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Overview

System design for bioinformatics is a critical problem
o It has large scientific, medical, societal, personal implications

This talk is about accelerating a key step in bioinformatics:
genome sequence analysis

o In particular, read mapping

Many bottlenecks exist in accessing and manipulating huge
amounts of genomic data during analysis

We will cover various recent ideas to accelerate read mapping
o My personal journey since September 2006
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Our Dream (circa 2007)

An embedded device that can perform comprehensive

genome analysis in real time (within a minute)

o Which of these DNAs does this DNA segment match with?

o What is the likely genetic disposition of this patient to this
drug?

o What disease/condition might this particular DNA/RNA piece
associated with?
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Agenda

The Problem: DNA Read Mapping
o State-of-the-art Read Mapper Design

Algorithmic Acceleration
o Exploiting Structure of the Genome
o Exploiting SIMD Instructions

Hardware Acceleration
o Specialized Architectures
o Processing in Memory

Future Opportunities: New Sequencing Technologies
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What Is a2 Genome Made Of?

The genes consist of DNA

The chromosome is

made up of genes \

Chromosome - 23 pairs  Nucleotide

Sugu Phosphate
Nucleus

SAFARI The discovery of DNA’s double-helical structure (Watson+, 1953)  °




The Central Dogma ot Molecular Biology

i
Protein

Genotypes Phenotypes

Replicay

Translation
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DNA Under Electron Microscope

human chromosome #12

m, | from Hela’s cell
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DNA Sequencing

Goal:
o Find the complete sequence of A, C, G, T's in DNA.

Challenge:

o There is no machine that takes long DNA as an input, and gives
the complete sequence as output

o All sequencing machines chop DNA into pieces and identify
relatively small pieces (but not how they fit together)
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Genome Sequencing

Larc.;e DNA molecule

l

——

/“

—

Small DNA fragments

l -

TTTTTTTAATT
ACGAGCGGGT GATACACTGTG AAAAAAAAAA —— Reads

ACGACGTAGC
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Untangling Yarn Balls & DNA Sequencing
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Genome Sequencers
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... and more! All produce data with
different properties.



High- Throughput Sequencers
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Pacific
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.. and more! All produce data W|th dlfferent properties.
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The Genomic Era

= 1990-2003: The Human Genome Project (HGP) provides a complete
and accurate sequence of all DNA base pairs that make up the
human genome and finds 20,000 to 25,000 human genes
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The Genomic Era (continued)

development of high-throughput
sequencing (HTS) technologies

eeeee

costs

T T

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Number of Genomes
1,620
Sequenced pe

2014 2015 2016 2017 Source: IHumina

SAFARI http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped 14



http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped

Cost ot Sequencing

Cost per Raw Megabase of DNA Sequence

10,000.000

1,000.000

100.000 ' Moore’s Law

National Human Genome
Research Institute

genome.gov/sequencingcosts

0.001
2001 = 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

*From NIH (https: : : enomics/fact-sheets/DNA-Sequencing-Costs-Data)
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https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data

Cost ot Sequencing (cont.)

Cost per Human Genome
$100,000,000

$10,000,000

Moore’s Law

$1,000,000

$100,000

$10,000

National Human Genome
Research Institute

genome.gov/sequencingcosts

$100
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

*From NIH (https: : : enomics/fact-sheets/DNA-Sequencing-Costs-Data)

SAFARI



https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data

High-Throughput Sequencing (HTS)

copter ] readout
/+ | = Second Generation
\t | = Next Generation
\\_ | = Massively Parallel Sequencing
\ | = High Throughput Sequencing (HTS) of ‘.
\ 1| = Sequencing by Synthe5|s (IIIumlna) ° (P
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High-Throughput Sequencing (HTS)

The sequencer adds the molecule “T”

Sequence

, to all bases near the flow cell surface and
SRTACSHCRLICRL CACALR” observes the chemical reaction via a CMOS sensor.
‘,— If a reaction happens then the base is “A”

Oligonucleotide length A A A

g4 ¢ Isec

6 & .Ca G AT T T

G G T pCA GCG TR G G
c C

Glass flow cell surface

As a workaround, HTS technologies sequence random short DNA fragments (75-300
basepairs long) of copies of the original molecule.
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High-Throughput Sequencing

Massively parallel sequencing technology
o Illumina, Roche 454, Ion Torrent, SOLID...

Small DNA fragments are first amplified and then

sequenced in parallel, leading to
o High throughput

o High speed

o Low cost

o Short reads

Sequencing is done by either reading optical signals as each base is

added, or by detecting hydrogen ions instead of light, leading to:

o Low error rates (relatively)

o Reads lack information about their order and which part of genome
they are originated from

SAFARI 19



Billions of Short Reads
"ATATATACGTACTAGTACGT

TTTAGTACGTACGT
ATACGTACTAGTACGT

G TACGTA

ACGTACTAGTACGT
TTAGTACGTACGT
TACGTACTAAAGTACGT
[ TACGTACTAGTACGT
TTTAAAACGTA

GTACTAGTACGT

GGGAGTACGTACGT

TATAATACG
0f1]2 ‘

OOP—B—AB—OD

Do |
Short Read o Read

Reference Genome

!l Sequencing Genome

Analysis

Read Mapping n

reference: TTTATCGCTTCCATGACGCAG

readl:
read2:
read3:
read4:
read>5:
read6:

ATCGCATCC
TATCGCATC
CATCCATGA
CGCTTCCAT
CCATGACGC
TTCCATGAC

k) variant Calling

Scientific Discoveryn
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Multiple sequence alignment

-------------------------------------- MMMMMMMMVIVMM MMM = = == ——

10 ----m3s5pRKsEGFQSGAGLIIYF I FGPALDI  LVVYMGIAVAIIVEIARIFWRPP - -~
10 ----MaspxrsEcFQSGAGLIRYFE Il FGPALDI LVVY IGIAVAIMVELARIFWPP——-
13 -mMrsuaxonoNsNFQSGAGLINIY IAIFGPAT LIIYIGIAMGVIVELAEXVFWPV-—--
10 ----ms56oNseeLMSSAGLVIRYFDSERSNALG IDINR SVVAVGAFFGLVVLLAQFFA-———-
14 maxapxexaxkrePLMSSAGIMIYFE =I F TILAAGIVTGVLIIILNAYYGLWPD-
9 - MaxExTTLPPTGAGLMIFFD {GAVALTLILIIFEIILEVVGPRIFG
9 —---- MAxExTTLPPTGAGLMIFFD uGAIALVLILIIFEILLEVVGPRI?G
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13 -M5VRRRRERRAZEVTAAGLLSFY TEGEIINIS)Y IWGAAILVSAVVAAAEIFLPAV?-

VEVLVMSLLFIASV 4s IWGEYNRS
JIGVPVLVMSLVEFIASVEVLS IWGEKETRS
SVDIHVVVMVLSLGFIFSVVALS ILAFKVSTE
SLVVLEFLSVGFEFI FSVIAI-Ji LLEFKFTEI
TG VVLELAVGFEFI FSVVAI-JiVI SEVAGK

MWW,
O 0 W)y Oy W nn
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Example Question: If I give you a bunch of
sequences, tell me where they are the same

and where they are different.

SAFARI
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Genome Sequence Alignment: Example
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Source: By Aaron E. Darling, Istvan Miklds, Mark A. Ragan - Figure 1 from Darling AE, Miklés I, Ragan MA (2008). 22
"Dynamics of Genome Rearrangement in Bacterial Populations". PLOS Genetics. DOI:10.1371/journal.pgen.1000128., CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=30550950



https://commons.wikimedia.org/w/index.php?curid=30550950

The Genetic Similarity Between Species

g

=< @Ps  Human ~ Chimpanzee
- 96%

Human ~ Cat
90%

Human ~ Human
99.9%

Human ~ Cow
80%

Human ~ Banana
50-60%

SAFARI
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Finding Variations Associated with Traits

SNP1 SNP2 Blood Pressure
...ACATGCCGACATTTCATAGGCC... 180
...ACATGCCGACATTTCATAAGCC... 175
...ACATGCCGACATTTCATAGGCC... 170

Individual #4 ...ACATGCCGACATTTCATAAGCC... 165
...ACATGCCGACATTTCATAGGCC... 160
...ACATGCCGACATTTCATAGGCC... 145
...ACATGCCGACATTTCATAAGCC... 140
...ACATGCCGACATTTCATAAGCC... 130
...ACATGTCGACATTTCATAGGCC... 120
...ACATGTCGACATTTCATAAGCC... 120
...ACATGTCGACATTTCATAGGCC... 115
...ACATGTCGACATTTCATAAGCC... 110
...ACATGTCGACATTTCATAGGCC... 110
...ACATGTCGACATTTCATAAGCC... 110
...ACATGTCGACATTTCATAGGCC... 105
...ACATGTCGACATTTCATAAGCC... 100

SNP: single nucleotide polymorphism
SAFARI Eleazar Eskin: Discovering the Causal Variants Involved in GWAS Studies, CGSI 2018, UCLA%4



computationalgenomics.bioinformatics.ucla.edu/portfolio/eleazar-eskin-discovering-the-causal-variants-involved-in-gwas-studies

Genome-Wide Association Studies (GWAS)

= Enables detection of genetic variants associated with
phenotypes using two groups of people.

C c T C c C
T C u T C U
controls (n=1,000) cases (n=1,000)
people without heart disease people with heart disease
. SNP 9
4) SNP 12
il SN£3 - NP6 SNPE SNZ” b
lSN(l:Z - A) J} SNP 7 (L 8 SNZ)‘]O 0
8 i : § 8 4) ; ‘
* - = : - i: ; w -
o | Vvariant with higher frequency in cases than in controls;
S "] B . . i i $ ; » : i; i
= B o, A TR
c s o f* ] . i 8 . 33 Ss
3 hapdipale i b 4o 8 g 3 i PR S
720 ; i { o N 3 § :, .
RiiL o

[ d
XZ 3 4 5 6 7 8 9 10 11 12 13 14 1516 17 1819202122
Manhattan t Chromosome

S AFARI https://onlinelearning.hms.harvard.edu/hmx/courses/genetic-testing/
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SNPs and Personalized Medicine

openSNP Q | Search p—
P Allele Frequency
SNP rs12979860
A
Basic Information
T
Name rs12979860 m -
G
Chromosome 19 49%
| [o
Position 39248147 W
-
Weight of evidence 926 . 0
Links to SNPedia
Title Summary
rs12979860 T/T ~20-25% of such hepatitis ¢ patients respond to treatment
rs12979860 C/C ~80% of such hepatitis ¢ patients respond to treatment
rs12979860 C/T  ~20-40% of such hepatitis ¢ patients respond to treatment
26
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Much Larger Structural Variations

i AUTISM i
Weiss, N Eng J Med 2008 =
Deletion of 593 kb

OBESITY
Walters, Nature 2010
Deletion of 593 kb

Jacquemont, Nature 2011
| Duplication of 593 kb

-!- Deletion in the short arm Duplication in the short arm

l l of chromosome 16 (16p11.2) l l of chromosome 16 (16p11.2)

SAFARI CNV: copy number variation 27



Recommended Reading

nature reviews genetics

Explore our content v Journal information v

nature > nature reviews genetics > review articles > article

Review Article | Published: 15 November 2019

Structural variation in the sequencing era
Steve S. Ho, Alexander E. Urban & Ryan E. Mills

Nature Reviews Genetics 21, 171-189(2020) | Cite this article
15k Accesses | 16 Citations | 309 Altmetric | Metrics

Ho+, "Structural variation in the sequencing era", Nature Reviews Genetics, 2020
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https://www.nature.com/articles/s41576-019-0180-9

Metagenomics, genome assembly, de novo sequencing

Question 2: Given a bunch of short sequences,
Can you identify the approximate species cluster

for genomically unknown organisms (bacteria)?

/
‘f

uncleaned de Bruijn graph

http://math.oregonstate.edu/~koslickd e

SAFARI | 29



http://math.oregonstate.edu/~koslickd

Population-Scale Microbiome Profiling

N

S AFAR ] https://blog.wego.com/7-crowded-places-and-events-that-you-will-love/ 30


https://blog.wego.com/7-crowded-places-and-events-that-you-will-love/

Clty—Scale Microbiome Proﬁhng

SAI

3 GPS tag/tlmestamp

ll')d ele

2. Annotate

1. Swab (3 mln)

Long Be

C D E

Extract DNA (n=1,457 samples) ] )
Viruses Archaea Plasmids
t Ambiguous___0.032%_ 0.003% 0.001%
NL—

) , , 4.184%
[llumina and Qiagen Library Prep | Eukaryota

t 0.771%

HiSeq2500 125x125 Sequences

2

Quality Trim (Q20)

<

MegaBLAST-LCA alignment

U

MetaPhlAN classification Afshinnekoo+, "Geospatial Resolution of Human and
Bacterial Diversity with City-Scale Metagenomics", Cell
Figure 1. The Metagenom.e of New York City SystemS 20 1 5

I

(A) The five boroughs of NYC include (1) Manhattan (green)

(B) The collection from the 466 subway stations of NYC across the 24 subway lines involved three main steps: (1) collection with Copan Elution swabs, (2) data

entry into the database, and (3) uploading of the data. An image is shown of the current collection database, taken from http://pathomap.giscloud.com. 1
(C) Workflow for sample DNA extraction, library preparation, sequencing, quality trimming of the FASTQ files, and alignment with MegaBLAST and MetaPhlAn to

disrern taxa nresant



https://www.cell.com/cell-systems/pdfExtended/S2405-4712(15)00002-2

Another Question: Example from 2020

200 Oxford Nanopore sequencers have left UK for China, to support
rapid, near-sample coronavirus sequencing for outbreak surveillance

Fri 31st January 2020

Following extensive support of, and collaboration with, public health professionals in China, Oxford Nanopore has shipped an additional
200 MinION sequencers and related consumables to China. These will be used to support the ongoing surveillance of the current
coronavirus outbreak, adding to a large number of the devices already installed in the country.

Each MinlON sequencer is approximately the size of a stapler, and
can provide rapid sequence information about the coronavirus.

700Kg of Oxford Nanopore sequencers and consumables are on
their way for use by Chinese scientists in understanding the
current coronavirus outbreak.
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https://nanoporetech.com/about-us/news/200-oxford-nanopore-sequencers-have-left-uk-china-support-rapid-near-sample

Example: Scalable SARS-CoV-2 Testing
m e d RX iv BMJ Yale ﬁOME | ABOL

Laboratory
THE PREPRINT SERVER FOR HEALTH SCIENCES

‘\ Search

¢ Comments (1)

Swab-Seq: A high-throughput platform for massively scaled up
SARS-CoV-2 testing

Joshua S. Bloom, Eric M. Jones, ©= Molly Gasperini, 2% Nathan B. Lubock, Laila Sathe, Chetan Munugala,

A. Sina Booeshaghi, "=/ Oliver F. Brandenberg, ) Longhua Guo, 2 James Boocock, =) Scott W. Simpkins,
Isabella Lin, Nathan LaPierre, Duke Hong,Yi Zhang, Gabriel Oland, Bianca Judy Choe, Sukantha Chandrasekaran,
Evann E. Hilt, ©=) Manish J. Butte, ') Robert Damoiseaux, "= Aaron R. Cooper, "2 YiYin, 2 Lior Pachter,

Omai B. Garner, ‘& Jonathan Flint, ©2 Eleazar Eskin, “2 Chongyuan Luo, "2/ Sriram Kosuri, ©2 Leonid Kruglyak,

Valerie A.Arboleda

doi: https://doi.org/10.1101/2020.08.04.20167874

Bloom+, "Swab-Seq: A high-throughput platform for massively scaled up SARS-
CoV-2 testing", medRxiv, 2020
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https://www.medrxiv.org/content/10.1101/2020.08.04.20167874v2

Example: Rapid Surveillance of Ebola Outbreak

Figure 1: Deployment of the portable genome surveillance system in Guinea.

Quick+, “"Real-time, portable qenomeeauencinq for Ebola surveillance”, Nature, 2016
SAFARI 34



https://www.nature.com/articles/nature16996

Billions of Short Reads
ATATATACGTACTAGTACG

AGTACGTACG
ATACGTACTAGTACG

G ACGTA

ACGTACTAGTACG

AGTACGTACG

ACGTACTAAAGTACG
[ TACGTACTAGTACG
AAAACGTA

GTACTAGTACG

GGGAGTACGTACG

Reference Genome

Sequencing Read Mapping

. . G Cq
[Nlumina HiSeq4000 465, 9447»
; 2 M
bases/min

bases/min ’ | II (O . 60/0)




The Read Mapping Bottleneck

g 1
oqq e Gy 4y oqq ¢
30 Million = Jeeoes > Million
bases/minute BAGICA S

Read Sequencing e" g TT Read Mapping

bases/minute

150x slower

* BWA-MEM
** HiSegX10, MinION
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The Read Mapping Bottleneck

Human
genome

32 CPU hours
on a 48-core processor

Human whole
genomes
at 30x coverage

in about 2 days

Illumina NovaSeq 6000 N ‘

Read Mapping = Others

71%

SAFARI Goyal+, "Ultra-fast next generation human genome sequencing data processing using DRAGENTM bio-IT 37
processor for precision medicine”, Open Journal of Genetics, 2017.



https://www.scirp.org/journal/paperinformation.aspx?paperid=74603

Problem

SAFARI

Need to construct
the entire genome
from many reads

38



Genome Sequencing

Larc.;e DNA molecule

l

——

/“

—

Small DNA fragments

l -

TTTTTTTAATT
ACGAGCGGGT GATACACTGTG AAAAAAAAAA —— Reads

ACGACGTAGC

SAFARI



Genome Sequence Analysis

—
TTTTTTTAATT
ACGAGCGGGT [l GATACACTGTGIEMAAAAAAAAAA —— Reads
ACGACGTAGC
—
== ==
Read Mapping, method of aligning the De novo Assembly, method of
reads against a known reference genome merging the reads in order to construct
to detect matches and variations. the original sequence.

‘ Reference ‘ .
Original
Genome

Sequence

SAFARI



Read Mapping

= Map many short DNA fragments (reads) to a known
reference genome with some differences allowed

Reference genome

DNA, [wuyjsidjly

41




Read Mapping for Metagenomic Analysis

Reads from different unknown donors at sequencing
time are mapped to many known reference genomes

/‘\

2
4

genetic material recovered s
directly from environmental
samples Reads Reference
“text format” Database

SAFARI N



Read Mapping Execution Time Breakdown

candidate alignment
locations (CAL)
4%

SAM printing
3%

Read Alignment
(Edit-distance comp
93%

SAFARI



Read Alignment/Verification

Edit distance is defined as the minimum number of edits
(i.e. insertions, deletions, or substitutions) needed to make
the read exactly match the reference segment.

NETHERLANDS x SWITZERLAND

NE-THERLANDS
SWITZERLAND|-

match
deletion

mismatch

SAFARI



Challenges in Read Mapping

Need to find many mappings of each read

o A short read may map to many locations, especially with High-
Throughput DNA Sequencing technologies

o How can we find all mappings efficiently?

Need to tolerate small variances/errors in each read

o Each individual is different: Subject’s DNA may slightly differ from
the reference (Mismatches, insertions, deletions)

o How can we efficiently map each read with up to e errors present?

Need to map each read very fast (i.e., performance is important)

o Human DNA is 3.2 billion base pairs long - Millions to billions of
reads (State-of-the-art mappers take weeks to map a human’s DNA)

o How can we design a much higher performance read mapper?

45



Why Is Read Alignment Slow?

» Quadratic-time dynamic-
programming algorithm(s) TATAATA G

» Data dependencies limit the
computation parallelism

OOP—=HP—H>—-HO>

» Entire matrix computed even
though strings may be Read Alignment
dissimilar




Example: Dynamic Programming Table

NETHERLANDS x SWITZERLAND

E/T HHE/RILA/IND S
2/3/4/5/6|7(8|9/|10|11

wn
— =

immediate left,
upper left,
upper entries of its own

w 4
<«

Ol IN/OO U | h~ W N

—
o

O Z>» - 8dmMmNH|l~|=

—_k
—
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Dynamic Programming Table

Example

NETHERLANDS x SWITZERLAND

w D2 SRR AR oo ~Nv|ln
0S8 <S8 328288 8|aloNuv|in
Z oo |lo|lo|o|o/ N O N T 0
L|©o|(w| W wW| ([N O | T | ©
ANINNNNKNO L[S DO~
¥ o|lo/lv|loVlV|n T (| V|N|©
Wwmwmwmunnjm T wm o ~Nolo
I (|||t |no|Noola| 2
Fl oo t|(no N o o
W NN No s njnmolNo|lo@
Z A dNmt|noNoo a2
ol —H|lNm|t|;no|No oo S|T

N2~ NlWx 4|2 0O

« Matrix-filling is O(mn) time and space.

« Backtrace is O(m + n) time.

SAFARI



Example: Dynamic Programming

» Quadratic-time dynamic-

programming algorithm [NJE[TTH]ETRTLTAN]D]S]
WHY?! S
Enumerate all possible prefixes o

JE K"
NETHERLANDS x SWITZERLAND =
NETHERLANDS x S AE IE |

» L[ NETHERLANDS x sw el o] ] ete
¢ NETHERLANDS x SWI ~E [E|

NETERLANDS x SWIT T
NETHERLANDS x SWITZ
NETHERLANDS x SWITZE A l 1 |
NETHERLANDS x SWITZER N

D

NETHERLANDS x SWITZERL
m NETHERLANDS x SWITZERLA
¢ NETHERLANDS x SWITZERLAN
NETHERLANDS x SWITZERLAND

SAFARI



Read Mapping Survey in 111 Pages

In-depth analysis of 107 read mapping techniques (1988-2020)

arXiv.org > g-bio > arXiv:2003.00110

Help | Advanced
Quantitative Biology > Genomics

[Submitted on 28 Feb 2020 (v1), last revised 9 Jul 2020 (this version, v3)]

Technology dictates algorithms: Recent developments in
read alignment

Mohammed Alser, Jeremy Rotman, Kodi Taraszka, Huwenbo Shi, Pelin Icer Baykal, Harry
Taegyun Yang, Victor Xue, Sergey Knyazev, Benjamin D. Singer, Brunilda Balliu, David
Koslicki, Pavel Skums, Alex Zelikovsky, Can Alkan, Onur Mutlu, Serghei Mangul

Alser+, "Technology dictates algorithms: Recent developments in read alignment”,
arXiv, 2020

GitHub: https://github.com/Mangul-Lab-USC/review_technology_dictates algorithms
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https://arxiv.org/abs/2003.00110
https://github.com/Mangul-Lab-USC/review_technology_dictates_algorithms
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Future Opportunities: New Sequencing Technologies
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Read Mapping Algorithms: Two Styles

Hash based seed-and-extend (hash table, suffix array, suffix tree)
o Index the “k-mers” in the genome into a hash table (pre-processing)

o When searching a read, find the location of a k-mer in the read; then
extend through alignment

a More sensitive (can find all mapping locations), but slow
o Requires large memory; this can be reduced with cost to run time

Burrows-Wheeler Transform & Ferragina-Manzini Index based
aligners

o BWT is a compression method used to compress the genome index

o Perfect matches can be found very quickly, memory lookup costs
increase for imperfect matches

o Reduced sensitivity

SAFARI



Hash Table Based Read Mappers

= Key Idea
a Preprocess the reference into a Hash Table

o Use Hash Table to map reads

SAFARI
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Hash Table-Based Mappers [Alkan+ Nature Gen09)

k-mer or 12-mer Location list—where the k-mer
(string of length k) occurs in reference gnome

. SENEREACT Reference genorne

AAAAAAAAAAAC | 13 | 421 | 412 {765 1889
AAAAAAAAAAAT | NULL

CCCCCCcccecc 24 | 459 | 744 | 988 | 989

(1T 36 | 535 | 123

Once for a reference
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Hash Table Based Read Mappers

= Key Idea
a Preprocess the reference into a Hash 7able

o Use Hash Table to map reads
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Hash Table-Based Mappers [alkan+ Nature Gen'09)

AAAAAAAAAAAACCCCCCCCCCCCTTTTTTITITTITIT &
_ . read
Innnnrr'irid:‘éty 111 s k-merS
S
Reference
Hash Table 32 Genome
(HT)

AAAAAAAAAAAA |12 |

324 |557 |940 |

CCCCCCCCCCCC iz fso | 7aa [oss | om0 |

[
[TTTTTTTTTT] EN ZEER

Verification/Local Alignment read
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Our First Step: Comprehensive Mapping

= + Guaranteed to find g/ mappings = sensitive
= + Can tolerate up to eerrors

nature |
genetlcs http://mrfast.sourceforge.net/

Personalized copy number and segmental duplication
maps using next-generation sequencing

Can Alkan'?, Jeffrey M Kidd!, Tomas Marques-Bonet!?, Gozde Aksay', Francesca Antonaccil,
Fereydoun Hormozdiari?, Jacob O Kitzman!, Carl Baker!, Maika Malig!, Onur Mutlu®, S Cenk Sahinalp?,
Richard A Gibbs® & Evan E Eichler!»2

Alkan+, "Personalized copy humber and segmental duplication
maps using next-generation sequencing”, Nature Genetics 2009.



http://mrfast.sourceforge.net/

Problem and Goal

= Poor performance of existing read mappers: Very slow
o Verification/alignment takes too long to execute

o Verification requires a memory access for reference genome +
many base-pair-wise comparisons between the reference and
the read (edit distance computation)

Execution u Verification
i (8] | 95% [
m Other
0 5000 10000 15000 20000

= Goal: Speed up the mapper by reducing the cost of
verification
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Overarching Key Idea

Filter fast before you align

Minimize costly
edit distance computations
(“approximate string comparisons”)
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Accelerating Genome Analysis: Overview

Mohammed Alser, Zulal Bingol, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can
Alkan, and Onur Mutlu,

"Accelerating Genome Analysis: A Primer on an Ongoing Journey"

IEEE Micro (TEEE MICRO), Vol. 40, No. 5, pages 65-75, September/October 2020.

[Slides (pptx)(pdf)]
[Talk Video (1 hour 2 minutes)]

Accelerating Genome
Analysis: A Primer on
an Ongoing Journey

Mohammed Alser Saugata Ghose

ETH Zurich University of lllinois at Urbana-Champaign and
Zillal Bingl Carnegie Mellon University

Bilkent University Can Alkan

Damla Senol Cali Bilkent University

Carnegie Mellon University Onur Mutlu

Jeremie Ki ETH Zurich, Carnegie Mellon University, and

Bilkent University

ETH Zurich and Carnegie Mellon University 60


https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_ieeemicro20.pdf
http://www.computer.org/micro/
https://people.inf.ethz.ch/omutlu/pub/onur-AcceleratingGenomeAnalysis-AACBB-Keynote-Feb-16-2019-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-AcceleratingGenomeAnalysis-AACBB-Keynote-Feb-16-2019-FINAL.pdf
https://www.youtube.com/watch?v=hPnSmfwu2-A
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Our First Filter: Pure Software Approach

= Download the source code and try for yourself
a Download link to FastHASH

Xin et al. BMC Genomics 2013, 14(Suppl 1):513
http://www.biomedcentral.com/1471-2164/14/51/513
P BMC
Genomics

Accelerating read mapping with FastHASH

Hongyi Xin', Donghyuk Lee', Farhad Hormozdiari?, Samihan Yedkar', Onur Mutlu"", Can Alkan®

From The Eleventh Asia Pacific Bioinformatics Conference (APBC 2013)
Vancouver, Canada. 21-24 January 2013
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Reducing the Cost of Verification

= We observe that most verification (edit distance
computation) calculations are unnecessary

a 1 out of 1000 potential locations passes the verification
process

= We observe that we can get rid of unnecessary verification
calculations by

o Detecting and rejecting early invalid mappings (filtering)
a Reducing the number of potential mappings to examine
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Key Observations [Xin+, BMC Genomics 2013]

Observation 1

o Adjacent k-mers in the read should also be adjacent in the
reference genome

a Read mapper can quickly reject mappings that do not satisfy
this property

Observation 2

o Some k-mers are cheaper to verify than others because they

have shorter location lists (they occur less frequently in the
reference genome)

Mapper needs to examine only e+ k-mers’ locations to tolerate e
errors

o Read mapper can choose the cheapest e+ k-mers and verify
their locations
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FastHASH Mechanisms [Xin+, BMC Genomics 2013]

Adjacency Filtering (AF): Rejects obviously invalid

mapping locations at early stage to avoid unnecessary
verifications

Cheap K-mer Selection (CKS): Reduces the absolute
number of potential mapping locations to verify
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Adjacency Filtering (AF)

Goal: detect and filter out invalid mappings at early stage

Key Insight: For a valid mapping, adjacent k-mers in the
read are also adjacent in the reference genome

WAL CC\CQCC_CC_CC(;CIII [TTTT | read
- ] P = F,u

Valid mapping Invalid mapping Reference genome

Key Idea: search for adjacent locations in the k-mers’
location lists

o If more than e k-mers fail 2 there must be more than e
errors = invalid mapping
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Adjacency Filtering (AF)

WMGG&EGGGGE@HHHMH «~— read
- +24
Innnnrr'irid;&t 111 [ k-merS
-~
Reference
Hash Table 5 »
Genome
(HT) A
9527 N .
AAAAAAAAAAAA 12|34 | 557 | 940 ..,gAAAAAAAAAAACCCCCCCCCCC(,I [TTTTTTTTTT
v
CCCCCccccccce 24 |laso | 744 | 088 ¥ 380

36

535

ARAAAAAAAAAACCCCCCCCCCCCTTTTTTTTTTT

123
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FastHASH Mechanisms [Xin+, BMC Genomics 2013]

Adjacency Filtering (AF): Rejects obviously invalid

mapping locations at early stage to avoid unnecessary
verifications

Cheap K-mer Selection (CKS): Reduces the absolute
number of potential mapping locations to verify
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Cheap K-mer Selection (CKS)

Goal: Reduce the number of potential mappings to examine

Key insight:

o K-mers have different cost to examine: Some k-mers are
cheaper as they have fewer locations than others (occur less
frequently in reference genome)

Key idea:

o Sort the k-mers based on their number of locations
o Select the k-mers with the fewest number locations to verify
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Cheap K-mer Selection

= e=2 (examine 3 k-mers) read
326 338 326 376 388
Cafions1 1451
2 loc. 2 loc.
Nﬂmber of Logatiqns—
1K loc. 2K loc. 1K loc.
Beapsst Bkanars
Previous work needs FastHASH verifies only:
to verify:
8 locations
3004 locations
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Methodology

Implemented FastHASH on top of state-of-the-art mapper: mrFAST
o New version mrFAST-2.5.0.0 over mrFAST-2.1.0.6

Tested with real read sets generated from Illumina platform
o 1M reads of a human (160 base pairs)

o 500K reads of a chimpanzee (101 base pairs)

o 500K reads of a orangutan (70 base pairs)

Tested with simulated reads generated from reference genome
o 1M simulated reads of human (180 base pairs)

Evaluation system
o Intel Core i7 Sandy Bridge machine
o 16 GB of main memory
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FastHASH Speedup: Entire Read Mapper

Bl human
S - 19X | @ chimpanzee
[] orangutan
[] simulated
ToRu

tHASH speedup factor over mrFAST 2.1.0.6




Analysis

Reduction of potential mappings with FastHASH

# of potential mappings (Log10 Scale)

¥ — | B Number of potential mappings
0 Number of potential mappings with FastHASH
B Number of valid mappings

Al

o

- 99% %

] 99% () 99%
99%

w —

@ —]

<

FastHASH filters out over 99% of the potential
mappings without sacrificing any valid mappings
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FastHASH Conclusion

Problem: Existing read mappers perform poorly in mapping
millions of short reads to the reference genome, in the
presence of errors

Observation: Most of the verification calculations are
unnecessary - filter them out

Key Idea: Exploit the structure of the genome to
o Reject invalid mappings early (Adjacency Filtering)

o Reduce the number of possible mappings to examine (Cheap
K-mer Selection)

Key Result: FastHASH obtains up to 19x speedup over the
state-of-the-art mapper without losing valid mappings

74



More on FastHASH

= Download source code and try for yourself
a Download link to FastHASH

Xin et al. BMC Genomics 2013, 14(Suppl 1):513
http://www.biomedcentral.com/1471-2164/14/51/513
P BMC
Genomics

Accelerating read mapping with FastHASH

Hongyi Xin', Donghyuk Lee', Farhad Hormozdiari?, Samihan Yedkar', Onur Mutlu"", Can Alkan®

From The Eleventh Asia Pacific Bioinformatics Conference (APBC 2013)
Vancouver, Canada. 21-24 January 2013

Xin+, "Accelerating Read Mapping with FastHASH", BMC Genomics 2013. 75



http://mrfast.sourceforge.net/
http://www.biomedcentral.com/1471-2164/14/S1/S13/
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Shifted Hamming Distance: SIMD Acceleration

https://github.com/CMU-SAFARI/Shifted-Hamming-Distance

Bioinformatics, 31(10), 2015, 1553-1560

doi: 10.1093/bioinformatics/btu856

Advance Access Publication Date: 10 January 2015
Original Paper

Sequence analysis

Shifted Hamming distance: a fast and accurate
SIMD-friendly filter to accelerate
alignment verification in read mapping

Hongyi Xin'*, John Greth?, John Emmons?, Gennady Pekhimenko’,
Carl Kingsford®, Can Alkan** and Onur Mutlu®*

Xin+, "Shifted Hamming Distance: A Fast and Accurate SIMD-friendly Filter_
to Accelerate Alignment Verification in Read Mapping”, Bioinformatics 2015.
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https://github.com/CMU-SAFARI/Shifted-Hamming-Distance

Shifted Hamming Distance

Key observation:

o If two strings differ by £ edits, then every bp match can be
aligned in at most 2£ shifts (of one of the strings).

Insight: Shifting a string by one “corrects” for one “error”

Key idea:
o Compute “Shifted Hamming Distance”: AND of 2E Hamming
Distances of two strings, to filter out invalid mappings

Uses bit-parallel operations that nicely map to SIMD instructions

Key result:

o SHD is 3x faster than SegAn (the best implementation of Gene
Myers’ bit-vector algorithm), with only a 7% false positive rate

o The fastest CPU-based filtering (pre-alignment) mechanism
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Hamming Distance (3,D)

3 matches 5 mismatches
Edit = 1 Deletion

[ [ I
NN NN

| [)S||T N||IB{|Uf|L

To cancel the effect of a
) deletion, we need to shift in

TIJA|IN[IB|JU]|| L
[

‘-- ——

the right direction
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Insight: Shifting a String Helps Similarity Search

3 matches 5 mismatches

TIJA|IN[IB|JU]|| L
[
:

s 72

¢-— ——

| IS T|IN[|B||U||L

To cancel the effect of the
) deletion, we need to shift in

the right direction
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Insight: Shifting a String Helps Similarity Search

7 matches 1 mismatch

1 1|S|IT|JA|N||B|JU|[|L
CrT T
I SO S % B
LsHTIIN|BlUlL] ¢
Vﬁi;

S| TN]|BJUJJL
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Shifted Hamming Distance

S|/T[|A[IN]||B
L [
i -

|
XOR-E
4

g
0[/0||0})1}]1(/1]/1

: Edit = 1 Deletion
i
i
i
i
i
i

AND<

1{/1!/1!/|ollollo|l0
C°““t{ooo1oooo

7 matches 1 mismatch
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Highly Paralle] Matrix Computation

Query

DO>-HP>P-HAI>P-0O>

Reference

CTATAATACG

2 Deletion Hamming masks

/

We need to compute 2E+1
vectors, E=edit distance
threshold

dp[i][j]= © if X[i]=Y[]]
1 if X[1]#Y[]]
No data dependencies!

2 Insertion Hamming

masks
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Key Idea ot SHD Filtering

Generate 2E+1
masks

Amend random zeros: AND all masks,
101 > 111 & 1001 »> 1111 ACCEPT iff number of ‘1" < Threshold

Query :GAGAGAGATATTTAGTGTTGCAGCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGGA
Reference :GAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

Hamming Mask :/00000000001/0000000000001111111011110001110110101101111111110001000§01811011010010101
1-Deletion Mask :11111111111001111101111
2-Deletion Mask :000000001011011100111111111111101111000111011010110111111111000100
3-Deletion Mask :111111111110111011001101110111011000100100111111111111100101100110

1-Insertion Mask :111111111110111110111111011101100010010011111111111110010110011000
2-Insertion Mask :000000100111110011111111100100011010101001101011111111111110111001
3-Insertion Mask :111111110111011001100011111111101011011111100110010111011111111011

11101101001010
10111011101111
11101110111110
11000111101100
11010111001000

-—-- Masks after amendment ---

Hamming Mask :[000000000010000000000001111111111110001111111101111111111110001000001111111111111111
1-Deletion Mask :111111111111111111111111000000000000000000000000000000000000000000011000000000000000
2-Deletion Mask :000000001111111111111111111111111111000111111111111111111111000100011111111111111110
3-Deletion Mask :111111111111111111111111111111111000111111111111111111111111111111111111111111111111

l1-Insertion Mask :111111111111111111111111111111100011111111111111111111111111111000111111111111111110
2-Insertion Mask :000000111111111111111111111100011111111111111111111111111111111111111111000111111100
3-Insertion Mask :111111111111111111100011111111111111111111111111111111111111111111111111111111111000

AND Mask :000000000010000000000001000000000000000000000000000000000000000000001000000000000000

\GAGAGAGATATTTAGTGTTGCAG-CACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGG
Needleman-Wunsch .
Alignment : |ILELETIIT DEEERVREEEEE APREEEEEE PP EEEEEE P EEEEE PR PP EEEE s PEEEEE

\GAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG
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Alignment vs. Pre-alignment (Filtering)

Needleman-Wunsch Neighborhood Map
CTATAATACG CTATAATACG
4
Al A jeas
C |- C 0
T T 0
A A 0
T T 0
A A 04 0
T T 0
A A 0
C C 0
G G :
dp[£][3-1] -1 // Inser. dp[il[il=]@ if X[il=Y[1i]

Our goal is to track the diagonally consecutive matches
in the neighborhood map.

pre-computed cells!
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Alignment Matrix vs. Neighborhood Map

Needleman-Wunsch Neighborhood Map
TATAATACG TATAATACG
&
A A e
‘ 0
T T 0
A A 0
T T 0
A 3 - A U L
Independent vectors can be processed in parallel using
hardware technologies
DRAM Layers
//
“
!l Il I/
/% ///
L/
L S
Logic Layer
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New Bottleneck: Filtering (Pre-Alignment)

Sequencing generates many reads, each of which
potentially mapping to many locations

9

Filtering (Pre-alignment) eliminates the need to verify/align
read to invalid mapping locations

9

Alignment/verification (costly edit distance computation) is
performed only on reads that pass the filter

New bottleneck in read mapping becomes the “filtering
(pre-alignment)” step
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More on Shifted Hamming Distance

https://github.com/CMU-SAFARI/Shifted-Hamming-Distance

Bioinformatics, 31(10), 2015, 1553-1560

doi: 10.1093/bioinformatics/btu856

Advance Access Publication Date: 10 January 2015
Original Paper

Sequence analysis

Shifted Hamming distance: a fast and accurate
SIMD-friendly filter to accelerate
alignment verification in read mapping

Hongyi Xin'*, John Greth?, John Emmons?, Gennady Pekhimenko’,
Carl Kingsford®, Can Alkan** and Onur Mutlu®*

Xin+, "Shifted Hamming Distance: A Fast and Accurate SIMD-friendly Filter_
to Accelerate Alignment Verification in Read Mapping”, Bioinformatics 2015.
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Location Filtering

Alignment is expensive
o We need to align millions to billions of reads

M ¢
' our goal is to accelerate read mapping
by improving the filtering step

\VAC IR RERIT® R RIC L6 N LSS \1UI\.aI\Iy

Both methods are used by mappers today, but filtering has
replaced alignment as the bottleneck [xin+, BMc Genomics 2013]

SAFARI 20



Ideal Filtering Algorithm

Filter out all
incorrect mappings

Minimal False Maximal True
Accept Rate Reject Rate

Zero False Faster Than
Reject Rate Mapper

Do not filter out any
correct mappings
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Alignment vs. Pre-alignment

(Filtering)

Needleman-Wunsch SHD
TATAATACG TATAATACG
A
T
A
T
A

Independent vectors can be processed
hardware technologies

in parallel using

DRAM Layers
d

pd

<

!l I /
/% //:
I /

Logic Layer
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GateKeeper: FPGA-Based A

ignment Fﬂtering

Alignment
Filter

Low Speed & High Accuracy

Medium Speed, Medium Accurac
High Speed, Low Accuracy

x1012

ACGTACGTACGTACG
ATATATACGTACTAGTA/
A AGTACGTACG
ATATACGTACTAGTACG
»TACG ACGTA
AAAAAAAAAAA
GA AGTACGTACG
ATATA A AGTA
ATA

AL
GGAC
OTACTAAAC

ATATATACO o a
Billions of Short Reads

ATA
SA

High throughput DNA
sequencing (HTS) technologies

Read Pre-Alignment Filtering
Fast & Low False Positive Rate

1]

st

FPGA-based
Alignment Filter.

x103

mappings

TATAATACG
2

DOPAPAP-HOD>

Read Alignment
Slow & Zero False Positives
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GateKeeper: FPGA-Based Alignment Filtering

= Mohammed Alser, Hasan Hassan, Hongyi Xin, Oguz Ergin, Onur
Mutlu, and Can Alkan
"GateKeeper: A New Hardware Architecture for
Accelerating Pre-Alighment in DNA Short Read Mapping”
Bioinformatics, [published online, May 31], 2017.

[Source Code]

[Online link at Bioinformatics Journal]

GateKeeper: a new hardware architecture for accelerating
pre-alignment in DNA short read mapping

Mohammed Alser ™, Hasan Hassan, Hongyi Xin, Oguz Ergin, Onur Mutlu ™, Can Alkan

Bioinformatics, Volume 33, Issue 21, 1 November 2017, Pages 3355-3363,
https://doi.org/10.1093/bioinformatics/btx342
Published: 31 May 2017 Article history v
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https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf
http://bioinformatics.oxfordjournals.org/
https://github.com/BilkentCompGen/GateKeeper
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx342

GateKeeper Walkthrough

Generate 2E+1
masks

Amend random zeros: AND all masks,
101 > 111 & 1001 »> 1111 ACCEPT iff number of ‘1" < Threshold

Query :GAGAGAGATATTTAGTGTTGCAGCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGGA
Reference :GAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

Hamming Mask :00000000001/0000000000001111111011110001110110101101111111110001000001111011010010101
1-Deletion Mask :111111111110011111011111000000000000000000000000000000000000000000011000000000000000
2-Deletion Mask :000000001011011100111111111111101111000111011010110111111111000100010011101101001010
3-Deletion Mask :111111111110111011001101110111011000100100111111111111100101100110010110111011101111

l1-Insertion Mask :111111111110111110111111011101100010010011111111111110010110011000101011101110111110
2-Insertion Mask :000000100111110011111111100100011010101001101011111111111110111001111111000111101100
3-Insertion Mask :111111110111011001100011111111101011011111100110010111011111111011101111010111001000

-—-- Masks after amendment ---

Hamming Mask :000000000010000000000001111111111110001111111101111111111110001000001111111111111111
1-Deletion Mask :111111111111111111111111000000000000000000000000000000000000000000011000000000000000
2-Deletion Mask :000000001111111111111111111111111111000111111111111111111111000100011111111111111110
3-Deletion Mask :111111111111111111111111111111111000111111111111111111111111111111111111111111111111

l1-Insertion Mask :111111111111111111111111111111100011111111111111111111111111111000111111111111111110
2-Insertion Mask :000000111111111111111111111100011111111111111111111111111111111111111111000111111100
3-Insertion Mask :111111111111111111100011111111111111111111111111111111111111111111111111111111111000

AND Mask :000000000010000000000001000000000000000000000000000000000000000000001000000000000000

\GAGAGAGATATTTAGTGTTGCAG-CACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGG
Needleman-Wunsch .
Alignment : LILEEELLLD FEEERRRREEEE DREEEERE e e bbb e e bbb bbb e ek b e

\GAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG
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GateKeeper Walkthrough (cont’d)

AND all masks,
ACCEPT iff number of ‘1’ < Threshold

* (2E)*(ReadLength) 2-AND
operations.

* (ReadlLength/4) 5-input LUT.

log,ReadlLength-bit counter.

Generate 2E+1 Amend random zeros:
NESS 101 > 111 & 1001 »> 1111

 E right-shift registers (length=ReadLength) '
« E left-shift registers (length=ReadLength) |
« (2E+1) * (ReadLength) 2-XOR operatlons ;

( 1

VVVYVYYVY l v

\_ ' l : .
(0111100011.10001111 11111100011110

Hamming mask after amending

» (2E+1)*(ReadlLength) 5-input LUT.




GateKeeper Accelerator Architecture

= Maximum data throughput =~13.3 billion bases/sec

= Can examine 8 (300 bp) or 16 (100 bp) mappings concurrently at 250 MHz

= Occupies 50% (100 bp) to 919% (300 bp) of the FPGA slice LUTs and registers

Preprocessing Host (CPU) Alignment Filtering (FPGA) EAIignment Verification

(CPU/FPGA)

ornnrnnrnnnns s , ..................... GateKeeper ,,

Read Controller

read#1 read#N

ACTATAATACG

read pairs

(MIFAST 1q #
output) b

Encoder EI¥ oo1

ODOP>PAP>PAP>H0O0>0

’ K Input stream :
. : of binary pairs GateKeeper EEEEE GateKeeper
—ll == B Processing Processing
fir b e eyt o fir b e eyt o E Core #1 » n n n Core #N
- E Accepted Alignments

input reads  reference '

(fastq) genome (.fasta) + (correct & false positives)

*Imap#ﬂj [ Tmap #N]|

PCie

GateKeeper

SAFARI o7




5%

PCle Controller, RIFFA, and 10

17.6%,

GateKeeper

FPGA Chip Layout
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GateKeeper vs. SHD

G |0

= FPGA (Xilinx VC709) = Intel SIMD

= Multi-core (parallel) = Single-core (sequential)

= Examines a single = Examines a single
mapping @ 125 MHz mapping @ ~2MHz

= Limited to PCle Gen3(4x) = Limited to a read length
transfer rate (128 bits @ of 128 bp (SSE register

250MHz) size)
= Amending requires: = Amending requires:
o (2E+1) 5-input LUT. o 4(2E+1) bitwise OR.

o 4(2E+1) packed shuffle.
o 3(2E+1) shift.
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GateKeeper: Speed & Accuracy Results

90x-130x faster filter

than SHD (Xin et al., 2015) and the Adjacency Filter (Xin et al., 2013)

4x lower false accept rate

than the Adjacency Filter (Xin et al., 2013)

10x speedup in read mapping

with the addition of GateKeeper to the mrFAST mapper (Alkan et al., 2009)

Freely available online

github.com/BilkentCompGen/GateKeeper
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GateKeeper Conclusions

FPGA-based pre-alignment greatly speeds up read mapping
o 10x speedup of a state-of-the-art mapper (mrFAST)

FPGA-based pre-alignment can be integrated with the
sequencer

o It can help to hide the complexity and details of the FPGA
o Enables real-time filtering while sequencing
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More on GateKeeper

= Mohammed Alser, Hasan Hassan, Hongyi Xin, Oguz Ergin, Onur
Mutlu, and Can Alkan
"GateKeeper: A New Hardware Architecture for
Accelerating Pre-Alighment in DNA Short Read Mapping”
Bioinformatics, [published online, May 31], 2017.

[Source Code]

[Online link at Bioinformatics Journal]

GateKeeper: a new hardware architecture for accelerating
pre-alignment in DNA short read mapping

Mohammed Alser ™, Hasan Hassan, Hongyi Xin, Oguz Ergin, Onur Mutlu ™, Can Alkan

Bioinformatics, Volume 33, Issue 21, 1 November 2017, Pages 3355-3363,
https://doi.org/10.1093/bioinformatics/btx342
Published: 31 May 2017 Article history v
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MAGNET Accelerator [Alser+, TIR 2017]
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Can We Do Better?

Faster, More Accurate,
More Scalable
Pre-Alignment Filtering
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Algorithm-Arch-Device Co-Design 1s Critical

Computer Architecture SW/HW Interface

(expanded view)
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Shouji (FFF-) [Alser+, Bioinformatics 2019]

Mohammed Alser, Hasan Hassan, Akash Kumar, Onur Mutlu, and Can Alkan,

"Shouji: A Fast and Efficient Pre-Alignment Filter for Sequence Alignment"
Bioinformatics, [published online, March 28], 20109.

[Source Code]

[Online link at Bioinformatics Journal]

SAFARI

Bioinformatics, 2019, 1-9

doi: 10.1093/bioinformatics/btz234

Advance Access Publication Date: 28 March 2019
Original Paper

Sequence alignment

Shouji: a fast and efficient pre-alignment filter
for sequence alignment

Mohammed Alser'?3*, Hasan Hassan', Akash Kumar?, Onur Mutlu’>*
and Can Alkan®*

'Computer Science Department, ETH Ziirich, Ziirich 8092, Switzerland, 2Chair for Processor Design, Center For
Advancing Electronics Dresden, Institute of Computer Engineering, Technische Universitdt Dresden, 01062
Dresden, Germany and 2Computer Engineering Department, Bilkent University, 06800 Ankara, Turkey

*To whom correspondence should be addressed.
Associate Editor: Inanc Birol
Received on September 13, 2018; revised on February 27, 2019; editorial decision on March 7, 2019; accepted on March 27, 2019
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Shouyt

Key observation:

o Correct alignment always includes long identical subsequences.

o Processing the entire mapping at once is ineffective for hardware
design.

Key idea:

o Use an overlapping sliding window approach to quickly and
accurately find all long segments of consecutive zeros.

Key result:

a Shouji accelerates the best-performing CPU read aligner Edlib
(Bioinformatics 2017) by up to 18.8x using 16 filtering units that
work in parallel.

o Shouji on FPGA is up to 10,000x faster than on CPU.

o Shouji is 2.4x to 467x more accurate than GateKeeper
(Bioinformatics 2017) and SHD (Bioinformatics 2015).
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Build the Neighborhood
Map

Find all common
subsequences
(diagonal segments of
consecutive zeros)
shared between two
given sequences.

Store longest subsequence
in Shouji Bit-vector
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Shouji: a fast and efficient pre-alignment filter for sequence alignment, Bioinformatics 2019,

https://doi.org/10.1093/bioinformatics/btz234
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FEttect of Sliding Window Size

Large enough window to accurately capture longer streaks
of matches = lower false positives

Small enough window to perform fast computation

0.6
52.86%

0.45

17.30%

False Accept Rate
o
w

0.15

3.680/0 1100/0
0 O
1 2 3 4

Window Size (bits)
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Hardware Implementation
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More on Shouji (f&+) [Alser+, Bioinformatics 2019]

Mohammed Alser, Hasan Hassan, Akash Kumar, Onur Mutlu, and Can Alkan,
"Shouji: A Fast and Efficient Pre-Alignment Filter for Sequence Alignment"
Bioinformatics, [published online, March 28], 20109.

[Source Code]

[Online link at Bioinformatics Journal]
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SneakySnake [Alser+, Bioinformatics 2020]

Mohammed Alser, Taha Shahroodi, Juan-Gomez Luna, Can Alkan, and Onur Mutlu,
"SneakySnake: A Fast and Accurate Universal Genome Pre-Alignment
Filter for CPUs, GPUs, and FPGAs"

Bioinformatics, to appear in 2020.

[SOU rce COd e] Bioinformatics
[Online link at Bioinformatics Journal] doi.10.1098/bicinformatics/o000x
Advance Access Publication Date: Day Month Year
Manuscript Category

Subject Section

SneakySnake: A Fast and Accurate Universal
Genome Pre-Alignment Filter for CPUs, GPUs, and
FPGAs

Mohammed Alser 1-2*, Taha Shahroodi', Juan Gémez-Luna ':2,
Can Alkan%*, and Onur Mutlu 1-2:3:4:*

' Department of Computer Science, ETH Zurich, Zurich 8006, Switzerland

2Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich 8006, Switzerland
3Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh 15213, PA, USA
4Department of Computer Engineering, Bilkent University, Ankara 06800, Turkey
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SneakySnake

Key observation:

a Correct alignment is a sequence of non-overlapping long matches.

Key idea:

o Reduce the approximate string matching problem to the Single
Net Routing problem in VLSI chip layout.

VLSI chip layout
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SneakySnake

Key observation:
a Correct alignment is a sequence of non-overlapping long matches.

Key idea:
o Reduce the approximate string matching problem to the Single
Net Routing problem in VLSI chip layout.

Key result:

a SneakySnake is up to four orders of magnitude more accurate
than Shouji (Bioinformatics’'19) and GateKeeper (Bioinformatics’17).

o SneakySnake greatly accelerates state-of-the-art CPU sequence
aligners, Edlib (Bioinformatics’17) and Parasail (BMC Bioinformatics'16)
o by up to 37.7x and 43.9% (>12x on average), on CPUs
o by up to 413x and 689x (>400x on average) with FPGA acceleration
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SneakySnake Walkthrough

Building Neighborhood Map Finding the Optimal Routing Path Examining the Snake Survival
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SneakySnake Walkthrough

Building Neighborhood Map Finding the Optimal Routing Path
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SneakySnake Walkthrough

Building Neighborhood Map

Finding the Optimal Routing Path
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SneakySnake Walkthrough

Building Neighborhood Map Finding the Routing Travel Path Examining the Snake Survival
This is what you actually need to build - 3
and it can be done on-the-fly!

checkpoint 1 checkpoint 2 checkpoint 3

Ll
O
=
=
—
=
L
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FPGA Resource Analysis

FPGA resource usage for a single filtering unit of GateKeeper,
Shouji, and Snake-on-Chip for a sequence length of 100 and
under different edit distance thresholds (E).

E (bp) Slice LUT Slice Register | No. of Filtering Units

GateKeener 2 0.39% 0.01% 16
P 5 0.71% 0.01% 16

Shou 2 0.69% 0.08% 16
’ 5 1.72% 0.16% 16

. 2 0.68% 0.16% 16
Snake-on-Chip 5 1.42% 0.34% 16
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LOIlg Read Mappmg (SneakySnake vs Parasail)
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Fig. 10: The execution time of SneakySnake, Parasail, and SneakySnake integrated with Parasail
using long sequences, (a) 10Kbp and (b) 100Kbp, and 40 CPU threads. The left y-axes of (a) and (b)
are on a logarithmic scale. For each edit distance threshold value, we provide in the right y-axes of
(a) and (b) the rate of accepted pairs (out of 100,000 pairs for 10Kbp and out of 74,687 pairs for
100Kbp) by SneakySnake that are passed to Parasail. We present the end-to-end speedup values
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LOIlg Read Mappmg (SneakySnake vs KSW2)

10K bp reads
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Fig. 11: The execution time of SneakySnake, KSW2, and SneakySnake integrated with KSW2 using
long sequences, (a) 10Kbp and (b) 100Kbp, and a single CPU thread. The left y-axes of (a) and (b) are
on a logarithmic scale. For each edit distance threshold value, we provide in the right y-axes of (a)
and (b) the rate of accepted pairs (out of 100,000 pairs for 10Kbp and out of 74,687 pairs for 100Kbp)
by SneakySnake that are passed to KSW2. We present the end-to-end speedup values obtained by

integrating SneakySnake with KSW2.
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More on SneakySnake [Alser+, Bioinformatics 2020]

Mohammed Alser, Taha Shahroodi, Juan-Gomez Luna, Can Alkan, and Onur Mutlu,
"SneakySnake: A Fast and Accurate Universal Genome Pre-Alignment
Filter for CPUs, GPUs, and FPGAs"

Bioinformatics, to appear in 2020.

[SOU rce COd e] Bioinformatics
[Online link at Bioinformatics Journal] doi.10.1098/bicinformatics/o000x
Advance Access Publication Date: Day Month Year
Manuscript Category

Subject Section

SneakySnake: A Fast and Accurate Universal
Genome Pre-Alignment Filter for CPUs, GPUs, and
FPGAs

Mohammed Alser 1-2*, Taha Shahroodi', Juan Gémez-Luna ':2,
Can Alkan%*, and Onur Mutlu 1-2:3:4:*

' Department of Computer Science, ETH Zurich, Zurich 8006, Switzerland
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3Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh 15213, PA, USA
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SAFARI 122



https://people.inf.ethz.ch/omutlu/pub/SneakySnake_UniversalGenomePrealignmentFilter_bioinformatics20.pdf
http://bioinformatics.oxfordjournals.org/
https://github.com/CMU-SAFARI/SneakySnake
https://doi.org/10.1093/bioinformatics/btaa1015

GenASM Framework [MICRO 2020]

= Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S.
Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand,
Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,
"GenASM: A High-Performance, Low-Power Approximate String Matching
Acceleration Framework for Genome Sequence Analysis"

Proceedings of the 53rd International Symposium on Microarchitecture (MICRO), Virtual,
October 2020.

[Lighting Talk Video (1.5 minutes)]

[Lightning Talk Slides (pptx) (pdf)]

[Talk Video (18 minutes)]

[Slides (pptx) (pdf)]

GenASM: A High-Performance, Low-Power
Approximate String Matching Acceleration Framework
for Genome Sequence Analysis

Damla Senol Cali ™ Gurpreet S. Kalsi®  Ziilal Bing6lV Can Firtina® Lavanya Subramanian Jeremie S. Kim®1
Rachata Ausavarungnirun® Mohammed Alser® Juan Gomez-Luna® Amirali Boroumand! Anant Nori™
Allison Scibisz|  Sreenivas Subramoney™ Can Alkan” Saugata Ghose*T  Onur Mutlu®V

TCarnegie Mellon University ™ Processor Architecture Research Lab, Intel Labs ¥ Bilkent University ~ °ETH Ziirich
YFacebook  ©King Mongkut’s University of Technology North Bangkok — * University of lllinois at Urbana—Champaign
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Problem & Our Goal

 Multiple steps of read mapping require approximate string matching
o ASM enables read mapping to account for sequencing errors and
genetic variations in the reads

 ASM makes up a significant portion of read mapping (more than 70%)

[ One of the major bottlenecks of genome sequence analysis

Our Goal:

Accelerate approximate string matching by
designing a fast and flexible framework,
which can be used to accelerate multiple steps of
the genome sequence analysis pipeline
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GenASM: ASM Framework for GSA

Our Goal:

Accelerate approximate string matching
by designing a fast and flexible framework,
which can accelerate multiple steps of genome sequence analysis

O GenASM: First ASM acceleration framework for GSA

o Based on the Bitap algorithm
= Uses fast and simple bitwise operations to perform ASM

o Modified and extended ASM algorithm
= Highly-parallel Bitap with long read support
= Bitvector-based novel algorithm to perform traceback

o Co-design of our modified scalable and memory-efficient algorithms
with low-power and area-efficient hardware accelerators
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GenASM: Hardware Design

T

GenASM-DC i GenASM-TB
Memory ) ”
' TB-SRAM,
GenASM-DC || TB-SRAM, | GenASM-TB
Accelerator : Accelerator
Host . '
CPU . TB-SRAM,
GenASM-DC: GenASM-TB:
generates bitvectors performs TraceBack
and performs edit and assembles the
Distance Calculation optimal alignment
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GenASM: Hardware Design

GenASM-DC { GenASM-TB

Main ) ‘ DC-SRAM
Memory | .
' TB-SRAM,
GenASM-DC || TB-srRAM, .| GenASM-TB
Accelerator : Accelerator
Host - '
CPU > TB-SRAM,

Our specialized compute units and on-chip SRAMs help us to:
= Match the rate of computation with memory capacity and bandwidth
—> Achieve high performance and power efficiency

—> Scale linearly in performance with
the number of parallel compute units that we add to the system
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GenASM-DC: Hardware Design

O Linear cyclic systolic array based accelerator

o Designed to maximize parallelism and minimize memory bandwidth and
memory footprint

TB-SRAM, TB-SRAM, TB-SRAMF,_1 TB-SRAMp
A A A A
pIntermediate Bitvectors a -} s
l‘ > OldR _J OldR
OldR in g < > "
» D PC out PC out PC
DC_SRAM . SO R A O U O A D D R A O U B A R TR
PMiin o— e PM | PM e
'Ll out out Ll
T/ PE, PE,., PE,
Processing Block (PB)
Deletion
OldR[d-1] E Substitution
Rid-1] E -’}—» R[d]
OldR(d]— Insertion
PatternMask —| Match
Processing Core (PC)

Damla Senol Cali
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GenASM-TB: Hardware Design
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< GenASM-TB

 Very simple logic:

@ Reads the bitvectors from one of the TB-SRAMs using the computed

address

1.5KB
TB-SRAMg,

to main
memory

€) Performs the required bitwise comparisons to find the traceback output

for the current position

€) Computes the next TB-SRAM address to read the new set of bitvectors

Damla Senol Cali
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Key Results — Area and Power

O Based on our synthesis of GenASM-DC and GenASM-TB accelerator
datapaths using the Synopsys Design Compiler with a 28nm LP process:
o Both GenASM-DC and GenASM-TB operate @ 1GHz

GenASM-DC (64 PEs)

m GenASM-TB
DC-SRAM (8 KB)
TB-SRAM s (64 x 1.5 KB)

Total (1 vault):
Total (32 vaults):
% of a Xeon CPU core:

Damla Senol Cali

Area (mm?)

0.256

0.049 0.016

/ 0.013

0.334 mm?
10.69 mm?

1%

SAFARI

Power (W)

0.033

0.055 \

0.004
0.009

0.101W
3.23 W
1%
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Key Results — Area and Power

O Based on our synthesis of GenASM-DC and GenASM-TB accelerator
datapaths using the Synopsys Design Compiler with a 28nm LP process:

o Both GenASM-DC and GenASM-TB operate @ 1GHz

Area (mm?) Power (W)

0.049 0.016

GenASM-DC (64 PEs)

= GenASM-TB / 0.013 o
DC-SRAM (8 KB) 0.055
TB-SRAMs (64 x 1.5 KB) 0.256 \

0.004
0.009

\

GenASM has low area and power overheads

Damla Senol Cali SAFARI
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Use Cases of GenASM

p

Reference _,
genome

lHash table based index

Reads from | |
—p>
sequenced
genome

lCandidate mapping locations

Pre-Alignment Filtering

Remaining candidate mapping locations

Read Alignment

Optimal alignment
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Use Cases of GenASM (cont'd.)

(1) Read Alignment Step of Read Mapping
o Find the optimal alignment of how reads map to candidate
reference regions

(2) Pre-Alignment Filtering for Short Reads
o Quickly identify and filter out the unlikely candidate reference
regions for each read

(3) Edit Distance Calculation

o Measure the similarity or distance between two sequences

O We also discuss other possible use cases of GenASM in our paper:
o Read-to-read overlap finding, hash-table based indexing, whole
genome alignment, generic text search
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Key Results

(1) Read Alignment

O 116x speedup, 37x less power than Minimap2 (state-of-the-art SW)

0 111x speedup, 33x less power than BWA-MEM (state-of-the-art SW)

 3.9x better throughput, 2.7x less power than Darwin (state-of-the-art HW)

O 1.9x better throughput, 82% less logic power than GenAX (state-of-the-art HW)

(2) Pre-Alignment Filtering
[ 3.7x speedup, 1.7x less power than Shouji (state-of-the-art HW)

(3) Edit Distance Calculation
1 22-12501x speedup, 548-582x less power than Edlib (state-of-the-art SW)
] 9.3-400x speedup, 67x less power than ASAP (state-of-the-art HW)
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More on GenASM Framework Micro 2020]

= Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S.
Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand,
Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,
"GenASM: A High-Performance, Low-Power Approximate String Matching
Acceleration Framework for Genome Sequence Analysis"

Proceedings of the 53rd International Symposium on Microarchitecture (MICRO), Virtual,
October 2020.

[Lighting Talk Video (1.5 minutes)]

[Lightning Talk Slides (pptx) (pdf)]

[Talk Video (18 minutes)]

[Slides (pptx) (pdf)]

GenASM: A High-Performance, Low-Power
Approximate String Matching Acceleration Framework
for Genome Sequence Analysis

Damla Senol Cali ™ Gurpreet S. Kalsi®  Ziilal Bing6lV Can Firtina® Lavanya Subramanian Jeremie S. Kim®1
Rachata Ausavarungnirun® Mohammed Alser® Juan Gomez-Luna® Amirali Boroumand! Anant Nori™
Allison Scibisz|  Sreenivas Subramoney™ Can Alkan” Saugata Ghose*T  Onur Mutlu®V

TCarnegie Mellon University ™ Processor Architecture Research Lab, Intel Labs ¥ Bilkent University ~ °ETH Ziirich
YFacebook  ©King Mongkut’s University of Technology North Bangkok — * University of lllinois at Urbana—Champaign
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https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
http://www.microarch.org/micro53/
https://www.youtube.com/watch?v=nJs3RRnvk_k
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pdf
https://www.youtube.com/watch?v=srQVqPJFqjo
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pdf

Agenda

The Problem: DNA Read Mapping
o State-of-the-art Read Mapper Design

Algorithmic Acceleration
o Exploiting Structure of the Genome
o Exploiting SIMD Instructions

Hardware Acceleration
o Specialized Architectures
o Processing in Memory

Future Opportunities: New Sequencing Technologies
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Read Mapping & Filtering

Problem: Heavily bottlenecked by Data Movement

GateKeeper, Shouji, SneakySnake performance limited by
DRAM bandwidth [Alser+, Bioinformatics 2017,2019,2020]

Ditto for SHD [Xin+, Bioinformatics 2015]
Solution: Processing-in-memory can alleviate the bottleneck

We need to design mapping & filtering algorithms to fit
processing-in-memory

SAFARI 157



Hash Tables in Read Mapping

Read Sequencz 100 bp) X

Allgibifg ... Rdegnaigh. Ffalse

Negative

--------------------------------------------------
“““
o te

Hash Table Reference Genome

| Filter
37 140 §
g8o4 1203 §
1564 ;

‘e
‘e
---------

.
.
.
-------------------------------------------
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Read Mapping & Filtering in Memory

We need to design
mapping & filtering algorithms
that fit processing-in-memory
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More on GRIM-Filter

= Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, Mohammed Alser,
Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using Processing-in-
Memory Technologies"
BMC Genomics, 2018.
Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC), Yokohama, Japan, January
2018.
[Slides (pptx) (pdf)]
[Source Code]
[arxiv.org Version (pdf)]
[Talk Video at AACBB 2019]

GRIM-Filter: Fast seed location filtering in
DNA read mapping using
processing-in-memory technologies

Jeremie S. Kim'®”, Damla Senol Cali', Hongyi Xin?, Donghyuk Lee3, Saugata Ghose',
Mohammed Alser*, Hasan Hassan®, Oguz Ergin®, Can Alkan*" and Onur Mutlu®'”

From The Sixteenth Asia Pacific Bioinformatics Conference 2018
— Yokohama, Japan. 15-17 January 2018

SAFARI 140


https://arxiv.org/pdf/1711.01177.pdf
http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
https://people.inf.ethz.ch/omutlu/pub/GRIM-filter-DNA-pre-alignment-in-memory_apbc18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GRIM-filter-DNA-pre-alignment-in-memory_apbc18-talk.pdf
https://github.com/CMU-SAFARI/GRIM
https://arxiv.org/pdf/1711.01177.pdf
https://www.youtube.com/watch?v=j5-I84iNVd8

Our Proposal: GRIM-Filter

1. Data Structures: Bins & Bitvectors
2. Checking a Bin

3. Integrating GRIM-Filter into a Mapper

SAFARI H



GRIM-Filter: Bins

= We partition the genome into large sequences (bins).
Bnx-23 Bin x - 1

i GGAAATACGTTCAGTCAGTTGGAAATACGTTTTGGGCGTTACTTCTCAGTACGTACAGTACAGTAAAAATGACAGTAAGAC ..

S |  — —_ ]
Bin x -2 Bin x
o Represent each bin with a bitvector Bitvector ‘
that holds the occurrence of all AAAAA (17| AAAAA
permutations of a small string (token) in AAAAC | 0 | existsin
the bin AAAAT | 1 | binx
ccoce | 1
0 T_o account for matches tr_\at st_raddle cceer (ol cocct
bins, we employ overlapping bins CCCCG doesn’t
= A read will now always completely fall within . | . | existin
a single bin GGGGG | 1 bin x
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GRIM-Filter: Bitvectors

g CGTGA | @
Q
g 5
2 TGAGT| @
s
S GAGTC| ®
(a'a]

GTGAG | @

SAFARI ®



GRIM-Filter: Bitvectors

bin,
AAAAACCCCTGCCTTGCATGTAGAAAACTTGACAGGAACTTTTTATCGCA ¢+

Reference
Genome

Storing all bitvectors
requires 4™ x t bits

by by in memory,
(AAAAA | ARAAA 110 where t = number
AAAAC | 1 AAAAC :
of bins.
AAAAG | O AAAAG |0
AAAAT | O _ :
: : AGAAA | 1
CCCCT | 1 _ :
: : GAAAA | 1 .
tokens £ . _ _ _ . o o For bin size ~200,
GACAG | 1 and n =5,
- ; : - memory footprint
GCATG | 1 GCATG | 1 ~3.8 GB
TTGCA | 1
LTTTTT |0 TTTTT | 0
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Our Proposal: GRIM-Filter

1. Data Structures: Bins & Bitvectors
2. Checking a Bin

3. Integrating GRIM-Filter into a Mapper
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GRIM-Filter: Checking a Bin

How GRIM-Filter determines whether to discard potential
match locations in a given bin prior to alignment

INPUT: Read Sequence r
GAACTTGGAGTCTA -.- CGAG g Read bitvector for bin_num(x)

o Get tokens ¢

- : s s.\_:\_\ _______________ > 1
-————=== ‘C:\ ---------- '> O
e \\\ 1 eSum e Compare
N + = Threshold?
m SN R RN 1
tokens \ " 1 Nf/ NES
e 1 Discard Send to
0 Read Mapper
o Match tokens to bitvector for sequence
0 Alignment
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Our Proposal: GRIM-Filter

1. Data Structures: Bins & Bitvectors
2. Checking a Bin

3. Integrating GRIM-Filter into a Mapper
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Integrating GRIM-Filter into a Read Mapper

INPUT: All Potential Seed Locations

INPUT: Read Sequence .ve( 020128 )...( 020131 ) 414415 Jaus
GAACTTGCGAG sssGTATT 9 -

’0 ) S KEEP " KEEP
GRIM-Filter: £+ 0010R0 .. 012010
Filter Bitmask Generator D—’SCARDl
. J X
++10001010 4420110104 QReference Segment Storage
Seed Location Filter Bitmask refarence reference
segment segment
@ 020131 @ 41 4415
O Read Mapper: Edit-Distance Calculation
Sequence Alignment

v

SAFARI OUTPUT: Correct Mappings



Key Properties of GRIM-Filter

Simple Operations:

o To check a given bin, find the sum of all bits corresponding to
each token in the read

o Compare against threshold to determine whether to align

Highly Parallel: Each bin is operated on independently
and there are many many bins

Memory Bound: Given the frequent accesses to the large
bitvectors, we find that GRIM-Filter is memory bound

These properties together make GRIM-Filter
a good algorithm to be run in 3D-Stacked DRAM

SAFARI 1



Opportunity: 3D-Stacked Logic+Memory

Logic

Other “True 3D" technologies
under development
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DRAM Landscape (circa 2015)

Segment DRAM Standards & Architectures
Commodity DDR3 (2007) [14]; DDR4 (2012) [1¥]
Low-Power  LPDDR3 (2012) [17]; LPDDR4 (2014) [20]
Graphics GDDRS5 (2009) [15]

Performance eDRAM [2£], [32]; RLDRAM3 (2011) [29]

SBA/SSA (2010) [38]; Staged Reads (2012) [3]; RAIDR (2012) [27];
SALP (2012) [24]; TL-DRAM (2013) [26]; RowClone (2013) [37];
Half-DRAM (2014) [39]; Row-Bufter Decoupling (2014) [33];

SARP (2014) [6]; AL-DRAM (2015) [25]

Academic

Table 1. Landscape of DRAM-based memory

Kim+, "Ramulator: A Flexible and Extensible DRAM Simulator”, IEEE CAL 2015.
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3D-Stacked Memory

DRAM Layers
//
] B d

: A e TSVs
/% d

//
||||//

Logic Layer

3D-Stacked DRAM architecture has extremely high
bandwidth as well as a stacked customizable logic layer

o Logic Layer enables Processing-in-Memory, via high-
bandwidth low-latency access to DRAM layers

o Embed GRIM-Filter operations into DRAM logic layer and
appropriately distribute bitvectors throughout memory
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3D-Stacked Memory

http://i1-news.softpedia-static.com/images/news2/Micron-and-Samsung-Join-Force-to-Create-Next-Gen-Hybrid-Memory-2.png
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3D-Stacked Memory
Micron’s HMC

Micron has working demonstration
components

http://images.anandtech.com/doci/9266/HBMCar_678x452.jpg

http://i1-news.softpedia-static.com/images/news2/Micron-and-Samsung-Join-Force-to-Create-Next-Gen-Hybrid-Memory-2.png
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GRIM-Filter in 3D-Stacked DRAM

Bank
Row 0: AAAAA || [ [, :
Row 1: AAAAC HEE || Bank -y >
Row 2: AAAAG || 5| 51 5 ‘g e
ol sl 5 b
Fry wry g (@)
e 2 =
zlzl2 @ )
: o|a|m £ ci
Row R—=1: TTTTT

-] —

e
Paimin

Each DRAM layer is organized as an array of banks
o A bank is an array of cells with a row buffer to transfer data

The layout of bitvectors in a bank enables filtering many

bins in parallel
SAFARI
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GRIM-Filter in 3D-Stacked DRAM

Per-Vault
Custom GRIM-Filter Logic

Seed Location Filter Bitmask
Bank -+ DRAM Layers . (] §:i§ \
e S |[5H:
LT 7 Q%"g g_ g
/ /—7/ <z TSVs L= [5n S
E P QQ_J .E O f
s ::" ,VaUIt 8 L'
p= il = |&
Loéc Tayer S — Row Data Register

Customized logic for accumulation and comparison
per genome segment

o Low area overhead, simple implementation

a For HBM2, we use 4096 incrementer LUTs, 7-bit counters, and
comparators in logic layer

SAFARI Details are in [Kim+, BMC Genomics 2018] 156



Methodology

Performance simulated using an in-house 3D-Stacked DRAM
simulator

Evaluate 10 real read data sets (From the 1000 Genomes
Project)
o Each data set consists of 4 million reads of length 100

Evaluate two key metrics
o Performance

o False negative rate
The fraction of locations that pass the filter but result in a mismatch

Compare against a state-of-the-art filter, FastHASH [xin+, BMC
Genomics 20131 When using mrFAST, but GRIM-Filter can be
used with ANY read mapper

SAFARI 7



GRIM-Filter Performance

Benchmarks and their Execution Times
[ FastHASH filter I GRIM-Filter

m
- /0
S 60 - .
O 50 - Sequence Alignment
a n
B 40 - Error Tolerance (e)
S 30 - e = 0.05
cH> 20 A
x 10 N I
~— 0
()] > N 0 &
£ S R A A
A 02 02 03 02 A R 02 02 ¥
" — Q- Q- Q- Q- Q! e Q- Q- Q- Q-
= <& & <& <& <& <& <& & <& <&

1.8x-3.7x performance benefit across real data sets
2.1x average performance benefit

GRIM-Filter gets performance due to its hardware-software co-design
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GRIM-Filter False Negative Rate

Benchmarks and their False Negative Rates
[ 1 FastHASH filter [ GRIM-Filter

Sequence Alignment

Q

©

€ 0444 — = - 0 = 1 = — = -

()] 0.3 Error Tolerance (¢)
> 3 -

E 0-2 N e=0l05
(=)

O 0.1 -

z Jlmlmlmeinnnnninn

Q

(7] ¢ G AT A & & o oY & oY

© @/\f‘/ @/\q/ vé\’\/ @/\% vQ/\r‘/ @,\'\, @/\ql 09/\% @/\% @/\% v“é’b

Ll

5.6x-6.4x False Negative reduction across real data sets
6.0x average reduction in False Negative Rate

GRIM-Filter utilizes more information available in the read to filter
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More on GRIM-Filter

= Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, Mohammed Alser,
Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using Processing-in-
Memory Technologies"
BMC Genomics, 2018.
Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC), Yokohama, Japan, January
2018.
[Slides (pptx) (pdf)]
[Source Code]
[arxiv.org Version (pdf)]
[Talk Video at AACBB 2019]

GRIM-Filter: Fast seed location filtering in
DNA read mapping using
processing-in-memory technologies

Jeremie S. Kim'®”, Damla Senol Cali', Hongyi Xin?, Donghyuk Lee3, Saugata Ghose',
Mohammed Alser*, Hasan Hassan®, Oguz Ergin®, Can Alkan*" and Onur Mutlu®'”

From The Sixteenth Asia Pacific Bioinformatics Conference 2018
— Yokohama, Japan. 15-17 January 2018
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https://arxiv.org/pdf/1711.01177.pdf
http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
https://people.inf.ethz.ch/omutlu/pub/GRIM-filter-DNA-pre-alignment-in-memory_apbc18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GRIM-filter-DNA-pre-alignment-in-memory_apbc18-talk.pdf
https://github.com/CMU-SAFARI/GRIM
https://arxiv.org/pdf/1711.01177.pdf
https://www.youtube.com/watch?v=j5-I84iNVd8

Aside: In-Memory Graph Processing

= Large graphs are everywhere (circa 2015)

oo [ L

36 Million 1.4 Billion 300 Million 30 Billion
Wikipedia Pages = Facebook Users Twitter Users  Instagram Photos

= Scalable large-scale graph processing is challenging

Speedup

161



Key Bottlenecks in Graph Processing

for (v: graph.vertices) {
for (w: v.successors) {

w.next_rank += weight * v.rank;

1. Frequent random memory accesses

w.rank

w.next_rank

w.edges

2. Little amount of computation
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Tesseract System for Graph Processing

Interconnected set of 3D-stacked memory+logic chips with simple cores

Host Processor

Memory-Mapped

Accelerator Interface :
Noncacheable, Physically Addressed) !

~ 2 Y BRE
— T | .
q Z
Wt il 1
" ) 1 A
® A\ & ,
N, itw ] g ;
3 X
- - | : 1
Nt = Ll '
' 1
1 1 )
| NG 1 ,
1 ] ,
1 1 /
1 1 /
1 [
1 1 /
[ -
7/
/
7 /
7 7/
’

o
X
>

LI B | , z
| | | [ A
II LI B | g
1] [y T BN 1 oo LP PF Buffer =
' Crossbar Network > o
/ I S CE )
LI B | \\\ MTP
O [ E— -1 ¢
v Message Queue NI

SAFAR/ Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Communications via

Remote Function Calls

Message Queue




Communications In Tesseract (1)

for (v: graph.vertices) {
for (w: v.successors) {
w.next_rank += weight * v.rank;

}
}

SAFARI 165



Communications In Tesseract (1I)

for (v: graph.vertices) {
for (w: v.successors) {
w.next_rank += weight * v.rank;

Vault #1 Vault #2
- ——»
\V; > &w
// | \
- \
«—= \
\\
\\\\\\\ — — >
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Communications In Tesseract (I11)

for (v: graph.vertices) {

for (w: v.successors) { Non-blocking Remote Function Call
put(w.id, function() { w.next_rank += weight * v.rank; });
J Can be delayed
} until the nearest barrier
barrier();
Vault #1 Vault #2
put ~
Y > &w
4-——-”/// ‘\
put \\\
S~ put
T » W
put |
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Remote Function Call (Non-Blocking)

1. Send function address & args to the remote core

2. Store the incoming message to the message queue
3. Flush the message queue when it is full or a

synchronization barrier is reached

Local
Core

g

NI

&func, &w, value

NI

_>

Remote
Core b
MQ -

put(w.id, function() { w.next_rank +=value; })

SAFARI
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Prefetching

LP PF Buffer

MTP




Evaluated Systems

DDR3-000 = HMC-000  HMC-MC | Tesseract

s B0
= = JE 1= B . .
I T + T = T + T I i y ¥ y § y y y ¥ L x X y ¥ : 32
CECE CeCs | , | Tesseract
i X X X /\ i / \ X X X i Cores
A 4 A 4 A 4 A 4 : vy vy \A 4 \A4 : \ 4 vy vy vy 1
: 128 128
8 OI(-)IO 8 OI?IO A “«> 2022 In-Order < In-Order
4GHz || 4GHz 4GHz || 4GHz . o o o] o
| | B
A\ 4 A\ 4 : A 4 Y : A 4 A 4 PN P
8000 | 8000 | 8000 |8000 : oo | @ 28 : :
4GHz 4GHz ! 4GHz 4GHz ! 2GHz IGH3z | - <
! AA AA AA AA i t ¢ ¢ e
v v v v \4 \ 4 \ 4 A : \ 4 \4 \4 \ 4 : PR < PR
CECs CaCs '
CaCE CaCs
| | | | \ 4 \4 \4 \4 \ 4 \4 \ 4 \4
CECs CaCs
I [ [ I
CECs CaCs
102.4GB/s 640GB/s 640GB/s 8TB/s

SAFAR]/ Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Tesseract Graph Processing Performance

. >13X Performance Improvement

" On five graph processing algorithms 13.8x

11.6x

12
10 9.0x

Speedup

~ o o

+56%  125%

, == [l e

DDR3-000 HMC-Oo0 HMC-MC Tesseract Tesseract- Tesseract-
LP LP-MTP

N

SAFAR/ Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Memory Bandwidth Consumption

2.9TB/s

Memory Bandwidth (TB/s)

2.2TB/s
1.3TB/s
190GB/s 243GB/s
80GB/s
— T

DDR3-000 HMC-000 HMC-MC Tesseract Tesseract- Tesseract-
LP LP-MTP




|

Effect of Bandwidth & Programming Model

] HMC-MC Bandwidth (640GB/s) [[] Tesseract Bandwidth (8TB/s)

Programming Model

3.0x

Speedup

2.3X v

-
0
HMC-MC HMC-MC + Tesseract + Tesseract
PIM BW Conventional BW (No Prefetching)
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Tesseract Graph Processing System Energy

B Memory Layers M Logic Layers [ Cores
1.2

0.8
0.6
0.4

0.2 > 8X Energy Reduction

HMC-000 Tesseract with Prefetching

SAFARI| Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



More on Tesseract

= Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu,
and Kiyoung Choi,

"A Scalable Processing-in-Memory Accelerator for
Parallel Graph Processing”

Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing

Junwhan Ahn  Sungpack Hong® Sungjoo Yoo Onur Mutlu’ Kiyoung Choi

junwhan@snu.ac.kr, sungpack.hong @oracle.com, sungjoo.yoo @ gmail.com, onur@cmu.edu, kchoi@snu.ac.kr

Seoul National University $Oracle Labs fCarnegie Mellon University
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http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-lightning-talk.pdf

PIM Review and Open Problems

A Modern Primer on Processing in Memory

Onur Mutlu®?, Saugata Ghose®™°, Juan Gémez-Luna?, Rachata Ausavarungnirun®

SAFARI Research Group

ETH Ziirich
bCarnegie Mellon University
¢University of Illinois at Urbana-Champaign
4King Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,

"A Modern Primer on Processing in Memory"

Invited Book Chapter in Emerqging Computing: From Devices to Systems -
Looking Beyond Moore and Von Neumann, Springer, to be published in 2021.

https://arxiv.or df/1903.03988.pdf 176


https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://people.inf.ethz.ch/omutlu/projects.htm
https://arxiv.org/pdf/1903.03988.pdf

PIM Review and Open Problems (1I)

A Workload and Programming Ease Driven Perspective of Processing-in-Memory
Saugata Ghose’  Amirali Boroumand®  Jeremie S. Kim™  Juan Gémez-Luna®  Onur Mutlu®'

"Carnegie Mellon University SETH Ziirich

Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu,
"Processing-in-Memory: A Workload-Driven Perspective"

Invited Article in IBM Journal of Research & Development, Special Issue on
Hardware for Artificial Intelligence, to appear in November 2019,

[Preliminary arXiv version]

https://arxiv.or df/1907.12947.pdf 177


https://arxiv.org/pdf/1907.12947.pdf
https://www.research.ibm.com/journal/
https://arxiv.org/pdf/1907.12947.pdf
https://arxiv.org/pdf/1907.12947.pdf

Mote on Processing-in-Memory

= Onur Mutluy,
"Memory-Centric Computing Systems"”
Invited Tutorial at 66:h International Electron Devices
Meeting (TEDM), Virtual, 12 December 2020.
Slides (pptx) (pdf)]
Executive Summary Slides (pptx) (pdf)]
[ Tutorial Video (1 hour 51 minutes)]
Executive Summary Video (2 minutes)]
Abstract and Bio]
Related Keynote Paper from VLSI-DAT 2020]
Related Review Paper on Processing in Memory]

https://www.youtube.com/watch?v=H3sEaINPBOE

https://www.youtube.com/onurmutlulectures
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https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://ieee-iedm.org/program/tutorials/
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-ExecutiveSummary-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-ExecutiveSummary-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://www.youtube.com/watch?v=H3sEaINPBOE
https://www.youtube.com/watch?v=1S9P5-i4EuI
https://ieee-iedm.org/wp-content/uploads/2020/11/Mutlu.pdf
https://people.inf.ethz.ch/omutlu/pub/intelligent-architectures-for-intelligent-machines_keynote-paper_VLSI20.pdf
https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://www.youtube.com/watch?v=H3sEaINPBOE
https://www.youtube.com/onurmutlulectures

Agenda

The Problem: DNA Read Mapping
o State-of-the-art Read Mapper Design

Algorithmic Acceleration
o Exploiting Structure of the Genome
o Exploiting SIMD Instructions

Hardware Acceleration
o Specialized Architectures
o Processing in Memory

Future Opportunities: New Sequencing Technologies
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New Genome Sequencing Technologies

Nanopore sequencing technology and tools for genome assembly:
computational analysis of the current state, bottlenecks and
future directions

Damla Senol Cali ™, Jeremie S Kim, Saugata Ghose, Can Alkan, Onur Mutlu

Briefings in Bioinformatics, bby017, https://doi.org/10.1093/bib/bby017
Published: 02 April2018 Article history v

Oxford Nanopore MinION

Senol Cali+, "Nanopore Sequencing Technology and Tools for Genome
Assembly: Computational Analysis of the Current State, Bottlenecks
and Future Directions,” Briefings in Bioinformatics, 2018.

[Preliminary arxiv.org version]
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https://arxiv.org/pdf/1711.08774.pdf

Recall: High-Throughput Sequencing

Massively parallel sequencing technology
o Illumina, Roche 454, Ion Torrent, SOLID...

Small DNA fragments are first amplified and then

sequenced in parallel, leading to
o High throughput

o High speed

o Low cost
a

Short reads
Amplification step limits the read length since too short or too long
fragments are not amplified well.

Sequencing is done by either reading optical signals as each base is

added, or by detecting hydrogen ions instead of light, leading to:

o Low error rates (relatively)

o Reads lack information about their order and which part of genome
they are originated from
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Nanopore Sequencing Technology

Nanopore sequencing is an emerging and a promising
single-molecule DNA sequencing technology

First nanopore sequencing device, MinION, made
commercially available by Oxford Nanopore

Technologies (ONT) in May 2014.

o Inexpensive

o Long read length (> 882K bp)
a Portable: Pocket-sized

o Produces data in real-time
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= First nanopore sequencing device, MinION, made
commercially available by Oxford Nanopore

Technologies (ONT) in May 2014.

o Inexpensive

o Long read length (> 882K bp)
o Portable: Pocket-sized

o Produces data in real-time
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Oxford

Oxtford Nanopore Sequencers {JNANOPORE

MinlON Mk1B MinlON Mk1C GridlON Mk1 PromethlON 24/48

MinION MinION . PromethION PromethION
Mk1B Mkic  GridION Mki 24 48

Read length

Yield per flow cell

Number of flpw 24 48
cells per device

Yield per device <250 Gb <5.2Tb <10.5Tb

Starting price $49,995 $195,455 $327,455
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[llumina Sequencers

llumina

)
e - T — TR

n
| Sm—
=

iSeq 100 MiniSeq MiSeq NextSeq 550 NextSeq 2000 NovaSeq 6000
Run time 9.5-19 hrs 4-24 hrs 4-55 hrs 12-30 hrs 24-48 hrs 13-44 hrs
Max. reads 4 million | 25 million | 25 million | 400 million | 1 billion | 20 billion
per run
Max.read |, 150pbp | 2x150bp | 2x300bp | 2x 150 bp | 2 x 150 bp | 2 x 250
length
Max. output 1.2 Gb 7.5 Gb 15 Gb 120 Gb 300 Gb 6000 Gb
Estimated
price $19,900 $49,500 $128,000 $275,000 $335,000 $985,000
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How Does Nanopore Sequencing Work?

graphene

nanopore \ { A
+
E—

kXX X XX XXX XX XXX XA
|

= Nanopore is a hano-scale hole (<20nm).

= In nanopore sequencers, an ionic current passes through the nanopores

= When the DNA strand passes through the nanopore, the sequencer
measures the the change in current

= This change is used to identify the bases in the strand with the help of
different electrochemical structures of the different bases

186
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Advantages of Nanopore Sequencing

Nanopores:

Do notrequire any labeling of the DNA or nucleotide for
detection during sequencing

Rely on the electronic or chemical structure of the different
nucleotides for identification

Allow sequencing very long reads, and

Provide portability, low cost, and high throughput.
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Challenges ot Nanopore Sequencing

One major drawback: high error rates

Nanopore sequence analysis tools have a critical role to:
a overcome high error rates
o take better advantage of the technology

Faster tools are critically needed to:

o Take better advantage of the real-time data production
capability of nhanopore sequencing

o Enable fast, real-time data analysis
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Nanopore Genome Assembly Pipeline

Raw signal
data

Assembly

Improved
assembly

r

.

Basecalling
Tools: Metrichor, Nanonet, Scrappie, Nanocall, DeepNano

N

Read-to-Read Overlap Finding
Tools: GraphMap, Minimap

r
4_

Assembly

Tools: Canu, Miniasm

.

Read Mapping
Tools: BWA-MEM, Minimap, (GraphMap)

<—

\.

Polishing

Tools: Nanopolish, Racon

J

DNA reads

Overlaps

Draft assembly

Mappings of reads
against draft
assembly

Figure 1. The analyzed genome assembly pipeline using nanopore
sequence data, with its five steps and the associated tools for each

~ step.
SAFARI

Senol Cali+, "Nanopore Sequencing Technology and Tools for Genome
Assembly” Briefings in Bioinformatics, 2018.
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Nanopore Genome Assembly Tools (I)

Table 12. Accuracy analysis results for the full pipeline with a focus on the last two steps.

Number of Number of Identity Coverage

Number of Number of

Bases Contigs (%) (%) Mismatches Indels
1 | Metrichor + — + Canu + BWA-MEM + Nanopolish| 4,683,072 1 99.48 99.93 8,198 15,581
2 | Metrichor + Minimap + Miniasm+ BWA-MEM + Nanopolish | 4,540,352 1 9233 96.31 162,884 182,965
3 | Metrichor + GraphMap+ Miniasm+ BWA-MEM + Nanopolish| 4,637,916 2 9238 95.80 159,206 180,603
4 | Metrichor + — + Canu + BWA-MEM + Racon 4,650,502 1 98.46 100.00 18,036 51,842
5 | Metrichor + — + Canu + Minimap + Racon 4,648,710 1 98.45 100.00 17,906 52,168
6 | Metrichor + Minimap + Miniasm+ BWA-MEM + Racon 4,598,267 1 97.70 99.91 24,014 82,906
7 | Metrichor + Minimap + Miniasm+ Minimap + Racon 4,600,109 1 97.78 100.00 23,339 79,721
8 | Nanonet + — + Canu + BWA-MEM + Racon 4,622,285 1 98.48 100.00 16,872 52,509
9 | Nanonet + — + Canu + Minimap + Racon 4,620,597 1 98.49 100.00 16,874 52,232
10| Nanonet + Minimap + Miniasm+ BWA-MEM + Racon 4,593,402 1 98.01 99.97 20,322 72,284
11| Nanonet + Minimap + Miniasm+ Minimap + Racon 4,592,907 1 98.04 100.00 20,170 70,705
12| Scrappie + — + Canu + BWA-MEM + Racon 4,673,871 1 98.40 99.98 13,583 60,612
13| Scrappie + — + Canu + Minimap + Racon 4,673,606 1 98.40 99.98 13,798 60,423
14| Scrappie + Minimap + Miniasm+ BWA-MEM + Racon 5,157,041 8 97.87 99.80 18,085 78,492
15| Scrappie + Minimap + Miniasm+ Minimap + Racon 5,156,375 8 97.87 99.94 17,922 77,807
16 | Nanocall + — + Canu + BWA-MEM + Racon 1,383,851 86 93.49 28.82 19,057 65,244
17| Nanocall + — + Canu + Minimap + Racon 1,367,834 86 94.43 28.74 15,610 55,275
18| Nanocall + Minimap + Miniasm+ BWA-MEM + Racon 4,707,961 5 90.75 97.11 91,502 347,005
19| Nanocall + Minimap + Miniasm+ Minimap + Racon 4,673,069 5 9223 97.10 72,646 291,918
20 | DeepNano + — + Canu + BWA-MEM + Racon 7,429,290 106  96.46 99.24 27,811 102,682
21| DeepNano + — + Canu + Minimap + Racon 7,404,454 106  96.03 99.21 34,023 110,640
22| DeepNano + Minimap + Miniasm+ BWA-MEM + Racon 4,566,253 1 96.76 99.86 25,791 125,386
23| DeepNano + Minimap + Miniasm+ Minimap + Racon 4,571,810 1 96.90 99.97 24,994 119,519

SAFARI
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Nanopore Genome Assembly Tools (II)

Table 13. Performance analysis results for the full pipeline with a focus on the last two steps.

Step 4: Read Mapper Step S: Polisher

Wall Wall

Clock CPUTime "o |  Clock CPU Time ‘oo

Time (h:m:s) Usage Time (h:m:s) Usage

(h:m:s) (GB) (h:m:s) (GB)
1 | Metrichor + — + Canu + BWA-MEM + Nanopolish 24:43  15:47:21 5.26 5:51:00 191:18:52 13.38
2 |Metrichor + Minimap + Miniasm + BWA-MEM + Nanopolish 12:33 7:50:54 3.75 | 122:52:00 4458:36:10 31.36
3 | Metrichor + GraphMap + Miniasm + BWA-MEM + Nanopolish 12:47 7:57:58 3.60 | 129:46:00 4799:03:51 31.31
4 | Metrichor + — + Canu + BWA-MEM + Racon 24:20  15:43:40 6.60 14:44 9:09:22 8.11
5 |Metrichor + — + Canu + Minimap + Racon 3 1:35 0.26 15:12 9:45:33 14.55
6 | Metrichor + Minimap + Miniasm + BWA-MEM + Racon 12:10 7:48:10 5.19 15:43 9:33:39 9.98
7 |Metrichor + Minimap + Miniasm + Minimap + Racon 3 1:24 0.26 20:28 8:57:40 18.24
8 | Nanonet + — + Canu + BWA-MEM + Racon 9:08 5:53:18 4.84 6:33 4:02:10 4.47
9 |Nanonet + — + Canu + Minimap + Racon 2 54 0.26 6:45 4:17:26 7.93
10 | Nanonet + Minimap + Miniasm + BWA-MEM + Racon 4:40 2:58:02 3.88 7:08 4:19:30 5.35
11 | Nanonet + Minimap + Miniasm + Minimap + Racon 2 46 0.26 7:01 4:18:48 9.53
12 | Scrappie + — + Canu + BWA-MEM + Racon 33:41  21:11:06 8.66 13:32 8:24:44 7.58
13 | Scrappie + — + Canu + Minimap + Racon 3 1:39 0.27 18:45 7:43:17 13.20
14 | Scrappie =+ Minimap + Miniasm + BWA-MEM + Racon 22:41  14:31:00 6.08 14:37 8:53:59 9.50
15 | Scrappie = + Minimap + Miniasm + Minimap + Racon 3 1:27 0.27 15:10 9:02:45 12.72
16 | Nanocall + — + Canu + BWA-MEM + Racon 4:52 3:01:15 3.80 11:07 3:26:52 5.63
17 | Nanocall + — + Canu  + Minimap + Racon 3 1:16 0.22 7:28 2:50:35 3.62
18 | Nanocall + Minimap + Miniasm + BWA-MEM + Racon 16:06  10:27:20 5.06 18:56 11:32:45 11.47
19 | Nanocall + Minimap + Miniasm + Minimap + Racon 4 1:18 0.26 11:49 7:08:59 10.98
20 | DeepNano + — + Canu + BWA-MEM + Racon 17:36  11:30:20 4.43 12:48 7:13:04 8.88
21 | DeepNano + — + Canu + Minimap + Racon 3 1:24 0.28 11:39 6:55:01 3.73
22 | DeepNano + Minimap + Miniasm + BWA-MEM + Racon 8:15 5:22:29 4.11 14:16 8:34:32 10.30
23 | DeepNano + Minimap + Miniasm + Minimap + Racon 3 1:10 0.26 12:29 7:55:32 17.11
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Nanopore Genome Assembly Tools (I1)
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More on Nanopore Sequencing & Tools

Nanopore sequencing technology and tools for genome assembly:
computational analysis of the current state, bottlenecks and
future directions

Damla Senol Cali ™, Jeremie S Kim, Saugata Ghose, Can Alkan, Onur Mutlu

Briefings in Bioinformatics, bby017, https://doi.org/10.1093/bib/bby017 E -
Published: 02 April2018 Article history v

] EE%E

BiB arXiv

Senol Cali+, "Nanopore Sequencing Technology and Tools for Genome
Assembly: Computational Analysis of the Current State, Bottlenecks
and Future Directions,” Briefings in Bioinformatics, 2018.

[Preliminary arxiv.org version]
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Recall Our Dream (from 2007)

= An embedded device that can perform comprehensive
genome analysis in real time (within a minute)

= Still a long ways to go
o Energy efficiency
a Performance (latency)
o Security
o Huge memory bottleneck
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Future of Genome Sequencing & Analysis

MinIlON from ONT

SmidglON from ONT
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Why Do We Care? An Example from 2020

200 Oxford Nanopore sequencers have left UK for China, to support
rapid, near-sample coronavirus sequencing for outbreak surveillance

Fri 31st January 2020

Following extensive support of, and collaboration with, public health professionals in China, Oxford Nanopore has shipped an additional
200 MinION sequencers and related consumables to China. These will be used to support the ongoing surveillance of the current
coronavirus outbreak, adding to a large number of the devices already installed in the country.

Each MinlON sequencer is approximately the size of a stapler, and
can provide rapid sequence information about the coronavirus.

700Kg of Oxford Nanopore sequencers and consumables are on
their way for use by Chinese scientists in understanding the
current coronavirus outbreak.
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https://nanoporetech.com/about-us/news/200-oxford-nanopore-sequencers-have-left-uk-china-support-rapid-near-sample

Sequencing of COVID-19

Whole genome sequencing (WGS) and sequence
data analysis are important

o To detect the virus from a human sample such as saliva,
Bronchoalveolar fluid etc.

o To understand the sources and modes of transmission of the virus

o To discover the genomic characteristics of the virus, and compare
with better-known viruses (e.g., 02-03 SARS epidemic)

o To design and evaluate the diagnostic tests and deep-dive studies

Two key areas of COVID-19 genomic research

o To sequence the genome of the virus itself, COVID-19, in order to
track the mutations in the virus.

o To explore the genes of infected patients. This analysis can be used
to understand why some people get more severe symptoms than
others, as well as, help with the development of new treatments in
the future.
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COVID-19 Nanopore Sequencing (1)

SARS-CoV-2 Whole genome sequencing

RT Step ~1 hr

PCR ~ 2.30 hr

Add Barcodes ~1hr ; h r
Add Adapter ~30m

Sequence ~1 hr

Analyse ~1hr RNA to

answer

Of which ~1 hr
sequencing time

From ONT (https://nanoporetech.com/covid-19/overview)

SAFARI


https://nanoporetech.com/covid-19/overview

COVID-19 Nanopore Sequencing (11)

How are scientists using nanopore sequencing NANOPORE
to research COVID-19?

> + SARS-CoV-2 positive samples
Samples

are collected ) SARS-CoV-2 negative samples:
used as negative controls

How can this be used? What are the results? How?
Genomic epidemiology: analyse variants From RNA to full Targeted amplification of Targeted SARS-CoV-2 +
& mutation rate, track spread of virus, SARS-CoV-2 consensus  SARS-CoV-2 genome + multiplexed, nanopore sequencing B «————=
identify clusters of transmission sequence in ~7 hours rapid nanopore sequencing

—

How? What are the results? How can this be used?
& Metagenomic 1x RNA metagenomic RNA: data for RNA viruses (including Characterise co-infecting bacteria
. sequencing run SARS-CoV-2) + microbial transcripts & viruses, identify any correlation
nanopore sequencing 1 x DNA metagenomic DNA: data for bacteria + DNA viruses of risk factors, research potential
sequencing run future treatment implications

SARS-CoV-2 Direct RNA whole Immune repertoire: assess Whole human genome
genome sequencing: assess response of the immune system to sequencing: investigate what

viral genome in its native RNA SARS-CoV-2 infection by might cause different responses What's next?
form and the effect of base sequencing of full-length immune to the virus in different people
modifications cell receptor genes and transcripts based on their genome

Find out more at nanoporetech.com/covid19 MINION™ m=xm GridION™ ’ PromethION™ Ik

Oxford Nanopore Technologies, the Wheel icon, GridION, PromethlON and MinlON are registered trademarks of Oxford Nanopore Technologies in various countries. © 2020 Oxford Nanopore Technologies. All rights reserved. Oxford Nanopore Technologies' products are currently for research use only. IG_1061(EN)_V1_03April2020

From ONT (https://nanoporetech.com/covid-19/overview)
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Future of Genome Sequencing & Analysis

MinIlON from ONT

SmidglON from ONT
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Agenda

The Problem: DNA Read Mapping
o State-of-the-art Read Mapper Design

Algorithmic Acceleration
o Exploiting Structure of the Genome
o Exploiting SIMD Instructions

Hardware Acceleration
o Specialized Architectures
o Processing in Memory

Future Opportunities: New Sequencing Technologies
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Conclusion

= System design for bioinformatics is a critical problem
o It has large scientific, medical, societal, personal implications

= This talk is about accelerating a key step in bioinformatics:
genome sequence analysis

o In particular, read mapping

= We covered various recent ideas to accelerate read mapping
o My personal journey since September 2006

= Many future opportunities exist
o Especially with new sequencing technologies
o Especially with new applications and use cases
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Accelerating Genome Analysis: Overview

= Mohammed Alser, Zulal Bingol, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can
Alkan, and Onur Mutlu,
"Accelerating Genome Analysis: A Primer on an Ongoing Journey"
IEEE Micro (TEEE MICRO), Vol. 40, No. 5, pages 65-75, September/October 2020.

[Slides (pptx)(pdf)]
[Talk Video (1 hour 2 minutes)]

Accelerating Genome
Analysis: A Primer on
an Ongoing Journey

Mohammed Alser Saugata Ghose

ETH Zurich University of lllinois at Urbana-Champaign and
Zillal Bingl Carnegie Mellon University

Bilkent University Can Alkan

Damla Senol Cali Bilkent University

Carnegie Mellon University Onur Mutlu

Jeremie Ki ETH Zurich, Carnegie Mellon University, and

Bilkent University

ETH Zurich and Carnegie Mellon University 203


https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_ieeemicro20.pdf
http://www.computer.org/micro/
https://people.inf.ethz.ch/omutlu/pub/onur-AcceleratingGenomeAnalysis-AACBB-Keynote-Feb-16-2019-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-AcceleratingGenomeAnalysis-AACBB-Keynote-Feb-16-2019-FINAL.pdf
https://www.youtube.com/watch?v=hPnSmfwu2-A

PIM Review and Open Problems

A Modern Primer on Processing in Memory

Onur Mutlu®?, Saugata Ghose®™°, Juan Gémez-Luna?, Rachata Ausavarungnirun®

SAFARI Research Group

ETH Ziirich
bCarnegie Mellon University
¢University of Illinois at Urbana-Champaign
4King Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,

"A Modern Primer on Processing in Memory"

Invited Book Chapter in Emerqging Computing: From Devices to Systems -
Looking Beyond Moore and Von Neumann, Springer, to be published in 2021.

https://arxiv.or df/1903.03988.pdf 204


https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://people.inf.ethz.ch/omutlu/projects.htm
https://arxiv.org/pdf/1903.03988.pdf

PIM Review and Open Problems (1I)

A Workload and Programming Ease Driven Perspective of Processing-in-Memory
Saugata Ghose’  Amirali Boroumand®  Jeremie S. Kim™  Juan Gémez-Luna®  Onur Mutlu®'

"Carnegie Mellon University SETH Ziirich

Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu,
"Processing-in-Memory: A Workload-Driven Perspective"

Invited Article in IBM Journal of Research & Development, Special Issue on
Hardware for Artificial Intelligence, to appear in November 2019,

[Preliminary arXiv version]

https://arxiv.or df/1907.12947.pdf 205


https://arxiv.org/pdf/1907.12947.pdf
https://www.research.ibm.com/journal/
https://arxiv.org/pdf/1907.12947.pdf
https://arxiv.org/pdf/1907.12947.pdf

Motre on Memory-Centric System Design

Onur Mutlu,
"Memory-Centric Computing Systems"”

Invited Tutorial at 66th International Electron Devices
Meeting (TEDM), Virtual, 12 December 2020.

Slides (pptx) (pdf)]

Executive Summary Slides (pptx) (pdf)]

[ Tutorial Video (1 hour 51 minutes)]

Executive Summary Video (2 minutes)]
Abstract and Bio]

Related Keynote Paper from VLSI-DAT 2020]
Related Review Paper on Processing in Memory]

https://www.youtube.com/watch?v=H3sEaINPBOE

https://www.youtube.com/onurmutlulectures
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https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://ieee-iedm.org/program/tutorials/
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-ExecutiveSummary-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-ExecutiveSummary-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://www.youtube.com/watch?v=H3sEaINPBOE
https://www.youtube.com/watch?v=1S9P5-i4EuI
https://ieee-iedm.org/wp-content/uploads/2020/11/Mutlu.pdf
https://people.inf.ethz.ch/omutlu/pub/intelligent-architectures-for-intelligent-machines_keynote-paper_VLSI20.pdf
https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://www.youtube.com/watch?v=H3sEaINPBOE
https://www.youtube.com/onurmutlulectures

Detailed Lectures on Genome Analysis

Computer Architecture, Fall 2020, Lecture 3a
o Introduction to Genome Sequence Analysis (ETH Zirich, Fall 2020)

o https://www.youtube.com/watch?v=CrRb32v7S]c&list=PL50Q2s0XY2Zi9xidyIgBxUz7
XRPS-wisBN&index=5

Computer Architecture, Fall 2020, Lecture 8
o Intelligent Genome Analysis (ETH Zlrich, Fall 2020)

o https://www.youtube.com/watch?v=ygmQpdDTL70&list=PL50Q2s0XY2Zi9xidyIgBxU
Z7XRPS-wisBN&index=14

Computer Architecture, Fall 2020, Lecture 9a

o GenASM: Approx. String Matching Accelerator (ETH Zirich, Fall 2020)

o https://www.youtube.com/watch?v=XolLpzmN-
Pas&list=PL502s0XY2Zi9xidyIlgBxUz7xRPS-wisBN&index=15

Accelerating Genomics Project Course, Fall 2020, Lecture 1

o Accelerating Genomics (ETH Zurich, Fall 2020)

o https://www.youtube.com/watch?v=rgjl8ZyLsAg&list=PL50Q2s0XY2Zi9E2bBVAgCqgL
gwiDRODTyId
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https://www.youtube.com/watch?v=ygmQpdDTL7o&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=14
https://www.youtube.com/watch?v=gR7XR-Eepcg&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=10
https://www.youtube.com/watch?v=rgjl8ZyLsAg&list=PL5Q2soXY2Zi9E2bBVAgCqLgwiDRQDTyId
https://www.youtube.com/onurmutlulectures
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Dear SAFARI friends,

Happy New Year! We are excited to share our group highlights with you in this second edition 213
of the SAFARI newsletter (You can find the first edition from April 2020 here). 2020 has
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Accelerating Genome Analysis

A Primer on an Ongoing Journey

Onur Mutlu
omutlu@gmail.com
https://people.inf.ethz.ch/omutlu
26 January 2021
Technion Invited Lecture

SAFARI ETHZzurich CarnegieMellon
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Backup Slides for Further Info




Referenced Papers and Talks

= All are available at

https:/ /people.inf.ethz.ch/omutlu/projects.htm

http://scholar.google.com/citations?user=7XyGUGKAAAAI&hl=en

https:/ /www.youtube.com/onurmutlulectures
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Research & Teaching: Some Overview Talks
https: //www.youtube.com/onurmutlulectures

= Future Computing Architectures
o https://www.youtube.com/watch?v=kgiZISOcGFM&list=PL5Q2s0XY2Zi8D 5MGV6EnXEJHNV2YFBJI&index=1

= Enabling In-Memory Computation

o https://www.youtube.com/watch?v=njX 14584Jw&list=PL50Q2s0XY2Zi8D S5MGV6EnXEJHNV2YFBJI&index=16

= Accelerating Genome Analysis
o https://www.youtube.com/watch?v=hPnSmfwu2-A&list=PL50Q2s0XY2Zi8D 5MGV6EnXEJHNV2YFBJI&index=9

= Rethinking Memory System Design

o https://www.youtube.com/watch?v=F7xZLNMIY1E&list=PL5Q2s0XY2Zi8D S5MGV6EnNXEIJHNV2YFBJI&index=3

= Intelligent Architectures for Intelligent Machines
o https://www.youtube.com/watch?v=n8Aj AOWSg8&list=PL5Q2s0XY2Zi8D 5MGV6EnXEJHNV2YFBJI&index=22

= Revisiting RowHammer
o https://www.youtube.com/watch?v=B58YT9hZM4q&list=PL5Q2s0XY2Zi8D 5MGV6EnXEJHNV2YFBJI&index=25
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https://www.youtube.com/onurmutlulectures
https://www.youtube.com/watch?v=kgiZlSOcGFM&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=1
https://www.youtube.com/watch?v=njX_14584Jw&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=16
https://www.youtube.com/watch?v=hPnSmfwu2-A&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=9
https://www.youtube.com/watch?v=F7xZLNMIY1E&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=3
https://www.youtube.com/watch?v=n8Aj_A0WSg8&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=22
https://www.youtube.com/watch?v=B58YT9hZM4g&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=25

An Interview on Research and Education

= Computing Research and Education (@ ISCA 2019)

o https://www.youtube.com/watch?v=8ffSEKZhmvo&list=PL502
soXY2Zi 40P9LdL3cc8G6NIjD2Ydz

= Maurice Wilkes Award Speech (10 minutes)

o https://www.youtube.com/watch?v=tcQ3zZ3JpuA&list=PL50?2
soXY2Zi8D 5MGV6ENXEJHNV2YFBJI&index=15

SAFARI 218


https://www.youtube.com/watch?v=8ffSEKZhmvo&list=PL5Q2soXY2Zi_4oP9LdL3cc8G6NIjD2Ydz
https://www.youtube.com/watch?v=tcQ3zZ3JpuA&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=15

More Thoughts and Suggestions

= Onur Mutly,
"Some Reflections (on DRAM)"
Award Speech for ACM SIGARCH Maurice Wilkes Award, at the ISCA Awards
Ceremony, Phoenix, AZ, USA, 25 June 2019.
[Slides (pptx) (pdf)]
[Video of Award Acceptance Speech (Youtube; 10 minutes) (Youku; 13 minutes)]
[Video of Interview after Award Acceptance (Youtube; 1 hour 6 minutes) (Youku;
1 hour 6 minutes)]
[News Article on "ACM SIGARCH Maurice Wilkes Award goes to Prof. Onur Mutlu"]

=  Onur Mutluy,
"How to Build an Impactful Research Group"
57th Design Automation Conference Early Career Workshop (DAC), Virtual,
19 July 2020.

[Slides (pptx) (pdf)]

SAFARI
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https://inf.ethz.ch/news-and-events/spotlights/2019/06/mutlu-ACM-SIGARCH-award.html
https://people.inf.ethz.ch/omutlu/pub/onur-DAC-EarlyCareerWorkshopPanel-ImpactfulResearch-July-19-2020-withbackup-FINAL.pptx
https://sites.google.com/gapp.nthu.edu.tw/dac-ecw20/
https://people.inf.ethz.ch/omutlu/pub/onur-DAC-EarlyCareerWorkshopPanel-ImpactfulResearch-July-19-2020-withbackup-FINAL.pptx
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Detailed Lectures on PIM (I)

Computer Architecture, Fall 2020, Lecture 6

o Computation in Memory (ETH Zirich, Fall 2020)

o https://www.youtube.com/watch?v=0GcZAGWFEUE&list=PL502s0XY2Zi9xidyIgBxUz
7XRPS-wisBN&index=12

Computer Architecture, Fall 2020, Lecture 7

o Near-Data Processing (ETH Zurich, Fall 2020)

o https://www.youtube.com/watch?v=j2Gliggn10Qw&list=PL50Q2s0XY2Zi9xidylgBxUz7
XRPS-wisBN&index=13

Computer Architecture, Fall 2020, Lecture 11a

o Memory Controllers (ETH Zurich, Fall 2020)
o https://www.youtube.com/watch?v=TeG7730qgiMQ&list=PL50Q2s0XY2Zi9xidyIgBxUz

7XRPS-wisBN&index=20
Computer Architecture, Fall 2020, Lecture 12d

o Real Processing-in-DRAM with UPMEM (ETH Zirich, Fall 2020)

o https://www.youtube.com/watch?v=Sscy1Wrr22 A&list=PL502s0XY2Zi9xidyIgBxUz7
XRPS-wisBN&index=25
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https://www.youtube.com/watch?v=oGcZAGwfEUE&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=12
https://www.youtube.com/watch?v=j2GIigqn1Qw&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=13
https://www.youtube.com/watch?v=gR7XR-Eepcg&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=10
https://www.youtube.com/watch?v=Sscy1Wrr22A&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=25
https://www.youtube.com/onurmutlulectures

Detailed Lectures on PIM (11

Computer Architecture, Fall 2020, Lecture 15

o Emerging Memory Technologies (ETH Zurich, Fall 2020)

o https://www.youtube.com/watch?v=AIE1rD9G YU&list=PL502s0XY2Zi9xidyIgBxUz
7XRPS-wisBN&index=28

Computer Architecture, Fall 2020, Lecture 16a

o Opportunities & Challenges of Emerging Memory Technologies
(ETH Zlrich, Fall 2020)

o https://www.youtube.com/watch?v=pmLszZWGmMMGQO&list=PL502s0XY2Zi9xidyIgBx
Uz7XRPS-wisBN&index=29

Computer Architecture, Fall 2020, Guest Lecture
o In-Memory Computing: Memory Devices & Applications (ETH
Zurich, Fall 2020)

o https://www.youtube.com/watch?v=wNmgOHIEZNk&list=PL502s0XY2Zi9xidyIgBxU
Z7XRPS-wisBN&index=41
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https://www.youtube.com/onurmutlulectures

Genome Analysis

N o machine can read the
entire content of a genome

>CCTCCTCAGTGCCACCCAGCCCACTGGCAGCTCCCAAACAGGCTCTTATTAAAACACCCTGTTCCCTGCCCCTTGGAGTGAGGTGTCAAG
GACCTAAACTAAAAAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTT
CATGTCAAGGACCTAATGTGCTAAACAGCACTTTTTTGACCATTATTTTGGATCTGAAAGAAATCAAGAATAAATGAAGGACTTGATACATTG
GAAGAGGAGAGTCAAGGACCTACAGAAAAAAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAA
ACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTCTGTGTTGCAGGTCTTCTTGCATTTCCCTGTCAAAAGAAAAAGAATTTAAAATTT
AAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTCAGGCCAAGAGTTGCAAAAAAAAAAAAAGAAAAA
GAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTAGCCAGAATGG
TTGTGGGATGGGAGCCTCTGTGGACCGACCAGGTAGCTCTCTTTTCCACACTGTAGTCTCAAAGCTTCTTCATGTGGTTTCTCTGAGTGAAA

AAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTTTTCATGTCAAGGACC
TAATGTAGCTATACTGAACGTTATCTAGGGGAAAGATTGAAGGGGAGCTCTAAGGTCAACACACCACCACTTCCCAGAAAGCTTCTTCA......
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Genome Analysis

>CCT¢
GACC
CATGT
GAAC
ACTA
AAGT,
GAAA

TTGTCZ 2

NO

machine can read the
entire content of a genome

Why?l

CAAG
TCTT
_ATTG
AAAA
ATTT
AAAA
ATGG

LISUSUSEZNGAAA

AAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTG AAAAAAACTAATTTCTAAG CTTTTTCATGTCAAGGACC
TAATGTAGCTATACTGAACGTTATCTAGGGGAAAGATTGAAGGGGAGCTCTAAGGTCAACACACCACCACTTCCCAGAAAGCTTCTTCA......
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Genome Sequencer is a Chopper

4 )

— Genome fj
Analysis b
Sequencing q y
GATK

CCCCCCTATATATACGTACTAGTACGT m

ACGACTTTAGTACGTACGT
TATATATACGTACTAGTACGT E

1x10'2bases’

ACGTACGCCCCTACGTA
TATATATACGTACTAGTACGT .
ACGACTTTAGTACGTACGT 44 hours
TATATATACGTACTAAAGTACGT
TATATATACGTACTAGTACGT <

TATATATACGTACTAGTACGT

ACGTTTTTAAAACGTA
6 <1000 $
ACGACGGGGAGTACGTACGT

* NovaSeq 6000
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High- Throughput Sequencers

Oxford
Nanopore
PromethION |

Pacific
Biosciences
Sequel Il

_———
| Oxford Nanopore MinlON
Oxford
Nanopore
I

SmidgION
lllumina NovaSeq 6000

Pacific Biosciences RS Il
.. and more! All produce data W|th dlfferent properties.
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Oxford

Oxtford Nanopore Sequencers {JNANOPORE

MinlON Mk1B MinlON Mk1C GridlON Mk1 PromethlON 24/48

MinION MinION . PromethION PromethION
Mk1B Mkic  GridION Mki 24 48

Read length

Yield per flow cell

Number of flpw 24 48
cells per device

Yield per device <250 Gb <5.2Tb <10.5Tb

Starting price $49,995 $195,455 $327,455

SAFARI https://nanoporetech.com/products/comparison 226
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[llumina Sequencers

llumina

)
e - T — TR

n
| Sm—
=

iSeq 100 MiniSeq MiSeq NextSeq 550 NextSeq 2000 NovaSeq 6000
Run time 9.5-19 hrs 4-24 hrs 4-55 hrs 12-30 hrs 24-48 hrs 13-44 hrs
Max. reads 4 million | 25 million | 25 million | 400 million | 1 billion | 20 billion
per run
Max.read |, 150pbp | 2x150bp | 2x300bp | 2x 150 bp | 2 x 150 bp | 2 x 250
length
Max. output 1.2 Gb 7.5 Gb 15 Gb 120 Gb 300 Gb 6000 Gb
Estimated
price $19,900 $49,500 $128,000 $275,000 $335,000 $985,000

227
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How Does Illumina Machine Work?

Optical o
[

Sgnsor .
& :

Glass flow
Il surfac
H\ ,H
_N N—H------Q _N Q---eee H—N
/
/N /o\N ------ H—N \; %N‘Z/_g(N—H ------- N G\
‘11« N=/ N N >—|\i’r
g M H,N—H ------- o
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How Does Illumina Machine Work?

A G
A A c C
A GA CAr Cc - g
AC p A C cA AG cT G T
T
cGc ©CGGC T Gt T A A
GTGGTTGGATTACC
Optical T L
cG G Gg -
Sensor G pd GT .AG gA C =
r ¥ JTc

©

Billions of Short Reads
"ATATATACGTACTAGTACGT

TTTAGTACGTACGT
ATACGTACTAGTACGT

CGCCCCTACGTA

ACGTACTAGTACGT

TTAGTACGTACGT

Glass flow
cell surface

(6)
(1)
(A
C
A

TACGTACTAAAGTACGT
H A A\TACGTACTAGTACGT
NN /“Q_f """" " TTTAAAACGTA
/€ ‘N—H------- e\ ~ CGTACTAGTACGT
<O H—N%\ 2 Q) ”ﬁN GGGAGTACGTACGT *
— e
o FOR DNA fragment = Read
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How Does Illumina Machine Work?

A AAg

A GaA CAr c © ¢
AcAAccAAGCTg$T
CGCCGGCCTGTTAA

6T STTG gATT A 2 ¢

@ TGc TAAT gC Ap Cc ¢ ¢

- ACr~ ACpAD GCe g G 2

Check Illumina virtual tour:

https://emea.illumina.com/systems/sequencing-platforms/iseq/tour.html

"TTTAAAACGTA

CGTACTAGTACGT

. 'GGGAGTACGTACGT
i DNA fragment = Read
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How Does Nanopore Machine Work?

graphene

nanopore \ { A
+
E—

kXX X XX XXX XX XXX XA
|

= Nanopore is a hano-scale hole (<20nm).

= In nanopore sequencers, an ionic current passes through the nanopores

= When the DNA strand passes through the nanopore, the sequencer
measures the the change in current

= This change is used to identify the bases in the strand with the help of
different electrochemical structures of the different bases

231
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How Does Nanopore Machine Work?

graphene
nanopore

Check Nanopore virtual tour:

https://nanoporetech.com/resource-centre/minion-video

measures the the chaﬁge in current
This change is used to identify the bases in the strand with the help of
different electrochemical structures of the different bases

232
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Common Disadvantages!

Regardless the sequencing machine,

reads still lack information about their order and location

(which part of genome they are originated from)

Billions of Short Reads
ATATATACGTACTAGTACG

AGTACGTACG
________ L ATACGTACTAGTACG

ACGTACTAGTACG

AGTACGTACG
ACGTACTAAAGTACG

[ TACGTACTAGTACG
AAAACGTA

GTACTAGTACG

GGGAGTACGTACG
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Solving the Puzzle

Y
Reference / * .

of

genome / o .
Reads :

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/
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HTS Sequencing Output

Small pieces of a puzzle Large pieces of a puzzle
short reads (Illumina) long reads (ONT & PacBio)

.
r‘l

A

Which sequencing technology is the best?

1 100-300 bp 1 500-2M bp
U low error rate (~0.1%) U high error rate (~15%)

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/
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HiF1 Reads (PacBio)

o

100%
But still very
expensive!
o
o
>
O
<
80%
0 Read Length (kb) 50

Wenger+, "Accurate circular consensus long-read sequencing improves variant
detection and assembly of a human genome", Nature Biotechnology, 2019

https://labs.wsu.edu/genomicscore/illumina-sequencing/ 236
SAFARI https://pacbio.gs.washington.edu/
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https://pacbio.gs.washington.edu/

How Long 1s DNA?
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Cracking the 15 Human Genome Sequence

= 1990-2003: The Human Genome Project (HGP) provides a
complete and accurate sequence of all DNA base pairs that make
up the human genome and finds 20,000 to 25,000 human genes.

~ EheNew Hork Times =

VO..”‘JJ Copytiin © 390 e Mrw Yerd Thoms
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Obtaining the Human Reference Genome

GRCh38.p13

Description: Genome Reference Consortium Human Build 38
patch release 13 (GRCh38.p13)

Organism name: Homo sapiens (human)

Date: 2019/02/28

3,099,706,404 bases

Compressed .fna file (964.9 MB)
https://www.ncbi.nlm.nih.gov/assembly/GCF 000001405.39

>NC_000001.11 Homo sapiens chromosome 1, GRCh38.p13 Primary Assembly

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
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https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606&lvl=3&lin=f&keep=1&srchmode=1&unlock
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39

Challenges in Read Mapping

= Need to find many mappings of each read
= Need to tolerate variances/sequencing errors in each read

= Need to map each read very fast (i.e., performance is
important, life critical in some cases)

= Need to map reads to both forward and reverse strands
—)—

_(—

SAFAR' https://wwwbioinformaticsalgorithms.org/bioinformatics-chapter-1 157 240



Revisiting the Puzzle

http ww.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/

SAFARI 241


https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/

Reterence Genome Bias

nature genetics

Letter \ Open Access | Published: 19 November 2018

Assembly of a pan-genome from deep
sequencing of 910 humans of African
descent

Rachel M. Sherman &, Juliet Forman, [...] Steven L. Salzberg

Nature Genetics 51, 30-35(2019) | Cite this article

“African pan-genome contains ~10% more DNA
bases than the current human reference genome”

SAFARI Sherman+, “Assembly of a pan-genome from deep sequencing of 910 humansg.of
African descent” Nature genetics, 2019.



https://www.nature.com/articles/s41588-018-0273-y

Time to Change the Reference Genome

I Genome Biology '

Home About Articles Submission Guidelines

Opinion | Open Access ] Published: 09 August 2019
Is it time to change the reference genome?

Sara Ballouz, Alexander Dobin & Jesse A. Gillis

Genome Biology 20, Article number: 159 (2019) | Cite this article

12k Accesses | 11 Citations | 45 Altmetric | Metrics

“Switching to a consensus reference would offer important
advantages over the continued use of the current reference with

few disadvantages”
SAFAR] Ballouz+, "Is it time to change the reference genome?", Genome Biology, 201943



https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1774-4

Bottlenecked in Read Mapping!!

Human
genome

32 CPU hours
on a 48-core processor

Human whole
genomes
at 30x coverage

in about 2 days

Illumina NovaSeq 6000 N ‘

Read Mapping = Others

71%

SAFARI Goyal+, "Ultra-fast next generation human genome sequencing data processing using DRAGENTM bio-1244
processor for precision medicine”, Open Journal of Genetics, 2017.



https://www.scirp.org/journal/paperinformation.aspx?paperid=74603

MAGNET (AACBB 2018, TIR 2017)

Key observation: the use of AND operation to check if a zero
(match) exists in a column introduces filtering inaccuracy.

Key Idea: count the consecutive zeros in each mask and
select the longest in a divide-and-conquer approach.

MAGNET is 17x to 105x more accurate than GateKeeper
and SHD.

GAGAGAGAGATATTTAGTGTTGCAGCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCC
GAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCC

0000000000000000000000001300000000000001111110111100011101101011011111111100010000(11110110100101
000000000000111111111111330011111011131000000000000000000000000000000000000000000011000000000000C
0000000000001000000000101410111001111%1111111101111000111011010110111111111000100030011101101001C
0000000000001011111111113%01110110011¢01101110110001001001111111111111001011001100%01101110111011
000000000001111111111111%01111101111410111011000100100111111111111100101100110001¢10111011101111
000000000010000000001001%11100111111301001000110101010011010111111111111101110011§11110001111011
0000000001011111111111013%10110011000%11111111010110111111001100101110111111110111¢1111010111001C

00000000000000000000000010000000000001000000000000000000000000000000000000000000011000000000000C

AAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAG-CACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCC

Frrerrerrrerrerreerrerrr reerrerrrerr rererrrerr e et er e et e e et e e e e e e e e e e
AAAAAAAAAAAAGAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCC
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MAGNET Walkthrough

Read :
Reference :

Upper Diagonal-4
Upper Diagonal-3
Upper Diagonal-2
Upper Diagonal-1

Main Diagonal :

Lower Diagonal-1
Lower Diagonal-2
Lower Diagonal-3
Lower Diagonal-4

MAGNET bit-vector :

N

ACCEPT iff number of ‘1’ < Threshold

TTTTACTGTTCTCCCTTTGAATACAATATATCTATATTTCCCTCTGGCTACATTTAAAATTTCCCCTTTATCTGTAATAATCAGTAATTACGTTTTAAAA
TTTTACTGTTCTCCCTTTGAAATGACAATATATCTATATTTCCCTCTGGCTACATTTAAAATTTCCCCTTTATCTGTAATAATCAGTAAATTACCGTTTT

\</
---1101111111001111
--01101101010111111
-001111011001011011
0001111101110010011¢

00000000000000000000¢

101100001010001011010011111101101100110110011010101011101111111
110111111111110010011110111111001000100100010011111110110111111¢(
000000000000000000000000000000000000000000000000000000000000000¢
101111111111100100111101111110010001001000100111111101101111110
110000101000101101001111110110110011011001101010101110111111111
101111111110111110111111011111110111111011110111111000010110101¢
110010001010111001110011101101111111111111101010111101101010100
101111111011110111111111101101101111110111110111101111111111111
111000001011101011001111100101001111100111001001111010110111111

00011111011100100110
00111101100101101111¢(
01101101010111111110
11011111110011111011¢

L R O |

00000000000000000000012izf?00000000000000000000000000000000000000000000OOOOOOOOOOOOOOOOQﬁi]gp1000000

Find the longest segment of consecutive zeros

Exclude the errors from the search space

Divide the problem into two subproblems and repeat
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https://arxiv.org/abs/1707.01631

What if we got a new version

of the reference genome?
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Airlift

Key observation: Reference genomes are updated frequently.
Repeating read mapping is a computationally expensive workload.

Key idea: Update the mapping results of only affected reads
depending on how a region in the old reference relates to another
region in the new reference.

Key results:

a reduces number of reads that needs to be re-mapped to new
reference by up to 99%

o reduces overall runtime to re-map reads by 6.94x, 208x, and
16.4x for large (human), medium (C. elegans), and small
(yeast) reference genomes
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Clustering the Reference Genome Regions

Constant Region Updated Region
Retired Region New Region

Old Reference I

[t e

New Reference ]

Fig. 2. Reference Genome Regions.
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More Details on AirLift

Search...

Help | Advang

arXiv.org > g-bio > arXiv:1912.08735

Quantitative Biology > Genomics

[Submitted on 18 Dec 2019]

AirLift: A Fast and Comprehensive Technique for
Translating Alignments between Reference Genomes

Jeremie S. Kim, Can Firtina, Damla Senol Cali, Mohammed Alser, Nastaran Hajinazar,
Can Alkan, Onur Mutlu

GitHub: https://github.com/CMU-SAFARI/AirLift

Kim+, "AirLift: A Fast and Comprehensive Technique for Translating Alignments
between Reference Genomes", arXiv, 2020
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https://github.com/CMU-SAFARI/AirLift
https://arxiv.org/abs/1912.08735

Nanopore Sequencing

= Nanopore is a hano-scale hole

= In nanopore sequencers, an ionic current passes through the nanopores

= When the DNA strand passes through the nanopore, the sequencer
measures the the change in current

= This change is used to identify the bases in the strand with the help of
different electrochemical structures of the different bases
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The Etfect of Pre-Alignment (Theoretically)

Processing time (sec) for 1 million mappings

14,000

12,000

10,000

8,000

6,000

4,000

2,000

- e=mTotal processing time without pre-alignment (sec
Filter+ Tot Ip i gt' ith i li ; t( () )
. e==Total processing time with pre-alignment (sec
- Alignment L . .
\ w=m [deal processing time for 90% pre-alignment rejection percentage

\
\
\ assuming alignment processes 100 Mappings/sec
Vi
i ‘

Pre-alignment saves more than

40% to 80%

of the total processing time

2X 4x 8x 16x 32X 64x 128x 256X
Pre-alignment rejected mapping percentage and speed compared to alignment step
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