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System Architecture Design Today

Human-driven
o Humans design the policies (how to do things)

Many (too) simple, short-sighted policies all over the system
No automatic data-driven policy learning

(Almost) no learning: cannot take lessons from past actions

Can we design
fundamentally intelligent architectures?
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An Intelligent Architecture

Data-driven
o Machine learns the “best” policies (how to do things)

Sophisticated, workload-driven, changing, far-sighted policies
Automatic data-driven policy learning

All controllers are intelligent data-driven agents

We need to rethink design
(of all controllers)
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Executive Summary

* Background: Prefetchers predict addresses of future memory requests by associating
memory access patterns with program context (called feature)

* Problem: Three key shortcomings of prior prefetchers:
Predict mainly using a single program feature

Lack inherent system awareness (e.g., memory bandwidth usage)

Lack in-silicon customizability

: Design a prefetching framework that:
Learns from and

Can be to use different features and/or prefetching objectives

* Contribution: Pythia, which formulates prefetching as reinforcement learning problem
- Takes adaptive prefetch decisions using multiple features and system-level feedback
- Can be customized in silicon for target workloads via simple configuration registers
- Proposes a realistic and practical implementation of RL algorithm in hardware

* Key Results:
- Evaluated using a wide range of workloads from SPEC CPU, PARSEC, Ligra, Cloudsuite
- Outperforms best prefetcher (in 1-core config.) by 3.4%, 7.7% and 17% in 1/4/bw-constrained cores
- Up to 7.8% more performance over basic Pythia across Ligra workloads via simple customization

SAFARI https://github.com/CMU-SAFARI/Pythia 12
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Talk Outline

Key Shortcomings of Prior Prefetchers
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Prefetching Basics

* Predicts addresses of long-latency memory requests and
fetches data before the program demands it

* Associates access patterns from past memory requests
with program context information

Program Feature - Access Pattern

 Example program features
- Program counter (PC)

Page number

Page offset

Cacheline delta

Or a combination of these attributes
SAFARI
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Key Shortcomings in Prior Prefetchers

* We observe three key shortcomings that significantly
limit performance benefits of prior prefetchers

1 Predict mainly using a single program feature

2 Lack inherent system awareness

Lack in-silicon customizability

SAFARI 15



(1) Single-Feature Prefetch Prediction

* Provides good performance gains mainly on workloads
where the feature-to-pattern correlation exists

0% f—— — — |

I : I 1

5 50% i | : :
o ' 15.4% OSPP f4Bingo M Pythia | | o -
g 340% _E ? : i 4.6% E
S 2 30% |l % ] :
s 7 ¥ :
e S 20% i / 5.5% Lo l
ST G I B :
= 10% ! é 3.5% /l: ! !
o LD ~7ZR | 7| 71 |

: 482.sphinx3-417B PARSEC-Canneal PARSEC-Facesim’I i459.GemsFDTD-7658 :
“"""""/"_';" """"""""" ;')' """ ’

Bingo 1) performs better SPP ) performs better

SAFARI 16



(1) Single-Feature Prefetch Prediction

Relying on a single feature for prediction leaves

significant performance improvement on table

SA FA Rl [1] Bakshalipour et al., HPCA’19 [2] Kim et al., MICRO’16 17



(2) Lack of Inherent System Awareness

e Little understanding of undesirable effects (e.g.,
memory bandwidth usage, cache pollution, ...)
- Performance loss in resource-constrained configurations
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(2) Lack of Inherent System Awareness

Prefetchers often lose performance due to lack

of inherent system awareness




(3) Lack of In-silicon Customizability

* Feature statically selected at design time
- Rigid hardware designed specifically to exploit that feature

* No way to change program feature and/or change
prefetcher’s objective in silicon
- Cannot adapt to a wide range of workload demands

Design from scratch Verify Fabricate

SAFARI 20



Our Goal

\_

A prefetching framework that can:

1.Learn to prefetch using and
information

2.Be easily customized in silicon to use different
features and/or change prefetcher’s objectives

)

SAFARI

21



Our Proposal

Formulates prefetching as a
reinforcement learning problem

Pythia is named after the oracle of Delphi, who is known for her accurate prophecies

SA F A R I https://en.wikipedia.org/wiki/Pythia
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Talk Outline

Formulating Prefetching as Reinforcement Learning
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Basics of Reinforcement Learning (RL)

* Algorithmic approach to learn to take an action in a
given situation to maximize a numerical reward

| Agent \

[ Environment ]

* Agent stores Q-values for every state-action pair
- Expected return for taking an action in a state

- Given a state, selects action that provides Q-value
SAFARI 24



Formulating Prefetching as RL
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What is State?

e k-dimensional vector of features
S = {45, 9% - - P}
 Feature = control-flow + data-flow

A+offset (0)

Memory Subsystem

* Control-flow examples
- PC
- Branch PC
- Last-3 PCs, ...

* Data-flow examples

Cacheline address

Physical page number

Delta between two cacheline addresses
Last 4 deltas, ...

SAFARI 26

Prefetch from address



What is State?

ch from address

offset (0)

Example of a state information

S = {PC+Delta, Sequence of last-4 deltas}

I_T 1

Feature-1 (¢,) Feature-2 (¢,)
PC Cacheline Delta Seq. of last-4 deltas
(Control-flow info.) (Data-flow info.) (Data-flow info.)

SAFARI 27



What is Action?

Given a demand access to address A
the action is to select prefetch offset “O”

: 127 actions in the range [-63, +63]
- For a machine with 4KB page and 64B cacheline

* Upper and lower limits ensure prefetches do not cross
physical page boundary

* A zero offset means no prefetch is generated

* We further prune action-space by design-space exploration

SAFARI 28



What is Reward?

* Defines the objective of Pythia

* Encapsulates two metrics:

- Prefetch usefulness (e.g., accurate, late, out-of-page, ...)

- System-level feedback (e.g., mem. b/w usage, cache
pollution, energy, ...)

* We demonstrate Pythia with
as the system-level feedback in the paper

SAFARI 29



What is Reward?

* Seven distinct reward levels

- Accurate and timely (Rxq)
- Accurate but late (Ry)
- Loss of coverage (R)
- Inaccurate
* With low memory b/w usage (R\-L)
* With high memory b/w usage (R\-H)
- No-prefetch
* With low memory b/w usage (Ryp-L)
* With high memory b/w usage(Ryp-H)

* Values are set at design time via automatic design-
space exploration

- Can be further in silicon for higher performance
SAFARI 30



Steering Pythia’s Objective via Reward Values

* Example reward configuration for
- Generating accurate prefetches

- Making prefetch decisions
-14 8 -4 -2 +12  +20
Rin-H Rn-L Ryp-L Ryp-H RaL Rat

AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate;
H = High mem. b/w; L = Low mem. b/w

1 Highly prefers to generate accurate prefetches

r

\

2 Prefers not to prefetch if memory bandwidth usage is low

7
\

@Strongly prefers not to prefetch if memory bandwidth usage is high

SAFARI
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Steering Pythia’s Objective via Reward Values

* Customizing reward values to make Pythia conservative
towards prefetching

-22  -20 +12  +20

&
S | | | | |

RlN-H RlN-L RAL RAT

AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate;
H = High mem. b/w; L = Low mem. b/w

ﬂ Highly prefers to generate accurate prefetches

2 Otherwise prefers not to prefetch

SAFARI
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Steering Pythia’s Objective via Reward Values

Strict Pythia configuration

Bandwidth-sensitive

Server-class processors
P workloads

SAFARI
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Talk Outline

Pythia: Overview
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Pythia Overview

: Records Q-values for all state-action pairs
 Evaluation Queue: A FIFO queue of recently-taken actions

Find the Action with max Q-Value

a Al1|AlzlAl3| a

Look up 1 |

Generate
II:)(emand . \;State Qvstore |1 prefetch ( Memory ]
equest ector 52 - i
9 2 [Viax L Hierarchy
> S4
Q-Value Store
6 Evict EQ entry and (QVStore)
update QVStore
—[ Evaluation Queue (EQ) |- 9

) Insert prefetch action &

i' T State-Action pair in EQ
Set filled bit a

Assign reward to

corresponding EQ entry

Prefetch Fill

SAFARI



Architecting QVStore

Find the Action with max Q-Value
I I |

Lookup ["ME— T T 1 Generate
State Qvstore 1 W1 1 1 prefeich
I 1 I I I ekttt
Vector g g 1 E1 71
= 1
S = {PC+Delta, E1 I
Sequence of last-4 deltas} Q-Value Store
(QVStore)
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Architecting the QVStore

{ Fast prefetch prediction J
[ Fast retrieval of Q-values from QVStore J

U

[ Efficient storage organization of Q-values in QVStore ]
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Organization of QVStore

* A monolithic two-dimensional table?
- Indexed by state and action values

 State-space increases exponentially with #bits

S = {PC+Delta, Sequence of last-4 deltas}

32b + 7b + 4x7b = 67 bits
127 actions

A6 A7 A8 A9 ____,

Al A2 A3 A4 A5

257 states

38
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Organization of QVStore

* We partition QVStore into k vaults

- Each vault corresponds to one feature and stores the Q-
values of feature-action pairs

To retrieve Q(S,A) for

each action

e Query each vaultin

Vault, parallel with feature
and action

* Retrieve feature-action
O-value from each vault

e Compute MAX of all
feature-action Q-values

Vault1

MAX ensures the Q(S,A) is driven by the

constituent feature that has highest Q(¢,A)

SAFARI



Organization of QVStore

* We further partition each vault into multiple planes
- Each plane stores a partial Q-value of a feature-action pair

To retrieve Q(¢,A)
for each action

* Query
with hashed

feature and action

from each
plane
 Compute SUM of all partial
feature-action Q-values

SAFARI
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Organization of QVStore

1. Enables sharing of partial Q-values between similar
feature values, shortens prefetcher training time

2. Reduces chances of sharing partial Q-values
across widely different feature values

SAFARI 41



More in the Paper

* Pipelined search operation for QVStore
* Reward assignment and

* Automatic design-space exploration
- Feature types

- Actions
- Reward and Hyperparameter values

SAFARI
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More in the Paper

Pythia: A Customizable Hardware Prefetching Framework
Using Online Reinforcement Learning

Rahul Bera!  Konstantinos Kanellopoulos! =~ Anant V. Nori*  Taha Shahroodi®
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Talk Outline

Evaluation of Pythia and Key Results
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Simulation Methodology

* Champsim |1 trace-driven simulator

* 150 single-core memory-intensive workload traces
- SPEC CPU2006 and CPU2017
- PARSEC 2.1
- Ligra
- Cloudsuite

* Homogeneous and heterogeneous multi-core mixes

* Five state-of-the-art prefetchers
- SPP

Bingo

MLOP

SPP+DSPatch

SPP+PPF

SAFARI
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Basic Pythia Configuration

* Derived from automatic design-space exploration

e State: 2 features
- PC+Delta
- Sequence of last-4 deltas

* Actions: 16 prefetch offsets
- Ranging between -6 to +32. Including O.

* Rewards:
= RAT = +20; RAL - +12; RNP_H=_2; RNP_L=_4;
= R|N‘H='14; R|N‘L='8; RCL=_12

SAFARI
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List of Evaluated Features

Table 3: List of program control-flow and data-flow compo-
nents used to derive the list of features for exploration

Control-flow Component Data-flow Component

(1) Load cacheline address
(2) Page number

(1) PC of load request (3) Page offset

(2) PC-path (XOR-ed last-3 PCs) (4) Load address delta

(3) PC XOR-ed branch-PC (5) Sequence of last-4 offsets

(4) None (6) Sequence of last-4 deltas
(7) Offset XOR-ed with delta
(8) None

SAFARI A



Basic Pythia Configuration

Table 2: Basic Pythia configuration derived from our auto-
mated design-space exploration

Features PC+Delta, Sequence of last-4 deltas

Prefetch Action List {-6,-3,-1,0,1,3,4,5,10,11,12,16,22,23,30,32}

Ra1=20, Rar=12, Rcp=-12, R;IN=—14,
L _ H _ L _

RIN__S’ :RNP__Z’ RNP__4

Hyperparameters o = 0.0065, y = 0.556, € = 0.002

Reward Level Values

SAFARI A



Performance with Varying Core Count
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Performance with Varying Core Count

1. Pythia consistently provides the highest
performance in all core configurations

2. Pythia’s gain increases with core count

SAFARI 50



Performance with Varying DRAM Bandwidth
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Performance with Varying DRAM Bandwidth

Pythia outperforms prior best prefetchers for

a wide range of DRAM bandwidth configurations
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Performance Improvement via Customization

e Reward value customization

e Strict Pythia configuration
- Increasing the rewards for no prefetching
- Decreasing the rewards for inaccurate prefetching

-22 -20 +1 +2 +12 +20

<l | | | | |
N 1 I I I 1

Rin-H Rin-L Rne-L Ryp-H RaL Rat

AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate;
H = High mem. b/w; L = Low mem. b/w

e Strict Pythia is more conservative in generating
prefetch requests than the basic Pythia

* Evaluate on all Ligra graph processing workloads
SAFARI
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Performance Improvement via Customization
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Performance Improvement via Customization

Pythia can extract even higher performance

via customization without changing hardware

SAFARI 55



Pythia’s Overhead

e 25.5 KB of total metadata storage per core
- Only simple tables

* We also model functionally-accurate Pythia with full
complexity in Chisel 4 HDL

1.03% area overhead

0.4% power overhead

V Satisfies prediction latency

of a desktop-class 4-core Skylake processor (Xeon D2132IT, 60W)
SAFAR' [4] https://www.chisel-lang.org 56
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More in the Paper

* Performance comparison with unseen traces
- Pythia provides equally high performance benefits

 Comparison against multi-level prefetchers
- Pythia outperforms prior best multi-level prefetchers

e Understanding Pythia’s learning with
- We reason towards of Pythia’s decision

towards different features and
hyperparameter values

* Detailed single-core and four-core performance

SAFARI



Performance on Previously-Unseen Workloads

* Evaluated with 500 traces from value prediction
championship

- No prefetcher has been trained on these traces

OSPP @Bingo #MLOP mPythia OSPP @Bingo #WMLOP mPythia

o 16 a 15
=) | S S
8 g L5 (a) SIngIe_Core $ g 14 - (b) four-core @@
ss14y vl B o o
n N o a 134 T
c © 134 M/ c 5
© 2 S~-124 il IR 0000
Q QL) 1.2 1 A | (e am E ()]
53 111 g 8 11+ IEI H ”””
& 1 | Eom E-A | © T s H

Crypto INT FP Server GEOMEAN Crypto INT Server GEOMEAN

Pythia outperforms MLOP and Bingo by
8.3% and 3.5% in single-core

And 9.7% and 5.4% in four-core

SAFARI D ¢



More in the Paper

Pythia: A Customizable Hardware Prefetching Framework
Using Online Reinforcement Learning

Rahul Bera!  Konstantinos Kanellopoulos! =~ Anant V. Nori*  Taha Shahroodi®
Sreenivas Subramoney?  Onur Mutlu!

IETH Ziirich  ?Processor Architecture Research Labs, Intel Labs  3TU Delft

https://arxiv.or df/2109.12021.pdf

SAFARI
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Pythia is Open Source

https://github.com/CMU-SAFARI/Pythia

* MICRO’21 artifact evaluated
* Champsim source code + Chisel modeling code

* All traces used for evaluation

& CMU-SAFARI/Pythia « public

<> Code © lIssues

¥ master ~ ¥ 1branch © 5 tags

a rahulbera Github pages documentation

branch
config

docs
experiments
inc
prefetcher
replacement
scripts

src

tracer
.gitignore
CITATION.cff

LICENSE

[ i

SAFARI

LICENSE.champsim

19 Pull requests (® Actions [ Projects 07 wiki @ Security

Go to file

|22 Insights

®Unwatch v 3 Yy Sstar 9 % Fork 2

Vv dilefcés 7 hoursago ‘O 40 commits

Initial commit for MICRO'21 artifact evaluation
Initial commit for MICRO'21 artifact evaluation
Github pages documentation

Added chart visualization in Excel template
Updated README

Initial commit for MICRO'21 artifact evaluation
Initial commit for MICRO'21 artifact evaluation
Added md5 checksum for all artifact traces to verify download
Initial commit for MICRO'21 artifact evaluation
Initial commit for MICRO'21 artifact evaluation
Initial commit for MICRO'21 artifact evaluation
Added citation file

Updated LICENSE

Initial commit for MICRO'21 artifact evaluation

2 months ago
2 months ago

7 hours ago
2 months ago

8 days ago
2 months ago
2 months ago
2 months ago
2 months ago
2 months ago
2 months ago

8 days ago
2 months ago

2 months ago

83 Settings

About ]

A customizable hardware prefetching
framework using online reinforcement
learning as described in the MICRO
2021 paper by Bera and
Kanellopoulos et al.

@ arxiv.org/pdf[2109.12021.pdf

machine-learning

reinforcement-learning
computer-architecture prefetcher
microarchitecture  cache-replacement

branch-predi i imulator

champsim-tracer

01 Readme
&8 View license

G2 Cite this repository ~

Releases s
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https://github.com/CMU-SAFARI/Pythia

Talk Outline

Conclusion
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Executive Summary

* Background: Prefetchers predict addresses of future memory requests by associating
memory access patterns with program context (called feature)

* Problem: Three key shortcomings of prior prefetchers:
Predict mainly using a single program feature

Lack inherent system awareness (e.g., memory bandwidth usage)

Lack in-silicon customizability

: Design a prefetching framework that:
Learns from and

Can be to use different features and/or prefetching objectives

* Contribution: Pythia, which formulates prefetching as reinforcement learning problem
- Takes adaptive prefetch decisions using multiple features and system-level feedback
- Can be customized in silicon for target workloads via simple configuration registers
- Proposes a realistic and practical implementation of RL algorithm in hardware

* Key Results:
- Evaluated using a wide range of workloads from SPEC CPU, PARSEC, Ligra, Cloudsuite
- Outperforms best prefetcher (in 1-core config.) by 3.4%, 7.7% and 17% in 1/4/bw-constrained cores
- Up to 7.8% more performance over basic Pythia across Ligra workloads via simple customization

SAFARI https://github.com/CMU-SAFARI/Pythia 62
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Pythia

A Customizable Hardware Prefetching Framework
Using Online Reinforcement Learning

Rahul Bera, Konstantinos Kanellopoulos, Anant V. Nori,
Taha Shahroodi, Sreenivas Subramoney, Onur Mutlu

https: ithub.com/CMU-SAFARI/Pythia

- ]
SAFARI Eerur/ch TUDelft

SAFARI Research Group

2109.12021.pdf
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Pythia Discussion

* FAQS

- Why RL?
- What about large page?
- What’s the prefetch degree?

- Can customization happen during
workload execution?

- Can runtime mixing create problem?

e Simulation and Methodology

- Basic Pythia configuration

- System parameters
- Configuration of prefetchers
- Evaluated workloads

- Feature selection

SAFARI

* Detailed Design

Reward structure

Design overview

QVStore Organization

* More Results

Comparison against other adaptive
prefetchers

Comparison against Context prefetcher
Feature combination sensitivity
Hyperparameter sensitivity
Comparison with multi-level prefetchers
Performance in unseen workloads
Single-core s-curve

Four-core s-curve

Detailed performance analysis

Benefit of bandwidth awareness

Case study

Customizing rewards

Customizing features
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Selt-Optimizing Memory Prefetchers

Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu,
"Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, October 2021.
[Slides (pptx) (pdf)]

[Short Talk Slides (pptx) (pdf)]

[Lightning Talk Slides (pptx) (pdf)]

[Talk Video (20 minutes)]

[Lightning Talk Video (1.5 minutes)]

[Pythia Source Code (Officially Artifact Evaluated with All Badges)]

[arXiv version]

Officially artifact evaluated as available, reusable and reproducible.

Pythia: A Customizable Hardware Prefetching Framework
Using Online Reinforcement Learning
Rahul Bera!  Konstantinos Kanellopoulos! ~ Anant V. Nori?  Taha Shahroodi*!
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IETH Ziirich  ?Processor Architecture Research Labs, Intel Labs  3TU Delft
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Learning-Based Off-Chip LLoad Predictors

Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk Olgun,
Mohammad Sadrosadati, and Onur Mutlu,
"Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load

Prediction”

Proceedings of the 55th International Symposium on Microarchitecture (MICRO), Chicago, IL, USA,
October 2022.

[Slides (pptx) (pdf)]

[Longer Lecture Slides (pptx) (pdf)]

[Talk Video (12 minutes)]

[Lecture Video (25 minutes)]

[arXiv version]

[Source Code (Officially Artifact Evaluated with All Badges)]

Officially artifact evaluated as available, reusable and reproducible.

Best paper award at MICRO 2022.

Hermes: Accelerating Long-Latency Load Requests
via Perceptron-Based Off-Chip Load Prediction

Rahul Bera!  Konstantinos Kanellopoulos!  Shankar Balachandran?  David Novo?
Ataberk Olgun' = Mohammad Sadrosadati’  Onur Mutlu!

'ETH Ziirich  2Intel Processor Architecture Research Lab 3LIRMM, Univ. Montpellier, CNRS
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Hermes Talk Video

H eérmes OVE rview Perceptron-based
© Predict off-chip load predictor

= (porer)

Issue a
Hermes
request

|
I
I
I
I
I
I
I

. LLC
9 Wait
MC | ¢ Main Memory

: Saved stall cycles

Off-Chip
Main Memory

Computer Architecture - Lecture 18: Cutting-Edge Research in Computer Architecture (Fall 2022)

- Onur Mutlu Lectures . . . —
6»; Analytics Edit video 23 ~> Share Y Download { Cli =+ Save
&> 329K subscribers - e o - & clip

2.4K views Streamed 5 months ago Livestream - Computer Architecture - ETH Ziirich (Fall 2022)
Computer Architecture, ETH Zirich, Fall 2022 (https://safari.ethz.ch/architecture/f...)
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Accelerating Long-Latency Load Requests
via Perceptron-Based Off-Chip Load Prediction

Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran,
David Novo, Ataberk Olgun, Mohammad Sadrosadati, Onur Mutlu

https://github.com/CMU-SAFARI/Hermes

SAFARI ETHziirich Jo'

SAFARI Research Group
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The Key Problem

Long-latency off-chip load requests

) 4

Often stall processor by
blocking instruction retirement from
Reorder Buffer (ROB)

¥

Limit performance

SAFARI
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Traditional Solutions

i\

Employ sophisticated prefetchers

Increase size of on-chip caches

SAFARI
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Key Observation 1

Many loads still go off-chip

50%
50% still go off-chip even with

successfully prefetched a state-of-the-art prefetcher

70% of the off-chip loads
block the ROB

# off-chip loads without any prefetcher

SAFARI
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Key Observation 2 <\
4

On-chip cache access latency
significantly contributes to off-chip load latency

L1 | L2 LLC Main Memory

¥

Saved cycles

40% of the stalls can be eliminated by removing

on-chip cache access latency from critical path

SAFARI 73



Caches are Getting Bigger and Slower...
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Our Goal

Improve processor performance
by removing on-chip cache access latency
from the critical path of off-chip loads

SAFARI
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Predicts which load requests
are likely to go off-chip

Starts fetching data directly from main memory
while concurrently accessing the cache hierarchy

SAFARI 8



Key Contribution
\\/

A1 V4 :
7 Hermes employs the first

perceptron-based off-chip load predictor

@,

That predicts which loads are likely to go off-chip

@ By learning from
multiple program context information

SAFARI 77



Hermes Overview

Core

Latency tolerance limit of ROB

.

Processor is stalled

»

L1

L2

LLC

Main Memory

[ Main Memory

Off-Chip

SAFARI
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Hermes Overview
c Predict off-chip load predictor

Perceptron-based

Issue a
Hermes

request L1 | L2 LLC Main Memory

.~

e Wait L1| L2 LLC
ai _ : Saved stall cycles
Main Memory, « g

Off-Chip |
Main Memory
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Designing the Off-Chip Load Predictor

POPET provides

both higher accuracy and higher performance
than predictors inspired from these previous works

Learning from program behavior

Correlate different program features with off-chip loads

@ Low storage overhead @ Low design complexity




POPET: Perceptron-Based Off-Chip Predictor

* Multi-feature hashed perceptron model'* |
- Each feature has its own weight table —
* Stores correlation between feature value and off-chip prediction

Feature, Table,
Table,

(e.g., PC+ offset)

Ceature Tobie,
Table,

Weight

Tabley,

SAFAR’ [1] D. Tarjan and K. Skadron, "Merging Path and Gshare Indexing in Perceptron Branch Prediction,” TACO, 2005 81




Predicting using POPET

* Usessimple table lookups, addition, and comparison

il
il
1l
Weight [l

3 Table,

E (e.g., PC+ offset)

=l Ox7ffe0+12

&

C + Weight

S v

= 3 I Table, \

¥ o

S QL :

-~ . .

S :

2, :

+

S

S Weight

X Table,

et
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Training POPET

* Usessimple increment or decrement of feature weights

off-chip

z L Shouldn’t be activated

Cumulative weight < 7,

SAFARI 83



Features Used in Hermes

Table 1: The initial set of program features used for automated
feature selection. @ represents a bitwise XOR operation.

Features without control-flow Features with control-flow

information information

8. Load PC
1. Load virtual address 9. PC & load virtual address
2. Virtual page number 10. PC & virtual page number
3. Cacheline offset in page 11. PC & cacheline offset
4. First access 12. PC + first access
5. Cacheline offset + first access 13. PC & byte offset
6. Byte offset in cacheline 14. PC & word offset
7. Word offset in cacheline 15. Last-4 load PCs

16. Last-4 PCs

Table 2: POPET configuration parameters

Selected features

PC & cacheline offset

PC & byte offset

PC + first access

Cacheline offset + first access
Last-4 load PCs

SAFARI Threshold values Toact = —18, Ty = —35, Tp = 40
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Evaluation



Simulation Methodology

* ChampSim trace driven simulator

* 110 single-core memory-intensive traces
- SPECCPU 2006 and 2017
- PARSEC 2.1
- Ligra
- Real-world applications

* 220 eight-core memory-intensive trace mixes

Off-Chip Predictors

LLC Prefetchers

* Pythia * History-based: HMP

* Bingo * Tracking-based: Address Tag-

* MLOP Tracking based Predictor (TTP)
* SPP + Perceptron filter

e SMS * Ideal Off-chip Predictor
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Latency Configuration

* Cache round-trip latency

PO_PET * L1-D: 5 cycles
e L2:15cycles
@ e LLC:55 cycles
Issue
Hermes
t :
e * Hermes request issue latency
(incurred after address translation)
Depends on
© wait * Interconnect between POPET and MC
MC |<

| »*: |

0 cycles \ 24 cycles
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Single-Core Performance Improvement

1.35
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Geomean speedup
over the No-prefetching system

Harmace alana nraviidac naarlhy

Hermes provides nearly 90% performance benefit of

Ideal Hermes that has an ideal off-chip load predictor
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Increase in Main Memory Requests

For every 1% performance benefit,

Increase in main memory requests

Pythia 2%

Hermes on top of Pythia 1%

Hermes alone 0.5%

Hermes is more bandwidth-efficient

than even an efficient prefetcher like Pythia

SAFARI 89



Performance with Varying Memory Bandwidth

1-3 7 Pythia+Hermes

1.25 - —\/ -O
1.2 - /O/

1.15 -
/
L o O 2

1.05 -

Geomean speedup
over the No-prefetching system

0.95

O
Co)

Hermes+Pythia outperforms Pythia

across all bandwidth configurations



Performance with Varying Baseline Prefetcher

O Prefetcher-only B Prefetcher + Hermes

=
s

Ing system
[
N
Un
I

-
N

Hermes consistently improves performance
on top of a wide range of baseline prefetchers

overthe N
[
@)
Un
|

R

Pythia Bingo SPP MLOP SMS

SAFARI

91



Overhead of Hermes

o 4 KB storage overhead
O 1.5% power overhead*

*On top of an Intel Alder Lake-like performance-core 2! configuration

SA FA Rl [2] https://www.anandtech.com/show/16881/a-deep-dive-into-intels-alder-lake-microarchitectures/3 92



More in the Paper

Performance sensitivity to:

- Cache hierarchy access latency
Hermes request issue latency
Activation threshold
ROB size (in extended version on arXiv)
LLC size (in extended version on arXiv)

Accuracy, coverage, and performance analysis against HMP and TTP

Understanding usefulness of each program feature

Effect on stall cycle reduction

analysis on an system
SAFARI 93



More in the Paper

SAFARI

Hermes: Accelerating Long-Latency Load Requests
via Perceptron-Based Off-Chip Load Prediction

Rahul Bera!  Konstantinos Kanellopoulos®

Ataberk Olgun?

Mohammad Sadrosadati!

Shankar Balachandran?  David Novo?®

Onur Mutlu!

'ETH Ziirich ?Intel Processor Architecture Research Lab  3LIRMM, Univ. Montpellier, CNRS

Long-latency load requests continue to limit the performance
of modern high-performance processors. To increase the latency
tolerance of a processor, architects have primarily relied on two
key techniques: sophisticated data prefetchers and large on-chip
caches. In this work, we show that: (1) even a sophisticated state-
of-the-art prefetcher can only predict half of the off-chip load
requests on average across a wide range of workloads, and (2)
due to the increasing size and complexity of on-chip caches, a
large fraction of the latency of an off-chip load request is spent
accessing the on-chip cache hierarchy to solely determine that it
needs to go off-chip.

The goal of this work is to accelerate off-chip load requests
by removing the on-chip cache access latency from their critical
path. To this end, we propose a new technique called Hermes,
whose key idea is to: (1) accurately predict which load requests

https://arxiv.or

off-chip main memory (i.e., an off-chip load) often stalls the pro-
cessor core by blocking the instruction retirement from the re-
order buffer (ROB), thus limiting the core’s performance [88, 91,
92]. To increase the latency tolerance of a core, computer archi-
tects primarily rely on two key techniques. First, they employ
increasingly sophisticated hardware prefetchers that can learn
complex memory address patterns and fetch data required by
future load requests before the core demands them [28, 32,
33, 35, 75]. Second, they significantly scale up the size of the
on-chip cache hierarchy with each new generation of proces-
sors [10, 11, 16].

Key problem. Despite recent advances in processor core
design, we observe two key trends in new processor designs
that leave a significant opportunity for performance improve-
ment on the table. First, even a sophisticated state-of-the-art

df/2209.00188.pdf

924
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To Summarize...



Summary

Hermes advocates for off-chip load prediction,
a different form of speculation than
employed by prefetchers

Off-chip load prediction can be applied by itself
or combined with load address prediction
to provide performance improvement

SAFARI 96



Summary

Hermes employs the first

perceptron-based off-chip load predictor

X d

High accuracy | High coverage Low storage
overhead
(77%) (74%)
) ) (4KB/core)
(A AN

High performance improvement

over best prior baseline
(5.4%)

High performance
per bandwidth




Hermes is Open Sourced

All workload traces

13 prefetchers @ 9 off-chip predictors

e Stride [Fu+, MICRO'92]

o Streamer [Chen and Baer, IEEE TC'95] Predictor type  Description

e SMS [Somogyi+, ISCA'06] Base Always NO

« AMPM [IShii*‘: |CSI09] Basic Simple confidence counter-based threshold

* Sandbox [PUQSIey+’ HPCA'1 4] Random Random Hit-miss predictor with a given positive probability
* BOP [MiChaUd’ HPCA" 6] HMP-Local Hit-miss predictor [Yoaz+, ISCA'99] with local prediction

« SPP [Kim+, MICRO'16]

. . HMP-GShare Hit-miss predictor with GShare prediction
Bingo [Bakshalipour+, HPCA'19]

« SPP+PPF [Bhatia+, ISCA'19] HMP-GSkew Hit-miss predictor with GSkew prediction

e DSPatch [Bera +, MICRO'1 9] HMP-Ensemble  Hit-miss predictor with all three types combined
o MLOP [Shakerinava+, DPC-3'19] TP Tag-tracking based predictor

¢ |PCP [Pakalapati+, ISCA'20] Perc Perceptron-based OCP used in this paper

Pythia [Bera+, MICRO'21]

SAFARI  https://github.com/CMU-SAFARI/Hermes 98
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Easy To Define Your Own Off-Chip Predictor

» Just extend the OffchipPredBase class

class OffchipPredBase

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

SAFARI

{

public:

};

uint32_t cpu;

string type;

uinté4_t seed;

uint8_t dram_bw; // current DRAM bandwidth bucket

OffchipPredBase(uint32_t _cpu, string _type, uinté4_t _seed) : cpu(_cpu), type(_type), seed(_seed)
{
srand(seed);
dram_bw = 0;
}
~0ffchipPredBase() {}
void update_dram_bw(uint8_t _dram_bw) { dram_bw = _dram_bw; }

virtual void print_config();

virtual void dump_stats();

virtual void reset_stats();

virtual void train(ooo_model_instr xarch_instr, uint32_t data_index, LSQ_ENTRY xlg_entry);
virtual bool predict(ooo_model_instr *arch_instr, uint32_t data_index, LSQ_ENTRY xlqg_entry);

#endif /x OFFCHIP_PRED_BASE_H */
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Easy To Define Your Own Off-Chip Predictor

» Define yourown train( ) and predict () functions

19 void OffchipPredBase::train(ooo_model_instr s*arch_instr, uint32_t data_index, LSQ_ENTRY xlg_entry)
20 A

21 // nothing to train

22

23

24 bool OffchipPredBase::predict(ooo_model_instr xarch_instr, uint32_t data_index, LSQ_ENTRY x1lq_entry)
25 4

26 // predict randomly

27 // return (rand() % 2) ? true : false;
28 return false;

29 }

* Get statistics like accuracy (stat name precision) and
coverage (stat name recall) out of the box

Core_0O_offchip_pred_true_pos 2358716
Core_0O_offchip_pred_false_pos 276883
Core_0O_offchip_pred_false_neg 132145

Core_0O_offchip_pred_precision 89.49
Core_0O_offchip_pred_recall 94.69

SAFARI 100




Off-Chip Prediction Can Further Enable...

Prioritizing loads that are likely go off-chip
in cache queues and on-chip network routing

Better instruction scheduling
of data-dependent instructions

Other ideas to improve performance and
fairness in multi-core system design...

SAFARI 101
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https://github.com/CMU-SAFARI/Hermes

SAFARI ETHziirich Jo'

SAFARI Research Group

 https://arxiv.org/pdf/2209.00188.pdf
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https://arxiv.org/pdf/2209.00188.pdf

Hermes Discussion

« FAQs  More Results

- What are the selected set of program features? - Percentage of off-chip requests

- Can you provide some intuition on why these - Re_c!ucltion Ln stall cycles by reducing the
features work? critical path

- Fraction of off-chip load requests
- Accuracy and coverage of POPET
- Effect of different features
- Are all features required?
- 1Cperformance
- 1Cperformance line graph
- 1Cperformance against prior predictors
- Effect onstall cycles
* Simulation Methodology - 8C performance
- System parameters - Sensitivity:
* Hermes request issue latency
* (Cache hierarchy access latency
* Activation threshold
* ROBsize
* LLCsize
- Power overhead
- Accuracy without prefetcher

- Main memory request overhead with
different prefetchers
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-  What happens in case of a misprediction?

-  What's the performance headroom for off-chip
prediction?

- Do vyou see a variance of different features in final
prediction accuracy?

- Evaluated workloads
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Proceedings of the 55th International Symposium on Microarchitecture (MICRO), Chicago, IL, USA,
October 2022.

[Slides (pptx) (pdf)]

[Longer Lecture Slides (pptx) (pdf)]

[Talk Video (12 minutes)]

[Lecture Video (25 minutes)]

[arXiv version]
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Officially artifact evaluated as available, reusable and reproducible.

Best paper award at MICRO 2022.
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Reward Assighment to EQ Entry

* Every action gets inserted into EQ

* Reward is assigned to each EQ entry before or during the
eviction

* During EQ insertion: for actions

- Not to prefetch
- Out-of-page prefetch
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Reward Assighment to EQ Entry

* Every action gets inserted into EQ

* Reward is assigned to each EQ entry before or during the
eviction

* During EQ insertion: for actions

- Not to prefetch
- Out-of-page prefetch
* During EQ residency:

- In case address of a demand matches with address in EQ
(signifies accurate prefetch)
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Reward Assighment to EQ Entry

* Every action gets inserted into EQ

* Reward is assigned to each EQ entry before or during the
eviction

* During EQ insertion: for actions
- Not to prefetch
- Out-of-page prefetch
* During EQ residency:
- In case address of a demand matches with address in EQ
(signifies accurate prefetch)
* During EQ eviction:
- In case no reward is assigned till eviction
(signifies inaccurate prefetch)
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Assign reward to
corresponding EQ entry Prefetch Fill



Performance S-curve: Single-core
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Performance S-curve: Four-core
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FAQs



Pythia Discussion

* FAQS

Why RL?
What about large page?
What’s the prefetch degree?

Can customization happen during
workload execution?

Can runtime mixing create problem?

e Simulation and Methodology

Basic Pythia configuration

System parameters
Configuration of prefetchers
Evaluated workloads

Feature selection

SAFARI

* Detailed Design

Reward structure

Design overview
QVStore Organization

* More Results

Comparison against other adaptive
prefetchers

Comparison against Context prefetcher
Feature combination sensitivity
Hyperparameter sensitivity
Comparison with multi-level prefetchers
Performance in unseen workloads
Single-core s-curve

Four-core s-curve

Detailed performance analysis

Benefit of bandwidth awareness

Case study

Customizing rewards

Customizing features
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Why RL? Why Not Supervised Learning?

* Determining the benefits of prefetching (i.e., whether a
decision was good for performance or not) is not easy

- Depends on a complex set of metrics
* Coverage, accuracy, timeliness
 Effects on system: b/w usage, pollution, cross-application interference, ...

- Dynamically-changing environmental conditions change the
benefit

(might not receive
feedback at all for inaccurate prefetches!)

* Differs from classification tasks (e.g., branch prediction)
- Performance strongly correlates mainly to accuracy

- Does not depend on environment
- Bounded feedback delay

SAFARI A1



What About Large Pages?

e Pythia’s framework can be easily extended to incorporate
additional prefetch actions (i.e., possible prefetch offsets
for the page size)

* To decrease the storage overhead
via automatic design-space exploration
to retrieve Q-values
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What is the Prefetch Degree? Is It Managed by
the RL Agent?

* Pythia employs a simple degree selector, separate from
the RL agent

- If the agent has selected the same prefetch action (O) multiple
times in a row, Pythia increases the degree (A+20, A+30, ...)

- At most degree 4

* Future works on managing degree by the RL agent

SAFARI Y R



Can the Customization Be Done While the
Workload is Running?

* Certainly.

* Pythia, being an online learning technique, will
autonomously adapt (and optimize) its policy to use the
new program features or the modified reward values

SAFARI D7



Can Runtime Workload Mix Create an Issue?

* We implement the bandwidth usage feedback using a
counter in the memory controller. Thus Pythia already has
a global view of the memory bandwidth usage that
incorporates all workloads running on a multi-core system

* We evaluate a diverse set (300 of each category) of four-
core, eight-core, twelve-core random workload mixes

* Based on our evaluation, we observe that Pythia
dynamically adapts itself to varying workload demands

SAFARI Y NEE



How does Pythia Compare Against Other Adaptive

Prefetching Solutions?

* We compare Pythia against IBM POWER7: prefetcher

- Adaptively selects prefetcher degree/configuration by
monitoring program IPC

Geomean speedup

SAFARI
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How Does Pythia Compare Against the Context
Prefetcher?

* Pythia widely differs from the Context Prefetcher (CP): in
all three aspects: state, action, and reward. The key
differences are:

- CP does not consider system-level feedback

- CP models the agent as a contextual bandit which takes myopic
prefetch decisions as compared to Pythia

- CP requires compiler support to extract software-level features

(b) four-core

(a) single-core 1
@ CP-HW ® Pythia B CP-HW ® Pythia
i 1.3 -
_ 1.2 - b
i N | I i
,_l- T 1 T T T T ,_|. T T :

SPECO6 SPEC17 PARSEC Ligra CI udsuite  GEOMEAN SPECO6 SPEC17  PARSEC Ligra Cloudsuite Mix GEOMEAN

Geomean speedup
over baseline
Ll
= = N w H O
|
Geomean speedup
over baseline

Pythia outperforms CP-HW by 5.3% in single-core and

7.6% in four-core system
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How Pythia’s Performance Changes With
Various State Definitions You Have Swept?

* In total we evaluate state defined as any-one, any-two,
and any-three combinations of 32 features
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Experiment number Experiment number

Performance gain ranges from 20.7% to 22.4%

Coverage ranges from 66.2% to 71.5%

Overprediction ranges from 26.7% to 32.2%
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Is Pythia Sensitive to Hyperparameters?

* Not setting hyperparameters can significantly impact the
overall performance improvement

1.23
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© ‘v 1.21
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3 3
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©
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&
1.04 ‘ ‘ Y 116 ‘ ‘ ‘ ‘ ‘
1.E-6 1.E-5 1.E-4 1.E-3 1.E-2 1.E-1 1.E+0 1.6 1.E5 1.E4 1.E-3 1.E-2 1.E1 1.E+0
values values

Changing € from 0.002 to 1.0 drops perf. by 16%

Changing a from 0.0065 to 1.0 drops perf. by 5.4%
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How Does Pythia Compare Against Commercial
Multi-level Prefetchers?
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Does Pythia Perform Equally Well for Unseen
Workloads?

* Evaluated with 500 traces from value prediction
championship

- No prefetcher has been trained on these traces

OSPP @Bingo #MLOP mPythia OSPP @Bingo #WMLOP mPythia

o 16 a 15
=) | B S
2 2 157 (a)single-core 2144 (b)fourcore /M 0000000
sg 41+ Atre =R %134 e m -
"n un g .
c © 13 4 AT - C 5
© 2 S~-124 il IR 0000
1<% QL) 1.2 e A I e E (O]
AR g5 il H *****
§°" ] o (A & lm_ |l

Crypto INT FP Server GEOMEAN Crypto INT Server GEOMEAN

Pythia outperforms MLOP and Bingo by
8.3% and 3.5% in single-core

And 9.7% and 5.4% in four-core
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Basic Pythia Configuration

Table 2: Basic Pythia configuration derived from our auto-
mated design-space exploration

Features PC+Delta, Sequence of last-4 deltas

Prefetch Action List {-6,-3,-1,0,1,3,4,5,10,11,12,16,22,23,30,32}

Ra1=20, Rar=12, Rcp=-12, R;IN=—14,
L _ H _ L _

RIN__S’ :RNP__Z’ RNP__4

Hyperparameters o = 0.0065, y = 0.556, € = 0.002

Reward Level Values
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System Parameters

Table 5: Simulated system parameters

Core 1-12 cores, 4-wide O00, 256-entry ROB, 72/56-entry LQ/SQ
Branch Pred. Perceptron-based [69], 20-cycle misprediction penalty

L1/1L2 Private, 32KB/256KB, 64B line, 8 way, LRU, 16/32 MSHRs, 4-
Caches cycle/14-cycle round-trip latency

T 2MB/core, 64B line, 16 way, SHiP [133], 64 MSHRs per LLC Bank,

34-cycle round-trip latency

Main Memory

1C: Single channel, 1 rank/channel; 4C: Dual channel, 2
ranks/channel; 8C: Quad channel, 2 ranks/channel;

8 banks/rank, 2400 MTPS, 64b data-bus/channel, 2KB row buffer-
/bank, tRCD=15ns, tRP=15ns, tCAS=12.5ns
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Configuration of Prefetchers

Table 7: Configuration of evaluated prefetchers

SPP [78] 256-entry ST, 512-entry 4-way PT, 8-entry GHR || 6.2 KB
Bingo [27] 2KB region, 64/128/4K-entry FT/AT/PHT 46 KB
MLOP [111] 128-entry AMT, 500-update, 16-degree 8 KB
DSPatch [30] Same configuration as in [30] 3.6 KB
PPF [32] Same configuration as in [32] 39.3 KB
Pythia 2 features, 2 vaults, 3 planes, 16 actions 25.5 KB
SAFARI B



Evaluated Workloads

Table 6: Workloads used for evaluation

Suite # Workloads # Traces Example Workloads

SPECO06 16 28 gce, mcf, cactusADM, lbm, ...

SPEC17 12 18 gce, mcf, pop2, fotonik3d, ...

PARSEC 5 11 canneal, facesim, raytrace, ...

Ligra 13 40 BFS, PageRank, Bellman-ford, ...

Cloudsuite 4 53 cassandra, cloud9, nutch, ...
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List of Evaluated Features

Table 3: List of program control-flow and data-flow compo-
nents used to derive the list of features for exploration

Control-flow Component Data-flow Component

(1) Load cacheline address
(2) Page number

(1) PC of load request (3) Page offset

(2) PC-path (XOR-ed last-3 PCs) (4) Load address delta

(3) PC XOR-ed branch-PC (5) Sequence of last-4 offsets

(4) None (6) Sequence of last-4 deltas
(7) Offset XOR-ed with delta
(8) None
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MORE RESULTS



Performance S-curve: Single-core
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Performance S-curve: Four-core
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Single-core Coverage & Overprediction
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Detailed Performance
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Benefit of Bandwidth Awareness
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Case Study
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Figure 13: Q-value curves of PC+Delta feature values (a)
0x436a81+0 and (b) 0x4377c5+0 in 459 . GemsFDTD-1320B.
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Customizing Rewards
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Figure 14: Performance and main memory bandwidth usage
of prefetchers in Ligra-CC.
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Figure 15: Performance of the basic and strict Pythia config-
urations on the Ligra workload suite.
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Customizing Features
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Figure 16: Performance of the basic and feature-optimized
Pythia on the SPEC CPU2006 suite.
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Hermes Discussion

« FAQs  More Results

- What are the selected set of program features? - Percentage of off-chip requests

- Can you provide some intuition on why these - Re_c!ucltion Ln stall cycles by reducing the
features work? critical path

- Fraction of off-chip load requests
- Accuracy and coverage of POPET
- Effect of different features
- Are all features required?
- 1Cperformance
- 1Cperformance line graph
- 1Cperformance against prior predictors
- Effect onstall cycles
* Simulation Methodology - 8C performance
- System parameters - Sensitivity:
* Hermes request issue latency
* (Cache hierarchy access latency
* Activation threshold
* ROBsize
* LLCsize
- Power overhead
- Accuracy without prefetcher

- Main memory request overhead with
different prefetchers

SAFARI 139

-  What happens in case of a misprediction?

-  What's the performance headroom for off-chip
prediction?

- Do vyou see a variance of different features in final
prediction accuracy?

- Evaluated workloads




HERMES BACKUP



Initial Set of Program Features

Features without control-flow Features with control-flow

information information

8. Load PC
1. Load virtual address 9. PC & load virtual address
2. Virtual page number 10. PC @ virtual page number
3. Cacheline offset in page 11. PC & cacheline offset
4. First access 12. PC + first access
5. Cacheline offset + first access 13. PC @ byte offset
6. Byte offset in cacheline 14. PC @ word offset
7. Word offset in cacheline 15. Last-4 load PCs

16. Last-4 PCs
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Selected Set of Program Features

A binary hint that

Five features represents whether or not a
cacheblock has been

« PC @ cacheline offset recently touched

« PC @ byte offset
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When A Feature Works/Does Not Work?

Trace: 462.libguantum-1343B PC: 0x401442

Without prefetcher With a simple stride prefetcher

* PC + first access e Cacheline offset + first access
e Cacheline offset + first access

4\
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What Happens in case of a Misprediction?

* Two cases of mispredictions:

* Predicted on-chip but actually goes off-chip
- Loss of performance improvement opportunity

No need for misprediction detection and recovery

* Predicted off-chip but actually is on-chip

- Memory controller forwards the data to LLC if and only if
a load to the same address have already missed LLC and
arrived at the memory controller

No need for misprediction detection and recovery
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Performance Headroom of Off-Chip Prediction
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System Parameters

Table 4: Simulated system parameters

1 and 8 cores, 6-wide fetch/execute/commit, 512-entry ROB,
Core 128/72-entry LQ/SQ, Perceptron branch predictor [61] with
17-cycle misprediction penalty

L1/1L2 Private, 48KB/1.25MB, 64B line, 12/20-way, 16/48 MSHRSs,
Caches LRU, 5/15-cycle round-trip latency [25]

3MB/core, 64B line, 12 way, 64 MSHRs/slice, SHiP [122],

LLC 55-cycle round-trip latency [24, 25], Pythia prefetcher [32]

1C: 1 channel, 1 rank per channel; 8C: 4 channels, 2 ranks
Main per channel; 8 banks per rank, DDR4-3200 MTPS, 64b data-
Memory  bus per channel, 2KB row buffer per bank, tRCD=12.5ns,
tRP=12.5ns, tCAS=12.5ns

Hermes Hermes-O/P: 6/18-cycle Hermes request issue latency

(0
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Evaluated Workloads

Table 5: Workloads used for evaluation

Suite = #Workloads #Traces Example Workloads

SPECO6 14 22 gce, mcf, cactusADM, lbm, ...
SPEC17 11 23 gce, mcf, pop2, fotonik3d, ...
PARSEC 4 12 canneal, facesim, raytrace, ...
Ligra 11 20 BFS, PageRank, Radii, ...

CVP 33 33 integer, floating-point, server, ...

(0
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Not All Off-Chip Loads are Prefetched

Observation
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Not All Off-Chip Loads are Prefetched

Observation
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Observation: With Large Cache Comes Longer Latency

* On-chip cache access latency significantly contributes to
the latency of an off-chip load

© 180 - .On-chip cache hierarchy access latency
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Observation: With Large Cache Comes Longer Latency

* On-chip cache access latency significantly contributes to
the latency of an off-chip load
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40% of stall cycles caused by an off-chip load can be eliminated
by removing on-chip cache access latency from its critical path
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What Fraction of Load Requests Goes Off-Chip?
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Fraction of loads
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Off-Chip Prediction Quality: Defining Metrics

Accuracy Coverage |
® p N O
Predicted off-chip Actual off-chip

Predicted and actual off-chip
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Off-Chip Prediction Quality: Analysis

Accuracy |

OHMP  @TTP  mPOPET
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Off-Chip Prediction Quality: Analysis

POPET provides off-chip predictions with
high-accuracy and high-coverage



Effect of Different Features

809
% mmAccuracy “O-Coverage
60% -

40% A

20% -

Accuracy and coverage %

0%

Pc@® last-4load pc@byte PC+first Cacheline 142 142+3 1+2+3+4 All (POPET)
cacheline PCs(2)  offset(s) access(4) offset+first
offset (1) access (5)

Combination of features provides both higher
accuracy and higher coverage than any individual feature
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Are All Features Required? (1)

——PC@®cacheline offset ——Last-4load PCs —PC® byte offset PC +firstaccess —e—Cacheline offset + first access
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Workload number

No single feature individually provides

highest prediction accuracy across all workloads
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Are All Features Required? (2)

——PC@®cacheline offset —=—Last-4load PCs —=—PC®byte offset PC+firstaccess —e—Cacheline offset + first access
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(b)
80% -
S 60% - ' 1
bD f |
©
% 40% - I | | ‘ n |
o \ || e o/ i | \
o N W A AR
¢ { | ‘ ‘
o ( \A L ) \l‘\yf
0% e Yl Ve i A "U“ " ﬁf .
TYFORPY2RARISNIRISLITAARA

Workload nhumber

No single feature individually provides
highest prediction coverage also across all workloads
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Single-Core Performance
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Hermes in combination with Pythia
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outperforms Pythia alone in every workload category
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Single-Core Performance Line Graph
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Single-Core Performance Against Prior Predictors

O Pythia (baseline) &@Pythia+ Hermes-HMP & Pythia+ Hermes-TTP mPythia + Hermes-POPET m Pythia + Ideal Hermes
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Geomean speedup
w1
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PARSEC

—

GEOMEAN

POPET provides higher performance benefit
than prior predictors

Hermes with POPET achieves nearly 90% performance
improvement of the Ideal Hermes
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Effect on Stall Cycles

60%

[l SPECo6 @ SPEC17 B PARSEC O Ligra E CVP

50%

40%

ip loads

= 30%

20%

due to off-ch

10%

% reduction of stall cycles

0%

-10%

Hermes reduces off-chip load induced stall cycles

on average by 16.2% (up-to 51.8%)
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Eight-Core Performance

O Pythia (baseline)  mPythia+ Hermes-HMP Pythia+Hermes-TTP  mPythia+ Hermes-POPET
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Hermes in combination with Pythia

outperforms Pythia alone by 5.1% on average
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Effect of Hermes Request Issue Latency

Hermes in combination with Pythia outperforms Pythia

alone even with a 24-cycle Hermes request issue latency

SAFARI



Effect of Cache Hierarchy Access Latency

Hermes can provide even higher performance benefit in
future processors with bigger and slower on-chip caches
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Effect of Activation Threshold

100% Speedup A c 1.26
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Activation threshold

With increase in activation threshold
1. Accuracy increases

2. Coverage decreases
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Power Overhead
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Effect of ROB Size
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Effect of LLC Size
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Accuracy and Coverage with Different Prefetchers
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POPET's accuracy and coverage increases significantly
in absence of a data prefetcher
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Increase in Main Memory Requests
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