
Onur Mutlu
omutlu@gmail.com

https://people.inf.ethz.ch/omutlu
27 September 2023

VMware

Hermes & Sibyl:
ML-Driven Memory & Storage Management

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

Data-Driven (Self-Optimizing)
Architectures

2

System Architecture Design Today

n Human-driven
q Humans design the policies (how to do things)

n Many (too) simple, short-sighted policies all over the system

n No automatic data-driven policy learning

n (Almost) no learning: cannot take lessons from past actions

3

Can we design
fundamentally intelligent architectures?

An Intelligent Architecture

n Data-driven
q Machine learns the “best” policies (how to do things)

n Sophisticated, workload-driven, changing, far-sighted policies

n Automatic data-driven policy learning

n All controllers are intelligent data-driven agents

4

We need to rethink design
(of all controllers)

Self-Optimizing Memory Controllers
n Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,

"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.
Selected to the ISCA-50 25-Year Retrospective Issue covering 1996-
2020 in 2023 (Retrospective (pdf) Full Issue).

5

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/
https://sites.coecis.cornell.edu/isca50retrospective/files/2023/06/Retrospective__RL.pdf
https://sites.coecis.cornell.edu/isca50retrospective/

Self-Optimizing Memory Prefetchers

6

Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu,
"Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, October 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (20 minutes)]
[Lightning Talk Video (1.5 minutes)]
[Pythia Source Code (Officially Artifact Evaluated with All Badges)]
[arXiv version]
Officially artifact evaluated as available, reusable and reproducible.

https://arxiv.org/pdf/2109.12021.pdf

https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=7
https://www.youtube.com/watch?v=kzL22FTz0vc&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=2
https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/abs/2109.12021
https://arxiv.org/pdf/2109.12021.pdf

Learning-Based Off-Chip Load Predictors
n Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk Olgun,

Mohammad Sadrosadati, and Onur Mutlu,
"Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load
Prediction"
Proceedings of the 55th International Symposium on Microarchitecture (MICRO), Chicago, IL, USA,
October 2022.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Talk Video (12 minutes)]
[Lecture Video (25 minutes)]
[arXiv version]
[Source Code (Officially Artifact Evaluated with All Badges)]
Officially artifact evaluated as available, reusable and reproducible.
Best paper award at MICRO 2022.

7https://arxiv.org/pdf/2209.00188.pdf

https://arxiv.org/pdf/2209.00188.pdf
https://arxiv.org/pdf/2209.00188.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pdf
https://www.youtube.com/watch?v=afGc1pWr-_Y
https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s
https://arxiv.org/abs/2209.00188
https://github.com/CMU-SAFARI/Hermes
https://arxiv.org/pdf/2209.00188.pdf

Self-Optimizing Hybrid SSD Controllers
Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar,
David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu,
"Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage
Systems Using Online Reinforcement Learning"
Proceedings of the 49th International Symposium on Computer
Architecture (ISCA), New York, June 2022.
[Slides (pptx) (pdf)]
[arXiv version]
[Sibyl Source Code]
[Talk Video (16 minutes)]

8https://arxiv.org/pdf/2205.07394.pdf

https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
http://iscaconf.org/isca2022/
http://iscaconf.org/isca2022/
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pdf
https://arxiv.org/pdf/2205.07394.pdf
https://github.com/CMU-SAFARI/Sibyl
https://www.youtube.com/watch?v=5-WedkiB000
https://arxiv.org/pdf/2205.07394.pdf

Hermes: Perceptron-Based
Off-Chip Load Prediction

9

Learning-Based Off-Chip Load Predictors
n Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk Olgun,

Mohammad Sadrosadati, and Onur Mutlu,
"Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load
Prediction"
Proceedings of the 55th International Symposium on Microarchitecture (MICRO), Chicago, IL, USA,
October 2022.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Talk Video (12 minutes)]
[Lecture Video (25 minutes)]
[arXiv version]
[Source Code (Officially Artifact Evaluated with All Badges)]
Officially artifact evaluated as available, reusable and reproducible.
Best paper award at MICRO 2022.

10https://arxiv.org/pdf/2209.00188.pdf

https://arxiv.org/pdf/2209.00188.pdf
https://arxiv.org/pdf/2209.00188.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pdf
https://www.youtube.com/watch?v=afGc1pWr-_Y
https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s
https://arxiv.org/abs/2209.00188
https://github.com/CMU-SAFARI/Hermes
https://arxiv.org/pdf/2209.00188.pdf

Hermes Talk Video

https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s

https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s

Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran,
David Novo, Ataberk Olgun, Mohammad Sadrosadati, Onur Mutlu

Accelerating Long-Latency Load Requests
via Perceptron-Based Off-Chip Load Prediction

https://github.com/CMU-SAFARI/Hermes

https://arxiv.org/pdf/2209.00188.pdf

https://github.com/CMU-SAFARI/Hermes
https://arxiv.org/pdf/2209.00188.pdf

13

The Key Problem

Long-latency off-chip load requests

Often stall processor by
blocking instruction retirement from

Reorder Buffer (ROB)

Limit performance

14

Traditional Solutions

Employ sophisticated prefetchers

Increase size of on-chip caches

15

Key Observation 1

50%
successfully prefetched

off-chip loads without any prefetcher

50%
still go off-chip even with

a state-of-the-art prefetcher

70% of the off-chip loads
block the ROB

Many loads still go off-chip

16

40% of the stalls can be eliminated by removing
on-chip cache access latency from critical path

Key Observation 2

On-chip cache access latency
significantly contributes to off-chip load latency

L1 L2 LLC Main Memory

Saved cycles

50% still go off-chip

L1 L2 LLC Main Memory

17

Caches are Getting Bigger and Slower…

Hardavellas+, “Database Servers on Chip Multiprocessors: Limitations and Opportunities”, CIDR, 2007

O
n-

ch
ip

 C
ac

he
 S

ize
 (K

B)

0

512

1024

1536

2048

2560

Sk
yla

ke
 (2

015)

Su
nny C

ove
 (2

019)

W
illo

w Cove
 (2

020)

Golden Cove
 P-co

re (2
021)

Rap
tor L

ake
 P-co

re (2
022)

L2
 S

ize
 (K

B)

11

12

13

14

15

16

17

Sk
yla

ke
 (2

015)

Su
nny C

ove
 (2

019)

W
illo

w Cove
 (2

020)

Golden Cove
 P-co

re (2
021)

Rap
tor L

ake
 P-co

re (2
022)

L2
 L

at
en

cy
 (p

ro
ce

ss
or

 c
yc

le
s)

18

Improve processor performance
by removing on-chip cache access latency

from the critical path of off-chip loads

Our Goal

Predicts which load requests
are likely to go off-chip

Starts fetching data directly from main memory
while concurrently accessing the cache hierarchy

20

Key Contribution

Hermes employs the first
perceptron-based off-chip load predictor

That predicts which loads are likely to go off-chip

By learning from
multiple program context information

21

Hermes Overview

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

L1 L2 LLC Main Memory

Baseline Processor is stalled

Latency tolerance limit of ROB

22

Hermes Overview

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

L1 L2 LLC Main Memory

POPET

L1 L2 LLC

Main Memory

Baseline

Hermes

Saved stall cycles

Processor is stalled

Latency tolerance limit of ROB

Predict

Issue a
Hermes
request

Wait

Train

Perceptron-based
off-chip load predictor

23

Designing the Off-Chip Load Predictor

Tracking cache contents

Learning from program behavior

Large metadata
§ Metadata size increases with cache hierarchy size

May need to track all cache operations
§ Gets complex depending on the cache hierarchy

configuration (e.g., inclusivity, bypassing,…)

Correlate different program features with off-chip loads

MissMap [Loh+, MICRO’11] for the DRAM cache,
D2D [Sembrant+, ISCA’14], D2M [Sembrant+, HPCA’17], LP [Jalili+, HPCA’22] for the cache hierarchy

History-based prediction
HMP [Yoaz+, ISCA’99] for the L1-D cache

Using branch-predictor-like hybrid predictor:
Global, Gshare, and GSkew

Low storage overhead Low design complexity

POPET provides
both higher accuracy and higher performance
than predictors inspired from these previous works

24

POPET: Perceptron-Based Off-Chip Predictor

• Multi-feature hashed perceptron model[1]
- Each feature has its own weight table
• Stores correlation between feature value and off-chip prediction

Feature1 #
Weight
Table1

hash

index

Feature2 #
Weight
Table2

hash

index

FeatureN #
Weight
TableN

hash

index

!

weight1

weight2

weightn

ActivationSum
weights

Predict to
go off-chip

.....

...

(e.g., PC + offset)

Stage 1 Stage 2 Stage 3

≥ τact≥ τact

[1] D. Tarjan and K. Skadron, “Merging Path and Gshare Indexing in Perceptron Branch Prediction,” TACO, 2005

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

POPET
Predict

Issue
Hermes
request

Wait

Train

25

Predicting using POPET

• Uses simple table lookups, addition, and comparison

Feature1 #
Weight
Table1

hash

index

Feature2 #
Weight
Table2

hash

index

FeatureN #
Weight
TableN

hash

index

!

weight1

weight2

weightn

ActivationSum
weights

Predict to
go off-chip

.....

...

(e.g., PC + offset)

Stage 1 Stage 2 Stage 3

≥ τact≥ τact

0x7ffe0+12

42 -4

12

3 3 >= -2

-5

Predict that
the load
would go
off-chip

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

POPET
Predict

Issue
Hermes
request

Wait

Train

Ex
tr

ac
t f

ea
tu

re
s f

ro
m

 th
e

lo
ad

re

qu
es

t

26

Training POPET

• Uses simple increment or decrement of feature weights

Feature1 #
Weight
Table1

hash

index

Feature2 #
Weight
Table2

hash

index

FeatureN #
Weight
TableN

hash

index

!

weight1

weight2

weightn

ActivationSum
weights

Predict to
go off-chip

.....

...

(e.g., PC + offset)

Stage 1 Stage 2 Stage 3

≥ τact≥ τact

0x7ffe0+12

42 -4

12

3 3 >= -2

-5

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

POPET
Predict

Issue
Hermes
request

Wait

Train

Predict that
the load
would go
off-chip

Shouldn’t be activated

Cumulative weight < 𝜏act

-1

-1

-1

27

Features Used in Hermes

Evaluation

29

Simulation Methodology
• ChampSim trace driven simulator

• 110 single-core memory-intensive traces
- SPEC CPU 2006 and 2017
- PARSEC 2.1
- Ligra
- Real-world applications

• 220 eight-core memory-intensive trace mixes

Off-Chip PredictorsLLC Prefetchers

• History-based: HMP [Yoaz+, ISCA’99]

• Tracking-based: Address Tag-
Tracking based Predictor (TTP)

• Ideal Off-chip Predictor

• Pythia [Bera+, MICRO’21]

• Bingo [Bakshalipour+, HPCA’19]

• MLOP [Shakerinava+, 3rd Prefetching Championship’19]

• SPP + Perceptron filter [Bhatia+, ISCA’20]

• SMS [Somogyi+, ISCA’06]

30

Latency Configuration

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

POPET

Issue
Hermes
request

Wait

• Cache round-trip latency
• L1-D: 5 cycles
• L2: 15 cycles
• LLC: 55 cycles

• Hermes request issue latency
(incurred after address translation)

 Depends on
• Interconnect between POPET and MC

0 cycles 24 cycles

6 cycles

31

Single-Core Performance Improvement

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

SPEC06 SPEC17 PARSEC Ligra CVP GEOMEAN

G
eo

m
ea

n
sp

ee
du

p
ov

er
 th

e
N

o-
pr

ef
et

ch
in

g
sy

st
em

Hermes Pythia Pythia + Hermes Pythia + Ideal Hermes

11.5%

20.3%
5.4%

Hermes alone provides nearly
50% performance benefits of Pythia

with only 1/5th storage overhead

Hermes on top of Pythia
outperforms Pythia alone in every workload category
Hermes provides nearly 90% performance benefit of

Ideal Hermes that has an ideal off-chip load predictor

32

Increase in Main Memory Requests

0%

10%

20%

30%

40%

50%

60%

70%

SPEC06 SPEC17 PARSEC Ligra CVP AVG

%
 in

cr
ea

se
 in

 m
ai

n
m

em
or

y
re

qu
es

ts
ov

er
 th

e
N

o-
pr

ef
et

ch
in

g
sy

st
em

Hermes Pythia Pythia + Hermes

5.5%

38.5%
5.9%

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

SPEC06 SPEC17 PARSEC Ligra CVP GEOMEAN

G
eo

m
ea

n
sp

ee
du

p
ov

er
 th

e
N

o-
pr

ef
et

ch
in

g
sy

st
em

Hermes Pythia Pythia + Hermes Pythia + Ideal Hermes

11.5%
20.3% 5.4%

For every 1% performance benefit,
increase in main memory requests

Pythia

Hermes on top of Pythia

Hermes alone

2%

1%

0.5%

Hermes is more bandwidth-efficient
than even an efficient prefetcher like Pythia

33

Performance with Varying Memory Bandwidth

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

200 400 800 1600 3200 6400 12800

G
eo

m
ea

n
sp

ee
du

p
ov

er
 th

e
N

o-
pr

ef
et

ch
in

g
sy

st
em

Main Memory Bandwidth (in MT/s)

~AMD Threadripper 3990x (Zen 2, 64C/4ch, 2020)

~AMD EPYC Rome 7702P (Zen 2, 64C/8ch, 2019)

~Intel Xeon 6258R
(Cascade Lake, 28C/6ch, 2020)

Pythia

Hermes

Pythia+Hermes

In bandwidth-constrained configurations,
Hermes alone outperforms Pythia
Hermes+Pythia outperforms Pythia

across all bandwidth configurations

Baseline

34

1

1.05

1.1

1.15

1.2

1.25

1.3

Pythia Bingo SPP MLOP SMS

G
eo

m
ea

n
sp

ee
du

p
ov

er
 th

e
N

o-
pr

ef
et

ch
in

g
sy

st
em

Prefetcher-only Prefetcher + Hermes

Performance with Varying Baseline Prefetcher

5.4% 6.2%

5.1% 7.6%

7.7%Hermes consistently improves performance
on top of a wide range of baseline prefetchers

35

Overhead of Hermes

4 KB storage overhead

1.5% power overhead*

*On top of an Intel Alder Lake-like performance-core [2] configuration

[2] https://www.anandtech.com/show/16881/a-deep-dive-into-intels-alder-lake-microarchitectures/3

36

More in the Paper
• Performance sensitivity to:

- Cache hierarchy access latency
- Hermes request issue latency
- Activation threshold
- ROB size (in extended version on arXiv)
- LLC size (in extended version on arXiv)

• Accuracy, coverage, and performance analysis against HMP and TTP

• Understanding usefulness of each program feature

• Effect on stall cycle reduction

• Performance analysis on an eight-core system

37

More in the Paper
• Performance sensitivity to:

- Cache hierarchy access latency
- Hermes request issue latency
- Activation threshold
- ROB size (in extended version at arXiv)
- LLC size (in extended version at arXiv)

• Accuracy, coverage, and performance analysis against HMP and TTP

• Understanding usefulness of each program feature

• Effect on stall cycle reduction

• Performance analysis in eight-core system
https://arxiv.org/pdf/2209.00188.pdf

https://arxiv.org/pdf/2209.00188.pdf

To Summarize…

39

Summary

Hermes advocates for off-chip load prediction,
a different form of speculation than

load address prediction employed by prefetchers

Off-chip load prediction can be applied by itself
or combined with load address prediction

to provide performance improvement

40

Summary

Hermes employs the first
perceptron-based off-chip load predictor

High coverage
(74%)

High accuracy
(77%)

Low storage
overhead
(4KB/core)

High performance improvement
over best prior baseline

(5.4%)

High performance
per bandwidth

41

Hermes is Open Sourced

https://github.com/CMU-SAFARI/Hermes

All workload traces

13 prefetchers 9 off-chip predictors

https://github.com/CMU-SAFARI/Hermes

42

Easy To Define Your Own Off-Chip Predictor

• Just extend the OffchipPredBase class

43

Easy To Define Your Own Off-Chip Predictor

• Define your own train() and predict() functions

• Get statistics like accuracy (stat name precision) and
coverage (stat name recall) out of the box

44

Off-Chip Prediction Can Further Enable…

Prioritizing loads that are likely go off-chip
in cache queues and on-chip network routing

Better instruction scheduling
of data-dependent instructions

Other ideas to improve performance and
fairness in multi-core system design...

Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran,
David Novo, Ataberk Olgun, Mohammad Sadrosadati, Onur Mutlu

Accelerating Long-Latency Load Requests
via Perceptron-Based Off-Chip Load Prediction

https://github.com/CMU-SAFARI/Hermes

https://arxiv.org/pdf/2209.00188.pdf

https://github.com/CMU-SAFARI/Hermes
https://arxiv.org/pdf/2209.00188.pdf

46

Hermes Discussion
• FAQs

- What are the selected set of program features?
- Can you provide some intuition on why these

features work?
- What happens in case of a misprediction?
- What’s the performance headroom for off-chip

prediction?

- Do you see a variance of different features in final
prediction accuracy?

• Simulation Methodology
- System parameters
- Evaluated workloads

• More Results
- Percentage of off-chip requests
- Reduction in stall cycles by reducing the

critical path
- Fraction of off-chip load requests
- Accuracy and coverage of POPET
- Effect of different features
- Are all features required?
- 1C performance
- 1C performance line graph
- 1C performance against prior predictors
- Effect on stall cycles
- 8C performance
- Sensitivity:

• Hermes request issue latency
• Cache hierarchy access latency
• Activation threshold
• ROB size
• LLC size

- Power overhead
- Accuracy without prefetcher
- Main memory request overhead with

different prefetchers

Hermes Paper [MICRO 2022]
n Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk Olgun,

Mohammad Sadrosadati, and Onur Mutlu,
"Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load
Prediction"
Proceedings of the 55th International Symposium on Microarchitecture (MICRO), Chicago, IL, USA,
October 2022.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Talk Video (12 minutes)]
[Lecture Video (25 minutes)]
[arXiv version]
[Source Code (Officially Artifact Evaluated with All Badges)]
Officially artifact evaluated as available, reusable and reproducible.
Best paper award at MICRO 2022.

47https://arxiv.org/pdf/2209.00188.pdf

https://arxiv.org/pdf/2209.00188.pdf
https://arxiv.org/pdf/2209.00188.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pdf
https://www.youtube.com/watch?v=afGc1pWr-_Y
https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s
https://arxiv.org/abs/2209.00188
https://github.com/CMU-SAFARI/Hermes
https://arxiv.org/pdf/2209.00188.pdf

Sibyl: Reinforcement Learning based
Data Placement in Hybrid SSDs

48

Self-Optimizing Hybrid SSD Controllers
Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar,
David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu,
"Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage
Systems Using Online Reinforcement Learning"
Proceedings of the 49th International Symposium on Computer
Architecture (ISCA), New York, June 2022.
[Slides (pptx) (pdf)]
[arXiv version]
[Sibyl Source Code]
[Talk Video (16 minutes)]

49https://arxiv.org/pdf/2205.07394.pdf

https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
http://iscaconf.org/isca2022/
http://iscaconf.org/isca2022/
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pdf
https://arxiv.org/pdf/2205.07394.pdf
https://github.com/CMU-SAFARI/Sibyl
https://www.youtube.com/watch?v=5-WedkiB000
https://arxiv.org/pdf/2205.07394.pdf

Sibyl
Adaptive and Extensible Data Placement

in Hybrid Storage Systems
Using Online Reinforcement Learning

Gagandeep Singh, Rakesh Nadig, Jisung Park,
Rahul Bera, Nastaran Hajinazar, David Novo,

Juan Gómez Luna, Sander Stuijk, Henk Corporaal,
Onur Mutlu

5050

Executive Summary
• Background: A hybrid storage system (HSS) uses multiple different storage devices to

provide high and scalable storage capacity at high performance
• Problem: Two key shortcomings of prior data placement policies:

- Lack of adaptivity to:
• Workload changes
• Changes in device types and configurations

- Lack of extensibility to more devices

• Goal: Design a data placement technique that provides:
- Adaptivity, by continuously learning and adapting to the application and underlying device

characteristics
- Easy extensibility to incorporate a wide range of hybrid storage configurations

• Contribution: Sibyl, the first reinforcement learning-based data placement technique in
hybrid storage systems that:
- Provides adaptivity to changing workload demands and underlying device characteristics
- Can easily extend to any number of storage devices
- Provides ease of design and implementation that requires only a small computation overhead

• Key Results: Evaluate on real systems using a wide range of workloads
- Sibyl improves performance by 21.6% compared to the best previous data placement technique in

dual-HSS configuration
- In a tri-HSS configuration, Sibyl outperforms the state-of-the-art-policy policy by 48.2%
- Sibyl achieves 80% of the performance of an oracle policy with storage overhead of only 124.4 KiB

https://github.com/CMU-SAFARI/Sibyl 51

https://github.com/CMU-SAFARI/Sibyl

Talk Outline
Key Shortcomings of Prior Data Placement Techniques

Formulating Data Placement as Reinforcement Learning

Sibyl: Overview

Evaluation of Sibyl and Key Results

Conclusion

52

Storage Management Layer

Hybrid Storage System Basics

WriteRead

Read Write Read Write

Promotion

Eviction

Hybrid Storage System
Fast Device Slow Device

Address Space (Application/File System View)

53

Hybrid Storage System Basics

WriteRead

Read Write Read Write

Promotion

Eviction

Hybrid Storage System

Performance of a hybrid storage system
highly depends on the ability of the

storage management layer

54

Key Shortcomings in Prior Techniques
We observe two key shortcomings that significantly
limit the performance benefits of prior techniques

1. Lack of adaptivity to:
a) Workload changes
b) Changes in device types and configuration

2. Lack of extensibility to more devices

55

Lack of Adaptivity (1/2)
Workload Changes
Prior data placement techniques consider only a few
workload characteristics that are statically tuned

CDE RNN-HSS Oracle

41.1%

56

Lack of Adaptivity (2/2)
Changes in Device Types and Configurations
Do not consider underlying storage device
characteristics (e.g., changes in the level asymmetry in
read/write latencies, garbage collection)

HSS Configuration 1 HSS Configuration 2

Slow-Only CDE RNN-HSS Slow-Only CDE RNN-HSS OracleOracle

57

Lack of Extensibility (1/2)
Rigid techniques that require significant effort to
accommodate more than two devices

Change in storage configuration

Dual-HSS

58

Lack of Extensibility (2/2)
Rigid techniques that require significant effort to
accommodate more than two devices

Change in storage configuration Design a new policy

Tri-HSS

59

Our Goal

A data-placement mechanism
that can provide:

1.Adaptivity, by continuously learning and
adapting to the application and underlying

device characteristics
2.Easy extensibility to incorporate a wide

range of hybrid storage configurations

60

Our Proposal

Sibyl
Formulates data placement in

hybrid storage systems as a
reinforcement learning problem

Sibyl is an oracle that makes accurate prophecies
https://en.wikipedia.org/wiki/Sibyl 61

Talk Outline
Key Shortcomings of Prior Data Placement Techniques

Formulating Data Placement as Reinforcement Learning

Sibyl: Overview

Evaluation of Sibyl and Key Results

Conclusion

62

Basics of Reinforcement Learning (RL)

Agent learns to take an action in a given state
to maximize a numerical reward

Agent

Environment

State (St)State (St) Action (At)Action (At)Reward (Rt+1)Reward (Rt+1)

63

Formulating Data Placement as RL
Agent

Environment

State (St) Action (At)Reward (Rt+1)

Hybrid Storage
System

Sibyl

Features of the
current request

and system

Request latency
(of last served request)

Select storage device to
place the current page

64

What is State?
• Limited number of state features:

- Reduce the implementation overhead
- RL agent is more sensitive to reward

• 6-dimensional vector of state features

• We quantize the state representation into bins to
reduce storage overhead

65

Hybrid Storage
System

Sibyl

Features of
the current
request and
system

Request latency
(of last served
request)

Select storage
device to place
the current page

What is Reward?
• Defines the objective of Sibyl

• We formulate the reward as a function of the
request latency

• Encapsulates three key aspects:
- Internal state of the device (e.g., read/write latencies, the

latency of garbage collection, queuing delays, …)
- Throughput
- Evictions

• More details in the paper
66

Hybrid Storage
System

Sibyl

Features of
the current
request and
system

Request latency
(of last served
request)

Select storage
device to place
the current page

What is Action?
• At every new page request, the

action is to select a storage device

• Action can be easily extended to any number of
storage devices

• Sibyl learns to proactively evict or promote a page

67

Hybrid Storage
System

Sibyl

Features of
the current
request and
system

Request latency
(of last served
request)

Select storage
device to place
the current page

Talk Outline
Key Shortcomings of Prior Data Placement Techniques

Formulating Data Placement as Reinforcement Learning

Sibyl: Overview

Evaluation of Sibyl and Key Results

Conclusion

68

RL Decision
Thread

Sibyl Execution

Storage
Request

(from OS)

RL Training
Thread

Periodic Policy
Weight Update

State, Reward,
and Action

Information

Data
Placement
Decision

Asynchronous
Execution

Sibyl

69

Sibyl Design: Overview

Inference
Network

Max

HSS Collect
Experiences

Experience Buffer
(in host DRAM)

Observation
Vector

Storage
Request

(from OS)

State

State

Action

Reward

RL Decision
Thread

Sibyl Policy

Periodic Weights
update 10

Training
Network

RL Training
ThreadBatchTraining

Dataset
Periodic Policy
Weight Update

70

RL Decision Thread

Inference
Network

Max

HSS Collect
Experiences

Experience Buffer
(in host DRAM)

Observation
Vector

Storage
Request

(from OS)

State

State

Action

Reward

RL Decision
Thread

Sibyl Policy

71

RL Decision Thread

Observation
Vector

Storage
Request

(from OS)

State

State

RL Decision
Thread

72

RL Decision Thread

Inference
Network

Max

HSS

State Action

RL Decision
Thread

Sibyl Policy

73

RL Decision Thread

HSS Collect
Experiences

Observation
Vector

Storage
Request

(from OS)

State

Reward

RL Decision
Thread

74

RL Decision Thread

HSS Collect
Experiences

Experience Buffer
(in host DRAM)

Observation
Vector

Storage
Request

(from OS)

State

Reward

RL Decision
Thread

75

RL Training Thread

Periodic Weights
update 10

RL Training
ThreadBatchTraining

Dataset

Experience Buffer
(in host DRAM)

RL Decision
Thread

Periodic Policy
Weight Update

Training
Network

76

Periodic Weight Transfer

Inference
Network

Max

HSS Collect
Experiences

Experience Buffer
(in host DRAM)

Observation
Vector

Storage
Request

(from OS)

State

State

Action

Reward

RL Decision
Thread

Sibyl Policy

Periodic Weights
update 10

Training
Network

Periodic Policy
Weight Update

RL Training
ThreadBatchTraining

Dataset

77

Talk Outline
Key Shortcomings of Prior Data Placement Techniques

Formulating Data Placement as Reinforcement Learning

Sibyl: Overview

Evaluation of Sibyl and Key Results

Conclusion

78

Evaluation Methodology (1/3)
• Real system with various HSS configurations

- Dual-hybrid and tri-hybrid systems
AMD	Ryzen7	
2700G	CPU

Seagate	HDD	
ST1000DM010

Intel	Optane	
SSD	P4800X

Intel	SSD									
D3-S4510

ADATA	
SU630	SSD	

79

Evaluation Methodology (2/3)
Cost-Oriented HSS Configuration

High-end SSD Low-end HDD

Performance-Oriented HSS Configuration

High-end SSD Middle-end SSD 80

Evaluation Methodology (3/3)
• 18 different workloads from:

- MSR Cambridge and Filebench Suites

• Four state-of-the-art data placement baselines:
- CDE [Matsui+, Proc. IEEE’17]

- HPS [Meswani+, HPCA’15]

- Archivist [Ren+, ICCD’19]

- RNN-HSS [Doudali+, HPDC’19]

Heuristic-based

Learning-based

81

Performance Analysis
Cost-Oriented HSS Configuration

Slow-Only CDE HPS Archivist RNN-HSS Sibyl Oracle

High-end SSD Low-end HDD

82

Performance Analysis

Sibyl consistently outperforms all the baselines
for all the workloads

Cost-Oriented HSS Configuration
Slow-Only CDE HPS Archivist RNN-HSS Sibyl Oracle

High-end SSD Low-end HDD

83

Performance Analysis

RNN-HSS Sibyl OracleSlow-Only CDE HPS Archivist

Performance-Oriented HSS Configuration
High-end SSD Mid-end SSD

84

Performance Analysis

RNN-HSS Sibyl OracleSlow-Only CDE HPS Archivist

Performance-Oriented HSS Configuration

Sibyl provides 21.6% performance improvement by
dynamically adapting its data placement policy

High-end SSD Mid-end SSD

85

Performance Analysis

RNN-HSS Sibyl OracleSlow-Only CDE HPS Archivist

Performance-Oriented HSS Configuration
High-end SSD Mid-end SSD

86

Performance Analysis

RNN-HSS Sibyl OracleSlow-Only CDE HPS Archivist

Performance-Oriented HSS Configuration

Sibyl achieves 80% of the performance
of an oracle policy that has

complete knowledge of future access patterns

High-end SSD Mid-end SSD

87

Performance on Tri-HSS
Extending Sibyl for more devices:

SibylTri-hybridHeuristicTri-hybrid

High-end SSD Low-end HDDMid-end SSD

Extending Sibyl for more devices:
1. Add a new action
2. Add the remaining capacity of the new device as a

state feature

88

Performance on Tri-HSS

SibylTri-hybridHeuristicTri-hybrid

Extending Sibyl for more devices:
1. Add a new action
2. Add the remaining capacity of the new device as a

state feature

High-end SSD Low-end HDDMid-end SSD

89

Performance on Tri-HSS

SibylTri-hybridHeuristicTri-hybrid

Extending Sibyl for more devices:
1. Add a new action
2. Add the remaining capacity of the new device as a

state featureSibyl outperforms the state-of-the-art
data placement policy by

48.2% in a real tri-hybrid system

Sibyl reduces the system architect's burden
by providing ease of extensibility

High-end SSD Low-end HDDMid-end SSD

90

Sibyl’s Overhead
• 124.4 KiB of total storage cost

- Experience buffer, inference and training network

• 40-bit metadata overhead per page for state features

• Inference latency of ~10ns

• Training latency of ~2us

Small area overhead

Small inference overhead

Satisfies prediction latency
91

More in the Paper (1/3)
• Throughput (IOPS) evaluation

- Sibyl provides high IOPS compared to baseline policies because it
indirectly captures throughput (size/latency)

• Evaluation on unseen workloads
- Sibyl can effectively adapt its policy to highly dynamic workloads

• Evaluation on mixed workloads
- Sibyl provides equally-high performance benefits as in single

workloads

92

More in the Paper (2/3)
• Evaluation on different features

- Sibyl autonomously decides which features are important to
maximize the performance

• Evaluation with different hyperparameter values

• Sensitivity to fast storage capacity
- Sibyl provides scalability by dynamically adapting its policy to

available storage size

• Explainability analysis of Sibyl's decision making
- Explain Sibyl’s actions for different workload characteristics and

device configurations

93

More in the Paper (3/3)

https://arxiv.org/pdf/2205.07394.pdf

https://github.com/CMU-SAFARI/Sibyl
94

https://arxiv.org/pdf/2205.07394.pdf
https://github.com/CMU-SAFARI/Sibyl

Talk Outline
Key Shortcomings of Prior Data Placement Techniques

Formulating Data Placement as Reinforcement Learning

Sibyl: Overview

Evaluation of Sibyl and Key Results

Conclusion

95

Conclusion
• We introduced Sibyl, the first reinforcement learning-

based data placement technique in hybrid storage
systems that provides
- Adaptivity
- Easily extensibility
- Ease of design and implementation

•We evaluated Sibyl on real systems using many
different workloads
- Sibyl improves performance by 21.6% compared to the best prior

data placement policy in a dual-HSS configuration
- In a tri-HSS configuration, Sibyl outperforms the state-of-the-art-

data placement policy by 48.2%
- Sibyl achieves 80% of the performance of an oracle policy with a

storage overhead of only 124.4 KiB
https://github.com/CMU-SAFARI/Sibyl 96

https://github.com/CMU-SAFARI/Sibyl

Sibyl
Adaptive and Extensible Data Placement

in Hybrid Storage Systems
Using Online Reinforcement Learning

Gagandeep Singh, Rakesh Nadig, Jisung Park,
Rahul Bera, Nastaran Hajinazar, David Novo,

Juan Gómez Luna, Sander Stuijk, Henk Corporaal,
Onur Mutlu

9797

ISCA 2022 Paper, Slides, Videos
n Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar,

David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu,
"Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage
Systems Using Online Reinforcement Learning"
Proceedings of the 49th International Symposium on Computer
Architecture (ISCA), New York, June 2022.
[Slides (pptx) (pdf)]
[arXiv version]
[Sibyl Source Code]
[Talk Video (16 minutes)]

98https://arxiv.org/pdf/2205.07394.pdf

https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
http://iscaconf.org/isca2022/
http://iscaconf.org/isca2022/
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pdf
https://arxiv.org/pdf/2205.07394.pdf
https://github.com/CMU-SAFARI/Sibyl
https://www.youtube.com/watch?v=5-WedkiB000
https://arxiv.org/pdf/2205.07394.pdf

SSD Course (Spring 2023)
n Spring 2023 Edition:

q https://safari.ethz.ch/projects_and_seminars/spring2023/
doku.php?id=modern_ssds

n Fall 2022 Edition:
q https://safari.ethz.ch/projects_and_seminars/fall2022/do

ku.php?id=modern_ssds

n Youtube Livestream (Spring 2023):
q https://www.youtube.com/watch?v=4VTwOMmsnJY&list

=PL5Q2soXY2Zi_8qOM5Icpp8hB2SHtm4z57&pp=iAQB
n Youtube Livestream (Fall 2022):

q https://www.youtube.com/watch?v=hqLrd-
Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4JI5bwhAMpAp13&p
p=iAQB

n Project course
q Taken by Bachelor’s/Master’s students
q SSD Basics and Advanced Topics
q Hands-on research exploration
q Many research readings

99https://www.youtube.com/onurmutlulectures

https://safari.ethz.ch/projects_and_seminars/spring2023/doku.php?id=modern_ssds
https://safari.ethz.ch/projects_and_seminars/spring2023/doku.php?id=modern_ssds
https://safari.ethz.ch/projects_and_seminars/spring2023/doku.php?id=modern_ssds
https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=modern_ssds
https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=modern_ssds
https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=modern_ssds
https://www.youtube.com/watch?v=4VTwOMmsnJY&list=PL5Q2soXY2Zi_8qOM5Icpp8hB2SHtm4z57&pp=iAQB
https://www.youtube.com/watch?v=4VTwOMmsnJY&list=PL5Q2soXY2Zi_8qOM5Icpp8hB2SHtm4z57&pp=iAQB
https://www.youtube.com/watch?v=4VTwOMmsnJY&list=PL5Q2soXY2Zi_8qOM5Icpp8hB2SHtm4z57&pp=iAQB
https://www.youtube.com/watch?v=_q4rm71DsY4&list=PL5Q2soXY2Zi8vabcse1kL22DEcgMl2RAq
https://www.youtube.com/watch?v=hqLrd-Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4JI5bwhAMpAp13&pp=iAQB
https://www.youtube.com/watch?v=hqLrd-Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4JI5bwhAMpAp13&pp=iAQB
https://www.youtube.com/watch?v=hqLrd-Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4JI5bwhAMpAp13&pp=iAQB
https://www.youtube.com/watch?v=hqLrd-Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4JI5bwhAMpAp13&pp=iAQB
https://www.youtube.com/onurmutlulectures

Comp Arch (Fall 2021)
n Fall 2021 Edition:

q https://safari.ethz.ch/architecture/fall2021/doku.
php?id=schedule

n Fall 2020 Edition:
q https://safari.ethz.ch/architecture/fall2020/doku.

php?id=schedule

n Youtube Livestream (2021):
q https://www.youtube.com/watch?v=4yfkM_5EFg

o&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF
n Youtube Livestream (2020):

q https://www.youtube.com/watch?v=c3mPdZA-
Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN

n Master’s level course
q Taken by Bachelor’s/Masters/PhD students
q Cutting-edge research topics + fundamentals in

Computer Architecture
q 5 Simulator-based Lab Assignments
q Potential research exploration
q Many research readings

100https://www.youtube.com/onurmutlulectures

https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2020/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2020/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2020/doku.php?id=schedule
https://www.youtube.com/watch?v=4yfkM_5EFgo&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF
https://www.youtube.com/watch?v=4yfkM_5EFgo&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF
https://www.youtube.com/watch?v=4yfkM_5EFgo&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF
https://www.youtube.com/watch?v=c3mPdZA-Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN
https://www.youtube.com/watch?v=c3mPdZA-Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN
https://www.youtube.com/watch?v=c3mPdZA-Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN
https://www.youtube.com/onurmutlulectures

Onur Mutlu
omutlu@gmail.com

https://people.inf.ethz.ch/omutlu
27 September 2023

VMware

Hermes & Sibyl:
ML-Driven Memory & Storage Management

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

102

Hermes Discussion
• FAQs

- What are the selected set of program features?
- Can you provide some intuition on why these

features work?
- What happens in case of a misprediction?
- What’s the performance headroom for off-chip

prediction?

- Do you see a variance of different features in final
prediction accuracy?

• Simulation Methodology
- System parameters
- Evaluated workloads

• More Results
- Percentage of off-chip requests
- Reduction in stall cycles by reducing the

critical path
- Fraction of off-chip load requests
- Accuracy and coverage of POPET
- Effect of different features
- Are all features required?
- 1C performance
- 1C performance line graph
- 1C performance against prior predictors
- Effect on stall cycles
- 8C performance
- Sensitivity:

• Hermes request issue latency
• Cache hierarchy access latency
• Activation threshold
• ROB size
• LLC size

- Power overhead
- Accuracy without prefetcher
- Main memory request overhead with

different prefetchers

HERMES BACKUP

104

Initial Set of Program Features

105

Selected Set of Program Features

Five features
A binary hint that
represents whether or not a
cacheblock has been
recently touched

106

When A Feature Works/Does Not Work?

Trace: 462.libquantum-1343B PC: 0x401442

Cacheline #42 Cacheline #43 ……

Without prefetcher

• PC + first access
• Cacheline offset + first access

With a simple stride prefetcher

• Cacheline offset + first access

107

What Happens in case of a Misprediction?

• Two cases of mispredictions:

• Predicted on-chip but actually goes off-chip
- Loss of performance improvement opportunity

• Predicted off-chip but actually is on-chip
- Memory controller forwards the data to LLC if and only if

a load to the same address have already missed LLC and
arrived at the memory controller

No need for misprediction detection and recovery

No need for misprediction detection and recovery

108

Performance Headroom of Off-Chip Prediction

109

System Parameters

110

Evaluated Workloads

111

Observation: Not All Off-Chip Loads are Prefetched

0

5

10

15

20

25

0%

25%

50%

75%

100%

No
-p

re
fe

tc
hi

ng

Py
th

ia

No
-p

re
fe

tc
hi

ng

Py
th

ia

No
-p

re
fe

tc
hi

ng

Py
th

ia

No
-p

re
fe

tc
hi

ng

Py
th

ia

No
-p

re
fe

tc
hi

ng

Py
th

ia

No
-p

re
fe

tc
hi

ng

Py
th

ia

SPEC06 SPEC17 PARSEC Ligra CVP AVG

LL
C

m
iss

es
 p

er
 k

ilo
 in

st
ru

ct
io

ns
 (M

PK
I)

Fr
ac

tio
n

of
 o

ff-
ch

ip
 lo

ad
s

in
 th

e
N

o-
pr

ef
et

ch
in

g
sy

st
em

Blocking Non-blocking MPKI

50%

Nearly 50% of the loads are still not prefetched

112

Observation: Not All Off-Chip Loads are Prefetched

0

5

10

15

20

25

0%

25%

50%

75%

100%

No
-p

re
fe

tc
hi

ng

Py
th

ia

No
-p

re
fe

tc
hi

ng

Py
th

ia

No
-p

re
fe

tc
hi

ng

Py
th

ia

No
-p

re
fe

tc
hi

ng

Py
th

ia

No
-p

re
fe

tc
hi

ng

Py
th

ia

No
-p

re
fe

tc
hi

ng

Py
th

ia

SPEC06 SPEC17 PARSEC Ligra CVP AVG

LL
C

m
iss

es
 p

er
 k

ilo
 in

st
ru

ct
io

ns
 (M

PK
I)

Fr
ac

tio
n

of
 o

ff-
ch

ip
 lo

ad
s

in
 th

e
N

o-
pr

ef
et

ch
in

g
sy

st
em

Blocking Non-blocking MPKI

70% of these off-chip loads blocks ROB

113

Observation: With Large Cache Comes Longer Latency

• On-chip cache access latency significantly contributes to
the latency of an off-chip load

147.1

0
20
40
60
80

100
120
140
160
180

SPEC06 SPEC17 PARSEC Ligra CVP AVG

st

al
l c

yc
le

s d
ue

 to
 a

n
of

f-c
hi

p
lo

ad
bl

oc
ki

ng
 in

st
ru

ct
io

n
re

tir
em

en
t

fr
om

 R
O

B

58

On-chip cache hierarchy access latency

114

Observation: With Large Cache Comes Longer Latency

• On-chip cache access latency significantly contributes to
the latency of an off-chip load

147.1

0
20
40
60
80

100
120
140
160
180

SPEC06 SPEC17 PARSEC Ligra CVP AVG

st

al
l c

yc
le

s d
ue

 to
 a

n
of

f-c
hi

p
lo

ad
bl

oc
ki

ng
 in

st
ru

ct
io

n
re

tir
em

en
t

fr
om

 R
O

B

58

On-chip cache hierarchy access latency

40% of stall cycles caused by an off-chip load can be eliminated
by removing on-chip cache access latency from its critical path

115

What Fraction of Load Requests Goes Off-Chip?

116

Off-Chip Prediction Quality: Defining Metrics

Predicted off-chip Actual off-chip

Predicted and actual off-chip

Accuracy Coverage

117

Off-Chip Prediction Quality: Analysis

Accuracy

Coverage

0%
20%
40%
60%
80%

100%

SPEC06 SPEC17 PARSEC Ligra CVP AVG

A
cc

ur
ac

y
%

HMP TTP POPET

0%
20%
40%
60%
80%

100%

SPEC06 SPEC17 PARSEC Ligra CVP AVG

Co
ve

ra
ge

 %

HMP TTP POPET

47%

22%

16%

95%

77%

74%

118

Off-Chip Prediction Quality: Analysis

Accuracy

Coverage

0%
20%
40%
60%
80%

100%

SPEC06 SPEC17 PARSEC Ligra CVP AVG

A
cc

ur
ac

y
%

HMP TTP POPET

0%
20%
40%
60%
80%

100%

SPEC06 SPEC17 PARSEC Ligra CVP AVG

Co
ve

ra
ge

 %

HMP TTP POPET

47%

22%

16%

95%

77%

74%

POPET provides off-chip predictions with
high-accuracy and high-coverage

119

Effect of Different Features

Combination of features provides both higher
accuracy and higher coverage than any individual feature

120

Are All Features Required? (1)

No single feature individually provides
highest prediction accuracy across all workloads

121

Are All Features Required? (2)

No single feature individually provides
highest prediction coverage also across all workloads

122

Single-Core Performance

Hermes in combination with Pythia
outperforms Pythia alone in every workload category

123

Single-Core Performance Line Graph

124

Single-Core Performance Against Prior Predictors

POPET provides higher performance benefit
than prior predictors

Hermes with POPET achieves nearly 90% performance
improvement of the Ideal Hermes

125

Effect on Stall Cycles

Hermes reduces off-chip load induced stall cycles
on average by 16.2% (up-to 51.8%)

126

Eight-Core Performance

Hermes in combination with Pythia
outperforms Pythia alone by 5.1% on average

127

Effect of Hermes Request Issue Latency

3.6%
5.7%

Hermes in combination with Pythia outperforms Pythia
alone even with a 24-cycle Hermes request issue latency

128

Effect of Cache Hierarchy Access Latency

3.6%

6.2%

Hermes can provide even higher performance benefit in
future processors with bigger and slower on-chip caches

129

Effect of Activation Threshold

With increase in activation threshold
1. Accuracy increases

2. Coverage decreases

130

Power Overhead

131

Effect of ROB Size

6.7%
5.3%

132

Effect of LLC Size

1.3%2.5%

133

Accuracy and Coverage with Different Prefetchers

POPET’s accuracy and coverage increases significantly
in absence of a data prefetcher

134

Increase in Main Memory Requests

SIBYL BACKUP

135135

Performance on Unseen Workloads

H&M (H&L) HSS configuration, Sibyl outperforms RNN-
HSS and Archivist by 46.1% (54.6%) and 8.5% (44.1%),
respectively

136

Performance Analysis

Sibyl Oracle

Baseline policies are ineffective for many
workloads even when compared to Slow-Only

RNN-HSSSlow-Only CDE HPS Archivist

Performance-Oriented HSS Configuration

137

Performance on Mixed Workloads
Slow-Only CDE HPS Archivist RNN-HSS SibylDef SibylOpt Oracle

Performance-Oriented Cost-Oriented

138

Performance on Mixed Workloads
Slow-Only CDE HPS Archivist RNN-HSS SibylDef SibylOpt Oracle

Performance-Oriented Cost-Oriented

SibylDef outperforms baseline data placement
techniques by up to 27.9%

139

Performance on Mixed Workloads
Slow-Only CDE HPS Archivist RNN-HSS SibylDef SibylOpt Oracle

Performance-Oriented Cost-Oriented

SibylDef outperforms baseline data placement
techniques by up to 27.9%

SibylOpt provides 7.2% higher average
performance than SibylDef

140

Performance With Different Features

Sibyl autonomously decides which features are
important to maximize the performance of the running
workload

141

Sensitivity to Fast Storage Capacity

142

Explainability Analysis

143

Training and Inference Network
• Training and inference

network allow parallel
execution

• Observation vector as
the input

• Produces probability
distribution of Q-values

144

