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Data-Driven (Self-Optimizing) 
Architectures
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System Architecture Design Today

n Human-driven
q Humans design the policies (how to do things)

n Many (too) simple, short-sighted policies all over the system

n No automatic data-driven policy learning

n (Almost) no learning: cannot take lessons from past actions
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Can we design 
fundamentally intelligent architectures?



An Intelligent Architecture

n Data-driven
q Machine learns the “best” policies (how to do things)

n Sophisticated, workload-driven, changing, far-sighted policies

n Automatic data-driven policy learning

n All controllers are intelligent data-driven agents
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We need to rethink design 
(of all controllers)



Self-Optimizing Memory Controllers
n Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana, 

"Self Optimizing Memory Controllers: A Reinforcement Learning 
Approach"
Proceedings of the 35th International Symposium on Computer Architecture 
(ISCA), pages 39-50, Beijing, China, June 2008.                                
Selected to the ISCA-50 25-Year Retrospective Issue covering 1996-
2020 in 2023 (Retrospective (pdf) Full Issue).
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http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/
https://sites.coecis.cornell.edu/isca50retrospective/files/2023/06/Retrospective__RL.pdf
https://sites.coecis.cornell.edu/isca50retrospective/


Self-Optimizing Memory Prefetchers
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Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu,
"Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, October 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (20 minutes)]
[Lightning Talk Video (1.5 minutes)]
[Pythia Source Code (Officially Artifact Evaluated with All Badges)]
[arXiv version]
Officially artifact evaluated as available, reusable and reproducible.

https://arxiv.org/pdf/2109.12021.pdf 

https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=7
https://www.youtube.com/watch?v=kzL22FTz0vc&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=2
https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/abs/2109.12021
https://arxiv.org/pdf/2109.12021.pdf


Learning-Based Off-Chip Load Predictors
n Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk Olgun, 

Mohammad Sadrosadati, and Onur Mutlu,
"Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load 
Prediction"
Proceedings of the 55th International Symposium on Microarchitecture (MICRO), Chicago, IL, USA, 
October 2022.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Talk Video (12 minutes)]
[Lecture Video (25 minutes)]
[arXiv version]
[Source Code (Officially Artifact Evaluated with All Badges)]
Officially artifact evaluated as available, reusable and reproducible.
Best paper award at MICRO 2022.

7https://arxiv.org/pdf/2209.00188.pdf 

https://arxiv.org/pdf/2209.00188.pdf
https://arxiv.org/pdf/2209.00188.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pdf
https://www.youtube.com/watch?v=afGc1pWr-_Y
https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s
https://arxiv.org/abs/2209.00188
https://github.com/CMU-SAFARI/Hermes
https://arxiv.org/pdf/2209.00188.pdf


Self-Optimizing Hybrid SSD Controllers
Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar, 
David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu,
"Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage 
Systems Using Online Reinforcement Learning"
Proceedings of the 49th International Symposium on Computer 
Architecture (ISCA), New York, June 2022.
[Slides (pptx) (pdf)]
[arXiv version]
[Sibyl Source Code]
[Talk Video (16 minutes)]

8https://arxiv.org/pdf/2205.07394.pdf 

https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
http://iscaconf.org/isca2022/
http://iscaconf.org/isca2022/
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pdf
https://arxiv.org/pdf/2205.07394.pdf
https://github.com/CMU-SAFARI/Sibyl
https://www.youtube.com/watch?v=5-WedkiB000
https://arxiv.org/pdf/2205.07394.pdf


Hermes: Perceptron-Based 
Off-Chip Load Prediction 
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Learning-Based Off-Chip Load Predictors
n Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk Olgun, 

Mohammad Sadrosadati, and Onur Mutlu,
"Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load 
Prediction"
Proceedings of the 55th International Symposium on Microarchitecture (MICRO), Chicago, IL, USA, 
October 2022.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Talk Video (12 minutes)]
[Lecture Video (25 minutes)]
[arXiv version]
[Source Code (Officially Artifact Evaluated with All Badges)]
Officially artifact evaluated as available, reusable and reproducible.
Best paper award at MICRO 2022.
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https://arxiv.org/pdf/2209.00188.pdf
https://arxiv.org/pdf/2209.00188.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pdf
https://www.youtube.com/watch?v=afGc1pWr-_Y
https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s
https://arxiv.org/abs/2209.00188
https://github.com/CMU-SAFARI/Hermes
https://arxiv.org/pdf/2209.00188.pdf


Hermes Talk Video

https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s 

https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s


Rahul Bera,  Konstantinos Kanellopoulos,  Shankar Balachandran,
David Novo,  Ataberk Olgun, Mohammad Sadrosadati,  Onur Mutlu

Accelerating Long-Latency Load Requests 
via Perceptron-Based Off-Chip Load Prediction

https://github.com/CMU-SAFARI/Hermes

https://arxiv.org/pdf/2209.00188.pdf 

https://github.com/CMU-SAFARI/Hermes
https://arxiv.org/pdf/2209.00188.pdf
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The Key Problem

Long-latency off-chip load requests

Often stall processor by 
blocking instruction retirement from 

Reorder Buffer (ROB)

Limit performance
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Traditional Solutions

Employ sophisticated prefetchers

Increase size of on-chip caches
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Key Observation 1

50% 
successfully prefetched

# off-chip loads without any prefetcher

50% 
still go off-chip even with 

a state-of-the-art prefetcher

70% of the off-chip loads 
block the ROB

Many loads still go off-chip 
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40% of the stalls can be eliminated by removing 
on-chip cache access latency from critical path

Key Observation 2

On-chip cache access latency 
significantly contributes to off-chip load latency

L1 L2 LLC Main Memory

Saved cycles

50% still go off-chip

L1 L2 LLC Main Memory
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Caches are Getting Bigger and Slower…

Hardavellas+, “Database Servers on Chip Multiprocessors: Limitations and Opportunities”, CIDR, 2007
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Improve processor performance 
by removing on-chip cache access latency 

from the critical path of off-chip loads

Our Goal



Predicts which load requests 
are likely to go off-chip

Starts fetching data directly from main memory 
while concurrently accessing the cache hierarchy
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Key Contribution

Hermes employs the first 
perceptron-based off-chip load predictor

That predicts which loads are likely to go off-chip

By learning from 
multiple program context information



21

Hermes Overview

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

L1 L2 LLC Main Memory

Baseline Processor is stalled

Latency tolerance limit of ROB
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Hermes Overview

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

L1 L2 LLC Main Memory

POPET

L1 L2 LLC

Main Memory

Baseline

Hermes

Saved stall cycles

Processor is stalled

Latency tolerance limit of ROB

Predict

Issue a  
Hermes 
request

Wait

Train

Perceptron-based 
off-chip load predictor
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Designing the Off-Chip Load Predictor

Tracking cache contents

Learning from program behavior

Large metadata
§ Metadata size increases with cache hierarchy size

May need to track all cache operations
§ Gets complex depending on the cache hierarchy 

configuration (e.g., inclusivity, bypassing,…)

Correlate different program features with off-chip loads

MissMap [Loh+, MICRO’11] for the DRAM cache,
D2D [Sembrant+, ISCA’14], D2M [Sembrant+, HPCA’17], LP [Jalili+, HPCA’22] for the cache hierarchy

History-based prediction
HMP [Yoaz+, ISCA’99] for the L1-D cache

Using branch-predictor-like hybrid predictor:
Global, Gshare, and GSkew

Low storage overhead Low design complexity

POPET provides 
both higher accuracy and higher performance 
than predictors inspired from these previous works
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POPET: Perceptron-Based Off-Chip Predictor

• Multi-feature hashed perceptron model[1]
- Each feature has its own weight table
• Stores correlation between feature value and off-chip prediction

Feature1 #
Weight 
Table1

hash

index

Feature2 #
Weight 
Table2

hash

index

FeatureN #
Weight 
TableN

hash

index

!

weight1

weight2

weightn

ActivationSum 
weights

Predict to 
go off-chip

.....

...

(e.g., PC + offset)

Stage 1 Stage 2 Stage 3

≥ τact≥ τact

[1] D. Tarjan and K. Skadron, “Merging Path and Gshare Indexing in Perceptron Branch Prediction,” TACO, 2005

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

POPET
Predict

Issue 
Hermes 
request

Wait

Train
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Predicting using POPET

• Uses simple table lookups, addition, and comparison

Feature1 #
Weight 
Table1

hash

index

Feature2 #
Weight 
Table2

hash

index

FeatureN #
Weight 
TableN

hash

index

!

weight1

weight2

weightn

ActivationSum 
weights

Predict to 
go off-chip

.....

...

(e.g., PC + offset)

Stage 1 Stage 2 Stage 3

≥ τact≥ τact

0x7ffe0+12

42 -4

12

3 3 >= -2

-5

Predict that 
the load 
would go 
off-chip

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

POPET
Predict

Issue 
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request

Wait

Train
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Training POPET

• Uses simple increment or decrement of feature weights

Feature1 #
Weight 
Table1

hash

index

Feature2 #
Weight 
Table2

hash

index

FeatureN #
Weight 
TableN

hash

index

!

weight1

weight2

weightn

ActivationSum 
weights

Predict to 
go off-chip

.....

...

(e.g., PC + offset)

Stage 1 Stage 2 Stage 3

≥ τact≥ τact

0x7ffe0+12

42 -4

12

3 3 >= -2

-5

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

POPET
Predict

Issue 
Hermes 
request

Wait

Train

Predict that 
the load 
would go 
off-chip

Shouldn’t be activated

Cumulative weight < 𝜏act

-1

-1

-1
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Features Used in Hermes



Evaluation
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Simulation Methodology
• ChampSim trace driven simulator

• 110 single-core memory-intensive traces
- SPEC CPU 2006 and 2017
- PARSEC 2.1
- Ligra
- Real-world applications

• 220 eight-core memory-intensive trace mixes

Off-Chip PredictorsLLC Prefetchers

• History-based: HMP [Yoaz+, ISCA’99]

• Tracking-based: Address Tag-
Tracking based Predictor (TTP)

• Ideal Off-chip Predictor

• Pythia [Bera+, MICRO’21]

• Bingo [Bakshalipour+, HPCA’19]

• MLOP [Shakerinava+, 3rd Prefetching Championship’19]

• SPP + Perceptron filter [Bhatia+, ISCA’20]

• SMS [Somogyi+, ISCA’06]
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Latency Configuration

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

POPET

Issue 
Hermes 
request

Wait

• Cache round-trip latency
• L1-D: 5 cycles
• L2: 15 cycles
• LLC: 55 cycles

• Hermes request issue latency 
(incurred after address translation)

      Depends on
• Interconnect between POPET and MC

0 cycles 24 cycles

6 cycles
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Single-Core Performance Improvement
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Hermes alone provides nearly 
50% performance benefits of Pythia 

with only 1/5th storage overhead

Hermes on top of Pythia 
outperforms Pythia alone in every workload category 
Hermes provides nearly 90% performance benefit of 

Ideal Hermes that has an ideal off-chip load predictor
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Increase in Main Memory Requests
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20.3% 5.4%

For every 1% performance benefit, 
increase in main memory requests 

Pythia

Hermes on top of Pythia

Hermes alone

2%

1%

0.5%

Hermes is more bandwidth-efficient
than even an efficient prefetcher like Pythia
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Performance with Varying Memory Bandwidth
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~AMD EPYC Rome 7702P (Zen 2, 64C/8ch, 2019)

~Intel Xeon 6258R 
(Cascade Lake, 28C/6ch, 2020)

Pythia

Hermes

Pythia+Hermes

In bandwidth-constrained configurations,
Hermes alone outperforms Pythia 
Hermes+Pythia outperforms Pythia 

across all bandwidth configurations

Baseline
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Prefetcher-only Prefetcher + Hermes

Performance with Varying Baseline Prefetcher

5.4% 6.2%

5.1% 7.6%

7.7%Hermes consistently improves performance 
on top of a wide range of baseline prefetchers
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Overhead of Hermes

4 KB storage overhead

1.5% power overhead*

*On top of an Intel Alder Lake-like performance-core [2] configuration

[2] https://www.anandtech.com/show/16881/a-deep-dive-into-intels-alder-lake-microarchitectures/3
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More in the Paper 
• Performance sensitivity to:

- Cache hierarchy access latency
- Hermes request issue latency
- Activation threshold
- ROB size (in extended version on arXiv)
- LLC size (in extended version on arXiv)

• Accuracy, coverage, and performance analysis against HMP and TTP

• Understanding usefulness of each program feature

• Effect on stall cycle reduction

• Performance analysis on an eight-core system
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More in the Paper 
• Performance sensitivity to:

- Cache hierarchy access latency
- Hermes request issue latency
- Activation threshold
- ROB size (in extended version at arXiv)
- LLC size (in extended version at arXiv)

• Accuracy, coverage, and performance analysis against HMP and TTP

• Understanding usefulness of each program feature

• Effect on stall cycle reduction

• Performance analysis in eight-core system
https://arxiv.org/pdf/2209.00188.pdf 

https://arxiv.org/pdf/2209.00188.pdf


To Summarize…
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Summary

Hermes advocates for off-chip load prediction, 
a different form of speculation than

load address prediction employed by prefetchers

Off-chip load prediction can be applied by itself 
or combined with load address prediction 

to provide performance improvement
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Summary

Hermes employs the first 
perceptron-based off-chip load predictor

High coverage
(74%)

High accuracy
(77%)

Low storage 
overhead
(4KB/core)

High performance improvement 
over best prior baseline

(5.4%)

High performance 
per bandwidth
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Hermes is Open Sourced

https://github.com/CMU-SAFARI/Hermes

All workload traces

13 prefetchers 9 off-chip predictors

https://github.com/CMU-SAFARI/Hermes
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Easy To Define Your Own Off-Chip Predictor

• Just extend the OffchipPredBase class
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Easy To Define Your Own Off-Chip Predictor

• Define your own train() and predict() functions

• Get statistics like accuracy (stat name precision) and 
coverage (stat name recall) out of the box
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Off-Chip Prediction Can Further Enable…

Prioritizing loads that are likely go off-chip 
in cache queues and on-chip network routing

Better instruction scheduling 
of data-dependent instructions

Other ideas to improve performance and 
fairness in multi-core system design...



Rahul Bera,  Konstantinos Kanellopoulos,  Shankar Balachandran,
David Novo,  Ataberk Olgun, Mohammad Sadrosadati,  Onur Mutlu

Accelerating Long-Latency Load Requests 
via Perceptron-Based Off-Chip Load Prediction

https://github.com/CMU-SAFARI/Hermes

https://arxiv.org/pdf/2209.00188.pdf 

https://github.com/CMU-SAFARI/Hermes
https://arxiv.org/pdf/2209.00188.pdf
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Hermes Discussion
• FAQs

- What are the selected set of program features?
- Can you provide some intuition on why these 

features work?
- What happens in case of a misprediction?
- What’s the performance headroom for off-chip 

prediction?

- Do you see a variance of different features in final 
prediction accuracy?

• Simulation Methodology
- System parameters
- Evaluated workloads

• More Results
- Percentage of off-chip requests
- Reduction in stall cycles by reducing the 

critical path
- Fraction of off-chip load requests
- Accuracy and coverage of POPET
- Effect of different features
- Are all features required?
- 1C performance
- 1C performance line graph
- 1C performance against prior predictors
- Effect on stall cycles
- 8C performance
- Sensitivity:

• Hermes request issue latency
• Cache hierarchy access latency
• Activation threshold
• ROB size
• LLC size

- Power overhead
- Accuracy without prefetcher
- Main memory request overhead with 

different prefetchers



Hermes Paper [MICRO 2022]
n Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk Olgun, 

Mohammad Sadrosadati, and Onur Mutlu,
"Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load 
Prediction"
Proceedings of the 55th International Symposium on Microarchitecture (MICRO), Chicago, IL, USA, 
October 2022.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Talk Video (12 minutes)]
[Lecture Video (25 minutes)]
[arXiv version]
[Source Code (Officially Artifact Evaluated with All Badges)]
Officially artifact evaluated as available, reusable and reproducible.
Best paper award at MICRO 2022.
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https://arxiv.org/pdf/2209.00188.pdf
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Sibyl: Reinforcement Learning based
Data Placement in Hybrid SSDs

48



Self-Optimizing Hybrid SSD Controllers
Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar, 
David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu,
"Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage 
Systems Using Online Reinforcement Learning"
Proceedings of the 49th International Symposium on Computer 
Architecture (ISCA), New York, June 2022.
[Slides (pptx) (pdf)]
[arXiv version]
[Sibyl Source Code]
[Talk Video (16 minutes)]
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Executive Summary
• Background: A hybrid storage system (HSS) uses multiple different storage devices to

provide high and scalable storage capacity at high performance
• Problem: Two key shortcomings of prior data placement policies:

- Lack of adaptivity to:
• Workload changes
• Changes in device types and configurations

- Lack of extensibility to more devices

• Goal: Design a data placement technique that provides:
- Adaptivity, by continuously learning and adapting to the application and underlying device

characteristics
- Easy extensibility to incorporate a wide range of hybrid storage configurations

• Contribution: Sibyl, the first reinforcement learning-based data placement technique in
hybrid storage systems that:
- Provides adaptivity to changing workload demands and underlying device characteristics
- Can easily extend to any number of storage devices
- Provides ease of design and implementation that requires only a small computation overhead

• Key Results: Evaluate on real systems using a wide range of workloads
- Sibyl improves performance by 21.6% compared to the best previous data placement technique in

dual-HSS configuration
- In a tri-HSS configuration, Sibyl outperforms the state-of-the-art-policy policy by 48.2%
- Sibyl achieves 80% of the performance of an oracle policy with storage overhead of only 124.4 KiB

https://github.com/CMU-SAFARI/Sibyl 51
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Storage Management Layer

Hybrid Storage System Basics

WriteRead

Read Write Read Write

Promotion

Eviction

Hybrid Storage System
Fast Device Slow Device

Address Space (Application/File System View) 
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Hybrid Storage System Basics

WriteRead

Read Write Read Write

Promotion

Eviction

Hybrid Storage System

Performance of a hybrid storage system 
highly depends on the ability of the 

storage management layer
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Key Shortcomings in Prior Techniques
We observe two key shortcomings that significantly 
limit the performance benefits of prior techniques

1. Lack of adaptivity to:
a) Workload changes
b) Changes in device types and configuration

2. Lack of extensibility to more devices 
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Lack of Adaptivity (1/2)
Workload Changes
Prior data placement techniques consider only a few
workload characteristics that are statically tuned

CDE RNN-HSS Oracle

41.1%
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Lack of Adaptivity (2/2)
Changes in Device Types and Configurations 
Do not consider underlying storage device 
characteristics (e.g., changes in the level asymmetry in 
read/write latencies, garbage collection)

HSS Configuration 1 HSS Configuration 2

Slow-Only CDE RNN-HSS Slow-Only CDE RNN-HSS OracleOracle
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Lack of Extensibility (1/2)
Rigid techniques that require significant effort to 
accommodate more than two devices

Change in storage configuration

Dual-HSS
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Lack of Extensibility (2/2)
Rigid techniques that require significant effort to 
accommodate more than two devices

Change in storage configuration Design a new policy

Tri-HSS
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Our Goal

A data-placement mechanism 
that can provide:

1.Adaptivity, by continuously learning and 
adapting to the application and underlying 

device characteristics
2.Easy extensibility to incorporate a wide 

range of hybrid storage configurations

60



Our Proposal

Sibyl
Formulates data placement in 

hybrid storage systems as a 
reinforcement learning problem

Sibyl is an oracle that makes accurate prophecies
https://en.wikipedia.org/wiki/Sibyl 61
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Basics of Reinforcement Learning (RL)

Agent learns to take an action in a given state 
to maximize a numerical reward

Agent

Environment

State (St)State (St) Action (At)Action (At)Reward (Rt+1)Reward (Rt+1)
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Formulating Data Placement as RL
Agent

Environment

State (St) Action (At)Reward (Rt+1)

Hybrid Storage 
System

Sibyl

Features of the 
current request 

and system

Request latency
(of last served request)

Select storage device to 
place the current page
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What is State?
• Limited number of state features:

- Reduce the implementation overhead
- RL agent is more sensitive to reward

• 6-dimensional vector of state features

• We quantize the state representation into bins to 
reduce storage overhead
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What is Reward?
• Defines the objective of Sibyl

• We formulate the reward as a function of the     
request latency

• Encapsulates three key aspects:
- Internal state of the device (e.g., read/write latencies, the 

latency of garbage collection, queuing delays, …)
- Throughput
- Evictions
 

• More details in the paper
66
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What is Action?
• At every new page request, the                                     

action is to select a storage device

• Action can be easily extended to any number of 
storage devices

• Sibyl learns to proactively evict or promote a page

67

Hybrid Storage 
System

Sibyl
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RL Decision 
Thread

Sibyl Execution

Storage
Request

(from OS)

RL Training 
Thread

Periodic Policy
Weight Update

State, Reward, 
and Action 

Information

Data 
Placement 
Decision

Asynchronous 
Execution

Sibyl
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Sibyl Design: Overview

Inference 
Network

Max

HSS Collect
Experiences

Experience Buffer 
(in host DRAM)

Observation 
Vector

Storage
Request

(from OS)

State

State

Action

Reward

RL Decision 
Thread

Sibyl Policy

Periodic Weights 
update 10

Training 
Network

RL Training 
ThreadBatchTraining 

Dataset
Periodic Policy 
Weight Update
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RL Decision Thread

Inference 
Network

Max

HSS Collect
Experiences

Experience Buffer 
(in host DRAM)

Observation 
Vector

Storage
Request

(from OS)

State

State

Action

Reward

RL Decision 
Thread

Sibyl Policy
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RL Decision Thread

Observation 
Vector

Storage
Request

(from OS)

State

State

RL Decision 
Thread
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RL Decision Thread

Inference 
Network

Max

HSS

State Action

RL Decision 
Thread

Sibyl Policy
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RL Decision Thread

HSS Collect
Experiences

Observation 
Vector

Storage
Request

(from OS)

State

Reward

RL Decision 
Thread
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RL Decision Thread

HSS Collect
Experiences

Experience Buffer 
(in host DRAM)

Observation 
Vector

Storage
Request

(from OS)

State

Reward

RL Decision 
Thread
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RL Training Thread

Periodic Weights 
update 10

RL Training 
ThreadBatchTraining 

Dataset

Experience Buffer 
(in host DRAM)

RL Decision 
Thread

Periodic Policy 
Weight Update

Training 
Network

76



Periodic Weight Transfer

Inference 
Network

Max

HSS Collect
Experiences

Experience Buffer 
(in host DRAM)

Observation 
Vector

Storage
Request

(from OS)

State

State

Action

Reward

RL Decision 
Thread

Sibyl Policy

Periodic Weights 
update 10

Training 
Network

Periodic Policy 
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RL Training 
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Evaluation Methodology (1/3)
• Real system with various HSS configurations

- Dual-hybrid and tri-hybrid systems
AMD	Ryzen7	
2700G	CPU

Seagate	HDD	
ST1000DM010

Intel	Optane	
SSD	P4800X

Intel	SSD									
D3-S4510

ADATA	
SU630	SSD	
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Evaluation Methodology (2/3)
Cost-Oriented HSS Configuration

High-end SSD Low-end HDD

Performance-Oriented HSS Configuration

High-end SSD Middle-end SSD 80



Evaluation Methodology (3/3)
• 18 different workloads from:

- MSR Cambridge and Filebench Suites

• Four state-of-the-art data placement baselines:
- CDE [Matsui+, Proc. IEEE’17] 

- HPS [Meswani+, HPCA’15]

- Archivist [Ren+, ICCD’19]

- RNN-HSS [Doudali+, HPDC’19]

Heuristic-based

Learning-based
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Performance Analysis
Cost-Oriented HSS Configuration

Slow-Only CDE HPS Archivist RNN-HSS Sibyl Oracle

High-end SSD Low-end HDD
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Performance Analysis

Sibyl consistently outperforms all the baselines 
for all the workloads

Cost-Oriented HSS Configuration
Slow-Only CDE HPS Archivist RNN-HSS Sibyl Oracle

High-end SSD Low-end HDD
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Performance Analysis

RNN-HSS Sibyl OracleSlow-Only CDE HPS Archivist

Performance-Oriented HSS Configuration
High-end SSD Mid-end SSD
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Performance Analysis

RNN-HSS Sibyl OracleSlow-Only CDE HPS Archivist

Performance-Oriented HSS Configuration

Sibyl provides 21.6% performance improvement by 
dynamically adapting its data placement policy 

High-end SSD Mid-end SSD
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Performance Analysis

RNN-HSS Sibyl OracleSlow-Only CDE HPS Archivist

Performance-Oriented HSS Configuration
High-end SSD Mid-end SSD
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Performance Analysis

RNN-HSS Sibyl OracleSlow-Only CDE HPS Archivist

Performance-Oriented HSS Configuration

Sibyl achieves 80% of the performance 
of an oracle policy that has 

complete knowledge of future access patterns

High-end SSD Mid-end SSD

87



Performance on Tri-HSS
Extending Sibyl for more devices:

SibylTri-hybridHeuristicTri-hybrid

High-end SSD Low-end HDDMid-end SSD

Extending Sibyl for more devices:
1. Add a new action
2. Add the remaining capacity of the new device as a 

state feature
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Performance on Tri-HSS

SibylTri-hybridHeuristicTri-hybrid

Extending Sibyl for more devices:
1. Add a new action
2. Add the remaining capacity of the new device as a 

state feature

High-end SSD Low-end HDDMid-end SSD
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Performance on Tri-HSS

SibylTri-hybridHeuristicTri-hybrid

Extending Sibyl for more devices:
1. Add a new action
2. Add the remaining capacity of the new device as a 

state featureSibyl outperforms the state-of-the-art 
data placement policy by

48.2% in a real tri-hybrid system

Sibyl reduces the system architect's burden 
by providing ease of extensibility

High-end SSD Low-end HDDMid-end SSD
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Sibyl’s Overhead
• 124.4 KiB of total storage cost 

- Experience buffer, inference and training network

• 40-bit metadata overhead per page for state features

• Inference latency of ~10ns

• Training latency of ~2us

Small area overhead

Small inference overhead

Satisfies prediction latency
91



More in the Paper (1/3)
• Throughput (IOPS) evaluation

- Sibyl provides high IOPS compared to baseline policies because it 
indirectly captures throughput (size/latency)

• Evaluation on unseen workloads
- Sibyl can effectively adapt its policy to highly dynamic workloads

• Evaluation on mixed workloads
- Sibyl provides equally-high performance benefits as in single 

workloads
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More in the Paper (2/3)
• Evaluation on different features

- Sibyl autonomously decides which features are important to 
maximize the performance

• Evaluation with different hyperparameter values

• Sensitivity to fast storage capacity
- Sibyl provides scalability by dynamically adapting its policy to 

available storage size

• Explainability analysis of Sibyl's decision making
- Explain Sibyl’s actions for different workload characteristics and 

device configurations
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More in the Paper (3/3)

https://arxiv.org/pdf/2205.07394.pdf

https://github.com/CMU-SAFARI/Sibyl
94
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Conclusion
• We introduced Sibyl, the first reinforcement learning-

based data placement technique in hybrid storage
systems that provides
- Adaptivity
- Easily extensibility
- Ease of design and implementation

•We evaluated Sibyl on real systems using many 
different workloads
- Sibyl improves performance by 21.6% compared to the best prior

data placement policy in a dual-HSS configuration
- In a tri-HSS configuration, Sibyl outperforms the state-of-the-art-

data placement policy by 48.2%
- Sibyl achieves 80% of the performance of an oracle policy with a

storage overhead of only 124.4 KiB
https://github.com/CMU-SAFARI/Sibyl 96
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Hermes Discussion
• FAQs

- What are the selected set of program features?
- Can you provide some intuition on why these 

features work?
- What happens in case of a misprediction?
- What’s the performance headroom for off-chip 

prediction?

- Do you see a variance of different features in final 
prediction accuracy?

• Simulation Methodology
- System parameters
- Evaluated workloads

• More Results
- Percentage of off-chip requests
- Reduction in stall cycles by reducing the 

critical path
- Fraction of off-chip load requests
- Accuracy and coverage of POPET
- Effect of different features
- Are all features required?
- 1C performance
- 1C performance line graph
- 1C performance against prior predictors
- Effect on stall cycles
- 8C performance
- Sensitivity:

• Hermes request issue latency
• Cache hierarchy access latency
• Activation threshold
• ROB size
• LLC size

- Power overhead
- Accuracy without prefetcher
- Main memory request overhead with 

different prefetchers



HERMES BACKUP
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Initial Set of Program Features
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Selected Set of Program Features

Five features
A binary hint that 
represents whether or not a 
cacheblock has been 
recently touched
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When A Feature Works/Does Not Work?

Trace: 462.libquantum-1343B PC: 0x401442

Cacheline #42 Cacheline #43 ……

Without prefetcher

• PC + first access
• Cacheline offset + first access 

With a simple stride prefetcher

• Cacheline offset + first access 
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What Happens in case of a Misprediction?

• Two cases of mispredictions:

• Predicted on-chip but actually goes off-chip
- Loss of performance improvement opportunity

• Predicted off-chip but actually is on-chip
- Memory controller forwards the data to LLC if and only if 

a load to the same address have already missed LLC and 
arrived at the memory controller

No need for misprediction detection and recovery

No need for misprediction detection and recovery
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Performance Headroom of Off-Chip Prediction
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System Parameters
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Evaluated Workloads
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Observation: Not All Off-Chip Loads are Prefetched
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Nearly 50% of the loads are still not prefetched
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Observation: Not All Off-Chip Loads are Prefetched
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Observation: With Large Cache Comes Longer Latency 

• On-chip cache access latency significantly contributes to 
the latency of an off-chip load 

147.1
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On-chip cache hierarchy access latency
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Observation: With Large Cache Comes Longer Latency 

• On-chip cache access latency significantly contributes to 
the latency of an off-chip load 
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On-chip cache hierarchy access latency

40% of stall cycles caused by an off-chip load can be eliminated 
by removing on-chip cache access latency from its critical path 
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What Fraction of Load Requests Goes Off-Chip?
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Off-Chip Prediction Quality: Defining Metrics

Predicted off-chip Actual off-chip

Predicted and actual off-chip

Accuracy Coverage
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Off-Chip Prediction Quality: Analysis

Accuracy

Coverage
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Off-Chip Prediction Quality: Analysis

Accuracy

Coverage
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POPET provides off-chip predictions with 
high-accuracy and high-coverage
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Effect of Different Features

Combination of features provides both higher 
accuracy and higher coverage than any individual feature
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Are All Features Required? (1)

No single feature individually provides 
highest prediction accuracy across all workloads
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Are All Features Required? (2)

No single feature individually provides 
highest prediction coverage also across all workloads
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Single-Core Performance

Hermes in combination with Pythia 
outperforms Pythia alone in every workload category
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Single-Core Performance Line Graph
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Single-Core Performance Against Prior Predictors

POPET provides higher performance benefit 
than prior predictors

Hermes with POPET achieves nearly 90% performance 
improvement of the Ideal Hermes
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Effect on Stall Cycles

Hermes reduces off-chip load induced stall cycles 
on average by 16.2% (up-to 51.8%)
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Eight-Core Performance

Hermes in combination with Pythia 
outperforms Pythia alone by 5.1% on average
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Effect of Hermes Request Issue Latency

3.6%
5.7%

Hermes in combination with Pythia outperforms Pythia 
alone even with a 24-cycle Hermes request issue latency
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Effect of Cache Hierarchy Access Latency

3.6%

6.2%

Hermes can provide even higher performance benefit in 
future processors with bigger and slower on-chip caches
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Effect of Activation Threshold

With increase in activation threshold
1. Accuracy increases

2. Coverage decreases
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Power Overhead
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Effect of ROB Size

6.7%
5.3%
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Effect of LLC Size

1.3%2.5%
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Accuracy and Coverage with Different Prefetchers

POPET’s accuracy and coverage increases significantly 
in absence of a data prefetcher
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Increase in Main Memory Requests



SIBYL BACKUP

135135



Performance on Unseen Workloads

H&M (H&L) HSS configuration, Sibyl outperforms RNN-
HSS and Archivist by 46.1% (54.6%) and 8.5% (44.1%), 
respectively
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Performance Analysis

Sibyl Oracle

Baseline policies are ineffective for many 
workloads even when compared to Slow-Only

RNN-HSSSlow-Only CDE HPS Archivist

Performance-Oriented HSS Configuration
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Performance on Mixed Workloads
Slow-Only CDE HPS Archivist RNN-HSS SibylDef SibylOpt Oracle

Performance-Oriented Cost-Oriented
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Performance on Mixed Workloads
Slow-Only CDE HPS Archivist RNN-HSS SibylDef SibylOpt Oracle

Performance-Oriented Cost-Oriented

SibylDef outperforms baseline data placement 
techniques by up to 27.9%
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Performance on Mixed Workloads
Slow-Only CDE HPS Archivist RNN-HSS SibylDef SibylOpt Oracle

Performance-Oriented Cost-Oriented

SibylDef outperforms baseline data placement 
techniques by up to 27.9%

SibylOpt provides 7.2% higher average 
performance than SibylDef
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Performance With Different Features

Sibyl autonomously decides which features are 
important to maximize the performance of the running 
workload
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Sensitivity to Fast Storage Capacity
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Explainability Analysis
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Training and Inference Network
• Training and inference 

network allow parallel 
execution 

• Observation vector as 
the input 

• Produces probability 
distribution of Q-values
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