Hermes & Sibyl: ML-Driven Memory & Storage Management

Onur Mutlu omutlu@gmail.com

https://people.inf.ethz.ch/omutlu

27 September 2023

VMware

ETH zürich

Data-Driven (Self-Optimizing) Architectures

System Architecture Design Today

- Human-driven
 - Humans design the policies (how to do things)
- Many (too) simple, short-sighted policies all over the system
- No automatic data-driven policy learning
- (Almost) no learning: cannot take lessons from past actions

Can we design fundamentally intelligent architectures?

An Intelligent Architecture

- Data-driven
 - Machine learns the "best" policies (how to do things)
- Sophisticated, workload-driven, changing, far-sighted policies
- Automatic data-driven policy learning
- All controllers are intelligent data-driven agents

We need to rethink design (of all controllers)

Self-Optimizing Memory Controllers

 Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana, "Self Optimizing Memory Controllers: A Reinforcement Learning <u>Approach</u>" *Proceedings of the <u>35th International Symposium on Computer Architecture</u> (ISCA), pages 39-50, Beijing, China, June 2008. <i>Selected to the ISCA-50 25-Year Retrospective Issue covering 1996- 2020 in 2023 (Retrospective (pdf) Full Issue).*

Self-Optimizing Memory Controllers: A Reinforcement Learning Approach

Engin İpek^{1,2} Onur Mutlu² José F. Martínez¹ Rich Caruana¹

¹Cornell University, Ithaca, NY 14850 USA

 2 Microsoft Research, Redmond, WA 98052 USA

Self-Optimizing Memory Prefetchers

Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu, "Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning" *Proceedings of the <u>54th International Symposium on Microarchitecture</u> (<i>MICRO*), Virtual, October 2021. [Slides (pptx) (pdf)] [Short Talk Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)] [Talk Video (20 minutes)] [Lightning Talk Video (1.5 minutes)] [Pythia Source Code (Officially Artifact Evaluated with All Badges)] [arXiv version] *Officially artifact evaluated as available, reusable and reproducible.*

Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning

Rahul Bera¹ Konstantinos Kanellopoulos¹

Anant V. Nori² Taha Shahroodi^{3,1} Onur Mutlu¹

¹ETH Zürich ²Processor Architecture Research Labs, Intel Labs ³TU Delft

Sreenivas Subramoney²

https://arxiv.org/pdf/2109.12021.pdf

Learning-Based Off-Chip Load Predictors

 Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk Olgun, Mohammad Sadrosadati, and Onur Mutlu,
 "Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load Prediction"
 Proceedings of the <u>55th International Symposium on Microarchitecture</u> (MICRO), Chicago, IL, USA, October 2022.
 [Slides (pptx) (pdf)]
 [Longer Lecture Slides (pptx) (pdf)]
 [Talk Video (12 minutes)]
 [Lecture Video (25 minutes)]
 [arXiv version]
 [Source Code (Officially Artifact Evaluated with All Badges)]
 Officially artifact evaluated as available, reusable and reproducible. Best paper award at MICRO 2022.

Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load Prediction

Rahul Bera1Konstantinos Kanellopoulos1Shankar Balachandran2David Novo3Ataberk Olgun1Mohammad Sadrosadati1Onur Mutlu1

¹ETH Zürich ²Intel Processor Architecture Research Lab ³LIRMM, Univ. Montpellier, CNRS

https://arxiv.org/pdf/2209.00188.pdf

Self-Optimizing Hybrid SSD Controllers

Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar, David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu, "Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems Using Online Reinforcement Learning" Proceedings of the <u>49th International Symposium on Computer</u> <u>Architecture (ISCA)</u>, New York, June 2022. [Slides (pptx) (pdf)] [arXiv version] [Sibyl Source Code] [Talk Video (16 minutes)]

Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems Using Online Reinforcement Learning

Gagandeep Singh1Rakesh Nadig1Jisung Park1Rahul Bera1Nastaran Hajinazar1David Novo3Juan Gómez-Luna1Sander Stuijk2Henk Corporaal2Onur Mutlu11ETH Zürich2Eindhoven University of Technology3LIRMM, Univ. Montpellier, CNRS

https://arxiv.org/pdf/2205.07394.pdf

Hermes: Perceptron-Based Off-Chip Load Prediction

Learning-Based Off-Chip Load Predictors

 Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk Olgun, Mohammad Sadrosadati, and Onur Mutlu,
 "Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load Prediction"
 Proceedings of the <u>55th International Symposium on Microarchitecture</u> (MICRO), Chicago, IL, USA, October 2022.
 [Slides (pptx) (pdf)]
 [Longer Lecture Slides (pptx) (pdf)]
 [Talk Video (12 minutes)]
 [Lecture Video (25 minutes)]
 [arXiv version]
 [Source Code (Officially Artifact Evaluated with All Badges)]
 Officially artifact evaluated as available, reusable and reproducible. Best paper award at MICRO 2022.

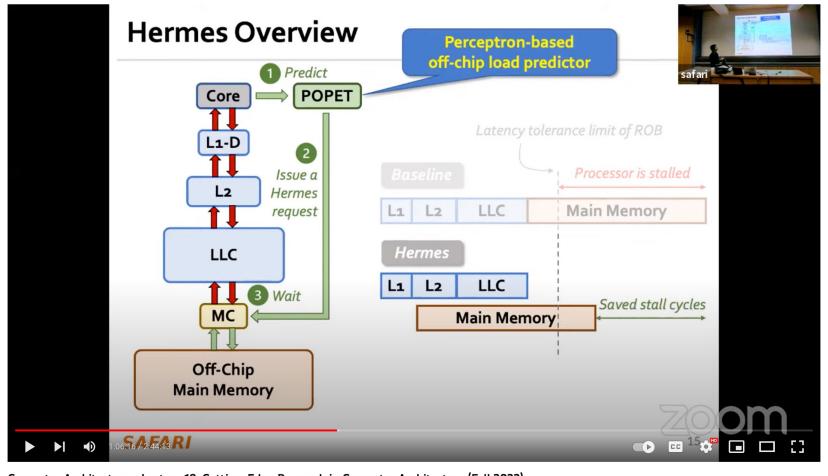
Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load Prediction

Rahul Bera1Konstantinos Kanellopoulos1Shankar Balachandran2David Novo3Ataberk Olgun1Mohammad Sadrosadati1Onur Mutlu1

¹ETH Zürich ²Intel Processor Architecture Research Lab ³LIRMM, Univ. Montpellier, CNRS

https://arxiv.org/pdf/2209.00188.pdf

Hermes Talk Video



Computer Architecture - Lecture 18: Cutting-Edge Research in Computer Architecture (Fall 2022)

2.4K views Streamed 5 months ago Livestream - Computer Architecture - ETH Zürich (Fall 2022) Computer Architecture, ETH Zürich, Fall 2022 (https://safari.ethz.ch/architecture/f...)

SAFARI

https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s

Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load Prediction

Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk Olgun, Mohammad Sadrosadati, Onur Mutlu

https://github.com/CMU-SAFARI/Hermes

https://arxiv.org/pdf/2209.00188.pdf

The Key Problem

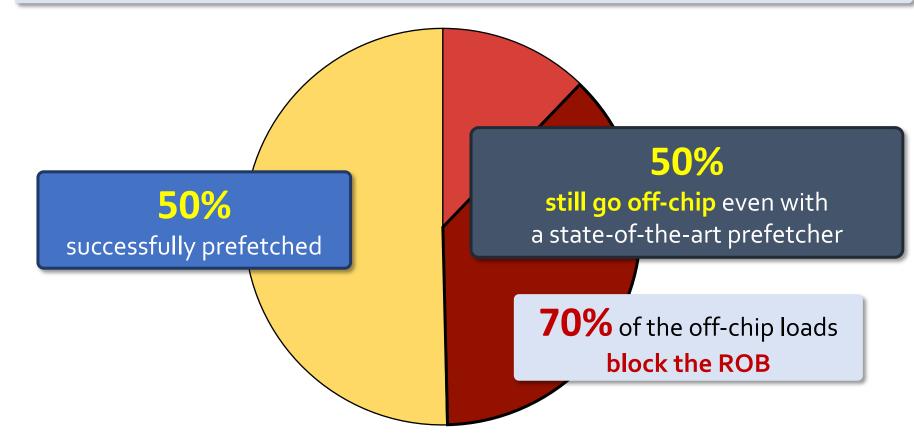
Often **stall** processor by **blocking instruction retirement** from Reorder Buffer (ROB)

Traditional Solutions

၂ Employ sophisticated prefetchers

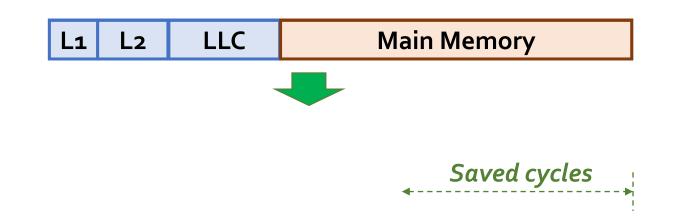
Increase size of on-chip caches

Key Observation 1



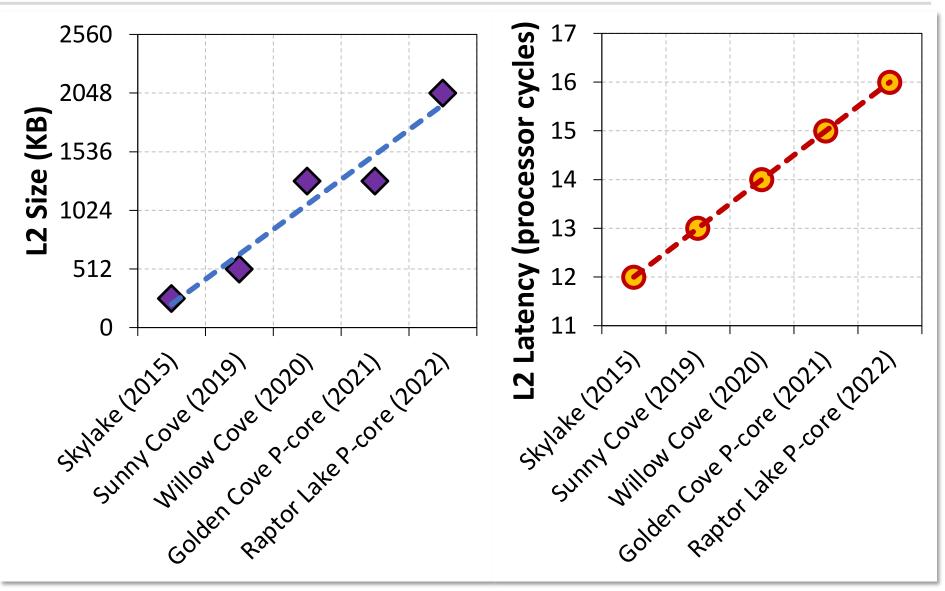
off-chip loads without any prefetcher

On-chip cache access latency significantly contributes to off-chip load latency



40% of the stalls can be eliminated by removing on-chip cache access latency from critical path

Caches are Getting Bigger and Slower...



Our Goal

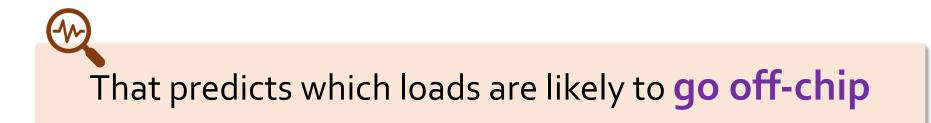
Improve processor performance by **removing on-chip cache access latency** from the **critical path of off-chip loads**

Predicts which load requests are likely to go off-chip

Starts **fetching** data **directly** from **main memory** while concurrently accessing the cache hierarchy

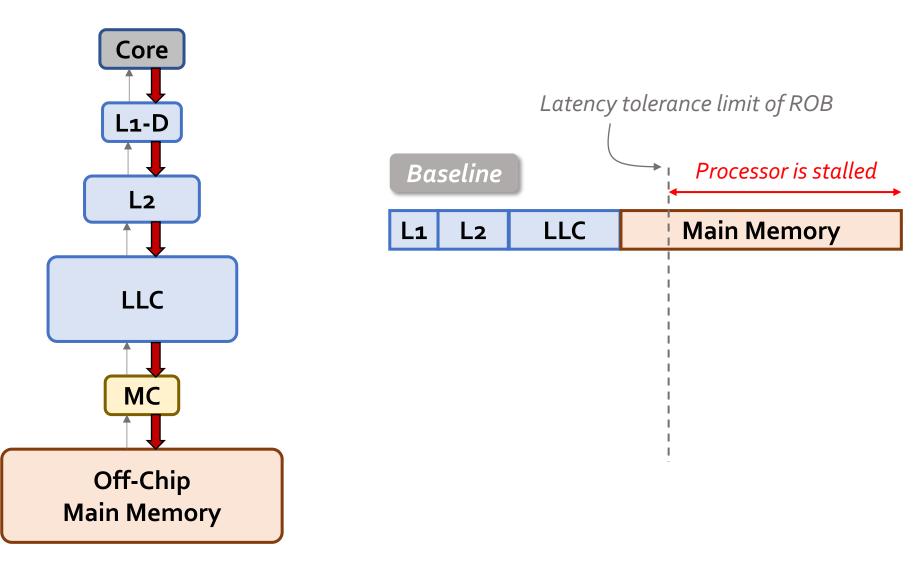
Key Contribution

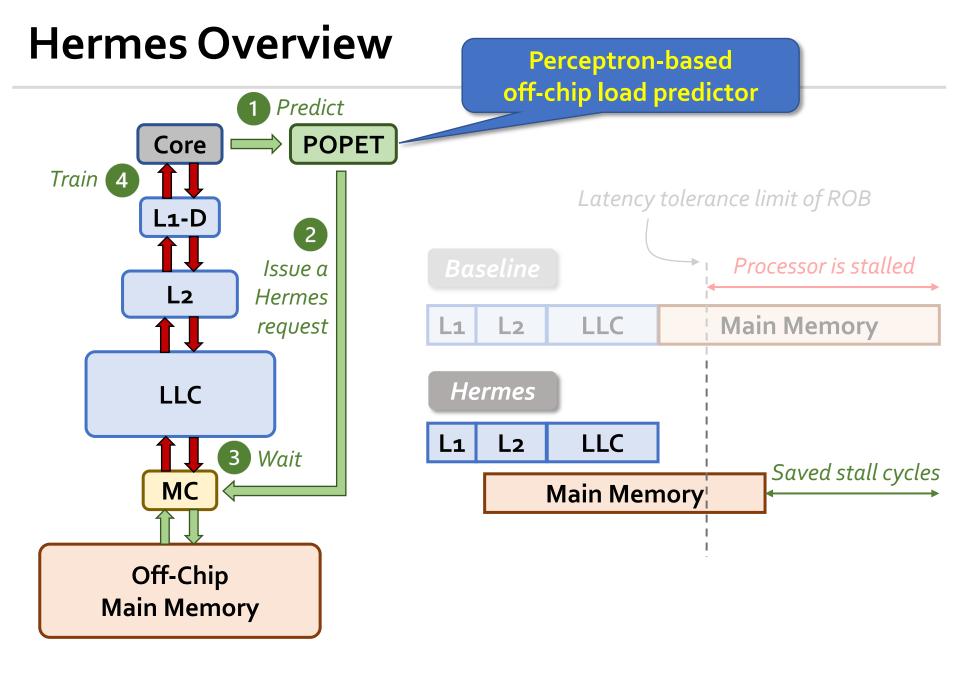
Hermes employs **the first perceptron-based** off-chip load predictor



By **learning** from multiple program context information

Hermes Overview



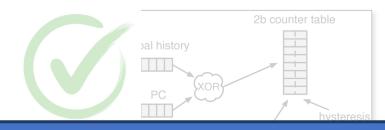


Designing the Off-Chip Load Predictor

History-based prediction

HMP [Yoaz+, ISCA'99] for the **L1-D cache**

Using **branch-predictor-like** hybrid predictor:



POPET provides both higher accuracy and higher performance than predictors inspired from these previous works

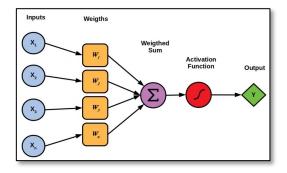
- Metadata size increases with cache hierarchy size
- X May need to track **all** cache operations
 - Gets complex depending on the cache hierarchy configuration (e.g., inclusivity, bypassing,...)

Learning from program behavior

Correlate different program features with off-chip loads

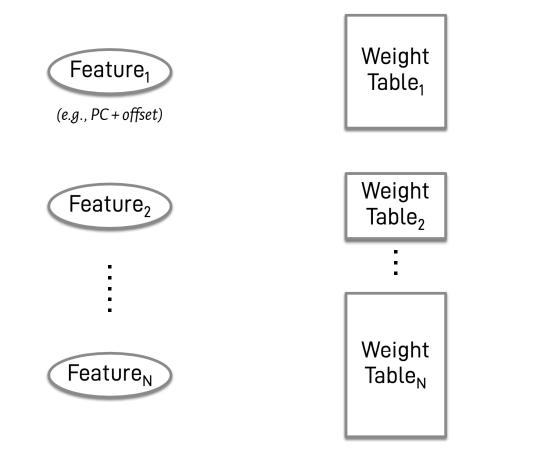
Low storage overhead 🛛 🐼

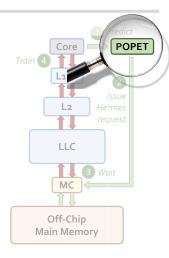
Low design complexity



POPET: Perceptron-Based Off-Chip Predictor

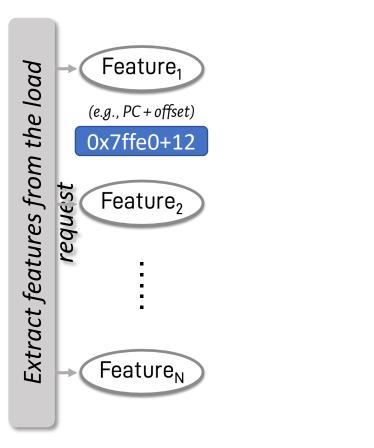
- Multi-feature hashed perceptron model^[1]
 - Each feature has its own weight table
 - Stores correlation between feature value and off-chip prediction

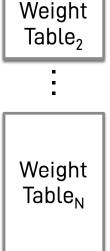


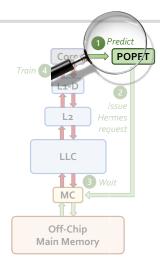


Predicting using POPET

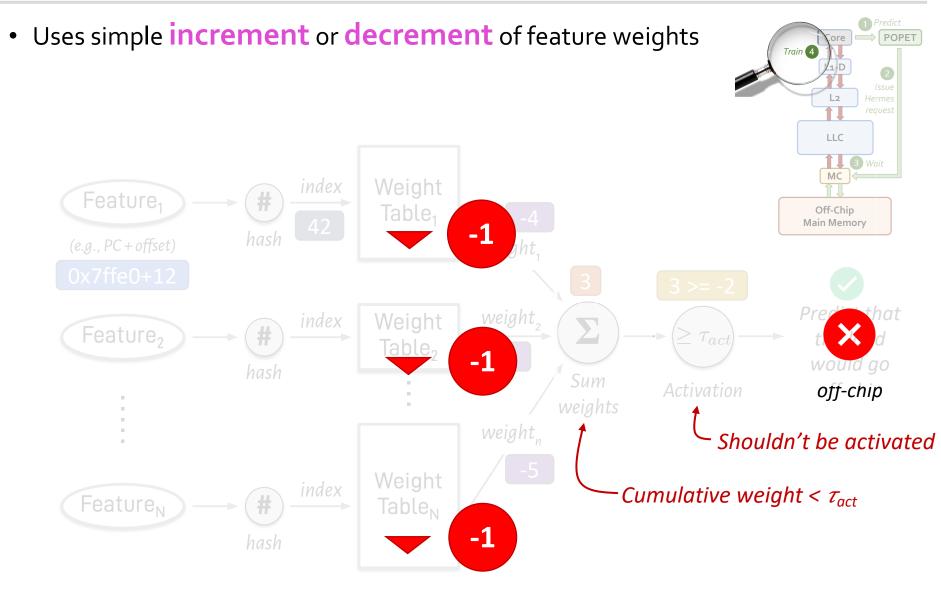
• Uses simple table lookups, addition, and comparison







Training POPET



Features Used in Hermes

Table 1: The initial set of program features used for automated feature selection. \oplus represents a bitwise XOR operation.

Features without control-flow information	Features with control-flow information
	8. Load PC
1. Load virtual address	9. PC \oplus load virtual address
2. Virtual page number	10. $PC \oplus virtual page number$
3. Cacheline offset in page	11. PC \oplus cacheline offset
4. First access	12. PC + first access
5. Cacheline offset + first access	13. PC \oplus byte offset
6. Byte offset in cacheline	14. $PC \oplus word offset$
7. Word offset in cacheline	15. Last-4 load PCs
	16. Last-4 PCs

Table 2: POPET configuration parameters

Selected features	 PC ⊕ cacheline offset PC ⊕ byte offset PC + first access Cacheline offset + first access Last-4 load PCs
Threshold values	$ au_{act} = -18, T_N = -35, T_P = 40$

Evaluation

Simulation Methodology

- ChampSim trace driven simulator
- **110 single-core** memory-intensive traces
 - SPEC CPU 2006 and 2017
 - PARSEC 2.1
 - Ligra
 - Real-world applications

• **220 eight-core** memory-intensive trace mixes

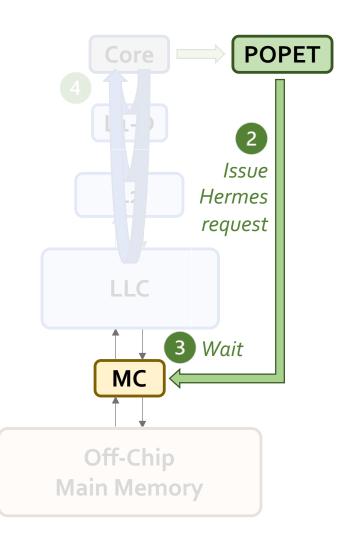
LLC Prefetchers

- Pythia [Bera+, MICRO'21]
- Bingo [Bakshalipour+, HPCA'19]
- MLOP [Shakerinava+, 3rd Prefetching Championship'19]
- SPP + Perceptron filter [Bhatia+, ISCA'20]
- SMS [Somogyi+, ISCA'06]

Off-Chip Predictors

- History-based: HMP [Yoaz+, ISCA'99]
- Tracking-based: Address Tag-Tracking based Predictor (TTP)
- Ideal Off-chip Predictor

Latency Configuration



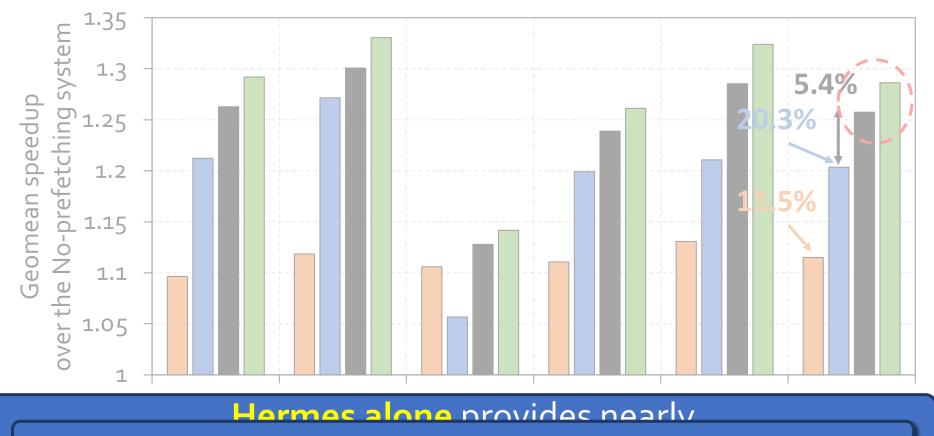
Cache round-trip latency

- L1-D: 5 cycles
- L2: **15** cycles
- LLC: **55** cycles
- Hermes request issue latency (incurred after address translation)

Depends on

Interconnect between POPET and MC

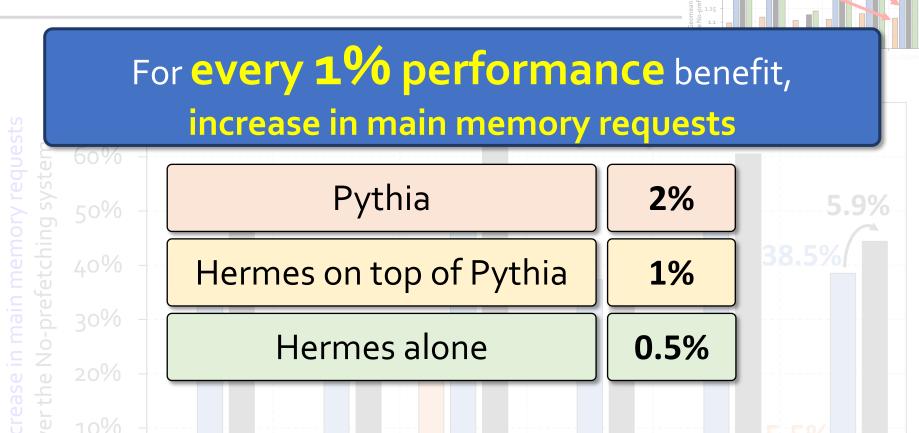
Single-Core Performance Improvement



Hermes provides nearly 90% performance benefit of Ideal Hermes that has an ideal off-chip load predictor

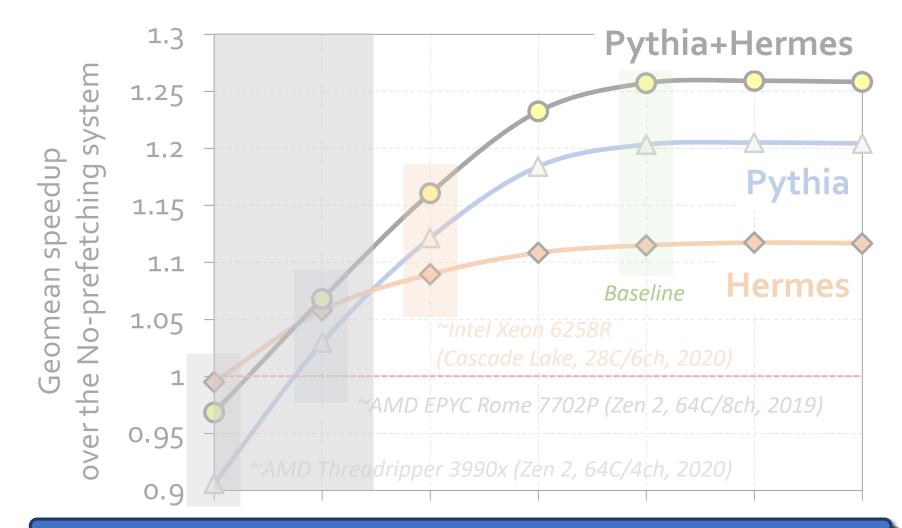
Increase in Main Memory Requests

Hermes Pythia Pythia + Hermes Pythia + Ideal Hermes



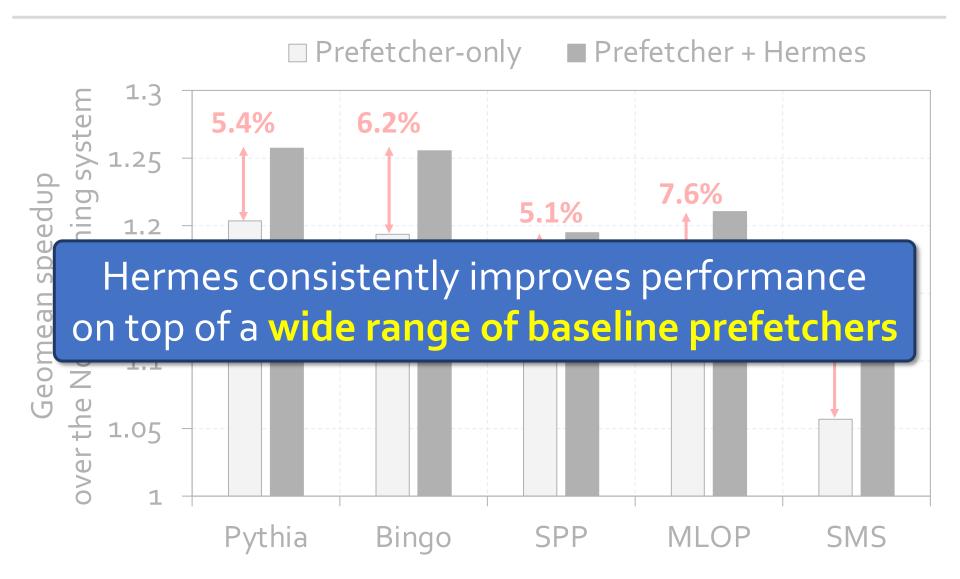
Hermes is more **bandwidth-efficient** than even an efficient prefetcher like Pythia

Performance with Varying Memory Bandwidth

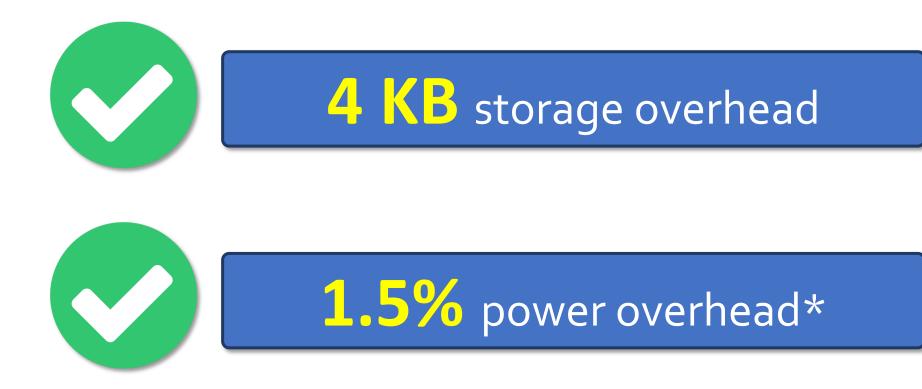


Hermes+Pythia outperforms Pythia across all bandwidth configurations

Performance with Varying Baseline Prefetcher



Overhead of Hermes



*On top of an Intel Alder Lake-like performance-core [2] configuration

More in the Paper

- Performance sensitivity to:
 - Cache hierarchy access latency
 - Hermes request issue latency
 - Activation threshold
 - ROB size (in extended version on arXiv)
 - LLC size (in extended version on arXiv)
- Accuracy, coverage, and performance analysis against HMP and TTP
- Understanding usefulness of each program feature
- Effect on stall cycle reduction
- Performance analysis on an eight-core system

More in the Paper

Performance sensitivity to:

Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load Prediction

Rahul Bera¹ Konstantinos Kanellopoulos¹ Shankar Balachandran² David Novo³ Ataberk Olgun¹ Mohammad Sadrosadati¹ Onur Mutlu¹

¹ETH Zürich ²Intel Processor Architecture Research Lab ³LIRMM, Univ. Montpellier, CNRS

Long-latency load requests continue to limit the performance of modern high-performance processors. To increase the latency tolerance of a processor, architects have primarily relied on two key techniques: sophisticated data prefetchers and large on-chip caches. In this work, we show that: (1) even a sophisticated stateof-the-art prefetcher can only predict half of the off-chip load requests on average across a wide range of workloads, and (2) due to the increasing size and complexity of on-chip caches, a large fraction of the latency of an off-chip load request is spent accessing the on-chip cache hierarchy to solely determine that it needs to go off-chip.

The goal of this work is to accelerate off-chip load requests by removing the on-chip cache access latency from their critical path. To this end, we propose a new technique called Hermes, whose key idea is to: (1) accurately predict which load requests off-chip main memory (i.e., an *off-chip load*) often stalls the processor core by blocking the instruction retirement from the reorder buffer (ROB), thus limiting the core's performance [88, 91, 92]. To increase the latency tolerance of a core, computer architects primarily rely on two key techniques. First, they employ increasingly sophisticated hardware prefetchers that can learn complex memory address patterns and fetch data required by future load requests before the core demands them [28, 32, 33, 35, 75]. Second, they significantly scale up the size of the on-chip cache hierarchy with each new generation of processors [10, 11, 16].

Key problem. Despite recent advances in processor core design, we observe two key trends in new processor designs that leave a significant opportunity for performance improvement on the table. First, even a sophisticated state-of-the-art

https://arxiv.org/pdf/2209.00188.pdf

To Summarize...

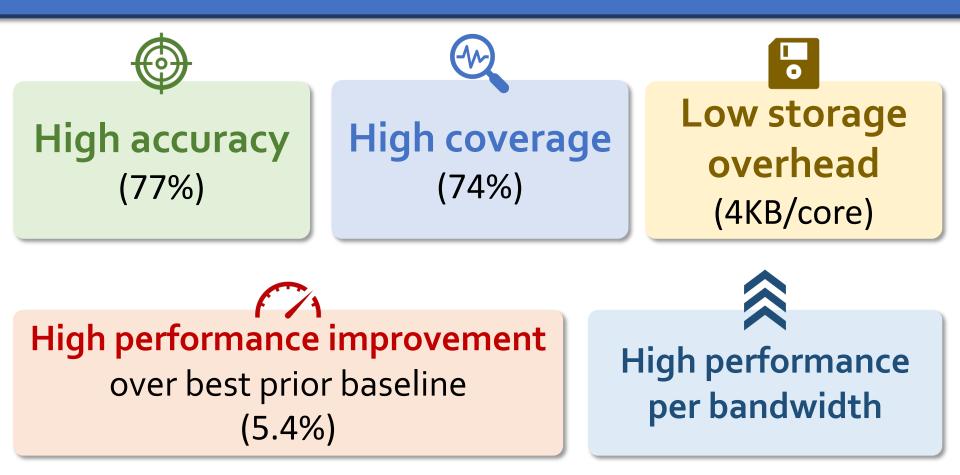
Summary

Hermes advocates for **off-chip load prediction**, a **different** form of speculation than **load address prediction** employed by prefetchers

Off-chip load prediction can be applied **by itself** or **combined with load address prediction** to provide performance improvement

Summary

Hermes employs the first perceptron-based off-chip load predictor



Hermes is Open Sourced

All workload traces

13 prefetchers

- Stride [Fu+, MICRO'92]
- Streamer [Chen and Baer, IEEE TC'95]
- SMS [Somogyi+, ISCA'06]
- AMPM [Ishii+, ICS'09]
- Sandbox [Pugsley+, HPCA'14]
- BOP [Michaud, HPCA'16]
- SPP [Kim+, MICRO'16]
- Bingo [Bakshalipour+, HPCA'19]
- SPP+PPF [Bhatia+, ISCA'19]
- DSPatch [Bera+, MICRO'19]
- MLOP [Shakerinava+, DPC-3'19]
- IPCP [Pakalapati+, ISCA'20]
- Pythia [Bera+, MICRO'21]

off-chip predictors

riment fil	les and rollup script	6 days ago
	Predictor type	Description
	Base	Always NO
	Basic	Simple confidence counter-based threshold
ement	Random	Random Hit-miss predictor with a given positive probability
	HMP-Local	Hit-miss predictor [Yoaz+, ISCA'99] with local prediction
	HMP-GShare	Hit-miss predictor with GShare prediction
S.CSV	HMP-GSkew	Hit-miss predictor with GSkew prediction
ple py	HMP-Ensemble	Hit-miss predictor with all three types combined
	TTP	Tag-tracking based predictor
	Perc	Perceptron-based OCP used in this paper

https://github.com/CMU-SAFARI/Hermes SAFARI

Easy To Define Your Own Off-Chip Predictor

• Just extend the OffchipPredBase class

```
class OffchipPredBase
 8
    {
 9
    public:
10
         uint32_t cpu;
11
12
         string type;
        uint64_t seed;
13
         uint8 t dram bw; // current DRAM bandwidth bucket
14
15
         OffchipPredBase(uint32_t _cpu, string _type, uint64_t _seed) : cpu(_cpu), type(_type), seed(_seed)
16
         {
17
             srand(seed);
18
             dram_bw = 0;
19
20
         }
         ~OffchipPredBase() {}
21
         void update_dram_bw(uint8_t _dram_bw) { dram_bw = _dram_bw; }
22
23
         virtual void print_config();
24
         virtual void dump_stats();
25
26
         virtual void reset_stats();
         virtual void train(ooo model instr *arch instr, uint32 t data index, LSQ ENTRY *lq entry);
27
28
         virtual bool predict(ooo model instr *arch instr, uint32 t data index, LSQ ENTRY *lq entry);
29
    };
30
31
    #endif /* OFFCHIP PRED BASE H */
32
```

Easy To Define Your Own Off-Chip Predictor

Define your own train() and predict() functions

```
void OffchipPredBase::train(ooo_model_instr *arch_instr, uint32_t data_index, LSQ_ENTRY *lq_entry)
19
     {
20
        // nothing to train
21
    }
22
23
24
    bool OffchipPredBase::predict(ooo_model_instr *arch_instr, uint32_t data_index, LSQ_ENTRY *lq_entry)
25
    {
        // predict randomly
26
        // return (rand() % 2) ? true : false;
27
        return false;
28
29
   }
```

 Get statistics like accuracy (stat name precision) and coverage (stat name recall) out of the box

> Core_0_offchip_pred_true_pos 2358716 Core_0_offchip_pred_false_pos 276883 Core_0_offchip_pred_false_neg 132145 Core_0_offchip_pred_precision 89.49 Core_0_offchip_pred_recall 94.69

Off-Chip Prediction Can Further Enable...

Prioritizing loads that are likely go off-chip in cache queues and on-chip network routing

Better instruction scheduling of data-dependent instructions

Other ideas to improve **performance** and **fairness** in multi-core system design...

Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load Prediction

Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk Olgun, Mohammad Sadrosadati, Onur Mutlu

https://github.com/CMU-SAFARI/Hermes

https://arxiv.org/pdf/2209.00188.pdf

Hermes Discussion

• FAQs

- What are the selected set of program features?
- <u>Can you provide some intuition on why these</u> <u>features work?</u>
- What happens in case of a misprediction?
- <u>What's the performance headroom for off-chip</u> <u>prediction?</u>
- <u>Do you see a variance of different features in final</u> prediction accuracy?

Simulation Methodology

- System parameters
- Evaluated workloads

- More Results
 - Percentage of off-chip requests
 - <u>Reduction in stall cycles by reducing the</u> <u>critical path</u>
 - Fraction of off-chip load requests
 - Accuracy and coverage of POPET
 - Effect of different features
 - Are all features required?
 - <u>1C performance</u>
 - <u>1C performance line graph</u>
 - <u>1C performance against prior predictors</u>
 - Effect on stall cycles
 - <u>8C performance</u>
 - Sensitivity:
 - Hermes request issue latency
 - <u>Cache hierarchy access latency</u>
 - Activation threshold
 - <u>ROB size</u>
 - LLC size
 - Power overhead
 - Accuracy without prefetcher
 - <u>Main memory request overhead with</u> <u>different prefetchers</u>

Hermes Paper [MICRO 2022]

 Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk Olgun, Mohammad Sadrosadati, and Onur Mutlu,
 "Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load Prediction"
 Proceedings of the <u>55th International Symposium on Microarchitecture</u> (MICRO), Chicago, IL, USA, October 2022.
 [Slides (pptx) (pdf)]
 [Longer Lecture Slides (pptx) (pdf)]
 [Talk Video (12 minutes)]
 [Lecture Video (25 minutes)]
 [arXiv version]
 [Source Code (Officially Artifact Evaluated with All Badges)]
 Officially artifact evaluated as available, reusable and reproducible. Best paper award at MICRO 2022.

Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load Prediction

Rahul Bera1Konstantinos Kanellopoulos1Shankar Balachandran2David Novo3Ataberk Olgun1Mohammad Sadrosadati1Onur Mutlu1

¹ETH Zürich ²Intel Processor Architecture Research Lab ³LIRMM, Univ. Montpellier, CNRS

https://arxiv.org/pdf/2209.00188.pdf

Sibyl: Reinforcement Learning based Data Placement in Hybrid SSDs

Self-Optimizing Hybrid SSD Controllers

Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar, David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu, "Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems Using Online Reinforcement Learning" Proceedings of the <u>49th International Symposium on Computer</u> <u>Architecture (ISCA)</u>, New York, June 2022. [Slides (pptx) (pdf)] [arXiv version] [Sibyl Source Code] [Talk Video (16 minutes)]

Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems Using Online Reinforcement Learning

Gagandeep Singh1Rakesh Nadig1Jisung Park1Rahul Bera1Nastaran Hajinazar1David Novo3Juan Gómez-Luna1Sander Stuijk2Henk Corporaal2Onur Mutlu11ETH Zürich2Eindhoven University of Technology3LIRMM, Univ. Montpellier, CNRS

https://arxiv.org/pdf/2205.07394.pdf

Adaptive and Extensible Data Placement in Hybrid Storage Systems Using Online Reinforcement Learning

Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar, David Novo, Juan Gómez Luna, Sander Stuijk, Henk Corporaal, Onur Mutlu

TU

2

Executive Summary

- **Background**: A hybrid storage system (HSS) uses multiple different storage devices to provide high and scalable storage capacity at high performance
- **Problem**: Two key shortcomings of prior data placement policies:
 - Lack of adaptivity to:
 - Workload changes
 - Changes in device types and configurations
 - Lack of extensibility to more devices
- Goal: Design a data placement technique that provides:
 - Adaptivity, by continuously learning and adapting to the application and underlying device characteristics
 - Easy extensibility to incorporate a wide range of hybrid storage configurations
- **Contribution**: Sibyl, the first reinforcement learning-based data placement technique in hybrid storage systems that:
 - Provides adaptivity to changing workload demands and underlying device characteristics
 - Can easily extend to any number of storage devices
 - Provides ease of design and implementation that requires only a small computation overhead
- Key Results: Evaluate on real systems using a wide range of workloads
 - Sibyl **improves performance by 21.6%** compared to the best previous data placement technique in dual-HSS configuration
 - In a tri-HSS configuration, Sibyl outperforms the state-of-the-art-policy policy by 48.2%
 - Sibyl achieves 80% of the performance of an oracle policy with storage overhead of only 124.4 KiB

SAFARI

https://github.com/CMU-SAFARI/Sibyl

Talk Outline

Key Shortcomings of Prior Data Placement Techniques

Formulating Data Placement as Reinforcement Learning

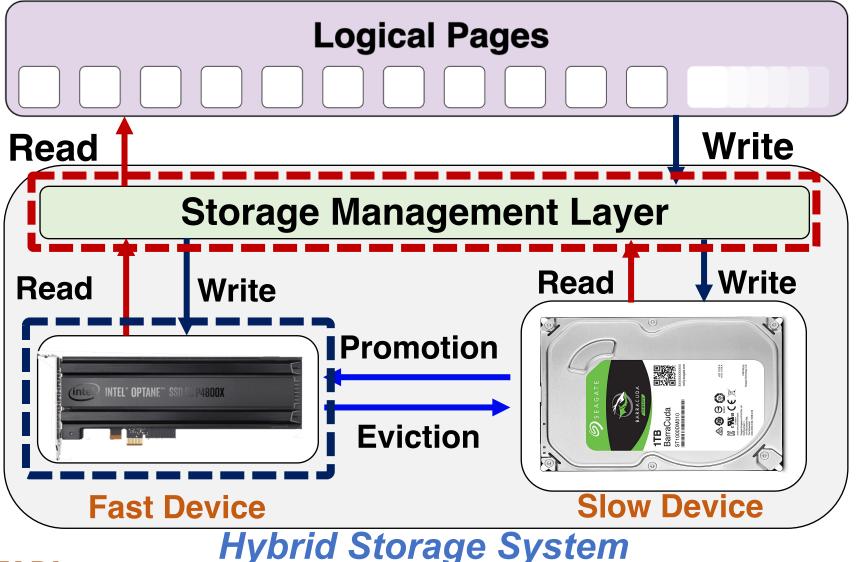
Sibyl: Overview

Evaluation of Sibyl and Key Results

Conclusion

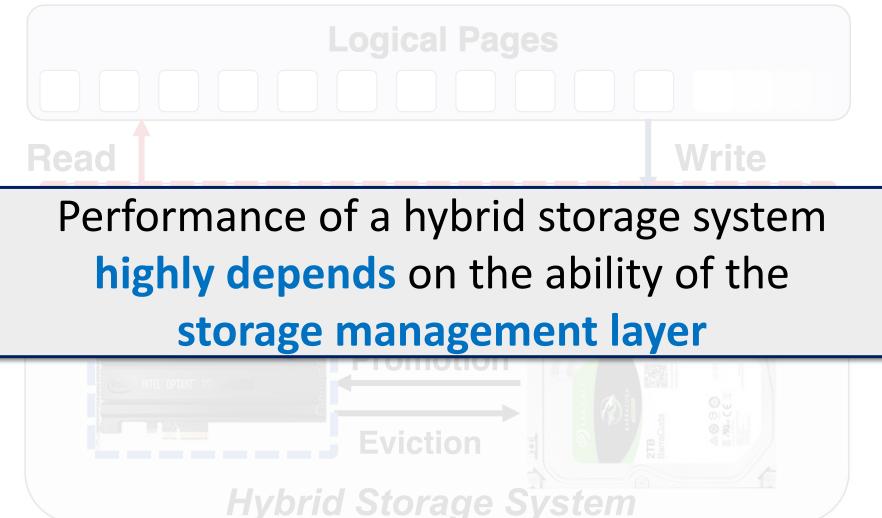
Hybrid Storage System Basics

Address Space (Application/File System View)



Hybrid Storage System Basics

Logical Address Space (Application/File System View)



Key Shortcomings in Prior Techniques

We observe **two key shortcomings** that significantly limit the performance benefits of prior techniques

1. Lack of **adaptivity to**:

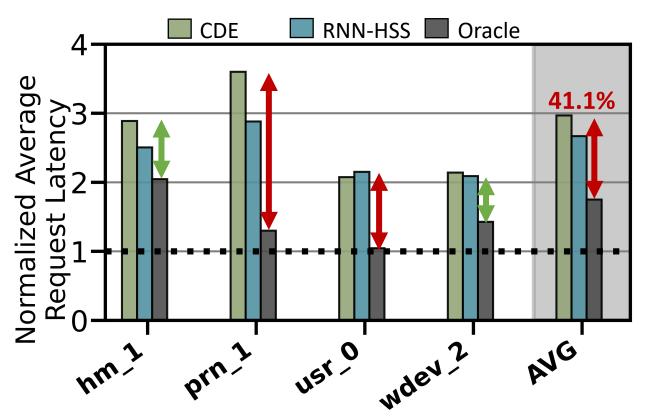
- a) Workload changes
- b) Changes in device types and configuration

2. Lack of **extensibility** to more devices

Lack of Adaptivity (1/2)

Workload Changes

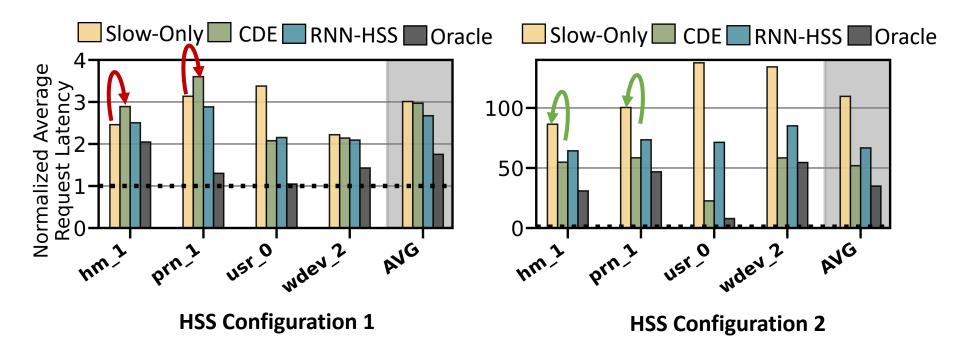
Prior data placement techniques consider only a few workload characteristics that are statically tuned



Lack of Adaptivity (2/2)

Changes in Device Types and Configurations

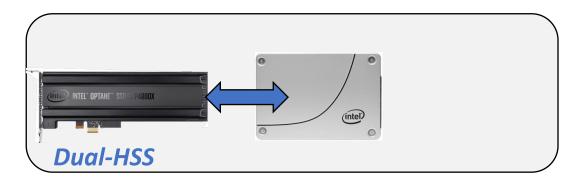
Do not consider **underlying storage device characteristics** (e.g., changes in the level asymmetry in read/write latencies, garbage collection)



Lack of Extensibility (1/2)

Rigid techniques that require significant effort to accommodate more than two devices

Change in storage configuration

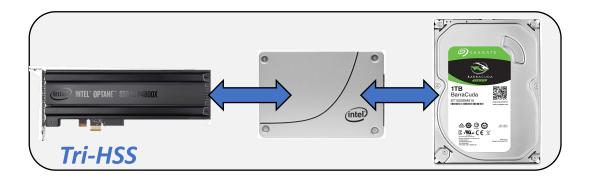


Lack of Extensibility (2/2)

Rigid techniques that require significant effort to accommodate more than two devices

Change in storage configuration

Design a new policy



Our Goal

A data-placement mechanism that can provide:

1.Adaptivity, by continuously learning and adapting to the application and underlying device characteristics

2.Easy extensibility to incorporate a wide range of hybrid storage configurations

Our Proposal

Sibyl Formulates data placement in hybrid storage systems as a **reinforcement learning problem**

Sibyl is an oracle that makes accurate prophecies https://en.wikipedia.org/wiki/Sibyl

Talk Outline

Key Shortcomings of Prior Data Placement Techniques

Formulating Data Placement as Reinforcement Learning

Sibyl: Overview

Evaluation of Sibyl and Key Results

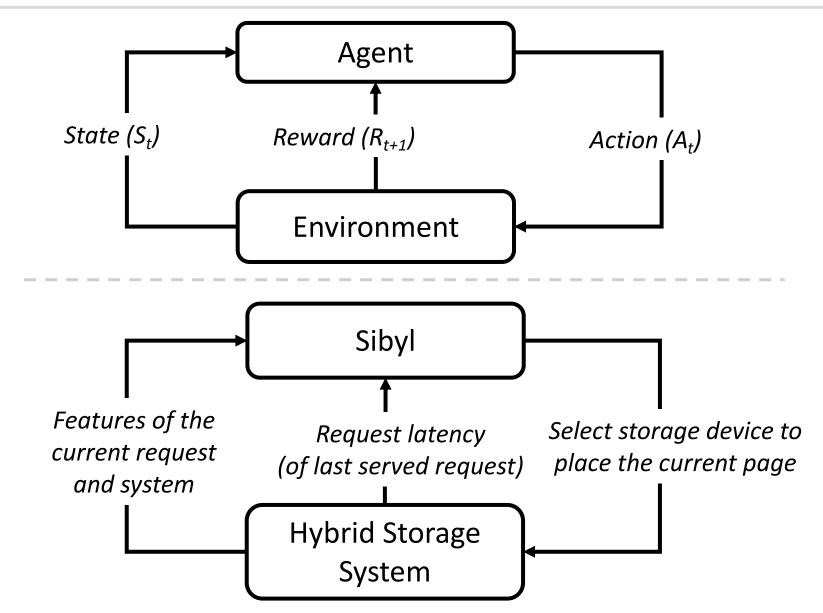
Conclusion

Basics of Reinforcement Learning (RL)

Environment

Agent learns to take an **action** in a given **state** to maximize a numerical **reward**

Formulating Data Placement as RL



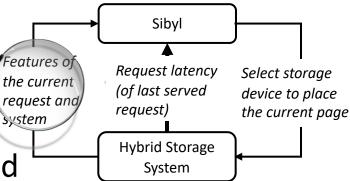
What is State?

• Limited number of state features:

- Reduce the implementation overhead
- RL agent is more sensitive to reward

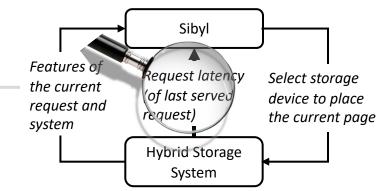
 $O_t = (size_t, type_t, intr_t, cnt_t, cap_t, curr_t)$

• We **quantize the state representation** into bins to reduce storage overhead



What is Reward?

• Defines the **objective** of Sibyl



- We formulate the reward as a function of the request latency
- Encapsulates three key aspects:
 - Internal state of the device (e.g., read/write latencies, the latency of garbage collection, queuing delays, ...)
 - Throughput
 - Evictions
- More details in the paper
 SAFARI

What is Action?

• At every new page request, the action is to select a storage device



 Action can be easily extended to any number of storage devices

• Sibyl learns to proactively evict or promote a page

Talk Outline

Key Shortcomings of Prior Data Placement Techniques

Formulating Data Placement as Reinforcement Learning

Sibyl: Overview

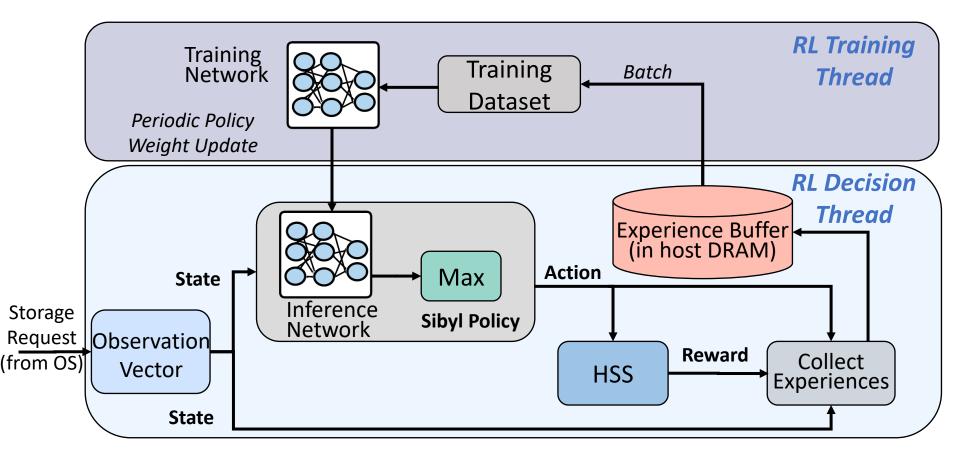
Evaluation of Sibyl and Key Results

Conclusion

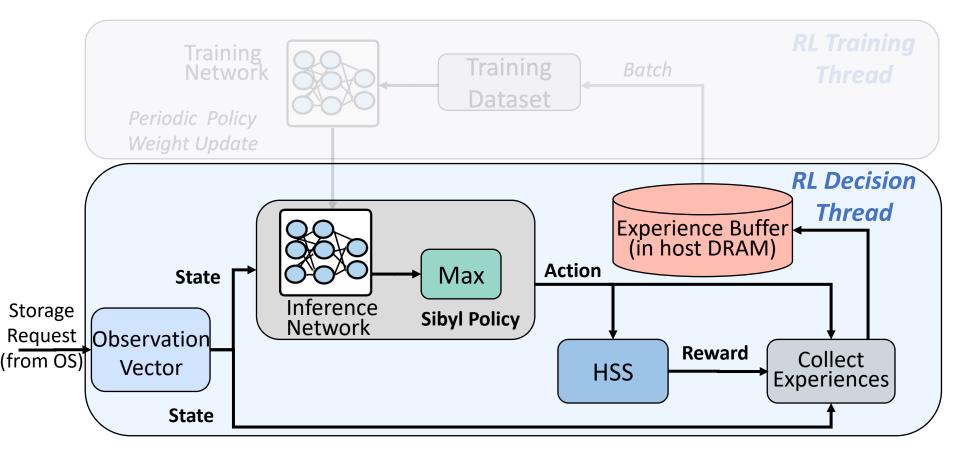
Sibyl Execution



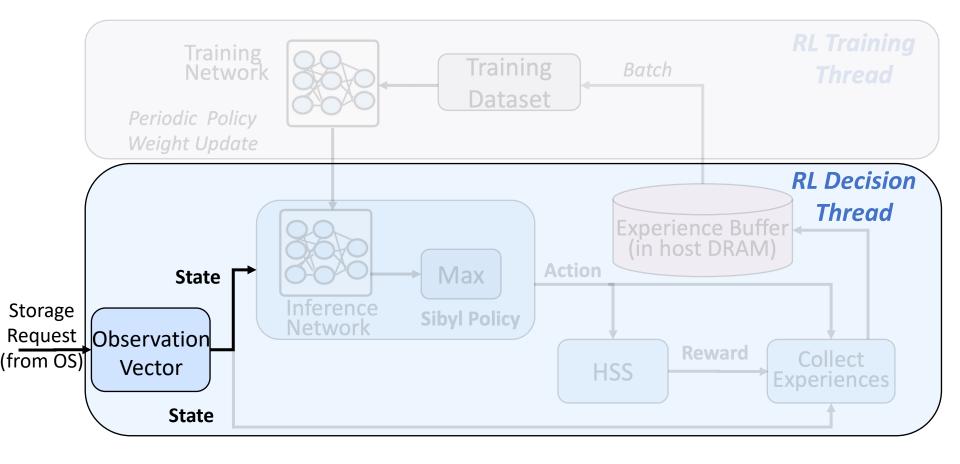
Sibyl Design: Overview



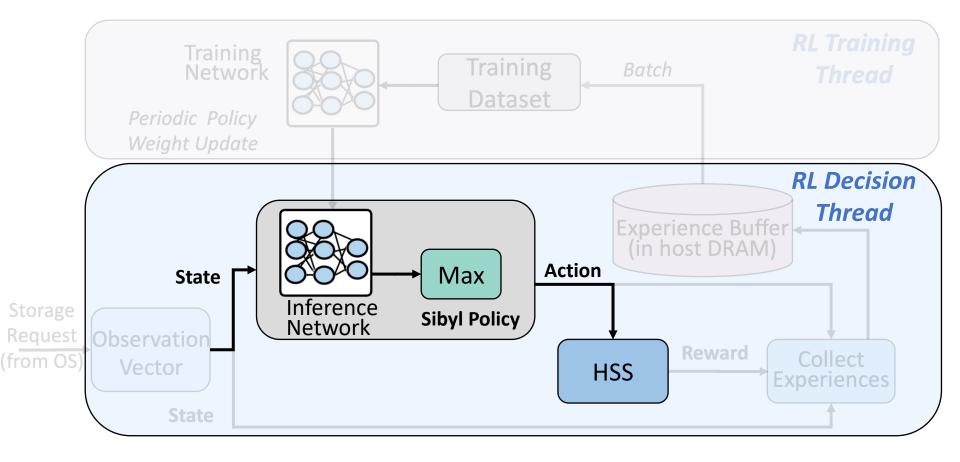
RL Decision Thread



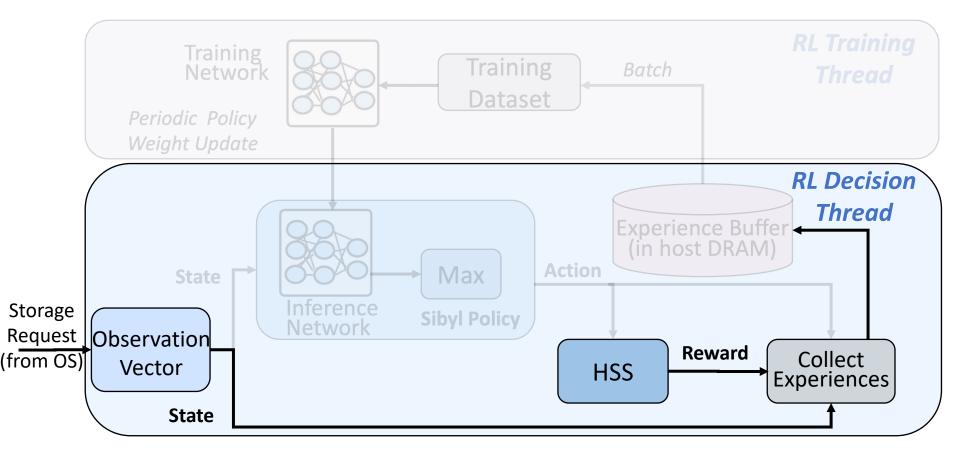
RL Decision Thread



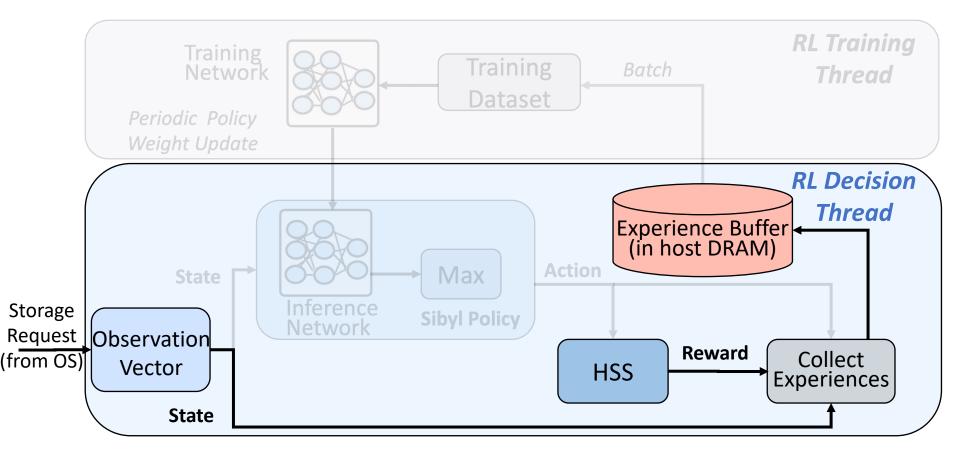
RL Decision Thread



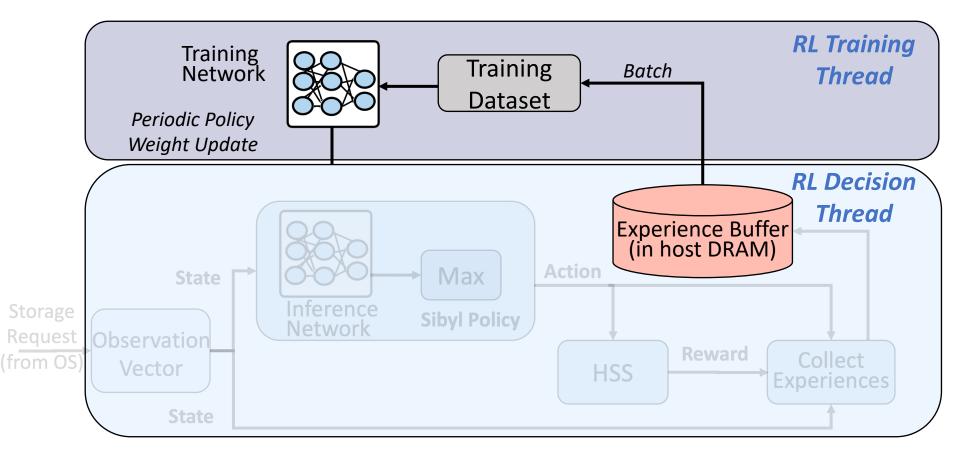
RL Decision Thread



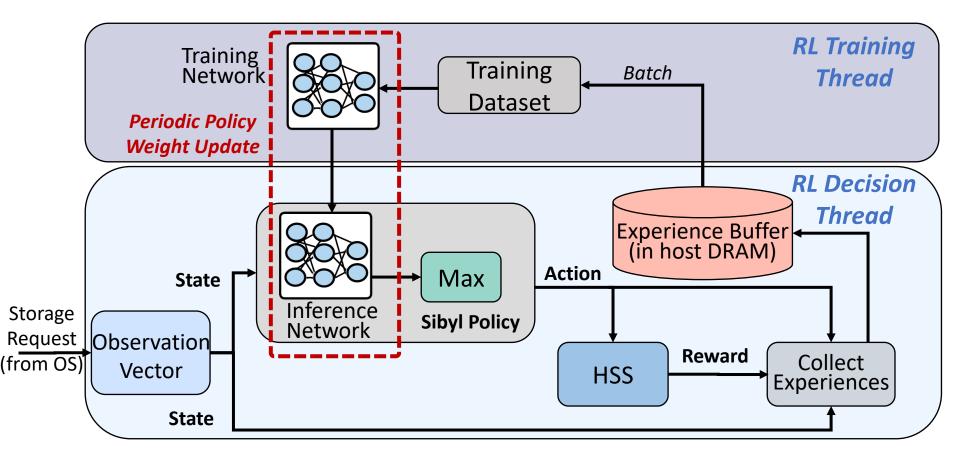
RL Decision Thread



RL Training Thread



Periodic Weight Transfer



Talk Outline

Key Shortcomings of Prior Data Placement Techniques

Formulating Data Placement as Reinforcement Learning

Sibyl: Overview

Evaluation of Sibyl and Key Results

Conclusion

Evaluation Methodology (1/3)

Real system with various HSS configurations

- Dual-hybrid and tri-hybrid systems

Evaluation Methodology (2/3)

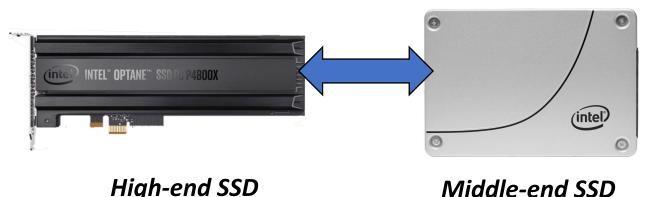
Cost-Oriented HSS Configuration



High-end SSD

Low-end HDD

Performance-Oriented HSS Configuration

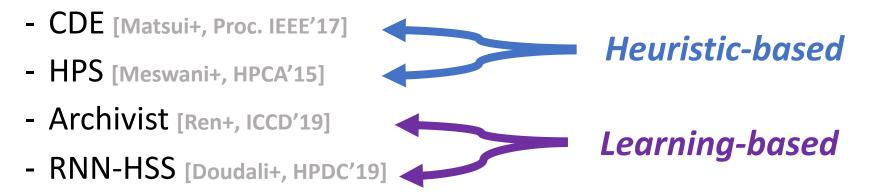


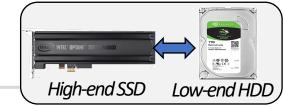
Evaluation Methodology (3/3)

• 18 different workloads from:

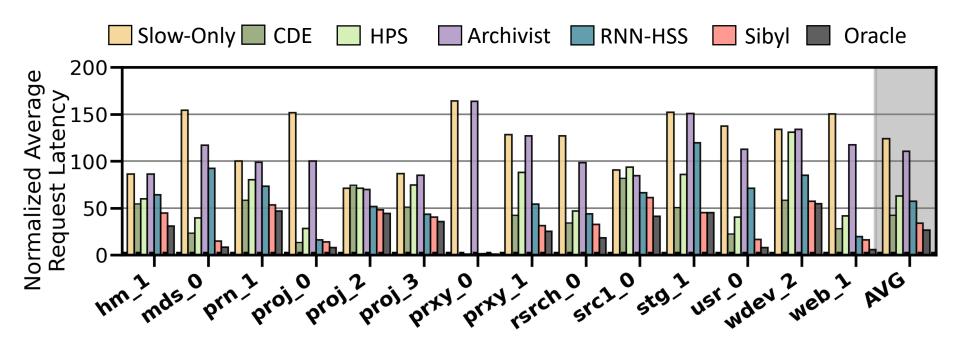
- MSR Cambridge and Filebench Suites

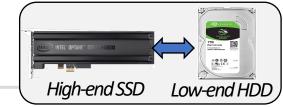
• Four state-of-the-art data placement baselines:



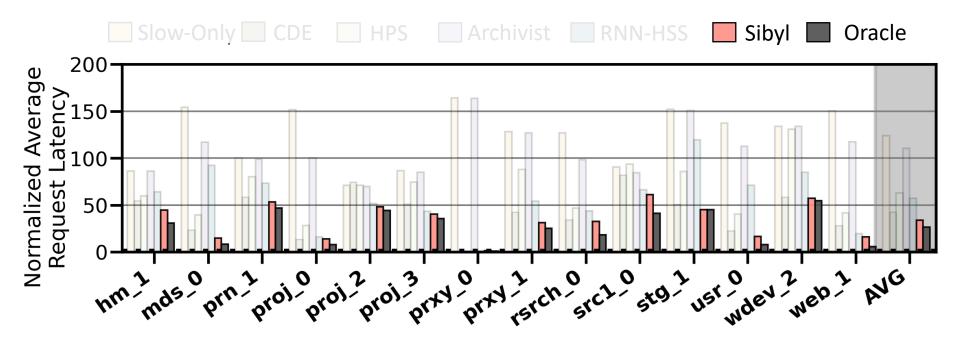


Cost-Oriented HSS Configuration



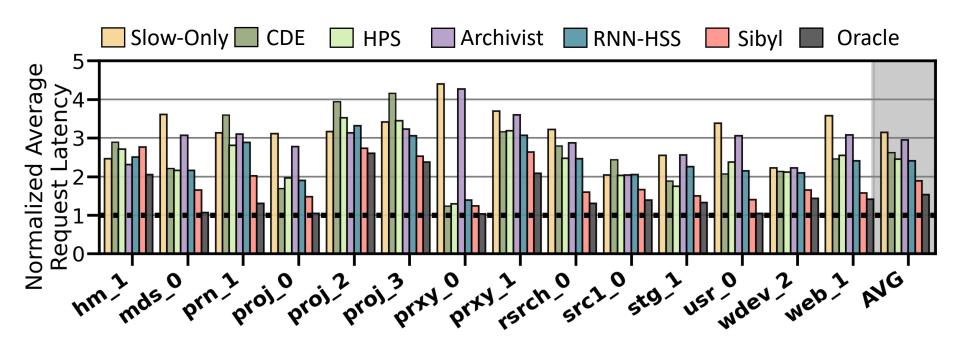


Cost-Oriented HSS Configuration

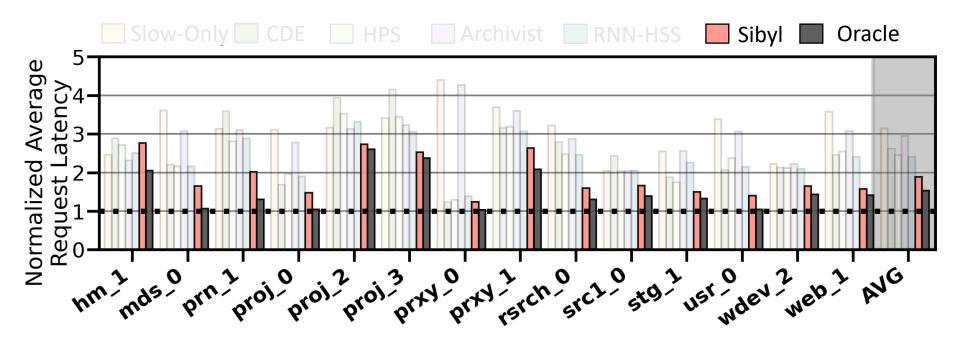


Sibyl consistently outperforms all the baselines for all the workloads

Performance-Oriented HSS Configuration

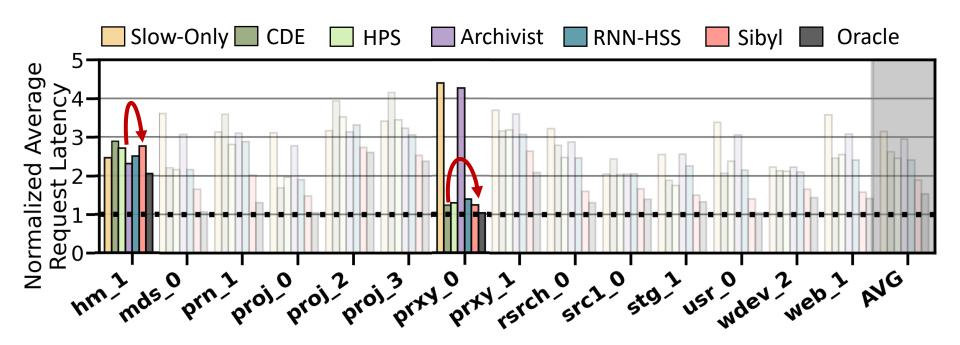


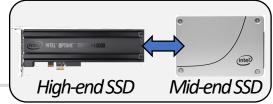
Performance-Oriented HSS Configuration



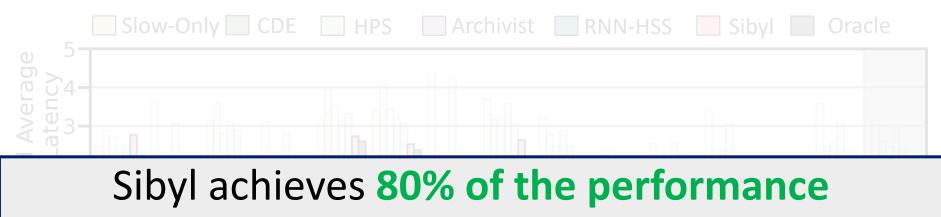
Sibyl provides 21.6% performance improvement by dynamically adapting its data placement policy

Performance-Oriented HSS Configuration





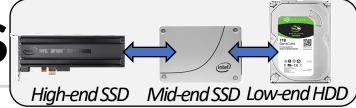
Performance-Oriented HSS Configuration



of an oracle policy that has

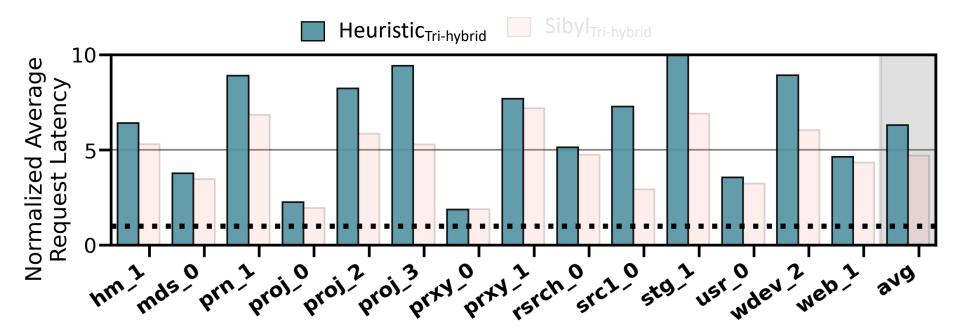
complete knowledge of future access patterns

Performance on Tri-HSS

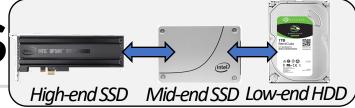


Extending Sibyl for more devices:

- 1. Add a new action
- **2.** Add the remaining capacity of the new device as a state feature

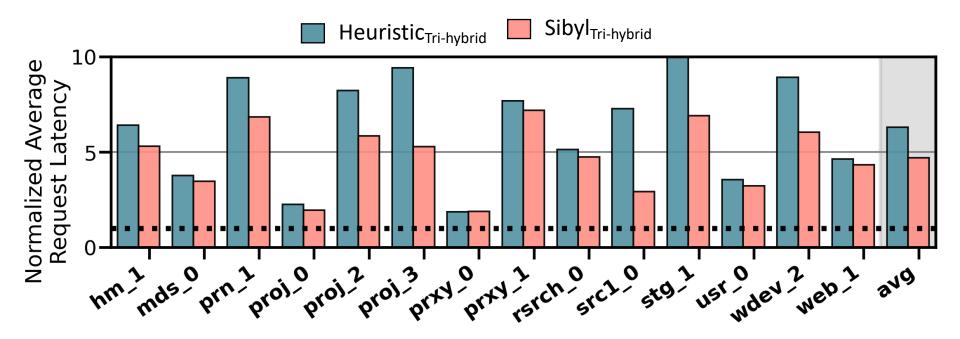


Performance on Tri-HSS

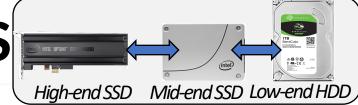


Extending Sibyl for more devices:

- 1. Add a new action
- 2. Add the remaining capacity of the new device as a state feature



Performance on Tri-HSS



Extending Sibyl for more devices: 1. Add a new action

Sibyl outperforms the state-of-the-art data placement policy by 48.2% in a real tri-hybrid system Sibyl reduces the system architect's burden by providing ease of extensibility

Sibyl's Overhead

• 124.4 KiB of total storage cost

- Experience buffer, inference and training network
- 40-bit metadata overhead per page for state features
- Inference latency of ~10ns
- Training latency of ~2us

More in the Paper (1/3)

Throughput (IOPS) evaluation

 Sibyl provides high IOPS compared to baseline policies because it indirectly captures throughput (size/latency)

- Evaluation on unseen workloads
 - Sibyl can effectively adapt its policy to highly dynamic workloads

- Evaluation on **mixed workloads**
 - Sibyl provides equally-high performance benefits as in single workloads

More in the Paper (2/3)

- Evaluation on different features
 - Sibyl autonomously decides which features are important to maximize the performance
- Evaluation with different hyperparameter values

- Sensitivity to fast storage capacity
 - Sibyl provides scalability by dynamically adapting its policy to available storage size
- Explainability analysis of Sibyl's decision making
 - Explain Sibyl's actions for different workload characteristics and device configurations

More in the Paper (3/3)

Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems Using Online Reinforcement Learning

Gagandeep Singh1Rakesh Nadig1Jisung Park1Rahul Bera1Nastaran Hajinazar1David Novo3Juan Gómez-Luna1Sander Stuijk2Henk Corporaal2Onur Mutlu11ETH Zürich2Eindhoven University of Technology3LIRMM, Univ. Montpellier, CNRS

https://arxiv.org/pdf/2205.07394.pdf

https://github.com/CMU-SAFARI/Sibyl

Talk Outline

Key Shortcomings of Prior Data Placement Techniques

Formulating Data Placement as Reinforcement Learning

Sibyl: Overview

Evaluation of Sibyl and Key Results

Conclusion

Conclusion

- We introduced Sibyl, the first reinforcement learningbased data placement technique in hybrid storage systems that provides
 - Adaptivity
 - Easily extensibility
 - Ease of design and implementation

• We evaluated Sibyl on real systems using many different workloads

- Sibyl **improves performance by 21.6%** compared to the best prior data placement policy in a dual-HSS configuration
- In a tri-HSS configuration, Sibyl **outperforms** the state-of-the-artdata placement policy by **48.2%**
- Sibyl achieves 80% of the performance of an oracle policy with a storage overhead of only 124.4 KiB

SAFARI

https://github.com/CMU-SAFARI/Sibyl

Adaptive and Extensible Data Placement in Hybrid Storage Systems Using Online Reinforcement Learning

Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar, David Novo, Juan Gómez Luna, Sander Stuijk, Henk Corporaal, Onur Mutlu

TU

2

97

ISCA 2022 Paper, Slides, Videos

 Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar, David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu, "Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems Using Online Reinforcement Learning" Proceedings of the <u>49th International Symposium on Computer</u> <u>Architecture</u> (ISCA), New York, June 2022.
 [Slides (pptx) (pdf)] [arXiv version]
 [Sibyl Source Code] [Talk Video (16 minutes)]

Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems Using Online Reinforcement Learning

Gagandeep Singh1Rakesh Nadig1Jisung Park1Rahul Bera1Nastaran Hajinazar1David Novo3Juan Gómez-Luna1Sander Stuijk2Henk Corporaal2Onur Mutlu11ETH Zürich2Eindhoven University of Technology3LIRMM, Univ. Montpellier, CNRS

https://arxiv.org/pdf/2205.07394.pdf

SSD Course (Spring 2023)

Spring 2023 Edition:

https://safari.ethz.ch/projects and seminars/spring2023/ doku.php?id=modern ssds

Fall 2022 Edition:

https://safari.ethz.ch/projects and seminars/fall2022/do ku.php?id=modern ssds

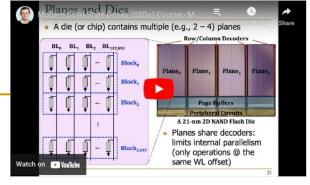
Youtube Livestream (Spring 2023):

https://www.youtube.com/watch?v=4VTwOMmsnJY&list =PL5Q2soXY2Zi 8qOM5Icpp8hB2SHtm4z57&pp=iAQB

Youtube Livestream (Fall 2022):

- https://www.youtube.com/watch?v=hqLrd-Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4JI5bwhAMpAp13&p p=iAQB
- Project course
 - Taken by Bachelor's/Master's students
 - SSD Basics and Advanced Topics
 - Hands-on research exploration
 - Many research readings

https://www.youtube.com/onurmutlulectures



Fall 2022 Meetings/Schedule

Week	Date	Livestream	Meeting	Learning Materials	Assignment
W1	06.10		M1: P&S Course Presentation	Required Recommended	
W2	12.10	You Tube Live	M2: Basics of NAND Flash- Based SSDs m PDF m PPT	Required Recommended	
W3	19.10	You Tube Live	M3: NAND Flash Read/Write Operations mPDF mPPT	Required Recommended	
W4	26.10	You Tube Live	M4: Processing inside NAND Flash	Required Recommended	
W5	02.11	You Tube Live	M5: Advanced NAND Flash Commands & Mapping	Required Recommended	
W6	09.11	You Tute Live	M6: Processing inside Storage	Required Recommended	
W7	23.11	You Tube Live	M7: Address Mapping & Garbage Collection	Required Recommended	
W8	30.11	You Tute Live	M8: Introduction to MQSim	Required Recommended	
W9	14.12	You Ture Live	M9: Fine-Grained Mapping and Multi-Plane Operation-Aware Block Management	Required Recommended	
W10	04.01.2023	You Tube Premiere	M10a: NAND Flash Basics	Required Recommended	
			M10b: Reducing Solid-State Drive Read Latency by Optimizing Read-Retry	Required Recommended	
			M10c: Evanesco: Architectural Support for Efficient Data Sanitization in Modern Flash- Based Storage Systems	Required Recommended	
			M10d: DeepSkatch: A New Machine Learning-Based Reference Search Technique for Post-Deduplication Delta Compression mPDF mPPT mPaper	Required Recommended	
W11	11.01	You 🛅 Live	M11: FLIN: Enabling Fairness and Enhancing Performance in Modern NVMe Solid State Drives im PDF im PPT	Required	
W12	25.01	You De Premiere	M12: Flash Memory and Solid- State Drives	Recommended	

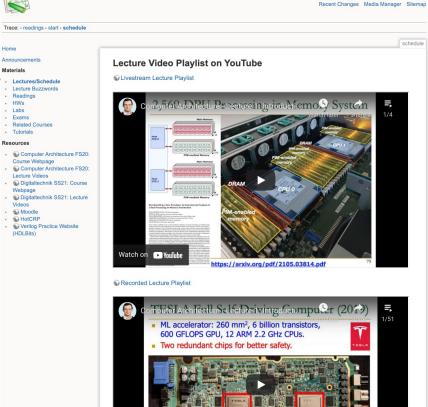
Comp Arch (Fall 2021)

- Fall 2021 Edition:
 - https://safari.ethz.ch/architecture/fall2021/doku. php?id=schedule
- Fall 2020 Edition:
 - https://safari.ethz.ch/architecture/fall2020/doku. php?id=schedule

Youtube Livestream (2021):

- https://www.youtube.com/watch?v=4yfkM_5EFg o&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF
- Youtube Livestream (2020):
 - https://www.youtube.com/watch?v=c3mPdZA-Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN
- Master's level course
 - Taken by Bachelor's/Masters/PhD students
 - Cutting-edge research topics + fundamentals in Computer Architecture
 - 5 Simulator-based Lab Assignments
 - Potential research exploration
 - Many research readings

https://www.youtube.com/onurmutlulectures



Computer Architecture - Fall 2021

Watch on • Voluble • UupOTTmvqOE?t=4238=

Fall 2021 Lectures & Schedule

Week	Date	Livestream	Lecture	Readings	Lab	HW
W1	30.09 Thu.	You the Live	L1: Introduction and Basics	Required Mentioned	Lab 1 Out	HW 0 Out
	01.10 Fri.	You Tube Live	L2: Trends, Tradeoffs and Design Fundamentals @(PDF) @(PPT)	Required Mentioned		
W2	07.10 Thu.	You 🕪 Live	L3a: Memory Systems: Challenges and Opportunities ma(PDF) === (PPT)	Described Suggested		HW 1 Out
			L3b: Course Info & Logistics			
			L3c: Memory Performance Attacks	Described Suggested		
	08.10 Fri.	You Tube Live	L4a: Memory Performance Attacks	Described Suggested	Lab 2 Out	
			L4b: Data Retention and Memory Refresh	Described Suggested		
			L4c: RowHammer	Described Suggested		

Hermes & Sibyl: ML-Driven Memory & Storage Management

Onur Mutlu

<u>omutlu@gmail.com</u>

https://people.inf.ethz.ch/omutlu

27 September 2023

VMware

ETH zürich

Hermes Discussion

• FAQs

- What are the selected set of program features?
- <u>Can you provide some intuition on why these</u> <u>features work?</u>
- What happens in case of a misprediction?
- <u>What's the performance headroom for off-chip</u> <u>prediction?</u>
- <u>Do you see a variance of different features in final</u> prediction accuracy?

Simulation Methodology

- System parameters
- Evaluated workloads

- More Results
 - Percentage of off-chip requests
 - <u>Reduction in stall cycles by reducing the</u> <u>critical path</u>
 - Fraction of off-chip load requests
 - Accuracy and coverage of POPET
 - Effect of different features
 - Are all features required?
 - <u>1C performance</u>
 - <u>1C performance line graph</u>
 - <u>1C performance against prior predictors</u>
 - Effect on stall cycles
 - <u>8C performance</u>
 - Sensitivity:
 - Hermes request issue latency
 - <u>Cache hierarchy access latency</u>
 - Activation threshold
 - <u>ROB size</u>
 - LLC size
 - Power overhead
 - Accuracy without prefetcher
 - <u>Main memory request overhead with</u> <u>different prefetchers</u>

HERMES BACKUP

Initial Set of Program Features

Features without control-flow information	Features with control-flow information			
	8. Load PC			
1. Load virtual address	9. PC \oplus load virtual address			
2. Virtual page number	10. $PC \oplus virtual page number$			
3. Cacheline offset in page	11. PC \oplus cacheline offset			
4. First access	12. PC + first access			
5. Cacheline offset + first access	13. PC \oplus byte offset			
6. Byte offset in cacheline	14. PC \oplus word offset			
7. Word offset in cacheline	15. Last-4 load PCs			
	16. Last-4 PCs			

Selected Set of Program Features

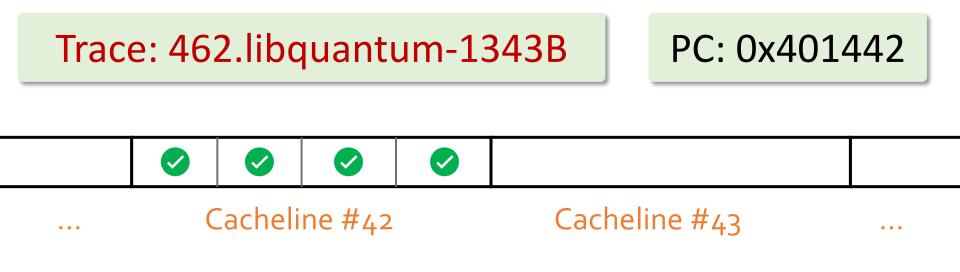
Five features

- $PC \oplus cacheline offset$
- $PC \oplus byte offset$
- PC + first access
- Cacheline offset ← first access
- Last-4 load PCs

A binary hint that

represents whether or not a cacheblock has been recently touched

When A Feature Works/Does Not Work?



Without prefetcher

- PC + first access
- Cacheline offset + first access

With a simple stride prefetcher

• Cacheline offset + first access

What Happens in case of a Misprediction?

- Two cases of mispredictions:
- Predicted on-chip but actually goes off-chip
 - Loss of performance improvement opportunity

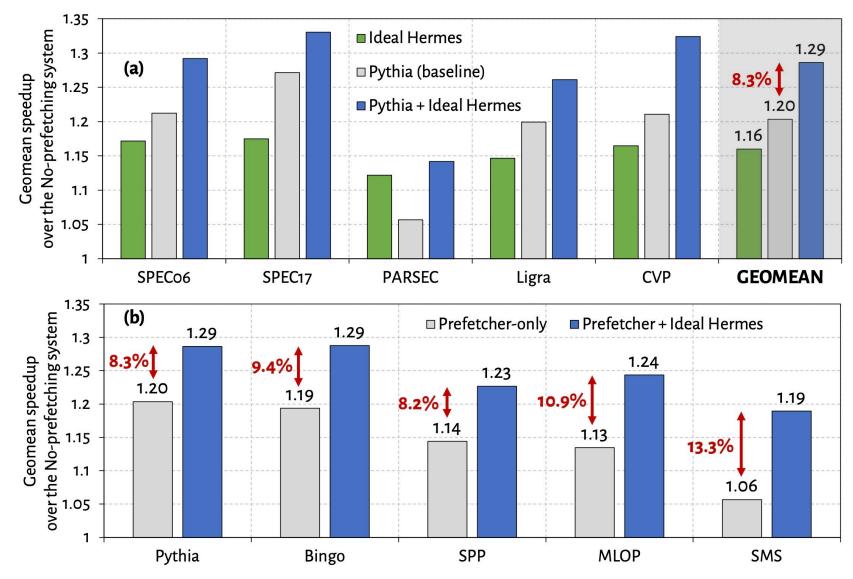
No need for misprediction detection and recovery

Predicted off-chip but actually is on-chip

 Memory controller forwards the data to LLC if and only if a load to the same address have already missed LLC and arrived at the memory controller

No need for misprediction detection and recovery

Performance Headroom of Off-Chip Prediction



System Parameters

Table 4: Simulated system parameters

Core	1 and 8 cores, 6-wide fetch/execute/commit, 512-entry ROB, 128/72-entry LQ/SQ, Perceptron branch predictor [61] with 17-cycle misprediction penalty		
L1/L2 Caches	Private, 48KB/1.25MB, 64B line, 12/20-way, 16/48 MSHRs, LRU, 5/15-cycle round-trip latency [25]		
LLC	3MB/core, 64B line, 12 way, 64 MSHRs/slice, SHiP [122], 55-cycle round-trip latency [24, 25], Pythia prefetcher [32]		
Main Memory	1C: 1 channel, 1 rank per channel; 8C: 4 channels, 2 ranks per channel; 8 banks per rank, DDR4-3200 MTPS, 64b databus per channel, 2KB row buffer per bank, tRCD=12.5ns, tRP=12.5ns, tCAS=12.5ns		
Hermes	Hermes-O/P: 6/18-cycle Hermes request issue latency		

SAFARI

Table 5: Workloads used for evaluation

Suite	#Workloads	#Traces	Example Workloads
SPEC06	14	22	gcc, mcf, cactusADM, lbm,
SPEC17	11	23	gcc, mcf, pop2, fotonik3d,
PARSEC	4	12	canneal, facesim, raytrace,
Ligra	11	20	BFS, PageRank, Radii,
CVP	33	33	integer, floating-point, server,

Observation: Not All Off-Chip Loads are Prefetched

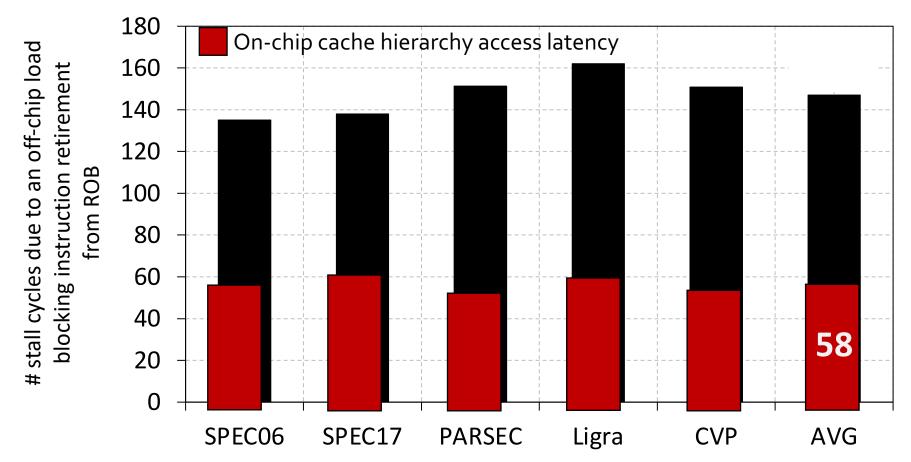
Nearly 50% of the loads are still not prefetched

Observation: Not All Off-Chip Loads are Prefetched

70% of these off-chip loads blocks ROB

Observation: With Large Cache Comes Longer Latency

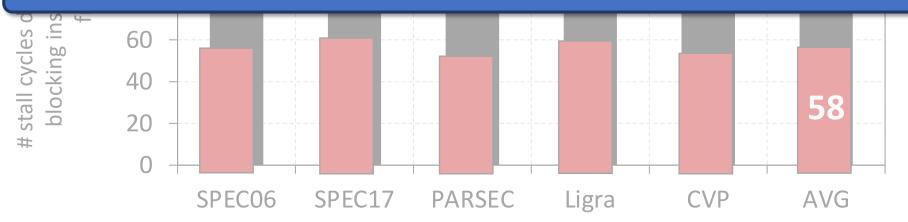
• On-chip cache access latency significantly contributes to the latency of an off-chip load



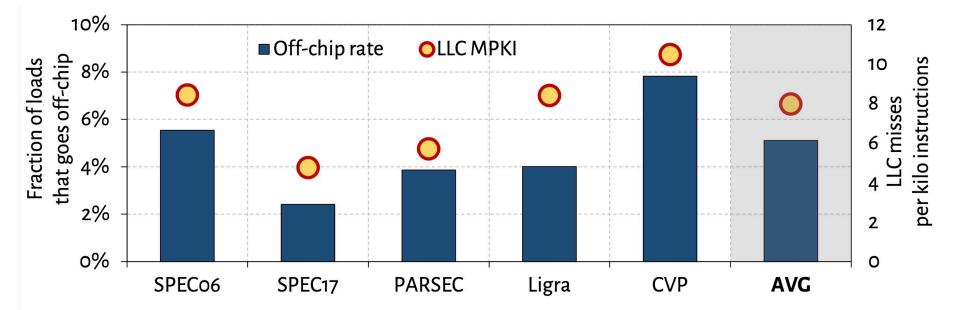
Observation: With Large Cache Comes Longer Latency

• On-chip cache access latency significantly contributes to the latency of an off-chip load

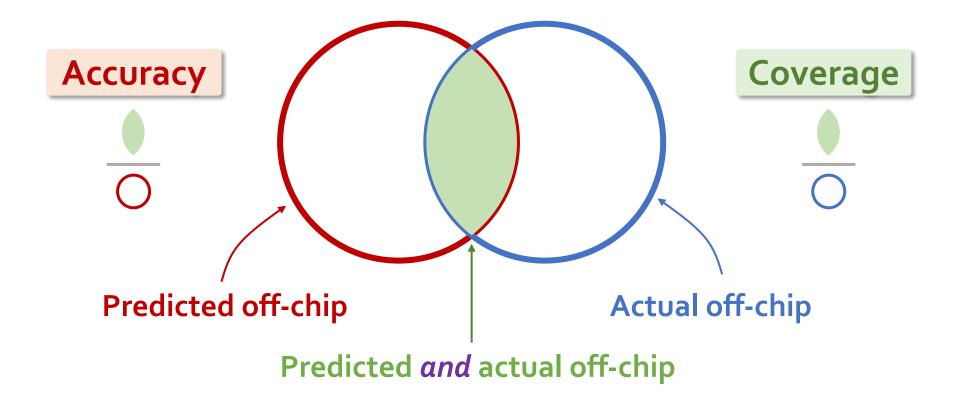
40% of stall cycles caused by an off-chip load can be eliminated by removing on-chip cache access latency from its critical path



What Fraction of Load Requests Goes Off-Chip?



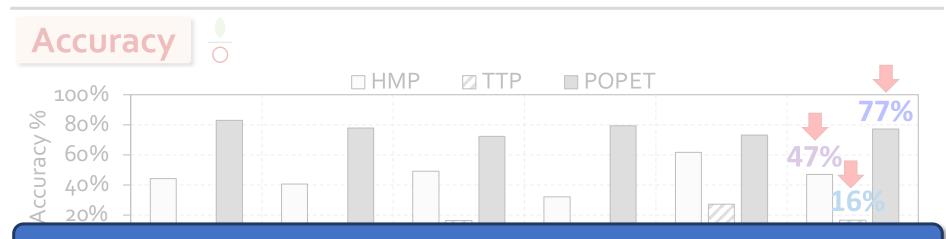
Off-Chip Prediction Quality: *Defining Metrics*



Off-Chip Prediction Quality: Analysis

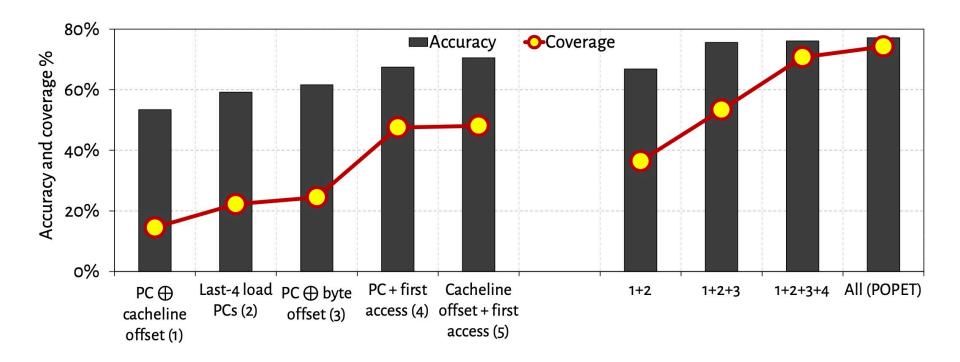


Off-Chip Prediction Quality: Analysis



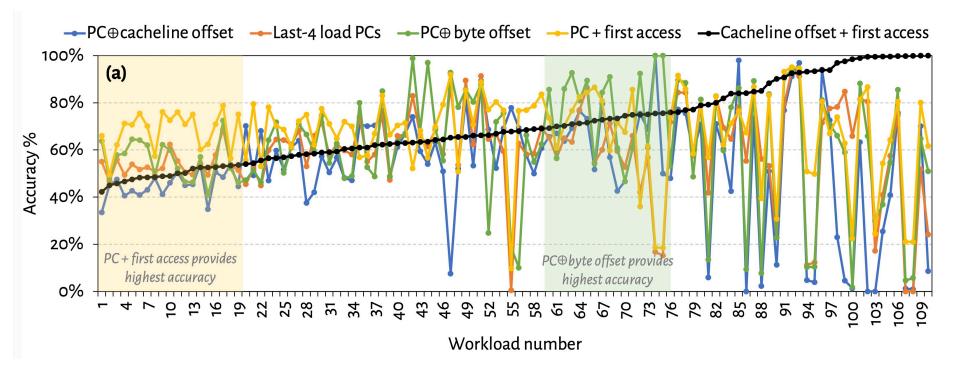
POPET provides off-chip predictions with high-accuracy and high-coverage

Effect of Different Features



Combination of features provides both higher accuracy and higher coverage than any individual feature

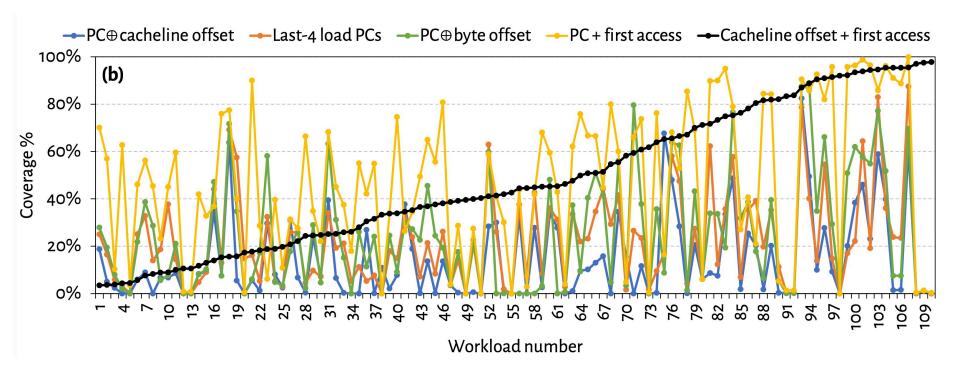
Are All Features Required? (1)



No single feature individually provides highest prediction accuracy across *all* workloads

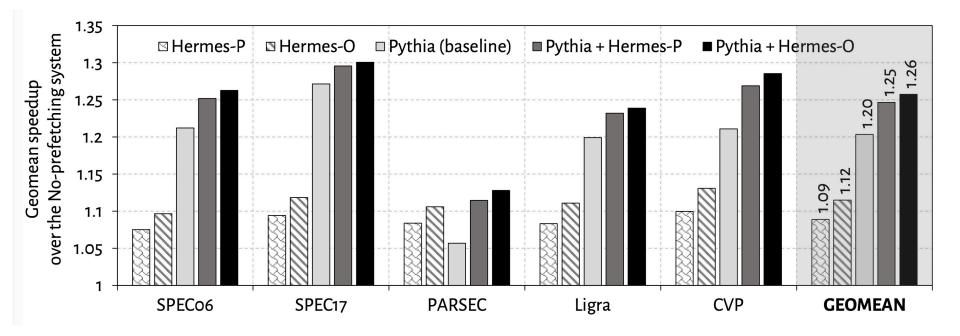
Are All Features Required? (2)

SAFARI



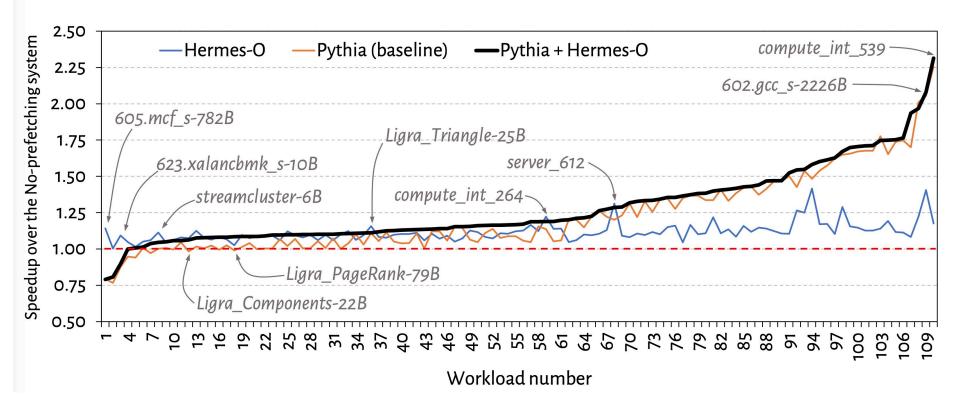
No single feature individually provides highest prediction coverage also across *all* workloads

Single-Core Performance

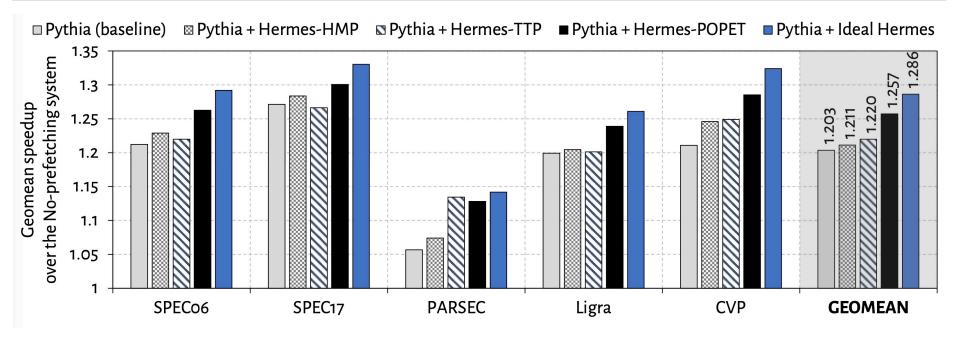


Hermes in combination with Pythia outperforms Pythia alone in every workload category

Single-Core Performance Line Graph



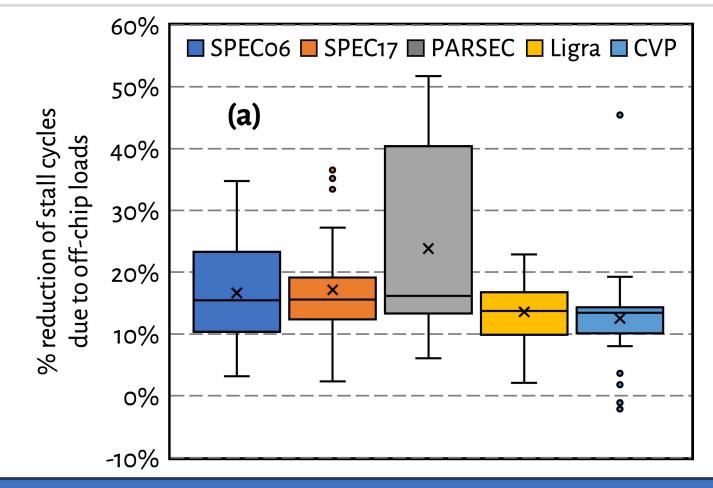
Single-Core Performance Against Prior Predictors



POPET provides higher performance benefit than prior predictors

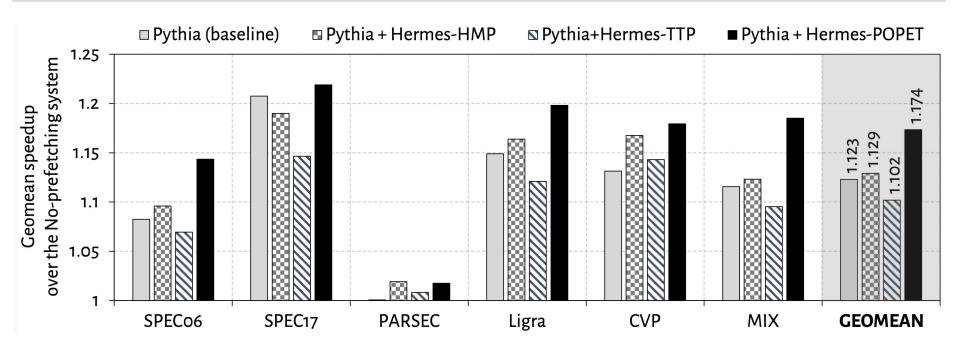
Hermes with POPET achieves nearly 90% performance improvement of the Ideal Hermes

Effect on Stall Cycles



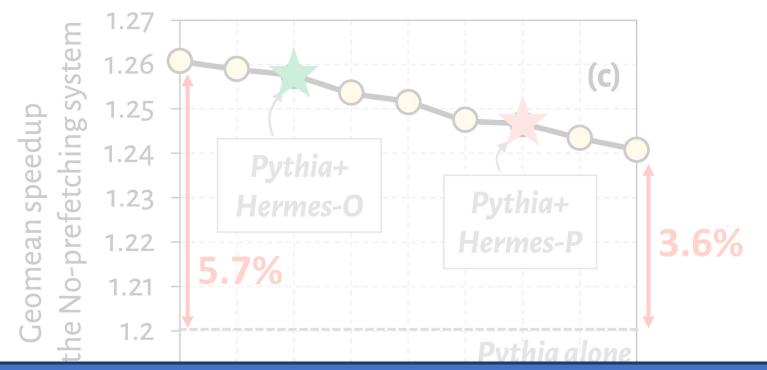
Hermes reduces off-chip load induced stall cycles on average by 16.2% (up-to 51.8%)

Eight-Core Performance



Hermes in combination with Pythia outperforms Pythia alone by **5.1%** on average

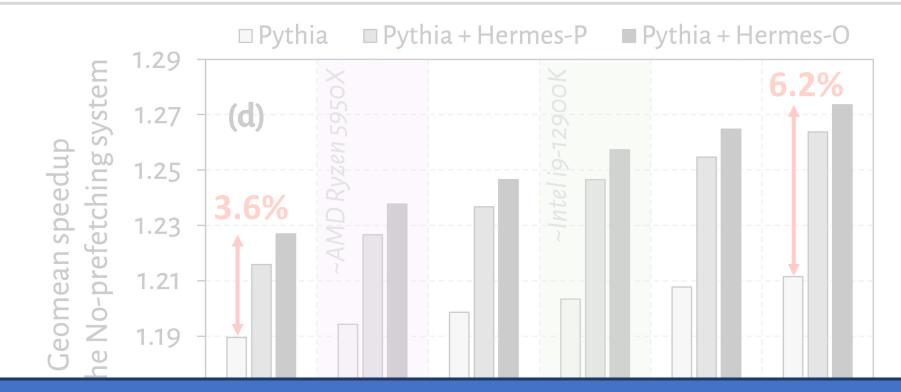
Effect of Hermes Request Issue Latency



Hermes in combination with Pythia outperforms Pythia alone even with a 24-cycle Hermes request issue latency

Hermes request issue latency (in processor cycles)

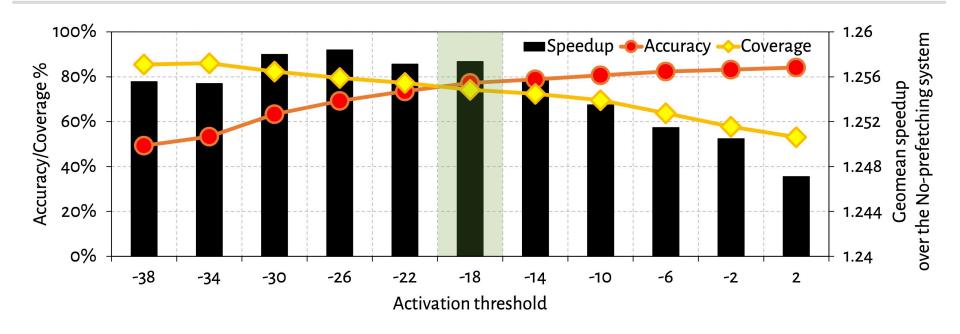
Effect of Cache Hierarchy Access Latency



Hermes can provide even higher performance benefit in future processors with bigger and slower on-chip caches

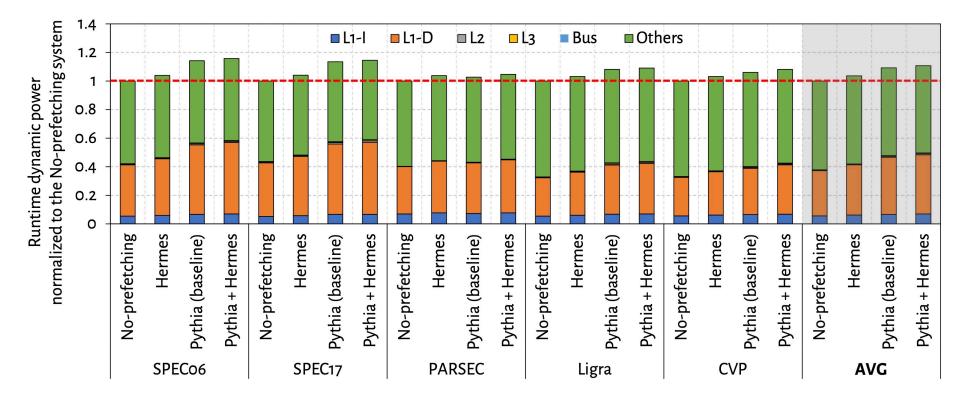
On-chip cache hierarchy access latency (in processor cycles)

Effect of Activation Threshold

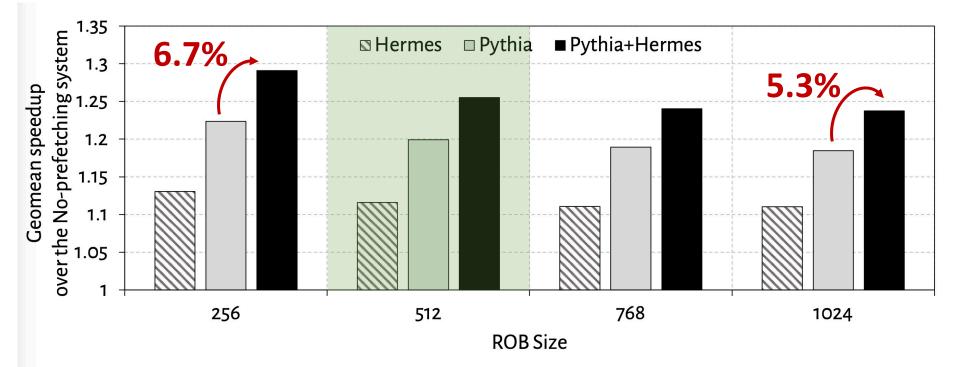


With increase in activation threshold 1. Accuracy increases 2. Coverage decreases

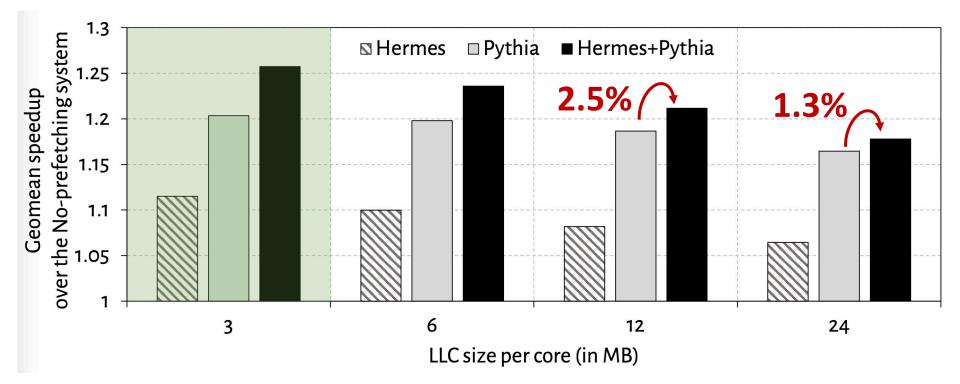
Power Overhead



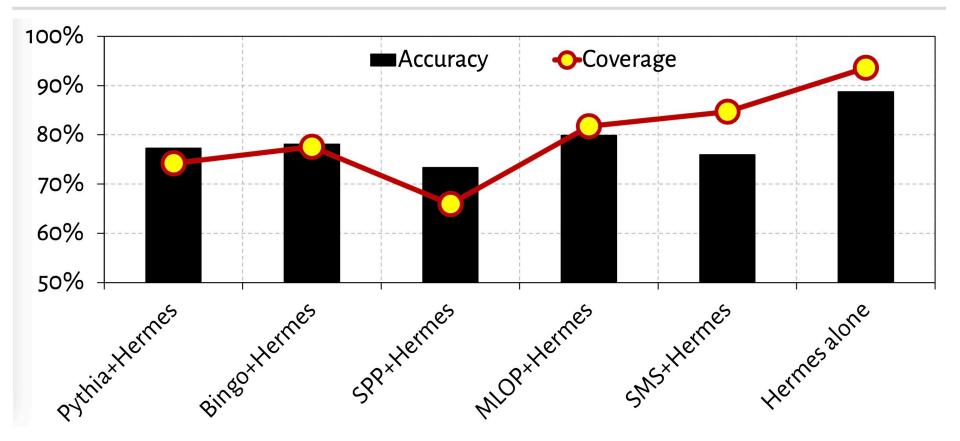
Effect of ROB Size



Effect of LLC Size

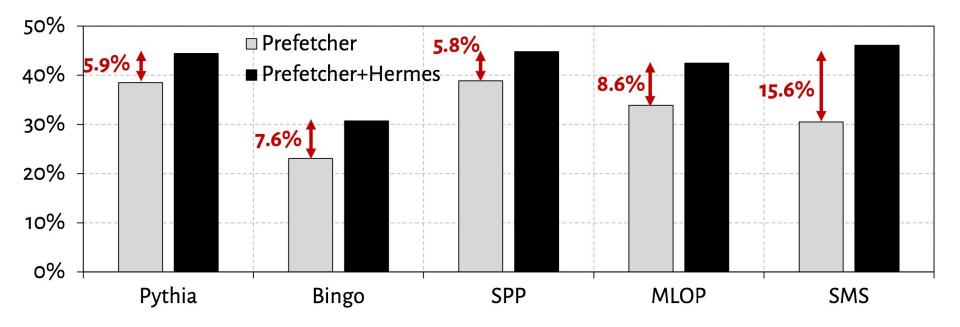


Accuracy and Coverage with Different Prefetchers



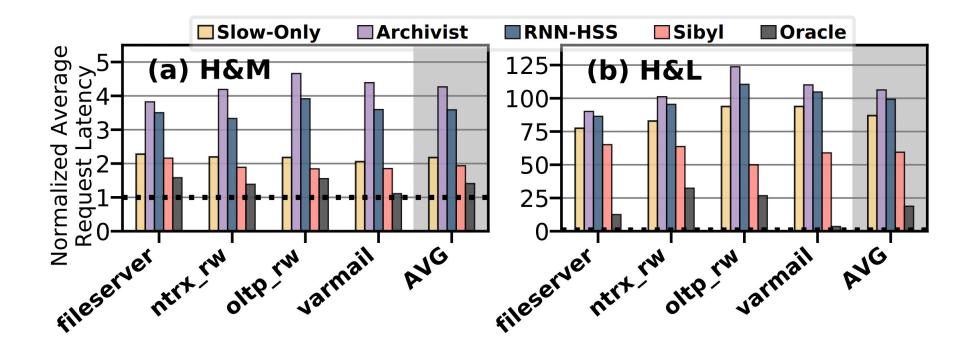
POPET's accuracy and coverage increases significantly in absence of a data prefetcher

Increase in Main Memory Requests



SIBYL BACKUP

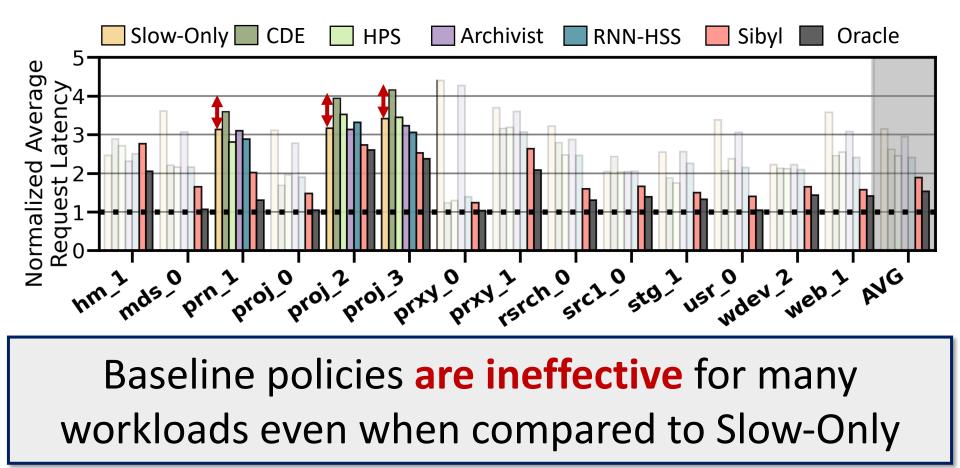
Performance on Unseen Workloads



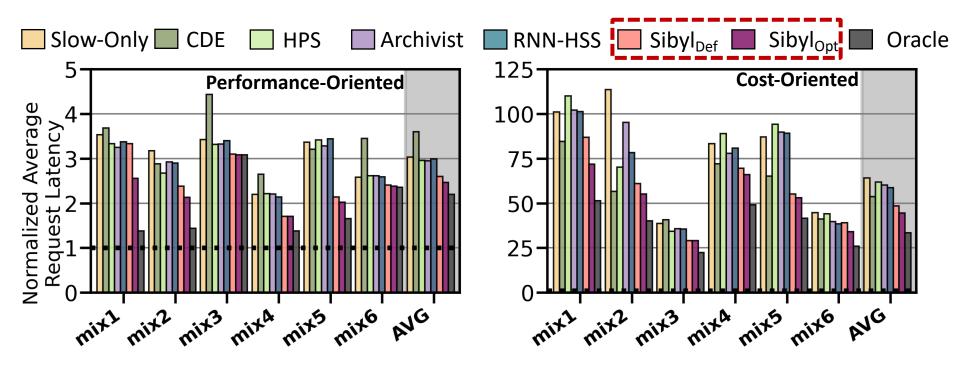
H&M (H&L) HSS configuration, Sibyl outperforms RNN-HSS and Archivist by 46.1% (54.6%) and 8.5% (44.1%), respectively

Performance Analysis

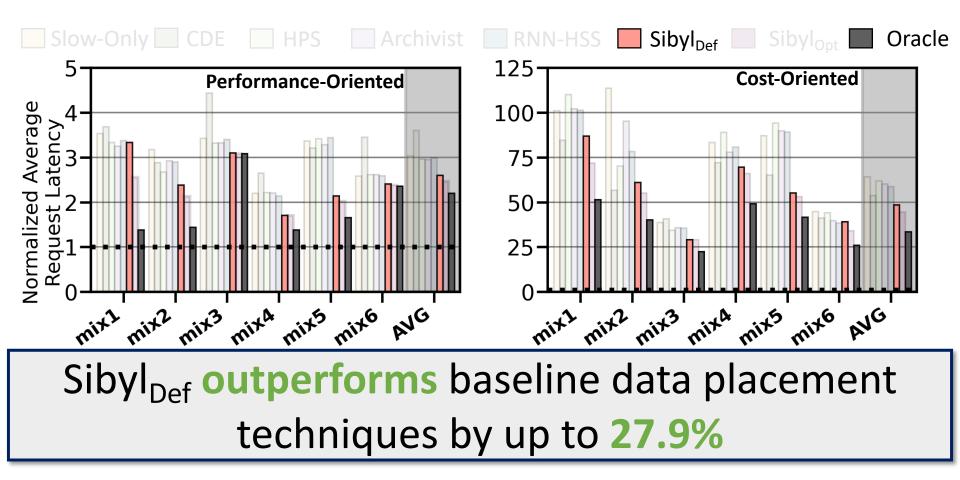
Performance-Oriented HSS Configuration



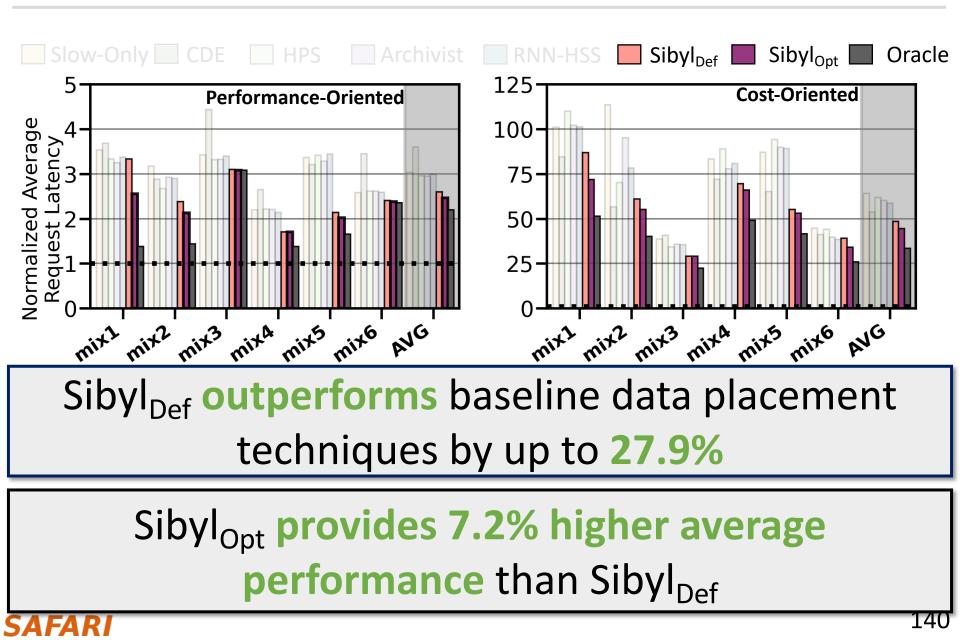
Performance on Mixed Workloads



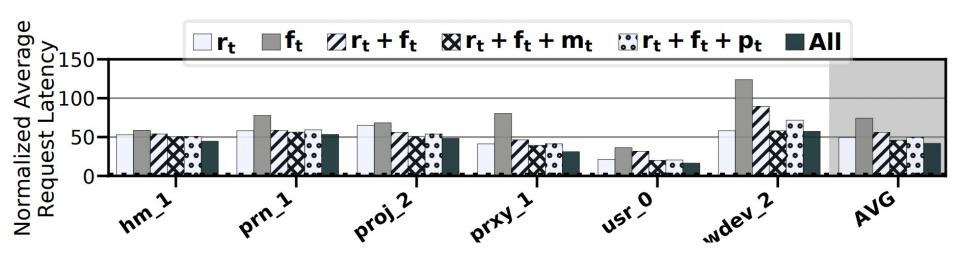
Performance on Mixed Workloads



Performance on Mixed Workloads

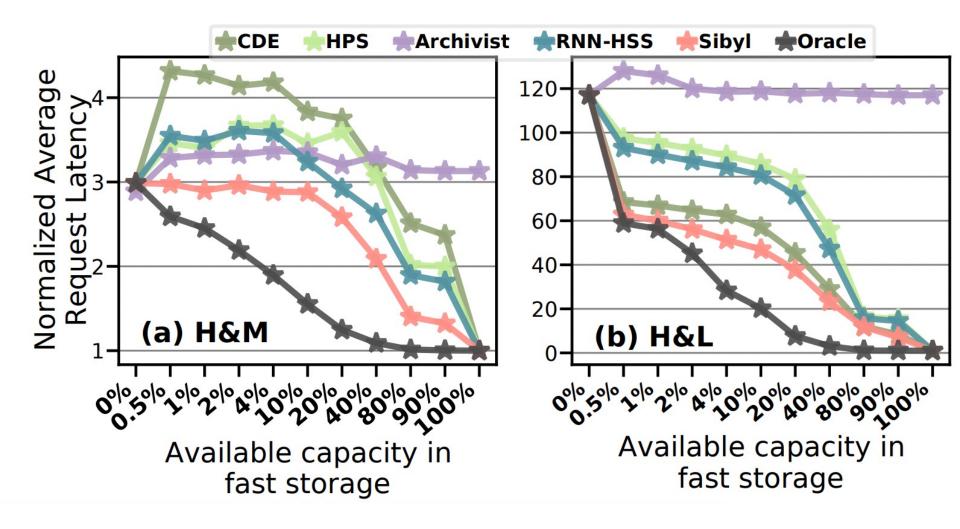


Performance With Different Features

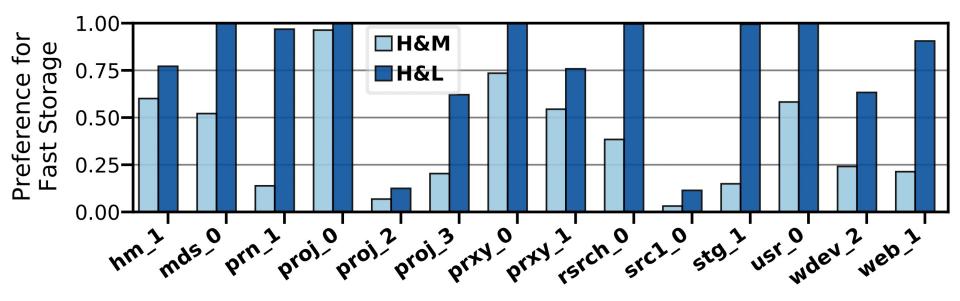


Sibyl autonomously decides which features are important to maximize the performance of the running workload

Sensitivity to Fast Storage Capacity



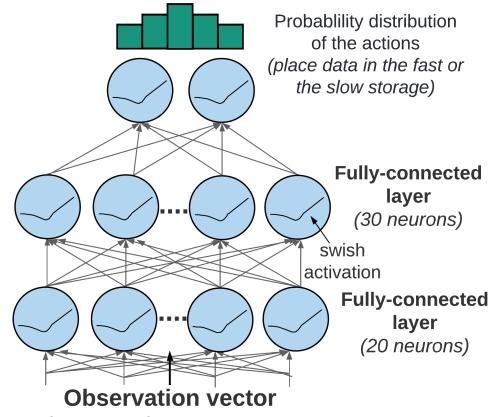
Explainability Analysis



Training and Inference Network

 Training and inference network allow parallel execution

 Observation vector as the input



• Produces probability distribution of Q-values

<size_t, type_t, intr_t, cnt_t, cap_t, curr_t>