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The RowHammer Problem  
and Other Issues We May Face  

as Memory Becomes Denser 



The Main Memory System 

 
 

!  Main memory is a critical component of all computing 
systems: server, mobile, embedded, desktop, sensor 

!  Main memory system must scale (in size, technology, 
efficiency, cost, and management algorithms) to maintain 
performance growth and technology scaling benefits 
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Processors 
and caches 

Main Memory Storage (SSD/HDD) FPGAs GPUs 



The DRAM Scaling Problem 
!  DRAM stores charge in a capacitor (charge-based memory) 

"  Capacitor must be large enough for reliable sensing 
"  Access transistor should be large enough for low leakage and high 

retention time 
"  Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009] 

!  As DRAM cell becomes smaller, it becomes more vulnerable 
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Testing DRAM Scaling Issues … 
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An Experimental Study of Data Retention 
Behavior in Modern DRAM Devices: 
Implications for Retention Time Profiling 
Mechanisms (Liu et al., ISCA 2013) 
 
The Efficacy of Error Mitigation Techniques 
for DRAM Retention Failures: A 
Comparative Experimental Study  
(Khan et al., SIGMETRICS 2014) 

Flipping Bits in Memory Without Accessing 
Them: An Experimental Study of DRAM 
Disturbance Errors (Kim et al., ISCA 2014) 
 
Adaptive-Latency DRAM: Optimizing DRAM 
Timing for the Common-Case (Lee et al., 
HPCA 2015) 
 
AVATAR: A Variable-Retention-Time (VRT) 
Aware Refresh for DRAM Systems (Qureshi 
et al., DSN 2015) 



 Row of Cells

 Row
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 Row

 Row
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 VLOW
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 Vic2m Row


 Vic2m Row

 Hammered Row


Repeatedly opening and closing a row enough 2mes within a 
refresh interval induces disturbance errors in adjacent rows in 
most real DRAM chips you can buy today


Opened
Closed
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Modern DRAM is Prone to Disturbance Errors 

Flipping	Bits	in	Memory	Without	Accessing	Them:	An	Experimental	Study	of	DRAM	
Disturbance	Errors, (Kim	et	al.,	ISCA	2014)	
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Most DRAM Modules Are Vulnerable 

Flipping	Bits	in	Memory	Without	Accessing	Them:	An	Experimental	Study	of	DRAM	
Disturbance	Errors, (Kim	et	al.,	ISCA	2014)	
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All modules from 2012–2013 are vulnerable


First

Appearance


Recent DRAM Is More Vulnerable 



CPU


loop: 
  mov (X), %eax 
  mov (Y), %ebx 
  clflush (X)   
  clflush (Y) 
  mfence 
  jmp loop 

Download	from:	hMps://github.com/CMU-SAFARI/rowhammer		

DRAM Module


A Simple Program Can Induce Many Errors 

Y 

X 



CPU


Download	from:	hMps://github.com/CMU-SAFARI/rowhammer		

DRAM Module


A Simple Program Can Induce Many Errors 

Y 

X 1. Avoid cache hits

–  Flush X from cache


2. Avoid row hits to X 
–  Read Y in another row
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A Simple Program Can Induce Many Errors 
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  mov (Y), %ebx 
  clflush (X)   
  clflush (Y) 
  mfence 
  jmp loop 

Download	from:	hMps://github.com/CMU-SAFARI/rowhammer		
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A Simple Program Can Induce Many Errors 
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loop: 
  mov (X), %eax 
  mov (Y), %ebx 
  clflush (X)   
  clflush (Y) 
  mfence 
  jmp loop 

Y 

X 

Download	from:	hMps://github.com/CMU-SAFARI/rowhammer		

DRAM Module


A Simple Program Can Induce Many Errors 
















•  A real reliability & security issue 

•  In a more controlled environment, we can 

induce as many as ten million disturbance errors


CPU Architecture
 Errors Access-Rate


Intel Haswell (2013)
 22.9K	 12.3M/sec	

Intel Ivy Bridge (2012)
 20.7K	 11.7M/sec	

Intel Sandy Bridge (2011)
 16.1K	 11.6M/sec	

AMD Piledriver (2012)
 59	 6.1M/sec	
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Kim+, “Flipping	Bits	in	Memory	Without	Accessing	Them:	An	Experimental	Study	of	
DRAM	Disturbance	Errors,” ISCA 2014. 

Observed Errors in Real Systems 



One Can Take Over an Otherwise-Secure System 
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Exploiting the DRAM rowhammer bug to 
gain kernel privileges  (Seaborn, 2015) 

Flipping Bits in Memory Without Accessing Them: 
An Experimental Study of DRAM Disturbance Errors 
(Kim et al., ISCA 2014) 



RowHammer Security Attack Example 
!  “Rowhammer” is a problem with some recent DRAM devices in which 

repeatedly accessing a row of memory can cause bit flips in adjacent rows 
(Kim et al., ISCA 2014).  
"  Flipping Bits in Memory Without Accessing Them: An Experimental Study of 

DRAM Disturbance Errors (Kim et al., ISCA 2014) 

!  We tested a selection of laptops and found that a subset of them 
exhibited the problem.  

!  We built two working privilege escalation exploits that use this effect.  
"  Exploiting the DRAM rowhammer bug to gain kernel privileges  (Seaborn, 2015) 

!  One exploit uses rowhammer-induced bit flips to gain kernel privileges on 
x86-64 Linux when run as an unprivileged userland process.  

!  When run on a machine vulnerable to the rowhammer problem, the 
process was able to induce bit flips in page table entries (PTEs).  

!  It was able to use this to gain write access to its own page table, and 
hence gain read-write access to all of physical memory. 

15 Exploiting the DRAM rowhammer bug to gain kernel privileges  (Seaborn, 2015) 
 



Security Implications 
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Selected Readings on RowHammer (I) 
!  Our first detailed study: Rowhammer analysis and solutions (June 2014) 

!  Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, 
Chris Wilkerson, Konrad Lai, and Onur Mutlu, 
"Flipping Bits in Memory Without Accessing Them: An Experimental 
Study of DRAM Disturbance Errors" 
Proceedings of the 41st International Symposium on Computer Architecture 
(ISCA), Minneapolis, MN, June 2014. [Slides (pptx) (pdf)] [
Lightning Session Slides (pptx) (pdf)] [Source Code and Data]  

 

!  Our Source Code to Induce Errors in Modern DRAM Chips (June 2014) 
!  https://github.com/CMU-SAFARI/rowhammer 

!  Google Project Zero’s Attack to Take Over a System (March 2015) 
!  Exploiting the DRAM rowhammer bug to gain kernel privileges  (Seaborn+, 2015) 

!  https://github.com/google/rowhammer-test  
!  Double-sided Rowhammer 
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Selected Readings on RowHammer (II) 
!  Remote RowHammer Attacks via JavaScript (July 2015) 

!  http://arxiv.org/abs/1507.06955  
!  https://github.com/IAIK/rowhammerjs  
!  Gruss et al., DIMVA 2016. 
!  CLFLUSH-free Rowhammer 
!  “A fully automated attack that requires nothing but a website with 

JavaScript to trigger faults on remote hardware.”  
!  “We can gain unrestricted access to systems of website visitors.” 

!  ANVIL: Software-Based Protection Against Next-Generation 
Rowhammer Attacks (March 2016) 
"  http://dl.acm.org/citation.cfm?doid=2872362.2872390  
"  Aweke et al., ASPLOS 2016 
"  CLFLUSH-free Rowhammer 
"  Software based monitoring for rowhammer detection 
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Selected Readings on RowHammer (III) 
!  Flip Feng Shui: Hammering a Needle in the Software Stack (August 2016) 

!  https://www.usenix.org/system/files/conference/usenixsecurity16/
sec16_paper_razavi.pdf  

!  Razavi et al., USENIX Security 2016. 
!  Combines memory deduplication and RowHammer 
!  “A malicious VM can gain unauthorized access to a co-hosted VM 

running OpenSSH.” 
!  Breaks OpenSSH public key authentication  

!  Drammer: Deterministic Rowhammer Attacks on Mobile Platforms 
(October 2016) 
"  http://dl.acm.org/citation.cfm?id=2976749.2978406  
"  Van Der Veen et al., CCS 2016 
"  Can take over an ARM-based Android system deterministically 
"  Exploits predictable physical memory allocator behavior 

!  Can deterministically place security-sensitive data (e.g., page table) in an attacker-
chosen, vulnerable location in memory 
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More Security Implications 

20 Source: https://lab.dsst.io/32c3-slides/7197.html  

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript 



More Security Implications 

21 Source: https://fossbytes.com/drammer-rowhammer-attack-android-root-devices/ 

Drammer: Deterministic Rowhammer 
Attacks on Mobile Platforms  



More Security Implications? 
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Root Causes of Disturbance Errors

• Cause 1: ElectromagneGc coupling


–  Toggling the wordline voltage briefly increases the 
voltage of adjacent wordlines


–  Slightly opens adjacent rows # Charge leakage


• Cause 2: ConducGve bridges

• Cause 3: Hot-carrier injecGon








Confirmed by at least one manufacturer
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Experimental DRAM Testing Infrastructure 
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An Experimental Study of Data Retention 
Behavior in Modern DRAM Devices: 
Implications for Retention Time Profiling 
Mechanisms (Liu et al., ISCA 2013) 
 
The Efficacy of Error Mitigation Techniques 
for DRAM Retention Failures: A 
Comparative Experimental Study  
(Khan et al., SIGMETRICS 2014) 

Flipping Bits in Memory Without Accessing 
Them: An Experimental Study of DRAM 
Disturbance Errors (Kim et al., ISCA 2014) 
 
Adaptive-Latency DRAM: Optimizing DRAM 
Timing for the Common-Case (Lee et al., 
HPCA 2015) 
 
AVATAR: A Variable-Retention-Time (VRT) 
Aware Refresh for DRAM Systems (Qureshi 
et al., DSN 2015) 



Experimental DRAM Testing Infrastructure 

25 Kim+, “Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors,” ISCA 2014. 

Temperature 
Controller 

 

PC 

Heater FPGAs FPGAs 



1. Most Modules Are at Risk

2. Errors vs. Vintage

3. Error = Charge Loss

4. Adjacency: Aggressor & Vic2m

5. Sensi2vity Studies


6. Other Results in Paper

7. Solu2on Space


26


RowHammer Characterization Results 

Flipping	Bits	in	Memory	Without	Accessing	Them:	An	Experimental	Study	of	DRAM	
Disturbance	Errors, (Kim	et	al.,	ISCA	2014)	



4. Adjacency: Aggressor & Vic2m


Most aggressors & vicGms are adjacent
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Note: For three modules with the most errors (only first bank)
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❶ Access Interval (Aggressor)




Note: Using three modules with the most errors (only first bank)


More frequent refreshes à Fewer errors


~7x frequent


    
  6

4m
s


29


❷ Refresh Interval




RowStripe


~RowStripe


❸ Data Pa`ern
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Errors affected by data stored in other cells 
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6. Other Results (in Paper)

•  VicGm Cells ≠ Weak Cells (i.e., leaky cells)


– Almost no overlap between them


•  Errors not strongly affected by temperature

– Default temperature: 50°C

– At 30°C and 70°C, number of errors changes <15%


•  Errors are repeatable

– Across ten itera2ons of tes2ng, >70% of vic2m cells 

had errors in every itera2on
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6. Other Results (in Paper) cont’d

•  As many as 4 errors per cache-line


–  Simple ECC (e.g., SECDED) cannot prevent all errors


•  Number of cells & rows affected by aggressor

–  Vic2ms cells per aggressor:  ≤110

–  Vic2ms rows per aggressor:  ≤9


•  Cells affected by two aggressors on either side

–  Very small frac2on of vic2m cells (<100) have an 

error when either one of the aggressors is toggled
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Some Potential Solutions 

33  

Cost	• Make be`er DRAM chips


Cost,	Power	•  Sophis2cated ECC


Power,	Performance	•  Refresh frequently


Cost,	Power,	Complexity	•  Access counters 




Naive Solu2ons

❶ ThroWle accesses to same row


–  Limit access-interval: ≥500ns

–  Limit number of accesses: ≤128K (=64ms/500ns)


❷ Refresh more frequently

–  Shorten refresh-interval by ~7x


Both naive soluGons introduce significant 
overhead in performance and power
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Apple’s Patch for RowHammer 
!  https://support.apple.com/en-gb/HT204934  

HP and Lenovo released similar patches 



Our Solu2on

• PARA: ProbabilisGc Adjacent Row AcGvaGon


• Key Idea 

– Afer closing a row, we ac2vate (i.e., refresh) one of 

its neighbors with a low probability: p = 0.005


• Reliability Guarantee

– When p=0.005, errors in one year: 9.4×10-14

–  By adjus2ng the value of p, we can vary the strength 

of protec2on against errors
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Advantages of PARA

•  PARA refreshes rows infrequently


–  Low power

–  Low performance-overhead


• Average slowdown: 0.20% (for 29 benchmarks)

• Maximum slowdown: 0.75% 


•  PARA is stateless

–  Low cost

–  Low complexity


•  PARA is an effecGve and low-overhead soluGon 
to prevent disturbance errors
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Requirements for PARA

•  If implemented in DRAM chip


–  Enough slack in 2ming parameters

–  Plenty of slack today: 


•  Lee et al., “Adap2ve-Latency DRAM: Op2mizing DRAM 
Timing for the Common Case,” HPCA 2015.


•  Chang et al., “Understanding Latency Varia2on in Modern 
DRAM Chips,” SIGMETRICS 2016.


•  If implemented in memory controller

–  Be`er coordina2on between memory controller 

and DRAM

– Memory controller should know which rows are 

physically adjacent
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More on RowHammer Analysis 
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Future of Main Memory 
!  DRAM is becoming less reliable # more vulnerable 
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Large-Scale Failure Analysis of DRAM Chips 
!  Analysis and modeling of memory errors found in all of 

Facebook’s server fleet 

!  Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu, 
"Revisiting Memory Errors in Large-Scale Production Data 
Centers: Analysis and Modeling of New Trends from the Field"  
Proceedings of the 
45th Annual IEEE/IFIP International Conference on Dependable 
Systems and Networks (DSN), Rio de Janeiro, Brazil, June 2015.  
[Slides (pptx) (pdf)] [DRAM Error Model]  
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Intuition: quadratic increase in capacity 

DRAM Reliability Reducing 



Future of Main Memory 
!  DRAM is becoming less reliable # more vulnerable 

!  Due to difficulties in DRAM scaling, other problems may 
also appear (or they may be going unnoticed) 

!  Some errors may already be slipping into the field 
"  Read disturb errors (Rowhammer) 
"  Retention errors 
"  Read errors, write errors 
"  … 

!  These errors can also pose security vulnerabilities 
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DRAM Data Retention Time Failures 

!  Determining the retention time of a cell/row is getting more 
difficult 

!  Retention failures may already be slipping into the field 
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Analysis of Data Retention Failures [ISCA’13] 
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Two Challenges to Retention Time Profiling 
!  Data Pattern Dependence (DPD) of retention time 

 
!  Variable Retention Time (VRT) phenomenon 
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Two Challenges to Retention Time Profiling 
!  Challenge 1: Data Pattern Dependence (DPD) 

"  Retention time of a DRAM cell depends on its value and the 
values of cells nearby it 

"  When a row is activated, all bitlines are perturbed simultaneously 
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!  Electrical noise on the bitline affects reliable sensing of a DRAM cell 
!  The magnitude of this noise is affected by values of nearby cells via 

"  Bitline-bitline coupling # electrical coupling between adjacent bitlines 
"  Bitline-wordline coupling # electrical coupling between each bitline and 

the activated wordline 

!  Retention time of a cell depends on data patterns stored in 
nearby cells  

    # need to find the worst data pattern to find worst-case retention time 
    # this pattern is location dependent 

Data Pattern Dependence 

48 



Two Challenges to Retention Time Profiling 
!  Challenge 2: Variable Retention Time (VRT) 

"  Retention time of a DRAM cell changes randomly over time        
!  a cell alternates between multiple retention time states 

"  Leakage current of a cell changes sporadically due to a charge 
trap in the gate oxide of the DRAM cell access transistor 

"  When the trap becomes occupied, charge leaks more readily from 
the transistor’s drain, leading to a short retention time 
!  Called Trap-Assisted Gate-Induced Drain Leakage 

"  This process appears to be a random process [Kim+ IEEE TED’11] 

"  Worst-case retention time depends on a random process  
# need to find the worst case despite this 
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Modern DRAM Retention Time Distribution 
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Industry Is Writing Papers About It, Too 
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Mitigation of Retention Issues [SIGMETRICS’14] 
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Handling Variable Retention Time [DSN’15]  
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How Do We Keep Memory Secure? 

!  DRAM 

!  Flash memory 

!  Emerging Technologies 
"  Phase Change Memory 
"  STT-MRAM 
"  RRAM, memristors 
"  …  
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How Do We Keep Memory Secure? 

!  Understand: Solid methodologies for failure modeling and 
discovery 
"  Modeling based on real device data – small scale and large scale 

 
!  Architect: Principled co-architecting of system and memory 

"  Good partitioning of duties across the stack 

!  Design & Test: Principled electronic design, automation, testing 
"  High coverage and good interaction with system reliability methods 
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Understand with Experiments (DRAM) 

56 Kim+, “Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors,” ISCA 2014. 

Temperature 
Controller 

 

PC 

Heater FPGAs FPGAs 



Understand with Experiments (Flash) 
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USB Jack 

Virtex-II Pro 
(USB controller) 

Virtex-V FPGA 
(NAND Controller) 

HAPS-52 Mother Board 

USB Daughter Board 

NAND Daughter Board 

1x-nm 
NAND Flash 

[DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014, 
HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017] 



Another Time: NAND Flash Vulnerabilities 
!  Onur Mutlu, 

"Error Analysis and Management for MLC NAND Flash Memory" 
Technical talk at Flash Memory Summit 2014 (FMS), Santa Clara, CA, August 
2014. Slides (ppt) (pdf)  

Cai+, “Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis,” DATE 2012. 
Cai+, “Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory Lifetime,” ICCD 
2012. 
Cai+, “Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization, Analysis and Modeling,” DATE 
2013. 
Cai+, “Error Analysis and Retention-Aware Error Management for NAND Flash Memory,” Intel Technology Journal 2013. 
Cai+, “Program Interference in MLC NAND Flash Memory: Characterization, Modeling, and Mitigation,” ICCD 2013. 
Cai+, “Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories,” SIGMETRICS 2014. 
Cai+,”Data Retention in MLC NAND Flash Memory: Characterization, Optimization and Recovery,” HPCA 2015. 
Cai+, “Read Disturb Errors in MLC NAND Flash Memory: Characterization and Mitigation,” DSN 2015.  
Luo+, “WARM: Improving NAND Flash Memory Lifetime with Write-hotness Aware Retention Management,” MSST 
2015. 
Meza+, “A Large-Scale Study of Flash Memory Errors in the Field,” SIGMETRICS 2015. 
Luo+, “Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory,” IEEE 
JSAC 2016. 
Cai+, “Vulnerabilities in MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and Mitigation 
Techniques,” HPCA 2017. 
Fukami+, “Improving the Reliability of Chip-Off Forensic Analysis of NAND Flash Memory Devices,” DFRWS EU 2017.  
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Flash Memory Programming Vulnerabilities 
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Aside: Large-Scale Flash Error Analysis 
!  First large-scale field study of flash memory errors 

!  Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu, 
"A Large-Scale Study of Flash Memory Errors in the Field"  
Proceedings of the 
ACM International Conference on Measurement and Modeling of 
Computer Systems (SIGMETRICS), Portland, OR, June 2015.  
[Slides (pptx) (pdf)] [Coverage at ZDNet] [Coverage on The Register] 
[Coverage on TechSpot] [Coverage on The Tech Report]  
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Summary 
!  Memory reliability is reducing 
!  Reliability issues open up security vulnerabilities 

"  Very hard to defend against 

!  Rowhammer is an example  
"  Its implications on system security research are tremendous & exciting 

!  Good news: We have a lot more to do. 
!  Understand: Solid methodologies for failure modeling and discovery 

"  Modeling based on real device data – small scale and large scale 

!  Architect: Principled co-architecting of system and memory 
"  Good partitioning of duties across the stack 

!  Design & Test: Principled electronic design, automation, testing 
"  High coverage and good interaction with system reliability methods 
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RowHammer in Popular Sites and Press 
!  https://en.wikipedia.org/wiki/Row_hammer  
!  https://twitter.com/hashtag/rowhammer?f=realtime  

!  http://www.rowhammer.com/  
!  http://www.zdnet.com/article/flipping-dram-bits-maliciously/  
!  http://www.infoworld.com/article/2894497/security/rowhammer-

hardware-bug-threatens-to-smashnotebook-  
!  http://www.zdnet.com/article/rowhammer-dram-flaw-could-be-

widespread-says-google/  
!  http://arstechnica.com/security/2015/03/cutting-edge-hack-gives-

super-user-status-by-exploiting-dramweakness/  
!  https://www.youtube.com/watch?v=H63dUfGBpxE  
!  http://www.wired.com/2015/03/google-hack-dram-memory-electric-

leaks/  
!  https://www.grc.com/sn/sn-498-notes.pdf  
!  … 
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Recap: The DRAM Scaling Problem 
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DRAM Retention Failure Analysis 
!  Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu, 

"An Experimental Study of Data Retention Behavior in Modern DRAM 
Devices: Implications for Retention Time Profiling Mechanisms" 
Proceedings of the 40th International Symposium on Computer Architecture 
(ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt) Slides (pdf) 
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			Key	Observa+ons:	
•  Tes9ng	alone	cannot	detect	all	possible	failures	
•  Combina9on	of	ECC	and	other	mi9ga9on	
techniques	is	much	more	effec9ve	
– But	degrades	performance	

•  Tes9ng	can	help	to	reduce	the	ECC	strength	
– Even	when	star9ng	with	a	higher	strength	ECC	

	

Towards	an	Online	Profiling	System	

Khan+, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative 
Experimental Study,” SIGMETRICS 2014. 



Run	tests	periodically	aFer	a	short	interval		
at	smaller	regions	of	memory		

Towards	an	Online	Profiling	System	
Ini9ally	Protect	DRAM		

with	Strong	ECC	 1	
Periodically	Test	
	Parts	of	DRAM	 2	

Test	
Test	
Test	

Mi9gate	errors	and	
reduce	ECC	 3	



Online Mitigating of DRAM Failures 
!  Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa Alameldeen, Chris Wilkerson, 

and Onur Mutlu, 
"The Efficacy of Error Mitigation Techniques for DRAM Retention 
Failures: A Comparative Experimental Study"  
Proceedings of the 
ACM International Conference on Measurement and Modeling of Computer 
Systems (SIGMETRICS), Austin, TX, June 2014. [Slides (pptx) (pdf)] [
Poster (pptx) (pdf)] [Full data sets]  
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Memory Errors in Facebook Fleet 
 
!  Analysis and modeling of memory errors found in all of 

Facebook’s server fleet 

!  Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu, 
"Revisiting Memory Errors in Large-Scale Production Data 
Centers: Analysis and Modeling of New Trends from the Field"  
Proceedings of the 
45th Annual IEEE/IFIP International Conference on Dependable 
Systems and Networks (DSN), Rio de Janeiro, Brazil, June 2015.  
[Slides (pptx) (pdf)] [DRAM Error Model]  
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at scale 

Technology 
scaling 

Modeling errors Architecture & 
workload 

Error/failure occurrence 

Findings 

Errors follow a power-law 
distribution and a large number of 
errors occur due to sockets/
channels 



New 
reliability 

trends 

Page offlining 
at scale 

Modeling errors Architecture & 
workload 

Error/failure occurrence 

Technology 
scaling 

Findings 

We find that newer cell 
fabrication technologies 
have higher failure rates 



New 
reliability 

trends 

Page offlining 
at scale 

Modeling errors 

Error/failure occurrence 
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More on Flash Retention Errors 
!  Yu Cai, Yixin Luo, Erich F. Haratsch, Ken Mai, and Onur Mutlu, 

"Data Retention in MLC NAND Flash Memory: Characterization, 
Optimization and Recovery"  
Proceedings of the 
21st International Symposium on High-Performance Computer 
Architecture (HPCA), Bay Area, CA, February 2015.  
[Slides (pptx) (pdf)]  
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More on Flash Read Disturb Errors 
!  Yu Cai, Yixin Luo, Saugata Ghose, Erich F. Haratsch, Ken Mai, 
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More on Flash Error Analysis 
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More Detail on Flash Error Analysis 
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Google’s RowHammer Attack 

The following slides are from Mark Seaborn and Thomas Dullien’s BlackHat 2015 talk 
 

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf  
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