
EE 382N Literature Survey Onur Mutlu
 10/9/2001

 1

Memory Dependence Prediction and Access Ordering for Memory Disambiguation
and Renaming

1. Introduction
 The objective of modern superscalar processors is to maximize the instruction-
level parallelism (ILP) that can be extracted from programs. The most basic method used
for extracting more ILP from programs is out-of-order execution [1]. Unfortunately, out-
of-order execution by itself does not provide a desired level of ILP. The program’s
control flow [2] and data flow [3] impose serious limits on the level of parallelism that
can be extracted. Therefore, most modern processors employ aggressive branch
prediction mechanisms to relax the control flow constraints that limit the ILP. To
overcome the data-flow limits, researchers have suggested the use of data speculation
[3,4,5], but these schemes have not yet been implemented in superscalar processors.
 In this paper, we would like to survey a number of published methods for
increasing the ILP by relaxing the constraints imposed by memory dependences. In
particular, we will survey methods for dynamic memory disambiguation and memory
renaming. In Section 2, we will discuss the importance of relaxing the memory data-flow
constraints and discuss the distinctions and similarities between memory disambiguation
and memory renaming. Section 3 will present a survey of recent research articles
published on both topics and will discuss the advantages and shortcomings of each
approach. Section 4 will discuss the differences between those mechanisms and comment
on their effectiveness. In Section 5, we will describe how some modern processors tackle
the memory dependence problem.

2. The Memory Dependence Problem

Modern processors exploit ILP by executing instructions in an order that is
different from the sequential program order, which is called out-of-order execution. In
other words, independent instructions whose operands are ready can be scheduled and
executed before older instructions that are still waiting for their operands. Hence, to
support out-of-order execution, the hardware needs to be able to precisely determine the
dependencies among instructions so that sequential program semantics will not be
violated. In case of register dependencies, determining which instructions are dependent
is easy due to the explicit encoding of architectural register names (numbers) in the
instruction format. Memory dependencies are much harder to determine, because
memory addresses are not explicitl y encoded in the instruction format and need to be
dynamically generated. However, this dynamic generation of memory addresses is not
done in sequential program order. Hence, when a load instruction is ready to be
scheduled, it is li kely that there are older store instructions in the instruction window
whose addresses have not yet been determined1. This problem is known as the “unknown
address problem” [6]. A related concept, the process of determining if two memory
instructions access the same memory location is called memory disambiguation.

1 Here, we would like to point out that the problem does not exist with the scheduling of ready store
instructions, because they are completed in sequential program order to facilit ate easier recovery from
control-flow mispredictions.

EE 382N Literature Survey Onur Mutlu
 10/9/2001

 2

2.1 Non-speculative memory operation scheduling
There are several ways to attack the “unknown address” problem. One possible

solution is to execute all stores and loads in the total program order. Considering that load
and store instructions comprise a large fraction of instructions in most programs,
imposing a total order on memory reference instructions would seriously limit the ILP
that can be extracted from programs. A slightly less conservative approach is to delay the
scheduling of a load until all previous store addresses become available. This approach
limits the amount of ILP extracted from memory disambiguation, because it is unlikely
that a load will conflict with many of the previous stores.

The ideal approach to non-speculative memory disambiguation is to delay a load
only until a previous conflicting store operation’s address and data become known (If
there is no conflicting store, the load can be scheduled right away). In this case a load is
denied execution if the address or data of the youngest conflicting store that is older than
the load is unknown. Hence, the conflicting load needs to have both the store address and
store data for memory disambiguation. The dependency matrix of HPS [6] can be used
for such an approach. This matrix relates each memory operation to every other memory
operation. Memory operations are assigned a unique row in the dependency matrix.
When a store with an unknown address is encountered and it corresponds to row i of the
dependency matrix, bits in column i are set to 1. When the address becomes known, the
bits of column i are cleared to 0. A memory operation corresponding to row k of the
dependency matrix is allowed to proceed only when no preceding store operation has
unknown address. This means that no bits in parts of row k that correspond to older
operations should be 1. This approach opens more opportunities to exploit parallelism
compared to the “store queue” approach of IBM 360/91, which stalls a store and all
younger memory operations in the issue stage if the store address is not known yet [7].
However, with a large instruction window, the implementation cost of such a dependency
matrix could be very high.

The approaches described above were all non-speculative, meaning that using the
above approaches, no load will l oad a wrong value into a register. Hence, no recovery
action needs to be taken. The non-speculative nature of these schemes makes them
unattractive if we want to maximize the opportunities to exploit more parallelism in
programs. Hence, it makes sense to build predictors to predict whether a load will conflict
with a previous store and make scheduling decisions based on the outcome of the
predictors. The purpose of this survey is to examine several of these prediction
mechanisms and determine their effectiveness with respect to two important issues:
memory disambiguation and memory renaming.

2.2 Speculative memory operation scheduling
The aggressiveness of memory disambiguation using speculative scheduling also

depends on how much more parallelism we want to exploit. A less aggressive approach is
to predict whether a load will conflict with any older store in the instruction window. In
this case, the load cannot be scheduled until all older stores execute2. Clearly, this is not
the most aggressive approach, because the load may be unnecessarily delayed by having
it to wait all older stores in the instruction window. A more aggressive scheme is to

2 By “execute” we mean that the store instruction determines its address and data value.

EE 382N Literature Survey Onur Mutlu
 10/9/2001

 3

predict that a load conflicts with a pa rticular earlier store, if any, and delay the
scheduling of the load until that particular store executes. This requires the predictor be
able to form load-store conflict pairs. However, a load instruction will not be
unnecessarily delayed when the prediction is correct.

One extreme form of speculative memory operation scheduling is to always
assume that the load that is to be scheduled will not conflict with any of the unknown
store addresses. Hence, a load will always be scheduled regardless of the number of older
stores with unknown addresses. This kind of extreme speculation is not the best
performing technique due to the cost of recovery as a result of mispredictions. More
intelli gent predictors are needed to keep the misprediction rate low.

So far we have assumed that when a store instruction executes, it writes its data
into a store buffer. A later load that is dependent on the store will access the store buffer
and read the data from the store buffer. This is called load forwarding [8]. In order to be
able to do load forwarding, a load needs to have its address calculated. A more aggressive
form of memory dependence prediction/access mechanism, memory renaming, can
enable the load instruction to retrieve its data before its effective address is calculated. In
order to be able to perform memory renaming, the relationship between the load and the
previous store instruction that generates the data the load needs to be identified [9]. The
identified store-load pair can be associated with an identifier used to address the store
data value, which bypasses the normal memory addressing mechanism. Hence, memory
renaming assigns a new name (and location) to a memory address that is produced by a
store and consumed by a later load. Through the use of this new name, the memory
latency is hidden, even though the memory access for the load still needs to be completed
for verification purposes. In a sense, load forwarding is a very naive form of memory
renaming. However, by using the address of the memory location as the name of the new
space allocated for the store data value, load forwarding requires that a load determine its
address before it can be scheduled. Memory renaming, as proposed by Tyson and Austin
[9], does not impose such a requirement and hence can hide memory latency of loads
exposing more parallelism.

 2.3 Outcomes of Memory Dependence Prediction
 It is important to note that although memory disambiguation and memory
renaming can use the same memory dependence predictor, the measure of success of the
predictor is different for each case. To explain this better, we will use the notation of
Yoaz, et. al. [10]. The memory dependence predictor has two possible outcomes for each
load: The load can be predicted as conflicting with a previous store (PC: Predicted
colli ding) or the load can be predicted as non-conflicting with any previous store (PNC:
Predicted not colli ding). The actual execution may show that the load was actually
conflicting with a previous store (AC: Actually colli ding) or it may turn out that the load
was actually not conflicting with any older store (ANC: Actually not colli ding). Hence,
the speculation space of the predictor is divided into four: A load can be PC-AC
(Predicted colli ding, actually colli ding), PC-ANC (Predicted colli ding, actually not
colli ding), PNC-AC (Predicted not colli ding, actually colli ding), or PNC-ANC (Predicted
not colli ding, actually not colli ding). First and last cases correspond to correct
predictions. Second and third cases (PC-ANC and PNC-AC) correspond to the
misprediction cases and they deserve more attention.

EE 382N Literature Survey Onur Mutlu
 10/9/2001

 4

 In case of memory disambiguation, PC-ANC case is undesirable but not very
harmful. The cost of the PC-ANC misprediction is a lost opportunity in increasing
parallelism. In other words, a load will be delayed unnecessarily, but no recovery action
needs to be taken. However, PNC-AC misprediction is extremely undesirable, because in
that case load will be supplied with the wrong data value and, in the best case, load and
all of its dependent instructions need to be re-executed. As this recovery and re-execution
is usually costly, we would like to avoid PNC-AC mispredictions for memory
disambiguation.
 The argument goes the opposite way for memory renaming. If a load suffers a
PC-ANC misprediction, the load will be predicted conflicting with a wrong store and will
be supplied a wrong value through renaming. Hence, the load and all it s dependent
instructions need to be recovered and re-executed. On the other hand, a PNC-AC
misprediction is not as costly, because the load will not get the wrong value through
renaming. Only an opportunity for renaming will be lost.

3. Review of Some Memory Dependence Prediction Mechanisms
 In this section, we will review several mechanisms proposed for memory
dependence prediction. For the most part, we will follow a chronological order. We will
first start with the Address Resolution Buffer (ARB) proposed by Franklin and Sohi [11].

3.1. Address Resolution Buffer

 Franklin and Sohi, in [11], recognize that the dependency matrix of HPS [6] and
the store queue of IBM 360/91 [7] have two drawbacks:
 1. They do not provide the full speculative flexibilit y to the reference reordering
process.
 2. They require very wide associative searches in the disambiguation step (These
searches are costly in terms of delay and hardware, especially in high frequency systems.)
 The basic ARB directs memory references into bins based on their address, and
the bins are used to enforce a temporal order amongst references to the same address. The
ARB is a banked structure. Each bank of the ARB contains a number of rows, let’s say k.
This means that each bank can hold k addresses to which a memory operation is pending
in the current instruction window. The banking of the ARB interleaves the addresses
among the banks. Hence, multiple disambiguation requests can be dispatched in one
cycle, provided that they are all to different banks. Besides, the associativity of the search
is reduced because an address needs to be compared only with the addresses in the
matching bank. Hence, the ARB does reduce the associative search required by the
dependency matrix and the store queue.
 A figure of the 4-bank, 6-stage ARB is displayed in Figure 1. Each row in a bank
corresponds to a memory address. In Figure 1, the top row in Bank 0 corresponds to
memory address 2000. The rest of the entries in the row (other than the address) show the
pending operations on that address. Each stage corresponds to a sequence number. The
active sequence numbers are delineated by the head and tail pointers of the ARB. In
Figure 1, sequence number 1 is the oldest instruction in the machine and corresponds to
stage 1. We see that the instruction with sequence number two (stage 2) is a load to
address 2000. Also, instruction with sequence number 3 (stage 3) is a non-committed
store to address 2001 with a data value of 10. When a load with sequence number i is

EE 382N Literature Survey Onur Mutlu
 10/9/2001

 5

executed, first, the ARB bank is determined using the load address. Then an associative
search within the bank is performed to see if an earlier store is executed to the same
address in the active ARB window. If so, the store with the closest sequence number is
determined and the value of the store is forwarded to the load. If no preceding store to the
same address exists in the ARB, the load is speculatively sent to the data cache. If the
load address is not present in the ARB, a new row is allocated for the address and the
load is entered into the appropriate spot. This is necessary to be able to initiate recovery if
an older store later writes to the same address. When a store with sequence number j is
executed, again the ARB bank is determined first. If no row exists for the address, a new
one is allocated. The store bit of stage j of the ARB row entry is set to 1 and the value to
be stored is recorded in stage j. If the store address was already in the ARB, the row is
searched to see if there is a younger load that has executed without any intervening stores
in-between. If that is the case recovery action is initiated. All i nstructions including and
after the incorrect store are squashed. Tail pointer is moved back to point to the sequence
number before the incorrect load. Hence, this scheme resembles a reorder buffer for
memory instructions. It is worthwhile to note that a store can also be entered to ARB
before its data value is available. This decreases the probabilit y of loads getting the
incorrect value from the data cache.

Figure 1. A 4-way interleaved, 6-stage ARB as shown in [11].

This brief description of the ARB shows that it can support speculative loads and

load forwarding. However, the speculation mechanism of the ARB is not based on a
predictor. Rather, a load is speculatively sent to the cache if an older store entry happens
to not have executed yet. Hence, the misprediction rate of the ARB might be high for
some benchmarks. Franklin and Sohi show that ARB outperforms the dependency
matrix. The most attractive feature of the ARB is perhaps the reduction of the associative
search in the memory disambiguation and load forwarding process. Such a reduction may
be able to prevent the load forwarding and disambiguation process from becoming the
bottleneck in a processor with a very large instruction window.

EE 382N Literature Survey Onur Mutlu
 10/9/2001

 6

 3.2. Moshovos’ Work on Data Dependence Speculation
 Andreas Moshovos was one of the first to extensively publish on the dependence
behavior of loads and stores and techniques to predict and bypass these dependences. In
[5], he proposes a technique that attempts:
 1. to predict those instructions whose execution will violate a true data
dependence
 2. to delay the execution of those instructions as long as it is necessary to avoid
the mis-speculation.
 One of the most important observations of [5] is the fact that static store-load
instruction pairs that cause most of the dynamic data mis-speculations are relatively few
and exhibit temporal locality. This observation suggests that store-load dependences can
be predicted based on past history. Hence, the store-load pairs can be allocated in a
cache-like structure. When one of the instructions in the pair is later encountered, some
steps need to be taken to synchronize the two instructions. This synchronization can be
performed by the use of a hypothetical condition variable. When a store-load conflict is
detected first, the store-load association can be assigned a condition variable, which is set
to false. In the next instance of the load, when the load is ready to be scheduled, it first
checks the condition variable of the association. Seeing that the condition variable is
false, the load waits. Once the next instance of the store is executed it signals the
condition variable by setting it to true. The load can now be scheduled and after it is
scheduled it needs to set the condition variable back to false. Hence, synchronization is
achieved between the store-load pair by means of simple synchronization structures.
 Another important observation in [5] is the notion that the path followed to
execute a load instruction might affect whether or not it is dependent on an older store.
Hence, a dependence predictor might perform better if it includes path information. The
dependence distance (the difference in the instance numbers of the instructions which are
dependent) can be used to distinguish different paths taken to execute a load. This is
especially important in loop-based dependences. Depending on the loop distance only
some of the dynamic instances of a static load will be dependent on the dynamic
instances of a store. Incorporating the dependence distance information to the prediction
mechanism thus could save a lot of false dependences.

3.2.1. Implementation Aspects of [5]
 [5] proposes two tables to implement the suggested prediction/synchronization
mechanism. The first table is the memory dependence prediction table (MDPT), which
identifies a static dependence and provides a prediction as to whether the next dynamic
occurrence of the store-load pair needs to be synchronized. Each entry of the table
contains the load instruction address, store instruction address, and the dependence
distance. Also an optional predictor, such as two-bit counters can be incorporated in the
entry. One interesting question is whether an entry should always predict that the store-
load association requires synchronization. If the association is stable over time, having a
sticky predictor (which always predicts that the pair will conflict) would be a good
option. However, if this is not the case, then using a 2-bit counter scheme to provide
hysteresis would be desirable.
 The second table is the memory dependence status table (MDST), which tracks
the status of current associations that are predicted as conflicting by the MDPT. An entry

EE 382N Literature Survey Onur Mutlu
 10/9/2001

 7

of the MDPT supplies a condition variable to be used for synchronization. This status
entry is used to coordinate the synchronization of the load and the store instructions that
are in the instruction window. When the MDPT predicts that a store-load pair will
conflict it allocates an MDST entry for the pair and initializes the condition variable. The
hardware structures are updated based on the explanation of the synchronization above
and the synchronization is satisfied.
 It is important to note that for an MDPT entry to be allocated, a static load-store
pair should incorrectly execute out-of-order. Hence, the proposed predictor learns from
the past behavior of the pairs and bases its prediction on this past behavior. The memory
dependence predictors we will examine later will all utili ze history-based learning.

 3.2.2. Evaluation of the Prediction Scheme of [5]
 In [5], different data dependence speculation policies are simulated on a
multiscalar [12] processor simulator. The simulated policies are NEVER (Loads are
never speculated), ALWAYS (Blind speculation), WAIT (Loads with true dependences
wait for all previous stores to generate their addresses), and PSYNC (Perfect memory
disambiguation: Loads with no memory dependences execute as soon as possible, loads
with true dependences are synchronized with the corresponding stores). It is shown that
ALWAYS scheme results in a 30% average speedup over the NEVER scheme on 5
SPEC92 integer benchmarks (compress, espresso, gcc, sc, xlisp). It is also shown that
ALWAYS scheme sometimes performs better than WAIT scheme but sometimes
performs significantly worse due to the mis-speculation recovery penalties. The
instruction window size also significantly affects the effectiveness of any scheme; as the
instruction window gets larger, the effectiveness of dependence speculation increases.
 The prediction scheme described in the paper is compared to the ALWAYS
scheme. The proposed scheme achieves a speedup of around 10% for the five
benchmarks.

3.3. Moshovos’ Work on Memory Renaming and Bypassing

 In [13], Moshovos and Sohi extend their work to bypass the memory on load
accesses that are dependent on stores. They view the memory as an “ inter-operation
communication agent” . This means that memory stores the value generated by an
operation and that value will be sourced by a later operation. This dependency is implicit
in the addressing modes. [13] tries to makes this dependency explicit by handling the
memory communication in a separate name space other than memory address space.
They use memory dependence prediction to generate this dynamic name space through
which the dependent loads and stores can communicate without incurring the overhead of
address calculation, memory disambiguation, and data cache access. Hence, they propose
an aggressive way of doing memory renaming, which they call speculative memory
cloaking.

3.3.1. Speculative Memory Cloaking
 It deserves some attention to explain the high-level mechanism of memory
cloaking, because this approach speculatively exposes a high level of parallelism by
possibly providing the load with its data value in the very early stages of the pipeline.
The first step in cloaking is to build an association between a store-load pair. This is done

EE 382N Literature Survey Onur Mutlu
 10/9/2001

 8

through the use of a dependency detection table (DDT). Once a load instruction generates
a conflicting address with a previous store instruction in the DDT, a tag for the
association is created and the dependent pair is stored in the dependency prediction and
naming table (DPNT) along with the tag. When a later instance of the store instruction is
brought to the processor, the DPNT is accessed and an association with the load will be
found. At this point, a synonym is generated for the linkage between the two instructions
and space is allocated in the synonym file (SF) and a pointer to this space is recorded in
the DPNT. This synonym serves as a new name for the memory location that is accessed
by the store-load pair. The space allocated in the SF is used to hold the data value
produced by the store instruction. Initially, no valid value exists in this space, but when
the store produces its value, the value is written into the allocated space in the SF. Note
that the store does not need to have computed its address to be able to write its data value
to the synonym file. Hence, the store instruction is essentially broken into two pieces:
store address and store data (We will see later that a similar approach is taken by Pentium
Pro). The traditional memory access that is required to verify the correctness of the
cloaking needs the store address and the store data whereas the mechanism used for
cloaking only requires the store data.
 When the load associated with the store is brought into the instruction window, it
accesses the DPNT and sees that space is allocated in the SF for its association with the
store. Thus, the load accesses the synonym file and obtains the data value of the store if it
is already computed. The instructions dependent on the load can therefore start executing
speculatively using that value. When the load computes its address, the traditional
memory system is accessed to obtain the real data of the load. This data is compared with
the data value supplied by the SF. If they are the same, cloaking was successful. If not,
recovery action needs to be taken to purge and re-execute the load and its dependent
instructions.

3.3.2. Prediction of Memory Dependences in [13]
 As mentioned in Section 2.3, the predictor for memory cloaking (a form of
renaming) needs to minimize the PC-ANC mispredictions to minimize the cost of
recovery actions. Also, it is necessary to predict exactly with which store instruction the
incoming load colli des. In [13], the latter requirement is accomplished by linking the
dependent store and load using a newly allocated tag for the association. This scheme
assigns a common tag to all dependences that have common producers (stores) or
consumers (loads) and use that tag to identify all these dependences collectively. For
example, if a load conflicts with multiple different stores based on the control flow path
taken3, say store1 and store2, both store1-load and store2-load association will be assigned
the same tag (A similar but more flexible approach is also taken by the store set predictor
[14], which we will examine later). The correct association will be enforced based on
which store is present in the instruction window. Of course, there is a slight problem if
multiple instances of the same dependence (association) are in the instruction window at
the same time. But this problem can be easily solved by creating different synonyms for
different instances.

3 In code: if (condition) then store1 A; else store2 A; load A the load depends on both store1 and store2 but
only with one of those for a given control flow path.

EE 382N Literature Survey Onur Mutlu
 10/9/2001

 9

 This prediction scheme yields a PC-ANC misprediction rate of around 2% on
SPEC95 Integer benchmarks (compiled for MIPS ISA) with reasonable hardware
resources (2K DPNT entries) and for a 256-instruction window. It is important to point
out that, as instruction window size increases and pipelines get deeper and deeper
maintaining or improving the PC-ANC misprediction rate is crucial, because of the
increasing mis-speculation recovery penalty.

3.3.3. More Parallelism: Memory Bypassing
 A more aggressive form of memory dependence speculation can be employed by
observing that memory is a communication agent between arithmetic instructions in load-
store architectures. Hence, DEF-store-load-USE dependency chains that typically exist in
these architectures can be sped up by converting them to DEF-USE chains (hence
bypassing the memory access). This can only be done when the store-load dependence is
predicted and when the DEF and USE instructions simultaneously exist in the instruction
window. Although, this is a promising way to extract more parallelism, we will not go
into details of this mechanism for the purposes of this paper except for noting that the key
to effective bypassing is extremely accurate dependence prediction.

3.4. Tyson and Austin’s Memory Renaming Scheme
 At the same time with Moshovos [13], Tyson and Austin also published a scheme
to implement memory renaming [9]. Our discussion will not be as extensive here, due to
the similarities between [13] and [9]. The essential idea is very similar: Assign a common
tag to store-load associations and access a value file (very similar to synonym file in [13])
in case of the recurrence of the association and forward the store data from the value file
to a load that is in the very early stages of the pipeline. One distinction between the two
schemes is the fact that store instructions do not write into the value file unless they are
committed in [9]. Whereas, in store file [13], store data is written as soon as it becomes
available. This probably reduces the amount of parallelism exposed by [9] compared to
[13]. However, the implementation of [13] would be more complex because it requires
detecting when the store data becomes available (separate from the store address
availabilit y).
 The initial binding of stores to loads is also done differently in [9]. When a store
forwards a value to a later load, an association is formed between the store and the load in
what is called the store/load cache and a tag is assigned for the association to index the
value file. Hence, no separate structure (e.g. DDT in [13]) is used to detect dependences.
The advantage of this is the reduced hardware cost. The disadvantage is that only store-
load dependences within the instruction window are detected and hence can be renamed.
This disadvantage might be criti cal for obtaining higher performance, since, as shown in
[13], most store-load dependences are distant, which means that the dependence is
impossible to detect in a single instruction window because the associated store and load
are never coexistent in the same instruction window.
 Tyson and Austin’s paper also discusses two different recovery mechanisms in
case of mis-speculation and hence deserves a littl e more attention. One recovery scheme
is what they call squash recovery in which all i nstructions including and succeeding the
mis-speculated load are squashed and re-fetched. A higher-performance recovery scheme
is to only squash the dependent instructions and not squash the independent instructions,

EE 382N Literature Survey Onur Mutlu
 10/9/2001

 10

called re-execution recovery. The implementation of this scheme is not presented, but it
might be quite complex. However, it certainly reduces the cost of mis-speculation. Using
this recovery scheme they report that their scheme achieves a speedup between 1% to
42% for 10 benchmarks from SPEC95 suite.

3.5. Two Other Memory Dependence Predictors
 This section concludes our survey of dependence prediction mechanisms with the
discussion of two relatively simple yet powerful predictors proposed in [14] and [10].

3.5.1. The Store-set Predictor
 This predictor [14] is proposed for memory disambiguation. The aim of the
authors is to be able to schedule load instructions as soon as possible without causing any
memory order violations. The predictor proposed is based on store-sets. A store set for a
specific load is the set of all stores upon which the load has ever depended. The processor
adds a store to the store set of the load if a memory order violation is caused when the
load executes before that store. In the next instance of the load instruction, the store set is
accessed to determine which stores the load will need to wait for before executing.
 One important observation is that multiple loads can also depend on the same
store. Hence, the same store can exist in the store-sets of different loads. [14] shows that
the predictor needs to have this flexibilit y of a store existing in multiple different store
sets in order to achieve high correct prediction rates. Hence, they describe a store-set
merging predictor implementation.
 The store set predictor consists of two tables. The first one is the store set ID table
(SSIT), which connects the store-load associations. The second table is the last fetched
store table (LFST), which keeps a track of the store currently in the instruction window
for a particular ID. When a memory violation occurs, the SSIT might already have an
entry for the load or the store. If only one of the instructions already have an ID, the other
instruction is assigned that same ID. If neither the load nor the store already has an ID, a
new ID is allocated and written into the SSIT in the following way: The SSIT is indexed
using both load and store instruction’s program counters and the newly-allocated tag is
written into those locations in the SSIT. Hence, the linkage between the load and store is
formed through the SSIT. If both the load and the store have ID’s in the SSIT, one of the
ID’s (smaller one) is declared the winner and both the load and store are assigned the
same ID. This operation effectively merges the store sets of two different loads.
 A diagram of the predictor is given in Figure 2. When a load is fetched, it
accesses the SSIT and gets its store set ID. Using this store set ID, it accesses the LFST
and gets the sequence number of the most recently fetched store in its store set. The load
should not be ordered to execute before that store.
 When a store is fetched it accesses the SSIT. If it finds a valid store-set ID, it first
accesses the LFST and gets the most recently fetched store instruction in the store-set.
The new store becomes dependent on the store in the LFST. This ensures that the stores
are executed in the correct order. The fetched store also updates the LFST by inserting its
sequence number to the appropriate entry. After the store instruction issues, it accesses
the LFST and invalidates the entry if the entry still refers to itself.

EE 382N Literature Survey Onur Mutlu
 10/9/2001

 11

Figure 2. Implementation of the store-set predictor as shown in [14].

 The elegance of the store-set predictor comes from its simplicity and
effectiveness. Chrysos and Emer report that this mechanism, with reasonable hardware
resources, achieves very close to the performance provided by a perfect memory
disambiguation mechanism, where perfect means loads are scheduled as soon as the
stores they are dependent on have finished execution and no memory order violations or
false dependencies exist. They also report that blind speculation performs worse than no
speculation (loads wait until all previous store addresses are known) for some
benchmarks and the IPC difference for perfect memory disambiguation and no
speculation is drastic (up to 300% performance improvement for some benchmarks).

 3.5.2. Collision History Table (CHT) Predictor
 The last predictor we will describe is the CHT predictor proposed by Yoaz et. al.
[10]. As this predictor has many variants, we will only describe the basic idea without
going into a lot of detail . The proposed Full CHT predictor only provides a prediction as
to whether a load instruction will conflict with any store within the instruction window. It
does not predict which store instruction the load will conflict with. Hence, it is easier to
design but it does not provide the best possible information for disambiguation purposes.
 However, predicting only whether a load will conflict simpli fies the predictor
drastically. No associations of stores and loads need be kept. Besides, the predictor can
store some “dependence distance” information about the dependences of a load
instruction and make a worst case estimate as to how far in up in the scheduling window
the load instruction can be moved so that it does not colli de with an older store.
 An entry in the CHT consists of a tag (part of the load program counter), an n-bit
counter that generates the prediction, and an optional distance field, which tells how
many instructions in the scheduling window the load can be moved up. All l oads are
inserted into this table when they are decoded. When a mis-speculation occurs for a load,
the counter associated with the load is incremented. When a false dependence prediction
is made for the load, the counter for that load is decremented. Hence, the CHT is very
much like the current branch predictors.
 [10] reports that a variation of this CHT mechanism is able to capture most of the
benefit that can be gained from perfect memory disambiguation.

EE 382N Literature Survey Onur Mutlu
 10/9/2001

 12

4. Comments on the Examined Prediction Mechanisms
 We have surveyed six different mechanisms that can be used to attack the
memory disambiguation problem and increase parallelism using memory renaming4.
Each scheme has its advantages and disadvantages. Based on the surveyed papers, it is
impossible to determine which scheme will work best on a given processor configuration.
As suggested in Section 2.3, some predictors would be good for memory disambiguation
and some would be good for memory renaming. Hence, the choice of the predictor
depends on how aggressive we would like a superscalar processor handle the memory
dataflow. Here, we would like to classify the discussed mechanisms and briefly discuss
their limitations.
 ARB is a mechanism for handling memory disambiguation. It does not provide
enough support for memory renaming except for load forwarding. The biggest advantage
of ARB is its abilit y to reduce the very-wide associative search in order to determine
whether a load conflicts with a store. None of the other disambiguation schemes address
this issue. The store-set predictor and the CHT predictor need to be supplemented with an
ARB-like structure to be effective. As mentioned before, the store-set predictor and the
CHT predictor are solely memory dependence predictors. The entry of loads and stores in
these predictors require the detection of store-load conflicts. This detection mechanism
can either be a store queue, a dependency matrix, or the ARB as discussed in sections 2
and 3.1. If we think about the issue in another way, supplementing the ARB with a better
prediction mechanism such as the store-set predictor or the CHT predictor also would
improve the speculativeness and the accuracy of memory disambiguation.
 To choose between the store-set predictor and the CHT predictor, we need to
simulate different configurations of each predictor and choose the one that best fits our
needs. This choice cannot be made based on the published papers.
 For implementing memory renaming, Moshovos’ cloaking mechanism and Tyson
and Austin’s memory renaming structures are attractive options. The choice of which one
to implement, again depends on the available hardware resources and how aggressive we
want the superscalar processor to get. Moshovos’ memory bypassing mechanism is by far
the most aggressive suggestion in that it tries to convert DEF-store-load-USE chains into
DEF-USE chains. However, the proposed bypassing scheme is only limited to instances
when both DEF and USE instructions are in the instruction window. A more aggressive
mechanism would try to apply this transformation to instances where DEF and USE do
not co-exist in the instruction window. Memory cloaking does not try to reduce the DEF-
store-load-USE chains. Rather, it tries to service store-load dependences in a separate
name space different from the memory name space. It has the advantage that the store
and the load need not co-exist in the instruction window. Hence, it may be possible that a
load gets its value from the synonym file, which was written into by a store 8K
instructions ago. This flexibilit y of memory cloaking is its most important advantage over
Tyson and Austin’s memory renaming. One drawback to implementing memory cloaking
is its complexity and possible impact on cycle time.

4 We especially refrained from spending time to report the performance results presented in the papers,
because the simulation environments, instruction set architectures, benchmarks, and microarchitecture
designs on which the mechanisms are evaluated are extremely different. Hence, a comparison of the
mechanisms based on the results presented in the surveyed papers would not be accurate.

EE 382N Literature Survey Onur Mutlu
 10/9/2001

 13

 We would like to conclude this section by noting that the success of an aggressive
memory dataflow engine depends heavily on the correctness of the predictors. As
pipelines get deeper and instruction windows get larger, the mis-speculation penalty will
bear more impact on the overall performance of the processors. Hence, the discussed
predictors may need to be improved to accommodate the needs of very deep pipelines.

5. Real L ife: Memory Disambiguation in Some Commercial Processors
 Some of current processors (HP-PA 8000 [5], Alpha 21264 [15]) allow
speculative loads to be issued to the memory system to alleviate the unknown-address
problem. However, the memory dependence prediction mechanisms are not sophisticated.
None of the processors (to our knowledge) employ aggressive memory renaming.

 5.1. Alpha 21264

The Alpha 21264 [15] performs blind speculation, meaning that if any of the
earlier stores’ address is not available when a load is ready to get scheduled, the
scheduler will always predict that the load will not conflict with the store. Hence, the load
is always sent out to the memory system in the presence of unknown store addresses. In
Alpha there are two queues for memory operations: LDQ for loads and STQ for stores.
These queues both have 32 entries. Both queues position instructions in their fetch order,
although they enter the queue out of order when they issue. Loads exit the LDQ in fetch
order after loads retire and the load data is returned. Stores exit the STQ in fetch order
after they retire and write their data into the data cache. To detect mis-speculations, when
a store issues into the STQ, the younger load addresses in the LDQ are associatively
compared with the store’s address. If a match is found, the LDQ squashes the matching
load and all l ater loads and initiates recovery. The STQ also performs the function of load
forwarding in Alpha 21264.
 Once a mis-speculation is detected, the Alpha 21264 sets a bit in what is called a
load wait table to signal that the mis-speculated load should not be executed out-of-order
in the next execution. The implementation of this table is not explained in [15]. The load
wait table is periodically cleared to avoid potential unnecessary waits. This cyclic
clearing of prediction tables is also a concern with all of the previously described
mechanisms. Chrysos and Emer [14] suggest periodic clearing of the SSIT. The reason
for this is the fact that the program might have entered a different phase and the
conflicting store load pair may not be conflicting any more. The CHT predictor [10] does
not suffer from the problem as much because it incorporates n-bit counters to adjust the
predictions. If the load instruction does not conflict with a store any more, the counters
will pick up the new behavior and will not predict the load instruction as conflicting.

 5.2. Pentium Pro
 The Pentium Pro processor implements a memory order buffer to avoid memory
order violations. Each load instruction is decoded into a single micro-operation (uop),
whereas each store instruction is decoded into two uops. One is the STA (Store Address
Calculation). The other is the STD (Store Data) [10]. Hence, the store is broken into two
instructions. This has the advantage of breaking the dependencies of a store. Hence, the
store data does not need to wait for the dependencies of the address calculation to be
satisfied. Nor does the store address needs to wait for the dependencies for the store data

EE 382N Literature Survey Onur Mutlu
 10/9/2001

 14

to be satisfied, which is more important for performance. This means that the store
address can be made available earlier than the data (at times), which will aid memory
disambiguation. Memory disambiguation in P6 processor family follows two basic rules
[10]:
 1. A load cannot be dispatched if an earlier, unresolved STA uop exists in the
instruction window. In Pentium Pro, the existence of such an instruction is easily
determined by checking the memory order buffer.
 2. A load cannot execute out of order with an older STD coupled with an STA
that references the same address of the load.
 The memory order buffer is used to prevent loads from being blocked by earlier
stores. It is also used to avoid memory order violations. Stores are buffered in the MOB
and they exit the MOB when they retire. Incoming load instructions are checked
associatively with all previous store addresses in the MOB to determine if they conflict.
Only non-conflicting loads can execute out of order with earlier stores.
 MOB of the Pentium Pro also implements load forwarding. For this to occur, the
following conditions should be met [16]:
 1. The store is complete in the MOB.
 2. The addresses referenced by the store and load have the same alignment.
 3. The data requested by the load is a subset of the data written by the store.
 If these conditions are not met, the load forwarding (which is called store
forwarding by Intel) cannot be completed and the load has to wait until the store is
retired. This is a significant performance penalty. Hence, unaligned load-store
dependences should be avoided in code compiled for Pentium Pro.

6. Conclusion
 In this paper, we have surveyed a number of approaches to memory dependence
prediction and commented on their effectiveness in extracting more parallelism from
programs. Then we examined the schemes employed by two of the current processors
(Alpha 21264 and Pentium Pro) and saw that none of the proposed aggressive speculation
techniques are employed by these processors. The importance of the memory dataflow
would increase as the instruction windows get larger and memory system becomes more
of a bottleneck and hence we would expect newer processors employing aggressive
techniques such as memory renaming and bypassing to extract more ILP from programs.
Hence, more research is needed in this area to improve the accuracy of the memory
dependence predictors and to find out more aggressive ways to do memory operation
reordering and renaming.

EE 382N Literature Survey Onur Mutlu
 10/9/2001

 15

References:

[1] Tomasulo, R.M., “An Eff icient Algorithm for Exploiting Multiple Arithmetic
Units,” IBM Journal of Research and Development, Vol. 11, 1967, 25-33.

[2] Lam, M. S. and Wilson, R. P., “Limits of Control Flow on Parallelism,”
Proceedings of the 19th Annual Symposium on Computer Architecture, May 1992.

[3] Lipasti, M. H. and Shen, J. P., “Exceeding the Dataflow limit via Value
Speculation,” Proceedings of the 29th Annual ACM/IEEE Symposium on
Microarchitecture, December 1996.

[4] Lipasti, M. H., Wilkerson, C. B., and Shen, J. P., “Value Locality and Load Value
Prediction,” Proceedings of the 7th International Conference on Architectural Support for
Programming Languages and Operating Systems, October 1996.

[5] Moshovos, A., Breach, S. E., Vijaykumar, T. N., and Sohi, G. S., “Dynamic
Speculation and Synchronization of Data Dependences,” Proceedings of the 24th Annual
Symposium on Computer Architecture, June 1997.

[6] Patt, Y. N., Melvin, S. W., Hwu, W. W., and Shebanow, M., “Critical Issues
Regarding HPS, A High Performance Microarchitecture,” Proceedings of the 18th Annual
ACM/IEEE Workshop on Microprogramming, December 1985.

[7] Anderson, D. W., Sparacio, F. J., and Tomasulo, R. M., “The IBM System/360
Model Machine Philosophy and Instruction-Handling,” IBM Journal of Research and
Development, Vol. 11, 1967, 8-24.

[8] Johnson, M., Superscalar Microprocessor Design. Englewood Cli ffs, N.J.:
Prentice Hall , 1991.

[9] Tyson, G. and Austin, T.M., “ Improving the Accuracy and Performance of
Memory Communication Through Renaming,” Proceedings of the 30th Annual
ACM/IEEE Symposium on Microarchitecture, December 1997.

[10] Yoaz, A., Erez, M., Ronnen, R., and Jourdan, S., “Speculation Techniques for
Improving Load Related Instruction Scheduling,” Proceedings of the 26th Annual
Symposium on Computer Architecture, May 1999.

[11] Franklin, M. and Sohi, G. S., “ARB: A Hardware Mechanism for Dynamic
Memory Disambiguation,” IEEE Transactions on Computers, 45(5):552-571, May 1996.

[12] Sohi, G. S., Breach, S. E., and Vijaykumar, T. N., “Multiscalar Processors,”
Proceedings of the 22nd Annual Symposium on Computer Architecture, June 1995.

EE 382N Literature Survey Onur Mutlu
 10/9/2001

 16

[13] Moshovos, A. and Sohi G. S., “Streamlining Inter-Operation Memory
Communication via Data Dependence Prediction,” Proceedings of the 30th Annual
ACM/IEEE Symposium on Microarchitecture, December 1997.

[14] Chrysos, G. Z. and Emer, J. S., “Memory Dependence Prediction Using Store
Sets,” Proceedings of the 25th Annual Symposium on Computer Architecture, July 1998.

[15] Kessler, R. E., “The Alpha 21264 Processor” , IEEE Micro, 19(2), pp. 24-36,
March-April 1999.

[16] “Optimizations Corner: Cleaning Memory and Partial Register Stalls in Your
Code”, http://www.gamasutra.com/features/19991221/barad_pfv.htm.

