
Onur Mutlu

omutlu@gmail.com

https://people.inf.ethz.ch/omutlu

August 29, 2018

NVMSA-RTCSA Joint Keynote Talk

Rethinking Memory System Design

(for Data-Intensive Computing)

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

Research Focus: Computer architecture, HW/SW, bioinformatics, security

• Memory and storage (DRAM, flash, emerging), interconnects

• Heterogeneous & parallel systems, GPUs, systems for data analytics

• System/architecture interaction, new execution models, new interfaces

• Hardware security, energy efficiency, fault tolerance, performance

• Genome sequence analysis & assembly algorithms and architectures

• Biologically inspired systems & system design for bio/medicine

Graphics and Vision Processing

Heterogeneous

Processors and

Accelerators

Hybrid Main Memory

Persistent Memory/Storage

Broad research
spanning apps, systems, logic
with architecture at the center

Current Research Focus Areas

Four Key Directions

◼ Fundamentally Secure/Reliable/Safe Architectures

◼ Fundamentally Energy-Efficient Architectures

❑ Memory-centric (Data-centric) Architectures

◼ Fundamentally Low-Latency Architectures

◼ Architectures for Genomics, Medicine, Health

3

A Motivating Detour:

Genome Sequence Analysis

4

Our Dream

◼ An embedded device that can perform comprehensive
genome analysis in real time (within a minute)

❑ Which of these DNAs does this DNA segment match with?

❑ What is the likely genetic disposition of this patient to this
drug?

❑ . . .

5

What Is a Genome Made Of?

6

Cell
Nucleus

The discovery of DNA’s double-helical structure (Watson+, 1953)

7

human chromosome #12
from HeLa’s cell

DNA Under Electron Microscope

DNA Sequencing

◼ Goal:

❑ Find the complete sequence of A, C, G, T’s in DNA.

◼ Challenge:

❑ There is no machine that takes long DNA as an input, and gives
the complete sequence as output

❑ All sequencing machines chop DNA into pieces and identify
relatively small pieces (but not how they fit together)

8

Untangling Yarn Balls & DNA Sequencing

9

Genome Sequencers

… and more! All produce data with
different properties.

Roche/454

Illumina HiSeq2000

Ion Torrent PGM
Ion Torrent Proton

AB SOLiD

Oxford Nanopore GridION

Oxford Nanopore MinION

Complete
Genomics

Illumina MiSeq

Pacific Biosciences RS
Illumina
NovaSeq
6000

Genome
Analysis

A C T T A G C A C T

0 1 2

A 1 0 1 2

C 2 1 0 1 2

T 2 1 0 1 2

A 2 1 2 1 2

G 2 2 2 1 2

A 3 2 2 2 2

A 3 3 3 2 3

C 4 3 3 2 3

T 4 4 3 2

T 5 4 3

Short Read

... ...
Reference Genome

Read

Alignment

 CCTATAATACG
C

C
A

T
A
T
A
T
A
C
G

TATATATACGTACTAGTACGT

ACGACTTTAGTACGTACGT
TATATATACGTACTAGTACGT

ACGTACGCCCCTACGTA

ACGACTTTAGTACGTACGT
TATATATACGTACTAAAGTACGT

CCCCCCTATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

ACG TTTTTAAAACGTA

ACGACGGGGAGTACGTACGT

Billions of Short Reads

1 2Sequencing Read Mapping

3 4Variant Calling Scientific Discovery

Genome Sequence Alignment: Example

12Source: By Aaron E. Darling, István Miklós, Mark A. Ragan - Figure 1 from Darling AE, Miklós I, Ragan MA (2008).
"Dynamics of Genome Rearrangement in Bacterial Populations". PLOS Genetics. DOI:10.1371/journal.pgen.1000128., CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=30550950

https://commons.wikimedia.org/w/index.php?curid=30550950

A C T T A G C A C T

0 1 2

A 1 0 1 2

C 2 1 0 1 2

T 2 1 0 1 2

A 2 1 2 1 2

G 2 2 2 1 2

A 3 2 2 2 2

A 3 3 3 2 3

C 4 3 3 2 3

T 4 4 3 2

T 5 4 3

Short Read

... ...
Reference Genome

Read

Alignment

 CCTATAATACG
C

C
A

T
A
T
A
T
A
C
G

TATATATACGTACTAGTACGT

ACGACTTTAGTACGTACGT
TATATATACGTACTAGTACGT

ACGTACGCCCCTACGTA

ACGACTTTAGTACGTACGT
TATATATACGTACTAAAGTACGT

CCCCCCTATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

ACG TTTTTAAAACGTA

ACGACGGGGAGTACGTACGT

Billions of Short Reads

1 2Sequencing Read Mapping

3 4Variant Calling Scientific Discovery

300 M
bases/min

Illumina HiSeq4000

2 M
bases/min

on average

(0.6%)

Bottlenecked in Mapping!!

Hash Table Based Read Mappers

◼ + Guaranteed to find all mappings → sensitive

◼ + Can tolerate up to e errors

14

http://mrfast.sourceforge.net/

Alkan+, "Personalized copy number and segmental duplication
maps using next-generation sequencing”, Nature Genetics 2009.

http://mrfast.sourceforge.net/

candidate alignment
locations (CAL)

4%

Read Alignment
(Edit-distance comp)

93%

SAM printing
3%

Read Mapping Execution Time Breakdown

Idea

Filter fast before you align

Minimize costly

“approximate string comparisons”

16

Our First Filter: Pure Software Approach

◼ Download source code and try for yourself

❑ Download link to FastHASH

17

http://mrfast.sourceforge.net/

Shifted Hamming Distance: SIMD Acceleration

18

Xin+, "Shifted Hamming Distance: A Fast and Accurate SIMD-friendly Filter
to Accelerate Alignment Verification in Read Mapping”, Bioinformatics 2015.

19

A C T T A G C A C T

0 1 2

A 1 0 1 2

C 2 1 0 1 2

T 2 1 0 1 2

A 2 1 2 1 2

G 2 2 2 1 2

A 3 2 2 2 2

A 3 3 3 2 3

C 4 3 3 2 3

T 4 4 3 2

T 5 4 3

C T A T A A T A C G

C

C
A

T
A

T
A
T
A
C

G

High throughput DNA
sequencing (HTS) technologies

Read Pre-Alignment Filtering
Fast & Low False Positive Rate

1 2
Read Alignment
Slow & Zero False Positives

3

Billions of Short Reads

Hardware Acceleratorx1012

mappings
x103

mappings

Low Speed & High Accuracy

Medium Speed, Medium Accuracy

High Speed, Low Accuracy

An Example Solution: GateKeeper

Alignment
Filter

st

1
FPGA-based

Alignment Filter.

FPGA-Based Alignment Filtering

◼ Mohammed Alser, Hasan Hassan, Hongyi Xin, Oguz Ergin, Onur
Mutlu, and Can Alkan
"GateKeeper: A New Hardware Architecture for
Accelerating Pre-Alignment in DNA Short Read Mapping"
Bioinformatics, [published online, May 31], 2017.
[Source Code]
[Online link at Bioinformatics Journal]

20

https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf
http://bioinformatics.oxfordjournals.org/
https://github.com/BilkentCompGen/GateKeeper
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx342

DNA Read Mapping & Filtering

◼ Problem: Heavily bottlenecked by Data Movement

◼ GateKeeper FPGA performance limited by DRAM bandwidth
[Alser+, Bioinformatics 2017]

◼ Ditto for SHD on SIMD [Xin+, Bioinformatics 2015]

◼ Solution: Processing-in-memory can alleviate the bottleneck

◼ However, we need to design mapping & filtering algorithms
to fit processing-in-memory

21

In-Memory DNA Sequence Analysis

◼ Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose,
Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using
Processing-in-Memory Technologies"
BMC Genomics, 2018.
Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC),
Yokohama, Japan, January 2018.
arxiv.org Version (pdf)

22

http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
https://arxiv.org/pdf/1711.01177.pdf

Alser et al., “GateKeeper: A New Hardware Architecture for Accelerating Pre-Alignment in DNA
Short Read Mapping,” Bioinformatics 2017.
Kim et al., “Genome Read In-Memory (GRIM) Filter,” BMC Genomics 2018.

Quick Note: Key Principles and Results

◼ Two key principles:

❑ Exploit the structure of the genome to minimize computation

❑ Morph and exploit the structure of the underlying hardware to
maximize performance and efficiency

◼ Algorithm-architecture co-design for DNA read mapping

❑ Speeds up read mapping by ~200X (sometimes more)

❑ Improves accuracy of read mapping in the presence of errors

23

Xin et al., “Accelerating Read Mapping with FastHASH,” BMC Genomics 2013.

Xin et al., “Shifted Hamming Distance: A Fast and Accurate SIMD-friendly Filter to Accelerate
Alignment Verification in Read Mapping,” Bioinformatics 2015.

New Genome Sequencing Technologies

24

Senol Cali+, “Nanopore Sequencing Technology and Tools for Genome
Assembly: Computational Analysis of the Current State, Bottlenecks
and Future Directions,” Briefings in Bioinformatics, 2018.
[Preliminary arxiv.org version]

Oxford Nanopore MinION

https://arxiv.org/pdf/1711.08774.pdf

Nanopore Genome Assembly Pipeline

25
Senol Cali+, “Nanopore Sequencing Technology and Tools for Genome
Assembly,” Briefings in Bioinformatics, 2018.

More on Genome Analysis: Another Talk

26

Recall Our Dream

◼ An embedded device that can perform comprehensive
genome analysis in real time (within a minute)

◼ Still a long ways to go

❑ Energy efficiency

❑ Performance (latency)

❑ Security

❑ Huge memory bottleneck

27

Four Key Directions

◼ Fundamentally Secure/Reliable/Safe Architectures

◼ Fundamentally Energy-Efficient Architectures

❑ Memory-centric (Data-centric) Architectures

◼ Fundamentally Low-Latency Architectures

◼ Architectures for Genomics, Medicine, Health

28

Memory & Storage

29

The Main Memory System

◼ Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

◼ Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits

30

Processors

and caches
Main Memory Storage (SSD/HDD)

The Main Memory System

◼ Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

◼ Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits

31

Main Memory Storage (SSD/HDD)FPGAs

The Main Memory System

◼ Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

◼ Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits

32

Main Memory Storage (SSD/HDD)GPUs

Memory System: A Shared Resource View

33

Storage

Most of the system is dedicated to storing and moving data

State of the Main Memory System

◼ Recent technology, architecture, and application trends

❑ lead to new requirements

❑ exacerbate old requirements

◼ DRAM and memory controllers, as we know them today,
are (will be) unlikely to satisfy all requirements

◼ Some emerging non-volatile memory technologies (e.g.,
PCM) enable new opportunities: memory+storage merging

◼ We need to rethink the main memory system

❑ to fix DRAM issues and enable emerging technologies

❑ to satisfy all requirements
34

Agenda

◼ Major Trends Affecting Main Memory

◼ Key Challenges and Solution Directions

❑ Robustness: Reliability and Security

❑ Energy and Performance: In-Memory Computation

❑ Low Latency/Energy and Latency/Energy/Reliability Tradeoffs

❑ Scalability and More: Enabling Emerging Technologies

◼ Solution Principles

◼ Concluding Remarks

35

Major Trends Affecting Main Memory (I)

◼ Need for main memory capacity, bandwidth, QoS increasing

◼ Main memory energy/power is a key system design concern

◼ DRAM technology scaling is ending

36

Major Trends Affecting Main Memory (II)

◼ Need for main memory capacity, bandwidth, QoS increasing

❑ Multi-core: increasing number of cores/agents

❑ Data-intensive applications: increasing demand/hunger for data

❑ Consolidation: cloud computing, GPUs, mobile, heterogeneity

◼ Main memory energy/power is a key system design concern

◼ DRAM technology scaling is ending

37

Example: The Memory Capacity Gap

◼ Memory capacity per core expected to drop by 30% every two years

◼ Trends worse for memory bandwidth per core!
38

Core count doubling ~ every 2 years

DRAM DIMM capacity doubling ~ every 3 years

Lim et al., ISCA 2009

1

10

100

1999 2003 2006 2008 2011 2013 2014 2015 2016 2017

D
R

A
M

 I
m

p
ro

ve
m

e
n
t

(l
o
g)

Capacity Bandwidth Latency

DRAM Capacity, Bandwidth, Latency Trends

128x

20x

1.3x

Memory latency remains almost constant

DRAM Latency Is Critical for Performance

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15;

Awan+, BDCloud’15]

Datacenter Workloads
[Kanev+ (Google), ISCA’15]

In-memory Databases
[Mao+, EuroSys’12;

Clapp+ (Intel), IISWC’15]

Graph/Tree Processing
[Xu+, IISWC’12; Umuroglu+, FPL’15]

DRAM Latency Is Critical for Performance

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15;

Awan+, BDCloud’15]

Datacenter Workloads
[Kanev+ (Google), ISCA’15]

In-memory Databases
[Mao+, EuroSys’12;

Clapp+ (Intel), IISWC’15]

Graph/Tree Processing
[Xu+, IISWC’12; Umuroglu+, FPL’15]

Long memory latency → performance

bottleneck

Major Trends Affecting Main Memory (III)

◼ Need for main memory capacity, bandwidth, QoS increasing

◼ Main memory energy/power is a key system design concern

❑ ~40-50% energy spent in off-chip memory hierarchy [Lefurgy,

IEEE Computer’03] >40% power in DRAM [Ware, HPCA’10][Paul,ISCA’15]

❑ DRAM consumes power even when not used (periodic refresh)

◼ DRAM technology scaling is ending

42

Major Trends Affecting Main Memory (IV)

◼ Need for main memory capacity, bandwidth, QoS increasing

◼ Main memory energy/power is a key system design concern

◼ DRAM technology scaling is ending

❑ ITRS projects DRAM will not scale easily below X nm

❑ Scaling has provided many benefits:

◼ higher capacity (density), lower cost, lower energy

43

Major Trends Affecting Main Memory (V)

◼ DRAM scaling has already become increasingly difficult

❑ Increasing cell leakage current, reduced cell reliability,
increasing manufacturing difficulties [Kim+ ISCA 2014],

[Liu+ ISCA 2013], [Mutlu IMW 2013], [Mutlu DATE 2017]

❑ Difficult to significantly improve capacity, energy

◼ Emerging memory technologies are promising

3D-Stacked DRAM higher bandwidth smaller capacity

Reduced-Latency DRAM
(e.g., RLDRAM, TL-DRAM)

lower latency higher cost

Low-Power DRAM
(e.g., LPDDR3, LPDDR4)

lower power
higher latency

higher cost

Non-Volatile Memory (NVM)
(e.g., PCM, STTRAM, ReRAM,
3D Xpoint)

larger capacity
higher latency

higher dynamic power
lower endurance

44

Major Trends Affecting Main Memory (V)

◼ DRAM scaling has already become increasingly difficult

❑ Increasing cell leakage current, reduced cell reliability,
increasing manufacturing difficulties [Kim+ ISCA 2014],

[Liu+ ISCA 2013], [Mutlu IMW 2013], [Mutlu DATE 2017]

❑ Difficult to significantly improve capacity, energy

◼ Emerging memory technologies are promising

3D-Stacked DRAM higher bandwidth smaller capacity

Reduced-Latency DRAM
(e.g., RL/TL-DRAM, FLY-RAM)

lower latency higher cost

Low-Power DRAM
(e.g., LPDDR3, LPDDR4, Voltron)

lower power
higher latency

higher cost

Non-Volatile Memory (NVM)
(e.g., PCM, STTRAM, ReRAM, 3D
Xpoint)

larger capacity
higher latency

higher dynamic power
lower endurance

45

Major Trend: Hybrid Main Memory

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best
Paper Award.

CPU
DRAM
Ctrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
Ctrl

DRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

One Foreshadowing

Main Memory Needs

Intelligent Controllers

47

Industry Is Writing Papers About It, Too

48

Call for Intelligent Memory Controllers

49

Agenda

◼ Major Trends Affecting Main Memory

◼ Key Challenges and Solution Directions

❑ Robustness: Reliability and Security

❑ Energy and Performance: In-Memory Computation

❑ Low Latency/Energy and Latency/Energy/Reliability Tradeoffs

❑ Scalability and More: Enabling Emerging Technologies

◼ Solution Principles

◼ Concluding Remarks

50

Four Key Issues in Future Platforms

◼ Fundamentally Secure/Reliable/Safe Architectures

◼ Fundamentally Energy-Efficient Architectures

❑ Memory-centric (Data-centric) Architectures

◼ Fundamentally Low-Latency Architectures

◼ Architectures for Genomics, Medicine, Health

51

Maslow’s (Human) Hierarchy of Needs

◼ We need to start with reliability and security…

52

Maslow, “A Theory of Human Motivation,”
Psychological Review, 1943.

Source: https://www.simplypsychology.org/maslow.html

Maslow, “A Theory of Human Motivation,”
Psychological Review, 1943.

Maslow, “Motivation and Personality,”
Book, 1954-1970.

Source: By User:Factoryjoe - Mazlow's Hierarchy of Needs.svg, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=7964065

How Reliable/Secure/Safe is This Bridge?

53Source: http://www.technologystudent.com/struct1/tacom1.png

Collapse of the “Galloping Gertie”

54Source: AP
http://www.wsdot.wa.gov/tnbhistory/connections/connections3.htm

How Secure Are These People?

55Source: https://s-media-cache-ak0.pinimg.com/originals/48/09/54/4809543a9c7700246a0cf8acdae27abf.jpg

Security is about preventing unforeseen consequences

The DRAM Scaling Problem

◼ DRAM stores charge in a capacitor (charge-based memory)

❑ Capacitor must be large enough for reliable sensing

❑ Access transistor should be large enough for low leakage and high
retention time

❑ Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

◼ DRAM capacity, cost, and energy/power hard to scale

56

As Memory Scales, It Becomes Unreliable

◼ Data from all of Facebook’s servers worldwide
◼ Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers,” DSN’15.

57

Large-Scale Failure Analysis of DRAM Chips

◼ Analysis and modeling of memory errors found in all of
Facebook’s server fleet

◼ Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"Revisiting Memory Errors in Large-Scale Production Data
Centers: Analysis and Modeling of New Trends from the Field"
Proceedings of the 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June
2015.
[Slides (pptx) (pdf)] [DRAM Error Model]

58

http://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15.pdf
http://2015.dsn.org/
http://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15-talk.pdf
https://www.ece.cmu.edu/~safari/tools/memerr/index.html

Infrastructures to Understand Such Issues

59

An Experimental Study of Data Retention
Behavior in Modern DRAM Devices:
Implications for Retention Time Profiling
Mechanisms (Liu et al., ISCA 2013)

The Efficacy of Error Mitigation Techniques
for DRAM Retention Failures: A
Comparative Experimental Study
(Khan et al., SIGMETRICS 2014)

Flipping Bits in Memory Without Accessing
Them: An Experimental Study of DRAM
Disturbance Errors (Kim et al., ISCA 2014)

Adaptive-Latency DRAM: Optimizing DRAM
Timing for the Common-Case (Lee et al.,
HPCA 2015)

AVATAR: A Variable-Retention-Time (VRT)
Aware Refresh for DRAM Systems (Qureshi
et al., DSN 2015)

http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_sigmetrics14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15.pdf

Infrastructures to Understand Such Issues

60Kim+, “Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

HeaterFPGAs FPGAs

SoftMC: Open Source DRAM Infrastructure

◼ Hasan Hassan et al., “SoftMC: A
Flexible and Practical Open-
Source Infrastructure for
Enabling Experimental DRAM
Studies,” HPCA 2017.

◼ Flexible

◼ Easy to Use (C++ API)

◼ Open-source

github.com/CMU-SAFARI/SoftMC

61

https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf

SoftMC

◼ https://github.com/CMU-SAFARI/SoftMC

62

https://github.com/CMU-SAFARI/SoftMC

Data Retention in Memory [Liu et al., ISCA 2013]

◼ Retention Time Profile of DRAM looks like this:

63

Location dependent
Stored value pattern dependent

Time dependent

A Curious Discovery [Kim et al., ISCA 2014]

One can

predictably induce errors

in most DRAM memory chips

64

DRAM RowHammer

A simple hardware failure mechanism

can create a widespread

system security vulnerability

65

Row of Cells

Row
Row
Row
Row

Wordline

VLOWVHIGH
Victim Row

Victim Row

Hammered Row

Repeatedly reading a row enough times (before memory gets
refreshed) induces disturbance errors in adjacent rows in most
real DRAM chips you can buy today

OpenedClosed

66

Modern DRAM is Prone to Disturbance Errors

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM
Disturbance Errors, (Kim et al., ISCA 2014)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf

86%
(37/43)

83%
(45/54)

88%
(28/32)

A company B company C company

Up to

1.0×107

errors

Up to

2.7×106

errors

Up to

3.3×105

errors

67

Most DRAM Modules Are Vulnerable

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM
Disturbance Errors, (Kim et al., ISCA 2014)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf

68

Recent DRAM Is More Vulnerable

69

First
Appearance

Recent DRAM Is More Vulnerable

70

All modules from 2012–2013 are vulnerable

First
Appearance

Recent DRAM Is More Vulnerable

CPU

loop:

mov (X), %eax

mov (Y), %ebx

clflush (X)

clflush (Y)

mfence

jmp loop

Download from: https://github.com/CMU-SAFARI/rowhammer

DRAM Module

A Simple Program Can Induce Many Errors

Y

X

https://github.com/CMU-SAFARI/rowhammer

CPU

Download from: https://github.com/CMU-SAFARI/rowhammer

DRAM Module

A Simple Program Can Induce Many Errors

Y

X1. Avoid cache hits
– Flush X from cache

2. Avoid row hits to X
– Read Y in another row

https://github.com/CMU-SAFARI/rowhammer

CPU

loop:

mov (X), %eax

mov (Y), %ebx

clflush (X)

clflush (Y)

mfence

jmp loop

Download from: https://github.com/CMU-SAFARI/rowhammer

DRAM Module

A Simple Program Can Induce Many Errors

Y

X

https://github.com/CMU-SAFARI/rowhammer

CPU

loop:

mov (X), %eax

mov (Y), %ebx

clflush (X)

clflush (Y)

mfence

jmp loop

Download from: https://github.com/CMU-SAFARI/rowhammer

DRAM Module

A Simple Program Can Induce Many Errors

Y

X

https://github.com/CMU-SAFARI/rowhammer

CPU

loop:

mov (X), %eax

mov (Y), %ebx

clflush (X)

clflush (Y)

mfence

jmp loop

Y

X

Download from: https://github.com/CMU-SAFARI/rowhammer

DRAM Module

A Simple Program Can Induce Many Errors

https://github.com/CMU-SAFARI/rowhammer

A real reliability & security issue

CPU Architecture Errors Access-Rate

Intel Haswell (2013) 22.9K 12.3M/sec

Intel Ivy Bridge (2012) 20.7K 11.7M/sec

Intel Sandy Bridge (2011) 16.1K 11.6M/sec

AMD Piledriver (2012) 59 6.1M/sec

76Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of
DRAM Disturbance Errors,” ISCA 2014.

Observed Errors in Real Systems

One Can Take Over an Otherwise-Secure System

77

Exploiting the DRAM rowhammer bug to
gain kernel privileges (Seaborn, 2015)

Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors
(Kim et al., ISCA 2014)

http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf

RowHammer Security Attack Example
◼ “Rowhammer” is a problem with some recent DRAM devices in which

repeatedly accessing a row of memory can cause bit flips in adjacent rows
(Kim et al., ISCA 2014).

❑ Flipping Bits in Memory Without Accessing Them: An Experimental Study of
DRAM Disturbance Errors (Kim et al., ISCA 2014)

◼ We tested a selection of laptops and found that a subset of them
exhibited the problem.

◼ We built two working privilege escalation exploits that use this effect.

❑ Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn+, 2015)

◼ One exploit uses rowhammer-induced bit flips to gain kernel privileges on
x86-64 Linux when run as an unprivileged userland process.

◼ When run on a machine vulnerable to the rowhammer problem, the
process was able to induce bit flips in page table entries (PTEs).

◼ It was able to use this to gain write access to its own page table, and
hence gain read-write access to all of physical memory.

78
Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn & Dullien, 2015)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html

Security Implications

79

Security Implications

80

Selected Readings on RowHammer (I)

◼ Our first detailed study: Rowhammer analysis and solutions (June 2014)

◼ Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee,
Chris Wilkerson, Konrad Lai, and Onur Mutlu,
"Flipping Bits in Memory Without Accessing Them: An Experimental
Study of DRAM Disturbance Errors"
Proceedings of the 41st International Symposium on Computer Architecture
(ISCA), Minneapolis, MN, June 2014. [Slides (pptx) (pdf)] [Lightning Session
Slides (pptx) (pdf)] [Source Code and Data]

◼ Our Source Code to Induce Errors in Modern DRAM Chips (June 2014)

◼ https://github.com/CMU-SAFARI/rowhammer

◼ Google Project Zero’s Attack to Take Over a System (March 2015)

◼ Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn+, 2015)

◼ https://github.com/google/rowhammer-test

◼ Double-sided Rowhammer

81

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://cag.engr.uconn.edu/isca2014/
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_kim_talk_isca14.pptx
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_kim_talk_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pptx
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pdf
https://github.com/CMU-SAFARI/rowhammer
https://github.com/CMU-SAFARI/rowhammer
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://github.com/google/rowhammer-test

Selected Readings on RowHammer (II)

◼ Remote RowHammer Attacks via JavaScript (July 2015)

◼ http://arxiv.org/abs/1507.06955

◼ https://github.com/IAIK/rowhammerjs

◼ Gruss et al., DIMVA 2016.

◼ CLFLUSH-free Rowhammer

◼ “A fully automated attack that requires nothing but a website with
JavaScript to trigger faults on remote hardware.”

◼ “We can gain unrestricted access to systems of website visitors.”

◼ ANVIL: Software-Based Protection Against Next-Generation
Rowhammer Attacks (March 2016)

❑ http://dl.acm.org/citation.cfm?doid=2872362.2872390

❑ Aweke et al., ASPLOS 2016

❑ CLFLUSH-free Rowhammer

❑ Software based monitoring for rowhammer detection

82

http://arxiv.org/abs/1507.06955
https://github.com/IAIK/rowhammerjs
http://dl.acm.org/citation.cfm?doid=2872362.2872390

Selected Readings on RowHammer (III)

◼ Dedup Est Machina: Memory Deduplication as an Advanced Exploitation
Vector (May 2016)

◼ https://www.ieee-security.org/TC/SP2016/papers/0824a987.pdf

◼ Bosman et al., IEEE S&P 2016.

◼ Exploits Rowhammer and Memory Deduplication to overtake a browser

◼ “We report on the first reliable remote exploit for the Rowhammer
vulnerability running entirely in Microsoft Edge.”

◼ “[an attacker] … can reliably “own” a system with all defenses up, even if
the software is entirely free of bugs.”

83

https://www.ieee-security.org/TC/SP2016/papers/0824a987.pdf

Selected Readings on RowHammer (IV)

◼ Flip Feng Shui: Hammering a Needle in the Software Stack (August 2016)

◼ https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper
_razavi.pdf

◼ Razavi et al., USENIX Security 2016.

◼ Combines memory deduplication and RowHammer

◼ “A malicious VM can gain unauthorized access to a co-hosted VM
running OpenSSH.”

◼ Breaks OpenSSH public key authentication

◼ Drammer: Deterministic Rowhammer Attacks on Mobile Platforms
(October 2016)

❑ http://dl.acm.org/citation.cfm?id=2976749.2978406

❑ Van Der Veen et al., CCS 2016

❑ Can take over an ARM-based Android system deterministically

❑ Exploits predictable physical memory allocator behavior

◼ Can deterministically place security-sensitive data (e.g., page table) in an attacker-
chosen, vulnerable location in memory

84

https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_razavi.pdf
http://dl.acm.org/citation.cfm?id=2976749.2978406

Selected Readings on RowHammer (V)

◼ Grand Pwning Unit: Accelerating Microarchitectural Attacks with the
GPU (May 2018)

◼ https://www.vusec.net/wp-content/uploads/2018/05/glitch.pdf

◼ Frigo et al., IEEE S&P 2018.

◼ The first end-to-end remote Rowhammer exploit on mobile platforms that
use our GPU-based primitives in orchestration to compromise browsers
on mobile devices in under two minutes.

◼ Throwhammer: Rowhammer Attacks over the Network and Defenses
(July 2018)

◼ https://www.cs.vu.nl/~herbertb/download/papers/throwhammer_atc18.pdf

◼ Tatar et al., USENIX ATC 2018.

◼ “[We] show that an attacker can trigger and exploit Rowhammer bit
flips directly from a remote machine by only sending network
packets.”

85

https://www.vusec.net/wp-content/uploads/2018/05/glitch.pdf
https://www.cs.vu.nl/~herbertb/download/papers/throwhammer_atc18.pdf

Selected Readings on RowHammer (VI)

◼ Nethammer: Inducing Rowhammer Faults through Network Requests
(July 2018)

◼ https://arxiv.org/pdf/1805.04956.pdf

◼ Lipp et al., arxiv.org 2018.

◼ “Nethammer is the first truly remote Rowhammer attack, without a
single attacker-controlled line of code on the targeted system.”

86

https://arxiv.org/pdf/1805.04956.pdf

More Security Implications (I)

87
Source: https://lab.dsst.io/32c3-slides/7197.html

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript (DIMVA’16)

“We can gain unrestricted access to systems of website visitors.”

https://lab.dsst.io/32c3-slides/7197.html

More Security Implications (II)

88
Source: https://fossbytes.com/drammer-rowhammer-attack-android-root-devices/

Drammer: Deterministic Rowhammer
Attacks on Mobile Platforms, CCS’16

“Can gain control of a smart phone deterministically”

More Security Implications (III)

◼ Using an integrated GPU in a mobile system to remotely
escalate privilege via the WebGL interface

89

More Security Implications (IV)

◼ Rowhammer over RDMA (I)

90

More Security Implications (V)

◼ Rowhammer over RDMA (II)

91

More Security Implications?

92

Some Potential Solutions

93

Cost• Make better DRAM chips

Cost, Power• Sophisticated ECC

Power, Performance• Refresh frequently

Cost, Power, Complexity• Access counters

Apple’s Patch for RowHammer

◼ https://support.apple.com/en-gb/HT204934

HP, Lenovo, and other vendors released similar patches

https://support.apple.com/en-gb/HT204934

Our Solution to RowHammer

• PARA: Probabilistic Adjacent Row Activation

• Key Idea
– After closing a row, we activate (i.e., refresh) one of

its neighbors with a low probability: p = 0.005

• Reliability Guarantee
– When p=0.005, errors in one year: 9.4×10-14

– By adjusting the value of p, we can vary the strength
of protection against errors

95

Advantages of PARA
• PARA refreshes rows infrequently

– Low power

– Low performance-overhead

• Average slowdown: 0.20% (for 29 benchmarks)

• Maximum slowdown: 0.75%

• PARA is stateless
– Low cost

– Low complexity

• PARA is an effective and low-overhead solution
to prevent disturbance errors

96

Requirements for PARA
• If implemented in DRAM chip

– Enough slack in timing parameters

– Plenty of slack today:
• Lee et al., “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common Case,” HPCA 2015.

• Chang et al., “Understanding Latency Variation in Modern DRAM Chips,” SIGMETRICS 2016.

• Lee et al., “Design-Induced Latency Variation in Modern DRAM Chips,” SIGMETRICS 2017.

• Chang et al., “Understanding Reduced-Voltage Operation in Modern DRAM Devices,” SIGMETRICS
2017.

• Ghose et al., “What Your DRAM Power Models Are Not Telling You: Lessons from a Detailed
Experimental Study,” SIGMETRICS 2018.

• If implemented in memory controller
– Better coordination between memory controller and

DRAM

– Memory controller should know which rows are
physically adjacent 97

Probabilistic Activation in Real Life (I)

98https://twitter.com/isislovecruft/status/1021939922754723841

https://twitter.com/isislovecruft/status/1021939922754723841

Probabilistic Activation in Real Life (II)

99https://twitter.com/isislovecruft/status/1021939922754723841

https://twitter.com/isislovecruft/status/1021939922754723841

More on RowHammer Analysis

100

◼ Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
"Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors"
Proceedings of the 41st International Symposium on Computer
Architecture (ISCA), Minneapolis, MN, June 2014.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code
and Data]

https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_isca14.pdf
http://cag.engr.uconn.edu/isca2014/
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_talk_isca14.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_talk_isca14.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pdf
https://github.com/CMU-SAFARI/rowhammer

Future of Memory Reliability/Security

101https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf

◼ Onur Mutlu,
"The RowHammer Problem and Other Issues We May Face as
Memory Becomes Denser"
Invited Paper in Proceedings of the Design, Automation, and Test in
Europe Conference (DATE), Lausanne, Switzerland, March 2017.
[Slides (pptx) (pdf)]

https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pdf

Industry Is Writing Papers About It, Too

102

Call for Intelligent Memory Controllers

103

Aside: Intelligent Controller for NAND Flash

USB Jack

Virtex-II Pro

(USB controller)

Virtex-V FPGA

(NAND Controller)

HAPS-52 Mother Board

USB Daughter Board

NAND Daughter Board

1x-nm

NAND Flash

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.

[DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014,
HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017,
PIEEE 2017, HPCA 2018, SIGMETRICS 2018]

Aside: Intelligent Controller for NAND Flash

105

https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

https://arxiv.org/pdf/1706.08642
https://arxiv.org/pdf/1706.08642

A Key Takeaway

Main Memory Needs

Intelligent Controllers

106

Solution Direction: Principled Designs

Design fundamentally secure

computing architectures

Predict and prevent

such safety issues
107

Recall: Collapse of the “Galloping Gertie”

108Source: AP
http://www.wsdot.wa.gov/tnbhistory/connections/connections3.htm

Another Example (1994)

109Source: By 최광모 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=35197984

Yet Another Example (2007)

110
Source: Morry Gash/AP,
https://www.npr.org/2017/08/01/540669701/10-years-after-bridge-collapse-america-is-still-crumbling?t=1535427165809

A More Recent Example (2018)

111Source: AFP / Valery HACHE, https://www.capitalfm.co.ke/news/2018/08/genoa-bridge-collapse-what-we-know/

Architecting for Security

◼ Understand: Methods for vulnerability modeling & discovery

❑ Modeling and prediction based on real (device) data and analysis

❑ Understanding vulnerabilities

❑ Developing reliable metrics

◼ Architect: Principled architectures with security as key concern

❑ Good partitioning of duties across the stack

❑ Cannot give up performance and efficiency

❑ Patch-ability in the field

◼ Design & Test: Principled design, automation, (online) testing

❑ Design for security

❑ High coverage and good interaction with system reliability
methods

112

113Kim+, “Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

HeaterFPGAs FPGAs

Understand and Model with Experiments (DRAM)

Understand and Model with Experiments (Flash)

USB Jack

Virtex-II Pro

(USB controller)

Virtex-V FPGA

(NAND Controller)

HAPS-52 Mother Board

USB Daughter Board

NAND Daughter Board

1x-nm

NAND Flash

[DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014,
HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017,
PIEEE 2017, HPCA 2018, SIGMETRICS 2018]

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.

Understanding Flash Memory Reliability

115
https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

https://arxiv.org/pdf/1706.08642
https://arxiv.org/pdf/1706.08642

Understanding Flash Memory Reliability

◼ Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"A Large-Scale Study of Flash Memory Errors in the Field"
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Portland, OR, June
2015.
[Slides (pptx) (pdf)] [Coverage at ZDNet] [Coverage on The Register]
[Coverage on TechSpot] [Coverage on The Tech Report]

116

https://people.inf.ethz.ch/omutlu/pub/flash-memory-failures-in-the-field-at-facebook_sigmetrics15.pdf
http://www.sigmetrics.org/sigmetrics2015/
https://people.inf.ethz.ch/omutlu/pub/flash-memory-failures-in-the-field-at-facebook_sigmetrics15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/flash-memory-failures-in-the-field-at-facebook_sigmetrics15-talk.pdf
http://www.zdnet.com/article/facebooks-ssd-experience/
http://www.theregister.co.uk/2015/06/22/facebook_reveals_ssd_failure_rate_trough/
http://www.techspot.com/news/61090-researchers-publish-first-large-scale-field-ssd-reliability.html
http://techreport.com/news/28519/facebook-ssd-reliability-study-shows-early-burnouts

NAND Flash Vulnerabilities [HPCA’17]

117

https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities_hpca17.pdf

HPCA, Feb. 2017

https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities_hpca17.pdf

3D NAND Flash Reliability I [HPCA’18]

◼ Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu,
"HeatWatch: Improving 3D NAND Flash Memory Device
Reliability by Exploiting Self-Recovery and Temperature-
Awareness"
Proceedings of the 24th International Symposium on High-Performance
Computer Architecture (HPCA), Vienna, Austria, February 2018.
[Lightning Talk Video]
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]

118

https://people.inf.ethz.ch/omutlu/pub/heatwatch-3D-nand-errors-and-self-recovery_hpca18.pdf
https://hpca2018.ece.ucsb.edu/
https://www.youtube.com/watch?v=7ZpGozzEVpY&feature=youtu.be
https://people.inf.ethz.ch/omutlu/pub/heatwatch-3D-nand-errors-and-self-recovery_hpca18_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/heatwatch-3D-nand-errors-and-self-recovery_hpca18_talk.pdf
https://people.inf.ethz.ch/omutlu/pub/heatwatch-3D-nand-errors-and-self-recovery_hpca18_lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/heatwatch-3D-nand-errors-and-self-recovery_hpca18_lightning-talk.pdf

3D NAND Flash Reliability II [SIGMETRICS’18]

◼ Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu,
"Improving 3D NAND Flash Memory Lifetime by Tolerating
Early Retention Loss and Process Variation"
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Irvine, CA, USA, June
2018.
[Abstract]
[POMACS Journal Version (same content, different format)]
[Slides (pptx) (pdf)]

119

https://people.inf.ethz.ch/omutlu/pub/3D-NAND-flash-lifetime-early-retention-loss-and-process-variation_sigmetrics18_pomacs18-twocolumn.pdf
http://www.sigmetrics.org/sigmetrics2018/
https://people.inf.ethz.ch/omutlu/pub/3D-NAND-flash-lifetime-early-retention-loss-and-process-variation_sigmetrics18-abstract.pdf
https://people.inf.ethz.ch/omutlu/pub/3D-NAND-flash-lifetime-early-retention-loss-and-process-variation_sigmetrics18_pomacs18.pdf
https://people.inf.ethz.ch/omutlu/pub/3D-NAND-flash-lifetime-early-retention-loss-and-process-variation_sigmetrics18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/3D-NAND-flash-lifetime-early-retention-loss-and-process-variation_sigmetrics18-talk.pdf

Another Talk: NAND Flash Memory Robustness

◼ Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu,
"Error Characterization, Mitigation, and Recovery in Flash Memory Based
Solid State Drives"
to appear in Proceedings of the IEEE, 2017.

Cai+, “Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis,” DATE 2012.

Cai+, “Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory Lifetime,” ICCD 2012.

Cai+, “Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization, Analysis and Modeling,” DATE 2013.

Cai+, “Error Analysis and Retention-Aware Error Management for NAND Flash Memory,” Intel Technology Journal 2013.

Cai+, “Program Interference in MLC NAND Flash Memory: Characterization, Modeling, and Mitigation,” ICCD 2013.

Cai+, “Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories,” SIGMETRICS 2014.

Cai+,”Data Retention in MLC NAND Flash Memory: Characterization, Optimization and Recovery,” HPCA 2015.

Cai+, “Read Disturb Errors in MLC NAND Flash Memory: Characterization and Mitigation,” DSN 2015.

Luo+, “WARM: Improving NAND Flash Memory Lifetime with Write-hotness Aware Retention Management,” MSST 2015.

Meza+, “A Large-Scale Study of Flash Memory Errors in the Field,” SIGMETRICS 2015.

Luo+, “Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory,” IEEE JSAC
2016.

Cai+, “Vulnerabilities in MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and Mitigation
Techniques,” HPCA 2017.

Fukami+, “Improving the Reliability of Chip-Off Forensic Analysis of NAND Flash Memory Devices,” DFRWS EU 2017.

Luo+, “HeatWatch: Improving 3D NAND Flash Memory Device Reliability by Exploiting Self-Recovery and Temperature-
Awareness," HPCA 2018.

Luo+, “Improving 3D NAND Flash Memory Lifetime by Tolerating Early Retention Loss and Process Variation," SIGMETRICS
2018.

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.

http://proceedingsoftheieee.ieee.org/

There are Two Other Solution Directions

◼ New Technologies: Replace or (more likely) augment DRAM
with a different technology

❑ Non-volatile memories

◼ Embracing Un-reliability:

Design memories with different reliability

and store data intelligently across them

[Luo+ DSN 2014]

◼ …

121

Fundamental solutions to security
require co-design across the hierarchy

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons

App/Data A App/Data B App/Data C

M
em

o
ry

 e
rr

o
r

vu
ln

er
ab

ili
ty

Vulnerable
data

Tolerant
data

Exploiting Memory Error Tolerance
with Hybrid Memory Systems

Heterogeneous-Reliability Memory [DSN 2014]

Low-cost memoryReliable memory

Vulnerable
data

Tolerant
data

Vulnerable
data

Tolerant
data

• ECC protected
• Well-tested chips

• NoECC or Parity
• Less-tested chips

122

On Microsoft’s Web Search workload
Reduces server hardware cost by 4.7 %
Achieves single server availability target of 99.90 %

More on Heterogeneous-Reliability Memory

◼ Yixin Luo, Sriram Govindan, Bikash Sharma, Mark Santaniello, Justin Meza, Aman
Kansal, Jie Liu, Badriddine Khessib, Kushagra Vaid, and Onur Mutlu,
"Characterizing Application Memory Error Vulnerability to Optimize
Data Center Cost via Heterogeneous-Reliability Memory"
Proceedings of the 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Atlanta, GA, June 2014. [Summary]
[Slides (pptx) (pdf)] [Coverage on ZDNet]

123

http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_dsn14.pdf
http://2014.dsn.org/
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory_dsn14-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_luo_dsn14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_luo_dsn14-talk.pdf
http://www.zdnet.com/how-good-does-memory-need-to-be-7000031853/

Summary: Memory Reliability and Security

◼ Memory reliability is reducing

◼ Reliability issues open up security vulnerabilities

❑ Very hard to defend against

◼ Rowhammer is an example

❑ Its implications on system security research are tremendous & exciting

◼ Good news: We have a lot more to do.

◼ Understand: Solid methodologies for failure modeling and discovery

❑ Modeling based on real device data – small scale and large scale

◼ Architect: Principled co-architecting of system and memory

❑ Good partitioning of duties across the stack

◼ Design & Test: Principled electronic design, automation, testing

❑ High coverage and good interaction with system reliability methods

124

Challenge and Opportunity for Future

Fundamentally

Secure, Reliable, Safe

Computing Architectures

125

One Important Takeaway

Main Memory Needs

Intelligent Controllers

126

Agenda

◼ Major Trends Affecting Main Memory

◼ Key Challenges and Solution Directions

❑ Robustness: Reliability and Security

❑ Energy and Performance: In-Memory Computation

❑ Low Latency/Energy and Latency/Energy/Reliability Tradeoffs

❑ Scalability and More: Enabling Emerging Technologies

◼ Solution Principles

◼ Concluding Remarks

127

Four Key Issues in Future Platforms

◼ Fundamentally Secure/Reliable/Safe Architectures

◼ Fundamentally Energy-Efficient Architectures

❑ Memory-centric (Data-centric) Architectures

◼ Fundamentally Low-Latency Architectures

◼ Architectures for Genomics, Medicine, Health

128

Maslow’s (Human) Hierarchy of Needs, Revisited

129

Maslow, “A Theory of Human Motivation,”
Psychological Review, 1943.

Everlasting energy

Source: https://www.simplypsychology.org/maslow.html

Maslow, “A Theory of Human Motivation,”
Psychological Review, 1943.

Maslow, “Motivation and Personality,”
Book, 1954-1970.

Do We Want This?

130Source: V. Milutinovic

Or This?

131Source: V. Milutinovic

Challenge and Opportunity for Future

Sustainable

and

Energy Efficient

132

The Problem

Data access is the major performance and energy bottleneck

Our current

design principles

cause great energy waste
(and great performance loss)

133

The Problem

Processing of data

is performed

far away from the data

134

A Computing System

◼ Three key components

◼ Computation

◼ Communication

◼ Storage/memory

135

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Image source: https://lbsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/

A Computing System

◼ Three key components

◼ Computation

◼ Communication

◼ Storage/memory

136

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Image source: https://lbsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/

Today’s Computing Systems

◼ Are overwhelmingly processor centric

◼ All data processed in the processor → at great system cost

◼ Processor is heavily optimized and is considered the master

◼ Data storage units are dumb and are largely unoptimized
(except for some that are on the processor die)

137

Yet …

◼ “It’s the Memory, Stupid!” (Richard Sites, MPR, 1996)

Mutlu+, “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.

The Performance Perspective

◼ Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
"Runahead Execution: An Alternative to Very Large Instruction
Windows for Out-of-order Processors"
Proceedings of the 9th International Symposium on High-Performance
Computer Architecture (HPCA), pages 129-140, Anaheim, CA, February
2003. Slides (pdf)

139

https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
http://www.cs.arizona.edu/hpca9/
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03_talk.pdf

The Performance Perspective (Today)

◼ All of Google’s Data Center Workloads (2015):

140Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.

The Performance Perspective (Today)

◼ All of Google’s Data Center Workloads (2015):

141Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.

Perils of Processor-Centric Design

◼ Grossly-imbalanced systems

❑ Processing done only in one place

❑ Everything else just stores and moves data: data moves a lot

→ Energy inefficient

→ Low performance

→ Complex

◼ Overly complex and bloated processor (and accelerators)

❑ To tolerate data access from memory

❑ Complex hierarchies and mechanisms

→ Energy inefficient

→ Low performance

→ Complex
142

Perils of Processor-Centric Design

143

Most of the system is dedicated to storing and moving data

The Energy Perspective

144

Dally, HiPEAC 2015

Data Movement vs. Computation Energy

145

Dally, HiPEAC 2015

A memory access consumes ~1000X
the energy of a complex addition

Data Movement vs. Computation Energy

◼ Data movement is a major system energy bottleneck

❑ Comprises 41% of mobile system energy during web browsing [2]

❑ Costs ~115 times as much energy as an ADD operation [1, 2]

146

[1]: Reducing data Movement Energy via Online Data Clustering and Encoding (MICRO’16)

[2]: Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms (IISWC’14)

Energy Waste in Mobile Devices
◼ Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul

Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

147

62.7% of the total system energy
is spent on data movement

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/

We Do Not Want to Move Data!

148

Dally, HiPEAC 2015

A memory access consumes ~1000X
the energy of a complex addition

We Need A Paradigm Shift To …

◼ Enable computation with minimal data movement

◼ Compute where it makes sense (where data resides)

◼ Make computing architectures more data-centric

149

Goal: Processing Inside Memory

◼ Many questions … How do we design the:

❑ compute-capable memory & controllers?

❑ processor chip and in-memory units?

❑ software and hardware interfaces?

❑ system software and languages?

❑ algorithms?

Cache

Processor
Core

Interconnect

Memory
Database

Graphs

Media
Query

Results

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons

Why In-Memory Computation Today?

◼ Push from Technology

❑ DRAM Scaling at jeopardy

→ Controllers close to DRAM

→ Industry open to new memory architectures

◼ Pull from Systems and Applications

❑ Data access is a major system and application bottleneck

❑ Systems are energy limited

❑ Data movement much more energy-hungry than computation

151

Dally, HiPEAC 2015

Processing in Memory:

Two Approaches

1. Minimally changing memory chips

2. Exploiting 3D-stacked memory

152

Starting Simple: Data Copy and Initialization

153

Forking

00000

00000

00000

Zero initialization
(e.g., security)

VM Cloning
Deduplication

Checkpointing

Page Migration

Many more

memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ ISCA’15]

Today’s Systems: Bulk Data Copy

Memory

MCL3L2L1CPU

1) High latency

2) High bandwidth utilization

3) Cache pollution

4) Unwanted data movement

1541046ns, 3.6uJ (for 4KB page copy via DMA)

Future Systems: In-Memory Copy

Memory

MCL3L2L1CPU

1) Low latency

2) Low bandwidth utilization

3) No cache pollution

4) No unwanted data movement

1551046ns, 3.6uJ → 90ns, 0.04uJ

RowClone: In-DRAM Row Copy

Row Buffer (4 Kbytes)

Data Bus

8 bits

DRAM subarray

4 Kbytes

Step 1: Activate row A

Transfer
row

Step 2: Activate row B

Transfer
row

Negligible HW cost
Idea: Two consecutive ACTivates

RowClone: Latency and Energy Savings

0

0.2

0.4

0.6

0.8

1

1.2

Latency Energy

N
o

rm
al

iz
e

d
 S

av
in

gs

Baseline Intra-Subarray

Inter-Bank Inter-Subarray

11.6x 74x

157
Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and
Initialization of Bulk Data,” MICRO 2013.

More on RowClone

◼ Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata
Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A.
Kozuch, Phillip B. Gibbons, and Todd C. Mowry,
"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and
Initialization"
Proceedings of the 46th International Symposium on Microarchitecture
(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning Session
Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

158

http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://www.microarch.org/micro46/
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pdf

In-Memory Bulk Bitwise Operations

◼ We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ

◼ At low cost

◼ Using analog computation capability of DRAM

❑ Idea: activating multiple rows performs computation

◼ 30-60X performance and energy improvement

❑ Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology,” MICRO 2017.

◼ New memory technologies enable even more opportunities

❑ Memristors, resistive RAM, phase change mem, STT-MRAM, …

❑ Can operate on data with minimal movement

159

In-DRAM AND/OR: Triple Row Activation

160

½VDD

½VDD

dis

A

B

C

Final State
AB + BC + AC

½VDD+δ

C(A + B) +
~C(AB)en

0

VDD

Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015.

In-DRAM NOT: Dual Contact Cell

161

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

Idea:
Feed the

negated value
in the sense amplifier

into a special row

Performance: In-DRAM Bitwise Operations

162

Energy of In-DRAM Bitwise Operations

163

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

Ambit vs. DDR3: Performance and

Energy

164

0
10
20
30
40
50
60
70

Performance Improvement

Energy Reduction

32X 35X

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

Bulk Bitwise Operations in Workloads

[1] Li and Patel, BitWeaving, SIGMOD 2013

[2] Goodwin+, BitFunnel, SIGIR 2017

Example Data Structure: Bitmap Index

◼ Alternative to B-tree and its variants

◼ Efficient for performing range queries and joins

◼ Many bitwise operations to perform a query

B
it

m
ap

 1

B
it

m
ap

 2

B
it

m
ap

 4

B
it

m
ap

 3

age < 18 18 < age < 25 25 < age < 60 age > 60

Performance: Bitmap Index on Ambit

167

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

Performance: BitWeaving on Ambit

168

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

More on In-DRAM Bulk AND/OR

◼ Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk
Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and
Todd C. Mowry,
"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015.

169

http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://www.computer.org/web/cal

More on In-DRAM Bitwise Operations

◼ Vivek Seshadri et al., “Ambit: In-Memory Accelerator
for Bulk Bitwise Operations Using Commodity DRAM
Technology,” MICRO 2017.

170

https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf

Challenge and Opportunity for Future

Computing Architectures

with

Minimal Data Movement

171

Processing in Memory:

Two Approaches

1. Minimally changing memory chips

2. Exploiting 3D-stacked memory

172

Opportunity: 3D-Stacked Logic+Memory

173

Logic

Memory

Other “True 3D” technologies
under development

DRAM Landscape (circa 2015)

174

Kim+, “Ramulator: A Flexible and Extensible DRAM Simulator”, IEEE CAL 2015.

Two Key Questions in 3D-Stacked PIM

◼ How can we accelerate important applications if we use
3D-stacked memory as a coarse-grained accelerator?

❑ what is the architecture and programming model?

❑ what are the mechanisms for acceleration?

◼ What is the minimal processing-in-memory support we can
provide?

❑ without changing the system significantly

❑ while achieving significant benefits

175

Another Example: In-Memory Graph Processing

176

◼ Large graphs are everywhere (circa 2015)

◼ Scalable large-scale graph processing is challenging

36 Million
Wikipedia Pages

1.4 Billion
Facebook Users

300 Million
Twitter Users

30 Billion
Instagram Photos

+42%

0 1 2 3 4

128…

32 Cores

Speedup

Key Bottlenecks in Graph Processing

177

for (v: graph.vertices) {

for (w: v.successors) {

w.next_rank += weight * v.rank;

}

}

weight * v.rank

v

w

&w

1. Frequent random memory accesses

2. Little amount of computation

w.rank

w.next_rank

w.edges

…

Tesseract System for Graph Processing

Crossbar Network

…

…

…
…

D
R

A
M

 C
o

n
tro

ller

NI

In-Order Core

Message Queue

PF Buffer

MTP

LP

Host Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Interconnected set of 3D-stacked memory+logic chips with simple cores

Logic

Memory

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Logic

Memory

Tesseract System for Graph Processing

179

Crossbar Network

…

…

…
…

D
R

A
M

 C
o

n
tro

ller

NI

In-Order Core

Message Queue

PF Buffer

MTP

LP

Host Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Communications via
Remote Function Calls

Logic

Memory

Tesseract System for Graph Processing

180

Crossbar Network

…

…

…
…

D
R

A
M

 C
o

n
tro

ller

NI

In-Order Core

Message Queue

PF Buffer

MTP

LP

Host Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Prefetching

Evaluated Systems

HMC-MC

128
In-Order
2GHz

128
In-Order
2GHz

128
In-Order
2GHz

128
In-Order
2GHz

102.4GB/s 640GB/s 640GB/s 8TB/s

HMC-OoO

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

DDR3-OoO Tesseract

32
Tesseract

Cores

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Tesseract Graph Processing Performance

+56% +25%

9.0x

11.6x

13.8x

0

2

4

6

8

10

12

14

16

DDR3-OoO HMC-OoO HMC-MC Tesseract Tesseract-
LP

Tesseract-
LP-MTP

Sp
ee

d
u

p

>13X Performance Improvement

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

On five graph processing algorithms

Tesseract Graph Processing Performance

183

+56% +25%

9.0x

11.6x

13.8x

0

2

4

6

8

10

12

14

16

DDR3-OoO HMC-OoO HMC-MC Tesseract Tesseract-
LP

Tesseract-
LP-MTP

Sp
ee

d
u

p

80GB/s 190GB/s 243GB/s

1.3TB/s

2.2TB/s

2.9TB/s

0

0.5

1

1.5

2

2.5

3

3.5

DDR3-OoO HMC-OoO HMC-MC Tesseract Tesseract-
LP

Tesseract-
LP-MTP

M
em

o
ry

 B
an

d
w

id
th

 (
TB

/s
)

Memory Bandwidth Consumption

Effect of Bandwidth & Programming Model

184

2.3x

3.0x

6.5x

0

1

2

3

4

5

6

7

HMC-MC HMC-MC +
PIM BW

Tesseract +
Conventional BW

Tesseract

Sp
ee

d
u

p

HMC-MC Bandwidth (640GB/s) Tesseract Bandwidth (8TB/s)

Bandwidth

Programming Model

(No Prefetching)

Tesseract Graph Processing System Energy

0

0.2

0.4

0.6

0.8

1

1.2

HMC-OoO Tesseract with Prefetching

Memory Layers Logic Layers Cores

> 8X Energy Reduction

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

More on Tesseract

◼ Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu,
and Kiyoung Choi,
"A Scalable Processing-in-Memory Accelerator for
Parallel Graph Processing"
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

186

http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-lightning-talk.pdf

3D-Stacked PIM on Mobile Devices

◼ Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata
Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki
Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data
Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

187

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/

Google Workloads

for Consumer Devices:

Mitigating Data Movement Bottlenecks

Amirali Boroumand

Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun,

Eric Shiu, RahulThakur, Daehyun Kim, Aki Kuusela,

Allan Knies, Parthasarathy Ranganathan, Onur Mutlu

Consumer Devices

189

Consumer devices are everywhere!

Energy consumption is

a first-class concern in consumer devices

Popular Google Consumer Workloads

190

Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning

framework

Video Playback

Google’s video codec

Video Capture

Google’s video codec

191

Energy Cost of Data Movement

Data Movement

1st key observation: 62.7% of the total system

energy is spent on data movement

Potential solution: move computation close to data

Challenge: limited area and energy budget

Processing-In-Memory (PIM)

SoC

DRAML2L1
CPU

CPU
CPU

CPU

Compute

Unit

Using PIM to Reduce Data Movement

5

2nd key observation: a significant fraction of the

data movement often comes from simple functions

PIM

Core

PIM

Accelerator
PIM

Accelerator
PIM

Accelerator

We can design lightweight logic to implement

these simple functions in memory

Small embedded

low-power core

Small fixed-function

accelerators

Offloading to PIM logic reduces energy and improves

performance, on average, by 55.4% and 54.2%

Goals

193

1

2

Understand the data movement related

bottlenecks in modern consumer workloads

Analyze opportunities to mitigate data movement

by using processing-in-memory (PIM)

Design PIM logic that can maximize energy

efficiency given the limited area and energy

budget in consumer devices

3

Google Workloads

for Consumer Devices:

Mitigating Data Movement Bottlenecks

Amirali Boroumand
Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun,

Eric Shiu, RahulThakur, Daehyun Kim, Aki Kuusela,

Allan Knies, Parthasarathy Ranganathan, Onur Mutlu

ASPLOS 2018

More on PIM for Mobile Devices
◼ Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul

Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

195

62.7% of the total system energy
is spent on data movement

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/

Truly Distributed GPU Processing with PIM?

Logic layer

SM

Crossbar switch

Vault

Ctrl

…. Vault

Ctrl

Logic layer

Main GPU

3D-stacked memory

(memory stack) SM (Streaming Multiprocessor)

Accelerating GPU Execution with PIM (I)

◼ Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems"
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

197

https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf

Accelerating GPU Execution with PIM (II)

◼ Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.
Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities"
Proceedings of the 25th International Conference on Parallel
Architectures and Compilation Techniques (PACT), Haifa, Israel,
September 2016.

198

https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
http://pactconf.org/

Accelerating Linked Data Structures

◼ Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation"
Proceedings of the 34th IEEE International Conference on Computer
Design (ICCD), Phoenix, AZ, USA, October 2016.

199

https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
http://www.iccd-conf.com/

Accelerating Dependent Cache Misses

◼ Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,
"Accelerating Dependent Cache Misses with an Enhanced
Memory Controller"
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

200

https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pdf

Two Key Questions in 3D-Stacked PIM

◼ How can we accelerate important applications if we use
3D-stacked memory as a coarse-grained accelerator?

❑ what is the architecture and programming model?

❑ what are the mechanisms for acceleration?

◼ What is the minimal processing-in-memory support we can
provide?

❑ without changing the system significantly

❑ while achieving significant benefits

201

PIM-Enabled Instructions

◼ Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,
"PIM-Enabled Instructions: A Low-Overhead,
Locality-Aware Processing-in-Memory Architecture"
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-lightning-talk.pdf

PEI: PIM-Enabled Instructions (Ideas)
◼ Goal: Develop mechanisms to get the most out of near-data

processing with minimal cost, minimal changes to the system, no
changes to the programming model

◼ Key Idea 1: Expose each PIM operation as a cache-coherent,
virtually-addressed host processor instruction (called PEI) that
operates on only a single cache block
❑ e.g., __pim_add(&w.next_rank, value) → pim.add r1, (r2)

❑ No changes sequential execution/programming model

❑ No changes to virtual memory

❑ Minimal changes to cache coherence

❑ No need for data mapping: Each PEI restricted to a single memory module

◼ Key Idea 2: Dynamically decide where to execute a PEI (i.e., the
host processor or PIM accelerator) based on simple locality
characteristics and simple hardware predictors

❑ Execute each operation at the location that provides the best performance

203

Simple PIM Operations as ISA Extensions (II)

204

Main Memory

w.next_rankw.next_rank

for (v: graph.vertices) {

value = weight * v.rank;

for (w: v.successors) {

w.next_rank += value;

}

}
Host Processor

w.next_rankw.next_rank

64 bytes in
64 bytes out

Conventional Architecture

Simple PIM Operations as ISA Extensions (III)

205

Main Memory

w.next_rankw.next_rank

Host Processor

value

8 bytes in
0 bytes out

In-Memory Addition

for (v: graph.vertices) {

value = weight * v.rank;

for (w: v.successors) {

__pim_add(&w.next_rank, value);

}

}

pim.add r1, (r2)

PEI: PIM-Enabled Instructions (Example)

206

◼ Executed either in memory or in the processor: dynamic decision

❑ Low-cost locality monitoring for a single instruction

◼ Cache-coherent, virtually-addressed, single cache block only

◼ Atomic between different PEIs

◼ Not atomic with normal instructions (use pfence for ordering)

for (v: graph.vertices) {

value = weight * v.rank;

for (w: v.successors) {

__pim_add(&w.next_rank, value);

}

}

pfence();

pim.add r1, (r2)

pfence

PEI: Initial Evaluation Results

◼ Initial evaluations with 10 emerging data-intensive workloads

❑ Large-scale graph processing

❑ In-memory data analytics

❑ Machine learning and data mining

❑ Three input sets (small, medium, large)
for each workload to analyze the impact
of data locality

◼ Pin-based cycle-level x86-64 simulation

◼ Performance Improvement and Energy Reduction:

◼ 47% average speedup with large input data sets

◼ 32% speedup with small input data sets

◼ 25% avg. energy reduction in a single node with large input data sets

207

Automatic Code and Data Mapping

◼ Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems"
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

208

https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf

Automatic Offloading of Critical Code

◼ Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,
"Accelerating Dependent Cache Misses with an Enhanced
Memory Controller"
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

209

https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pdf

Automatic Offloading of Prefetch Mechanisms

◼ Milad Hashemi, Onur Mutlu, and Yale N. Patt,
"Continuous Runahead: Transparent Hardware Acceleration for
Memory Intensive Workloads"
Proceedings of the 49th International Symposium on
Microarchitecture (MICRO), Taipei, Taiwan, October 2016.
[Slides (pptx) (pdf)] [Lightning Session Slides (pdf)] [Poster (pptx) (pdf)]

210

https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16.pdf
http://www.microarch.org/micro49/
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-lightning-session-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pdf

Efficient Automatic Data Coherence Support

◼ Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism
for Processing-in-Memory"
IEEE Computer Architecture Letters (CAL), June 2016.

211

https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
http://www.computer.org/web/cal

Challenge and Opportunity for Future

Fundamentally

Energy-Efficient

(Data-Centric)

Computing Architectures
212

Challenge and Opportunity for Future

Fundamentally

High-Performance

(Data-Centric)

Computing Architectures
213

Challenge and Opportunity for Future

Computing Architectures

with

Minimal Data Movement

214

Eliminating the Adoption Barriers

How to Enable Adoption
of Processing in Memory

215

Barriers to Adoption of PIM

1. Functionality of and applications for PIM

2. Ease of programming (interfaces and compiler/HW support)

3. System support: coherence & virtual memory

4. Runtime systems for adaptive scheduling, data mapping,
access/sharing control

5. Infrastructures to assess benefits and feasibility

216

We Need to Revisit the Entire Stack

217

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons

Open Problems: PIM Adoption

https://arxiv.org/pdf/1802.00320.pdf

218

https://arxiv.org/pdf/1802.00320.pdf

Key Challenge 1: Code Mapping

Logic layer

SM

Crossbar switch

Vault

Ctrl

…. Vault

Ctrl

Logic layer

?

Main GPU

3D-stacked memory

(memory stack)

• Challenge 1: Which operations should be executed
in memory vs. in CPU?

?
SM (Streaming Multiprocessor)

Key Challenge 2: Data Mapping

Logic layer

SM

Crossbar switch

Vault

Ctrl

…. Vault

Ctrl

Logic layer

Main GPU

3D-stacked memory

(memory stack)

• Challenge 2: How should data be mapped to
different 3D memory stacks?

SM (Streaming Multiprocessor)

How to Do the Code and Data Mapping?

◼ Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems"
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

221

https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf

How to Schedule Code?

◼ Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.
Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities"
Proceedings of the 25th International Conference on Parallel
Architectures and Compilation Techniques (PACT), Haifa, Israel,
September 2016.

222

https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
http://pactconf.org/

Challenge: Coherence for Hybrid CPU-PIM Apps

223

Traditional

coherence

No coherence

overhead

How to Maintain Coherence?

◼ Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism
for Processing-in-Memory"
IEEE Computer Architecture Letters (CAL), June 2016.

224

https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
http://www.computer.org/web/cal

How to Support Virtual Memory?

◼ Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation"
Proceedings of the 34th IEEE International Conference on Computer
Design (ICCD), Phoenix, AZ, USA, October 2016.

225

https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
http://www.iccd-conf.com/

How to Design Data Structures for PIM?

◼ Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu,
"Concurrent Data Structures for Near-Memory Computing"
Proceedings of the 29th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), Washington, DC, USA, July 2017.
[Slides (pptx) (pdf)]

226

https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17.pdf
https://spaa.acm.org/
https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17-talk.pdf

Simulation Infrastructures for PIM

◼ Ramulator extended for PIM

❑ Flexible and extensible DRAM simulator

❑ Can model many different memory standards and proposals

❑ Kim+, “Ramulator: A Flexible and Extensible DRAM
Simulator”, IEEE CAL 2015.

❑ https://github.com/CMU-SAFARI/ramulator

227

https://github.com/CMU-SAFARI/ramulator

An FPGA-based Test-bed for PIM?

◼ Hasan Hassan et al., SoftMC: A
Flexible and Practical Open-
Source Infrastructure for
Enabling Experimental DRAM
Studies HPCA 2017.

◼ Flexible

◼ Easy to Use (C++ API)

◼ Open-source

github.com/CMU-SAFARI/SoftMC

228

https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf

Simulation Infrastructures for PIM (in SSDs)

◼ Arash Tavakkol, Juan Gomez-Luna, Mohammad Sadrosadati,
Saugata Ghose, and Onur Mutlu,
"MQSim: A Framework for Enabling Realistic Studies of
Modern Multi-Queue SSD Devices"
Proceedings of the 16th USENIX Conference on File and Storage
Technologies (FAST), Oakland, CA, USA, February 2018.
[Slides (pptx) (pdf)]
[Source Code]

229

https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18.pdf
https://www.usenix.org/conference/fast18
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pdf
https://github.com/CMU-SAFARI/MQSim

New Applications and Use Cases for PIM

◼ Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose,
Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using
Processing-in-Memory Technologies"
BMC Genomics, 2018.
Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC),
Yokohama, Japan, January 2018.
arxiv.org Version (pdf)

230

http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
https://arxiv.org/pdf/1711.01177.pdf

Genome Read In-Memory (GRIM) Filter:
Fast Seed Location Filtering in DNA Read Mapping

using Processing-in-Memory Technologies

Jeremie Kim,

Damla Senol, Hongyi Xin, Donghyuk Lee,

Saugata Ghose, Mohammed Alser, Hasan Hassan,

Oguz Ergin, Can Alkan, and Onur Mutlu

Executive Summary

◼ Genome Read Mapping is a very important problem and is the first
step in many types of genomic analysis

❑ Could lead to improved health care, medicine, quality of life

◼ Read mapping is an approximate string matching problem

❑ Find the best fit of 100 character strings into a 3 billion character dictionary

❑ Alignment is currently the best method for determining the similarity between
two strings, but is very expensive

◼ We propose an in-memory processing algorithm GRIM-Filter for
accelerating read mapping, by reducing the number of required
alignments

◼ We implement GRIM-Filter using in-memory processing within 3D-
stacked memory and show up to 3.7x speedup.

232

Google Workloads

for Consumer Devices:

Mitigating Data Movement Bottlenecks

Amirali Boroumand

Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun,

Eric Shiu, RahulThakur, Daehyun Kim, Aki Kuusela,

Allan Knies, Parthasarathy Ranganathan, Onur Mutlu

Open Problems: PIM Adoption

https://arxiv.org/pdf/1802.00320.pdf

234

https://arxiv.org/pdf/1802.00320.pdf

Enabling the Paradigm Shift

Computer Architecture Today

◼ You can revolutionize the way computers are built, if you
understand both the hardware and the software (and
change each accordingly)

◼ You can invent new paradigms for computation,
communication, and storage

◼ Recommended book: Thomas Kuhn, “The Structure of
Scientific Revolutions” (1962)

❑ Pre-paradigm science: no clear consensus in the field

❑ Normal science: dominant theory used to explain/improve
things (business as usual); exceptions considered anomalies

❑ Revolutionary science: underlying assumptions re-examined

236

Computer Architecture Today

◼ You can revolutionize the way computers are built, if you
understand both the hardware and the software (and
change each accordingly)

◼ You can invent new paradigms for computation,
communication, and storage

◼ Recommended book: Thomas Kuhn, “The Structure of
Scientific Revolutions” (1962)

❑ Pre-paradigm science: no clear consensus in the field

❑ Normal science: dominant theory used to explain/improve
things (business as usual); exceptions considered anomalies

❑ Revolutionary science: underlying assumptions re-examined

237

Challenge and Opportunity for Future

Fundamentally

Energy-Efficient

(Data-Centric)

Computing Architectures
238

Challenge and Opportunity for Future

Fundamentally

High-Performance

(Data-Centric)

Computing Architectures
239

Challenge and Opportunity for Future

Computing Architectures

with

Minimal Data Movement

240

One Important Takeaway

Main Memory Needs

Intelligent Controllers

241

Agenda

◼ Major Trends Affecting Main Memory

◼ Key Challenges and Solution Directions

❑ Robustness: Reliability and Security

❑ Energy and Performance: In-Memory Computation

❑ Low Latency/Energy and Latency/Energy/Reliability Tradeoffs

❑ Scalability and More: Enabling Emerging Technologies

◼ Solution Principles

◼ Concluding Remarks

242

Four Key Issues in Future Platforms

◼ Fundamentally Secure/Reliable/Safe Architectures

◼ Fundamentally Energy-Efficient Architectures

❑ Memory-centric (Data-centric) Architectures

◼ Fundamentally Low-Latency Architectures

◼ Architectures for Genomics, Medicine, Health

243

244Source: http://spectrum.ieee.org/image/MjYzMzAyMg.jpeg

Maslow’s Hierarchy of Needs, A Third Time

245

Speed

Speed

Speed

Speed

Speed

Source: https://www.simplypsychology.org/maslow.html

Maslow, “A Theory of Human Motivation,”
Psychological Review, 1943.

Maslow, “Motivation and Personality,”
Book, 1954-1970.

Challenge and Opportunity for Future

Fundamentally

Low-Latency

Computing Architectures

246

1

10

100

1999 2003 2006 2008 2011 2013 2014 2015 2016 2017

D
R

A
M

 I
m

p
ro

ve
m

e
n
t

(l
o
g)

Capacity Bandwidth Latency

Main Memory Latency Lags Behind

128x

20x

1.3x

Memory latency remains almost constant

A Closer Look …

248

Chang+, “Understanding Latency Variation in Modern DRAM Chips: Experimental
Characterization, Analysis, and Optimization",” SIGMETRICS 2016.

https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf

DRAM Latency Is Critical for Performance

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15;

Awan+, BDCloud’15]

Datacenter Workloads
[Kanev+ (Google), ISCA’15]

In-memory Databases
[Mao+, EuroSys’12;

Clapp+ (Intel), IISWC’15]

Graph/Tree Processing
[Xu+, IISWC’12; Umuroglu+, FPL’15]

DRAM Latency Is Critical for Performance

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15;

Awan+, BDCloud’15]

Datacenter Workloads
[Kanev+ (Google), ISCA’15]

In-memory Databases
[Mao+, EuroSys’12;

Clapp+ (Intel), IISWC’15]

Graph/Tree Processing
[Xu+, IISWC’12; Umuroglu+, FPL’15]

Long memory latency → performance

bottleneck

The Memory Latency Problem

◼ High memory latency is a significant limiter of system
performance and energy-efficiency

◼ It is becoming increasingly so with higher memory
contention in multi-core and heterogeneous architectures

❑ Exacerbating the bandwidth need

❑ Exacerbating the QoS problem

◼ It increases processor design complexity due to the
mechanisms incorporated to tolerate memory latency

251

252

Retrospective: Conventional Latency Tolerance Techniques

◼ Caching [initially by Wilkes, 1965]
❑ Widely used, simple, effective, but inefficient, passive
❑ Not all applications/phases exhibit temporal or spatial locality

◼ Prefetching [initially in IBM 360/91, 1967]
❑ Works well for regular memory access patterns
❑ Prefetching irregular access patterns is difficult, inaccurate, and hardware-

intensive

◼ Multithreading [initially in CDC 6600, 1964]
❑ Works well if there are multiple threads
❑ Improving single thread performance using multithreading hardware is an

ongoing research effort

◼ Out-of-order execution [initially by Tomasulo, 1967]
❑ Tolerates cache misses that cannot be prefetched
❑ Requires extensive hardware resources for tolerating long latencies

Truly Reducing Memory Latency

253

Two Major Sources of Latency Inefficiency

◼ Modern DRAM is not designed for low latency

❑ Main focus is cost-per-bit (capacity)

◼ Modern DRAM latency is determined by worst case
conditions and worst case devices

❑ Much of memory latency is unnecessary

254

Why the Long Memory Latency?

◼ Reason 1: Design of DRAM Micro-architecture

❑ Goal: Maximize capacity/area, not minimize latency

◼ Reason 2: “One size fits all” approach to latency specification

❑ Same latency parameters for all temperatures

❑ Same latency parameters for all DRAM chips (e.g., rows)

❑ Same latency parameters for all parts of a DRAM chip

❑ Same latency parameters for all supply voltage levels

❑ Same latency parameters for all application data

❑ …

255

Tackling the Fixed Latency Mindset
◼ Reliable operation latency is actually very heterogeneous

❑ Across temperatures, chips, parts of a chip, voltage levels, …

◼ Idea: Dynamically find out and use the lowest latency one
can reliably access a memory location with

❑ Adaptive-Latency DRAM [HPCA 2015]

❑ Flexible-Latency DRAM [SIGMETRICS 2016]

❑ Design-Induced Variation-Aware DRAM [SIGMETRICS 2017]

❑ Voltron [SIGMETRICS 2017]

❑ DRAM Latency PUF [HPCA 2018]

❑ ...

◼ We would like to find sources of latency heterogeneity and
exploit them to minimize latency

256

Latency Variation in Memory Chips

257

HighLow

DRAM Latency

DRAM BDRAM A DRAM C

Slow cells

Heterogeneous manufacturing & operating conditions →
latency variation in timing parameters

Why is Latency High?

258

• DRAM latency: Delay as specified in DRAM standards

– Doesn’t reflect true DRAM device latency

• Imperfect manufacturing process → latency variation

• High standard latency chosen to increase yield

HighLow

DRAM Latency

DRAM A DRAM B DRAM C

Manufacturing

Variation

Standard

Latency

DRAM Characterization Infrastructure

259Kim+, “Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

HeaterFPGAs FPGAs

DRAM Characterization Infrastructure

◼ Hasan Hassan et al., SoftMC: A
Flexible and Practical Open-
Source Infrastructure for
Enabling Experimental DRAM
Studies, HPCA 2017.

◼ Flexible

◼ Easy to Use (C++ API)

◼ Open-source

github.com/CMU-SAFARI/SoftMC

260

https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf

SoftMC: Open Source DRAM Infrastructure

◼ https://github.com/CMU-SAFARI/SoftMC

261

https://github.com/CMU-SAFARI/SoftMC

262

Adaptive-Latency DRAM

• Key idea
– Optimize DRAM timing parameters online

• Two components
– DRAM manufacturer provides multiple sets of

reliable DRAM timing parameters at different
temperatures for each DIMM

– System monitors DRAM temperature & uses
appropriate DRAM timing parameters

reliable DRAM timing parameters

DRAM temperature

Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA
2015.

263

Latency Reduction Summary of 115 DIMMs

• Latency reduction for read & write (55°C)
– Read Latency: 32.7%

– Write Latency: 55.1%

• Latency reduction for each timing
parameter (55°C)
– Sensing: 17.3%

– Restore: 37.3% (read), 54.8% (write)

– Precharge: 35.2%

Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA
2015.

264

AL-DRAM: Real System Evaluation

• System
– CPU: AMD 4386 (8 Cores, 3.1GHz, 8MB LLC)

– DRAM: 4GByte DDR3-1600 (800Mhz Clock)

– OS: Linux

– Storage: 128GByte SSD

• Workload
– 35 applications from SPEC, STREAM, Parsec,

Memcached, Apache, GUPS

265

0%
5%

10%
15%
20%
25%

so
p

le
x

m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
p

y

s.
cl

u
st

er

gu
p

s

n
o

n
-i

n
te

n
si

ve

in
te

n
si

ve

al
l-

w
o

rk
lo

ad
s

Single Core Multi Core

0%
5%

10%
15%
20%
25%

so
p

le
x

m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
p

y

s.
cl

u
st

er

gu
p

s

n
o

n
-i

n
te

n
si

ve

in
te

n
si

ve

al
l-

w
o

rk
lo

ad
s

Single Core Multi Core

1.4%

6.7%

0%
5%

10%
15%
20%
25%

so
p

le
x

m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
p

y

s.
cl

u
st

er

gu
p

s

n
o

n
-i

n
te

n
si

ve

in
te

n
si

ve

al
l-

w
o

rk
lo

ad
s

Single Core Multi Core

5.0%

AL-DRAM: Single-Core Evaluation

AL-DRAM improves single-core performance
on a real system

Pe
rf

or
m

an
ce

 Im
p

ro
ve

m
en

t Average
Improvement

al
l-

3
5

-w
o

rk
lo

ad

266

0%
5%

10%
15%
20%
25%

so
p

le
x

m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
p

y

s.
cl

u
st

er

gu
p

s

n
o

n
-i

n
te

n
si

ve

in
te

n
si

ve

al
l-

w
o

rk
lo

ad
s

Single Core Multi Core

0%
5%

10%
15%
20%
25%

so
p

le
x

m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
p

y

s.
cl

u
st

er

gu
p

s

n
o

n
-i

n
te

n
si

ve

in
te

n
si

ve

al
l-

w
o

rk
lo

ad
s

Single Core Multi Core

0%
5%

10%
15%
20%
25%

so
p

le
x

m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
p

y

s.
cl

u
st

er

gu
p

s

n
o

n
-i

n
te

n
si

ve

in
te

n
si

ve

al
l-

w
o

rk
lo

ad
s

Single Core Multi Core

14.0%

2.9%
0%
5%

10%
15%
20%
25%

so
p

le
x

m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
p

y

s.
cl

u
st

er

gu
p

s

n
o

n
-i

n
te

n
si

ve

in
te

n
si

ve

al
l-

w
o

rk
lo

ad
s

Single Core Multi Core

10.4%

AL-DRAM: Multi-Core Evaluation

AL-DRAM provides higher performance on
multi-programmed & multi-threaded workloads

Pe
rf

or
m

an
ce

 Im
p

ro
ve

m
en

t Average
Improvement

al
l-

3
5

-w
o

rk
lo

ad

Reducing Latency Also Reduces Energy

◼ AL-DRAM reduces DRAM power consumption by 5.8%

◼ Major reason: reduction in row activation time

267

More on Adaptive-Latency DRAM

◼ Donghyuk Lee, Yoongu Kim, Gennady Pekhimenko, Samira Khan,
Vivek Seshadri, Kevin Chang, and Onur Mutlu,
"Adaptive-Latency DRAM: Optimizing DRAM Timing for
the Common-Case"
Proceedings of the 21st International Symposium on High-
Performance Computer Architecture (HPCA), Bay Area, CA,
February 2015.
[Slides (pptx) (pdf)] [Full data sets]

268

http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://darksilicon.org/hpca/
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_donghyuk_hpca15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_donghyuk_hpca15-talk.pdf
http://www.ece.cmu.edu/~safari/tools/aldram-hpca2015-fulldata.html

Different Types of Latency Variation

◼ AL-DRAM exploits latency variation

❑ Across time (different temperatures)

❑ Across chips

◼ Is there also latency variation within a chip?

❑ Across different parts of a chip

269

Heterogeneous Latency within A Chip

• Observation: DRAM timing errors (slow DRAM

cells) are concentrated on certain regions

• Flexible-LatencY (FLY) DRAM

– A software-transparent design that reduces latency

• Key idea:

1) Divide memory into regions of different latencies

2) Memory controller: Use lower latency for regions without

slow cells; higher latency for other regions

Chang+, “Understanding Latency Variation in Modern DRAM Chips: Experimental
Characterization, Analysis, and Optimization",” SIGMETRICS 2016.

https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf

Heterogeneous Latency within A Chip

271

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25
N

o
rm

a
li
z
e
d

 P
e
rf

o
rm

a
n

c
e

40 Workloads

Baseline (DDR3)

FLY-DRAM (D1)

FLY-DRAM (D2)

FLY-DRAM (D3)

Upper Bound

17.6%
19.5%

19.7%

13.3%

Chang+, “Understanding Latency Variation in Modern DRAM Chips: Experimental
Characterization, Analysis, and Optimization",” SIGMETRICS 2016.

https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf

Analysis of Latency Variation in DRAM Chips

◼ Kevin Chang, Abhijith Kashyap, Hasan Hassan, Samira Khan, Kevin Hsieh,
Donghyuk Lee, Saugata Ghose, Gennady Pekhimenko, Tianshi Li, and
Onur Mutlu,
"Understanding Latency Variation in Modern DRAM Chips:
Experimental Characterization, Analysis, and Optimization"
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Antibes Juan-Les-Pins,
France, June 2016.
[Slides (pptx) (pdf)]
[Source Code]

272

https://users.ece.cmu.edu/~omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
http://www.sigmetrics.org/sigmetrics2016/
https://users.ece.cmu.edu/~omutlu/pub/understanding-latency-variation-in-DRAM-chips_kevinchang_sigmetrics16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/understanding-latency-variation-in-DRAM-chips_kevinchang_sigmetrics16-talk.pdf
https://github.com/CMU-SAFARI/DRAM-Latency-Variation-Study

Why Is There

Spatial Latency Variation

Within a Chip?

273

274

Inherently fast

inherently slow

What Is Design-Induced Variation?
slowfast

slo
w

fast

Systematic variation in cell access times
caused by the physical organization of DRAM

sense amplifiers

w
o

rd
lin

e
d

rivers

across row

distance from
sense amplifier

across column

distance from
wordline driver

275

DIVA Online Profiling

inherently slow

Profile only slow regions to determine min. latency
→Dynamic & low cost latency optimization

sense amplifier

w
o

rd
lin

e
d

river

Design-Induced-Variation-Aware

276

inherently slow

DIVA Online Profiling

slow cells

design-induced
variation

process
variation

localized errorrandom error

online profilingerror-correcting
code

Combine error-correcting codes & online profiling
→ Reliably reduce DRAM latency

sense amplifier

w
o

rd
lin

e
d

river

Design-Induced-Variation-Aware

277

DIVA-DRAM Reduces Latency
Read Write

31.2%

25.5%

35.1%34.6%36.6%35.8%

0%

10%

20%

30%

40%

50%

55°C 85°C 55°C 85°C 55°C 85°C

AL-DRAM AVA Profiling AVA Profiling
+ Shuffling

La
te

n
cy

 R
ed

u
ct

io
n

DIVADIVA

36.6%

27.5%

39.4%38.7%
41.3%40.3%

0%

10%

20%

30%

40%

50%

55°C 85°C 55°C 85°C 55°C 85°C

AL-DRAM AVA Profiling AVA Profiling
+ Shuffling

DIVADIVA

DIVA-DRAM reduces latency more aggressively
and uses ECC to correct random slow cells

Design-Induced Latency Variation in DRAM

◼ Donghyuk Lee, Samira Khan, Lavanya Subramanian, Saugata Ghose,
Rachata Ausavarungnirun, Gennady Pekhimenko, Vivek Seshadri, and
Onur Mutlu,
"Design-Induced Latency Variation in Modern DRAM Chips:
Characterization, Analysis, and Latency Reduction Mechanisms"
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL,
USA, June 2017.

278

https://people.inf.ethz.ch/omutlu/pub/DIVA-low-latency-DRAM_sigmetrics17-paper.pdf
http://www.sigmetrics.org/sigmetrics2017/

Voltron: Exploiting the

Voltage-Latency-Reliability

Relationship

279

Executive Summary

• DRAM (memory) power is significant in today’s systems

– Existing low-voltage DRAM reduces voltage conservatively

• Goal: Understand and exploit the reliability and latency behavior of

real DRAM chips under aggressive reduced-voltage operation

• Key experimental observations:

– Huge voltage margin -- Errors occur beyond some voltage

– Errors exhibit spatial locality

– Higher operation latency mitigates voltage-induced errors

• Voltron: A new DRAM energy reduction mechanism

– Reduce DRAM voltage without introducing errors

– Use a regression model to select voltage that does not degrade

performance beyond a chosen target → 7.3% system energy reduction

280

DIMMs Operating at Higher Latency

281

Measured minimum latency that does not cause errors in DRAM modules

Lower bound of latency as our latency adjustment granularity is 2.5ns

M
e

a
s
u
re

d
 M

in
im

u
m

A
c
ti
v
a
te

 L
a
te

n
c
y
 (

n
s
)

8

10

12

14 100% of modules

40% of modules

DRAM requires longer latency to access data

without errors at lower voltage

Distribution of latency in

the total population

Spatial Locality of Errors

282

A module under 1.175V (12% voltage reduction)

Errors concentrate in certain regions

Energy Savings with Bounded Performance

283

0

1

2

3

4

5

6

7

8

Low High

C
P

U
+D

R
A

M

En
e

rg
y

Sa
vi

n
gs

 (
%

)

Memory Intensity

MemDVFS Voltron

-6

-5

-4

-3

-2

-1

0

Low High
Pe

rf
o

rm
an

ce
 L

o
ss

 (
%

)

Memory Intensity

Performance Target

[David+, ICAC’11]

More savings for

high bandwidth

applications

Meets performance target

7.3%

3.2%

-1.6% -1.8%

Analysis of Latency-Voltage in DRAM Chips

◼ Kevin Chang, A. Giray Yaglikci, Saugata Ghose, Aditya Agrawal, Niladrish
Chatterjee, Abhijith Kashyap, Donghyuk Lee, Mike O'Connor, Hasan
Hassan, and Onur Mutlu,
"Understanding Reduced-Voltage Operation in Modern DRAM
Devices: Experimental Characterization, Analysis, and
Mechanisms"
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL,
USA, June 2017.

284

https://people.inf.ethz.ch/omutlu/pub/Voltron-reduced-voltage-DRAM-sigmetrics17-paper.pdf
http://www.sigmetrics.org/sigmetrics2017/

And, What If …

◼ … we can sacrifice reliability of some data to access it with
even lower latency?

285

The DRAM Latency PUF:
Quickly Evaluating Physical Unclonable Functions

by Exploiting the Latency-Reliability Tradeoff
in Modern Commodity DRAM Devices

Jeremie S. Kim Minesh Patel

Hasan Hassan Onur Mutlu

287/8

Motivation

• A PUF is function that generates a signature
unique to a given device

• Used in a Challenge-Response Protocol
- Each device generates a unique PUF response

depending the inputs

- A trusted server authenticates a device if it
generates the expected PUF response

288/8

DRAM Latency Characterization of
223 LPDDR4 DRAM Devices

• Latency failures come from accessing
DRAM with reduced timing parameters.

• Key Observations:
1. A cell’s latency failure probability is

determined by random process variation

2. Latency failure patterns are repeatable and
unique to a device

289/8

R
o

w
 D

ec
o

d
er

DRAM Latency PUF Key Idea

High % chance to fail
with reduced tRCD

Low % chance to fail
with reduced tRCD

SASASASASASASA

290/8

DRAM Accesses and Failures

wordline

ca
p
a
cito

r

access
transistor

b
itlin

e

SA

Vdd

0.5 Vdd

B
it

lin
e

V
o

lt
ag

e

Time

Ready to Access
Voltage Level

tRCD

Process variation
during manufacturing
leads to cells having
unique characteristics

Vmin

ACTIVATE SA Enable READ

Bitline Charge Sharing

291/8

wordline

ca
p
a
cito

r

access
transistor

b
itlin

e

SA

DRAM Accesses and Failures

Vdd

0.5 Vdd

B
it

lin
e

V
o

lt
ag

e

Time

Ready to Access
Voltage Level

tRCD

Vmin

ACTIVATE SA Enable READ

weaker cells have a
higher probability to fail

292/8

The DRAM Latency PUF Evaluation

• We generate PUF responses using latency
errors in a region of DRAM

• The latency error patterns satisfy PUF
requirements

• The DRAM Latency PUF generates PUF
responses in 88.2ms

293/8

Results

• DL-PUF is orders of magnitude faster than
prior DRAM PUFs & temperature independent

The DRAM Latency PUF:
Quickly Evaluating Physical Unclonable Functions

by Exploiting the Latency-Reliability Tradeoff
in Modern Commodity DRAM Devices

Jeremie S. Kim Minesh Patel

Hasan Hassan Onur Mutlu

QR Code for the paper
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18.pdf

HPCA 2018

DRAM Latency PUFs

◼ Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu,
"The DRAM Latency PUF: Quickly Evaluating Physical Unclonable
Functions by Exploiting the Latency-Reliability Tradeoff in
Modern DRAM Devices"
Proceedings of the 24th International Symposium on High-Performance
Computer Architecture (HPCA), Vienna, Austria, February 2018.
[Lightning Talk Video]
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]

295

https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18.pdf
https://hpca2018.ece.ucsb.edu/
https://www.youtube.com/watch?v=Xw0laEEDmsM&feature=youtu.be
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_talk.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_lightning-talk.pdf

Other Ideas on

Reducing DRAM Latency

296

Reducing Refresh Latency

◼ Anup Das, Hasan Hassan, and Onur Mutlu,
"VRL-DRAM: Improving DRAM Performance via
Variable Refresh Latency"
Proceedings of the 55th Design Automation
Conference (DAC), San Francisco, CA, USA, June 2018.

297

https://people.inf.ethz.ch/omutlu/pub/VRL-DRAM_reduced-refresh-latency_dac18.pdf
https://dac.com/

Tiered-Latency DRAM

◼ Donghyuk Lee, Yoongu Kim, Vivek Seshadri, Jamie Liu, Lavanya
Subramanian, and Onur Mutlu,
"Tiered-Latency DRAM: A Low Latency and Low Cost
DRAM Architecture"
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China,
February 2013. Slides (pptx)

298

http://users.ece.cmu.edu/~omutlu/pub/tldram_hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/lee_hpca13_talk.pptx

LISA: Low-cost Inter-linked Subarrays

◼ Kevin K. Chang, Prashant J. Nair, Saugata Ghose, Donghyuk Lee,
Moinuddin K. Qureshi, and Onur Mutlu,
"Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast
Inter-Subarray Data Movement in DRAM"
Proceedings of the 22nd International Symposium on High-
Performance Computer Architecture (HPCA), Barcelona, Spain,
March 2016.
[Slides (pptx) (pdf)]
[Source Code]

299

https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_hpca16.pdf
http://hpca22.site.ac.upc.edu/
https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_kevinchang_hpca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_kevinchang_hpca16-talk.pdf
https://github.com/CMU-SAFARI/RamulatorSharp

ChargeCache

◼ Hasan Hassan, Gennady Pekhimenko, Nandita Vijaykumar, Vivek
Seshadri, Donghyuk Lee, Oguz Ergin, and Onur Mutlu,
"ChargeCache: Reducing DRAM Latency by Exploiting Row
Access Locality"
Proceedings of the 22nd International Symposium on High-
Performance Computer Architecture (HPCA), Barcelona, Spain, March
2016.
[Slides (pptx) (pdf)]
[Source Code]

300

https://users.ece.cmu.edu/~omutlu/pub/chargecache_low-latency-dram_hpca16.pdf
http://hpca22.site.ac.upc.edu/
https://users.ece.cmu.edu/~omutlu/pub/chargecache_low-latency-dram_hhassan_hpca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/chargecache_low-latency-dram_hhassan_hpca16-talk.pdf
https://github.com/CMU-SAFARI/RamulatorSharp

Challenge and Opportunity for Future

Fundamentally

Low-Latency

Computing Architectures

301

One Important Takeaway

Main Memory Needs

Intelligent Controllers

302

On DRAM Power Consumption

303

VAMPIRE DRAM Power Model

◼ Saugata Ghose, A. Giray Yaglikci, Raghav Gupta, Donghyuk Lee, Kais
Kudrolli, William X. Liu, Hasan Hassan, Kevin K. Chang, Niladrish
Chatterjee, Aditya Agrawal, Mike O'Connor, and Onur Mutlu,
"What Your DRAM Power Models Are Not Telling You: Lessons
from a Detailed Experimental Study"
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Irvine, CA, USA, June
2018.
[Abstract]

304

http://www.sigmetrics.org/sigmetrics2018/
https://people.inf.ethz.ch/omutlu/pub/VAMPIRE-DRAM-power-characterization-and-modeling_sigmetrics18-abstract.pdf

Agenda: Emerging Tech. for Another Time

◼ Major Trends Affecting Main Memory

◼ Key Challenges and Solution Directions

❑ Robustness: Reliability and Security

❑ Energy and Performance: In-Memory Computation

❑ Low Latency/Energy and Latency/Energy/Reliability Tradeoffs

❑ Scalability and More: Enabling Emerging Technologies

◼ Solution Principles

◼ Concluding Remarks

305

Maslow’s Hierarchy of Needs, A Final Time

306
Source: https://www.simplypsychology.org/maslow.html

Maslow, “A Theory of Human Motivation,”
Psychological Review, 1943.

Maslow, “Motivation and Personality,”
Book, 1954-1970.

Challenge and Opportunity for Future

Fundamentally

(More) Scalable

Computing Architectures

307

Scaling Limits of Charge Memory

◼ Difficult charge placement and control

❑ Flash: floating gate charge

❑ DRAM: capacitor charge, transistor leakage

◼ Reliable sensing becomes difficult as charge
storage unit size reduces

308

Solution: New Memory Technologies

◼ Some emerging resistive memory technologies seem more
scalable than DRAM (and they are non-volatile)

◼ Example: Phase Change Memory

❑ Data stored by changing phase of material

❑ Data read by detecting material’s resistance

❑ Expected to scale to 9nm (2022 [ITRS 2009])

❑ Prototyped at 20nm (Raoux+, IBM JRD 2008)

❑ Expected to be denser than DRAM: can store multiple bits/cell

◼ But, emerging technologies have (many) shortcomings

❑ Can they be enabled to replace/augment/surpass DRAM?

309

Charge vs. Resistive Memories

◼ Charge Memory (e.g., DRAM, Flash)

❑ Write data by capturing charge Q

❑ Read data by detecting voltage V

◼ Resistive Memory (e.g., PCM, STT-MRAM, memristors)

❑ Write data by pulsing current dQ/dt

❑ Read data by detecting resistance R

310

Promising Resistive Memory Technologies

◼ PCM

❑ Inject current to change material phase

❑ Resistance determined by phase

◼ STT-MRAM

❑ Inject current to change magnet polarity

❑ Resistance determined by polarity

◼ Memristors/RRAM/ReRAM

❑ Inject current to change atomic structure

❑ Resistance determined by atom distance

◼ . . .
311

What is Phase Change Memory?

◼ Phase change material (chalcogenide glass) exists in two states:

❑ Amorphous: Low optical reflexivity and high electrical resistivity

❑ Crystalline: High optical reflexivity and low electrical resistivity

312

PCM is resistive memory: High resistance (0), Low resistance (1)

PCM cell can be switched between states reliably and quickly

Phase Change Memory Properties

◼ Surveyed prototypes from 2003-2008 (ITRS, IEDM, VLSI,
ISSCC)

◼ Derived PCM parameters for F=90nm

◼ Lee, Ipek, Mutlu, Burger, “Architecting Phase Change
Memory as a Scalable DRAM Alternative,” ISCA 2009.

◼ Lee et al., “Phase Change Technology and the Future of
Main Memory,” IEEE Micro Top Picks 2010.

313

314

Phase Change Memory Properties: Latency

◼ Latency comparable to, but slower than DRAM

◼ Read Latency

❑ 50ns: 4x DRAM, 10-3x NAND Flash

◼ Write Latency

❑ 150ns: 12x DRAM

◼ Write Bandwidth

❑ 5-10 MB/s: 0.1x DRAM, 1x NAND Flash

Qureshi+, “Scalable high performance main memory system using phase-change memory technology,” ISCA 2009.

Phase Change Memory Properties

◼ Dynamic Energy

❑ 40 uA Rd, 150 uA Wr

❑ 2-43x DRAM, 1x NAND Flash

◼ Endurance

❑ Writes induce phase change at 650C

❑ Contacts degrade from thermal expansion/contraction

❑ 108 writes per cell

❑ 10-8x DRAM, 103x NAND Flash

◼ Cell Size

❑ 9-12F2 using BJT, single-level cells

❑ 1.5x DRAM, 2-3x NAND (will scale with feature size, MLC)

316

Phase Change Memory: Pros and Cons

◼ Pros over DRAM

❑ Better technology scaling (capacity and cost)

❑ Non volatile → Persistent

❑ Low idle power (no refresh)

◼ Cons

❑ Higher latencies: ~4-15x DRAM (especially write)

❑ Higher active energy: ~2-50x DRAM (especially write)

❑ Lower endurance (a cell dies after ~108 writes)

❑ Reliability issues (resistance drift)

◼ Challenges in enabling PCM as DRAM replacement/helper:

❑ Mitigate PCM shortcomings

❑ Find the right way to place PCM in the system
317

PCM-based Main Memory (I)

◼ How should PCM-based (main) memory be organized?

◼ Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC’09]:

❑ How to partition/migrate data between PCM and DRAM

318

PCM-based Main Memory (II)

◼ How should PCM-based (main) memory be organized?

◼ Pure PCM main memory [Lee et al., ISCA’09, Top Picks’10]:

❑ How to redesign entire hierarchy (and cores) to overcome
PCM shortcomings

319

An Initial Study: Replace DRAM with PCM

◼ Lee, Ipek, Mutlu, Burger, “Architecting Phase Change
Memory as a Scalable DRAM Alternative,” ISCA 2009.

❑ Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC)

❑ Derived “average” PCM parameters for F=90nm

320

Results: Naïve Replacement of DRAM with PCM

◼ Replace DRAM with PCM in a 4-core, 4MB L2 system

◼ PCM organized the same as DRAM: row buffers, banks, peripherals

◼ 1.6x delay, 2.2x energy, 500-hour average lifetime

◼ Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a
Scalable DRAM Alternative,” ISCA 2009.

321

Architecting PCM to Mitigate Shortcomings

◼ Idea 1: Use multiple narrow row buffers in each PCM chip

→ Reduces array reads/writes → better endurance, latency, energy

◼ Idea 2: Write into array at

cache block or word

granularity

→ Reduces unnecessary wear

322

DRAM PCM

Results: Architected PCM as Main Memory

◼ 1.2x delay, 1.0x energy, 5.6-year average lifetime

◼ Scaling improves energy, endurance, density

◼ Caveat 1: Worst-case lifetime is much shorter (no guarantees)

◼ Caveat 2: Intensive applications see large performance and energy hits

◼ Caveat 3: Optimistic PCM parameters?
323

More on PCM as Main Memory (I)

◼ Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger,
"Architecting Phase Change Memory as a Scalable DRAM
Alternative"
Proceedings of the 36th International Symposium on Computer
Architecture (ISCA), pages 2-13, Austin, TX, June 2009. Slides
(pdf)

324

http://users.ece.cmu.edu/~omutlu/pub/pcm_isca09.pdf
http://isca09.cs.columbia.edu/
http://users.ece.cmu.edu/~omutlu/pub/lee_isca09_talk.pdf

More on PCM as Main Memory (II)

◼ Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao,
Engin Ipek, Onur Mutlu, and Doug Burger,
"Phase Change Technology and the Future of Main Memory"
IEEE Micro, Special Issue: Micro's Top Picks from 2009 Computer
Architecture Conferences (MICRO TOP PICKS), Vol. 30, No. 1,
pages 60-70, January/February 2010.

325

https://users.ece.cmu.edu/~omutlu/pub/pcm_ieee_micro10.pdf
http://www.computer.org/micro/

More on PCM as Main Memory (III)

◼ HanBin Yoon, Justin Meza, Naveen Muralimanohar, Norman P.
Jouppi, and Onur Mutlu,
"Efficient Data Mapping and Buffering Techniques for
Multi-Level Cell Phase-Change Memories"
ACM Transactions on Architecture and Code Optimization
(TACO), Vol. 11, No. 4, December 2014. [Slides (ppt) (pdf)]
Presented at the 10th HiPEAC Conference in 2015. [Slides (ppt)
(pdf)]

326

http://users.ece.cmu.edu/~omutlu/pub/data-mapping-buffering-for-phase-change-memory_taco14.pdf
http://taco.acm.org/
http://users.ece.cmu.edu/~omutlu/pub/data-mapping-buffering-for-phase-change-memory_meza_hipeac15-talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/data-mapping-buffering-for-phase-change-memory_meza_hipeac15-talk.pdf
https://www.hipeac.org/2015/amsterdam/
http://users.ece.cmu.edu/~omutlu/pub/data-mapping-buffering-for-phase-change-memory_meza_hipeac15-talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/data-mapping-buffering-for-phase-change-memory_meza_hipeac15-talk.pdf

STT-MRAM as Main Memory

◼ Magnetic Tunnel Junction (MTJ) device

❑ Reference layer: Fixed magnetic orientation

❑ Free layer: Parallel or anti-parallel

◼ Magnetic orientation of the free layer
determines logical state of device

❑ High vs. low resistance

◼ Write: Push large current through MTJ to
change orientation of free layer

◼ Read: Sense current flow

◼ Kultursay et al., “Evaluating STT-RAM as an Energy-
Efficient Main Memory Alternative,” ISPASS 2013.

Reference Layer

Free Layer

Barrier

Reference Layer

Free Layer

Barrier

Logical 0

Logical 1

Word Line

Bit Line

Access
Transistor

MTJ

Sense Line

STT-MRAM: Pros and Cons

◼ Pros over DRAM

❑ Better technology scaling (capacity and cost)

❑ Non volatile → Persistent

❑ Low idle power (no refresh)

◼ Cons

❑ Higher write latency

❑ Higher write energy

❑ Poor density (currently)

❑ Reliability?

◼ Another level of freedom

❑ Can trade off non-volatility for lower write latency/energy (by
reducing the size of the MTJ)

328

Architected STT-MRAM as Main Memory

◼ 4-core, 4GB main memory, multiprogrammed workloads

◼ ~6% performance loss, ~60% energy savings vs. DRAM

329

88%

90%

92%

94%

96%

98%

P
e

rf
o

rm
a

n
c
e

v
s
.

D
R

A
M

STT-RAM (base) STT-RAM (opt)

0%

20%

40%

60%

80%

100%

E
n

e
rg

y

v
s
.

D
R

A
M

ACT+PRE WB RB

Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.

More on STT-MRAM as Main Memory

◼ Emre Kultursay, Mahmut Kandemir, Anand
Sivasubramaniam, and Onur Mutlu,
"Evaluating STT-RAM as an Energy-Efficient Main
Memory Alternative"
Proceedings of the 2013 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS),
Austin, TX, April 2013. Slides (pptx) (pdf)

330

http://users.ece.cmu.edu/~omutlu/pub/sttram_ispass13.pdf
http://www.ispass.org/ispass2013/
http://users.ece.cmu.edu/~omutlu/pub/kultursay_ispass13_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/kultursay_ispass13_talk.pdf

A More Viable Approach: Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best
Paper Award.

CPU
DRAM
Ctrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
Ctrl

DRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

Challenge and Opportunity

Providing the Best of

Multiple Metrics

with

Multiple Memory Technologies

332

Challenge and Opportunity

333

Heterogeneous,

Configurable,

Programmable

Memory Systems

Hybrid Memory Systems: Issues

◼ Cache vs. Main Memory

◼ Granularity of Data Move/Manage-ment: Fine or Coarse

◼ Hardware vs. Software vs. HW/SW Cooperative

◼ When to migrate data?

◼ How to design a scalable and efficient large cache?

◼ …

334

One Option: DRAM as a Cache for PCM

◼ PCM is main memory; DRAM caches memory rows/blocks

❑ Benefits: Reduced latency on DRAM cache hit; write filtering

◼ Memory controller hardware manages the DRAM cache

❑ Benefit: Eliminates system software overhead

◼ Three issues:

❑ What data should be placed in DRAM versus kept in PCM?

❑ What is the granularity of data movement?

❑ How to design a low-cost hardware-managed DRAM cache?

◼ Two idea directions:

❑ Locality-aware data placement [Yoon+ , ICCD 2012]

❑ Cheap tag stores and dynamic granularity [Meza+, IEEE CAL 2012]

335

Data Placement in Hybrid Memory

◼ Memory A is fast, but small

◼ Load should be balanced on both channels?

◼ Page migrations have performance and energy overhead
336

Channel A Channel B

Memory A Memory B
(Fast, Small) (Large, Slow)

Page 1 Page 2

IDLE

Which memory do we place each page in,
to maximize system performance?

Cores/Caches

Memory Controllers

Data Placement Between DRAM and PCM

◼ Idea: Characterize data access patterns and guide data
placement in hybrid memory

◼ Streaming accesses: As fast in PCM as in DRAM

◼ Random accesses: Much faster in DRAM

◼ Idea: Place random access data with some reuse in DRAM;
streaming data in PCM

◼ Yoon+, “Row Buffer Locality-Aware Data Placement in
Hybrid Memories,” ICCD 2012 Best Paper Award.

337

More on Hybrid Memory Data Placement

◼ HanBin Yoon, Justin Meza, Rachata Ausavarungnirun,
Rachael Harding, and Onur Mutlu,
"Row Buffer Locality Aware Caching Policies for
Hybrid Memories"
Proceedings of the 30th IEEE International Conference on
Computer Design (ICCD), Montreal, Quebec, Canada,
September 2012. Slides (pptx) (pdf)

338

http://users.ece.cmu.edu/~omutlu/pub/rowbuffer-aware-caching_iccd12.pdf
http://www.iccd-conf.com/
http://users.ece.cmu.edu/~omutlu/pub/yoon_iccd12_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/yoon_iccd12_talk.pdf

Utility-Based Hybrid Memory Management

◼ Yang Li, Saugata Ghose, Jongmoo Choi, Jin Sun, Hui Wang,
and Onur Mutlu,
"Utility-Based Hybrid Memory Management"
Proceedings of the 19th IEEE Cluster Conference (CLUSTER),
Honolulu, Hawaii, USA, September 2017.
[Slides (pptx) (pdf)]

339

https://people.inf.ethz.ch/omutlu/pub/utility-based-hybrid-memory-management_cluster17.pdf
https://cluster17.github.io/
https://people.inf.ethz.ch/omutlu/pub/utility-based-hybrid-memory-management_cluster17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/utility-based-hybrid-memory-management_cluster17-talk.pdf

On Large DRAM Cache Design

◼ Justin Meza, Jichuan Chang, HanBin Yoon, Onur Mutlu, and
Parthasarathy Ranganathan,
"Enabling Efficient and Scalable Hybrid Memories
Using Fine-Granularity DRAM Cache Management"
IEEE Computer Architecture Letters (CAL), February 2012.

340

http://users.ece.cmu.edu/~omutlu/pub/timber-fine-grained-dram-cache_ieee-cal12.pdf
http://www.cs.virginia.edu/~tcca/

HW/SW Cooperative DRAM Cache Design

◼ Xiangyao Yu, Christopher J. Hughes, Nadathur Satish, Onur
Mutlu, and Srinivas Devadas,
"Banshee: Bandwidth-Efficient DRAM Caching via
Software/Hardware Cooperation"
Proceedings of the 50th International Symposium on
Microarchitecture (MICRO), Boston, MA, USA, October 2017.

341

https://people.inf.ethz.ch/omutlu/pub/banshee-bandwidth-efficient-DRAM-cache_micro17.pdf
http://www.microarch.org/micro50/

Other Opportunities with Emerging Technologies

◼ Merging of memory and storage

❑ e.g., a single interface to manage all data

◼ New applications

❑ e.g., ultra-fast checkpoint and restore

◼ More robust system design

❑ e.g., reducing data loss

◼ Processing tightly-coupled with memory

❑ e.g., enabling efficient search and filtering

342

TWO-LEVEL STORAGE MODEL

C
P

U
M

EM
O

R
Y

ST
O

R
A

G
E

VOLATILE

FAST

BYTE ADDR

NONVOLATILE

SLOW

BLOCK ADDR

Ld/St

FILE
I/O

DRAM

343

TWO-LEVEL STORAGE MODEL

C
P

U
M

EM
O

R
Y

ST
O

R
A

G
E

VOLATILE

FAST

BYTE ADDR

NONVOLATILE

SLOW

BLOCK ADDR

Ld/St

FILE
I/O

DRAM

344

PCM, STT-RAM

NVM

Non-volatile memories combine
characteristics of memory and storage

Two-Level Memory/Storage Model
◼ The traditional two-level storage model is a bottleneck with NVM

❑ Volatile data in memory → a load/store interface

❑ Persistent data in storage → a file system interface

❑ Problem: Operating system (OS) and file system (FS) code to locate, translate,
buffer data become performance and energy bottlenecks with fast NVM stores

345

Two-Level Store

Processor
and caches

Main Memory
Storage (SSD/HDD)

Virtual memory

Address
translation

Load/Store

Operating
system

and file system

fopen, fread, fwrite, …

Persistent (e.g., Phase-Change)
Memory

Unified Memory and Storage with NVM

◼ Goal: Unify memory and storage management in a single unit to
eliminate wasted work to locate, transfer, and translate data

❑ Improves both energy and performance

❑ Simplifies programming model as well

346

Unified Memory/Storage

Processor
and caches

Persistent (e.g., Phase-Change) Memory

Load/Store

Persistent Memory
Manager

Feedback

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

PERSISTENT MEMORY

C
P

U
P

ER
SISTEN

T
M

EM
O

R
Y

Provides an opportunity to manipulate
persistent data directly

Ld/St

NVM

347

The Persistent Memory Manager (PMM)

348

PMM uses access and hint information to allocate, locate, migrate
and access data in the heterogeneous array of devices

Persistent objects

The Persistent Memory Manager (PMM)

◼ Exposes a load/store interface to access persistent data

❑ Applications can directly access persistent memory → no conversion,

translation, location overhead for persistent data

◼ Manages data placement, location, persistence, security

❑ To get the best of multiple forms of storage

◼ Manages metadata storage and retrieval

❑ This can lead to overheads that need to be managed

◼ Exposes hooks and interfaces for system software

❑ To enable better data placement and management decisions

◼ Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

349

Performance Benefits of a Single-Level Store

350

~5X

~24X

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

Energy Benefits of a Single-Level Store

351

~5X

~16X

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

On Persistent Memory Benefits & Challenges

◼ Justin Meza, Yixin Luo, Samira Khan, Jishen Zhao, Yuan
Xie, and Onur Mutlu,
"A Case for Efficient Hardware-Software
Cooperative Management of Storage and Memory"
Proceedings of the 5th Workshop on Energy-Efficient
Design (WEED), Tel-Aviv, Israel, June 2013. Slides (pptx)
Slides (pdf)

352

http://users.ece.cmu.edu/~omutlu/pub/persistent-memory-management_weed13.pdf
http://research.ihost.com/weed2013/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_weed13_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/mutlu_weed13_talk.pdf

Challenge and Opportunity

Combined

Memory & Storage

353

Challenge and Opportunity

354

A Unified Interface to
All Data

Another Key Challenge in Persistent Memory

Programming Ease

to Exploit Persistence

355

Enabling Crash Consistency

356

◼ Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu,
and Onur Mutlu,
"ThyNVM: Enabling Software-Transparent Crash Consistency
in Persistent Memory Systems"
Proceedings of the 48th International Symposium on
Microarchitecture (MICRO), Waikiki, Hawaii, USA, December 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster
(pptx) (pdf)]
[Source Code]

https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_micro15.pdf
http://www.microarch.org/micro48/
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-lightning_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-lightning_talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-poster.pdf
https://github.com/CMU-SAFARI/ThyNVM

Enabling Storage Consistency

◼ Youyou Lu, Jiwu Shu, Long Sun, and Onur Mutlu,
"Loose-Ordering Consistency for Persistent Memory"
Proceedings of the 32nd IEEE International Conference on Computer
Design (ICCD), Seoul, South Korea, October 2014. [Slides (pptx) (pdf)]

357

http://users.ece.cmu.edu/~omutlu/pub/loose-ordering-consistency-for-persistent-memory_iccd14.pdf
http://www.iccd-conf.com/
http://users.ece.cmu.edu/~omutlu/pub/loose-ordering-consistency-for-persistent-memory_lu_iccd14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/loose-ordering-consistency-for-persistent-memory_lu_iccd14-talk.pdf

Tools/Libraries to Help Programmers

◼ Himanshu Chauhan, Irina Calciu, Vijay Chidambaram, Eric
Schkufza, Onur Mutlu, and Pratap Subrahmanyam,
"NVMove: Helping Programmers Move to Byte-Based
Persistence"
Proceedings of the 4th Workshop on Interactions of NVM/Flash
with Operating Systems and Workloads (INFLOW), Savannah,
GA, USA, November 2016.
[Slides (pptx) (pdf)]

358

https://people.inf.ethz.ch/omutlu/pub/NVMove-byte-based-persistence-tool_inflow16.pdf
https://www.usenix.org/conference/osdi16
https://people.inf.ethz.ch/omutlu/pub/NVMove-byte-based-persistence-tool_inflow16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NVMove-byte-based-persistence-tool_inflow16-talk.pdf

Persistent Memory Control Infrastructure

◼ Jishen Zhao, Onur Mutlu, and Yuan Xie,
"FIRM: Fair and High-Performance Memory Control for
Persistent Memory Systems"
Proceedings of the 47th International Symposium on Microarchitecture
(MICRO), Cambridge, UK, December 2014. [Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

359

http://users.ece.cmu.edu/~omutlu/pub/firm-persistent-memory-scheduling_micro14.pdf
http://www.microarch.org/micro47/
http://users.ece.cmu.edu/~omutlu/pub/firm-persistent-memory-scheduling_zhao_micro14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/firm-persistent-memory-scheduling_zhao_micro14-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/firm-persistent-memory-scheduling_zhao_micro14-lightning_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/firm-persistent-memory-scheduling_zhao_micro14-lightning_talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/firm-persistent-memory-scheduling_zhao_micro14-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/firm-persistent-memory-scheduling_zhao_micro14-poster.pdf

The Future of Emerging Technologies is Bright

◼ Regardless of challenges

❑ in underlying technology and overlying problems/requirements

360

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons

Can enable:

- Orders of magnitude
improvements

- New applications and
computing systems

Yet, we have to

- Think across the stack

- Design enabling systems

Challenge and Opportunity for Future

Fundamentally

(More) Scalable

Computing Architectures

361

Agenda

◼ Major Trends Affecting Main Memory

◼ Key Challenges and Solution Directions

❑ Robustness: Reliability and Security

❑ Energy and Performance: In-Memory Computation

❑ Low Latency/Energy and Latency/Energy/Reliability Tradeoffs

❑ Scalability and More: Enabling Emerging Technologies

◼ Solution Principles

◼ Concluding Remarks

362

Some Solution Principles (So Far)

◼ Data-centric system design & intelligence spread around

❑ Do not center everything around traditional computation units

◼ Better cooperation across layers of the system

❑ Careful co-design of components and layers: system/arch/device

❑ Better, richer, more expressive and flexible interfaces

◼ Better-than-worst-case design

❑ Do not optimize for the worst case

❑ Worst case should not determine the common case

◼ Heterogeneity in design (specialization, asymmetry)

❑ Enables a more efficient design (No one size fits all)
363

Some Solution Principles (More Compact)

◼ Data-centric design

◼ All components intelligent

◼ Better cross-layer communication, better interfaces

◼ Better-than-worst-case design

◼ Heterogeneity

◼ Flexibility, adaptability

364

Agenda

◼ Major Trends Affecting Main Memory

◼ Key Challenges and Solution Directions

❑ Robustness: Reliability and Security

❑ Energy and Performance: In-Memory Computation

❑ Low Latency/Energy and Latency/Energy/Reliability Tradeoffs

❑ Scalability and More: Enabling Emerging Technologies

◼ Solution Principles

◼ Concluding Remarks

365

Concluding Remarks

366

A Quote from A Famous Architect

◼ “architecture […] based upon principle, and not upon
precedent”

367

Precedent-Based Design?

◼ “architecture […] based upon principle, and not upon
precedent”

368

Principled Design

◼ “architecture […] based upon principle, and not upon
precedent”

369

370

The Overarching Principle

371

Another Example: Precedent-Based Design

372Source: http://cookiemagik.deviantart.com/art/Train-station-207266944

Principled Design

373Source: By Toni_V, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=4087256

Another Principled Design

374Source: By Martín Gómez Tagle - Lisbon, Portugal, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=13764903

Source: http://www.arcspace.com/exhibitions/unsorted/santiago-calatrava/

Principle Applied to Another Structure

375
Source: https://www.dezeen.com/2016/08/29/santiago-calatrava-oculus-world-trade-center-transportation-hub-new-york-photographs-hufton-crow/
Source: By 準建築人手札網站 Forgemind ArchiMedia - Flickr: IMG_2489.JPG, CC BY 2.0,
https://commons.wikimedia.org/w/index.php?curid=31493356, https://en.wikipedia.org/wiki/Santiago_Calatrava

https://commons.wikimedia.org/w/index.php?curid=31493356

The Overarching Principle

376

Another Principled Design

377Source: https://web-japan.org/nipponia/nipponia33/en/topic/

Another Principled Design (II)

378Source: http://www.iitk.ac.in/nicee/wcee/article/1229.pdf
http://www.hms.civil.uminho.pt/sahc/2010/79.pdf

http://www.iitk.ac.in/nicee/wcee/article/1229.pdf

Overarching Principles for Computing?

379Source: http://spectrum.ieee.org/image/MjYzMzAyMg.jpeg

Concluding Remarks

◼ It is time to design principled system architectures to solve
the memory problem

◼ Discover design principles for fundamentally secure and
reliable computer architectures

◼ Design complete systems to be balanced and energy-efficient,
i.e., low latency and data-centric (or memory-centric)

◼ Enable new and emerging memory architectures

◼ This can

❑ Lead to orders-of-magnitude improvements

❑ Enable new applications & computing platforms

❑ Enable better understanding of nature

❑ … 380

We Need to Think Across the Stack

381

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons

If In Doubt, See Other Doubtful Technologies

◼ A very “doubtful” emerging technology

❑ for at least two decades

382
https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

https://arxiv.org/pdf/1706.08642
https://arxiv.org/pdf/1706.08642

Onur Mutlu

omutlu@gmail.com

https://people.inf.ethz.ch/omutlu

August 29, 2018

NVMSA-RTCSA Joint Keynote Talk

Rethinking Memory System Design

(for Data-Intensive Computing)

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

Acknowledgments

◼ My current and past students and postdocs

❑ Rachata Ausavarungnirun, Abhishek Bhowmick, Amirali
Boroumand, Rui Cai, Yu Cai, Kevin Chang, Saugata Ghose, Kevin
Hsieh, Tyler Huberty, Ben Jaiyen, Samira Khan, Jeremie Kim,
Yoongu Kim, Yang Li, Jamie Liu, Lavanya Subramanian,
Donghyuk Lee, Yixin Luo, Justin Meza, Gennady Pekhimenko,
Vivek Seshadri, Lavanya Subramanian, Nandita Vijaykumar,
HanBin Yoon, Jishen Zhao, …

◼ My collaborators

❑ Can Alkan, Chita Das, Phil Gibbons, Sriram Govindan, Norm
Jouppi, Mahmut Kandemir, Mike Kozuch, Konrad Lai, Ken Mai,
Todd Mowry, Yale Patt, Moinuddin Qureshi, Partha Ranganathan,
Bikash Sharma, Kushagra Vaid, Chris Wilkerson, …

384

Funding Acknowledgments

◼ NSF

◼ GSRC

◼ SRC

◼ CyLab

◼ Alibaba, AMD, Google, Facebook, HP Labs, Huawei, IBM,
Intel, Microsoft, Nvidia, Oracle, Qualcomm, Rambus,
Samsung, Seagate, VMware

385

Slides Not Covered

But Could Be Useful

386

Readings, Videos, Reference Materials

Accelerated Memory Course (~6.5 hours)

◼ ACACES 2018

❑ Memory Systems and Memory-Centric Computing Systems

❑ Taught by Onur Mutlu July 9-13, 2018

❑ ~6.5 hours of lectures

◼ Website for the Course including Videos, Slides, Papers

❑ https://people.inf.ethz.ch/omutlu/acaces2018.html

❑ https://www.youtube.com/playlist?list=PL5Q2soXY2Zi-
HXxomthrpDpMJm05P6J9x

◼ All Papers are at:

❑ https://people.inf.ethz.ch/omutlu/projects.htm

❑ Final lecture notes and readings (for all topics)

388

https://people.inf.ethz.ch/omutlu/acaces2018.html
https://www.youtube.com/playlist?list=PL5Q2soXY2Zi-HXxomthrpDpMJm05P6J9x
https://people.inf.ethz.ch/omutlu/projects.htm

Reference Overview Paper I

Saugata Ghose, Kevin Hsieh, Amirali Boroumand, Rachata Ausavarungnirun, Onur Mutlu,
"Enabling the Adoption of Processing-in-Memory: Challenges, Mechanisms,
Future Research Directions"
Invited Book Chapter, to appear in 2018.
[Preliminary arxiv.org version]

389https://arxiv.org/pdf/1802.00320.pdf

https://people.inf.ethz.ch/omutlu/acaces2018.html
https://arxiv.org/pdf/1802.00320.pdf
https://arxiv.org/pdf/1802.00320.pdf

Reference Overview Paper II

◼ Onur Mutlu and Lavanya Subramanian,
"Research Problems and Opportunities in Memory
Systems"
Invited Article in Supercomputing Frontiers and Innovations
(SUPERFRI), 2014/2015.

https://people.inf.ethz.ch/omutlu/pub/memory-systems-research_superfri14.pdf

https://people.inf.ethz.ch/omutlu/pub/memory-systems-research_superfri14.pdf
http://superfri.org/superfri
https://people.inf.ethz.ch/omutlu/pub/memory-systems-research_superfri14.pdf

Reference Overview Paper III

https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf

◼ Onur Mutlu,
"The RowHammer Problem and Other Issues We May Face as
Memory Becomes Denser"
Invited Paper in Proceedings of the Design, Automation, and Test in
Europe Conference (DATE), Lausanne, Switzerland, March 2017.
[Slides (pptx) (pdf)]

https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pdf

Reference Overview Paper IV

◼ Onur Mutlu,
"Memory Scaling: A Systems Architecture
Perspective"
Technical talk at MemCon 2013 (MEMCON), Santa Clara,
CA, August 2013. [Slides (pptx) (pdf)]
[Video] [Coverage on StorageSearch]

https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf

https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf
http://www.memcon.com/
https://people.inf.ethz.ch/omutlu/pub/mutlu_memory-scaling_memcon13_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/mutlu_memory-scaling_memcon13_talk.pdf
http://www.memcon.com/video1.aspx?vfile=2708052590001&federated_f9=61773537001&videoPlayer=999&playerID=61773537001&w=520&h=442&oheight=550
http://www.storagesearch.com/ram-new-thinking.html
https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf

Reference Overview Paper V

393
https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

https://arxiv.org/pdf/1706.08642
https://arxiv.org/pdf/1706.08642

Related Videos and Course Materials (I)

◼ Undergraduate Computer Architecture Course Lecture
Videos (2015, 2014, 2013)

◼ Undergraduate Computer Architecture Course
Materials (2015, 2014, 2013)

◼ Graduate Computer Architecture Course Lecture
Videos (2017, 2015, 2013)

◼ Graduate Computer Architecture Course
Materials (2017, 2015, 2013)

◼ Parallel Computer Architecture Course Materials
(Lecture Videos)

394

https://www.youtube.com/playlist?list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq
https://www.youtube.com/watch?v=zLP_X4wyHbY&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq
https://www.youtube.com/playlist?list=PL5PHm2jkkXmgFdD9x7RsjQC4a8KQjmUkQ
https://www.youtube.com/watch?v=BJ87rZCGWU0&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ
http://www.archive.ece.cmu.edu/~ece447/s15/doku.php?id=schedule
http://www.archive.ece.cmu.edu/~ece447/s15/doku.php?id=schedule
http://www.archive.ece.cmu.edu/~ece447/s14/doku.php?id=schedule
http://www.archive.ece.cmu.edu/~ece447/s13/doku.php?id=schedule
https://www.youtube.com/playlist?list=PL5Q2soXY2Zi9OhoVQBXYFIZywZXCPl4M_
https://www.youtube.com/playlist?list=PL5Q2soXY2Zi9OhoVQBXYFIZywZXCPl4M_
https://www.youtube.com/playlist?list=PL5PHm2jkkXmgVhh8CHAu9N76TShJqfYDt
https://www.youtube.com/playlist?list=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D
https://safari.ethz.ch/architecture/fall2017/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2017/doku.php?id=schedule
http://www.ece.cmu.edu/~ece740/f15/doku.php?id=schedule
http://www.ece.cmu.edu/~ece740/f13/doku.php?id=schedule
http://www.ece.cmu.edu/~ece742/f12/doku.php?id=lectures
https://www.youtube.com/playlist?feature=edit_ok&list=PLSEZzvupP7hNjq3Tuv2hiE5VvR-WRYoW4

Related Videos and Course Materials (II)

◼ Freshman Digital Circuits and Computer Architecture
Course Lecture Videos (2018, 2017)

◼ Freshman Digital Circuits and Computer Architecture
Course Materials (2018)

◼ Memory Systems Short Course Materials

(Lecture Video on Main Memory and DRAM Basics)

395

https://www.youtube.com/playlist?list=PL5Q2soXY2Zi-IXWTT7xoNYpst5-zdZQ6y
https://www.youtube.com/playlist?list=PL5Q2soXY2Zi_QedyPWtRmFUJ2F8DdYP7l
https://www.youtube.com/playlist?list=PL5Q2soXY2Zi-IXWTT7xoNYpst5-zdZQ6y
https://safari.ethz.ch/digitaltechnik/spring2018/doku.php?id=schedule
https://safari.ethz.ch/digitaltechnik/spring2018/doku.php?id=schedule
http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html
https://www.youtube.com/watch?v=ZLCy3pG7Rc0

Some Open Source Tools (I)
◼ Rowhammer – Program to Induce RowHammer Errors

❑ https://github.com/CMU-SAFARI/rowhammer

◼ Ramulator – Fast and Extensible DRAM Simulator

❑ https://github.com/CMU-SAFARI/ramulator

◼ MemSim – Simple Memory Simulator

❑ https://github.com/CMU-SAFARI/memsim

◼ NOCulator – Flexible Network-on-Chip Simulator

❑ https://github.com/CMU-SAFARI/NOCulator

◼ SoftMC – FPGA-Based DRAM Testing Infrastructure

❑ https://github.com/CMU-SAFARI/SoftMC

◼ Other open-source software from my group

❑ https://github.com/CMU-SAFARI/

❑ http://www.ece.cmu.edu/~safari/tools.html
396

https://github.com/CMU-SAFARI/rowhammer
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/memsim
https://github.com/CMU-SAFARI/NOCulator
https://github.com/CMU-SAFARI/SoftMC
https://github.com/CMU-SAFARI/
http://www.ece.cmu.edu/~safari/tools.html

Some Open Source Tools (II)
◼ MQSim – A Fast Modern SSD Simulator

❑ https://github.com/CMU-SAFARI/MQSim

◼ Mosaic – GPU Simulator Supporting Concurrent Applications

❑ https://github.com/CMU-SAFARI/Mosaic

◼ IMPICA – Processing in 3D-Stacked Memory Simulator

❑ https://github.com/CMU-SAFARI/IMPICA

◼ SMLA – Detailed 3D-Stacked Memory Simulator

❑ https://github.com/CMU-SAFARI/SMLA

◼ HWASim – Simulator for Heterogeneous CPU-HWA Systems

❑ https://github.com/CMU-SAFARI/HWASim

◼ Other open-source software from my group

❑ https://github.com/CMU-SAFARI/

❑ http://www.ece.cmu.edu/~safari/tools.html
397

https://github.com/CMU-SAFARI/MQSim
https://github.com/CMU-SAFARI/Mosaic
https://github.com/CMU-SAFARI/IMPICA
https://github.com/CMU-SAFARI/SMLA
https://github.com/CMU-SAFARI/HWASim
https://github.com/CMU-SAFARI/
http://www.ece.cmu.edu/~safari/tools.html

More Open Source Tools (III)

◼ A lot more open-source software from my group

❑ https://github.com/CMU-SAFARI/

❑ http://www.ece.cmu.edu/~safari/tools.html

398

https://github.com/CMU-SAFARI/
http://www.ece.cmu.edu/~safari/tools.html

Referenced Papers

◼ All are available at

https://people.inf.ethz.ch/omutlu/projects.htm

http://scholar.google.com/citations?user=7XyGUGkAAAAJ&hl=en

https://people.inf.ethz.ch/omutlu/acaces2018.html

399

https://people.inf.ethz.ch/omutlu/projects.htm
http://scholar.google.com/citations?user=7XyGUGkAAAAJ&hl=en
https://people.inf.ethz.ch/omutlu/acaces2018.html

Ramulator: A Fast and Extensible

DRAM Simulator

[IEEE Comp Arch Letters’15]

400

Ramulator Motivation

◼ DRAM and Memory Controller landscape is changing

◼ Many new and upcoming standards

◼ Many new controller designs

◼ A fast and easy-to-extend simulator is very much needed

401

Ramulator

◼ Provides out-of-the box support for many DRAM standards:

❑ DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, plus new
proposals (SALP, AL-DRAM, TLDRAM, RowClone, and SARP)

◼ ~2.5X faster than fastest open-source simulator

◼ Modular and extensible to different standards

402

Case Study: Comparison of DRAM Standards

403

Across 22
workloads,
simple CPU
model

Ramulator Paper and Source Code

◼ Yoongu Kim, Weikun Yang, and Onur Mutlu,
"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters (CAL), March 2015.
[Source Code]

◼ Source code is released under the liberal MIT License

❑ https://github.com/CMU-SAFARI/ramulator

404

http://users.ece.cmu.edu/~omutlu/pub/ramulator_dram_simulator-ieee-cal15.pdf
http://www.computer.org/web/cal
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator

End of Backup Slides

405

Brief Self Introduction

◼ Onur Mutlu

❑ Full Professor @ ETH Zurich CS, since September 2015 (officially May 2016)

❑ Strecker Professor @ Carnegie Mellon University ECE/CS, 2009-2016, 2016-…

❑ PhD from UT-Austin, worked at Google, VMware, Microsoft Research, Intel, AMD

❑ https://people.inf.ethz.ch/omutlu/

❑ omutlu@gmail.com (Best way to reach me)

❑ https://people.inf.ethz.ch/omutlu/projects.htm

◼ Research and Teaching in:

❑ Computer architecture, computer systems, hardware security, bioinformatics

❑ Memory and storage systems

❑ Hardware security, safety, predictability

❑ Fault tolerance

❑ Hardware/software cooperation

❑ Architectures for bioinformatics, health, medicine

❑ …

406

https://people.inf.ethz.ch/omutlu/
mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu/projects.htm

