
Onur Mutlu
omutlu@gmail.com

https://people.inf.ethz.ch/omutlu
20 September 2023

VMware

Pythia & Hermes:
ML-Driven Prefetching

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

Data-Driven (Self-Optimizing)
Architectures

2

System Architecture Design Today

n Human-driven
q Humans design the policies (how to do things)

n Many (too) simple, short-sighted policies all over the system

n No automatic data-driven policy learning

n (Almost) no learning: cannot take lessons from past actions

3

Can we design
fundamentally intelligent architectures?

An Intelligent Architecture

n Data-driven
q Machine learns the “best” policies (how to do things)

n Sophisticated, workload-driven, changing, far-sighted policies

n Automatic data-driven policy learning

n All controllers are intelligent data-driven agents

4

We need to rethink design
(of all controllers)

Self-Optimizing Memory Controllers
n Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,

"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.
Selected to the ISCA-50 25-Year Retrospective Issue covering 1996-
2020 in 2023 (Retrospective (pdf) Full Issue).

5

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/
https://sites.coecis.cornell.edu/isca50retrospective/files/2023/06/Retrospective__RL.pdf
https://sites.coecis.cornell.edu/isca50retrospective/

Self-Optimizing Memory Prefetchers

6

Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu,
"Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, October 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (20 minutes)]
[Lightning Talk Video (1.5 minutes)]
[Pythia Source Code (Officially Artifact Evaluated with All Badges)]
[arXiv version]
Officially artifact evaluated as available, reusable and reproducible.

https://arxiv.org/pdf/2109.12021.pdf

https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=7
https://www.youtube.com/watch?v=kzL22FTz0vc&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=2
https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/abs/2109.12021
https://arxiv.org/pdf/2109.12021.pdf

Learning-Based Off-Chip Load Predictors
n Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk Olgun,

Mohammad Sadrosadati, and Onur Mutlu,
"Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load
Prediction"
Proceedings of the 55th International Symposium on Microarchitecture (MICRO), Chicago, IL, USA,
October 2022.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Talk Video (12 minutes)]
[Lecture Video (25 minutes)]
[arXiv version]
[Source Code (Officially Artifact Evaluated with All Badges)]
Officially artifact evaluated as available, reusable and reproducible.
Best paper award at MICRO 2022.

7https://arxiv.org/pdf/2209.00188.pdf

https://arxiv.org/pdf/2209.00188.pdf
https://arxiv.org/pdf/2209.00188.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pdf
https://www.youtube.com/watch?v=afGc1pWr-_Y
https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s
https://arxiv.org/abs/2209.00188
https://github.com/CMU-SAFARI/Hermes
https://arxiv.org/pdf/2209.00188.pdf

Self-Optimizing Hybrid SSD Controllers
Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar,
David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu,
"Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage
Systems Using Online Reinforcement Learning"
Proceedings of the 49th International Symposium on Computer
Architecture (ISCA), New York, June 2022.
[Slides (pptx) (pdf)]
[arXiv version]
[Sibyl Source Code]
[Talk Video (16 minutes)]

8https://arxiv.org/pdf/2205.07394.pdf

https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
http://iscaconf.org/isca2022/
http://iscaconf.org/isca2022/
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pdf
https://arxiv.org/pdf/2205.07394.pdf
https://github.com/CMU-SAFARI/Sibyl
https://www.youtube.com/watch?v=5-WedkiB000
https://arxiv.org/pdf/2205.07394.pdf

Pythia: Prefetching using
Reinforcement Learning

9

Self-Optimizing Memory Prefetchers

10

Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu,
"Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, October 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (20 minutes)]
[Lightning Talk Video (1.5 minutes)]
[Pythia Source Code (Officially Artifact Evaluated with All Badges)]
[arXiv version]
Officially artifact evaluated as available, reusable and reproducible.

https://arxiv.org/pdf/2109.12021.pdf

https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=7
https://www.youtube.com/watch?v=kzL22FTz0vc&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=2
https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/abs/2109.12021
https://arxiv.org/pdf/2109.12021.pdf

Rahul Bera, Konstantinos Kanellopoulos, Anant V. Nori,
Taha Shahroodi, Sreenivas Subramoney, Onur Mutlu

Pythia
A Customizable Hardware Prefetching Framework

Using Online Reinforcement Learning

https://github.com/CMU-SAFARI/Pythia

https://arxiv.org/pdf/2109.12021.pdf

https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/pdf/2109.12021.pdf

12

Executive Summary

https://github.com/CMU-SAFARI/Pythia

• Background: Prefetchers predict addresses of future memory requests by associating
memory access patterns with program context (called feature)

• Problem: Three key shortcomings of prior prefetchers:
- Predict mainly using a single program feature
- Lack inherent system awareness (e.g., memory bandwidth usage)
- Lack in-silicon customizability

• Goal: Design a prefetching framework that:
- Learns from multiple features and inherent system-level feedback
- Can be customized in silicon to use different features and/or prefetching objectives

• Contribution: Pythia, which formulates prefetching as reinforcement learning problem
- Takes adaptive prefetch decisions using multiple features and system-level feedback
- Can be customized in silicon for target workloads via simple configuration registers
- Proposes a realistic and practical implementation of RL algorithm in hardware

• Key Results:
- Evaluated using a wide range of workloads from SPEC CPU, PARSEC, Ligra, Cloudsuite
- Outperforms best prefetcher (in 1-core config.) by 3.4%, 7.7% and 17% in 1/4/bw-constrained cores
- Up to 7.8% more performance over basic Pythia across Ligra workloads via simple customization

https://github.com/CMU-SAFARI/Pythia

13

Talk Outline
Key Shortcomings of Prior Prefetchers

Formulating Prefetching as Reinforcement Learning

Pythia: Overview

Evaluation of Pythia and Key Results

Conclusion

14

Prefetching Basics
• Predicts addresses of long-latency memory requests and

fetches data before the program demands it

• Associates access patterns from past memory requests
with program context information

• Example program features
- Program counter (PC)
- Page number
- Page offset
- Cacheline delta
- …
- Or a combination of these attributes

Program context à Access PatternProgram Feature

15

Key Shortcomings in Prior Prefetchers
• We observe three key shortcomings that significantly

limit performance benefits of prior prefetchers

Predict mainly using a single program feature

Lack inherent system awareness

Lack in-silicon customizability

1
2
3

16

(1) Single-Feature Prefetch Prediction
• Provides good performance gains mainly on workloads

where the feature-to-pattern correlation exists

[1] Bakshalipour et al., HPCA’19 [2] Kim et al., MICRO’16

0%

10%

20%

30%

40%

50%

60%

482.sphinx3-417B PARSEC-Canneal PARSEC-Facesim 459.GemsFDTD-765B

IP
C

im
pr

ov
em

en
t o

ve
r

ba
se

lin
e

(%
)

SPP Bingo Pythia15.4%

3.5%

5.5%

4.6%

Bingo [1] performs better SPP [2] performs better

17

(1) Single-Feature Prefetch Prediction
• Provides good performance gains mainly on workloads

where the feature-to-pattern correlation exists

[1] Bakshalipour et al., HPCA’19 [2] Kim et al., MICRO’16

0%

10%

20%

30%

40%

50%

60%

482.sphinx3-417B PARSEC-Canneal PARSEC-Facesim 459.GemsFDTD-765B

IP
C

im
pr

ov
em

en
t o

ve
r

ba
se

lin
e

(%
)

SPP Bingo Pythia15.4%

3.5%

5.5%

4.6%

Bingo [1] performs better SPP [2] performs better

Relying on a single feature for prediction leaves
significant performance improvement on table

18

(2) Lack of Inherent System Awareness
• Little understanding of undesirable effects (e.g.,

memory bandwidth usage, cache pollution, …)
- Performance loss in resource-constrained configurations

0%

50%

100%

150%

200%

250%

SPP Bingo Pythia SPP Bingo Pythia

Ligra-CC PARSEC-Canneal

Fr
ac

tio
n

of
 L

LC
 m

iss
es Covered Uncovered Overpredicted

-4%

-2%
0%
2%
4%

6%
8%

10%

Ligra-CC PARSEC-Canneal

IP
C

im
pr

ov
em

en
t

ov
er

 b
as

el
in

e
(%

)

SPP Bingo Pythia
368% 574%

Similar coverage Lower overpredictions Yet, lower performance

19

(2) Lack of Inherent System Awareness
• Little understanding of undesirable effects (e.g.,

memory bandwidth usage, cache pollution, …)
- Performance loss in resource-constrained configurations

0%

50%

100%

150%

200%

250%

SPP Bingo Pythia SPP Bingo Pythia

Ligra-CC PARSEC-Canneal

Fr
ac

tio
n

of
 L

LC
 m

iss
es Covered Uncovered Overpredicted

-4%

-2%
0%
2%
4%

6%
8%

10%

Ligra-CC PARSEC-Canneal

IP
C

im
pr

ov
em

en
t

ov
er

 b
as

el
in

e
(%

)

SPP Bingo Pythia
368% 574%

Similar coverage Lower overpredictions Yet, lower performance

Prefetchers often lose performance due to lack
of inherent system awareness

20

(3) Lack of In-silicon Customizability
• Feature statically selected at design time

- Rigid hardware designed specifically to exploit that feature

• No way to change program feature and/or change
prefetcher’s objective in silicon
- Cannot adapt to a wide range of workload demands

Design from scratch Verify Fabricate

21

Our Goal

A prefetching framework that can:

1.Learn to prefetch using multiple features and
inherent system-level feedback information

2.Be easily customized in silicon to use different
features and/or change prefetcher’s objectives

22

Our Proposal

Pythia
Formulates prefetching as a

reinforcement learning problem

Pythia is named after the oracle of Delphi, who is known for her accurate prophecies
https://en.wikipedia.org/wiki/Pythia

23

Talk Outline
Key Shortcomings of Prior Prefetchers

Formulating Prefetching as Reinforcement Learning

Pythia: Overview

Evaluation of Pythia and Key Results

Conclusion

24

Basics of Reinforcement Learning (RL)
• Algorithmic approach to learn to take an action in a

given situation to maximize a numerical reward

• Agent stores Q-values for every state-action pair
- Expected return for taking an action in a state
- Given a state, selects action that provides highest Q-value

Agent

Environment

State (St)State (St) Action (At)Action (At)Reward (Rt+1)Reward (Rt+1)

25

Formulating Prefetching as RL
Agent

Environment

State (St)State (St) Action (At)Action (At)Reward (Rt+1)Reward (Rt+1)

Prefetcher

Processor &
Memory Subsystem

Reward
Prefetch from address

A+offset (O)

Features of memory
request to address A

(e.g., PC)

26

What is State?
• k-dimensional vector of features

• Feature = control-flow + data-flow

• Control-flow examples
- PC
- Branch PC
- Last-3 PCs, …

• Data-flow examples
- Cacheline address
- Physical page number
- Delta between two cacheline addresses
- Last 4 deltas, …

27

What is State?

S = {PC+Delta, Sequence of last-4 deltas}

Example of a state information

Feature-1 (ɸ1) Feature-2 (ɸ2)

PC
(Control-flow info.)

Cacheline Delta
(Data-flow info.)

Seq. of last-4 deltas
(Data-flow info.)

28

What is Action?
Given a demand access to address A
the action is to select prefetch offset “O”

• Action-space: 127 actions in the range [-63, +63]
- For a machine with 4KB page and 64B cacheline

• Upper and lower limits ensure prefetches do not cross
physical page boundary

• A zero offset means no prefetch is generated

• We further prune action-space by design-space exploration

29

What is Reward?
• Defines the objective of Pythia

• Encapsulates two metrics:
- Prefetch usefulness (e.g., accurate, late, out-of-page, …)
- System-level feedback (e.g., mem. b/w usage, cache

pollution, energy, …)

• We demonstrate Pythia with memory bandwidth
usage as the system-level feedback in the paper

30

What is Reward?
• Seven distinct reward levels

- Accurate and timely (RAT)
- Accurate but late (RAL)
- Loss of coverage (RCL)
- Inaccurate

• With low memory b/w usage (RIN-L)
• With high memory b/w usage (RIN-H)

- No-prefetch
• With low memory b/w usage (RNP-L)
• With high memory b/w usage(RNP-H)

• Values are set at design time via automatic design-
space exploration
- Can be customized further in silicon for higher performance

31

Steering Pythia’s Objective via Reward Values
• Example reward configuration for

- Generating accurate prefetches
- Making bandwidth-aware prefetch decisions

+20+12-2-4-8-14

RATRALRNP-HRNP-LRIN-LRIN-H
AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate;

H = High mem. b/w; L = Low mem. b/w

Highly prefers to generate accurate prefetches

Prefers not to prefetch if memory bandwidth usage is low

Strongly prefers not to prefetch if memory bandwidth usage is high

32

Steering Pythia’s Objective via Reward Values
• Customizing reward values to make Pythia conservative

towards prefetching

+20+12+2+1-20-22

RATRALRNP-HRNP-LRIN-LRIN-H
AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate;

H = High mem. b/w; L = Low mem. b/w

Highly prefers to generate accurate prefetches

Otherwise prefers not to prefetch

33

Steering Pythia’s Objective via Reward Values
• Customizing reward values to make Pythia conservative

towards prefetching

+20+12+4+2-20-22

RATRALRNP-HRNP-LRIN-LRIN-H
AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate;

H = High mem. b/w; L = Low mem. b/w

Highly prefers to generate accurate prefetches

Otherwise prefers not to prefetchServer-class processors
Bandwidth-sensitive

workloads

Strict Pythia configuration

34

Talk Outline
Key Shortcomings of Prior Prefetchers

Formulating Prefetching as Reinforcement Learning

Pythia: Overview

Evaluation of Pythia and Key Results

Conclusion

35

Pythia Overview
• Q-Value Store: Records Q-values for all state-action pairs
• Evaluation Queue: A FIFO queue of recently-taken actions

Evaluation Queue (EQ)

Demand
Request

1
Assign reward to

corresponding EQ entry

Look up
QVStoreState

Vector

Q-Value Store
(QVStore)

2

3

5
Insert prefetch action &
State-Action pair in EQ

6

Prefetch Fill

A1 A2 A3

Memory
Hierarchy

Generate
prefetch

Evict EQ entry and
update QVStore

4

Find the Action with max Q-Value

7

S1
S2
S3
S4

Set filled bit

Max

36

Architecting QVStore

S = {PC+Delta,
Sequence of last-4 deltas}

+1 +2 +3

Q-Value Store
(QVStore)

…

37

Architecting the QVStore

S = {PC+Delta,
Sequence of last-4 deltas}

+1 +2 +3

Q-Value Store
(QVStore)

…

Fast retrieval of Q-values from QVStore

Efficient storage organization of Q-values in QVStore

Fast prefetch prediction

38

Organization of QVStore
• A monolithic two-dimensional table?

- Indexed by state and action values
• State-space increases exponentially with #bits

S = {PC+Delta, Sequence of last-4 deltas}

32b 7b 4x7b = 67 bits+ +

A1 A2 A3 A4 A5 A6 A7 A8 A9
S1
S2
S3
S4
S5
S6
S7

Design complexity Access latency

127 actions

26
7 s

ta
te

s

39

Organization of QVStore
• We partition QVStore into k vaults [k = number of features in state]

- Each vault corresponds to one feature and stores the Q-
values of feature-action pairs

… Vaultk

MAX

(a)

Vault1 Vault2

State-action Q-value

Plane1

Shift

+ #

+

Feature Index

φ1
Sφ
1
S φ2

Sφ
2
S φk

Sφ
k
S

Program
feature

Q(φ1
S , A)Q(φ1
S , A) Q(φ2

S , A)Q(φ2
S , A) Q(φk

S , A)Q(φk
S , A)

Feature-action Q-value

Q(S,A)Q(S,A)
φk
Sφ
k
S

Q(φk
S , A)Q(φk
S , A)

Feature-action Q-value

φk
Sφ
k
S

Index
Generation

Index
Generation

Index
Generation

Action (A)Action (A) Action (A)Action (A)
(b)

(c)

• Query each vault in
parallel with feature
and action

• Retrieve feature-action
Q-value from each vault

• Compute MAX of all
feature-action Q-values

MAX ensures the Q(S,A) is driven by the
constituent feature that has highest Q(ɸ,A)

To retrieve Q(S,A) for
each action

40

Organization of QVStore
• We further partition each vault into multiple planes

- Each plane stores a partial Q-value of a feature-action pair

… Vaultk

MAX

(a)

Vault1 Vault2

State-action Q-value

Plane1

Shift

+ #

+

Feature Index

φ1
Sφ
1
S φ2

Sφ
2
S φk

Sφ
k
S

Program
feature

Q(φ1
S , A)Q(φ1
S , A) Q(φ2

S , A)Q(φ2
S , A) Q(φk

S , A)Q(φk
S , A)

Feature-action Q-value

Q(S,A)Q(S,A)
φk
Sφ
k
S

Q(φk
S , A)Q(φk
S , A)

Feature-action Q-value

φk
Sφ
k
S

Index
Generation

Index
Generation

Index
Generation

Action (A)Action (A) Action (A)Action (A)
(b)

(c)

• Query each plane in
parallel with hashed
feature and action

• Retrieve partial feature-
action Q-value from each
plane

• Compute SUM of all partial
feature-action Q-values

To retrieve Q(ɸ,A)
for each action

41

Organization of QVStore
• We further partition each vault into multiple planes

- Each plane stores a partial Q-value of a feature-action pair

… Vaultk

MAX

(a)

Vault1 Vault2

State-action Q-value

Plane1

Shift

+ #

+

Feature Index

φ1
Sφ
1
S φ2

Sφ
2
S φk

Sφ
k
S

Program
feature

Q(φ1
S , A)Q(φ1
S , A) Q(φ2

S , A)Q(φ2
S , A) Q(φk

S , A)Q(φk
S , A)

Feature-action Q-value

Q(S,A)Q(S,A)
φk
Sφ
k
S

Q(φk
S , A)Q(φk
S , A)

Feature-action Q-value

φk
Sφ
k
S

Index
Generation

Index
Generation

Index
Generation

Action (A)Action (A) Action (A)Action (A)
(b)

(c)

• Query each plane in
parallel with hashed
feature and action

• Retrieve partial feature-
action Q-value from each
plane

• Compute SUM of all parital
feature-action Q-values

To retrieve Q(ɸ,A)
for each action

1. Enables sharing of partial Q-values between similar
feature values, shortens prefetcher training time

2. Reduces chances of sharing partial Q-values
across widely different feature values

42

More in the Paper
• Pipelined search operation for QVStore

• Reward assignment and QVStore update

• Automatic design-space exploration
- Feature types
- Actions
- Reward and Hyperparameter values

43

More in the Paper
• Pipelined search operation for QVStore

• Reward assignment and QVStore update

• Automatic design-space exploration
- Feature types
- Action
- Reward and Hyperparameter values

https://arxiv.org/pdf/2109.12021.pdf

https://arxiv.org/pdf/2109.12021.pdf

44

Talk Outline
Key Shortcomings of Prior Prefetchers

Formulating Prefetching as Reinforcement Learning

Pythia: Overview

Evaluation of Pythia and Key Results

Conclusion

45

Simulation Methodology
• Champsim [3] trace-driven simulator

• 150 single-core memory-intensive workload traces
- SPEC CPU2006 and CPU2017
- PARSEC 2.1
- Ligra
- Cloudsuite

• Homogeneous and heterogeneous multi-core mixes

• Five state-of-the-art prefetchers
- SPP [Kim+, MICRO’16]
- Bingo [Bakhshalipour+, HPCA’19]
- MLOP [Shakerinava+, 3rd Prefetching Championship, 2019]
- SPP+DSPatch [Bera+, MICRO’19]
- SPP+PPF [Bhatia+, ISCA’20]

[3] https://github.com/ChampSim/ChampSim

https://github.com/ChampSim/ChampSim

46

Basic Pythia Configuration
• Derived from automatic design-space exploration

• State: 2 features
- PC+Delta
- Sequence of last-4 deltas

• Actions: 16 prefetch offsets
- Ranging between -6 to +32. Including 0.

• Rewards:
- RAT = +20; RAL = +12; RNP-H=-2; RNP-L=-4;
- RIN-H=-14; RIN-L=-8; RCL=-12

47

List of Evaluated Features

48

Basic Pythia Configuration

49

1.1

1.15

1.2

1.25

1.3

1.35

0 2 4 6 8 10 12

Ge
om

ea
n

sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

Number of cores

Performance with Varying Core Count

Bingo
MLOP
SPP

Pythia

3.4% 7.7%

50

1.1

1.15

1.2

1.25

1.3

1.35

0 2 4 6 8 10 12

Ge
om

ea
n

sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

Number of cores

Performance with Varying Core Count

Bingo
MLOP
SPP

Pythia

3.4% 7.7%

1. Pythia consistently provides the highest
performance in all core configurations

2. Pythia’s gain increases with core count

51

0.8
0.85

0.9
0.95

1
1.05

1.1
1.15

1.2
1.25

100
200

400
800

1600
3200

6400
12800

Ge
om

ea
n

sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

DRAM MTPS (in log scale)

Performance with Varying DRAM Bandwidth

~Intel Xeon 6258R

~AMD EPYC Rome 7702P

~AMD Threadripper 3990x

SPP

Bingo
MLOP

Pythia

Baseline

3%

17%

52

0.8
0.85

0.9
0.95

1
1.05

1.1
1.15

1.2
1.25

100
200

400
800

1600
3200

6400
12800

Ge
om

ea
n

sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

DRAM MTPS (in log scale)

Performance with Varying DRAM Bandwidth

~Intel Xeon 6258R

~AMD EPYC Rome 7702P

~AMD Threadripper 3990x

SPP

Bingo
MLOP

Pythia

Baseline

3%

17%

Pythia outperforms prior best prefetchers for
a wide range of DRAM bandwidth configurations

53

Performance Improvement via Customization

• Reward value customization
• Strict Pythia configuration

- Increasing the rewards for no prefetching
- Decreasing the rewards for inaccurate prefetching

• Strict Pythia is more conservative in generating
prefetch requests than the basic Pythia
• Evaluate on all Ligra graph processing workloads

54

1.0

1.2

1.4

1.6

1.8

2.0

Page
Rank

Page
RankD

elta CC
BFS BC

GEO
MEA

N

IP
C

no
rm

al
ize

d
to

 n
o

pr
ef

et
ch

in
g

Basic Pythia Strict Pythia

Performance Improvement via Customization

3.1% 2.8% 3.4%

7.8%

5.2%

2%

55

1.0

1.2

1.4

1.6

1.8

2.0

Page
Rank

Page
RankD

elta CC
BFS BC

GEO
MEA

N

IP
C

no
rm

al
ize

d
to

 n
o

pr
ef

et
ch

in
g

Basic Pythia Strict Pythia

Performance Improvement via Customization

3.1% 2.8% 3.4%

7.8%

5.2%

2%Pythia can extract even higher performance
via customization without changing hardware

56

Pythia’s Overhead
• 25.5 KB of total metadata storage per core

- Only simple tables
• We also model functionally-accurate Pythia with full

complexity in Chisel [4] HDL

1.03% area overhead

Satisfies prediction latency

0.4% power overhead

of a desktop-class 4-core Skylake processor (Xeon D2132IT, 60W)
[4] https://www.chisel-lang.org

https://www.chisel-lang.org/

57

More in the Paper
• Performance comparison with unseen traces

- Pythia provides equally high performance benefits

• Comparison against multi-level prefetchers
- Pythia outperforms prior best multi-level prefetchers

• Understanding Pythia’s learning with a case study
- We reason towards the correctness of Pythia’s decision

• Performance sensitivity towards different features and
hyperparameter values

• Detailed single-core and four-core performance

58

Performance on Previously-Unseen Workloads
• Evaluated with 500 traces from value prediction

championship
- No prefetcher has been trained on these traces

1
1.1
1.2
1.3
1.4
1.5
1.6

Crypto INT FP Server GEOMEAN

Ge
om

ea
n

sp
ee

du
p

ov
er

 b
as

el
in

e

SPP Bingo MLOP Pythia

1
1.1
1.2
1.3
1.4
1.5

Crypto INT FP Server GEOMEAN

Ge
om

ea
n

sp
ee

du
p

ov
er

 b
as

el
in

e

SPP Bingo MLOP Pythia

(a) single-core (b) four-core

Pythia outperforms MLOP and Bingo by
8.3% and 3.5% in single-core

And 9.7% and 5.4% in four-core

59

More in the Paper
• Performance comparison with unseen traces

- Pythia provides equally high performance benefits

• Comparison against multi-level prefetchers
- Pythia outperforms prior best multi-level prefetchers

• Understanding Pythia’s learning with a case study
- We reason towards the correctness of Pythia’s decision

• Performance sensitivity towards different features
and hyperparameter values

• Detailed single-core and four-core performance

https://arxiv.org/pdf/2109.12021.pdf

https://arxiv.org/pdf/2109.12021.pdf

60

Pythia is Open Source
https://github.com/CMU-SAFARI/Pythia

• MICRO’21 artifact evaluated
• Champsim source code + Chisel modeling code
• All traces used for evaluation

https://github.com/CMU-SAFARI/Pythia

61

Talk Outline
Key Shortcomings of Prior Prefetchers

Formulating Prefetching as Reinforcement Learning

Pythia: Overview

Evaluation of Pythia and Key Results

Conclusion

62

Executive Summary

https://github.com/CMU-SAFARI/Pythia

• Background: Prefetchers predict addresses of future memory requests by associating
memory access patterns with program context (called feature)

• Problem: Three key shortcomings of prior prefetchers:
- Predict mainly using a single program feature
- Lack inherent system awareness (e.g., memory bandwidth usage)
- Lack in-silicon customizability

• Goal: Design a prefetching framework that:
- Learns from multiple features and inherent system-level feedback
- Can be customized in silicon to use different features and/or prefetching objectives

• Contribution: Pythia, which formulates prefetching as reinforcement learning problem
- Takes adaptive prefetch decisions using multiple features and system-level feedback
- Can be customized in silicon for target workloads via simple configuration registers
- Proposes a realistic and practical implementation of RL algorithm in hardware

• Key Results:
- Evaluated using a wide range of workloads from SPEC CPU, PARSEC, Ligra, Cloudsuite
- Outperforms best prefetcher (in 1-core config.) by 3.4%, 7.7% and 17% in 1/4/bw-constrained cores
- Up to 7.8% more performance over basic Pythia across Ligra workloads via simple customization

https://github.com/CMU-SAFARI/Pythia

Rahul Bera, Konstantinos Kanellopoulos, Anant V. Nori,
Taha Shahroodi, Sreenivas Subramoney, Onur Mutlu

Pythia
A Customizable Hardware Prefetching Framework

Using Online Reinforcement Learning

https://github.com/CMU-SAFARI/Pythia

https://arxiv.org/pdf/2109.12021.pdf

https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/pdf/2109.12021.pdf

64

Pythia Discussion
• FAQs

- Why RL?
- What about large page?
- What’s the prefetch degree?
- Can customization happen during

workload execution?
- Can runtime mixing create problem?

• Simulation and Methodology
- Basic Pythia configuration
- System parameters
- Configuration of prefetchers
- Evaluated workloads
- Feature selection

• Detailed Design
- Reward structure
- Design overview
- QVStore Organization

• More Results
- Comparison against other adaptive

prefetchers
- Comparison against Context prefetcher
- Feature combination sensitivity
- Hyperparameter sensitivity
- Comparison with multi-level prefetchers
- Performance in unseen workloads
- Single-core s-curve
- Four-core s-curve
- Detailed performance analysis
- Benefit of bandwidth awareness
- Case study
- Customizing rewards
- Customizing features

Self-Optimizing Memory Prefetchers

65

Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu,
"Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, October 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (20 minutes)]
[Lightning Talk Video (1.5 minutes)]
[Pythia Source Code (Officially Artifact Evaluated with All Badges)]
[arXiv version]
Officially artifact evaluated as available, reusable and reproducible.

https://arxiv.org/pdf/2109.12021.pdf

https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=7
https://www.youtube.com/watch?v=kzL22FTz0vc&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=2
https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/abs/2109.12021
https://arxiv.org/pdf/2109.12021.pdf

Hermes: Perceptron-Based
Off-Chip Load Prediction

66

Learning-Based Off-Chip Load Predictors
n Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk Olgun,

Mohammad Sadrosadati, and Onur Mutlu,
"Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load
Prediction"
Proceedings of the 55th International Symposium on Microarchitecture (MICRO), Chicago, IL, USA,
October 2022.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Talk Video (12 minutes)]
[Lecture Video (25 minutes)]
[arXiv version]
[Source Code (Officially Artifact Evaluated with All Badges)]
Officially artifact evaluated as available, reusable and reproducible.
Best paper award at MICRO 2022.

67https://arxiv.org/pdf/2209.00188.pdf

https://arxiv.org/pdf/2209.00188.pdf
https://arxiv.org/pdf/2209.00188.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pdf
https://www.youtube.com/watch?v=afGc1pWr-_Y
https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s
https://arxiv.org/abs/2209.00188
https://github.com/CMU-SAFARI/Hermes
https://arxiv.org/pdf/2209.00188.pdf

Hermes Talk Video

https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s

https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s

Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran,
David Novo, Ataberk Olgun, Mohammad Sadrosadati, Onur Mutlu

Accelerating Long-Latency Load Requests
via Perceptron-Based Off-Chip Load Prediction

https://github.com/CMU-SAFARI/Hermes

https://arxiv.org/pdf/2209.00188.pdf

https://github.com/CMU-SAFARI/Hermes
https://arxiv.org/pdf/2209.00188.pdf

70

The Key Problem

Long-latency off-chip load requests

Often stall processor by
blocking instruction retirement from

Reorder Buffer (ROB)

Limit performance

71

Traditional Solutions

Employ sophisticated prefetchers

Increase size of on-chip caches

72

Key Observation 1

50%
successfully prefetched

off-chip loads without any prefetcher

50%
still go off-chip even with

a state-of-the-art prefetcher

70% of the off-chip loads
block the ROB

Many loads still go off-chip

73

40% of the stalls can be eliminated by removing
on-chip cache access latency from critical path

Key Observation 2

On-chip cache access latency
significantly contributes to off-chip load latency

L1 L2 LLC Main Memory

Saved cycles

50% still go off-chip

L1 L2 LLC Main Memory

74

Caches are Getting Bigger and Slower…

Hardavellas+, “Database Servers on Chip Multiprocessors: Limitations and Opportunities”, CIDR, 2007

O
n-

ch
ip

 C
ac

he
 S

ize
 (K

B)

0

512

1024

1536

2048

2560

Sk
yla

ke
 (2

015)

Su
nny C

ove
 (2

019)

W
illo

w Cove
 (2

020)

Golden Cove
 P-co

re (2
021)

Rap
tor L

ake
 P-co

re (2
022)

L2
 S

ize
 (K

B)

11

12

13

14

15

16

17

Sk
yla

ke
 (2

015)

Su
nny C

ove
 (2

019)

W
illo

w Cove
 (2

020)

Golden Cove
 P-co

re (2
021)

Rap
tor L

ake
 P-co

re (2
022)

L2
 L

at
en

cy
 (p

ro
ce

ss
or

 c
yc

le
s)

75

Improve processor performance
by removing on-chip cache access latency

from the critical path of off-chip loads

Our Goal

Predicts which load requests
are likely to go off-chip

Starts fetching data directly from main memory
while concurrently accessing the cache hierarchy

77

Key Contribution

Hermes employs the first
perceptron-based off-chip load predictor

That predicts which loads are likely to go off-chip

By learning from
multiple program context information

78

Hermes Overview

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

L1 L2 LLC Main Memory

Baseline Processor is stalled

Latency tolerance limit of ROB

79

Hermes Overview

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

L1 L2 LLC Main Memory

POPET

L1 L2 LLC

Main Memory

Baseline

Hermes

Saved stall cycles

Processor is stalled

Latency tolerance limit of ROB

Predict

Issue a
Hermes
request

Wait

Train

Perceptron-based
off-chip load predictor

80

Designing the Off-Chip Load Predictor

Tracking cache contents

Learning from program behavior

Large metadata
§ Metadata size increases with cache hierarchy size

May need to track all cache operations
§ Gets complex depending on the cache hierarchy

configuration (e.g., inclusivity, bypassing,…)

Correlate different program features with off-chip loads

MissMap [Loh+, MICRO’11] for the DRAM cache,
D2D [Sembrant+, ISCA’14], D2M [Sembrant+, HPCA’17], LP [Jalili+, HPCA’22] for the cache hierarchy

History-based prediction
HMP [Yoaz+, ISCA’99] for the L1-D cache

Using branch-predictor-like hybrid predictor:
Global, Gshare, and GSkew

Low storage overhead Low design complexity

POPET provides
both higher accuracy and higher performance
than predictors inspired from these previous works

81

POPET: Perceptron-Based Off-Chip Predictor

• Multi-feature hashed perceptron model[1]
- Each feature has its own weight table
• Stores correlation between feature value and off-chip prediction

Feature1 #
Weight
Table1

hash

index

Feature2 #
Weight
Table2

hash

index

FeatureN #
Weight
TableN

hash

index

!

weight1

weight2

weightn

ActivationSum
weights

Predict to
go off-chip

.....

...

(e.g., PC + offset)

Stage 1 Stage 2 Stage 3

≥ τact≥ τact

[1] D. Tarjan and K. Skadron, “Merging Path and Gshare Indexing in Perceptron Branch Prediction,” TACO, 2005

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

POPET
Predict

Issue
Hermes
request

Wait

Train

82

Predicting using POPET

• Uses simple table lookups, addition, and comparison

Feature1 #
Weight
Table1

hash

index

Feature2 #
Weight
Table2

hash

index

FeatureN #
Weight
TableN

hash

index

!

weight1

weight2

weightn

ActivationSum
weights

Predict to
go off-chip

.....

...

(e.g., PC + offset)

Stage 1 Stage 2 Stage 3

≥ τact≥ τact

0x7ffe0+12

42 -4

12

3 3 >= -2

-5

Predict that
the load
would go
off-chip

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

POPET
Predict

Issue
Hermes
request

Wait

Train

Ex
tr

ac
t f

ea
tu

re
s f

ro
m

 th
e

lo
ad

re

qu
es

t

83

Training POPET

• Uses simple increment or decrement of feature weights

Feature1 #
Weight
Table1

hash

index

Feature2 #
Weight
Table2

hash

index

FeatureN #
Weight
TableN

hash

index

!

weight1

weight2

weightn

ActivationSum
weights

Predict to
go off-chip

.....

...

(e.g., PC + offset)

Stage 1 Stage 2 Stage 3

≥ τact≥ τact

0x7ffe0+12

42 -4

12

3 3 >= -2

-5

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

POPET
Predict

Issue
Hermes
request

Wait

Train

Predict that
the load
would go
off-chip

Shouldn’t be activated

Cumulative weight < 𝜏act

-1

-1

-1

84

Features Used in Hermes

Evaluation

86

Simulation Methodology
• ChampSim trace driven simulator

• 110 single-core memory-intensive traces
- SPEC CPU 2006 and 2017
- PARSEC 2.1
- Ligra
- Real-world applications

• 220 eight-core memory-intensive trace mixes

Off-Chip PredictorsLLC Prefetchers

• History-based: HMP [Yoaz+, ISCA’99]

• Tracking-based: Address Tag-
Tracking based Predictor (TTP)

• Ideal Off-chip Predictor

• Pythia [Bera+, MICRO’21]

• Bingo [Bakshalipour+, HPCA’19]

• MLOP [Shakerinava+, 3rd Prefetching Championship’19]

• SPP + Perceptron filter [Bhatia+, ISCA’20]

• SMS [Somogyi+, ISCA’06]

87

Latency Configuration

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

POPET

Issue
Hermes
request

Wait

• Cache round-trip latency
• L1-D: 5 cycles
• L2: 15 cycles
• LLC: 55 cycles

• Hermes request issue latency
(incurred after address translation)

 Depends on
• Interconnect between POPET and MC

0 cycles 24 cycles

6 cycles

88

Single-Core Performance Improvement

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

SPEC06 SPEC17 PARSEC Ligra CVP GEOMEAN

G
eo

m
ea

n
sp

ee
du

p
ov

er
 th

e
N

o-
pr

ef
et

ch
in

g
sy

st
em

Hermes Pythia Pythia + Hermes Pythia + Ideal Hermes

11.5%

20.3%
5.4%

Hermes alone provides nearly
50% performance benefits of Pythia

with only 1/5th storage overhead

Hermes on top of Pythia
outperforms Pythia alone in every workload category
Hermes provides nearly 90% performance benefit of

Ideal Hermes that has an ideal off-chip load predictor

89

Increase in Main Memory Requests

0%

10%

20%

30%

40%

50%

60%

70%

SPEC06 SPEC17 PARSEC Ligra CVP AVG

%
 in

cr
ea

se
 in

 m
ai

n
m

em
or

y
re

qu
es

ts
ov

er
 th

e
N

o-
pr

ef
et

ch
in

g
sy

st
em

Hermes Pythia Pythia + Hermes

5.5%

38.5%
5.9%

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

SPEC06 SPEC17 PARSEC Ligra CVP GEOMEAN

G
eo

m
ea

n
sp

ee
du

p
ov

er
 th

e
N

o-
pr

ef
et

ch
in

g
sy

st
em

Hermes Pythia Pythia + Hermes Pythia + Ideal Hermes

11.5%
20.3% 5.4%

For every 1% performance benefit,
increase in main memory requests

Pythia

Hermes on top of Pythia

Hermes alone

2%

1%

0.5%

Hermes is more bandwidth-efficient
than even an efficient prefetcher like Pythia

90

Performance with Varying Memory Bandwidth

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

200 400 800 1600 3200 6400 12800

G
eo

m
ea

n
sp

ee
du

p
ov

er
 th

e
N

o-
pr

ef
et

ch
in

g
sy

st
em

Main Memory Bandwidth (in MT/s)

~AMD Threadripper 3990x (Zen 2, 64C/4ch, 2020)

~AMD EPYC Rome 7702P (Zen 2, 64C/8ch, 2019)

~Intel Xeon 6258R
(Cascade Lake, 28C/6ch, 2020)

Pythia

Hermes

Pythia+Hermes

In bandwidth-constrained configurations,
Hermes alone outperforms Pythia
Hermes+Pythia outperforms Pythia

across all bandwidth configurations

Baseline

91

1

1.05

1.1

1.15

1.2

1.25

1.3

Pythia Bingo SPP MLOP SMS

G
eo

m
ea

n
sp

ee
du

p
ov

er
 th

e
N

o-
pr

ef
et

ch
in

g
sy

st
em

Prefetcher-only Prefetcher + Hermes

Performance with Varying Baseline Prefetcher

5.4% 6.2%

5.1% 7.6%

7.7%Hermes consistently improves performance
on top of a wide range of baseline prefetchers

92

Overhead of Hermes

4 KB storage overhead

1.5% power overhead*

*On top of an Intel Alder Lake-like performance-core [2] configuration

[2] https://www.anandtech.com/show/16881/a-deep-dive-into-intels-alder-lake-microarchitectures/3

93

More in the Paper
• Performance sensitivity to:

- Cache hierarchy access latency
- Hermes request issue latency
- Activation threshold
- ROB size (in extended version on arXiv)
- LLC size (in extended version on arXiv)

• Accuracy, coverage, and performance analysis against HMP and TTP

• Understanding usefulness of each program feature

• Effect on stall cycle reduction

• Performance analysis on an eight-core system

94

More in the Paper
• Performance sensitivity to:

- Cache hierarchy access latency
- Hermes request issue latency
- Activation threshold
- ROB size (in extended version at arXiv)
- LLC size (in extended version at arXiv)

• Accuracy, coverage, and performance analysis against HMP and TTP

• Understanding usefulness of each program feature

• Effect on stall cycle reduction

• Performance analysis in eight-core system
https://arxiv.org/pdf/2209.00188.pdf

https://arxiv.org/pdf/2209.00188.pdf

To Summarize…

96

Summary

Hermes advocates for off-chip load prediction,
a different form of speculation than

load address prediction employed by prefetchers

Off-chip load prediction can be applied by itself
or combined with load address prediction

to provide performance improvement

97

Summary

Hermes employs the first
perceptron-based off-chip load predictor

High coverage
(74%)

High accuracy
(77%)

Low storage
overhead
(4KB/core)

High performance improvement
over best prior baseline

(5.4%)

High performance
per bandwidth

98

Hermes is Open Sourced

https://github.com/CMU-SAFARI/Hermes

All workload traces

13 prefetchers 9 off-chip predictors

https://github.com/CMU-SAFARI/Hermes

99

Easy To Define Your Own Off-Chip Predictor

• Just extend the OffchipPredBase class

100

Easy To Define Your Own Off-Chip Predictor

• Define your own train() and predict() functions

• Get statistics like accuracy (stat name precision) and
coverage (stat name recall) out of the box

101

Off-Chip Prediction Can Further Enable…

Prioritizing loads that are likely go off-chip
in cache queues and on-chip network routing

Better instruction scheduling
of data-dependent instructions

Other ideas to improve performance and
fairness in multi-core system design...

Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran,
David Novo, Ataberk Olgun, Mohammad Sadrosadati, Onur Mutlu

Accelerating Long-Latency Load Requests
via Perceptron-Based Off-Chip Load Prediction

https://github.com/CMU-SAFARI/Hermes

https://arxiv.org/pdf/2209.00188.pdf

https://github.com/CMU-SAFARI/Hermes
https://arxiv.org/pdf/2209.00188.pdf

103

Hermes Discussion
• FAQs

- What are the selected set of program features?
- Can you provide some intuition on why these

features work?
- What happens in case of a misprediction?
- What’s the performance headroom for off-chip

prediction?

- Do you see a variance of different features in final
prediction accuracy?

• Simulation Methodology
- System parameters
- Evaluated workloads

• More Results
- Percentage of off-chip requests
- Reduction in stall cycles by reducing the

critical path
- Fraction of off-chip load requests
- Accuracy and coverage of POPET
- Effect of different features
- Are all features required?
- 1C performance
- 1C performance line graph
- 1C performance against prior predictors
- Effect on stall cycles
- 8C performance
- Sensitivity:

• Hermes request issue latency
• Cache hierarchy access latency
• Activation threshold
• ROB size
• LLC size

- Power overhead
- Accuracy without prefetcher
- Main memory request overhead with

different prefetchers

Hermes Paper [MICRO 2022]
n Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk Olgun,

Mohammad Sadrosadati, and Onur Mutlu,
"Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load
Prediction"
Proceedings of the 55th International Symposium on Microarchitecture (MICRO), Chicago, IL, USA,
October 2022.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Talk Video (12 minutes)]
[Lecture Video (25 minutes)]
[arXiv version]
[Source Code (Officially Artifact Evaluated with All Badges)]
Officially artifact evaluated as available, reusable and reproducible.
Best paper award at MICRO 2022.

104https://arxiv.org/pdf/2209.00188.pdf

https://arxiv.org/pdf/2209.00188.pdf
https://arxiv.org/pdf/2209.00188.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pdf
https://www.youtube.com/watch?v=afGc1pWr-_Y
https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s
https://arxiv.org/abs/2209.00188
https://github.com/CMU-SAFARI/Hermes
https://arxiv.org/pdf/2209.00188.pdf

Onur Mutlu
omutlu@gmail.com

https://people.inf.ethz.ch/omutlu
20 September 2023

VMware

Pythia & Hermes:
ML-Driven Prefetching

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

PYTHIA BACKUP

107

Reward Assignment to EQ Entry
• Every action gets inserted into EQ
• Reward is assigned to each EQ entry before or during the

eviction

• During EQ insertion: for actions
- Not to prefetch
- Out-of-page prefetch

��
��
���������� ����

��	�
�
�������

�
�����������������

������������ �������!

���� ���
�
	���������

�����

��	
���������
��	������

�

�

�
���������������������#�
	����"����������������

�

�������������

�� �� ��

�������
����
����

��������
�������

������������!�����
��������
	����

�

���������������������� ��"
����

�

���
��
��
��
��

	�������������

108

Reward Assignment to EQ Entry
• Every action gets inserted into EQ
• Reward is assigned to each EQ entry before or during the

eviction

• During EQ insertion: for actions
- Not to prefetch
- Out-of-page prefetch

• During EQ residency:
- In case address of a demand matches with address in EQ

(signifies accurate prefetch)

��
��
���������� ����

��	�
�
�������

�
�����������������

������������ �������!

���� ���
�
	���������

�����

��	
���������
��	������

�

�

�
���������������������#�
	����"����������������

�

�������������

�� �� ��

�������
����
����

��������
�������

������������!�����
��������
	����

�

���������������������� ��"
����

�

���
��
��
��
��

	�������������

109

Reward Assignment to EQ Entry
• Every action gets inserted into EQ
• Reward is assigned to each EQ entry before or during the

eviction

• During EQ insertion: for actions
- Not to prefetch
- Out-of-page prefetch

• During EQ residency:
- In case address of a demand matches with address in EQ

(signifies accurate prefetch)

• During EQ eviction:
- In case no reward is assigned till eviction

(signifies inaccurate prefetch)

��
��
���������� ����

��	�
�
�������

�
�����������������

������������ �������!

���� ���
�
	���������

�����

��	
���������
��	������

�

�

�
���������������������#�
	����"����������������

�

�������������

�� �� ��

�������
����
����

��������
�������

������������!�����
��������
	����

�

���������������������� ��"
����

�

���
��
��
��
��

	�������������

110

Performance S-curve: Single-core

0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

12
1

12
7

13
3

13
9

14
5

Sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

Workload number

SPP Bingo MLOP Pythia

623.xalancbmk_s-592B

603.bwaves_s-2931B

462.libquantum

streamcluster

429.mcf

BFSCC-22B

pagerank-51B

fluidanimate-9500M

111

Performance S-curve: Four-core

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

20
1

21
1

22
1

23
1

24
1

25
1

26
1

Sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

Workload number

SPP Bingo MLOP Pythia

429.mcf-184B

pagerank

462.libquantum-1343B

437.leslie3d-271B

Mix-59

raytrace-23.75B

Mix-240

FAQs

113

Pythia Discussion
• FAQs

- Why RL?
- What about large page?
- What’s the prefetch degree?
- Can customization happen during

workload execution?
- Can runtime mixing create problem?

• Simulation and Methodology
- Basic Pythia configuration
- System parameters
- Configuration of prefetchers
- Evaluated workloads
- Feature selection

• Detailed Design
- Reward structure
- Design overview
- QVStore Organization

• More Results
- Comparison against other adaptive

prefetchers
- Comparison against Context prefetcher
- Feature combination sensitivity
- Hyperparameter sensitivity
- Comparison with multi-level prefetchers
- Performance in unseen workloads
- Single-core s-curve
- Four-core s-curve
- Detailed performance analysis
- Benefit of bandwidth awareness
- Case study
- Customizing rewards
- Customizing features

114

Why RL? Why Not Supervised Learning?
• Determining the benefits of prefetching (i.e., whether a

decision was good for performance or not) is not easy
- Depends on a complex set of metrics

• Coverage, accuracy, timeliness
• Effects on system: b/w usage, pollution, cross-application interference, …

- Dynamically-changing environmental conditions change the
benefit

- Delayed feedback due to long latency (might not receive
feedback at all for inaccurate prefetches!)

• Differs from classification tasks (e.g., branch prediction)
- Performance strongly correlates mainly to accuracy
- Does not depend on environment
- Bounded feedback delay

115

What About Large Pages?
• Pythia’s framework can be easily extended to incorporate

additional prefetch actions (i.e., possible prefetch offsets
for the page size)

• To decrease the storage overhead
- Prune action space via automatic design-space exploration
- Hash action values to retrieve Q-values

116

What is the Prefetch Degree? Is It Managed by
the RL Agent?
• Pythia employs a simple degree selector, separate from

the RL agent
- If the agent has selected the same prefetch action (O) multiple

times in a row, Pythia increases the degree (A+2O, A+3O, …)
- At most degree 4

• Future works on managing degree by the RL agent

117

Can the Customization Be Done While the
Workload is Running?
• Certainly.
• Pythia, being an online learning technique, will

autonomously adapt (and optimize) its policy to use the
new program features or the modified reward values

118

Can Runtime Workload Mix Create an Issue?
• We implement the bandwidth usage feedback using a

counter in the memory controller. Thus Pythia already has
a global view of the memory bandwidth usage that
incorporates all workloads running on a multi-core system

• We evaluate a diverse set (300 of each category) of four-
core, eight-core, twelve-core random workload mixes
• Based on our evaluation, we observe that Pythia

dynamically adapts itself to varying workload demands

119

How does Pythia Compare Against Other Adaptive
Prefetching Solutions?
• We compare Pythia against IBM POWER7[5] prefetcher

- Adaptively selects prefetcher degree/configuration by
monitoring program IPC

1
1.1
1.2
1.3
1.4
1.5

SPEC06 SPEC17 PARSEC Ligra Cloudsuite GEOMEAN

Ge
om

ea
n

sp
ee

du
p

ov
er

 b
as

el
in

e

POWER7 Pythia

1
1.1
1.2
1.3
1.4
1.5

SPEC06 SPEC17 PARSEC Ligra Cloudsuite Mix GEOMEAN

Ge
om

ea
n

sp
ee

du
p

ov
er

 b
as

el
in

e

POWER7 Pythia

(a) single-core

(b) four-core

4.5%

6.4%

[5] Jimenez et al., TOPC’14

120

How Does Pythia Compare Against the Context
Prefetcher?
• Pythia widely differs from the Context Prefetcher (CP)[6] in

all three aspects: state, action, and reward. The key
differences are:
- CP does not consider system-level feedback
- CP models the agent as a contextual bandit which takes myopic

prefetch decisions as compared to Pythia
- CP requires compiler support to extract software-level features

1
1.1
1.2
1.3
1.4
1.5

SPEC06 SPEC17 PARSEC Ligra Cloudsuite GEOMEAN

Ge
om

ea
n

sp
ee

du
p

ov
er

 b
as

el
in

e

CP-HW Pythia

1
1.1
1.2
1.3
1.4
1.5

SPEC06 SPEC17 PARSEC Ligra Cloudsuite Mix GEOMEAN

Ge
om

ea
n

sp
ee

du
p

ov
er

 b
as

el
in

e

CP-HW Pythia
(a) single-core (b) four-core

Pythia outperforms CP-HW by 5.3% in single-core and
7.6% in four-core system

[6] Leeor et al., ISCA’15

121

How Pythia’s Performance Changes With
Various State Definitions You Have Swept?
• In total we evaluate state defined as any-one, any-two,

and any-three combinations of 32 features

65%

66%

67%

68%

69%

70%

71%

72%

1.2

1.205

1.21

1.215

1.22

1.225

1.23

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

Co
ve

ra
ge

 o
f P

yt
hi

a
(h

ig
he

r i
s b

et
te

r)

Sp
ee

du
p

ov
er

 b
as

el
in

e
(h

ig
he

r i
s b

et
te

r)

Experiment number

Speedup Coverage

25%

26%

27%

28%

29%

30%

31%

32%

33%

1.2

1.205

1.21

1.215

1.22

1.225

1.23

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5 O

ve
rp

re
di

ct
io

n
of

 P
yt

hi
a

(lo
w

er
 is

 b
et

te
r)

Sp
ee

du
p

ov
er

 b
as

el
in

e
(h

ig
he

r i
s b

et
te

r)
Experiment number

Speedup Overprediction

Performance gain ranges from 20.7% to 22.4%

Coverage ranges from 66.2% to 71.5%
Overprediction ranges from 26.7% to 32.2%

122

Is Pythia Sensitive to Hyperparameters?
• Not setting hyperparameters can significantly impact the

overall performance improvement

1.04

1.08

1.12

1.16

1.2

1.24

1.E-6 1.E-5 1.E-4 1.E-3 1.E-2 1.E-1 1.E+0

Sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

values

1.16

1.17

1.18

1.19

1.2

1.21

1.22

1.23

1.E-6 1.E-5 1.E-4 1.E-3 1.E-2 1.E-1 1.E+0
Sp

ee
du

p
ov

er
 n

o
pr

ef
et

ch
in

g

values

(a) Epsilon (!) (b) Alpha (")

Changing 𝜀 from 0.002 to 1.0 drops perf. by 16%

Changing 𝛼 from 0.0065 to 1.0 drops perf. by 5.4%

123

How Does Pythia Compare Against Commercial
Multi-level Prefetchers?

0.85
0.9

0.95
1

1.05
1.1

1.15
1.2

1.25

100
200

400
800

1600
3200

6400
12800

Ge
om

ea
n

sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

DRAM MTPS (in log scale)

Stride-L1+Streamer-L2

IPCP

Stride-L1+Pythia-L2

Pythia outperforms IPCP [7] by 14.2% on average in 150-MTPS

[6] Prakalapati et al., ISCA’20

124

Does Pythia Perform Equally Well for Unseen
Workloads?
• Evaluated with 500 traces from value prediction

championship
- No prefetcher has been trained on these traces

1
1.1
1.2
1.3
1.4
1.5
1.6

Crypto INT FP Server GEOMEAN

Ge
om

ea
n

sp
ee

du
p

ov
er

 b
as

el
in

e

SPP Bingo MLOP Pythia

1
1.1
1.2
1.3
1.4
1.5

Crypto INT FP Server GEOMEAN

Ge
om

ea
n

sp
ee

du
p

ov
er

 b
as

el
in

e

SPP Bingo MLOP Pythia

(a) single-core (b) four-core

Pythia outperforms MLOP and Bingo by
8.3% and 3.5% in single-core

And 9.7% and 5.4% in four-core

125

Basic Pythia Configuration

126

System Parameters

127

Configuration of Prefetchers

128

Evaluated Workloads

129

List of Evaluated Features

MORE RESULTS

131

Performance S-curve: Single-core

0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

12
1

12
7

13
3

13
9

14
5

Sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

Workload number

SPP Bingo MLOP Pythia

623.xalancbmk_s-592B

603.bwaves_s-2931B

462.libquantum

streamcluster

429.mcf

BFSCC-22B

pagerank-51B

fluidanimate-9500M

132

Performance S-curve: Four-core

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

20
1

21
1

22
1

23
1

24
1

25
1

26
1

Sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

Workload number

SPP Bingo MLOP Pythia

429.mcf-184B

pagerank

462.libquantum-1343B

437.leslie3d-271B

Mix-59

raytrace-23.75B

Mix-240

133

Single-core Coverage & Overprediction

0%
50%

100%
150%
200%
250%

SP
P

Bi
ng

o

M
LO

P

Py
th

ia

SP
P

Bi
ng

o

M
LO

P

Py
th

ia

SP
P

Bi
ng

o

M
LO

P

Py
th

ia

SP
P

Bi
ng

o

M
LO

P

Py
th

ia

SP
P

Bi
ng

o

M
LO

P

Py
th

ia

SP
P

Bi
ng

o

M
LO

P

Py
th

ia

SPEC06 SPEC17 PARSEC Ligra Cloudsuite AVG

Fr
ac

tio
n

of
 L

LC
 m

iss
es

Covered Uncovered Overpredicted

309% 315%

134

Detailed Performance

1
1.1
1.2
1.3
1.4
1.5

SP
EC

06

SP
EC

17

PARSE
C

Lig
ra

Cloudsuite

GEO
MEA

NGe
om

ea
n

sp
ee

du
p

ov
er

 b
as

el
in

e SPP Bingo MLOP Pythia

1.06

1.12

1.18

1.24

St
St

+S
St

+S
+B

St
+S

+B
+D

St
+S

+B
+D

+M
Py

th
iaGe

om
ea

n
sp

ee
du

p
ov

er
 b

as
el

in
e (a) (b)

1
1.1
1.2
1.3
1.4
1.5

SP
EC

06

SP
EC

17

PARSE
C

Lig
ra

Cloudsu
ite M

ix

GEO
M

EA
NG

eo
m

ea
n

sp
ee

du
p

ov
er

 b
as

el
in

e SPP Bingo MLOP Pythia

1
1.06
1.12
1.18
1.24

1.3

St
St

+S
St

+S
+B

St
+S

+B
+D

St
+S

+B
+D

+M
p

yt
h

iaG
eo

m
ea

n
sp

ee
du

p
ov

er
 b

as
el

in
e(a) (b)

135

Benefit of Bandwidth Awareness

-4.6%

-2.5%

-1.2%

-0.4% -0.3% -0.2% -0.2%

-5%

-4%

-3%

-2%

-1%

0%

150 300 600 1200 2400 4800 9600

Pe
rf

or
m

an
ce

 n
or

m
al

ize
d

to

ba
sic

 P
yt

hi
a

DRAM MTPS (in log scale)

Memory BW-oblivious Pythia

136

Case Study

137

Customizing Rewards

138

Customizing Features

139

Hermes Discussion
• FAQs

- What are the selected set of program features?
- Can you provide some intuition on why these

features work?
- What happens in case of a misprediction?
- What’s the performance headroom for off-chip

prediction?

- Do you see a variance of different features in final
prediction accuracy?

• Simulation Methodology
- System parameters
- Evaluated workloads

• More Results
- Percentage of off-chip requests
- Reduction in stall cycles by reducing the

critical path
- Fraction of off-chip load requests
- Accuracy and coverage of POPET
- Effect of different features
- Are all features required?
- 1C performance
- 1C performance line graph
- 1C performance against prior predictors
- Effect on stall cycles
- 8C performance
- Sensitivity:

• Hermes request issue latency
• Cache hierarchy access latency
• Activation threshold
• ROB size
• LLC size

- Power overhead
- Accuracy without prefetcher
- Main memory request overhead with

different prefetchers

HERMES BACKUP

141

Initial Set of Program Features

142

Selected Set of Program Features

Five features
A binary hint that
represents whether or not a
cacheblock has been
recently touched

143

When A Feature Works/Does Not Work?

Trace: 462.libquantum-1343B PC: 0x401442

Cacheline #42 Cacheline #43 ……

Without prefetcher

• PC + first access
• Cacheline offset + first access

With a simple stride prefetcher

• Cacheline offset + first access

144

What Happens in case of a Misprediction?

• Two cases of mispredictions:

• Predicted on-chip but actually goes off-chip
- Loss of performance improvement opportunity

• Predicted off-chip but actually is on-chip
- Memory controller forwards the data to LLC if and only if

a load to the same address have already missed LLC and
arrived at the memory controller

No need for misprediction detection and recovery

No need for misprediction detection and recovery

145

Performance Headroom of Off-Chip Prediction

146

System Parameters

147

Evaluated Workloads

148

Observation: Not All Off-Chip Loads are Prefetched

0

5

10

15

20

25

0%

25%

50%

75%

100%

No
-p
re
fe
tc
hi
ng

Py
th
ia

No
-p
re
fe
tc
hi
ng

Py
th
ia

No
-p
re
fe
tc
hi
ng

Py
th
ia

No
-p
re
fe
tc
hi
ng

Py
th
ia

No
-p
re
fe
tc
hi
ng

Py
th
ia

No
-p
re
fe
tc
hi
ng

Py
th
ia

SPEC06 SPEC17 PARSEC Ligra CVP AVG

LL
C

m
iss

es
 p

er
 k

ilo
 in

st
ru

ct
io

ns
 (M

PK
I)

Fr
ac

tio
n

of
 o

ff-
ch

ip
 lo

ad
s

in
 th

e
N

o-
pr

ef
et

ch
in

g
sy

st
em

Blocking Non-blocking MPKI

50%

Nearly 50% of the loads are still not prefetched

149

Observation: Not All Off-Chip Loads are Prefetched

0

5

10

15

20

25

0%

25%

50%

75%

100%

No
-p
re
fe
tc
hi
ng

Py
th
ia

No
-p
re
fe
tc
hi
ng

Py
th
ia

No
-p
re
fe
tc
hi
ng

Py
th
ia

No
-p
re
fe
tc
hi
ng

Py
th
ia

No
-p
re
fe
tc
hi
ng

Py
th
ia

No
-p
re
fe
tc
hi
ng

Py
th
ia

SPEC06 SPEC17 PARSEC Ligra CVP AVG

LL
C

m
iss

es
 p

er
 k

ilo
 in

st
ru

ct
io

ns
 (M

PK
I)

Fr
ac

tio
n

of
 o

ff-
ch

ip
 lo

ad
s

in
 th

e
N

o-
pr

ef
et

ch
in

g
sy

st
em

Blocking Non-blocking MPKI

70% of these off-chip loads blocks ROB

150

Observation: With Large Cache Comes Longer Latency

• On-chip cache access latency significantly contributes to
the latency of an off-chip load

147.1

0
20
40
60
80

100
120
140
160
180

SPEC06 SPEC17 PARSEC Ligra CVP AVG

st

al
l c

yc
le

s d
ue

 to
 a

n
of

f-c
hi

p
lo

ad
bl

oc
ki

ng
 in

st
ru

ct
io

n
re

tir
em

en
t

fr
om

 R
O

B

58

On-chip cache hierarchy access latency

151

Observation: With Large Cache Comes Longer Latency

• On-chip cache access latency significantly contributes to
the latency of an off-chip load

147.1

0
20
40
60
80

100
120
140
160
180

SPEC06 SPEC17 PARSEC Ligra CVP AVG

st

al
l c

yc
le

s d
ue

 to
 a

n
of

f-c
hi

p
lo

ad
bl

oc
ki

ng
 in

st
ru

ct
io

n
re

tir
em

en
t

fr
om

 R
O

B

58

On-chip cache hierarchy access latency

40% of stall cycles caused by an off-chip load can be eliminated
by removing on-chip cache access latency from its critical path

152

What Fraction of Load Requests Goes Off-Chip?

153

Off-Chip Prediction Quality: Defining Metrics

Predicted off-chip Actual off-chip

Predicted and actual off-chip

Accuracy Coverage

154

Off-Chip Prediction Quality: Analysis

Accuracy

Coverage

0%
20%
40%
60%
80%

100%

SPEC06 SPEC17 PARSEC Ligra CVP AVG

A
cc

ur
ac

y
%

HMP TTP POPET

0%
20%
40%
60%
80%

100%

SPEC06 SPEC17 PARSEC Ligra CVP AVG

Co
ve

ra
ge

 %

HMP TTP POPET

47%

22%

16%

95%

77%

74%

155

Off-Chip Prediction Quality: Analysis

Accuracy

Coverage

0%
20%
40%
60%
80%

100%

SPEC06 SPEC17 PARSEC Ligra CVP AVG

A
cc

ur
ac

y
%

HMP TTP POPET

0%
20%
40%
60%
80%

100%

SPEC06 SPEC17 PARSEC Ligra CVP AVG

Co
ve

ra
ge

 %

HMP TTP POPET

47%

22%

16%

95%

77%

74%

POPET provides off-chip predictions with
high-accuracy and high-coverage

156

Effect of Different Features

Combination of features provides both higher
accuracy and higher coverage than any individual feature

157

Are All Features Required? (1)

No single feature individually provides
highest prediction accuracy across all workloads

158

Are All Features Required? (2)

No single feature individually provides
highest prediction coverage also across all workloads

159

Single-Core Performance

Hermes in combination with Pythia
outperforms Pythia alone in every workload category

160

Single-Core Performance Line Graph

161

Single-Core Performance Against Prior Predictors

POPET provides higher performance benefit
than prior predictors

Hermes with POPET achieves nearly 90% performance
improvement of the Ideal Hermes

162

Effect on Stall Cycles

Hermes reduces off-chip load induced stall cycles
on average by 16.2% (up-to 51.8%)

163

Eight-Core Performance

Hermes in combination with Pythia
outperforms Pythia alone by 5.1% on average

164

Effect of Hermes Request Issue Latency

3.6%
5.7%

Hermes in combination with Pythia outperforms Pythia
alone even with a 24-cycle Hermes request issue latency

165

Effect of Cache Hierarchy Access Latency

3.6%

6.2%

Hermes can provide even higher performance benefit in
future processors with bigger and slower on-chip caches

166

Effect of Activation Threshold

With increase in activation threshold
1. Accuracy increases

2. Coverage decreases

167

Power Overhead

168

Effect of ROB Size

6.7%
5.3%

169

Effect of LLC Size

1.3%2.5%

170

Accuracy and Coverage with Different Prefetchers

POPET’s accuracy and coverage increases significantly
in absence of a data prefetcher

171

Increase in Main Memory Requests

