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The Problem

Computing
IS Bottlenecked by Data
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Data 1s Key for Al, ML, Genomics, ...

Important workloads are all data intensive

They require rapid and efficient processing of large amounts
of data

Data is increasing
o We can generate more than we can process

SAFARI 3



Data 1s Key for Future Workloads

In-memory Databases Graph/Tree Processing
[Mao+, EuroSys’12; [Xu+, ISWC’12; Umuroglu+, FPL’15]
Clapp+ (Intel), ISWC’ 5]

. N
Spark

In-Memory Data Analytics Datacenter Workloads
[Clapp+ (Intel), ISWC'I5; [Kanev+ (Google), ISCA’15]
Awan+, BDCloud’15]
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Data Overwhelms Modern Machines

In-memory Databases Graph/Tree Processing

Data — performance & energy bottleneck

APACHE

Spark

In-Memory Data Analytics Datacenter Workloads
[Clappt (Intel), ISWC’I5; [Kanev+ (Google), ISCA’|5]
Awan+, BDCloud’ | 5]
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Data is Key for Future Workloads

e T

Chrome TensorFlow Mobile
Google’s web browser Google’s machine learning
framework
@ O YouTube @ O YouTube
Video Playback Video Capture
Google’s video codec Google’s video codec
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Data Overwhelms Modern Machines
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Chrome TensorFlow Mobile

Data — performance & energy bottleneck

O O YoiTube @ O YouTube
Video Playback Video Capture
Google’s video codec Google’s video codec
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Data 1s Key for Future Workloads

development of high-throughput
sequencing (HTS) technologies

N I H National Human Genome
Research Institute
genol

genome.gov/sequencingcosts

T T

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Number of Genomes
1
Sequenced PE D

2014 2015 2016 2017 Source: IHumina

SAFARI http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped O
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New Genome Sequencing Technologies

Nanopore sequencing technology and tools for genome assembly:
computational analysis of the current state, bottlenecks and
future directions

Damla Senol Cali &, Jeremie S Kim, Saugata Ghose, Can Alkan, Onur Mutlu

Briefings in Bioinformatics, bby017, https://doi.org/10.1093/bib/bby017
Published: 02 April2018 Article history v

Oxford Nanopore MinION

Data — performance & energy bottleneck
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https://arxiv.org/pdf/1711.08774.pdf

Data Overwhelms Modern Machines ...

= Storage/memory capability

= Communication capability

= Computation capability

SAFARI
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A Computing System

= Three key components
= Computation
= Communication

- Storage/ memory Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Computing System
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Perils of Processor-Centric Design

Shared Memory
Shared Shared
Memory Memory
Shared Control Control
Interconnect
\

KIOWRIA] pPaIeys

/ﬁﬂm‘ﬂls /

Shared Shared
s | Memory Memory
Control Control

Shared Memory

Most of the system is dedicated to storing and moving data




Data Overwhelms Modern Machines

2

Chrome TensorFlow Mobile

Data — performance & energy bottleneck

O O YoiTube @ O YouTube
Video Playback Video Capture
Google’s video codec Google’s video codec
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Data Movement Overwhelms Modern Machines

Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul
Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

62.7% of the total system energy
Is spent on data movement

Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand* Saugata Ghose’ Youngsok Kim*
Rachata Ausavarungnirun’ Eric Shiv>  Rahul Thakur’ ~ Daehyun Kim*”
Aki Kuusela®  Allan Knies®>  Parthasarathy Ranganathan®  Onur Mutlu™!
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https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/

Axiom

An Intelligent Architecture
Handles Data Well

SAFARI



How to Handle Data Well

Ensure data does not overwhelm the components

o via intelligent algorithms

o via intelligent architectures

o via whole system designs: algorithm-architecture-devices

Take advantage of vast amounts of data and metadata
o to improve architectural & system-level decisions

Understand and exploit properties of (different) data
o to improve algorithms & architectures in various metrics

SAFARI
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Corollaries: Architectures Today ...

= JArchitectures are terrible at dealing with data

o Designed to mainly store and move data vs. to compute
a They are processor-centric as opposed to data-centric

= Architectures are terrible at taking advantage of vast
amounts of data (and metadata) available to them

o Designed to make simple decisions, ignoring lots of data
o They make human-driven decisions vs. data-driven decisions

= Architectures are terrible at knowing and exploiting
different properties of application data

o Designed to treat all data as the same
o They make component-aware decisions vs. data-aware

SAFARI 18



Processing Data
Where It Makes Sense




Three Key Systems Trends

1. Data access is a major bottleneck
o Applications are increasingly data hungry

2. Energy consumption is a key limiter

3. Data movement energy dominates compute
o Especially true for off-chip to on-chip movement

20



Do We Want This?

SAFARI Source: V. Milutinovic
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Or This?

SA FA Rl Source: V. Milutinovic 22



Challenge and Opportunity for Future

High Performance,
Energy Efficient,
Sustainable

SAFARI



The Problem

Data access is the major performance and energy bottleneck

Our current
design principles
cause great energy waste

(and great performance loss)

SAFARI 24



The Problem

Processing of data
IS performed
far away from the data

SAFARI
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A Computing System

= Three key components
= Computation

= Communication

= Storage/memory

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Computing System
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A Computing System

= Three key components
= Computation

= Communication

= Storage/memory

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Computing System

Communication

Image source: https://Ibsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/



Today’s Computing Systems

Are overwhelmingly processor centric
All data processed in the processor - at great system cost
Processor is heavily optimized and is considered the master

Data storage units are dumb and are largely unoptimized
(except for some that are on the processor die)

Computing System
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Yet ...

=« “It's the Memory, Stupid!” (Richard Sites, MPR, 1996)
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Mutlu+, “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.



The Pertormance Perspective

= Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
"Runahead Execution: An Alternative to Very Large Instruction
Windows for Out-of-order Processors"
Proceedings of the 9th International Symposium on High-Performance
Computer Architecture (HPCA), pages 129-140, Anaheim, CA, February
2003. Slides (pdf)

Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors

Onur Mutlu § Jared Stark ¥ Chris Wilkerson I Yale N. Patt §

§ECE Department TMicroprocessor Research TDesktop Platforms Group
The University of Texas at Austin Intel Labs Intel Corporation

{onur,patt} @ece.utexas.edu jared.w.stark @intel.com chris.wilkerson @intel.com
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https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
http://www.cs.arizona.edu/hpca9/
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03_talk.pdf

The Performance Perspective (Today)

= All of Google’s Data Center Workloads (2015):

B Retiring
1 Front-end bound

B Bad speculation
2 Back-end bound

ads
bigtable
disk
flight-search
gmail
gmail-fe
indexingl
indexing2
searchl
search2
search3
video

400.perlbench
445.gobmk
429.mcf
471.omnetpp
433.milc

0 20 40 60 80 100 120
Pipeline slot breakdown (%)

Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.
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The Performance Perspective (Today)

All of Google’s Data Center Workloads (2015):

ads - T ! ——————f - ——— .
bigtable |- t—— ) - —1 .
disk - - 18} i
flight-search | L g - - .
gmail |- R B g .
gmail-fe |- o I R -
indexinglf -—{—® 3 — .
indexing2 - B l
searchl}| s — i
search2 &+ - — —1 .
search3} W _
video |- , 1 - = ! [ - - | ]
0 10 20 30 40 50 o0 70 80
Cache-bound cycles (%)
Figure 11: Half of cycles are spent stalled on caches.
32
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Perils of Processor-Centric Design

Grossly-imbalanced systems

o Processing done only in one place

o Everything else just stores and moves data: data moves a lot
- Energy inefficient

- Low performance

- Complex

Overly complex and bloated processor (and accelerators)
o To tolerate data access from memory

o Complex hierarchies and mechanisms

- Energy inefficient

- Low performance

- Complex
33



Perils of Processor-Centric Design

Shared Memory
Shared Shared
Memory Memory
Shared Control Control
Interconnect
\

KIOWRIA] pPaIeys
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Shared Shared
s | Memory Memory
Control Control

Shared Memory

Most of the system is dedicated to storing and moving data




The Energy Perspective

Communication Dominates Arithmetic

256-bit access
8 kB SRAM

SAFARI

Dally, HIPEAC 2015

256 pJ

— M
16 nJ I- Rd/Wr

Efficient
B c:-chip link




Data Movement vs. Computation Energy

Communication Dominates Arithmetic

Dally, HIPEAC 2015

64-bit DP DRAM
16 nJ * Rd/Wr

256-bit buses .
500 pJ Efficient

off-chip link
256-bit access
8 kB SRAM
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Data Movement vs. Computation Energy

= Data movement is a major system energy bottleneck
o Comprises 41% of mobile system energy during web browsing [2]
o Costs ~115 times as much energy as an ADD operation [1, 2]

Data Movement

\

———

g I I - - - .y,

[1]: Reducing data Movement Energy via Online Data Clustering and Encoding (MICRO’16)
[2]: Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms (IISWC’14)
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Energy Waste in Mobile Devices

Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul
Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

62.7% of the total system energy
Is spent on data movement

Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand* Saugata Ghose’ Youngsok Kim*
Rachata Ausavarungnirun’ Eric Shiv>  Rahul Thakur’ ~ Daehyun Kim*”
Aki Kuusela®  Allan Knies®>  Parthasarathy Ranganathan®  Onur Mutlu™!
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https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/

We Do Not Want to Move Datal

Communication Dominates Arithmetic

Dally, HIPEAC 2015

64-bit DP DRAM
16 nJ * Rd/Wr

256-bit buses .
500 pJ Efficient

off-chip link
256-bit access
8 kB SRAM
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We Need A Paradigm Shift To ...

Enable computation with minimal data movement
Compute where it makes sense (where data resides)

Make computing architectures more data-centric

40



Goal: Processing Inside Memory

Processor

Core

Results

Many questions ... How do we design the:

Q

o O O 0O

compute-capable memory & controllers?
processor chip and in-memory units?
software and hardware interfaces?
system software and languages?
algorithms?

)
Interconnect

1 Database

Graphs

I Media

Problem

Program/Language
System Software

SW/HW Interface

Micro-architecture

Logic

Electrons




Why In-Memory Computation Today?

= Push from Technology
o DRAM Scaling at jeopardy
—> Controllers close to DRAM
- Industry open to new memory architectures

SAFARI
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Why In-Memory Computation Today?
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Why In-Memory Computation Today?

= Pull from Systems and Applications
o Data access is a major system and application bottleneck

o Systems are energy limited
o Data movement much more energy-hungry than computation

SAFARI 4



Processing in Memory:

Two Approaches

1. Minimally changing memory chips
2. Exploiting 3D-stacked memory




Approach 1: Minimally Changing DRAM

= DRAM has great capability to perform bulk data movement and
computation internally with small changes

o Can exploit internal connectivity to move data
a Can exploit analog computation capability

Q ...

= Examples: RowClone, In-DRAM AND/OR, Gather/Scatter DRAM

o RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data
(Seshadri et al., MICRO 2013)

o Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)

o Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial
Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015)

o "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity
DRAM Technology” (Seshadri et al., MICRO 2017)

SAFARI 46


http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
https://users.ece.cmu.edu/~omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf

Starting Simple: Data Copy and Initialization

memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ ISCA’15]

00000

00000
00000

Zero initialization

Many more

ol L

VM Cloning  page Migration
Deduplication
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Today’s Systems: Bulk Data Copy

1) High latency
3) Cache pollution \

2) High bandwidth utilization

4) Unwanted data movement

1046ns, 3.6ul (for 4KB page copy via DMA)

48



Future Systems: In-Memory Copy

3) No cache pollution 1) Low latency

2) Low bandwidth utilization
4) No unwanted data movement

1046ns, 3.6u)] =2 90ns, 0.04u)

49



RowClone: In-DRAM Row Copy

Transfer
row

Transfer|
row

4 Kbytes

Idea: Two consecutive ACTivates

Negligible HW cost

Step 1: Activate row A

Step 2: Activate row B

DRAM subarray

Row Buffer (4 Kbytes)

Data Bus



RowClone: Latency and Energy Savings

M Baseline M Intra-Subarray
W Inter-Bank M Inter-Subarray

1.2
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|
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74x
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|
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o
(@)

o
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l

Latency Energy

Seshadri et al., "RowClone: Fast and Efficient In-DRAM Copy and
Initialization of Bulk Data,” MICRO 2013.
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More on RowClone

= Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata

Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A.
Kozuch, Phillip B. Gibbons, and Todd C. Mowry,

"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and
Initialization”
Proceedings of the 46th International Symposium on Microarchitecture

(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning Session
Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

RowClone: Fast and Energy-Efficient
In-DRAM Bulk Data Copy and Initialization

Vivek Seshadri Yoongu Kim Chris Fallin™ Donghyuk Lee

vseshadr@cs.cmu.edu yoongukim@cmu.edu cfallin@cif.net donghyuki@cmu.edu

Rachata Ausavarungnirun Gennady Pekhimenko Yixin Luo
rachata@cmu.edu gpekhime@cs.cmu.edu  yixinluo@andrew.cmu.edu

Onur Mutlu Phillip B. Gibbonst Michael A. Kozucht Todd C. Mowry

onur@cmu.edu phillip.b.gibbons@intel.com michael.a.kozuch@intel.com tcm@cs.cmu.edu

Carnegie Mellon University fIntel Pittsburgh


http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://www.microarch.org/micro46/
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pdf

Memory as an Accelerator

Memory

Memory Controller

mini-CPU
E GPU GPU =
CPU CPU delis ¢ | (throughput) (throughput) | :
core core : core core :
video
core
: GPU GPU :
CPU CPU . _ : | (throughput) | |(throughput) | :
imaging core :
core core e core
LLC
|

Specialized
compute-capability
in memory

Memory similar to a “conventiona

Memory Bus

III

accelerator



In-Memory Bulk Bitwise Operations

We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ
At low cost

Using analog computation capability of DRAM

o Idea: activating multiple rows performs computation

30-60X performance and energy improvement

o Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology,” MICRO 2017.

New memory technologies enable even more opportunities
o Memristors, resistive RAM, phase change mem, STT-MRAM, ...
o Can operate on data with minimal movement
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In-DRAM AND/OR: Triple Row Activation

A ; l P %Vppt6

I el Final State
B v AB + BC + AC

c

| %5,

dis

SAFARI Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015.
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In-DRAM NOT: Dual Contact Cell

d-wordline .
dual-contact )E R %
cell (DCC) | Al i 2 -
n-wordline :__I__LI_ | Id ed.
wense | = | Feed the
amplifier
plifier —7\ 7 negated value

in the sense amplifier
into a special row

bitline

Figure 5: A dual-contact
cell connected to both
ends of a sense amplifier

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.
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Ambit vs. DDR3: Performance and Energy

Performance Improvement B Energy Reduction
70

60
50 32X 35X

40
30
20
10 |
0

and/or nand/nor xor/xnor mean

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017. 57



Bulk Bitwise Operations in Workloads

BitWeaving

Bitmap indices (database queries)
(database indexing)

BitFunnel

Bulk Bitwise (web search)

Set operations Operations

DNA
sequence mapping
Encryption algorithms

SA FAR' [1] Li and Patel, BitWeaving, SIGMOD 2013
[2] Goodwin+, BitFunnel, SIGIR 2017



Performance: Bitmap Index on Ambit

~ 110 _ T e T,
GE) g 100 < Baseline I Ambit ool o,
c < o04b—— e b
= S, 80 e [ L L
- GL) TO —f-eeememmemim L] L
9 = 60_ ..............................................................................................................
.5: O 50 et Y A I PO R A I AR
8 _GC) 318_ ............................................................................................
e e e [ . ‘e 6.6X
LI>J< : %8 _ 54X 6.3X - 5.7X 6.2X | |9
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2-weeks 3-weeks 4-weeks 2-weeks 3-weeks 4-weeks
8 million users 16 million users

Figure 10: Bitmap index performance. The value above each
bar indicates the reduction in execution time due to Ambit.

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

SAFARI >



Performance: BitWeaving on Ambit

‘select count(*) from T where cl <= val <= c2’

13 _ ROW Count (r) _ D 1m . 2m D 4m . 8m ..................................

Speedup offered by Ambit

16 24
Number of Bits per Column (b)

Figure 11: Speedup offered by Ambit over baseline CPU with
SIMD for BitWeaving

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.
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More on Ambit

= Vivek Seshadri et al., "Ambit: In-Memory Accelerator
for Bulk Bitwise Operations Using Commodity DRAM
Technology,” MICRO 2017.

Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology

Vivek Seshadri'® Donghyuk Lee*®> Thomas Mullins®® Hasan Hassan® ~Amirali Boroumand®
Jeremie Kim*® Michael A. Kozuch® Onur Mutlu®® Phillip B. Gibbons® Todd C. Mowry”®

!Microsoft Research India ?NVIDIA Research Z3Intel *ETH Ziirich °Carnegie Mellon University
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Processing in Memory:

Two Approaches

1. Minimally changing memory chips
2. Exploiting 3D-stacked memory




Opportunity: 3D-Stacked Logic+Memory

vbrid Memory Cube

Logic

Other “True 3D" technologies
under development

SAFARI 63



DRAM Landscape (circa 2015)

Segment DRAM Standards & Architectures
Commodity  DDR3 (2007) [14]; DDR4 (2012) [1¥]

Low-Power  LPDDR3 (2012) [17]; LPDDR4 (2014) [20]
Graphics GDDRS5 (2009) [15]

Performance eDRAM [2£], [32]; RLDRAMS3 (2011) [29]

SBA/SSA (2010) [38]; Staged Reads (2012) [%]; RAIDR (2012) [27];
SALP (2012) [24]; TL-DRAM (2013) [26]; RowClone (2013) [37];
Half-DRAM (2014) [39]; Row-Bufter Decoupling (2014) [33];

SARP (2014) [6]; AL-DRAM (2015) [25]

Academic

Table 1. Landscape of DRAM-based memory

Kim+, "Ramulator: A Flexible and Extensible DRAM Simulator”, IEEE CAL 2015.
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Two Key Questions 1n 3D-Stacked PIM

=| What are the performance and energy benefits of using
3D-stacked memory as a coarse-grained accelerator?
a | By changing the entire system

o By performing simple function offloading

= What is the minimal processing-in-memory support we can
provide?
a With minimal changes to system and programming

SAFARI 65



Graph Processing

= Large graphs are everywhere (circa 2015)

oo R J

36 Million 1.4 Billion 300 Million 30 Billion
Wikipedia Pages = Facebook Users Twitter Users  Instagram Photos

= Scalable large-scale graph processing is challenging

Speedup

06



Key Bottlenecks in Graph Processing

for (v: graph.vertices) {
for (w: v.successors) {
w.next_rank += weight * v.rank;

)

}
1. Frequent random memory accesses

/\
<——-’——\- ________
~
I
Vv " &w
w.rank ] ._I-/// !
<-——-I"— i /
w.next_rank | | . T T e e
b 7 weight * Kk
w.edges W — _~ \W~e|9 t V.EaD <
_\7 -
« = “

2. Little amount of computation

SAFARI 07



Tesseract System for Graph Processing

Interconnected set of 3D-stacked memory+logic chips with simple cores

Host Processor

Memory-Mapped

Accelerator Interface
Noncacheable, Physically Addressed)

g

1
1
1
1
1
\
\
\
\
\
\

(1)

(1)

(1)

(1]

Crossbar Network

+

+

+t

+

In-Order Core

LP PF Buffer

MTP

Message Queue

J3]|0J43U0D NVYA

g
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SAFAR] Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.




Communications via

Remote Function Calls

Message Queue




Prefetching

LP PF Buffer

MTP




Evaluated Systems
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Tesseract Graph Processing Performance

. >13X Performance Improvement

" On five graph processing algorithms 13.8x

11.6x

12
10 9.0x

Speedup

~ o o

+56%  125%

, mm BN e

DDR3-000 HMC-Oo0 HMC-MC Tesseract Tesseract- Tesseract-
LP LP-MTP

N

SAFAR] Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Memory Bandwidth Consumption

2.9TB/s

Memory Bandwidth (TB/s)

2.2TB/s
1.3TB/s
190GB/s 243GB/s
80GB/s
— T

DDR3-000 HMC-000 HMC-MC Tesseract Tesseract- Tesseract-
LP LP-MTP




Tesseract Graph Processing System Energy

B Memory Layers [ Logic Layers [ Cores
1.2

0.8
0.6
0.4

0.2 > 8X Energy Reduction

HMC-000 Tesseract with Prefetching

SAFAR/ Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



More on Tesseract

= Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu,
and Kiyoung Choi,

"A Scalable Processing-in-Memory Accelerator for
Parallel Graph Processing”

Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing

Junwhan Ahn  Sungpack Hong® Sungjoo Yoo Onur Mutlu' Kiyoung Choi

junwhan@snu.ac.kr, sungpack.hong @oracle.com, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi @snu.ac.kr

Seoul National University $Oracle Labs fCarnegie Mellon University
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http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-lightning-talk.pdf

Two Key Questions 1n 3D-Stacked PIM

=| What are the performance and energy benefits of using
3D-stacked memory as a coarse-grained accelerator?

a By changing the entire system

o | By performing simple function offloading

= What is the minimal processing-in-memory support we can
provide?
a With minimal changes to system and programming
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PIM on Mobile Devices

= Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata
Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki
Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data
Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks
Amirali Boroumand' Saugata Ghose' Youngsok Kim?

Rachata Ausavarungnirun'  Eric Shiv>  Rahul Thakur’>  Daehyun Kim*?
Aki Kuusela®  Allan Knies®  Parthasarathy Ranganathan®  Onur Mutlu”!
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https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/

Consumer Devices

Consumer devices are everywhere!

Energy consumption is
a first-class concern in consumer devices

SAFARI



Popular Google Consumer Workloads

Z L2

Chrome TensorFlow Mobile
Google’s web browser Google’s machine learning
framework
@ O YouTube @ O YouTube
Video Playback Video Capture
Google’s video codec Google’s video codec

SAFARI



Energy Cost of Data Movement

|5t key observation: 62.7% of the total system
energy is spent on data movement

Data Movement

Processing-In-Memory (PIM)

Potential solution: move computation close to data

Challenge: limited area and energy budget
SAFARI



Using PIM to Reduce Data Movement

2"d key observation: a significant fraction of the
data movement often comes from simple functions

We can design lightweight logic to implement
these simple functions in memory

Small embedded Small fixed-function
low-power core accelerators

Offloading to PIM logic reduces energy and improves
performance, on average, by 55.4% and 54.2%

SAFARI



Workload Analysis

©

Chrome TensorFlow Mobile
Google’s web browser Google’s machine learning
framework
@ O YouTube @ O YouTube
Video Playback Video Capture
Google’s video codec Google’s video codec

SAFARI



)

TensorFlow Mob

Prediction
9

Inferenc

(¢

57.3% of the inference energy is spent on
data movement

\

54.4% of the data movement energy comes from
packing/unpacking and quantization

SAFARI



Packing

Matrix Packed Matrix
l Packing l

Reorders elements of matrices to minimize
cache misses during matrix multiplication

v v

Up to 40% of the Packing’s data movement
inference energy and 3 1% of accounts for up to
inference execution time 35.3% of the inference energy

A simple data reorganization process
that requires simple arithmetic

SAFARI



Quantization

floating point integer

Converts 32-bit floating point to 8-bit integers to improve
inference execution time and energy consumption

v v

Up to 16.8% of the Majority of quantization
inference energy energy comes from
and 16.1% of data movement

inference execution time

A simple data conversion operation that requires
shift, addition, and multiplication operations

SAFARI



Normalized Energy

CPU-Only mPIM-Core OPIM-Acc

5

o o o
BN o (0 0]
1

Normalized Energy
o
N

A,
A,

N
\
X N
N\
.
N
N
-\
N Y
N
R
N \

o
]

Texture Color Com- Decom- Packing Quantization Sub-Pixel Deblocking  Motion
Tiling Blitting pression pression Interpolation  Filter Estimation

Chrome Browser TensorFlow Video Playback and
Mobile Capture

PIM core and PIM accelerator reduce

energy consumption on average by 49.1% and 55.4%
SAFARI




Normalized Runtime

Normalized Runtime

=

o

o

o

o

o

CPU-Only m PIM-Core O PIM-Acc

0 -
8 A
6 A
4 -
2 A
0 = 1 1
Texture Color Comp- Decomp- | Sub-Pixel Deblocking Motion |TensorFlow
Tiling Blitting ression ression [Interpolation Filter Estimation
Chrome Browser Video Playback TensorFlow
and Capture Mobile

Offloading these kernels to PIM core and PIM accelerator
improves performance on average by 44.6% and 54.2%



More on PIM for Mobile Devices

Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul
Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

62.7% of the total system energy
Is spent on data movement

Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand* Saugata Ghose’ Youngsok Kim*
Rachata Ausavarungnirun’ Eric Shiv>  Rahul Thakur’ ~ Daehyun Kim*”
Aki Kuusela®  Allan Knies®>  Parthasarathy Ranganathan®  Onur Mutlu™!
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Truly Distributed GPU Processing with PIM?

__global__

void applyScaleFactorsKernel( uint8_ T * const out,
uint8_T const * const in, const double *factor,
size_t const numRows, size_t const numCols )

// Work out which pixel we are working on.

const int rowIdx = blockIdx.x * blockDim.x + threadIdx.x:;
const int colldx = blockIdx.y:

const int sliceldx = threadIdx.z;

// Check this thread isn't off the image
if( rowIdx >= numRows ) return;

// Compute the index of my element

3 D-StaCked memory size_t linearIdx = rowIdx + colIdx*numRows +

sliceIdx*numRows*numCols;

(memory stack) SM (Streaming Multiprocessor)

<. Logic layer

Logic layer
SM
1

Crossbar switch
| I

Vault| .... |Vault
Ctrl Ctrl




Accelerating GPU Execution with PIM (I)

= Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems”
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Transparent Offloading and Mapping (TOM):
Enabling Programmer-Transparent Near-Data Processing in GPU Systems

Kevin Hsieh! Eiman Ebrahimi Gwangsun Kim*  Niladrish Chatterjee]L Mike O’Connor'
Nandita Vij aykumari Onur Mutlu$? Stephen W. Keckler!

ICarnegie Mellon University 'NVIDIA *KAIST SETH Ziirich


https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf

Accelerating GPU Execution with PIM (1I)

= Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.
Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities”

Proceedings of the 25th International Conference on Parallel
Architectures and Compilation Techniques (PACT), Haifa, Israel,
September 2016.

Scheduling Techniques for GPU Architectures
with Processing-In-Memory Capabilities

Ashutosh Pattnaik®  Xulong Tang*  Adwait Jog>  Onur Kayiran?
Asit K. Mishra*  Mahmut T. Kandemirt  Onur Mutlu>¢  Chita R. Das!

'Pennsylvania State University =~ *College of William and Mary
3Advanced Micro Devices, Inc. “Intel Labs °ETH Zirich ¢Carnegie Mellon University
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http://pactconf.org/

Eliminating the Adoption Barriers

How to Enable Adoption
of Processing in Memory

SAFARI



Barriers to Adoption of PIM

1. Functionality of and applications for PIM
2. Ease of programming (interfaces and compiler/HW support)
3. System support: coherence & virtual memory

4. Runtime systems for adaptive scheduling, data mapping,
access/sharing control

5. Infrastructures to assess benefits and feasibility
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We Need to Revisit the Entire Stack

SW/HW Interface

SAFARI
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Open Problems: PIM Adoption

Enabling the Adoption of Processing-in-Memory:
Challenges, Mechanisms, Future Research Directions

SAUGATA GHOSE, KEVIN HSIEH, AMIRALI BOROUMAND,
RACHATA AUSAVARUNGNIRUN

Carnegie Mellon University

ONUR MUTLU
ETH Ziirich and Carnegie Mellon University

Saugata Ghose, Kevin Hsieh, Amirali Boroumand, Rachata Ausavarungnirun, Onur Mutlu,
"Enabling the Adoption of Processing-in-Memory: Challenges, Mechanisms,
Future Research Directions"

Invited Book Chapter, to appear in 2018.

[Preliminary arxiv.org version]

SAFARI https://arxiv.org/pdf/1802.00320.pdf 95



https://people.inf.ethz.ch/omutlu/acaces2018.html
https://arxiv.org/pdf/1802.00320.pdf
https://arxiv.org/pdf/1802.00320.pdf

PIM Review and Open Problems

Processing Data Where It Makes Sense:
Enabling In-Memory Computation

Onur Mutlu®®, Saugata Ghose®, Juan Gémez-Luna?, Rachata Ausavarungnirun®®

“ETH Ziirich
bCarnegie Mellon University
“King Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"Processing Data Where It Makes Sense: Enabling In-Memory

Computation”
Invited paper in Microprocessors and Microsystems (MICPRO), June 2019.
[arXiv version]

SAFARI https: / /arxiv.org/pdf/1903.03988.pdf %6



https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://doi.org/10.1016/j.micpro.2019.01.009
https://arxiv.org/pdf/1903.03988.pdf
https://arxiv.org/pdf/1903.03988.pdf

Challenge and Opportunity for Future

Computing Architectures
with
Minimal Data Movement

SAFARI



Corollaries: Architectures Today ...

= Architectures are terrible at dealing with data
o Designed to mainly store and move data vs. to compute
a They are processor-centric as opposed to data-centric

-
o Designed to make simple decisions, ignoring lots of data
o They make human-driven decisions vs. data-driven decisions

= Architectures are terrible at knowing and exploiting
different properties of application data

o Designed to treat all data as the same
o They make component-aware decisions vs. data-aware
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Exploiting Data to Design
Intelligent Architectures




System Architecture Design Today

Human-driven
o Humans design the policies (how to do things)

Many (too) simple, short-sighted policies all over the system
No automatic data-driven policy learning

(Almost) no learning: cannot take lessons from past actions

Can we design
fundamentally intelligent architectures?

SAFARI 100



An Intelligent Architecture

Data-driven
o Machine learns the “best” policies (how to do things)

Sophisticated, workload-driven, changing, far-sighted policies
Automatic data-driven policy learning

All controllers are intelligent data-driven agents

How do we start?

SAFARI tot



Selt-Optimizing
Memory Controllers




Memory Controller

Resolves memory contention
by scheduling requests

X _ W Memory

r r :
Memory

Controller :

CorefjCore :

How to schedule requests to maximize system performance?
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Why are Memory Controllers Ditficult to Design?

Need to obey DRAM timing constraints for correctness

o There are many (50+) timing constraints in DRAM

o tWTR: Minimum number of cycles to wait before issuing a read command after
a write command is issued

o tRC: Minimum number of cycles between the issuing of two consecutive
activate commands to the same bank

Q

Need to keep track of many resources to prevent conflicts

o Channels, banks, ranks, data bus, address bus, row buffers, ...

Neec
Neec

Neec

to handle DRAM refresh
to manage power consumption
to optimize performance & QOS (in the presence of constraints)

o Reordering is not simple
o Fairness and QoS needs complicates the scheduling problem
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Many Memory Timing Constraints

Latency | Symbol | DRAM cveles || Latency | Symbol | DRAM cycles |

Precharge ‘RP 11 Activate to read/write ‘RCD 11

Read column address strobe CL 11 Write column address strobe CWL 8
Additive AL 0 Activate to activate ‘RC 39

Activate to precharge ‘RAS 28 Read to precharge ‘RTP 6

Burst length ‘BL B Column address strobe to column address strobe | ‘CC D B

Activate to activate (different bank) |  RRD 6 Four activate windows FFAW 24
Write to read ‘WTR 6 Write recovery ‘WR 12

Table 4. DDR3 1600 DRAM timing specifications

= From Lee et al., “DRAM-Aware Last-Level Cache Writeback: Reducing
Write-Caused Interference in Memory Systems,” HPS Technical Report,
April 2010.
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Many Memory Timing Constraints

= Kim et al., “A Case for Exploiting Subarray-Level Parallelism
(SALP) in DRAM,"” ISCA 2012.

= Lee et al., "Tiered-Latency DRAM: A Low Latency and Low
Cost DRAM Architecture,” HPCA 2013.

Q Ny Q
5 3 o G S Table 2. Timing Constraints (DDR3-1066) [43]
< < Q < 2
tRC ; Phase Commands Name Value
«—tRAS—— | < tRP—| ACT > READ
: time -
Subarray —[ 1. Activation Pre 1. Activation ]—) 1 ACT — WRITE CRCD 15ns
| |
Peripheral & | < tRCD> 76 | «tRCD> S time ACT — PRE tRAS  375ns
I/O-Circuitry . - READ — data tCL 15ns
«—tCL— | <—tCL— | time 2  WRITE — data tCWL 11.25ns
Bus w data >
' ! : data burst tBL 7.5ns
_ BL tBL 3 PRE — ACT tRP 15ns
<—first access latency—> | i CRC
second access latency | 1&3 ACT — ACT (tRAS+tRD) 52.5ns

Figure 5. Three Phases of DRAM Access
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Memory Controller Design Is Becoming More Ditticult

CPU CPU
GPU
v
DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

= Heterogeneous agents: CPUs, GPUs, and HWAs
= Main memory interference between CPUs, GPUs, HWAs
= Many timing constraints for various memory types

= Many goals at the same time: performance, fairness, QoS,
energy efficiency, ...
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Reality and Dream

Reality: It difficult to design a policy that maximizes
performance, QoS, energy-efficiency, ...

o Too many things to think about
o Continuously changing workload and system behavior

Dream: Wouldn't it be nice if the DRAM controller
automatically found a good scheduling policy on its own?
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Selt-Optimizing DRAM Controllers

Problem: DRAM controllers are difficult to design

o It is difficult for human designers to design a policy that can adapt
itself very well to different workloads and different system conditions

Idea: A memory controller that adapts its scheduling policy to
workload behavior and system conditions using machine learning.

Observation: Reinforcement learning maps nicely to memory
control.

Design: Memory controller is a reinforcement learning agent

o It dynamically and continuously learns and employs the best
scheduling policy to maximize long-term performance.

Ipek+, “Self Optimizing Memory Controllers: A Reinforcement Learning Approach,” ISCA 2008.



Selt-Optimizing DRAM Controllers

’ ‘ ENVIRONMENT

Action a(t+1) Agent

Figure 2: (a) Intelligent agent based on reinforcement learning
principles;


http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

Selt-Optimizing DRAM Controllers

Dynamically adapt the memory scheduling policy via
interaction with the system at runtime

o Associate system states and actions (commands) with long term
reward values: each action at a given state leads to a learned reward

o Schedule command with highest estimated long-term reward value in
each state

o Continuously update reward values for <state, action> pairs based on
feedback from system

>| SYSTEM

Data Bus

Scheduled DRAM Utilization (t)
Command (t+1) Scheduler State

Attributes (1)
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Selt-Optimizing DRAM Controllers

= Engin Ipek, Onur Mutlu, José F. Martinez, and Rich Caruana,
"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach”
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA ), pages 39-50, Beijing, China, June 2008.

State\ Ac
/ / Command 2
Transaction Queue 1;9 -
l ‘ ‘ ‘ ‘ ‘ ‘ ‘ |<:> B | [Addess 2|
S o
P ~ )
- S ~
-~ - ~ \ _—
Valid |Bank | Row | Col | Data | Feduest F\‘ewal\rt/
State

Figure 4: High-level overview of an RL-based scheduler.
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States, Actions, Rewards

** Reward function

e +1 for scheduling
Read and Write
commands

e ( at all other
times

Goal is to maximize
long-term
data bus
utilization

** State attributes

Number of reads,
writes, and load
misses in
transaction queue

Number of pending
writes and ROB
heads waiting for
referenced row

Request’s relative
ROB order

** Actions

Activate

Write

Read - load miss
Read - store miss
Precharge - pending

Precharge - preemptive
NOP
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Performance Results

cooocooooCo

QOO RRENN
BOOON BORON

Speedup over FR-FCFS

ART CG EQUAKE FFT MG OCEAN RADIX SCALPARC SWIM  G-MEAN

M In-Order FR-FCFS M RL M Optimistic

Figure 7: Performance comparison of in-order, FR-FCFS, RL-based, and optimistic memory controllers

Large, robust performance improvements
over many human-designed policies

2 300
g I 180
o x 160
2 Y o140
S 2120
$ £ 100 -
o c 0.80 -
v o
= ART CG EQUAKE FFT MG OCEAN RADIX SCALPARC SWIM G-MEAN
M FR-FCFS - 1 Channel RL- 1 Channel M FR-FCFS - 2 Channels MRL - 2 Channels

Figure 15: Performance comparison of FR-FCFS and RL-based memory controllers on systems with 6.4GB/s and 12.8GB/s peak
DRAM bandwidth

114



Selt Optimizing DRAM Controllers

+ Continuous learning in the presence of changing environment

+ Reduced designer burden in finding a good scheduling policy.
Designer specifies:

1) What system variables might be useful
2) What target to optimize, but not how to optimize it

-- How to specify different objectives? (e.g., fairness, QosS, ...)
-- Hardware complexity?

-- Design mindset and flow
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More on Selt-Optimizing DRAM Controllers

= Engin Ipek, Onur Mutlu, José F. Martinez, and Rich Caruana,
"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach”
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA ), pages 39-50, Beijing, China, June 2008.

Self-Optimizing Memory Controllers: A Reinforcement Learning Approach

Engin Ipek'2  Onur Mutlu?>  José F. Martinez!  Rich Caruana!

LCornell University, Ithaca, NY 14850 USA
2 Microsoft Research, Redmond, WA 98052 USA
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An Intelligent Architecture

Data-driven
o Machine learns the “best” policies (how to do things)

Sophisticated, workload-driven, changing, far-sighted policies
Automatic data-driven policy learning

All controllers are intelligent data-driven agents

We need to rethink design
(of all controllers)

SAFARI 17



Challenge and Opportunity for Future

Self-Optimizing
(Data-Driven)
Computing Architectures

SAFARI



Corollaries: Architectures Today ...

= Architectures are terrible at dealing with data
o Designed to mainly store and move data vs. to compute
a They are processor-centric as opposed to data-centric

= Architectures are terrible at taking advantage of vast
amounts of data (and metadata) available to them

o Designed to make simple decisions, ignoring lots of data
o They make human-driven decisions vs. data-driven decisions

o Designed to treat all data as the same
o They make component-aware decisions vs. data-aware

SAFARI o



Data-Aware Architectures

A data-aware architecture understands what it can do with
and to each piece of data

It makes use of different properties of data to improve
performance, efficiency and other metrics

Compressibility
Approximability

Locality

Sparsity

Criticality for Computation X
Access Semantics

o o o o o o O
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One Problem: Limited Interfaces

Higher-level information is not visible to HW

©
Code Optimizations O B

Access Patterns

g Data Structures q/
M s L&
Data Type

100011111.. Instructions
101010011.. Memory Addresses

Software

Hardware
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A Solution: More Expressive Interfaces

Performance | | M
Software | - g '

Higher-level g R IXTIT:
ISA Program Mpem ory
Virtual Memory Y TTTS “YMem”

Hardware
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Expressive (Memory) Intertaces

= Nandita Vijaykumar, Abhilasha Jain, Diptesh Majumdar, Kevin Hsieh, Gennady
Pekhimenko, Eiman Ebrahimi, Nastaran Hajinazar, Phillip B. Gibbons and Onur Mutlu,
"A Case for Richer Cross-layer Abstractions: Bridging the Semantic Gap
with Expressive Memory"
Proceedings of the 45th International Symposium on Computer Architecture (ISCA),
Los Angeles, CA, USA, June 2018.
[Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video]

A Case for Richer Cross-layer Abstractions:
Bridging the Semantic Gap with Expressive Memory

Nandita Vijaykumar'® Abhilasha Jain® Diptesh MajumdarT Kevin Hsieh” Gennady Pekhimenko*
Eiman Ebrahimi® Nastaran Hajinazar™ Phillip B. Gibbons" Onur Mutlu®'

TCarnegie Mellon University *University of Toronto YNVIDIA
TSimon Fraser University SETH Ziirich
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An Example: Heterogeneous-Reliability Memory

= Yixin Luo, Sriram Govindan, Bikash Sharma, Mark Santaniello, Justin Meza, Aman
Kansal, Jie Liu, Badriddine Khessib, Kushagra Vaid, and Onur Mutlu,
"Characterizing Application Memory Error Vulnerability to Optimize
Data Center Cost via Heterogeneous-Reliability Memory"
Proceedings of the 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Atlanta, GA, June 2014. [Summary]
[Slides (pptx) (pdf)] [Coverage on ZDNet]

Characterizing Application Memory Error Vulnerability to
Optimize Datacenter Cost via Heterogeneous-Reliability Memory

Yixin Luo  Sriram Govindan® Bikash Sharma® Mark Santaniello® Justin Meza
Aman Kansal® Jie Liu® Badriddine Khessib® Kushagra Vaid® Onur Mutlu

Carnegie Mellon University, yixinluo@cs.cmu.edu, {meza, onur}@cmu.edu
“Microsoft Corporation, {srgovin, bsharma, marksan, kansal, jie.liu, bkhessib, kvaid}@microsoft.com
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http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_luo_dsn14-talk.pdf
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Exploiting Memory Error Tolerance
with Hybrid Memory Systems

Vulnerable
data

Reliable memory

On Microsoft’s Web Search workload
Reduces server hardware cost by 4.7 %
Achieves single server availability target of 99.90 %

Heterogeneous-Reliability Memory [psn 2014]
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Another Example: EDEN

Deep Neural Network evaluation is very DRAM-intensive
(for large networks)

1. Some data and layers in DNNs are very tolerant to errors

2. We can reduce DRAM latency and voltage on such data and
layers (intermediate feature maps and weights)

3. While still achieving a user-specified DNN accuracy target

Data-aware management of DRAM latency and voltage
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EDEN Flow

Boost the Error Tolerance of the DNN  Map to DRAM

@ (@) 3 5
e Baseline AN » Boosting - Boosted DNN to
rg;r::g Device —_— 2 \ DNN DNN Memory
Memo Mem 3 Accuracy| | g0 Settings
— ry emory Target s
Error ! . Matp
Model reation
— Memory
E— Training Profiling | | [N O & ‘
_ \ ) Validation DNN DNN DNN
S L \& - r_Data Testing Ervor Execution
== Profile
Creation of Baseline DNN Profiling DRAM Array Profile the Boosted DNN
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EDEN Power, Performance, Accuracy

Eyeriss Google TPU

B DDR4
= LPDDR3

Normalized Power

= ~15-20% power savings, 8% perf improvement, <1%
accuracy loss
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Challenge and Opportunity for Future

Data-Aware
(Expressive)
Computing Architectures

SAFARI



Recap: Corollaries: Architectures Today

& JArchitectures are terrible at dealing with data

o Designed to mainly store and move data vs. to compute
o They are processor-centric as opposed to data-centric

= JArchitectures are terrible at taking advantage of vast
amounts of data (and metadata) available to them
o Designed to make simple decisions, ignoring lots of data

o They make human-driven decisions vs. data-driven decisions

= JArchitectures are terrible at knowing and exploiting
' oroperties of application data

o Designed to treat all data as the same
o They make component-aware decisions vs. data-aware
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Architectures for Intelligent Machines

Data-centric

Data-driven

Data-aware
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We Need to Revisit the Entire Stack

SW/HW Interface
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(Intelligent) Architectures
for
Intelligent Machines

Onur Mutlu
omutlu@gmail.com
https://people.inf.ethz.ch/omutlu
15 April 2019
Mubadala-SRC AI Hardware Systems Forum Keynote Talk

SAFARI ETHZzurich cCarnegieMellon
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Concluding Remarks

= It is time to design principled system architectures to solve
the data handling problem

= Design complete systems to be truly balanced, high-
performance, and energy-efficient - intelligent architectures

= Data-centric, data-driven, data-aware

= This can

o Lead to orders-of-magnitude improvements

o Enable new applications & computing platforms
o Enable better understanding of nature
Q
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More on Processing in Memory
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Performance: In-DRAM Bitwise Operations

Skylake B GTX 745 HMC 2.0 Ambit Il Ambit-3D
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@p)] 1024 O
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Figure 9: Throughput of bitwise operations on various systems.

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.
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Energy of In-DRAM Bitwise Operations

Design not and/or nand/nor xor/xnor

DRAM & DDR3 93.7 137.9 137.9 137.9
Channel Energy =~ Ambit 1.6 3.2 4.0 5.5
(nJ/KB) (l) 595X 439X 35.1X 25.1X

Table 3: Energy of bitwise operations. (J) indicates energy
reduction of Ambit over the traditional DDR3-based design.

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.
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Example Data Structure: Bitmap Index

Alternative to B-tree and its variants
Efficient for performing range gueries and joins
Many bitwise operations to perform a query

age <18 18<age<25 25<age<60 age>60
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More on In-DRAM Bulk AND/OR

= Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk

Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and
Todd C. Mowry,

"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015.

Fast Bulk Bitwise AND and OR in DRAM

Vivek Seshadri*, Kevin Hsieh*, Amirali Boroumand*, Donghyuk Lee*,
Michael A. Kozuch', Onur Mutlu*, Phillip B. Gibbons', Todd C. Mowry*

*Carnegie Mellon University TIntel Pittsburgh

SAFARI 14
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_|

Effect of Bandwidth & Programming Model

] HMC-MC Bandwidth (640GB/s) [[] Tesseract Bandwidth (8TB/s)

Programming Model

3.0x

Speedup

2.3X

\ 4

, I

HMC-MC HMC-MC + Tesseract + Tesseract
PIM BW Conventional BW (No Prefetching)
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Google Workloads

for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand

Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun,
Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela,
Allan Knies, Parthasarathy Ranganathan, Onur Mutlu
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Based on our analysis, we conclude that:

* Both functions are good candidates for PIM execution
* It is feasible to implement them in PIM logic




Evaluation Methodology

* System Configuration (gem5 Simulator)

— SoC: 4 O00 cores, 8-wide issue, 64 kB L1cache,
2MB L2 cache

— PIM Core: | core per vault, | -wide issue, 4-wide SIMD,
32kB L1 cache

— 3D-Stacked Memory: 2GB cube, |16 vaults per cube
* Internal Bandwidth: 256 GB/S
¢ Off-Chip Channel Bandwidth: 32 GB/s

— Baseline Memory: LPDDR3, 2GB, FR-FCFS scheduler
* We study each target in isolation and emulate each

separately and run them in our simulator
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Google Workloads

for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand

Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun,
Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela,
Allan Knies, Parthasarathy Ranganathan, Onur Mutlu
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Truly Distributed GPU Processing with PIM?

__global__

void applyScaleFactorsKernel( uint8_ T * const out,
uint8_T const * const in, const double *factor,
size_t const numRows, size_t const numCols )

// Work out which pixel we are working on.

const int rowIdx = blockIdx.x * blockDim.x + threadIdx.x:;
const int colldx = blockIdx.y:

const int sliceldx = threadIdx.z;

// Check this thread isn't off the image
if( rowIdx >= numRows ) return;

// Compute the index of my element

3 D-StaCked memory size_t linearIdx = rowIdx + colIdx*numRows +

sliceIdx*numRows*numCols;

(memory stack) SM (Streaming Multiprocessor)

<. Logic layer

Logic layer
SM
1

Crossbar switch
| I

Vault| .... |Vault
Ctrl Ctrl




Accelerating GPU Execution with PIM (I)

= Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems”
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Transparent Offloading and Mapping (TOM):
Enabling Programmer-Transparent Near-Data Processing in GPU Systems

Kevin Hsieh! Eiman Ebrahimi Gwangsun Kim*  Niladrish Chatterjee]L Mike O’Connor'
Nandita Vij aykumari Onur Mutlu$? Stephen W. Keckler!

ICarnegie Mellon University 'NVIDIA *KAIST SETH Ziirich


https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf

Accelerating GPU Execution with PIM (1I)

= Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.
Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities”

Proceedings of the 25th International Conference on Parallel
Architectures and Compilation Techniques (PACT), Haifa, Israel,
September 2016.

Scheduling Techniques for GPU Architectures
with Processing-In-Memory Capabilities

Ashutosh Pattnaik®  Xulong Tang*  Adwait Jog>  Onur Kayiran?
Asit K. Mishra*  Mahmut T. Kandemirt  Onur Mutlu>¢  Chita R. Das!

'Pennsylvania State University =~ *College of William and Mary
3Advanced Micro Devices, Inc. “Intel Labs °ETH Zirich ¢Carnegie Mellon University
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https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
http://pactconf.org/

Accelerating linked Data Structures

= Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu,

"Accelerating Pointer Chasing in 3D-Stacked Memory:

Challenges, Mechanisms, Evaluation”
Proceedings of the 34th IEEE International Conference on Computer

Design (ICCD), Phoenix, AZ, USA, October 2016.

Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation

Kevin Hsieh! Samira Khan* Nandita Vijaykumar!
Kevin K. Chang' Amirali Boroumand' Saugata Ghose! Onur Mutlu®!

"Carnegie Mellon University — *University of Virginia SETH Ziirich
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https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
http://www.iccd-conf.com/

Accelerating Dependent Cache Misses

= Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,

'Accelerating Dependent Cache Misses with an Enhanced

Memory Controller”
Proceedings of the 43rd International Symposium on Computer

Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Accelerating Dependent Cache Misses with an
Enhanced Memory Controller

Milad Hashemi*, Khubaib', Eiman Ebrahimi*, Onur Mutlu®, Yale N. Patt*

*The University of Texas at Austin TApple *NVIDIA SETH Ziirich & Carnegie Mellon University
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https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pdf

Two Key Questions 1n 3D-Stacked PIM

= What are the performance and energy benefits of using
3D-stacked memory as a coarse-grained accelerator?

a By changing the entire system
o By performing simple function offloading

= | What is the minimal processing-in-memory support we can
provide?

ith minimal changes to system and programming
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PIM-Enabled Instructions

= Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,
"PIM-Enabled Instructions: A Low-Overhead,
Locality-Aware Processing-in-Memory Architecture”
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

PIM-Enabled Instructions: A Low-Overhead, Locality-Aware
Processing-in-Memory Architecture

Junwhan Ahn  Sungjoo Yoo Onur Mutlu’ Kiyoung Choi
junwhan@snu.ac.kr, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi @snu.ac.kr

Seoul National University TCarnegie Mellon University
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http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-talk.pdf
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PEI: PIM-Enabled Instructions (Ideas)

Goal: Develop mechanisms to get the most out of near-data
processing with minimal cost, minimal changes to the system, no
changes to the programming model

Key Idea 1: Expose each PIM operation as a cache-coherent,
virtually-addressed host processor instruction (called PEI) that
operates on only a single cache block

0 e.g., __pim_add(&w.next_rank, value) = pim.add r1, (r2)

No changes sequential execution/programming model

No changes to virtual memory

Minimal changes to cache coherence

No need for data mapping: Each PEI restricted to a single memory module

o O O O

Key Idea 2: Dynamically decide where to execute a PEI (i.e., the
host processor or PIM accelerator) based on simple locality
characteristics and simple hardware predictors

o Execute each operation at the location that provides the best performance
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Simple PIM Operations as ISA Extensions (II)

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {

w.next_rank += value;

Main Memory

64 bytes in - PR — et
64 bytes out |

Conventional Architecture

SAFARI 155



Simple PIM Operations as ISA Extensions (I1I)

for (v: graph.vertices) {
—_ H %k .
value = weight * v.rank; oim.add r1, (r2)
for (w: v.successors) {

__pim_add(&w.next_rank, value);

Main Memory

"

Sbytesin  [EEEm—————m
O bytesout |

In-Memory Addition
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Always Executing in Memory? Not A Good Idea
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(0)
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PEIL: PIM-Enabled Instructions (Example)

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {
__pim_add(&w.next_rank, value);

pim.add r1, (r2)

} Table 1: Summary of Supported PIM Operations
} Operation R W Input Output Applications
pfe nce 8-byte integer increment O O Obytes Obytes AT
pfe nce ( ) . 8-byte integer min O O 8bytes Obytes BFS, SP, WCC
4 Floating-point add O O 8bytes Obytes PR
Hash table probing O X 8bytes 9bytes HJ
Histogram bin index O X 1byte 16bytes HG, RP
Euclidean distance O X 64bytes 4bytes SC
Dot product O X 32bytes 8bytes SVM

Executed either in memory or in the processor: dynamic decision
o Low-cost locality monitoring for a single instruction

Cache-coherent, virtually-addressed, single cache block only

Atomic between different PEIs

Not atomic with normal instructions (use pfence for ordering)

SAFARI
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Example (Abstract) PEI uArchitecture

Host Processor

Out-Of-Order

) () K3
Core S Yo &=
(4] (q0] - O
@) @) 4~ (@©
— ~ e
PCU (PEl = = -
Computation Unit)
PMU (PEI[—
Mgmt Umt) Directory
Locality
Monitor

HMC Controller

3D-stacked Memory

DRAM
PCU Controller

DRAM
PCU Controller

Network

DRAM
PCU Controller

Example PEI uArchitecture

SAFARI
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PEI: Initial Evaluation Results

= Initial evaluations with 10 emerging data-intensive workloads
o Large-scale graph processing

QO In- memory data ana Iytlcs Table 2: Baseline Simulation Configuration
o Machine learning and data mining Component _ Configuration
Core 16 out-of-order cores, 4 GHz, 4-issue
1 1 L1 I/D-Cache Private, 32 KB, 4/8-way, 64 B blocks, 16 MSHRs
J Th ree In pUt SetS (Sma I ll med Iu ml Ia rge) L2 Cache Private, 256 KB, 8-way, 64 B blocks, 16 MSHRs
1 L3 Cache Shared, 16 MB, 16-way, 64 B blocks, 64 MSHRs
for eaCh Workload to a na Iyze the I m paCt On-Chip Network Crossbar, 2 GHz, 144-bit links
i Main Memory 32 GB, 8 HMCs, daisy-chain (80 GB/s full-duplex)
Of data Ioca I Ity HMC 4 GB, 16 vaults, 256 DRAM banks [20]
- DRAM FR-FCFS, tCL = tRCD = tRP = 13.75 ns [27]

— Vertical Links 64 TSVs per vault with 2 Gb/s signaling rate [23]

= Pin-based cycle-level x86-64 simulation

= Performance Improvement and Energy Reduction:
= 47% average speedup with large input data sets
= 32% speedup with small input data sets
= 25% avg. energy reduction in a single node with large input data sets
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Simpler PIM: PIM-Enabled Instructions

= Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,
"PIM-Enabled Instructions: A Low-Overhead,
Locality-Aware Processing-in-Memory Architecture”
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

PIM-Enabled Instructions: A Low-Overhead, Locality-Aware
Processing-in-Memory Architecture

Junwhan Ahn  Sungjoo Yoo Onur Mutlu’ Kiyoung Choi
junwhan@snu.ac.kr, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi @snu.ac.kr

Seoul National University TCarnegie Mellon University
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Automatic Code and Data Mapping

= Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems”
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Transparent Offloading and Mapping (TOM):
Enabling Programmer-Transparent Near-Data Processing in GPU Systems
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Automatic Offloading of Critical Code

= Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,

'Accelerating Dependent Cache Misses with an Enhanced

Memory Controller”
Proceedings of the 43rd International Symposium on Computer

Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Accelerating Dependent Cache Misses with an
Enhanced Memory Controller

Milad Hashemi*, Khubaib', Eiman Ebrahimi*, Onur Mutlu®, Yale N. Patt*

*The University of Texas at Austin TApple *NVIDIA SETH Ziirich & Carnegie Mellon University
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Automatic Ottloading ot Pretetch Mechanisms

= Milad Hashemi, Onur Mutlu, and Yale N. Patt,

'Continuous Runahead: Transparent Hardware Acceleration for

Memory Intensive Workloads"
Proceedings of the 49th International Symposium on

Microarchitecture (MICRO), Taipei, Taiwan, October 2016.
[Slides (pptx) (pdf)] [Lightning Session Slides (pdf)] [Poster (pptx) (pdf)]

Continuous Runahead: Transparent Hardware Acceleration
for Memory Intensive Workloads

Milad Hashemi*, Onur Mutlu®, Yale N. Patt*

*The University of Texas at Austin SETH Ziirich
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https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pdf

Eftficient Automatic Data Coherence Support

= Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism
for Processing-in-Memory"
TEEE Computer Architecture Letters (CAL), June 2016.

LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory

Amirali Boroumand', Saugata Ghose', Minesh Patel’, Hasan Hassan'$, Brandon Lucia’,
Kevin Hsieht, Krishna T. Malladi*, Hongzhong Zheng*, and Onur Mutlu*f

f Carnegie Mellon University *Samsung Semiconductor, Inc. $TOBB ETU *ETH Ziirich
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https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
http://www.computer.org/web/cal

Eliminating the Adoption Barriers

How to Enable Adoption
of Processing in Memory

SAFARI



Barriers to Adoption of PIM

1. Functionality of and applications for PIM
2. Ease of programming (interfaces and compiler/HW support)
3. System support: coherence & virtual memory

4. Runtime systems for adaptive scheduling, data mapping,
access/sharing control

5. Infrastructures to assess benefits and feasibility
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We Need to Revisit the Entire Stack

SW/HW Interface
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Open Problems: PIM Adoption

Enabling the Adoption of Processing-in-Memory:
Challenges, Mechanisms, Future Research Directions

SAUGATA GHOSE, KEVIN HSIEH, AMIRALI BOROUMAND,
RACHATA AUSAVARUNGNIRUN

Carnegie Mellon University

ONUR MUTLU
ETH Ziirich and Carnegie Mellon University

Saugata Ghose, Kevin Hsieh, Amirali Boroumand, Rachata Ausavarungnirun, Onur Mutlu,
"Enabling the Adoption of Processing-in-Memory: Challenges, Mechanisms,
Future Research Directions"

Invited Book Chapter, to appear in 2018.

[Preliminary arxiv.org version]
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https://people.inf.ethz.ch/omutlu/acaces2018.html
https://arxiv.org/pdf/1802.00320.pdf
https://arxiv.org/pdf/1802.00320.pdf

Open Problems: PIM Adoption

Processing Data Where It Makes Sense:
Enabling In-Memory Computation

Onur Mutlu®®, Saugata Ghose®, Juan Gémez-Luna?, Rachata Ausavarungnirun®®

“ETH Ziirich
bCarnegie Mellon University
“King Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"Processing Data Where It Makes Sense: Enabling In-Memory
Computation”

Invited paper in Microprocessors and Microsystems (MICPRO), June 2019.
[arXiv version]
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https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://doi.org/10.1016/j.micpro.2019.01.009
https://arxiv.org/pdf/1903.03988.pdf

Readings, Videos, Reference Materials




Accelerated Memory Course (~6.5 hours)

= ACACES 2018

o Memory Systems and Memory-Centric Computing Systems
o Taught by Onur Mutlu July 9-13, 2018
o ~6.5 hours of lectures

= Website for the Course including Videos, Slides, Papers
a https://people.inf.ethz.ch/omutlu/acaces2018.html

a https://www.youtube.com/playlist?list=PL5Q2s0XY2Zi-
HXxomthrpDpMImO5P6]9x

= All Papers are at:
o https://people.inf.ethz.ch/omutlu/projects.htm
o Final lecture notes and readings (for all topics)
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https://people.inf.ethz.ch/omutlu/projects.htm

Reterence Overview Paper 1

Processing Data Where It Makes Sense:
Enabling In-Memory Computation

Onur Mutlu®®, Saugata Ghose®, Juan Gémez-Luna?, Rachata Ausavarungnirun®®

“ETH Ziirich
bCarnegie Mellon University
“King Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"Processing Data Where It Makes Sense: Enabling In-Memory

Computation”
Invited paper in Microprocessors and Microsystems (MICPRO), June 2019.
[arXiv version]
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https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://doi.org/10.1016/j.micpro.2019.01.009
https://arxiv.org/pdf/1903.03988.pdf
https://arxiv.org/pdf/1903.03988.pdf

Reterence Overview Paper 11

Enabling the Adoption of Processing-in-Memory:
Challenges, Mechanisms, Future Research Directions

SAUGATA GHOSE, KEVIN HSIEH, AMIRALI BOROUMAND,
RACHATA AUSAVARUNGNIRUN

Carnegie Mellon University

ONUR MUTLU
ETH Ziirich and Carnegie Mellon University

Saugata Ghose, Kevin Hsieh, Amirali Boroumand, Rachata Ausavarungnirun, Onur Mutlu,
"Enabling the Adoption of Processing-in-Memory: Challenges, Mechanisms,
Future Research Directions"

Invited Book Chapter, to appear in 2018.

[Preliminary arxiv.org version]
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https://people.inf.ethz.ch/omutlu/acaces2018.html
https://arxiv.org/pdf/1802.00320.pdf
https://arxiv.org/pdf/1802.00320.pdf

Reterence Overview Paper 111

= Onur Mutlu and Lavanya Subramanian,
"Research Problems and Opportunities in Memory
Systems”

Invited Article in Supercomputing Frontiers and Innovations
(SUPERFRI) 2014/2015.

Research Problems and Opportunities in Memory Systefns

Onur Mutlu', Lavanya Subramanian'

https:/ /people.inf.ethz.ch/omutlu/pub/memory-systems-research superfril4.pdf



https://people.inf.ethz.ch/omutlu/pub/memory-systems-research_superfri14.pdf
http://superfri.org/superfri
https://people.inf.ethz.ch/omutlu/pub/memory-systems-research_superfri14.pdf

Reterence Overview Paper IV

= Onur Mutluy,
"The RowHammer Problem and Other Issues We May Face as
Memory Becomes Denser"
Invited Paper in Proceedings of the Design, Automation, and Test in
Europe Conference (DATE), Lausanne, Switzerland, March 2017.
[Slides (pptx) (pdf)]

The RowHammer Problem
and Other Issues We May Face as Memory Becomes Denser

Onur Mutlu
ETH Ziirich
onur.mutlu @inf.ethz.ch
https://people.inf.ethz.ch/omutlu

https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_datel?7.pdf



https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pdf

Reterence Overview Paper V

= Onur Mutluy,

"Memory Scaling: A Systems Architecture
Perspective”

Technical talk at MemCon 2013 (MEMCON), Santa Clara,
CA, August 2013. [Slides (pptx) (pdf)]

[Video] [Coverage on StorageSearch]

Memory Scaling: A Systems Architecture Perspective

Onur Mutlu
Carnegie Mellon University
onur @cmu.edu
http://users.ece.cmu.edu/~omutlu/

https://people.inf.ethz.ch/omutlu/pub/memory-scaling _memconl3.pdf



https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf
http://www.memcon.com/
https://people.inf.ethz.ch/omutlu/pub/mutlu_memory-scaling_memcon13_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/mutlu_memory-scaling_memcon13_talk.pdf
http://www.memcon.com/video1.aspx?vfile=2708052590001&federated_f9=61773537001&videoPlayer=999&playerID=61773537001&w=520&h=442&oheight=550
http://www.storagesearch.com/ram-new-thinking.html
https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf

Reterence Overview Paper VI

§H'H+ S Proceedings of the IEEE, Sept. 2017

Error Characterization,
Mitigation, and Recovery
in Flash-Memory-Based
Solid-State Drives

This paper reviews the most recent advances in solid-state drive (SSD) error
characterization, mitigation, and data recovery techniques to improve both SSD’s

reliability and lifetime.

By Yu Cai, Saucata GHOSE, EricH F. HARATSCH, YIXIN Luo, AND ONUR MUTLU
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https://arxiv.org/pdf/1706.08642

Related Videos and Course Materials (I)

= Undergraduate Computer Architecture Course Lecture
Videos (2015, 2014, 2013)

= Undergraduate Computer Architecture Course
Materials (2015, 2014, 2013)

= Graduate Computer Architecture Course Lecture
Videos (2018, 2017, 2015, 2013)

= Graduate Computer Architecture Course
Materials (2018, 2017, 2015, 2013)

= Parallel Computer Architecture Course Materials
(Lecture Videos)
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https://www.youtube.com/playlist?list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq
https://www.youtube.com/watch?v=zLP_X4wyHbY&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq
https://www.youtube.com/playlist?list=PL5PHm2jkkXmgFdD9x7RsjQC4a8KQjmUkQ
https://www.youtube.com/watch?v=BJ87rZCGWU0&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ
http://www.archive.ece.cmu.edu/~ece447/s15/doku.php?id=schedule
http://www.archive.ece.cmu.edu/~ece447/s15/doku.php?id=schedule
http://www.archive.ece.cmu.edu/~ece447/s14/doku.php?id=schedule
http://www.archive.ece.cmu.edu/~ece447/s13/doku.php?id=schedule
https://www.youtube.com/playlist?list=PL5Q2soXY2Zi9OhoVQBXYFIZywZXCPl4M_
https://www.youtube.com/watch?v=g3yH68hAaSk&list=PL5Q2soXY2Zi9JXe3ywQMhylk_d5dI-TM7
https://www.youtube.com/playlist?list=PL5Q2soXY2Zi9OhoVQBXYFIZywZXCPl4M_
https://www.youtube.com/playlist?list=PL5PHm2jkkXmgVhh8CHAu9N76TShJqfYDt
https://www.youtube.com/playlist?list=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D
https://safari.ethz.ch/architecture/fall2017/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2018/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2017/doku.php?id=schedule
http://www.archive.ece.cmu.edu/~ece740/f15/doku.php?id=schedule
http://www.archive.ece.cmu.edu/~ece740/f13/doku.php?id=schedule
http://www.ece.cmu.edu/~ece742/f12/doku.php?id=lectures
https://www.youtube.com/playlist?feature=edit_ok&list=PLSEZzvupP7hNjq3Tuv2hiE5VvR-WRYoW4

Related Videos and Course Materials (1)

= Freshman Digital Circuits and Computer Architecture
Course Lecture Videos (2018, 2017)

= Freshman Digital Circuits and Computer Architecture
Course Materials (2018)

= Memory Systems Short Course Materials
(Lecture Video on Main Memory and DRAM Basics)
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https://www.youtube.com/playlist?list=PL5Q2soXY2Zi-IXWTT7xoNYpst5-zdZQ6y
https://www.youtube.com/playlist?list=PL5Q2soXY2Zi_QedyPWtRmFUJ2F8DdYP7l
https://www.youtube.com/playlist?list=PL5Q2soXY2Zi-IXWTT7xoNYpst5-zdZQ6y
https://safari.ethz.ch/digitaltechnik/spring2018/doku.php?id=schedule
https://safari.ethz.ch/digitaltechnik/spring2018/doku.php?id=schedule
http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html
https://www.youtube.com/watch?v=ZLCy3pG7Rc0

Some Open Source Tools (I)

Rowhammer — Program to Induce RowHammer Errors
o https://github.com/CMU-SAFARI/rowhammer
Ramulator — Fast and Extensible DRAM Simulator

o https://qgithub.com/CMU-SAFARI/ramulator

MemSim — Simple Memory Simulator

o https://github.com/CMU-SAFARI/memsim

NOCulator — Flexible Network-on-Chip Simulator

o https://qgithub.com/CMU-SAFARI/NOCulator

SoftMC — FPGA-Based DRAM Testing Infrastructure

o https://github.com/CMU-SAFARI/SoftMC

Other open-source software from my group
o https://github.com/CMU-SAFARI/
o http://www.ece.cmu.edu/~safari/tools.htmi
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https://github.com/CMU-SAFARI/rowhammer
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https://github.com/CMU-SAFARI/NOCulator
https://github.com/CMU-SAFARI/SoftMC
https://github.com/CMU-SAFARI/
http://www.ece.cmu.edu/~safari/tools.html

Some Open Source Tools (1)

MQSim — A Fast Modern SSD Simulator

o https://qgithub.com/CMU-SAFARI/MQSim

Mosaic — GPU Simulator Supporting Concurrent Applications
o https://github.com/CMU-SAFARI/Mosaic

IMPICA — Processing in 3D-Stacked Memory Simulator

o https://github.com/CMU-SAFARI/IMPICA

SMLA — Detailed 3D-Stacked Memory Simulator

o https://qgithub.com/CMU-SAFARI/SMLA

HWASim — Simulator for Heterogeneous CPU-HWA Systems
o https://github.com/CMU-SAFARI/HWASIm

Other open-source software from my group
o https://github.com/CMU-SAFARI/
o http://www.ece.cmu.edu/~safari/tools.htmi
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https://github.com/CMU-SAFARI/MQSim
https://github.com/CMU-SAFARI/Mosaic
https://github.com/CMU-SAFARI/IMPICA
https://github.com/CMU-SAFARI/SMLA
https://github.com/CMU-SAFARI/HWASim
https://github.com/CMU-SAFARI/
http://www.ece.cmu.edu/~safari/tools.html

More Open Source Tools (111

= A lot more open-source software from my group
o https://github.com/CMU-SAFARI/
o http://www.ece.cmu.edu/~safari/tools.html

SAFARI Research Group at ETH Zurich and Carnegie Mellon

SAFARI University

Site for source code and tools distribution from SAFARI Research Group at ETH Zurich and Carnegie Mellon University.

ETH Zurich and Carnegi... http://www.ece.cmu.ed... omutlu@gmail.com
Repositories 30 People 27 Teams 1 Projects 0 Settings
Search repositories... Type: All » Language: All ~ Customize pinned repositories
: Top languages
MQSim planguag
MQSim is a fast and accurate simulator modeling the performance of i b A @C++ @C @C#  AGS Script
modern multi-queue (MQ) SSDs as well as traditional SATA based SSDs. Verilog
MQSim faithfully models new high-bandwidth protocol implementations,
steady-state SSD conditions, and the full end-to-end latency of
requests in modern SSDs. It is described in detail in the FAST 2018
paper by A... Most used topics Manage
@®c++ %14 ¥14 dsMIT Updated 8 days ago dram reliability
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https://github.com/CMU-SAFARI/
http://www.ece.cmu.edu/~safari/tools.html

Referenced Papers

= All are available at

https:/ /people.inf.ethz.ch/omutlu/projects.htm

http://scholar.google.com/citations?user=7XyGUGKAAAAI&hl=en

https://people.inf.ethz.ch/omutlu/acaces2018.html
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