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Data-Driven (Self-Optimizing) 
Architectures
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System Architecture Design Today

n Human-driven
q Humans design the policies (how to do things)

n Many (too) simple, short-sighted policies all over the system

n No automatic data-driven policy learning

n (Almost) no learning: cannot take lessons from past actions
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Can we design 
fundamentally intelligent architectures?



An Intelligent Architecture

n Data-driven
q Machine learns the “best” policies (how to do things)

n Sophisticated, workload-driven, changing, far-sighted policies

n Automatic data-driven policy learning

n All controllers are intelligent data-driven agents
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We need to rethink design 
(of all controllers)



Self-Optimizing Memory Controllers
n Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana, 

"Self Optimizing Memory Controllers: A Reinforcement Learning 
Approach"
Proceedings of the 35th International Symposium on Computer Architecture 
(ISCA), pages 39-50, Beijing, China, June 2008.                                
Selected to the ISCA-50 25-Year Retrospective Issue covering 1996-
2020 in 2023 (Retrospective (pdf) Full Issue).
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Self-Optimizing Memory Prefetchers
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Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu,
"Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, October 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (20 minutes)]
[Lightning Talk Video (1.5 minutes)]
[Pythia Source Code (Officially Artifact Evaluated with All Badges)]
[arXiv version]
Officially artifact evaluated as available, reusable and reproducible.

https://arxiv.org/pdf/2109.12021.pdf 
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Learning-Based Off-Chip Load Predictors
n Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk Olgun, 

Mohammad Sadrosadati, and Onur Mutlu,
"Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load 
Prediction"
Proceedings of the 55th International Symposium on Microarchitecture (MICRO), Chicago, IL, USA, 
October 2022.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Talk Video (12 minutes)]
[Lecture Video (25 minutes)]
[arXiv version]
[Source Code (Officially Artifact Evaluated with All Badges)]
Officially artifact evaluated as available, reusable and reproducible.
Best paper award at MICRO 2022.
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Self-Optimizing Hybrid SSD Controllers
Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar, 
David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu,
"Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage 
Systems Using Online Reinforcement Learning"
Proceedings of the 49th International Symposium on Computer 
Architecture (ISCA), New York, June 2022.
[Slides (pptx) (pdf)]
[arXiv version]
[Sibyl Source Code]
[Talk Video (16 minutes)]
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Pythia: Prefetching using
Reinforcement Learning 
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Executive Summary

https://github.com/CMU-SAFARI/Pythia

• Background: Prefetchers predict addresses of future memory requests by associating 
memory access patterns with program context (called feature)

• Problem: Three key shortcomings of prior prefetchers:
- Predict mainly using a single program feature
- Lack inherent system awareness (e.g., memory bandwidth usage)
- Lack in-silicon customizability

• Goal: Design a prefetching framework that:
- Learns from multiple features and inherent system-level feedback
- Can be customized in silicon to use different features and/or prefetching objectives

• Contribution: Pythia, which formulates prefetching as reinforcement learning problem
- Takes adaptive prefetch decisions using multiple features and system-level feedback
- Can be customized in silicon for target workloads via simple configuration registers
- Proposes a realistic and practical implementation of RL algorithm in hardware

• Key Results:
- Evaluated using a wide range of workloads from SPEC CPU, PARSEC, Ligra, Cloudsuite
- Outperforms best prefetcher (in 1-core config.) by 3.4%, 7.7% and 17% in 1/4/bw-constrained cores
- Up to 7.8% more performance over basic Pythia across Ligra workloads via simple customization

https://github.com/CMU-SAFARI/Pythia
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Talk Outline
Key Shortcomings of Prior Prefetchers

Formulating Prefetching as Reinforcement Learning

Pythia: Overview

Evaluation of Pythia and Key Results

Conclusion



14

Prefetching Basics
• Predicts addresses of long-latency memory requests and 

fetches data before the program demands it

• Associates access patterns from past memory requests 
with program context information

• Example program features
- Program counter (PC)
- Page number
- Page offset
- Cacheline delta
- …
- Or a combination of these attributes

Program context à Access PatternProgram Feature
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Key Shortcomings in Prior Prefetchers
• We observe three key shortcomings that significantly 

limit performance benefits of prior prefetchers

Predict mainly using a single program feature

Lack inherent system awareness

Lack in-silicon customizability

1
2
3
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(1) Single-Feature Prefetch Prediction
• Provides good performance gains mainly on workloads 

where the feature-to-pattern correlation exists

[1] Bakshalipour et al., HPCA’19 [2] Kim et al., MICRO’16
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Relying on a single feature for prediction leaves 
significant performance improvement on table
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(2) Lack of Inherent System Awareness
• Little understanding of undesirable effects (e.g., 

memory bandwidth usage, cache pollution, …)
- Performance loss in resource-constrained configurations 

0%

50%

100%

150%

200%

250%

SPP Bingo Pythia SPP Bingo Pythia

Ligra-CC PARSEC-Canneal

Fr
ac

tio
n 

of
 L

LC
 m

iss
es Covered Uncovered Overpredicted

-4%

-2%
0%
2%
4%

6%
8%

10%

Ligra-CC PARSEC-Canneal

IP
C 

im
pr

ov
em

en
t 

ov
er

 b
as

el
in

e 
(%

)

SPP Bingo Pythia
368% 574%

Similar coverage Lower overpredictions Yet, lower performance



19

(2) Lack of Inherent System Awareness
• Little understanding of undesirable effects (e.g., 

memory bandwidth usage, cache pollution, …)
- Performance loss in resource-constrained configurations 

0%

50%

100%

150%

200%

250%

SPP Bingo Pythia SPP Bingo Pythia

Ligra-CC PARSEC-Canneal

Fr
ac

tio
n 

of
 L

LC
 m

iss
es Covered Uncovered Overpredicted

-4%

-2%
0%
2%
4%

6%
8%

10%

Ligra-CC PARSEC-Canneal

IP
C 

im
pr

ov
em

en
t 

ov
er

 b
as

el
in

e 
(%

)

SPP Bingo Pythia
368% 574%

Similar coverage Lower overpredictions Yet, lower performance

Prefetchers often lose performance due to lack 
of inherent system awareness



20

(3) Lack of In-silicon Customizability
• Feature statically selected at design time

- Rigid hardware designed specifically to exploit that feature

• No way to change program feature and/or change 
prefetcher’s objective in silicon
- Cannot adapt to a wide range of workload demands

Design from scratch Verify Fabricate
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Our Goal

A prefetching framework that can:

1.Learn to prefetch using multiple features and 
inherent system-level feedback information

2.Be easily customized in silicon to use different 
features and/or change prefetcher’s objectives
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Our Proposal

Pythia
Formulates prefetching as a 

reinforcement learning problem

Pythia is named after the oracle of Delphi, who is known for her accurate prophecies
https://en.wikipedia.org/wiki/Pythia
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Talk Outline
Key Shortcomings of Prior Prefetchers

Formulating Prefetching as Reinforcement Learning

Pythia: Overview

Evaluation of Pythia and Key Results

Conclusion
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Basics of Reinforcement Learning (RL)
• Algorithmic approach to learn to take an action in a 

given situation to maximize a numerical reward

• Agent stores Q-values for every state-action pair
- Expected return for taking an action in a state
- Given a state, selects action that provides highest Q-value

Agent

Environment

State (St)State (St) Action (At)Action (At)Reward (Rt+1)Reward (Rt+1)
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Formulating Prefetching as RL
Agent

Environment

State (St)State (St) Action (At)Action (At)Reward (Rt+1)Reward (Rt+1)

Prefetcher

Processor & 
Memory Subsystem

Reward
Prefetch from address 

A+offset (O)

Features of memory 
request to address A 

(e.g., PC)
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What is State?
• k-dimensional vector of features

• Feature = control-flow + data-flow

• Control-flow examples
- PC
- Branch PC
- Last-3 PCs, …

• Data-flow examples
- Cacheline address
- Physical page number
- Delta between two cacheline addresses
- Last 4 deltas, …
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What is State?

S = {PC+Delta, Sequence of last-4 deltas}

Example of a state information

Feature-1 (ɸ1) Feature-2 (ɸ2)

PC
(Control-flow info.)

Cacheline Delta
(Data-flow info.)

Seq. of last-4 deltas
(Data-flow info.)



28

What is Action?
Given a demand access to address A
the action is to select prefetch offset “O”

• Action-space: 127 actions in the range [-63, +63] 
- For a machine with 4KB page and 64B cacheline

• Upper and lower limits ensure prefetches do not cross 
physical page boundary

• A zero offset means no prefetch is generated

• We further prune action-space by design-space exploration



29

What is Reward?
• Defines the objective of Pythia

• Encapsulates two metrics:
- Prefetch usefulness (e.g., accurate, late, out-of-page, …)
- System-level feedback (e.g., mem. b/w usage, cache 

pollution, energy, …)

• We demonstrate Pythia with memory bandwidth 
usage as the system-level feedback in the paper
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What is Reward?
• Seven distinct reward levels

- Accurate and timely (RAT)
- Accurate but late (RAL)
- Loss of coverage (RCL)
- Inaccurate

• With low memory b/w usage (RIN-L)
• With high memory b/w usage (RIN-H)

- No-prefetch
• With low memory b/w usage (RNP-L)
• With high memory b/w usage(RNP-H)

• Values are set at design time via automatic design-
space exploration
- Can be customized further in silicon for higher performance
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Steering Pythia’s Objective via Reward Values
• Example reward configuration for

- Generating accurate prefetches
- Making bandwidth-aware prefetch decisions

+20+12-2-4-8-14

RATRALRNP-HRNP-LRIN-LRIN-H
AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate;

H = High mem. b/w; L = Low mem. b/w

Highly prefers to generate accurate prefetches

Prefers not to prefetch if memory bandwidth usage is low

Strongly prefers not to prefetch if memory bandwidth usage is high
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Steering Pythia’s Objective via Reward Values
• Customizing reward values to make Pythia conservative 

towards prefetching

+20+12+2+1-20-22

RATRALRNP-HRNP-LRIN-LRIN-H
AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate;

H = High mem. b/w; L = Low mem. b/w

Highly prefers to generate accurate prefetches

Otherwise prefers not to prefetch
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Steering Pythia’s Objective via Reward Values
• Customizing reward values to make Pythia conservative 

towards prefetching

+20+12+4+2-20-22

RATRALRNP-HRNP-LRIN-LRIN-H
AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate;

H = High mem. b/w; L = Low mem. b/w

Highly prefers to generate accurate prefetches

Otherwise prefers not to prefetchServer-class processors
Bandwidth-sensitive 

workloads

Strict Pythia configuration
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Talk Outline
Key Shortcomings of Prior Prefetchers

Formulating Prefetching as Reinforcement Learning

Pythia: Overview

Evaluation of Pythia and Key Results

Conclusion
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Pythia Overview
• Q-Value Store: Records Q-values for all state-action pairs
• Evaluation Queue: A FIFO queue of recently-taken actions

Evaluation Queue (EQ)

Demand
Request

1
Assign reward to 

corresponding EQ entry

Look up 
QVStoreState

Vector

Q-Value Store
(QVStore)

2

3

5
Insert prefetch action & 
State-Action pair in EQ

6

Prefetch Fill 

A1 A2 A3

Memory 
Hierarchy

Generate
prefetch

Evict EQ entry and 
update QVStore

4

Find the Action with max Q-Value

7

S1
S2
S3
S4

Set filled bit

Max
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Architecting QVStore

S = {PC+Delta, 
Sequence of last-4 deltas}

+1 +2 +3

Q-Value Store
(QVStore)

…
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Architecting the QVStore

S = {PC+Delta, 
Sequence of last-4 deltas}

+1 +2 +3

Q-Value Store
(QVStore)

…

Fast retrieval of Q-values from QVStore

Efficient storage organization of Q-values in QVStore

Fast prefetch prediction
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Organization of QVStore
• A monolithic two-dimensional table?

- Indexed by state and action values
• State-space increases exponentially with #bits

S = {PC+Delta, Sequence of last-4 deltas}

32b 7b 4x7b = 67 bits+ +

A1 A2 A3 A4 A5 A6 A7 A8 A9
S1
S2
S3
S4
S5
S6
S7

Design complexity Access latency

127 actions

26
7  s

ta
te

s
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Organization of QVStore
• We partition QVStore into k vaults [k  = number of features in state]

- Each vault corresponds to one feature and stores the Q-
values of feature-action pairs

… Vaultk

MAX

(a)

Vault1 Vault2

State-action Q-value

Plane1

Shift

+ #

+

Feature Index

φ1
Sφ
1
S φ2

Sφ
2
S φk

Sφ
k
S

Program 
feature

Q(φ1
S , A)Q(φ1
S , A) Q(φ2

S , A)Q(φ2
S , A) Q(φk

S , A)Q(φk
S , A)

Feature-action Q-value

Q(S,A)Q(S,A)
φk
Sφ
k
S

Q(φk
S , A)Q(φk
S , A)

Feature-action Q-value

φk
Sφ
k
S

Index
Generation

Index
Generation

Index
Generation

Action (A)Action (A) Action (A)Action (A)
(b)

(c)

• Query each vault in 
parallel with feature 
and action

• Retrieve feature-action 
Q-value from each vault

• Compute MAX of all 
feature-action Q-values

MAX ensures the Q(S,A) is driven by the 
constituent feature that has highest Q(ɸ,A)

To retrieve Q(S,A) for 
each action
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Organization of QVStore
• We further partition each vault into multiple planes

- Each plane stores a partial Q-value of a feature-action pair

… Vaultk

MAX

(a)

Vault1 Vault2

State-action Q-value

Plane1

Shift

+ #

+

Feature Index

φ1
Sφ
1
S φ2

Sφ
2
S φk

Sφ
k
S

Program 
feature

Q(φ1
S , A)Q(φ1
S , A) Q(φ2

S , A)Q(φ2
S , A) Q(φk

S , A)Q(φk
S , A)

Feature-action Q-value

Q(S,A)Q(S,A)
φk
Sφ
k
S

Q(φk
S , A)Q(φk
S , A)

Feature-action Q-value

φk
Sφ
k
S

Index
Generation

Index
Generation

Index
Generation

Action (A)Action (A) Action (A)Action (A)
(b)

(c)

• Query each plane in 
parallel with hashed 
feature and action

• Retrieve partial feature-
action Q-value from each 
plane

• Compute SUM of all partial 
feature-action Q-values

To retrieve Q(ɸ,A) 
for each action
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Organization of QVStore
• We further partition each vault into  multiple planes

- Each plane stores a partial Q-value of a feature-action pair

… Vaultk

MAX

(a)

Vault1 Vault2

State-action Q-value

Plane1

Shift

+ #

+

Feature Index

φ1
Sφ
1
S φ2

Sφ
2
S φk

Sφ
k
S

Program 
feature

Q(φ1
S , A)Q(φ1
S , A) Q(φ2

S , A)Q(φ2
S , A) Q(φk

S , A)Q(φk
S , A)

Feature-action Q-value

Q(S,A)Q(S,A)
φk
Sφ
k
S

Q(φk
S , A)Q(φk
S , A)

Feature-action Q-value

φk
Sφ
k
S

Index
Generation

Index
Generation

Index
Generation

Action (A)Action (A) Action (A)Action (A)
(b)

(c)

• Query each plane in 
parallel with hashed 
feature and action

• Retrieve partial feature-
action Q-value from each 
plane

• Compute SUM of all parital 
feature-action Q-values

To retrieve Q(ɸ,A) 
for each action

1. Enables sharing of partial Q-values between similar 
feature values, shortens prefetcher training time

2. Reduces chances of sharing partial Q-values 
across widely different feature values
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More in the Paper
• Pipelined search operation for QVStore

• Reward assignment and QVStore update

• Automatic design-space exploration
- Feature types
- Actions
- Reward and Hyperparameter values
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More in the Paper
• Pipelined search operation for QVStore

• Reward assignment and QVStore update

• Automatic design-space exploration
- Feature types
- Action
- Reward and Hyperparameter values

https://arxiv.org/pdf/2109.12021.pdf 

https://arxiv.org/pdf/2109.12021.pdf
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Simulation Methodology
• Champsim [3] trace-driven simulator

• 150 single-core memory-intensive workload traces
- SPEC CPU2006 and CPU2017
- PARSEC 2.1
- Ligra
- Cloudsuite

• Homogeneous and heterogeneous multi-core mixes

• Five state-of-the-art prefetchers
- SPP [Kim+, MICRO’16]
- Bingo [Bakhshalipour+, HPCA’19]
- MLOP [Shakerinava+, 3rd Prefetching Championship, 2019]
- SPP+DSPatch [Bera+, MICRO’19]
- SPP+PPF [Bhatia+, ISCA’20]

[3] https://github.com/ChampSim/ChampSim

https://github.com/ChampSim/ChampSim
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Basic Pythia Configuration
• Derived from automatic design-space exploration

• State: 2 features
- PC+Delta
- Sequence of last-4 deltas

• Actions: 16 prefetch offsets
- Ranging between -6 to +32. Including 0.

• Rewards:
- RAT = +20; RAL = +12; RNP-H=-2; RNP-L=-4;
- RIN-H=-14; RIN-L=-8; RCL=-12



47

List of Evaluated Features
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Basic Pythia Configuration
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1. Pythia consistently provides the highest 
performance in all core configurations

2. Pythia’s gain increases with core count
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Pythia outperforms prior best prefetchers for 
a wide range of DRAM bandwidth configurations
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Performance Improvement via Customization

• Reward value customization
• Strict Pythia configuration

- Increasing the rewards for no prefetching
- Decreasing the rewards for inaccurate prefetching

• Strict Pythia is more conservative in generating 
prefetch requests than the basic Pythia
• Evaluate on all Ligra graph processing workloads
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2%Pythia can extract even higher performance 
via customization without changing hardware
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Pythia’s Overhead
• 25.5 KB of total metadata storage per core

- Only simple tables
• We also model functionally-accurate Pythia with full 

complexity in Chisel [4] HDL

1.03% area overhead

Satisfies prediction latency

0.4% power overhead

of a desktop-class 4-core Skylake processor (Xeon D2132IT, 60W)
[4] https://www.chisel-lang.org

https://www.chisel-lang.org/
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More in the Paper
• Performance comparison with unseen traces

- Pythia provides equally high performance benefits

• Comparison against multi-level prefetchers
- Pythia outperforms prior best multi-level prefetchers

• Understanding Pythia’s learning with a case study
- We reason towards the correctness of Pythia’s decision

• Performance sensitivity towards different features and 
hyperparameter values

• Detailed single-core and four-core performance
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Performance on Previously-Unseen Workloads
• Evaluated with 500 traces from value prediction 

championship
- No prefetcher has been trained on these traces
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Pythia outperforms MLOP and Bingo by 
8.3% and 3.5% in single-core

And 9.7% and 5.4% in four-core
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More in the Paper
• Performance comparison with unseen traces

- Pythia provides equally high performance benefits

• Comparison against multi-level prefetchers
- Pythia outperforms prior best multi-level prefetchers

• Understanding Pythia’s learning with a case study
- We reason towards the correctness of Pythia’s decision

• Performance sensitivity towards different features 
and hyperparameter values

• Detailed single-core and four-core performance

https://arxiv.org/pdf/2109.12021.pdf 

https://arxiv.org/pdf/2109.12021.pdf
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Pythia is Open Source
https://github.com/CMU-SAFARI/Pythia

• MICRO’21 artifact evaluated
• Champsim source code + Chisel modeling code
• All traces used for evaluation

https://github.com/CMU-SAFARI/Pythia
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Talk Outline
Key Shortcomings of Prior Prefetchers

Formulating Prefetching as Reinforcement Learning

Pythia: Overview

Evaluation of Pythia and Key Results

Conclusion
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Executive Summary

https://github.com/CMU-SAFARI/Pythia

• Background: Prefetchers predict addresses of future memory requests by associating 
memory access patterns with program context (called feature)

• Problem: Three key shortcomings of prior prefetchers:
- Predict mainly using a single program feature
- Lack inherent system awareness (e.g., memory bandwidth usage)
- Lack in-silicon customizability

• Goal: Design a prefetching framework that:
- Learns from multiple features and inherent system-level feedback
- Can be customized in silicon to use different features and/or prefetching objectives

• Contribution: Pythia, which formulates prefetching as reinforcement learning problem
- Takes adaptive prefetch decisions using multiple features and system-level feedback
- Can be customized in silicon for target workloads via simple configuration registers
- Proposes a realistic and practical implementation of RL algorithm in hardware

• Key Results:
- Evaluated using a wide range of workloads from SPEC CPU, PARSEC, Ligra, Cloudsuite
- Outperforms best prefetcher (in 1-core config.) by 3.4%, 7.7% and 17% in 1/4/bw-constrained cores
- Up to 7.8% more performance over basic Pythia across Ligra workloads via simple customization

https://github.com/CMU-SAFARI/Pythia


Rahul Bera,  Konstantinos Kanellopoulos,  Anant V. Nori,
Taha Shahroodi,  Sreenivas Subramoney,  Onur Mutlu

Pythia
A Customizable Hardware Prefetching Framework 

Using Online Reinforcement Learning

https://github.com/CMU-SAFARI/Pythia

https://arxiv.org/pdf/2109.12021.pdf 

https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/pdf/2109.12021.pdf
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Pythia Discussion
• FAQs

- Why RL?
- What about large page?
- What’s the prefetch degree?
- Can customization happen during 

workload execution?
- Can runtime mixing create problem?

• Simulation and Methodology
- Basic Pythia configuration
- System parameters
- Configuration of prefetchers
- Evaluated workloads
- Feature selection

• Detailed Design
- Reward structure
- Design overview
- QVStore Organization

• More Results
- Comparison against other adaptive 

prefetchers
- Comparison against Context prefetcher
- Feature combination sensitivity
- Hyperparameter sensitivity
- Comparison with multi-level prefetchers
- Performance in unseen workloads
- Single-core s-curve
- Four-core s-curve
- Detailed performance analysis
- Benefit of bandwidth awareness
- Case study
- Customizing rewards
- Customizing features



Self-Optimizing Memory Prefetchers
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Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu,
"Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, October 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (20 minutes)]
[Lightning Talk Video (1.5 minutes)]
[Pythia Source Code (Officially Artifact Evaluated with All Badges)]
[arXiv version]
Officially artifact evaluated as available, reusable and reproducible.

https://arxiv.org/pdf/2109.12021.pdf 

https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=7
https://www.youtube.com/watch?v=kzL22FTz0vc&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=2
https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/abs/2109.12021
https://arxiv.org/pdf/2109.12021.pdf


Hermes: Perceptron-Based 
Off-Chip Load Prediction 
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Learning-Based Off-Chip Load Predictors
n Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk Olgun, 

Mohammad Sadrosadati, and Onur Mutlu,
"Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load 
Prediction"
Proceedings of the 55th International Symposium on Microarchitecture (MICRO), Chicago, IL, USA, 
October 2022.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Talk Video (12 minutes)]
[Lecture Video (25 minutes)]
[arXiv version]
[Source Code (Officially Artifact Evaluated with All Badges)]
Officially artifact evaluated as available, reusable and reproducible.
Best paper award at MICRO 2022.

67https://arxiv.org/pdf/2209.00188.pdf 

https://arxiv.org/pdf/2209.00188.pdf
https://arxiv.org/pdf/2209.00188.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pdf
https://www.youtube.com/watch?v=afGc1pWr-_Y
https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s
https://arxiv.org/abs/2209.00188
https://github.com/CMU-SAFARI/Hermes
https://arxiv.org/pdf/2209.00188.pdf


Hermes Talk Video

https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s 

https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s


Rahul Bera,  Konstantinos Kanellopoulos,  Shankar Balachandran,
David Novo,  Ataberk Olgun, Mohammad Sadrosadati,  Onur Mutlu

Accelerating Long-Latency Load Requests 
via Perceptron-Based Off-Chip Load Prediction

https://github.com/CMU-SAFARI/Hermes

https://arxiv.org/pdf/2209.00188.pdf 

https://github.com/CMU-SAFARI/Hermes
https://arxiv.org/pdf/2209.00188.pdf
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The Key Problem

Long-latency off-chip load requests

Often stall processor by 
blocking instruction retirement from 

Reorder Buffer (ROB)

Limit performance
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Traditional Solutions

Employ sophisticated prefetchers

Increase size of on-chip caches
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Key Observation 1

50% 
successfully prefetched

# off-chip loads without any prefetcher

50% 
still go off-chip even with 

a state-of-the-art prefetcher

70% of the off-chip loads 
block the ROB

Many loads still go off-chip 
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40% of the stalls can be eliminated by removing 
on-chip cache access latency from critical path

Key Observation 2

On-chip cache access latency 
significantly contributes to off-chip load latency

L1 L2 LLC Main Memory

Saved cycles

50% still go off-chip

L1 L2 LLC Main Memory
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Caches are Getting Bigger and Slower…

Hardavellas+, “Database Servers on Chip Multiprocessors: Limitations and Opportunities”, CIDR, 2007
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Improve processor performance 
by removing on-chip cache access latency 

from the critical path of off-chip loads

Our Goal



Predicts which load requests 
are likely to go off-chip

Starts fetching data directly from main memory 
while concurrently accessing the cache hierarchy
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Key Contribution

Hermes employs the first 
perceptron-based off-chip load predictor

That predicts which loads are likely to go off-chip

By learning from 
multiple program context information
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Hermes Overview

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

L1 L2 LLC Main Memory

Baseline Processor is stalled

Latency tolerance limit of ROB
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Hermes Overview

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

L1 L2 LLC Main Memory

POPET

L1 L2 LLC

Main Memory

Baseline

Hermes

Saved stall cycles

Processor is stalled

Latency tolerance limit of ROB

Predict

Issue a  
Hermes 
request

Wait

Train

Perceptron-based 
off-chip load predictor
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Designing the Off-Chip Load Predictor

Tracking cache contents

Learning from program behavior

Large metadata
§ Metadata size increases with cache hierarchy size

May need to track all cache operations
§ Gets complex depending on the cache hierarchy 

configuration (e.g., inclusivity, bypassing,…)

Correlate different program features with off-chip loads

MissMap [Loh+, MICRO’11] for the DRAM cache,
D2D [Sembrant+, ISCA’14], D2M [Sembrant+, HPCA’17], LP [Jalili+, HPCA’22] for the cache hierarchy

History-based prediction
HMP [Yoaz+, ISCA’99] for the L1-D cache

Using branch-predictor-like hybrid predictor:
Global, Gshare, and GSkew

Low storage overhead Low design complexity

POPET provides 
both higher accuracy and higher performance 
than predictors inspired from these previous works
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POPET: Perceptron-Based Off-Chip Predictor

• Multi-feature hashed perceptron model[1]
- Each feature has its own weight table
• Stores correlation between feature value and off-chip prediction

Feature1 #
Weight 
Table1

hash

index

Feature2 #
Weight 
Table2

hash

index

FeatureN #
Weight 
TableN

hash

index

!

weight1

weight2

weightn

ActivationSum 
weights

Predict to 
go off-chip

.....

...

(e.g., PC + offset)

Stage 1 Stage 2 Stage 3

≥ τact≥ τact

[1] D. Tarjan and K. Skadron, “Merging Path and Gshare Indexing in Perceptron Branch Prediction,” TACO, 2005
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Off-Chip
Main Memory

POPET
Predict

Issue 
Hermes 
request

Wait

Train
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Predicting using POPET

• Uses simple table lookups, addition, and comparison

Feature1 #
Weight 
Table1

hash

index

Feature2 #
Weight 
Table2

hash

index

FeatureN #
Weight 
TableN

hash

index

!

weight1

weight2

weightn

ActivationSum 
weights

Predict to 
go off-chip

.....

...

(e.g., PC + offset)

Stage 1 Stage 2 Stage 3

≥ τact≥ τact
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Training POPET

• Uses simple increment or decrement of feature weights

Feature1 #
Weight 
Table1

hash

index

Feature2 #
Weight 
Table2

hash

index

FeatureN #
Weight 
TableN

hash

index

!

weight1

weight2

weightn

ActivationSum 
weights

Predict to 
go off-chip

.....

...

(e.g., PC + offset)

Stage 1 Stage 2 Stage 3

≥ τact≥ τact

0x7ffe0+12

42 -4

12

3 3 >= -2

-5

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

POPET
Predict

Issue 
Hermes 
request

Wait

Train

Predict that 
the load 
would go 
off-chip

Shouldn’t be activated

Cumulative weight < 𝜏act

-1

-1

-1
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Features Used in Hermes



Evaluation
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Simulation Methodology
• ChampSim trace driven simulator

• 110 single-core memory-intensive traces
- SPEC CPU 2006 and 2017
- PARSEC 2.1
- Ligra
- Real-world applications

• 220 eight-core memory-intensive trace mixes

Off-Chip PredictorsLLC Prefetchers

• History-based: HMP [Yoaz+, ISCA’99]

• Tracking-based: Address Tag-
Tracking based Predictor (TTP)

• Ideal Off-chip Predictor

• Pythia [Bera+, MICRO’21]

• Bingo [Bakshalipour+, HPCA’19]

• MLOP [Shakerinava+, 3rd Prefetching Championship’19]

• SPP + Perceptron filter [Bhatia+, ISCA’20]

• SMS [Somogyi+, ISCA’06]
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Latency Configuration

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

POPET

Issue 
Hermes 
request

Wait

• Cache round-trip latency
• L1-D: 5 cycles
• L2: 15 cycles
• LLC: 55 cycles

• Hermes request issue latency 
(incurred after address translation)

      Depends on
• Interconnect between POPET and MC

0 cycles 24 cycles

6 cycles
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Single-Core Performance Improvement
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Increase in Main Memory Requests
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than even an efficient prefetcher like Pythia
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Performance with Varying Memory Bandwidth
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5.4% 6.2%

5.1% 7.6%

7.7%Hermes consistently improves performance 
on top of a wide range of baseline prefetchers
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Overhead of Hermes

4 KB storage overhead

1.5% power overhead*

*On top of an Intel Alder Lake-like performance-core [2] configuration

[2] https://www.anandtech.com/show/16881/a-deep-dive-into-intels-alder-lake-microarchitectures/3
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More in the Paper 
• Performance sensitivity to:

- Cache hierarchy access latency
- Hermes request issue latency
- Activation threshold
- ROB size (in extended version on arXiv)
- LLC size (in extended version on arXiv)

• Accuracy, coverage, and performance analysis against HMP and TTP

• Understanding usefulness of each program feature

• Effect on stall cycle reduction

• Performance analysis on an eight-core system
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More in the Paper 
• Performance sensitivity to:

- Cache hierarchy access latency
- Hermes request issue latency
- Activation threshold
- ROB size (in extended version at arXiv)
- LLC size (in extended version at arXiv)

• Accuracy, coverage, and performance analysis against HMP and TTP

• Understanding usefulness of each program feature

• Effect on stall cycle reduction

• Performance analysis in eight-core system
https://arxiv.org/pdf/2209.00188.pdf 

https://arxiv.org/pdf/2209.00188.pdf


To Summarize…
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Summary

Hermes advocates for off-chip load prediction, 
a different form of speculation than

load address prediction employed by prefetchers

Off-chip load prediction can be applied by itself 
or combined with load address prediction 

to provide performance improvement
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Summary

Hermes employs the first 
perceptron-based off-chip load predictor

High coverage
(74%)

High accuracy
(77%)

Low storage 
overhead
(4KB/core)

High performance improvement 
over best prior baseline

(5.4%)

High performance 
per bandwidth
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Hermes is Open Sourced

https://github.com/CMU-SAFARI/Hermes

All workload traces

13 prefetchers 9 off-chip predictors

https://github.com/CMU-SAFARI/Hermes
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Easy To Define Your Own Off-Chip Predictor

• Just extend the OffchipPredBase class
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Easy To Define Your Own Off-Chip Predictor

• Define your own train() and predict() functions

• Get statistics like accuracy (stat name precision) and 
coverage (stat name recall) out of the box
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Off-Chip Prediction Can Further Enable…

Prioritizing loads that are likely go off-chip 
in cache queues and on-chip network routing

Better instruction scheduling 
of data-dependent instructions

Other ideas to improve performance and 
fairness in multi-core system design...



Rahul Bera,  Konstantinos Kanellopoulos,  Shankar Balachandran,
David Novo,  Ataberk Olgun, Mohammad Sadrosadati,  Onur Mutlu

Accelerating Long-Latency Load Requests 
via Perceptron-Based Off-Chip Load Prediction

https://github.com/CMU-SAFARI/Hermes

https://arxiv.org/pdf/2209.00188.pdf 

https://github.com/CMU-SAFARI/Hermes
https://arxiv.org/pdf/2209.00188.pdf
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Hermes Discussion
• FAQs

- What are the selected set of program features?
- Can you provide some intuition on why these 

features work?
- What happens in case of a misprediction?
- What’s the performance headroom for off-chip 

prediction?

- Do you see a variance of different features in final 
prediction accuracy?

• Simulation Methodology
- System parameters
- Evaluated workloads

• More Results
- Percentage of off-chip requests
- Reduction in stall cycles by reducing the 

critical path
- Fraction of off-chip load requests
- Accuracy and coverage of POPET
- Effect of different features
- Are all features required?
- 1C performance
- 1C performance line graph
- 1C performance against prior predictors
- Effect on stall cycles
- 8C performance
- Sensitivity:

• Hermes request issue latency
• Cache hierarchy access latency
• Activation threshold
• ROB size
• LLC size

- Power overhead
- Accuracy without prefetcher
- Main memory request overhead with 

different prefetchers



Hermes Paper [MICRO 2022]
n Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk Olgun, 

Mohammad Sadrosadati, and Onur Mutlu,
"Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load 
Prediction"
Proceedings of the 55th International Symposium on Microarchitecture (MICRO), Chicago, IL, USA, 
October 2022.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Talk Video (12 minutes)]
[Lecture Video (25 minutes)]
[arXiv version]
[Source Code (Officially Artifact Evaluated with All Badges)]
Officially artifact evaluated as available, reusable and reproducible.
Best paper award at MICRO 2022.
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https://arxiv.org/pdf/2209.00188.pdf
https://arxiv.org/pdf/2209.00188.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pdf
https://www.youtube.com/watch?v=afGc1pWr-_Y
https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s
https://arxiv.org/abs/2209.00188
https://github.com/CMU-SAFARI/Hermes
https://arxiv.org/pdf/2209.00188.pdf
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Reward Assignment to EQ Entry
• Every action gets inserted into EQ
• Reward is assigned to each EQ entry before or during the 

eviction

• During EQ insertion: for actions
- Not to prefetch
- Out-of-page prefetch

��
��
���������� ����

��	�
�
�������

�
�����������������

������������ �������!

���� ���
�
	���������

�����

��	
���������
��	������

�

�

�
���������������������#�
	����"����������������

�

�������������

�� �� ��

�������
����
����

��������
�������

������������!�����
��������
	����

�

���������������������� ��"
����

�

���
��
��
��
��

	�������������



108

Reward Assignment to EQ Entry
• Every action gets inserted into EQ
• Reward is assigned to each EQ entry before or during the 

eviction

• During EQ insertion: for actions
- Not to prefetch
- Out-of-page prefetch

• During EQ residency:
- In case address of a demand matches with address in EQ 

(signifies accurate prefetch)
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Reward Assignment to EQ Entry
• Every action gets inserted into EQ
• Reward is assigned to each EQ entry before or during the 

eviction

• During EQ insertion: for actions
- Not to prefetch
- Out-of-page prefetch

• During EQ residency:
- In case address of a demand matches with address in EQ 

(signifies accurate prefetch)

• During EQ eviction:
- In case no reward is assigned till eviction                             

(signifies inaccurate prefetch)
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Performance S-curve: Single-core

0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

12
1

12
7

13
3

13
9

14
5

Sp
ee

du
p 

ov
er

 n
o 

pr
ef

et
ch

in
g

Workload number

SPP Bingo MLOP Pythia

623.xalancbmk_s-592B

603.bwaves_s-2931B

462.libquantum

streamcluster

429.mcf

BFSCC-22B

pagerank-51B

fluidanimate-9500M



111

Performance S-curve: Four-core
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Pythia Discussion
• FAQs

- Why RL?
- What about large page?
- What’s the prefetch degree?
- Can customization happen during 

workload execution?
- Can runtime mixing create problem?

• Simulation and Methodology
- Basic Pythia configuration
- System parameters
- Configuration of prefetchers
- Evaluated workloads
- Feature selection

• Detailed Design
- Reward structure
- Design overview
- QVStore Organization

• More Results
- Comparison against other adaptive 

prefetchers
- Comparison against Context prefetcher
- Feature combination sensitivity
- Hyperparameter sensitivity
- Comparison with multi-level prefetchers
- Performance in unseen workloads
- Single-core s-curve
- Four-core s-curve
- Detailed performance analysis
- Benefit of bandwidth awareness
- Case study
- Customizing rewards
- Customizing features
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Why RL? Why Not Supervised Learning?
• Determining the benefits of prefetching (i.e., whether a 

decision was good for performance or not) is not easy
- Depends on a complex set of metrics

• Coverage, accuracy, timeliness
• Effects on system: b/w usage, pollution, cross-application interference, …

- Dynamically-changing environmental conditions change the 
benefit

- Delayed feedback due to long latency (might not receive 
feedback at all for inaccurate prefetches!)

• Differs from classification tasks (e.g., branch prediction)
- Performance strongly correlates mainly to accuracy
- Does not depend on environment
- Bounded feedback delay
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What About Large Pages?
• Pythia’s framework can be easily extended to incorporate 

additional prefetch actions (i.e., possible prefetch offsets 
for the page size)

• To decrease the storage overhead
- Prune action space via automatic design-space exploration
- Hash action values to retrieve Q-values
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What is the Prefetch Degree? Is It Managed by 
the RL Agent?
• Pythia employs a simple degree selector, separate from 

the RL agent
- If the agent has selected the same prefetch action (O) multiple 

times in a row, Pythia increases the degree (A+2O, A+3O, …)
- At most degree 4

• Future works on managing degree by the RL agent



117

Can the Customization Be Done While the 
Workload is Running?
• Certainly.
• Pythia, being an online learning technique, will 

autonomously adapt (and optimize) its policy to use the 
new program features or the modified reward values
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Can Runtime Workload Mix Create an Issue?
• We implement the bandwidth usage feedback using a 

counter in the memory controller. Thus Pythia already has 
a global view of the memory bandwidth usage that 
incorporates all workloads running on a multi-core system

• We evaluate a diverse set (300 of each category) of four-
core, eight-core, twelve-core random workload mixes 
• Based on our evaluation, we observe that Pythia 

dynamically adapts itself to varying workload demands
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How does Pythia Compare Against Other Adaptive 
Prefetching Solutions?
• We compare Pythia against IBM POWER7[5] prefetcher

- Adaptively selects prefetcher degree/configuration by 
monitoring program IPC
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[5] Jimenez et al., TOPC’14
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How Does Pythia Compare Against the Context 
Prefetcher?
• Pythia widely differs from the Context Prefetcher (CP)[6] in 

all three aspects: state, action, and reward. The key 
differences are:
- CP does not consider system-level feedback
- CP models the agent as a contextual bandit which takes myopic 

prefetch decisions as compared to Pythia
- CP requires compiler support to extract software-level features
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Pythia outperforms CP-HW by 5.3% in single-core and 
7.6% in four-core system

[6] Leeor et al., ISCA’15
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How Pythia’s Performance Changes With 
Various State Definitions You Have Swept?
• In total we evaluate state defined as any-one, any-two, 

and any-three combinations of 32 features
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Is Pythia Sensitive to Hyperparameters?
• Not setting hyperparameters can significantly impact the 

overall performance improvement
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How Does Pythia Compare Against Commercial 
Multi-level Prefetchers?
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Does Pythia Perform Equally Well for Unseen 
Workloads?
• Evaluated with 500 traces from value prediction 

championship
- No prefetcher has been trained on these traces

1
1.1
1.2
1.3
1.4
1.5
1.6

Crypto INT FP Server GEOMEAN

Ge
om

ea
n 

sp
ee

du
p 

ov
er

 b
as

el
in

e

SPP Bingo MLOP Pythia

1
1.1
1.2
1.3
1.4
1.5

Crypto INT FP Server GEOMEAN

Ge
om

ea
n 

sp
ee

du
p 

ov
er

 b
as

el
in

e

SPP Bingo MLOP Pythia

(a) single-core (b) four-core

Pythia outperforms MLOP and Bingo by 
8.3% and 3.5% in single-core

And 9.7% and 5.4% in four-core
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Basic Pythia Configuration
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System Parameters
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Configuration of Prefetchers
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Evaluated Workloads
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List of Evaluated Features



MORE RESULTS



131

Performance S-curve: Single-core
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Performance S-curve: Four-core
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Single-core Coverage & Overprediction
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Detailed Performance
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Benefit of Bandwidth Awareness
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Case Study
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Customizing Rewards



138

Customizing Features
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Hermes Discussion
• FAQs

- What are the selected set of program features?
- Can you provide some intuition on why these 

features work?
- What happens in case of a misprediction?
- What’s the performance headroom for off-chip 

prediction?

- Do you see a variance of different features in final 
prediction accuracy?

• Simulation Methodology
- System parameters
- Evaluated workloads

• More Results
- Percentage of off-chip requests
- Reduction in stall cycles by reducing the 

critical path
- Fraction of off-chip load requests
- Accuracy and coverage of POPET
- Effect of different features
- Are all features required?
- 1C performance
- 1C performance line graph
- 1C performance against prior predictors
- Effect on stall cycles
- 8C performance
- Sensitivity:

• Hermes request issue latency
• Cache hierarchy access latency
• Activation threshold
• ROB size
• LLC size

- Power overhead
- Accuracy without prefetcher
- Main memory request overhead with 

different prefetchers



HERMES BACKUP
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Initial Set of Program Features
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Selected Set of Program Features

Five features
A binary hint that 
represents whether or not a 
cacheblock has been 
recently touched
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When A Feature Works/Does Not Work?

Trace: 462.libquantum-1343B PC: 0x401442

Cacheline #42 Cacheline #43 ……

Without prefetcher

• PC + first access
• Cacheline offset + first access 

With a simple stride prefetcher

• Cacheline offset + first access 
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What Happens in case of a Misprediction?

• Two cases of mispredictions:

• Predicted on-chip but actually goes off-chip
- Loss of performance improvement opportunity

• Predicted off-chip but actually is on-chip
- Memory controller forwards the data to LLC if and only if 

a load to the same address have already missed LLC and 
arrived at the memory controller

No need for misprediction detection and recovery

No need for misprediction detection and recovery
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Performance Headroom of Off-Chip Prediction
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System Parameters
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Evaluated Workloads
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Observation: Not All Off-Chip Loads are Prefetched
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Observation: Not All Off-Chip Loads are Prefetched
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Observation: With Large Cache Comes Longer Latency 

• On-chip cache access latency significantly contributes to 
the latency of an off-chip load 
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On-chip cache hierarchy access latency
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Observation: With Large Cache Comes Longer Latency 

• On-chip cache access latency significantly contributes to 
the latency of an off-chip load 
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On-chip cache hierarchy access latency

40% of stall cycles caused by an off-chip load can be eliminated 
by removing on-chip cache access latency from its critical path 
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What Fraction of Load Requests Goes Off-Chip?
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Off-Chip Prediction Quality: Defining Metrics

Predicted off-chip Actual off-chip

Predicted and actual off-chip

Accuracy Coverage
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Off-Chip Prediction Quality: Analysis

Accuracy

Coverage
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Off-Chip Prediction Quality: Analysis

Accuracy

Coverage
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POPET provides off-chip predictions with 
high-accuracy and high-coverage
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Effect of Different Features

Combination of features provides both higher 
accuracy and higher coverage than any individual feature
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Are All Features Required? (1)

No single feature individually provides 
highest prediction accuracy across all workloads
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Are All Features Required? (2)

No single feature individually provides 
highest prediction coverage also across all workloads
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Single-Core Performance

Hermes in combination with Pythia 
outperforms Pythia alone in every workload category
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Single-Core Performance Line Graph
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Single-Core Performance Against Prior Predictors

POPET provides higher performance benefit 
than prior predictors

Hermes with POPET achieves nearly 90% performance 
improvement of the Ideal Hermes
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Effect on Stall Cycles

Hermes reduces off-chip load induced stall cycles 
on average by 16.2% (up-to 51.8%)
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Eight-Core Performance

Hermes in combination with Pythia 
outperforms Pythia alone by 5.1% on average
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Effect of Hermes Request Issue Latency

3.6%
5.7%

Hermes in combination with Pythia outperforms Pythia 
alone even with a 24-cycle Hermes request issue latency
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Effect of Cache Hierarchy Access Latency

3.6%

6.2%

Hermes can provide even higher performance benefit in 
future processors with bigger and slower on-chip caches
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Effect of Activation Threshold

With increase in activation threshold
1. Accuracy increases

2. Coverage decreases
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Power Overhead
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Effect of ROB Size

6.7%
5.3%
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Effect of LLC Size

1.3%2.5%
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Accuracy and Coverage with Different Prefetchers

POPET’s accuracy and coverage increases significantly 
in absence of a data prefetcher
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Increase in Main Memory Requests


