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System Architecture Design Today

Human-driven
o Humans design the policies (how to do things)

Many (too) simple, short-sighted policies all over the system
No automatic data-driven policy learning

(Almost) no learning: cannot take lessons from past actions

Can we design
fundamentally intelligent architectures?
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An Intelligent Architecture

Data-driven
o Machine learns the “best” policies (how to do things)

Sophisticated, workload-driven, changing, far-sighted policies
Automatic data-driven policy learning

All controllers are intelligent data-driven agents

We need to rethink design
(of all controllers)
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Selt-Optimizing Memory Controllers

= Engin Ipek, Onur Mutlu, José F. Martinez, and Rich Caruana,
"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach”
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA ), pages 39-50, Beijing, China, June 2008.
Selected to the ISCA-50 25-Year Retrospective Issue covering 1996-
2020 in 2023 (Retrospective (pdf) Full Issue).
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Hermes Talk Video

H eérmes OVE rview Perceptron-based
© Predict off-chip load predictor
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9 Wait
MC | ¢ Main Memory

: Saved stall cycles

Off-Chip
Main Memory

Computer Architecture - Lecture 18: Cutting-Edge Research in Computer Architecture (Fall 2022)

- Onur Mutlu Lectures . . . —
6»; Analytics Edit video 23 ~> Share Y Download { Cli =+ Save
&> 329K subscribers - e o - & clip

2.4K views Streamed 5 months ago Livestream - Computer Architecture - ETH Ziirich (Fall 2022)
Computer Architecture, ETH Zirich, Fall 2022 (https://safari.ethz.ch/architecture/f...)
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The Key Problem

Long-latency off-chip load requests

) 4

Often stall processor by
blocking instruction retirement from
Reorder Buffer (ROB)

¥

Limit performance

SAFARI
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Traditional Solutions

i\

Employ sophisticated prefetchers

Increase size of on-chip caches

SAFARI
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Key Observation 1

Many loads still go off-chip

50%
50% still go off-chip even with

successfully prefetched a state-of-the-art prefetcher

70% of the off-chip loads
block the ROB

# off-chip loads without any prefetcher

SAFARI
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Key Observation 2 <\
4

On-chip cache access latency
significantly contributes to off-chip load latency

L1 | L2 LLC Main Memory

¥

Saved cycles

40% of the stalls can be eliminated by removing

on-chip cache access latency from critical path

SAFARI 16



Caches are Getting Bigger and Slower...
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Our Goal

Improve processor performance
by removing on-chip cache access latency
from the critical path of off-chip loads

SAFARI
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Predicts which load requests
are likely to go off-chip

Starts fetching data directly from main memory
while concurrently accessing the cache hierarchy

SAFARI 8



Key Contribution
\\/

A1 V4 :
7 Hermes employs the first

perceptron-based off-chip load predictor

@,

That predicts which loads are likely to go off-chip

@ By learning from
multiple program context information

SAFARI 20



Hermes Overview

Core

Latency tolerance limit of ROB

.

Processor is stalled

»

L1

L2

LLC

Main Memory

[ Main Memory

Off-Chip

SAFARI
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Hermes Overview
c Predict off-chip load predictor

Perceptron-based

Issue a
Hermes

request L1 | L2 LLC Main Memory

.~

e Wait L1| L2 LLC
ai _ : Saved stall cycles
Main Memory, « g

Off-Chip |
Main Memory
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Designing the Off-Chip Load Predictor

POPET provides

both higher accuracy and higher performance
than predictors inspired from these previous works

Learning from program behavior

Correlate different program features with off-chip loads

@ Low storage overhead @ Low design complexity




POPET: Perceptron-Based Off-Chip Predictor

* Multi-feature hashed perceptron model'*
- Each feature has its own weight table —
* Stores correlation between feature value and off-chip prediction

Feature, Table,
Table,

(e.g., PC+ offset)

Weight
Table,

Weight
Tabley,

SAFAR’ [1] D. Tarjan and K. Skadron, "Merging Path and Gshare Indexing in Perceptron Branch Prediction,” TACO, 2005 24



Predicting using POPET

* Usessimple table lookups, addition, and comparison

il
il
1l
Weight [l

3 Table,

E (e.g., PC+ offset)

=l Ox7ffe0+12

&

C + Weight

S v

= 3 I Table, \

¥ o

S QL :

-~ . .

S :

2, :

+

S

S Weight

X Table,

et
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Training POPET

* Usessimple increment or decrement of feature weights

off-chip

z L Shouldn’t be activated

Cumulative weight < 7,

SAFARI 26



Features Used in Hermes

Table 1: The initial set of program features used for automated
feature selection. @ represents a bitwise XOR operation.

Features without control-flow Features with control-flow

information information

8. Load PC
1. Load virtual address 9. PC & load virtual address
2. Virtual page number 10. PC & virtual page number
3. Cacheline offset in page 11. PC & cacheline offset
4. First access 12. PC + first access
5. Cacheline offset + first access 13. PC & byte offset
6. Byte offset in cacheline 14. PC & word offset
7. Word offset in cacheline 15. Last-4 load PCs

16. Last-4 PCs

Table 2: POPET configuration parameters

Selected features

PC & cacheline offset

PC & byte offset

PC + first access

Cacheline offset + first access
Last-4 load PCs

SAFARI Threshold values Toact = —18, Ty = —35, Tp = 40
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Simulation Methodology

* ChampSim trace driven simulator

* 110 single-core memory-intensive traces
- SPECCPU 2006 and 2017
- PARSEC 2.1
- Ligra
- Real-world applications

* 220 eight-core memory-intensive trace mixes

Off-Chip Predictors

LLC Prefetchers

* Pythia * History-based: HMP

* Bingo * Tracking-based: Address Tag-

* MLOP Tracking based Predictor (TTP)
* SPP + Perceptron filter

e SMS * Ideal Off-chip Predictor

SAFARI 29



Latency Configuration

* Cache round-trip latency

PO_PET * L1-D: 5 cycles
e L2:15cycles
@ e LLC:55 cycles
Issue
Hermes
t :
e * Hermes request issue latency
(incurred after address translation)
Depends on
© wait * Interconnect between POPET and MC
MC |<

| »*: |

0 cycles \ 24 cycles

SAFARI 30




Single-Core Performance Improvement

1.35

[

W

|
|
o
D
R

|

[
N
(Op |
|
P —
/

=
N
|
|
|

Geomean speedup
over the No-prefetching system

Harmace alana nraviidac naarlhy

Hermes provides nearly 90% performance benefit of

Ideal Hermes that has an ideal off-chip load predictor
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Increase in Main Memory Requests

For every 1% performance benefit,

Increase in main memory requests

Pythia 2%

Hermes on top of Pythia 1%

Hermes alone 0.5%

Hermes is more bandwidth-efficient

than even an efficient prefetcher like Pythia

SAFARI 32



Performance with Varying Memory Bandwidth

1-3 7 Pythia+Hermes

1.25 - —\/ -O
1.2 - /O/

1.15 -
/
L o O 2

1.05 -

Geomean speedup
over the No-prefetching system

0.95

O
Co)

Hermes+Pythia outperforms Pythia

across all bandwidth configurations



Performance with Varying Baseline Prefetcher

O Prefetcher-only B Prefetcher + Hermes

=
s

Ing system
[
N
Un
I

-
N

Hermes consistently improves performance
on top of a wide range of baseline prefetchers

overthe N
[
@)
Un
|

R

Pythia Bingo SPP MLOP SMS

SAFARI
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Overhead of Hermes

o 4 KB storage overhead
O 1.5% power overhead*

*On top of an Intel Alder Lake-like performance-core 2! configuration

SA FA Rl [2] https://www.anandtech.com/show/16881/a-deep-dive-into-intels-alder-lake-microarchitectures/3 35



More in the Paper

Performance sensitivity to:

- Cache hierarchy access latency
Hermes request issue latency
Activation threshold
ROB size (in extended version on arXiv)
LLC size (in extended version on arXiv)

Accuracy, coverage, and performance analysis against HMP and TTP

Understanding usefulness of each program feature

Effect on stall cycle reduction

analysis on an system
SAFARI 36



More in the Paper
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Hermes: Accelerating Long-Latency Load Requests
via Perceptron-Based Off-Chip Load Prediction

Rahul Bera!  Konstantinos Kanellopoulos®

Ataberk Olgun?

Mohammad Sadrosadati!

Shankar Balachandran?  David Novo?®

Onur Mutlu!

'ETH Ziirich ?Intel Processor Architecture Research Lab  3LIRMM, Univ. Montpellier, CNRS

Long-latency load requests continue to limit the performance
of modern high-performance processors. To increase the latency
tolerance of a processor, architects have primarily relied on two
key techniques: sophisticated data prefetchers and large on-chip
caches. In this work, we show that: (1) even a sophisticated state-
of-the-art prefetcher can only predict half of the off-chip load
requests on average across a wide range of workloads, and (2)
due to the increasing size and complexity of on-chip caches, a
large fraction of the latency of an off-chip load request is spent
accessing the on-chip cache hierarchy to solely determine that it
needs to go off-chip.

The goal of this work is to accelerate off-chip load requests
by removing the on-chip cache access latency from their critical
path. To this end, we propose a new technique called Hermes,
whose key idea is to: (1) accurately predict which load requests

https://arxiv.or

off-chip main memory (i.e., an off-chip load) often stalls the pro-
cessor core by blocking the instruction retirement from the re-
order buffer (ROB), thus limiting the core’s performance [88, 91,
92]. To increase the latency tolerance of a core, computer archi-
tects primarily rely on two key techniques. First, they employ
increasingly sophisticated hardware prefetchers that can learn
complex memory address patterns and fetch data required by
future load requests before the core demands them [28, 32,
33, 35, 75]. Second, they significantly scale up the size of the
on-chip cache hierarchy with each new generation of proces-
sors [10, 11, 16].

Key problem. Despite recent advances in processor core
design, we observe two key trends in new processor designs
that leave a significant opportunity for performance improve-
ment on the table. First, even a sophisticated state-of-the-art

df/2209.00188.pdf

37
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To Summarize...



Summary

Hermes advocates for off-chip load prediction,
a different form of speculation than
employed by prefetchers

Off-chip load prediction can be applied by itself
or combined with load address prediction
to provide performance improvement

SAFARI 39



Summary

Hermes employs the first

perceptron-based off-chip load predictor

X d

High accuracy | High coverage Low storage
overhead
(77%) (74%)
) ) (4KB/core)
(A AN

High performance improvement

over best prior baseline
(5.4%)

High performance
per bandwidth




Hermes is Open Sourced

All workload traces

13 prefetchers @ 9 off-chip predictors

e Stride [Fu+, MICRO'92]

o Streamer [Chen and Baer, IEEE TC'95] Predictor type  Description

e SMS [Somogyi+, ISCA'06] Base Always NO

« AMPM [IShii*‘: |CSI09] Basic Simple confidence counter-based threshold

* Sandbox [PUQSIey+’ HPCA'1 4] Random Random Hit-miss predictor with a given positive probability
* BOP [MiChaUd’ HPCA" 6] HMP-Local Hit-miss predictor [Yoaz+, ISCA'99] with local prediction

« SPP [Kim+, MICRO'16]

. . HMP-GShare Hit-miss predictor with GShare prediction
Bingo [Bakshalipour+, HPCA'19]

« SPP+PPF [Bhatia+, ISCA'19] HMP-GSkew Hit-miss predictor with GSkew prediction

e DSPatch [Bera +, MICRO'1 9] HMP-Ensemble  Hit-miss predictor with all three types combined
o MLOP [Shakerinava+, DPC-3'19] TP Tag-tracking based predictor

¢ |PCP [Pakalapati+, ISCA'20] Perc Perceptron-based OCP used in this paper

Pythia [Bera+, MICRO'21]

SAFARI https://github.com/CMU-SAFARI/Hermes 41
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Easy To Define Your Own Off-Chip Predictor

» Just extend the OffchipPredBase class

class OffchipPredBase

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

SAFARI

{

public:

};

uint32_t cpu;

string type;

uinté4_t seed;

uint8_t dram_bw; // current DRAM bandwidth bucket

OffchipPredBase(uint32_t _cpu, string _type, uinté4_t _seed) : cpu(_cpu), type(_type), seed(_seed)
{
srand(seed);
dram_bw = 0;
}
~0ffchipPredBase() {}
void update_dram_bw(uint8_t _dram_bw) { dram_bw = _dram_bw; }

virtual void print_config();

virtual void dump_stats();

virtual void reset_stats();

virtual void train(ooo_model_instr xarch_instr, uint32_t data_index, LSQ_ENTRY xlg_entry);
virtual bool predict(ooo_model_instr *arch_instr, uint32_t data_index, LSQ_ENTRY xlqg_entry);

#endif /x OFFCHIP_PRED_BASE_H */

42



Easy To Define Your Own Off-Chip Predictor

» Define yourown train( ) and predict () functions

19 void OffchipPredBase::train(ooo_model_instr s*arch_instr, uint32_t data_index, LSQ_ENTRY xlg_entry)
20 A

21 // nothing to train

22

23

24 bool OffchipPredBase::predict(ooo_model_instr xarch_instr, uint32_t data_index, LSQ_ENTRY x1lq_entry)
25 4

26 // predict randomly

27 // return (rand() % 2) ? true : false;
28 return false;

29 }

* Get statistics like accuracy (stat name precision) and
coverage (stat name recall) out of the box

Core_0O_offchip_pred_true_pos 2358716
Core_0O_offchip_pred_false_pos 276883
Core_0O_offchip_pred_false_neg 132145

Core_0O_offchip_pred_precision 89.49
Core_0O_offchip_pred_recall 94.69

SAFARI 43




Off-Chip Prediction Can Further Enable...

Prioritizing loads that are likely go off-chip
in cache queues and on-chip network routing

Better instruction scheduling
of data-dependent instructions

Other ideas to improve performance and
fairness in multi-core system design...

SAFARI
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Accelerating Long-Latency Load Requests
via Perceptron-Based Off-Chip Load Prediction
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Hermes Discussion

* FAQs

What are the selected set of program features?

Can you provide some intuition on why these
features work?

What happens in case of a misprediction?

What's the performance headroom for off-chip
prediction?
Do vou see a variance of different features in final

prediction accuracy?

* Simulation Methodology

System parameters

Evaluated workloads

SAFARI

* More Results

Percentage of off-chip requests

Reduction in stall cycles by reducing the

critical path
Fraction of off-chip load requests

Accuracy and coverage of POPET
Effect of different features

Are all features required?

1C performance

1C performance line graph

1C performance against prior predictors

Effect on stall cycles
8C performance

Sensitivity:
* Hermes request issue latency
* (Cache hierarchy access latency
* Activation threshold
* ROBsize
* LLCsize
Power overhead
Accuracy without prefetcher

Main memory request overhead with
different prefetchers
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Hermes Paper [MICRO 2022]

Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk Olgun,
Mohammad Sadrosadati, and Onur Mutlu,

"Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load

Prediction”

Proceedings of the 55th International Symposium on Microarchitecture (MICRO), Chicago, IL, USA,
October 2022.

[Slides (pptx) (pdf)]

[Longer Lecture Slides (pptx) (pdf)]

[Talk Video (12 minutes)]

[Lecture Video (25 minutes)]

[arXiv version]

[Source Code (Officially Artifact Evaluated with All Badges)]

Officially artifact evaluated as available, reusable and reproducible.

Best paper award at MICRO 2022.
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Sibyl: Reinforcement Learning based
Data Placement in Hybrid SSDs




Selt-Optimizing Hybrid SSD Controllers

Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar,
David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu,
"Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage
Systems Using Online Reinforcement Learning"”

Proceedings of the 49th International Symposium on Computer

Architecture (ISCA), New York, June 2022.

[Slides (pptx) (pdf)]

[arXiv version]

[Sibyl Source Code]

[Talk Video (16 minutes)]

Sibyl: Adaptive and Extensible Data Placement in
Hybrid Storage Systems Using Online Reinforcement Learning
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Adaptive and Extensible Data Placement
in Hybrid Storage Systems
Using Online Reinforcement Learning
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Executive Summary

e Background: A hybrid storage system (HSS) uses multiple different storage devices to
provide high and scalable storage capacity at high performance

* Problem: Two key shortcomings of prior data placement policies:
- Lack of adaptivity to:
* Workload changes
* Changes in device types and configurations

- Lack of extensibility to more devices

: Design a data placement technique that provides:
, by to the

to incorporate a wide range of hybrid storage configurations

e Contribution: Sibyl, the first reinforcement learning-based data placement technique in
hybrid storage systems that:

- Provides adaptivity to changing workload demands and underlying device characteristics
- Can easily extend to any number of storage devices
- Provides ease of design and implementation that requires only a small computation overhead

* Key Results: Evaluate on real systems using a wide range of workloads

- Sibyl improves performance by 21.6% compared to the best previous data placement technique in
dual-HSS configuration

- In a tri-HSS configuration, Sibyl outperforms the state-of-the-art-policy policy by 48.2%
- Sibyl achieves 80% of the performance of an oracle policy with storage overhead of only 124.4 KiB

SAFARI https://github.com/CMU-SAFARI/Sibyl 51
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Talk Outline

Key Shortcomings of Prior Data Placement Techniques
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Hybrid Storage System Basics
Address Space (Application/File System View)

{ Logical Pages J
B EEnenens

Read T_ Write
/l'[‘ Storage Management Layer ?
Read I ]-_Write Write\
F ———"——Ipromotion || 1 5

: i ™ INTEL® OPTANE™ § —_— o

Eviction || Ol %

I_\ ________ / _! k@‘r o~ @4/
K Fast Device Slow Device /

Hybrid Storage System
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Hybrid Storage System Basics

Performance of a hybrid storage system
highly depends on the ability of the
storage management layer

SAFARI
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Key Shortcomings in Prior Techniques

We observe two key shortcomings that significantly
limit the performance benefits of prior techniques

1. Lack of adaptivity to:
a) Workload changes
b) Changes in device types and configuration

2. Lack of extensibility to more devices

SAFARI 55



Lack of Adaptivity (1/2)
Workload Changes

Prior data placement techniques consider only a few

workload characteristics that are statically tuned
[ cpe [ RNN-HSS [ Oracle

4
_| 41.1%

W

N

-

Request Latency

Normalized Average

)

SAFARI
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Lack of Adaptivity (2/2)

Changes in Device Types and Configurations

Do not consider underlying storage device
characteristics (e.g., changes in the level asymmetry in

read/write latencies, garbage collection)

[1Slow-Only ] CDE I RNN-HSS Bl Oracle  [1Slow-Only ] CDE B RNN-HSS [l Oracle

> —

© U 2 _

- 3—@ /\

gg) 100 !I I

554

3% 501 ]

N UV

.(_; q?.)-l_._. | | —t j

% &)0 Q 1 (¢ ° - Q 1 (€]

2 v 3 J$ Y Ty
‘o‘(\/ Q((\/ 09( -, o 66~1 -, > ‘\((\/ Q((\/ 09( -, o 60“ >

HSS Configuration 1 HSS Configuration 2
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Lack of Extensibility (1/2)

Rigid techniques that require significant effort to
accommodate more than two devices

Change in storage configuration

\% ‘;l /’ \’,f"\"’!-/: | FTINNA\ N \
.58 h

) INTEL” OPTANE™ §

\_ Dual-HSS Y,
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Lack of Extensibility (2/2)

Rigid techniques that require significant effort to
accommodate more than two devices

Change in storage configuration
R —— )

Design a new policy

\_ Tri-HSS

SAFARI
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Our Goal

e
A data-placement mechanism

that can provide:

1.Adaptivity, by continuously learning and
adapting to the application and underlying
device characteristics

2.Easy extensibility to incorporate a wide
range of hybrid storage configurations

\_

SAFARI
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Our Proposal

Sibyl

Formulates data placement in
hybrid storage systems as a
reinforcement learning problem

Sibyl is an oracle that makes accurate prophecies

S A FA R ’ https://en.wikipedia.org/wiki/Sibyl
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Talk Outline

Formulating Data Placement as Reinforcement Learning
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Basics of Reinforcement Learning (RL)

| Agent l

[ Environment ]

Agent learns to take an action in a given state
to maximize a numerical reward

SAFARI
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Formulating Data Placement as RL

>[ Agent }
1
State (S,) Reward (R,.,) Action (A,)

{ Environment ]<

>[ Sibyl }
1

Features of the Request latency Select storage device to

current request (of last served request)  place the current page
and system I

‘ ( Hybrid Storage }

L System
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Sibyl ]—‘
A

Request latency  Select storage
(of last served device to place
request) the current page

1
Hybrid Storage
System

the current

What is State?

e Limited number of state features: -

- Reduce the implementation overhead
- RL agent is more sensitive to reward

 6-dimensional vector of state features

O; = (sizes, typey, intry, cnty, capy, curry)

* We quantize the state representation into bins to
reduce storage overhead
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° 7 | ;r
What is Reward: o

the current )
device to place

request and
the current page

* Defines the objective of Sibyl system

Hybrid Storage
System

e We formulate the reward as a function of the
request latency

* Encapsulates three key aspects:

- Internal state of the device (e.g., read/write latencies, the
latency of garbage collection, queuing delays, ...)

- Throughput
- Evictions

* More details in the paper
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What is Action?

* At every new page request, the

action is to select a storage device

Featur
eatures of Request lateney . Js
the current .
(of last served  \device to plage

request and request) .
O !
system I e currentpage

Hybrid Storage
System

e Action can be easily extended to any number of

storage devices

* Sibyl learns to proactively evict or promote a page

SAFARI
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Talk Outline

Sibyl: Overview

SAFARI
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Sibyl Execution

e

RL Training

Thread

N /
A 1

State, Reward, '\ \
and Action |

N

Periodic Policy

Information | Weight Update
Storage 4 ~
Request RL Decision
ﬁ
(from OS) Thread

SAFARI
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Execution
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Sibyl Design: Overview

g Trainin — RL Training\
Networ | Training } Batch Thread
YO Dataset
Periodic Policy
\_ Weight Update J
/ RL Decision
4 X ) Thread

Experience Buffer
(in host DRAM)

State %8 ={ Max\ Action

Storage Inference Sib .
yl Policy
Request [|Observation \_Network ~ . ] Reward ( C I‘IV t
St C
(from OS)||  vector { HSS J :LExpgrignces]

K State /
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RL Decision Thread

Storage
Request

(from OS)

SAFARI

-~

State

bservatio

n
Vector

\_

Experience Buffer
(in host DRAM)

38

Inference
\_ Network

={ Max \

Siby1FR)HcY//

State

] Reward ( Collect
'LExperience

{ HSS

RL Decision
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RL Decision Thread

/ RL Decisioh

Thread

State

Storage
Request ||Observation
(from OS) Vector

\_ stote /
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RL Decision Thread

\_

State

4 )
%8 » Max Action
\_ :Gg%t;vegrie Sibyl PoIicy/

o

RL Decision

Thread

SAFARI

73



RL Decision Thread

-~

Storage
Request ||Observation
(from OS) Vector

RL Decision
Thread

—

{ HSS

) Reward ( (cgjlect
J 'LExperience

)

K State

/
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RL Decision Thread

Storage
Request

(from OS)

-~

Observation
Vector

K State

Experience Buffer iR
(in host DRAM)

RL Decision

{ HSS

| Reward  cojject
J 'LExperience

)

/
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RL Training Thread

Trainin
Networ

Periodic Policy

\_ Weight Update

358

RL Training

—

Training
Dataset

} Batch Thread

~

)

/

\_

RL Decisioh
. Thread
Experience Buffer
(in host DRAM)
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Periodic Weight Transfer

-

State

S

d Training 1 [~ : _ RL Training )
Networkj 'I | Training } Batch Thread
L SOPO| | Dataset
Periodic Policy :
\_ Weight Update | I J
i RL Decision
I
i
i
i

—
(from OS)| vector

I
Storage Inferencke :
Request %bservatiOﬂ‘ \t_N_e:V:ir_--E

I . Thread
Experience Buffer
(in host DRAM)
O ::{ Max \ Action
I Sibyl PoIicy/ | |
) Reward ( (cgjlect
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Talk Outline

Evaluation of Sibyl and Key Results

SAFARI
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Evaluation Methodology (1/3)

* Real system with various HSS configurations
- Dual-hybrid and tri-hybrid systems

AMD Ryzen7 ),
2700G CPU In %
\ T

\“.

Intel Optane )=
SSD P4800X

I\ Y 'A }'u.

7 Seagate HDD ° —

@®

ST1000DM010 |5

/\ X

intelssD ~ ADATA -
=SU630 SSD |||
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Evaluation Methodology (2/3)
Cost-Oriented HSS Configuration

) INTEL OPTANE” ¢

High-end SSD Low-end HDD

Performance-Oriented HSS Configuration

) INTEL OPTANE™ ¢

©

SAFARI High-end SSD Middle-end SSD
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Evaluation Methodology (3/3)

18 different workloads from:
- MSR Cambridge and Filebench Suites

* Four state-of-the-art data placement baselines:

- CbE Heuristic-based
Hps :> euristic-base
- Archivist

Learning-based
- RNN-HSS

SAFARI
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Performance Analysis
Cost-Oriented HSS Configuration

[1Slow-Only ] CDE [] HPS [ Archivist [ RNN-HSS [ Sibyl [ Oracle

‘: l‘\’ s220 - )
High-end SSD  Low-end HDD
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Performance Analysis
Cost-Oriented HSS Configuration

High-end SSD Low-énd HBD}

/ ¢ \
)
=

[] Sibyl @ Oracle

o 200
O >,
C 2150
Z
S 8100
ﬁg 50 — N I
c 2
£5 o
o
=2 %> 0 5% .0 .7 .S 00‘&01‘&\‘0
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Sibyl consistently outperforms all the baselines
for all the workloads
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Performance Analysis {

. .
~ High-endSSD ~ Mid-end SSD

Performance-Oriented HSS Configuration

[]Slow-Only 1 CDE  [] HPS [ Archivist [ RNN-HSS [ Sibyl Il Oracle
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Performance Analysis

I
High-endSSD  Mid-end SSD}

Performance-Oriented HSS Configuration

/ _“‘_Mf' N\

[ Sibyl [ Oracle

9)

N

Normalized Average
Request Latency
o ? N
\ss
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Sibyl provides 21.6% performance improvement by
dynamically adapting its data placement policy
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Performance Analysis 0 }
High-endSSD  Mid-end SSD

Performance-Oriented HSS Configuration
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Performance Analysis

= erarures

=

~ High-endSSD ~ Mid-end SSD

Sibyl achieves 80% of the performance
of an oracle policy that has

complete knowledge of future access patterns

SAFARI
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Performance on Tri-HSS gz

_ High-endSSD  Mid-end SSD Low-end HDD

Extending Sibyl for more devices:
1. Add a new action
2. Add the remaining capacity of the new device as a
state feature

- Heu r-iStiCTrl -hybrid

o 10
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Performance on Tri-HSS mmm= /-

] ] ) Zm“ - /]
High-end SSD  Mid-end SSD Low-end HDD

Extending Sibyl for more devices:
1. Add a new action
2. Add the remaining capacity of the new device as a
state feature

=
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Performance on Tri-HSS

H/gh-end SSD M/d-end SSD Low-end HDDJ

Sibyl outperforms the state-of-the-art

data placement policy by
48.2% in a real tri-hybrid system

Sibyl reduces the system architect's burden
by providing ease of extensibility
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Sibyl’s Overhead

* 124.4 KiB of total storage cost
- Experience buffer, inference and training network

* 40-bit metadata overhead per page for state features

* Inference latency of ~¥10ns

* Training latency of ~2us

V Small area overhead
V Small inference overhead

V Satisfies prediction latency
SAFARI 91



More in the Paper (1/3)

* Throughput (IOPS) evaluation

- Sibyl provides high IOPS compared to baseline policies because it
indirectly captures throughput (size/latency)

* Evaluation on unseen workloads
- Sibyl can effectively adapt its policy to highly dynamic workloads

* Evaluation on mixed workloads

- Sibyl provides equally-high performance benefits as in single
workloads
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More in the Paper (2/3)

e Evaluation on different features

- Sibyl autonomously decides which features are important to
maximize the performance

e Evaluation with different hyperparameter values

* Sensitivity to fast storage capacity
- Sibyl provides scalability by dynamically adapting its policy to
available storage size

of Sibyl's decision making
for different workload characteristics and
device configurations
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More in the Paper (3/3)

Sibyl: Adaptive and Extensible Data Placement in
Hybrid Storage Systems Using Online Reinforcement Learning
Gagandeep Singh! = Rakesh Nadig!  Jisung Park! = Rahul Bera! = Nastaran Hajinazar!
David Novo®  Juan Gémez-Luna'  Sander Stuijk*  Henk Corporaal®  Onur Mutlu'
'ETH Ziirich Eindhoven University of Technology SLIRMM, Univ. Montpellier, CNRS

https://arxiv.org/pdf/2205.07394.pdf

https://github.com/CMU-SAFARI/Sibyl
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94


https://arxiv.org/pdf/2205.07394.pdf
https://github.com/CMU-SAFARI/Sibyl

Talk Outline

Conclusion
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Conclusion

* We introduced Sibyl, the first reinforcement learning-
based data placement technique in hybrid storage
systems that provides

- Adaptivity
- Easily extensibility
- Ease of design and implementation

*We evaluated Sibyl on real systems using many
different workloads

- Sibyl improves performance by 21.6% compared to the best prior
data placement policy in a dual-HSS configuration

- In a tri-HSS configuration, Sibyl outperforms the state-of-the-art-
data placement policy by 48.2%

- Sibyl achieves of an oracle policy with a
storage overhead of only

SAFARI https://github.com/CMU-SAFARI/Sibyl 96
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Adaptive and Extensible Data Placement
in Hybrid Storage Systems
Using Online Reinforcement Learning

Gagandeep Singh, Rakesh Nadig, Jisung Park,
Rahul Bera, Nastaran Hajinazar, David Novo,
Juan Gémez Luna, Sander Stuijk, Henk Corporaal,
Onur Mutlu
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ISCA 2022 Paper, Slides, Videos

Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar,
David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu,
"Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage
Systems Using Online Reinforcement Learning"”

Proceedings of the 49th International Symposium on Computer

Architecture (ISCA), New York, June 2022.

[Slides (pptx) (pdf)]

[arXiv version]

[Sibyl Source Code]

[Talk Video (16 minutes)]

Sibyl: Adaptive and Extensible Data Placement in
Hybrid Storage Systems Using Online Reinforcement Learning
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SSD Course (Spring 2023)

Bk

Ds).C

= A die (or chip) contains multiple (e.g., 2 — 4) planes

Spring 2023 Edition:

|

o https://safari.ethz.ch/projects and seminars/spring2023/
doku.php?id=modern ssds

= Fall 2022 Edition:

o https://safari.ethz.ch/projects and seminars/fall2022/do
ku.php?id=modern ssds

= Youtube Livestream (Spring 2023):

o https://www.youtube.com/watch?v=4VTwOMmsnJY&list

=PL5Q2s0XY2Zi 8gOM5Icpp8hB2SHtmM4z57&pp=iAQB
= Youtube Livestream (Fall 2022):

o https://www.youtube.com/watch?v=hqglrd-
Uj0aU&list=PL50Q2s0XY2Zi9BJhenUg4JI5bwhAMpAp13&p
p=iAQB

= Project course

Taken by Bachelor's/Master’s students
SSD Basics and Advanced Topics
Hands-on research exploration

Many research readings

0o 0O 0 O

e

___ Row/Column Decoders ____

21-nm 2D NAND Flash Die

¢« Planes share decoders:

limits internal parallelism

Watch on [ YouTube

Fall 2022 Meetings/Schedule

https:

www.voutube.com/onurmutlulectures

Week Date
w1 06.10
w2 12.10
w3 19.10
wa 26.10
w5 02.11
we 09.11
w7 231
wa 30.1
we 14.12
W10 | 04.01.2023
wn 11.01
w12 | 25.01

(only operations @ the
same WL offset)

Livestream Meeting Learning
Materials
M1: P&S Course Presentation = Required
o POF gu PPT Recommended
Youl D) Live M2: Basics of NAND Flash- Required
Based SSDs Recommended
aaPDF ma PPT
Yol Live M3: NAND Flash Read/Write | Required
Operations Recommended
@ PDF maPPT
Youl D) Live M4: Processing inside NAND Required
Flash Recommended
aaPDF mPPT
Youl ) Live MS: Advanced NAND Flash Required
Commands & Mapping Recommended
auPDF zaPPT
Youlll Live MB6: Processing inside Storage | Required
@ PDF @ PPT Recommended
Youl ) Live M7: Address Mapping & Required
Garbage Collection Recommended
@ PDF maPPT
Youl ) Live M8: Introduction to MQSim Required
aa PDF @ PPT Recommended
Youl ) Live M9: Fine-Grained Mapping and = Required
Multi-Plane Operation-Aware Recommended
Block Management
aaPDF maPPT
Yl Premiere | M10a: NAND Flash Basics
a@aPDF maPPT
M10b: Reducing Solid-State
Drive Read Latency by
Optimizing Read-Retry
anPDF ma PPT aaPaper
M10c: Evanesco: Architectural = Required
Support for Efficient Data Recommended
Sanitization in Modern Flash-
Based Storage Systems
e PDF ga PPT gqnPaper
M10d: DeepSketch: A New Required
Machine Leaming-Based Recommended
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Hermes Discussion

« FAQs  More Results

- What are the selected set of program features? - Percentage of off-chip requests

- Can you provide some intuition on why these - Re_c!ucltion Ln stall cycles by reducing the
features work? critical path

- Fraction of off-chip load requests
- Accuracy and coverage of POPET
- Effect of different features
- Are all features required?
- 1Cperformance
- 1Cperformance line graph
- 1Cperformance against prior predictors
- Effect onstall cycles
* Simulation Methodology - 8C performance
- System parameters - Sensitivity:
* Hermes request issue latency
* (Cache hierarchy access latency
* Activation threshold
* ROBsize
* LLCsize
- Power overhead
- Accuracy without prefetcher

- Main memory request overhead with
different prefetchers

SAFARI 102

-  What happens in case of a misprediction?

-  What's the performance headroom for off-chip
prediction?

- Do vyou see a variance of different features in final
prediction accuracy?

- Evaluated workloads
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Initial Set of Program Features

Features without control-flow Features with control-flow

information information

8. Load PC
1. Load virtual address 9. PC & load virtual address
2. Virtual page number 10. PC @ virtual page number
3. Cacheline offset in page 11. PC & cacheline offset
4. First access 12. PC + first access
5. Cacheline offset + first access 13. PC @ byte offset
6. Byte offset in cacheline 14. PC @ word offset
7. Word offset in cacheline 15. Last-4 load PCs

16. Last-4 PCs
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Selected Set of Program Features

A binary hint that

Five features represents whether or not a
cacheblock has been

« PC @ cacheline offset recently touched

« PC @ byte offset
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When A Feature Works/Does Not Work?

Trace: 462.libguantum-1343B PC: 0x401442

Without prefetcher With a simple stride prefetcher

* PC + first access e Cacheline offset + first access
e Cacheline offset + first access

4\
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What Happens in case of a Misprediction?

* Two cases of mispredictions:

* Predicted on-chip but actually goes off-chip
- Loss of performance improvement opportunity

No need for misprediction detection and recovery

* Predicted off-chip but actually is on-chip

- Memory controller forwards the data to LLC if and only if
a load to the same address have already missed LLC and
arrived at the memory controller

No need for misprediction detection and recovery
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Performance Headroom of Off-Chip Prediction

1.35
= mIdeal Hermes
.f'_."': 13 - 1.29
& (@ O Pythia (baseli
-§ £‘°125 | ythia (baseline) 8.3%1
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a8 1.2 A
£ 1.16
g 8 115 -
1
& v 1.1 - I
& 1.05 A
>
o
1 T T T T T T
SPECo6 SPEC17 PARSEC Ligra CvpP GEOMEAN
. 1.35 (b)
g 5 1.29 1.29 O Prefetcher-only  m Prefetcher + Ideal Hermes
o )
_§- 201.25 5 8'3/01 9-4%I 1.23 1.24
O 1.20
a8 12 1.19 s.z%I 1o.9%I 1.19
c 'S 114
LK 3 1.13
g 2115 13.3%
8 Z 11
il - 1.06
+1.05
>
o
1

Pythia Bingo SPP MLOP SMS
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System Parameters

Table 4: Simulated system parameters

1 and 8 cores, 6-wide fetch/execute/commit, 512-entry ROB,
Core 128/72-entry LQ/SQ, Perceptron branch predictor [61] with
17-cycle misprediction penalty

L1/1L2 Private, 48KB/1.25MB, 64B line, 12/20-way, 16/48 MSHRSs,
Caches LRU, 5/15-cycle round-trip latency [25]

3MB/core, 64B line, 12 way, 64 MSHRs/slice, SHiP [122],

LLC 55-cycle round-trip latency [24, 25], Pythia prefetcher [32]

1C: 1 channel, 1 rank per channel; 8C: 4 channels, 2 ranks
Main per channel; 8 banks per rank, DDR4-3200 MTPS, 64b data-
Memory  bus per channel, 2KB row buffer per bank, tRCD=12.5ns,
tRP=12.5ns, tCAS=12.5ns

Hermes Hermes-O/P: 6/18-cycle Hermes request issue latency

(0
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Evaluated Workloads

Table 5: Workloads used for evaluation

Suite = #Workloads #Traces Example Workloads

SPECO6 14 22 gce, mcf, cactusADM, lbm, ...
SPEC17 11 23 gce, mcf, pop2, fotonik3d, ...
PARSEC 4 12 canneal, facesim, raytrace, ...
Ligra 11 20 BFS, PageRank, Radii, ...

CVP 33 33 integer, floating-point, server, ...

(0
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Not All Off-Chip Loads are Prefetched

Observation

25~

IDdIAI) suolldnJaisul oy 4ad sassiw J77
o LN o
N i i LN o

elyiAd

3uiydisjaud-oN

AVG

e1Ad

i

3uiyosiajauid-oN

CVP

ely3Ad

MPKI

duiyoiaiaud-oN

Ligra

e1Ad

3uiyoiajauid-oN

PARSEC

eI1LAd

duiyoiaiaud-oN

SPEC17

EmBlocking CINon-blocking

e1Ad

|i|imi

3uiydiajauid-oN

SPECO6

100%

75%
25%
0%

50%

w91sAs 3uiyolayald-oN ay1 ul
speo| diyos-4Jo JO uolydel

d
()
-
@)
)
L
Y
()]
| -
Q.
)
(@)
C
.-_m
(Up)
Q
|
O
Up)
K%
O
O
(D)
C
e
(U
@)
(=)
S
o
LN
>
| -
O
Q
=z




Not All Off-Chip Loads are Prefetched

Observation
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Observation: With Large Cache Comes Longer Latency

* On-chip cache access latency significantly contributes to
the latency of an off-chip load

© 180 - .On-chip cache hierarchy access latency
S 160 -
o 9
= § 140 A
5% 120 A
S £ 3
o 8 o 100 7]
w5 E
> 5o 80 -
© 2 Y4—
3 o 60 -
S €
S5 40 -
© 2
% 20 A
H

O -

SPECO6  SPEC17  PARSEC Ligra CVvP AVG
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Observation: With Large Cache Comes Longer Latency

* On-chip cache access latency significantly contributes to
the latency of an off-chip load

180
160 A
140 ~

. On-chip cache hierarchy access latency
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40% of stall cycles caused by an off-chip load can be eliminated
by removing on-chip cache access latency from its critical path
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What Fraction of Load Requests Goes Off-Chip?

N
X
|

Fraction of loads
that goes off-chip
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Off-Chip Prediction Quality: Defining Metrics

Accuracy Coverage |
® p N O
Predicted off-chip Actual off-chip

Predicted and actual off-chip
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Off-Chip Prediction Quality: Analysis

Accuracy |

OHMP  @TTP  mPOPET

100%

S 80% -
o 60% -
§ 4L0% -
T %I E-‘::aI z/I %I %
SPECo6  SPECiy  PARSEC Ligra CVP
Coverage | 5 3
100% OHMP  @TTP  mPOPET 95%§.
L] Oe O Om 7. Os 712k
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3 20% % % % % % 22/%
0% % [z | 7M™ 7 28 | 7
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Off-Chip Prediction Quality: Analysis

POPET provides off-chip predictions with
high-accuracy and high-coverage



Effect of Different Features

809
% mmAccuracy “O-Coverage
60% -

40% A

20% -

Accuracy and coverage %

0%

Pc@® last-4load pc@byte PC+first Cacheline 142 142+3 1+2+3+4 All (POPET)
cacheline PCs(2)  offset(s) access(4) offset+first
offset (1) access (5)

Combination of features provides both higher
accuracy and higher coverage than any individual feature
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Are All Features Required? (1)

——PC@®cacheline offset ——Last-4load PCs —PC® byte offset PC +firstaccess —e—Cacheline offset + first access
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PC + first access prowdes q PC@byte offset pyov??es
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YN OMe R REROTYNRBGILRRER

Workload number

No single feature individually provides

highest prediction accuracy across all workloads
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Are All Features Required? (2)

——PC@®cacheline offset —=—Last-4load PCs —=—PC®byte offset PC+firstaccess —e—Cacheline offset + first access
100%
(b)
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bD f |
©
% 40% - I | | ‘ n |
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¢ { | ‘ ‘
o ( \A L ) \l‘\yf
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Workload nhumber

No single feature individually provides
highest prediction coverage also across all workloads

SAFARI



Single-Core Performance

1.35

i
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Geomean speedup
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|1.20

¥ Q N %
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Hermes in combination with Pythia

1.25

GEOMEAN

outperforms Pythia alone in every workload category
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Single-Core Performance Line Graph
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Single-Core Performance Against Prior Predictors

O Pythia (baseline) &@Pythia+ Hermes-HMP & Pythia+ Hermes-TTP mPythia + Hermes-POPET m Pythia + Ideal Hermes
1.35

o = L = N =
- N (V] w
1.257
1.286

i
1

_ ___‘|‘1.zo3

Geomean speedup
w1

over the No-prefetching system

—

N
N

il

PARSEC

—

GEOMEAN

POPET provides higher performance benefit
than prior predictors

Hermes with POPET achieves nearly 90% performance
improvement of the Ideal Hermes
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Effect on Stall Cycles

60%

[l SPECo6 @ SPEC17 B PARSEC O Ligra E CVP

50%

40%

ip loads

= 30%

20%

due to off-ch

10%

% reduction of stall cycles

0%

-10%

Hermes reduces off-chip load induced stall cycles

on average by 16.2% (up-to 51.8%)
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Eight-Core Performance

O Pythia (baseline)  mPythia+ Hermes-HMP Pythia+Hermes-TTP  mPythia+ Hermes-POPET
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Geomean speedup
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T T F;.;im. T
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-

Hermes in combination with Pythia

outperforms Pythia alone by 5.1% on average
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Effect of Hermes Request Issue Latency

Hermes in combination with Pythia outperforms Pythia

alone even with a 24-cycle Hermes request issue latency
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Effect of Cache Hierarchy Access Latency

Hermes can provide even higher performance benefit in
future processors with bigger and slower on-chip caches

SAFARI



Effect of Activation Threshold

100% Speedup A c 1.26
[ peeaup ccuracy overage
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Accuracy/Coverage %
Geomean speedup

over the No-prefetching system

Activation threshold

With increase in activation threshold
1. Accuracy increases

2. Coverage decreases

SAFARI



Power Overhead
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Effect of ROB Size
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Effect of LLC Size
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Accuracy and Coverage with Different Prefetchers

100%

mmAccuracy O-Coverage

90% -
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POPET's accuracy and coverage increases significantly
in absence of a data prefetcher
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Increase in Main Memory Requests
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Performance on Unseen Workloads

[OSlow-Only  [OArchivist BRNN-HSS [Sibyl [Oracle
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H&M (H&L) HSS configuration, Sibyl outperforms RNN-
HSS and Archivist by 46.1% (54.6%) and 8.5% (44.1%),

respectively
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Performance Analysis

Performance-Oriented HSS Configuration
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Baseline policies are ineffective for many
workloads even when compared to Slow-Only
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Performance on Mixed Workloads
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Performance on Mixed Workloads

[ Sibylpes B Oracle
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Performance on Mixed Workloads
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Performance With Different Features
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Sibyl autonomously decides which features are
important to maximize the performance of the running
workload
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Sensitivity to Fast Storage Capacity
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Explainability Analysis
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Training and Inference Network

* Training and inference
network allow parallel

. ‘ Probabilility distribution
EXECUtlon of the actions

(place data in the fast or
the slow storage)

Fully-connected
layer
(30 neurons)

e Observation vector as
the input

t swish
._|activation
Fully-connected
layer
(20 neurons)

. Observation vector
* Produces pro babil Ity <size; type; intr; cnt, cap; curre

distribution of Q-values
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