vulnerable 

data

Tolerant 

data

Vulnerable 

data

Tolerant 

data

• ECC protected

• Well-tested chips

• NoECC or Parity

• Less-tested chips
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On Microsoft’s Web Search workload

Reduces server hardware cost by 4.7 %

Achieves single server availability target of 99.90 %



More on Heterogeneous-Reliability Memory
n Yixin Luo, Sriram Govindan, Bikash Sharma, Mark Santaniello, Justin Meza, Aman

Kansal, Jie Liu, Badriddine Khessib, Kushagra Vaid, and Onur Mutlu,
"Characterizing Application Memory Error Vulnerability to Optimize 
Data Center Cost via Heterogeneous-Reliability Memory"
Proceedings of the 44th Annual IEEE/IFIP International Conference on 
Dependable Systems and Networks (DSN), Atlanta, GA, June 2014. [Summary] 
[Slides (pptx) (pdf)] [Coverage on ZDNet] 
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http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_dsn14.pdf
http://2014.dsn.org/
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory_dsn14-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_luo_dsn14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_luo_dsn14-talk.pdf
http://www.zdnet.com/how-good-does-memory-need-to-be-7000031853/


Summary: Memory Reliability and Security
n Memory reliability is reducing

n Reliability issues open up security vulnerabilities

q Very hard to defend against

n Rowhammer is an example 

q Its implications on system security research are tremendous & exciting

n Good news: We have a lot more to do.
n Understand: Solid methodologies for failure modeling and discovery

q Modeling based on real device data – small scale and large scale

n Architect: Principled co-architecting of system and memory

q Good partitioning of duties across the stack

n Design & Test: Principled electronic design, automation, testing

q High coverage and good interaction with system reliability methods
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Challenge and Opportunity for Future

Fundamentally
Secure, Reliable, Safe

Computing Architectures

113



One Important Takeaway

Main Memory Needs 
Intelligent Controllers

114



Four Key Issues in Future Platforms

n Fundamentally Secure/Reliable/Safe Architectures

n Fundamentally Energy-Efficient Architectures
q Memory-centric (Data-centric) Architectures

n Fundamentally Low-Latency Architectures

n Architectures for Genomics, Medicine, Health

115



116Source: http://spectrum .ieee.org/im age/M jYzM zAyM g.jpeg



Maslow’s Hierarchy of Needs, A Third Time

117

Speed

Speed
Speed
Speed
Speed

Source: https://w w w .sim plypsychology.org/m aslow .htm l

Maslow, “A Theory of Human Motivation,” 
Psychological Review, 1943. 

Maslow, “Motivation and Personality,”
Book, 1954-1970.



Reducing Memory Latency
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A Closer Look …

120

Chang+, “Understanding Latency Variation in Modern DRAM Chips: Experimental 
Characterization, Analysis, and Optimization",” SIGMETRICS 2016.

https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf


DRAM Latency Is Critical for Performance

In-Memory Data Analytics 
[Clapp+ (Intel), IISWC’15;  
Awan+, BDCloud’15]

Datacenter Workloads 
[Kanev+ (Google), ISCA’15]

In-memory Databases 
[Mao+, EuroSys’12; 
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing 
[Xu+, IISWC’12; Umuroglu+, FPL’15]



DRAM Latency Is Critical for Performance

In-Memory Data Analytics 
[Clapp+ (Intel), IISWC’15;  
Awan+, BDCloud’15]

Datacenter Workloads 
[Kanev+ (Google), ISCA’15]

In-memory Databases 
[Mao+, EuroSys’12; 
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing 
[Xu+, IISWC’12; Umuroglu+, FPL’15]

Long memory latency → performance bottleneck



Two Major Sources of Latency Inefficiency

n Modern DRAM is not designed for low latency
q Main focus is cost-per-bit (capacity)

n Modern DRAM latency is determined by worst case 
conditions and worst case devices
q Much of memory latency is unnecessary
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Why the Long Memory Latency?

n Reason 1: Design of DRAM Micro-architecture
q Goal: Maximize capacity/area, not minimize latency

n Reason 2: “One size fits all” approach to latency specification
q Same latency parameters for all temperatures
q Same latency parameters for all DRAM chips (e.g., rows)
q Same latency parameters for all parts of a DRAM chip
q Same latency parameters for all supply voltage levels
q Same latency parameters for all application data 
q …
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Latency Variation in Memory Chips

125

HighLow
DRAM Latency

DRAM BDRAM A DRAM C

Slow cells

Heterogeneous manufacturing & operating conditions→	
latency variation in timing parameters



DRAM Characterization Infrastructure

126Kim+, “Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

HeaterFPGAs FPGAs



DRAM Characterization Infrastructure

n Hasan Hassan et al., SoftMC: A 
Flexible and Practical Open-
Source Infrastructure for 
Enabling Experimental DRAM 
Studies, HPCA 2017.

n Flexible
n Easy to Use (C++ API)
n Open-source 

github.com/CMU-SAFARI/SoftMC 
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https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf


SoftMC: Open Source DRAM Infrastructure

n https://github.com/CMU-SAFARI/SoftMC

128

https://github.com/CMU-SAFARI/SoftMC


Tackling the Fixed Latency Mindset
n Reliable operation latency is actually very heterogeneous

q Across temperatures, chips, parts of a chip, voltage levels, …

n Idea: Dynamically find out and use the lowest latency one 
can reliably access a memory location with
q Adaptive-Latency DRAM [HPCA 2015]
q Flexible-Latency DRAM [SIGMETRICS 2016]
q Design-Induced Variation-Aware DRAM [SIGMETRICS 2017]
q Voltron [SIGMETRICS 2017]
q DRAM Latency PUF [HPCA 2018]
q ...

n We would like to find sources of latency heterogeneity and 
exploit them to minimize latency
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Adaptive-Latency DRAM

• Key idea
– Optimize DRAM timing parameters online

• Two components
– DRAM manufacturer provides multiple sets of 

reliable DRAM timing parameters at different 
temperatures for each DIMM

– System monitors DRAM temperature & uses 
appropriate DRAM timing parameters

reliable DRAM timing parameters

DRAM temperature

Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 

2015.
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Latency Reduction Summary of 115 DIMMs
• Latency reduction for read & write (55°C)

– Read Latency: 32.7%
–Write Latency: 55.1%

• Latency reduction for each timing 
parameter (55°C) 
– Sensing: 17.3%
– Restore: 37.3% (read), 54.8% (write)
– Precharge: 35.2%

Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 
2015.
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AL-DRAM: Real System Evaluation
• System

– CPU: AMD 4386 ( 8 Cores, 3.1GHz, 8MB LLC)

– DRAM: 4GByte DDR3-1600 (800Mhz Clock)
– OS: Linux
– Storage: 128GByte SSD

• Workload
– 35 applications from SPEC, STREAM, Parsec, 

Memcached, Apache, GUPS
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AL-DRAM: Multi-Core Evaluation

AL-DRAM provides higher performance on
multi-programmed & multi-threaded workloads
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Reducing Latency Also Reduces Energy

n AL-DRAM reduces DRAM power consumption by 5.8%

n Major reason: reduction in row activation time
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More on Adaptive-Latency DRAM
n Donghyuk Lee, Yoongu Kim, Gennady Pekhimenko, Samira Khan, 

Vivek Seshadri, Kevin Chang, and Onur Mutlu,

"Adaptive-Latency DRAM: Optimizing DRAM Timing for 
the Common-Case"
Proceedings of the 21st International Symposium on High-

Performance Computer Architecture (HPCA), Bay Area, CA, 

February 2015. 

[Slides (pptx) (pdf)] [Full data sets] 
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http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://darksilicon.org/hpca/
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_donghyuk_hpca15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_donghyuk_hpca15-talk.pdf
http://www.ece.cmu.edu/~safari/tools/aldram-hpca2015-fulldata.html


Heterogeneous Latency within A Chip

• Observation: DRAM timing errors (slow DRAM 
cells) are concentrated on certain regions

• Flexible-LatencY (FLY) DRAM
– A software-transparent design that reduces latency

• Key idea:
1) Divide memory into regions of different latencies

2) Memory controller: Use lower latency for regions without 
slow cells; higher latency for other regions

Chang+, “Understanding Latency Variation in Modern DRAM Chips: Experimental 
Characterization, Analysis, and Optimization",” SIGMETRICS 2016.

https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf


Heterogeneous Latency within A Chip
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Chang+, “Understanding Latency Variation in Modern DRAM Chips: Experimental 
Characterization, Analysis, and Optimization",” SIGMETRICS 2016.

https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf


Analysis of Latency Variation in DRAM Chips
n Kevin Chang, Abhijith Kashyap, Hasan Hassan, Samira Khan, Kevin Hsieh, 

Donghyuk Lee, Saugata Ghose, Gennady Pekhimenko, Tianshi Li, and 

Onur Mutlu,

"Understanding Latency Variation in Modern DRAM Chips: 
Experimental Characterization, Analysis, and Optimization"
Proceedings of the ACM International Conference on Measurement and 

Modeling of Computer Systems (SIGMETRICS), Antibes Juan-Les-Pins, 
France, June 2016. 

[Slides (pptx) (pdf)] 

[Source Code] 
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https://users.ece.cmu.edu/~omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
http://www.sigmetrics.org/sigmetrics2016/
https://users.ece.cmu.edu/~omutlu/pub/understanding-latency-variation-in-DRAM-chips_kevinchang_sigmetrics16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/understanding-latency-variation-in-DRAM-chips_kevinchang_sigmetrics16-talk.pdf
https://github.com/CMU-SAFARI/DRAM-Latency-Variation-Study
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Inherently fast

inherently slow

What Is Design-Induced Variation?
slowfast

slow
fast

Systematic variation in cell access times
caused by the physical organization of DRAM

sense amplifiers

w
ordline

drivers

across row
distance from 
sense amplifier

across column
distance from 
wordline driver
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DIVA Online Profiling
inherently slow

Profile only slow regions to determine min. latency
àDynamic & low cost latency optimization

sense amplifier

w
ordline

driver

Design-Induced-Variation-Aware
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inherently slow

DIVA Online Profiling
slow cells  

design-induced
variation

process
variation

localized errorrandom error

online profilingerror-correcting 
code

Combine error-correcting codes & online profiling
àReliably reduce DRAM latency

sense amplifier

w
ordline

driver

Design-Induced-Variation-Aware
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DIVA-DRAM Reduces Latency
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DIVA-DRAM reduces latency more aggressively
and uses ECC to correct random slow cells



Design-Induced Latency Variation in DRAM
n Donghyuk Lee, Samira Khan, Lavanya Subramanian, Saugata Ghose, 

Rachata Ausavarungnirun, Gennady Pekhimenko, Vivek Seshadri, and 
Onur Mutlu,
"Design-Induced Latency Variation in Modern DRAM Chips: 
Characterization, Analysis, and Latency Reduction Mechanisms"
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL, 
USA, June 2017. 
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https://people.inf.ethz.ch/omutlu/pub/DIVA-low-latency-DRAM_sigmetrics17-paper.pdf
http://www.sigmetrics.org/sigmetrics2017/


Voltron: Exploiting the 
Voltage-Latency-Reliability 

Relationship
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Executive Summary
• DRAM (memory) power is significant in today’s systems

– Existing low-voltage DRAM reduces voltage conservatively

• Goal: Understand and exploit the reliability and latency behavior of 
real DRAM chips under aggressive reduced-voltage operation

• Key experimental observations:
– Huge voltage margin -- Errors occur beyond some voltage
– Errors exhibit spatial locality
– Higher operation latency mitigates voltage-induced errors

• Voltron: A new DRAM energy reduction mechanism 
– Reduce DRAM voltage without introducing errors 
– Use a regression model to select voltage that does not degrade 

performance beyond a chosen target à 7.3% system energy reduction
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DIMMs Operating at Higher Latency
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Measured minimum latency that does not cause errors in DRAM modules

Lower bound of latency as our latency adjustment granularity is 2.5ns 
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Spatial Locality of Errors
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A module under 1.175V (12% voltage reduction)

Errors concentrate in certain regions



Energy Savings with Bounded Performance
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Analysis of Latency-Voltage in DRAM Chips
n Kevin Chang, A. Giray Yaglikci, Saugata Ghose, Aditya Agrawal, Niladrish

Chatterjee, Abhijith Kashyap, Donghyuk Lee, Mike O'Connor, Hasan 
Hassan, and Onur Mutlu,
"Understanding Reduced-Voltage Operation in Modern DRAM 
Devices: Experimental Characterization, Analysis, and 
Mechanisms"
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL, 
USA, June 2017. 
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https://people.inf.ethz.ch/omutlu/pub/Voltron-reduced-voltage-DRAM-sigmetrics17-paper.pdf
http://www.sigmetrics.org/sigmetrics2017/


And, What If …

n … we can sacrifice reliability of some data to access it with 
even lower latency?
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The	DRAM	Latency	PUF:	
Quickly	Evaluating	Physical	Unclonable Functions	
by	Exploiting	the	Latency-Reliability	Tradeoff	

in	Modern	Commodity	DRAM	Devices

Jeremie S.	Kim Minesh Patel		
Hasan	Hassan			OnurMutlu
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Motivation
•A	PUF is	function	that	generates	a	signature	
unique to	a	given	device	

•Used	in	a	Challenge-Response	Protocol
- Each	device	generates	a	unique	PUF	response	
depending	the	inputs
- A	trusted	server	authenticates a	device	if	it	
generates	the	expected	PUF	response
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DRAM	Latency	Characterization	of	
223	LPDDR4	DRAM	Devices

•Latency	failures	come	from	accessing	
DRAM	with	reduced timing	parameters.

•Key	Observations:
1. A	cell’s	latency	failure probability	is	
determined	by	random	process	variation

2. Latency	failure	patterns	are	repeatable	and	
unique	to	a	device
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DRAM	Latency	PUF	Key	Idea
High	%	chance	to	fail	
with	reduced	tRCD

Low	%	chance	to	fail	
with	reduced	tRCD

SASASASASASASA
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DRAM	Accesses	and	Failures
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unique characteristics
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Bitline Charge Sharing



157/8

wordline

capacitor

access
transistor

bitline

SA
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weaker cells have a 
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The	DRAM	Latency	PUF	Evaluation

•We	generate	PUF	responses	using	latency
errors	in	a	region	of	DRAM

•The	latency	error	patterns	satisfy	PUF	
requirements

•The	DRAM	Latency	PUF	generates	PUF	
responses	in	88.2ms
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Results

•DL-PUF is	orders	of	magnitude	faster	than	
prior	DRAM	PUFs	&	temperature	independent

o
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The	DRAM	Latency	PUF:	
Quickly	Evaluating	Physical	Unclonable Functions	
by	Exploiting	the	Latency-Reliability	Tradeoff	

in	Modern	Commodity	DRAM	Devices

Jeremie S.	Kim Minesh Patel		
Hasan	Hassan			OnurMutlu

QR Code for the paper
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18.pdf

HPCA 2018



DRAM Latency PUFs
n Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu,

"The DRAM Latency PUF: Quickly Evaluating Physical Unclonable 
Functions by Exploiting the Latency-Reliability Tradeoff in 
Modern DRAM Devices"
Proceedings of the 24th International Symposium on High-Performance 
Computer Architecture (HPCA), Vienna, Austria, February 2018.
[Lightning Talk Video]
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]
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https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18.pdf
https://hpca2018.ece.ucsb.edu/
https://www.youtube.com/watch?v=Xw0laEEDmsM&feature=youtu.be
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_talk.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_lightning-talk.pdf


Challenge and Opportunity for Future

Fundamentally
Low-Latency

Computing Architectures

162



One Important Takeaway

Main Memory Needs 
Intelligent Controllers
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On DRAM Power Consumption
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VAMPIRE DRAM Power Model
n Saugata Ghose, A. Giray Yaglikci, Raghav Gupta, Donghyuk Lee, Kais 

Kudrolli, William X. Liu, Hasan Hassan, Kevin K. Chang, Niladrish
Chatterjee, Aditya Agrawal, Mike O'Connor, and Onur Mutlu,
"What Your DRAM Power Models Are Not Telling You: Lessons 
from a Detailed Experimental Study"
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Irvine, CA, USA, June 
2018.
[Abstract]
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http://www.sigmetrics.org/sigmetrics2018/
https://people.inf.ethz.ch/omutlu/pub/VAMPIRE-DRAM-power-characterization-and-modeling_sigmetrics18-abstract.pdf


Four Key Issues in Future Platforms

n Fundamentally Secure/Reliable/Safe Architectures

n Fundamentally Energy-Efficient Architectures
q Memory-centric (Data-centric) Architectures

n Fundamentally Low-Latency Architectures

n Architectures for Genomics, Medicine, Health
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Maslow’s (Human) Hierarchy of Needs, Revisited

167

Maslow, “A Theory of Human Motivation,” 
Psychological Review, 1943. 

Everlasting energy

Source: https://w w w .sim plypsychology.org/m aslow .htm l

Maslow, “A Theory of Human Motivation,” 
Psychological Review, 1943. 

Maslow, “Motivation and Personality,”
Book, 1954-1970.



Do We Want This?

168Source: V . M ilutinovic



Or This?

169Source: V . M ilutinovic



Challenge and Opportunity for Future

Sustainable
and

Energy Efficient

170



The Problem

Data access is the major performance and energy bottleneck

Our current
design principles 

cause great energy waste
(and great performance loss)
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The Problem

Processing of data 
is performed 

far away from the data
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A Computing System
n Three key components
n Computation 
n Communication
n Storage/memory

173

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Im age source: https://lbsitbytes2010.wordpress.com /2013/03/29/john-von-neum ann-roll-no-15/



A Computing System
n Three key components
n Computation 
n Communication
n Storage/memory

174

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Im age source: https://lbsitbytes2010.wordpress.com /2013/03/29/john-von-neum ann-roll-no-15/



Today’s Computing Systems
n Are overwhelmingly processor centric
n All data processed in the processor à at great system cost
n Processor is heavily optimized and is considered the master
n Data storage units are dumb and are largely unoptimized

(except for some that are on the processor die)
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Yet …
n “It’s the Memory, Stupid!” (Richard Sites, MPR, 1996)

Mutlu+, “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.



The Performance Perspective
n Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,

"Runahead Execution: An Alternative to Very Large Instruction 
Windows for Out-of-order Processors"
Proceedings of the 9th International Symposium on High-Performance 
Computer Architecture (HPCA), pages 129-140, Anaheim, CA, February 
2003. Slides (pdf)
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https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
http://www.cs.arizona.edu/hpca9/
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03_talk.pdf


The Performance Perspective (Today)
n All of Google’s Data Center Workloads (2015): 

178Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.



The Performance Perspective (Today)
n All of Google’s Data Center Workloads (2015): 

179Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.



Perils of Processor-Centric Design
n Grossly-imbalanced systems

q Processing done only in one place
q Everything else just stores and moves data: data moves a lot
à Energy inefficient 
à Low performance
à Complex

n Overly complex and bloated processor (and accelerators)
q To tolerate data access from memory
q Complex hierarchies and mechanisms 
à Energy inefficient 
à Low performance
à Complex
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Perils of Processor-Centric Design

181
Most of the system is dedicated to storing and moving data 



The Energy Perspective

182

Dally, HiPEAC 2015



Data Movement vs. Computation Energy

183

Dally, HiPEAC 2015

A memory access consumes ~1000X 
the energy of a complex addition 



Data Movement vs. Computation Energy
n Data movement is a major system energy bottleneck

q Comprises 41% of mobile system energy during web browsing [2]
q Costs ~115 times as much energy as an ADD operation [1, 2]

184

[1]: Reducing data Movement Energy via Online Data Clustering and Encoding (MICRO’16)
[2]: Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms (IISWC’14)



Energy Waste in Mobile Devices
n Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul 

Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming 
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.
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62.7% of the total system energy 
is spent on data movement

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/


We Do Not Want to Move Data!
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Dally, HiPEAC 2015

A memory access consumes ~1000X 
the energy of a complex addition 



We Need A Paradigm Shift To …

n Enable computation with minimal data movement

n Compute where it makes sense (where data resides)

n Make computing architectures more data-centric
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Goal: Processing Inside Memory

n Many questions … How do we design the:
q compute-capable memory & controllers?
q processor chip?
q software and hardware interfaces?
q system software and languages?
q algorithms?

Cache

Processor
Core

Interconnect

Memory
Database

Graphs

Media 
Query

Results

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons



Why In-Memory Computation Today?

n Push from Technology
q DRAM Scaling at jeopardy 
à Controllers close to DRAM
à Industry open to new memory architectures

n Pull from Systems and Applications
q Data access is a major system and application bottleneck
q Systems are energy limited
q Data movement much more energy-hungry than computation

189

Dally, HiPEAC 2015



Processing in Memory:
Two Approaches

1. Minimally changing memory chips
2. Exploiting 3D-stacked memory
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Starting Simple: Data Copy and Initialization

191

Forking

00000
00000
00000

Zero initialization
(e.g., security)

VM Cloning
Deduplication

Checkpointing

Page Migration
Many more

memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ ISCA’15]



Today’s Systems: Bulk Data Copy

Memory

MCL3L2L1CPU

1) High latency

2) High bandwidth utilization

3) Cache pollution

4) Unwanted data movement

1921046ns, 3.6uJ    (for 4KB page copy via DMA)



Future Systems: In-Memory Copy

Memory

MCL3L2L1CPU

1) Low latency

2) Low bandwidth utilization

3) No cache pollution

4) No unwanted data movement

1931046ns, 3.6uJ à 90ns, 0.04uJ



RowClone: In-DRAM Row Copy

Row Buffer (4 Kbytes)

Data Bus

8 bits

DRAM subarray

4 Kbytes

Step 1: Activate row A

Transfer 
row

Step 2: Activate row B

Transfer
row

Negligible HW cost
Idea: Two consecutive ACTivates



RowClone: Latency and Energy Savings
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Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and 
Initialization of Bulk Data,” MICRO 2013.



More on RowClone
n Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata

Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A. 
Kozuch, Phillip B. Gibbons, and Todd C. Mowry,
"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and 
Initialization"
Proceedings of the 46th International Symposium on Microarchitecture
(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning Session 
Slides (pptx) (pdf)] [Poster (pptx) (pdf)] 
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http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://www.microarch.org/micro46/
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pdf


In-Memory Bulk Bitwise Operations
n We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ
n At low cost
n Using analog computation capability of DRAM

q Idea: activating multiple rows performs computation

n 30-60X performance and energy improvement
q Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations 

Using Commodity DRAM Technology,” MICRO 2017.

n New memory technologies enable even more opportunities
q Memristors, resistive RAM, phase change mem, STT-MRAM, …

q Can operate on data with minimal movement
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In-DRAM AND/OR: Triple Row Activation
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Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015.



In-DRAM NOT: Dual Contact Cell

199

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

Idea: 
Feed the 

negated value 
in the sense amplifier

into a special row



Performance: In-DRAM Bitwise Operations
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Energy of In-DRAM Bitwise Operations

201

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.



Ambit vs. DDR3: Performance and Energy
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Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.



Bulk Bitwise Operations in Workloads

[1] Li and Patel, BitWeaving, SIGMOD 2013
[2] Goodwin+, BitFunnel, SIGIR 2017



Performance: Bitmap Index on Ambit
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Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.



Performance: BitWeaving on Ambit
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Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.



More on In-DRAM Bulk AND/OR

n Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk 
Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and 
Todd C. Mowry,
"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015. 
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http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://www.computer.org/web/cal


More on In-DRAM Bitwise Operations
n Vivek Seshadri et al., “Ambit: In-Memory Accelerator 

for Bulk Bitwise Operations Using Commodity DRAM 
Technology,” MICRO 2017.
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https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf


Challenge and Opportunity for Future

Computing Architectures
with 

Minimal Data Movement
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Processing in Memory:
Two Approaches

1. Minimally changing memory chips
2. Exploiting 3D-stacked memory

209



Opportunity: 3D-Stacked Logic+Memory

210

Logic

Memory

Other “True 3D” technologies
under development



DRAM Landscape (circa 2015)

211
Kim+, “Ramulator: A Flexible and Extensible DRAM Simulator”, IEEE CAL 2015.



Two Key Questions in 3D-Stacked PIM

n How can we accelerate important applications if we use         
3D-stacked memory as a coarse-grained accelerator?
q what is the architecture and programming model?
q what are the mechanisms for acceleration?

n What is the minimal processing-in-memory support we can 
provide?
q without changing the system significantly
q while achieving significant benefits
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Another Example: In-Memory Graph Processing

213

n Large graphs are everywhere (circa 2015)

n Scalable large-scale graph processing is challenging

36 Million 
Wikipedia Pages

1.4 Billion
Facebook Users

300 Million
Twitter Users

30 Billion
Instagram Photos

+42%

0 1 2 3 4

128…

32 Cores

Speedup



Key Bottlenecks in Graph Processing
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for (v: graph.vertices) {
for (w: v.successors) {

w.next_rank += weight * v.rank;
}

}

weight * v.rank

v

w

&w

1. Frequent random memory accesses

2. Little amount of computation

w.rank
w.next_rank

w.edges
…



Tesseract System for Graph Processing

Crossbar Network

…
…

…
…

DRAM
 Controller

NI

In-Order Core

Message Queue

PF Buffer

MTP

LP

Host Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Interconnected set of 3D-stacked memory+logic chips with simple cores

Logic

Memory

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Logic

Memory

Tesseract System for Graph Processing

216

Crossbar Network

…
…

…
…

DRAM
 Controller

NI

In-Order Core

Message Queue

PF Buffer

MTP

LP

Host Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Communications via
Remote Function Calls



Logic

Memory

Tesseract System for Graph Processing
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Crossbar Network

…
…

…
…

DRAM
 Controller

NI

In-Order Core

Message Queue

PF Buffer

MTP

LP

Host Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Prefetching



Evaluated Systems
HMC-MC

128
In-Order
2GHz

128
In-Order
2GHz

128
In-Order
2GHz

128
In-Order
2GHz

102.4GB/s 640GB/s 640GB/s 8TB/s
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8 OoO
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8 OoO
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8 OoO
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8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

DDR3-OoO Tesseract

32 
Tesseract 

Cores

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Tesseract Graph Processing Performance

+56% +25%

9.0x
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13.8x
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LP-MTP
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ee
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p

>13X Performance Improvement

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

On five graph processing algorithms



Tesseract Graph Processing Performance
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+56% +25%
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Effect of Bandwidth & Programming Model
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Tesseract Graph Processing System Energy

0

0. 2

0. 4

0. 6

0. 8

1

1. 2

HMC-OoO Tesseract with Prefetching

Memory Layers Logic Lay ers Cores

> 8X Energy Reduction

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



More on Tesseract
n Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, 

and Kiyoung Choi,
"A Scalable Processing-in-Memory Accelerator for 
Parallel Graph Processing"
Proceedings of the 42nd International Symposium on 
Computer Architecture (ISCA), Portland, OR, June 2015. 
[Slides (pdf)] [Lightning Session Slides (pdf)]

223

http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-lightning-talk.pdf


3D-Stacked PIM on Mobile Devices
n Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata

Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki 
Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data 
Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural 
Support for Programming Languages and Operating 
Systems (ASPLOS), Williamsburg, VA, USA, March 2018.
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https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/


Google Workloads
for Consumer Devices:

Mitigating Data Movement Bottlenecks

Amirali Boroumand
Saugata Ghose,  Youngsok Kim, Rachata Ausavarungnirun,

Eric Shiu, RahulThakur, Daehyun Kim, Aki Kuusela,
Allan Knies, Parthasarathy Ranganathan, Onur Mutlu



Consumer Devices

226

Consumer devices are everywhere!

Energy consumption is
a first-class concern in consumer devices



Popular Google Consumer Workloads
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Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning 

framework

Video Playback
Google’s video codec

Video Capture
Google’s video codec
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Energy Cost of Data Movement

Data Movement

1st key observation:  62.7% of the total system 
energy is spent on data movement

Potential solution: move computation close to data

Challenge: limited area and energy budget

Processing-In-Memory (PIM)

SoC

DRAML2L1
CPU

CPUCPUCPU
Compute 

Unit 



Using PIM to Reduce Data Movement

5

2nd key observation: a significant fraction of the
data movement often comes from simple functions

PIM 
Core

PIM 
Accelerator

PIM 
Accelerator

PIM 
Accelerator

We can design lightweight logic to implement
these simple functions in memory

Small embedded
low-power core

Small fixed-function 
accelerators

Offloading to PIM logic reduces energy and improves 
performance, on average, by 55.4% and 54.2%



Google Workloads
for Consumer Devices:

Mitigating Data Movement Bottlenecks
Amirali Boroumand

Saugata Ghose,  Youngsok Kim, Rachata Ausavarungnirun,
Eric Shiu, RahulThakur, Daehyun Kim, Aki Kuusela,

Allan Knies, Parthasarathy Ranganathan, Onur Mutlu

ASPLOS 2018



More on PIM for Mobile Devices
n Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul 

Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming 
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.
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62.7% of the total system energy 
is spent on data movement

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/


Truly Distributed GPU Processing with PIM?

Logic layer 
SM

Crossbar switch

Vault 
Ctrl

…. Vault 
Ctrl

Logic layer

Main GPU

3D-stacked memory
(memory stack) SM (Streaming Multiprocessor)



Accelerating GPU Execution with PIM (I)
n Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike 

O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling 
Programmer-Transparent Near-Data Processing in GPU 
Systems"
Proceedings of the 43rd International Symposium on Computer 
Architecture (ISCA), Seoul, South Korea, June 2016. 
[Slides (pptx) (pdf)] 
[Lightning Session Slides (pptx) (pdf)] 
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https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf


Accelerating GPU Execution with PIM (II)
n Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K. 

Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities"
Proceedings of the 25th International Conference on Parallel 
Architectures and Compilation Techniques (PACT), Haifa, Israel, 
September 2016.
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https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
http://pactconf.org/


Accelerating Linked Data Structures
n Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali 

Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory: 
Challenges, Mechanisms, Evaluation"
Proceedings of the 34th IEEE International Conference on Computer 
Design (ICCD), Phoenix, AZ, USA, October 2016. 
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https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
http://www.iccd-conf.com/


Accelerating Dependent Cache Misses
n Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,

"Accelerating Dependent Cache Misses with an Enhanced 
Memory Controller"
Proceedings of the 43rd International Symposium on Computer 
Architecture (ISCA), Seoul, South Korea, June 2016. 
[Slides (pptx) (pdf)] 
[Lightning Session Slides (pptx) (pdf)] 
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https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pdf


Two Key Questions in 3D-Stacked PIM

n How can we accelerate important applications if we use         
3D-stacked memory as a coarse-grained accelerator?
q what is the architecture and programming model?
q what are the mechanisms for acceleration?

n What is the minimal processing-in-memory support we can 
provide?
q without changing the system significantly
q while achieving significant benefits
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PIM-Enabled Instructions
n Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,

"PIM-Enabled Instructions: A Low-Overhead, 
Locality-Aware Processing-in-Memory Architecture"
Proceedings of the 42nd International Symposium on 
Computer Architecture (ISCA), Portland, OR, June 2015. 
[Slides (pdf)] [Lightning Session Slides (pdf)]  

http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-lightning-talk.pdf


Automatic Code and Data Mapping
n Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike 

O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling 
Programmer-Transparent Near-Data Processing in GPU 
Systems"
Proceedings of the 43rd International Symposium on Computer 
Architecture (ISCA), Seoul, South Korea, June 2016. 
[Slides (pptx) (pdf)] 
[Lightning Session Slides (pptx) (pdf)] 
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https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
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https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf


Automatic Offloading of Critical Code
n Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,

"Accelerating Dependent Cache Misses with an Enhanced 
Memory Controller"
Proceedings of the 43rd International Symposium on Computer 
Architecture (ISCA), Seoul, South Korea, June 2016. 
[Slides (pptx) (pdf)] 
[Lightning Session Slides (pptx) (pdf)] 
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https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_isca16.pdf
http://isca2016.eecs.umich.edu/
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Automatic Offloading of Prefetch Mechanisms

n Milad Hashemi, Onur Mutlu, and Yale N. Patt,
"Continuous Runahead: Transparent Hardware Acceleration for 
Memory Intensive Workloads"
Proceedings of the 49th International Symposium on 
Microarchitecture (MICRO), Taipei, Taiwan, October 2016.
[Slides (pptx) (pdf)] [Lightning Session Slides (pdf)] [Poster (pptx) (pdf)]
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https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16.pdf
http://www.microarch.org/micro49/
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https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pptx
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Efficient Automatic Data Coherence Support

n Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, 
Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism 
for Processing-in-Memory"
IEEE Computer Architecture Letters (CAL), June 2016.
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https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
http://www.computer.org/web/cal


Challenge and Opportunity for Future

Fundamentally
Energy-Efficient
(Data-Centric)

Computing Architectures
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Challenge and Opportunity for Future

Computing Architectures
with 

Minimal Data Movement
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Eliminating the Adoption Barriers

How to Enable Adoption 
of Processing in Memory

245



Barriers to Adoption of PIM

1. Functionality of and applications for PIM

2. Ease of programming (interfaces and compiler/HW support)

3. System support: coherence & virtual memory

4. Runtime systems for adaptive scheduling, data mapping, 
access/sharing control

5. Infrastructures to assess benefits and feasibility
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We Need to Revisit the Entire Stack

247

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons



Open Problems: PIM Adoption

https://arxiv.org/pdf/1802.00320.pdf
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https://arxiv.org/pdf/1802.00320.pdf


Key Challenge 1: Code Mapping

Logic layer 
SM

Crossbar switch

Vault 
Ctrl

…. Vault 
Ctrl

Logic layer

?

Main GPU

3D-stacked memory
(memory stack)

• Challenge 1:Which operations should be executed 
in memory vs. in CPU?

?
SM (Streaming Multiprocessor)



Key Challenge 2: Data Mapping

Logic layer 
SM

Crossbar switch

Vault 
Ctrl

…. Vault 
Ctrl

Logic layer

Main GPU

3D-stacked memory
(memory stack)

• Challenge 2: How should data be mapped to 
different 3D memory stacks? 

SM (Streaming Multiprocessor)



How to Do the Code and Data Mapping?
n Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike 

O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling 
Programmer-Transparent Near-Data Processing in GPU 
Systems"
Proceedings of the 43rd International Symposium on Computer 
Architecture (ISCA), Seoul, South Korea, June 2016. 
[Slides (pptx) (pdf)] 
[Lightning Session Slides (pptx) (pdf)] 
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https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
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How to Schedule Code?
n Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K. 

Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities"
Proceedings of the 25th International Conference on Parallel 
Architectures and Compilation Techniques (PACT), Haifa, Israel, 
September 2016.
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https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
http://pactconf.org/


Challenge: Coherence for Hybrid CPU-PIM Apps
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Traditional
coherence

No coherence
overhead



How to Maintain Coherence?

n Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, 
Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism 
for Processing-in-Memory"
IEEE Computer Architecture Letters (CAL), June 2016.
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https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
http://www.computer.org/web/cal


How to Support Virtual Memory?
n Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali 

Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory: 
Challenges, Mechanisms, Evaluation"
Proceedings of the 34th IEEE International Conference on Computer 
Design (ICCD), Phoenix, AZ, USA, October 2016. 
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https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
http://www.iccd-conf.com/


How to Design Data Structures for PIM?
n Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu,

"Concurrent Data Structures for Near-Memory Computing"
Proceedings of the 29th ACM Symposium on Parallelism in Algorithms 
and Architectures (SPAA), Washington, DC, USA, July 2017.
[Slides (pptx) (pdf)]
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https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17.pdf
https://spaa.acm.org/
https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17-talk.pptx
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Simulation Infrastructures for PIM

n Ramulator extended for PIM
q Flexible and extensible DRAM simulator
q Can model many different memory standards and proposals
q Kim+, “Ramulator: A Flexible and Extensible DRAM 

Simulator”, IEEE CAL 2015.

q https://github.com/CMU-SAFARI/ramulator

257

https://github.com/CMU-SAFARI/ramulator


An FPGA-based Test-bed for PIM?

n Hasan Hassan et al., SoftMC: A 
Flexible and Practical Open-
Source Infrastructure for 
Enabling Experimental DRAM 
Studies HPCA 2017.

n Flexible
n Easy to Use (C++ API)
n Open-source 

github.com/CMU-SAFARI/SoftMC 
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https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf


Simulation Infrastructures for PIM (in SSDs) 
n Arash Tavakkol, Juan Gomez-Luna, Mohammad Sadrosadati, 

Saugata Ghose, and Onur Mutlu,
"MQSim: A Framework for Enabling Realistic Studies of 
Modern Multi-Queue SSD Devices"
Proceedings of the 16th USENIX Conference on File and Storage 
Technologies (FAST), Oakland, CA, USA, February 2018.
[Slides (pptx) (pdf)]
[Source Code]

259

https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18.pdf
https://www.usenix.org/conference/fast18
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pdf
https://github.com/CMU-SAFARI/MQSim


Concluding Remarks
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A Quote from A Famous Architect
n “architecture […] based upon principle, and not upon 

precedent”
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Precedent-Based Design?
n “architecture […] based upon principle, and not upon 

precedent”

262



Principled Design
n “architecture […] based upon principle, and not upon 

precedent”
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The Overarching Principle
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Another Example: Precedent-Based Design

266Source: http://cookiem agik.deviantart.com /art/T rain-station-207266944



Principled Design

267Source: By Toni_V, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=4087256



Another Principled Design

268Source: By M artín G óm ez Tagle - L isbon, Portugal, C C  BY-SA 3.0, https://com m ons.w ikim edia.org/w /index.php?curid=13764903
Source: http://w w w .arcspace.com /exhib itions/unsorted/santiago-calatrava/



Principle Applied to Another Structure

269
Source: https://www.dezeen.com /2016/08/29/santiago-calatrava-ocu lus-world-trade-center-transportation-hub-new-york-photographs-hufton-crow/Source: By �������� Forgemind ArchiMedia - Flickr: IMG_2489.JPG, CC BY 2.0, 
https://commons.wikimedia.org/w/index.php?curid=31493356, https://en.wikipedia.org/wiki/Santiago_Calatrava

https://commons.wikimedia.org/w/index.php?curid=31493356


The Overarching Principle
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Overarching Principles for Computing?

271Source: http://spectrum .ieee.org/im age/M jYzM zAyM g.jpeg



Concluding Remarks
n It is time to design principled system architectures to solve 

the memory problem

n Discover design principles for fundamentally secure and 
reliable computer architectures

n Design complete systems to be balanced and energy-efficient, 
i.e., low latency and data-centric (or memory-centric) 

n Enable new and emerging memory architectures 

n This can
q Lead to orders-of-magnitude improvements 
q Enable new applications & computing platforms
q …
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We Need to Think Across the Stack

273

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons



If In Doubt, See Other Doubtful Technologies
n A very “doubtful” emerging technology 

q for at least two decades

274
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and References
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Reference Overview Paper I

https://arxiv.org/pdf/1802.00320.pdf

280

https://arxiv.org/pdf/1802.00320.pdf


Reference Overview Paper II
n Onur Mutlu and Lavanya Subramanian,

"Research Problems and Opportunities in Memory 
Systems"
Invited Article in Supercomputing Frontiers and Innovations
(SUPERFRI), 2014/2015. 

https://people.inf.ethz.ch/omutlu/pub/memory-systems-research_superfri14.pdf

https://people.inf.ethz.ch/omutlu/pub/memory-systems-research_superfri14.pdf
http://superfri.org/superfri
https://people.inf.ethz.ch/omutlu/pub/memory-systems-research_superfri14.pdf


Reference Overview Paper III

https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf

n Onur Mutlu,
"The RowHammer Problem and Other Issues We May Face as 
Memory Becomes Denser"
Invited Paper in Proceedings of the Design, Automation, and Test in 
Europe Conference (DATE), Lausanne, Switzerland, March 2017. 

[Slides (pptx) (pdf)] 

https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pdf


Reference Overview Paper IV
n Onur Mutlu,

"Memory Scaling: A Systems Architecture 
Perspective"
Technical talk at MemCon 2013 (MEMCON), Santa Clara, 
CA, August 2013. [Slides (pptx) (pdf)]
[Video] [Coverage on StorageSearch] 

https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf

https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf
http://www.memcon.com/
https://people.inf.ethz.ch/omutlu/pub/mutlu_memory-scaling_memcon13_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/mutlu_memory-scaling_memcon13_talk.pdf
http://www.memcon.com/video1.aspx?vfile=2708052590001&federated_f9=61773537001&videoPlayer=999&playerID=61773537001&w=520&h=442&oheight=550
http://www.storagesearch.com/ram-new-thinking.html
https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf


Reference Overview Paper V
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https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

https://arxiv.org/pdf/1706.08642


Related Videos and Course Materials (I)
n Undergraduate Computer Architecture Course Lecture 

Videos (2015, 2014, 2013)
n Undergraduate Computer Architecture Course 

Materials (2015, 2014, 2013)

n Graduate Computer Architecture Course Lecture 
Videos (2017, 2015, 2013)

n Graduate Computer Architecture Course 
Materials (2017, 2015, 2013)

n Parallel Computer Architecture Course Materials
(Lecture Videos)
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https://www.youtube.com/playlist?list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq
https://www.youtube.com/watch?v=zLP_X4wyHbY&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq
https://www.youtube.com/playlist?list=PL5PHm2jkkXmgFdD9x7RsjQC4a8KQjmUkQ
https://www.youtube.com/watch?v=BJ87rZCGWU0&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ
http://www.archive.ece.cmu.edu/~ece447/s15/doku.php?id=schedule
http://www.archive.ece.cmu.edu/~ece447/s15/doku.php?id=schedule
http://www.archive.ece.cmu.edu/~ece447/s14/doku.php?id=schedule
http://www.archive.ece.cmu.edu/~ece447/s13/doku.php?id=schedule
https://www.youtube.com/playlist?list=PL5Q2soXY2Zi9OhoVQBXYFIZywZXCPl4M_
https://www.youtube.com/playlist?list=PL5Q2soXY2Zi9OhoVQBXYFIZywZXCPl4M_
https://www.youtube.com/playlist?list=PL5PHm2jkkXmgVhh8CHAu9N76TShJqfYDt
https://www.youtube.com/playlist?list=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D
https://safari.ethz.ch/architecture/fall2017/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2017/doku.php?id=schedule
http://www.ece.cmu.edu/~ece740/f15/doku.php?id=schedule
http://www.ece.cmu.edu/~ece740/f13/doku.php?id=schedule
http://www.ece.cmu.edu/~ece742/f12/doku.php?id=lectures
https://www.youtube.com/playlist?feature=edit_ok&list=PLSEZzvupP7hNjq3Tuv2hiE5VvR-WRYoW4


Related Videos and Course Materials (II)
n Freshman Digital Circuits and Computer Architecture 

Course Lecture Videos (2018, 2017)
n Freshman Digital Circuits and Computer Architecture 

Course Materials (2018)

n Memory Systems Short Course Materials
(Lecture Video on Main Memory and DRAM Basics)
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https://www.youtube.com/playlist?list=PL5Q2soXY2Zi-IXWTT7xoNYpst5-zdZQ6y
https://www.youtube.com/playlist?list=PL5Q2soXY2Zi_QedyPWtRmFUJ2F8DdYP7l
https://www.youtube.com/playlist?list=PL5Q2soXY2Zi-IXWTT7xoNYpst5-zdZQ6y
https://safari.ethz.ch/digitaltechnik/spring2018/doku.php?id=schedule
https://safari.ethz.ch/digitaltechnik/spring2018/doku.php?id=schedule
http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html
https://www.youtube.com/watch?v=ZLCy3pG7Rc0


Some Open Source Tools (I)
n Rowhammer – Program to Induce RowHammer Errors

q https://github.com/CMU-SAFARI/rowhammer
n Ramulator – Fast and Extensible DRAM Simulator

q https://github.com/CMU-SAFARI/ramulator
n MemSim – Simple Memory Simulator

q https://github.com/CMU-SAFARI/memsim

n NOCulator – Flexible Network-on-Chip Simulator
q https://github.com/CMU-SAFARI/NOCulator

n SoftMC – FPGA-Based DRAM Testing Infrastructure
q https://github.com/CMU-SAFARI/SoftMC

n Other open-source software from my group
q https://github.com/CMU-SAFARI/
q http://www.ece.cmu.edu/~safari/tools.html
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https://github.com/CMU-SAFARI/rowhammer
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/memsim
https://github.com/CMU-SAFARI/NOCulator
https://github.com/CMU-SAFARI/SoftMC
https://github.com/CMU-SAFARI/
http://www.ece.cmu.edu/~safari/tools.html


Some Open Source Tools (II)
n MQSim – A Fast Modern SSD Simulator 

q https://github.com/CMU-SAFARI/MQSim
n Mosaic – GPU Simulator Supporting Concurrent Applications

q https://github.com/CMU-SAFARI/Mosaic
n IMPICA – Processing in 3D-Stacked Memory Simulator

q https://github.com/CMU-SAFARI/IMPICA

n SMLA – Detailed 3D-Stacked Memory Simulator
q https://github.com/CMU-SAFARI/SMLA

n HWASim – Simulator for Heterogeneous CPU-HWA Systems
q https://github.com/CMU-SAFARI/HWASim

n Other open-source software from my group
q https://github.com/CMU-SAFARI/
q http://www.ece.cmu.edu/~safari/tools.html
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https://github.com/CMU-SAFARI/MQSim
https://github.com/CMU-SAFARI/Mosaic
https://github.com/CMU-SAFARI/IMPICA
https://github.com/CMU-SAFARI/SMLA
https://github.com/CMU-SAFARI/HWASim
https://github.com/CMU-SAFARI/
http://www.ece.cmu.edu/~safari/tools.html


More Open Source Tools (III)
n A lot more open-source software from my group

q https://github.com/CMU-SAFARI/
q http://www.ece.cmu.edu/~safari/tools.html
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https://github.com/CMU-SAFARI/
http://www.ece.cmu.edu/~safari/tools.html


Referenced Papers

n All are available at

https://people.inf.ethz.ch/omutlu/projects.htm

http://scholar.google.com/citations?user=7XyGUGkAAAAJ&hl=en
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https://people.inf.ethz.ch/omutlu/projects.htm
http://scholar.google.com/citations?user=7XyGUGkAAAAJ&hl=en


Alser et al., “GateKeeper: A New Hardware Architecture for Accelerating Pre-Alignment in DNA 
Short Read Mapping,” Bioinformatics 2017.
Kim et al., “Genome Read In-Memory (GRIM) Filter,” BMC Genomics 2018.

Key Principles and Results
n Two key principles:

q Exploit the structure of the genome to minimize computation
q Morph and exploit the structure of the underlying hardware to 

maximize performance and efficiency

n Algorithm-architecture co-design for DNA read mapping
q Speeds up read mapping by ~200X (sometimes more)
q Improves accuracy of read mapping in the presence of errors
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Xin et al., “Accelerating Read Mapping with FastHASH,” BMC Genomics 2013.
Xin et al., “Shifted Hamming Distance: A Fast and Accurate SIMD-friendly Filter to Accelerate 
Alignment Verification in Read Mapping,” Bioinformatics 2015.



End of Backup Slides
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Brief Self Introduction
n Onur Mutlu

q Full Professor @ ETH Zurich CS, since September 2015 (officially May 2016)
q Strecker Professor @ Carnegie Mellon University ECE/CS, 2009-2016, 2016-…
q PhD from UT-Austin, worked at Google, VMware, Microsoft Research, Intel, AMD
q https://people.inf.ethz.ch/omutlu/
q omutlu@gmail.com (Best way to reach me)
q https://people.inf.ethz.ch/omutlu/projects.htm

n Research and Teaching in:
q Computer architecture, computer systems, hardware security, bioinformatics
q Memory and storage systems
q Hardware security, safety, predictability
q Fault tolerance
q Hardware/software cooperation
q Architectures for bioinformatics, health, medicine
q … 
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