EE 382N Literature Survey Onur Mutlu
10/9/2001

Memory Dependence Prediction and Access Ordering for Memory Disambiguation
and Renaming

1. Introduction

The objedive of modern superscaar procesrs is to maximize the instruction-
level parallelism (ILP) that can be extraded from programs. The most basic method tsed
for extrading more ILP from programs is out-of-order exeaution [1]. Unfortunately, ou-
of-order exeaution by itself does not provide adesired level of ILP. The program’'s
control flow [2] and data flow [3] impase serious limits on the level of parallelism that
can be etraded. Therefore, most modern procesors employ aggressve branch
prediction medianisms to relax the control flow constraints that limit the ILP. To
overcome the data-flow limits, reseachers have suggested the use of data speaulation
[3,4,9, bu these schemes have not yet been implemented in superscdar processors.

In this paper, we would like to survey a number of published methods for
increasing the ILP by relaxing the constraints imposed by memory dependences. In
particular, we will survey methods for dynamic memory disambiguation and memory
renaming. In Sedion 2,we will discussthe importance of relaxing the memory data-flow
constraints and dscussthe distinctions and simil ariti es between memory disambiguation
and memory renaming. Sedion 3 will present a survey of recent reseach articles
pulished on bdh topics and will discuss the advantages and shortcomings of ead
approadh. Sedion 4will discussthe diff erences between thase medanisms and comment
on their effediveness In Sedion 5,we will describe how some modern procesors tadkle
the memory dependence problem.

2. The Memory Dependence Problem

Modern procesors exploit ILP by exeauting instructions in an order that is
different from the sequential program order, which is cdled ou-of-order exeaution. In
other words, independent instructions whose operands are realy can be scheduled and
exeauted before older instructions that are still waiting for their operands. Hence to
suppat out-of-order exeaution, the hardware needs to be ale to predsely determine the
dependencies among instructions o that sequential program semantics will not be
violated. In case of register dependencies, determining which instructions are dependent
is easy due to the explicit encoding of architedural register names (numbers) in the
instruction format. Memory dependencies are much harder to determine, becaise
memory addresses are nat explicitly encoded in the instruction format and reel to be
dynamicdly generated. However, this dynamic generation d memory addresss is nat
dore in sequential program order. Hence when a load instruction is ready to be
scheduled, it is likely that there ae older store instructions in the instruction window
whose aldresses have not yet been determined”. This problem is known as the “unknown
address problem” [6]. A related concept, the process of determining if two memory
instructions accessthe same memory locaionis cal ed memory disambiguation.

! Here, we would like to pant out that the problem does not exist with the scheduling of ready store
instructions, becaise they are mmpleted in sequential program order to fadlit ate eaier recovery from
control-flow mispredictions.

EE 382N Literature Survey Onur Mutlu
10/9/2001

2.1 Non-speaulative memory operation scheduling

There ae several ways to attadk the “unknown address’ problem. One possble
solutionisto exeaute dl stores andloadsin thetotal program order. Considering that load
and store instructions comprise a large fradion d instructions in most programs,
imposing a total order on memory reference instructions would serioudly limit the ILP
that can be extraded from programs. A dlightly lessconservative gproach isto delay the
scheduling of a load urtil al previous gore aldresses beaome available. This approach
limits the anourt of ILP extraded from memory disambiguation, because it is unlikely
that aload will conflict with many of the previous gores.

The ided approach to nonspeaulative memory disambiguation is to delay a load
only until a previous conflicting store operation's address and data beaome known (If
there is no corflicting store, the load can be scheduled right away). In this case aload is
denied exeaution if the aldressor data of the yourgest conflicting store that is older than
the load is unknowvn. Hence, the conflicting load needs to have bath the store addressand
store data for memory disambiguation. The dependency matrix of HPS[6] can be used
for such an approach. This matrix relates eady memory operation to every other memory
operation. Memory operations are assgned a unique row in the dependency matrix.
When a store with an unknavn addressis encourtered and it corresponds to row i of the
dependency matrix, bits in column i are set to 1. When the aldressbeames known, the
bits of column i are deaed to 0. A memory operation correspondng to row k of the
dependency matrix is alowed to proceal oy when no pecealing store operation hes
unknonvn address This means that no kts in parts of row k that correspondto dder
operations shoud be 1. This approach opens more oppatunities to exploit parall elism
compared to the “store queue” gpproach of IBM 36091, which stalls a store and all
younger memory operations in the isaue stage if the store aldressis not known yet [7].
However, with alarge instruction window, the implementation cost of such a dependency
matrix could be very high.

The gproaches described above were dl non-speaulative, meaning that using the
above gproaches, noload will 1oad a wrong value into a register. Hence, no recvery
adion reals to be taken. The nonspeaulative nature of these schemes makes them
unattradive if we want to maximize the oppatunities to exploit more parallelism in
programs. Hence, it makes enseto buld predictorsto predict whether aload will confli ct
with a previous dore and make scheduling dedsions based on the outcome of the
predictors. The purpose of this survey is to examine several of these prediction
mechanisms and cetermine their effediveness with resped to two important issues:
memory disambiguation and memory renaming.

2.2 Speaulative memory operation scheduling

The aygressveness of memory disambiguation wsing speaulative scheduling also
depends on hav much more parall elism we want to exploit. A lessaggressve gproach is
to predict whether a load will conflict with any older store in the instruction window. In
this case, the load cannat be scheduled urtil all older stores exeaute?. Clealy, thisis not
the most aggressve gproad, because the load may be unnecessarily delayed by having
it to wait all older stores in the instruction windon. A more agressve scheme is to

2 By “exeaute” we mean that the store instruction determinesiits addressand data value.

EE 382N Literature Survey Onur Mutlu
10/9/2001

predict that a load conflicts with aparticular ealier store, if any, and delay the
scheduling of the load urtil that particular store exeautes. This requires the predictor be
able to form load-store onflict pairs. However, a load instruction will not be
unrecessarily delayed when the predictionis corred.

One etreme form of speaulative memory operation scheduling is to always
asume that the load that is to be scheduled will nat conflict with any of the unknowvn
store aldresses. Hence aload will always be scheduled regardlessof the number of older
stores with unknavn addresses. This kind d extreme speaulation is not the best
performing technique due to the st of remvery as a result of mispredictions. More
intelli gent predictors are needed to keep the misprediction rate low.

So far we have aumed that when a store instruction exeautes, it writes its data
into a store buffer. A later load that is dependent on the store will accessthe store buffer
and rea the data from the store buffer. Thisis cdled load forwarding [8]. In order to be
able to doload forwarding, aload needs to have its addresscaculated. A more gygressve
form of memory dependence prediction/access mecdhanism, memory renaming, can
enable the load instruction to retrieve its data before its effedive aldressis cdculated. In
order to be ale to perform memory renaming, the relationship between the load and the
previous gore instruction that generates the data the load needs to be identified [9]. The
identified store-load pair can be assciated with an identifier used to address the store
data value, which bypasses the normal memory addressng medanism. Hence, memory
renaming assgns a new name (and locaion) to a memory addressthat is produced by a
store and consumed by a later load. Through the use of this new name, the memory
latency is hidden, even though the memory accessfor the load still needs to be mmpleted
for verification puposes. In a sense, load forwarding is a very naive form of memory
renaming. However, by using the aldressof the memory locaion as the name of the new
space #docaed for the store data value, load forwarding requires that aload determineits
addressbefore it can be scheduled. Memory renaming, as proposed by Tyson and Austin
[9], daoes nat impose such a requirement and hence can hide memory latency of loads
exposing more parall elism.

2.3 0utcomes of Memory Dependence Prediction

It is important to nde that athough memory disambiguation and memory
renaming can use the same memory dependence predictor, the measure of successof the
predictor is different for ead case. To explain this better, we will use the notation d
Yoaz, et. a. [10]. The memory dependence predictor has two passble outcomes for eat
load: The load can be predicted as conflicting with a previous gore (PC: Predicted
colliding) or the load can be predicted as non-conflicting with any previous gore (PNC:
Predicted na colliding). The adual exeaution may show that the load was adualy
conflicting with a previous gore (AC: Actualy colliding) or it may turn ou that the load
was adualy not conflicting with any older store (ANC: Actually nat colli ding). Hence
the speaulation space of the predictor is divided into four: A load can be PC-AC
(Predicted colliding, adually colliding), PC-ANC (Predicted colliding, adually not
colliding), PNC-AC (Predicted na colli ding, acualy colli ding), or PNC-ANC (Predicted
not colliding, adualy not colliding). First and last cases correspond to corred
predictions. Second and third cases (PC-ANC and PNC-AC) correspond to the
misprediction cases and they deserve more dtention.

EE 382N Literature Survey Onur Mutlu
10/9/2001

In case of memory disambiguation, PC-ANC case is undesirable but not very
harmful. The st of the PC-ANC misprediction is a lost oppatunity in increasing
paralelism. In aher words, a load will be delayed unrecessarily, bu no remvery adion
needs to be taken. However, PNC-AC misprediction is extremely undesirable, becaise in
that case load will be supdied with the wrong data value and, in the best case, load and
all of its dependent instructions need to be re-exeauted. As this reavery and re-exeaution
is usualy costly, we would like to avoid PNC-AC mispredictions for memory
disambiguation.

The agument goes the oppasite way for memory renaming. If a load suffers a
PC-ANC misprediction, the load will be predicted conflicting with awrong store and will
be supdied a wrong value through renaming. Hence, the load and al its dependent
instructions need to be recvered and re-exeauted. On the other hand, a PNC-AC
misprediction is not as costly, becaise the load will nat get the wrong value through
renaming. Only an oppatunity for renaming will be lost.

3. Review of Some Memory Dependence Prediction Mechanisms

In this wdion, we will review severa medanisms proposed for memory
dependence prediction. For the most part, we will follow a dirondogicd order. We will
first start with the AddressResolution Buffer (ARB) propased by Franklin and Sohi [11].

3.1.AddressResolution Buffer

Franklin and Sohi, in [11], recognize that the dependency matrix of HPS[6] and
the store queue of IBM 360/91 [7] have two drawbadks:

1. They do nd provide the full speculative flexibility to the reference reordering
process

2. They require very wide asociative seaches in the disambiguation step (These
seaches are astly in terms of delay and herdware, espedally in high frequency systems.)

The basic ARB direds memory references into hins based ontheir address and
the bins are used to enforce atempora order amongst references to the same aldress The
ARB is abanked structure. Each bank of the ARB contains a number of rows, let's sy k.
This means that ead bank can hdd k addresses to which a memory operation is pending
in the aurrent instruction window. The banking of the ARB interleaves the aldresses
among the banks. Hence, multiple disambiguation requests can be dispatched in ore
cycle, provided that they are dl to dfferent banks. Besides, the asciativity of the seach
is reduced becaise an address needs to be compared ony with the aldresss in the
matching bank. Hence the ARB does reduce the associative seach required by the
dependency matrix and the store queue.

A figure of the 4-bank, 6-stage ARB is displayed in Figure 1. Each row in a bank
corresponds to a memory address In Figure 1, the top row in Bank O corresponds to
memory address2000.The rest of the entries in the row (other than the addresg show the
pending operations on that address Each stage @rresponds to a sequence number. The
adive sequence numbers are delineaed by the head and tail pointers of the ARB. In
Figure 1, sequence number 1 is the oldest instruction in the machine and corresponds to
stage 1. We see that the instruction with sequence number two (stage 2) is a load to
address 2000. Also, instruction with sequence number 3 (stage 3) is a non-committed
store to address 2001 with a data value of 10. When a load with sequence number i is

EE 382N Literature Survey Onur Mutlu
10/9/2001

exeauted, first, the ARB bank is determined using the load address Then an asciative
seach within the bank is performed to seeif an ealier store is exeauted to the same
addressin the adive ARB window. If so, the store with the dosest sequence number is
determined and the value of the store is forwarded to the load. If no precaling store to the
same aldressexists in the ARB, the load is Peaulatively sent to the data cade. If the
load addressis not present in the ARB, a new row is allocaed for the aldress and the
load is entered into the gopropriate spat. Thisis necessary to be aleto initiate recovery if
an dder store later writes to the same address When a store with sequence number | is
exeauted, again the ARB bank is determined first. If norow exists for the aldress a new
oneis alocaed. The store bit of stage j of the ARB row entry is st to 1 and the value to
be stored is recorded in stage j. If the store aldresswas arealy in the ARB, the row is
seached to seeif thereis ayounger load that has exeauted without any intervening stores
in-between. If that is the cae recmvery adion is initiated. All instructions including and
after the incorred store ae squashed. Tail pointer is moved bad to pant to the sequence
number before the incorred load. Hence this scheme resembles a reorder buffer for
memory instructions. It is worthwhile to nae that a store can also be entered to ARB
before its data value is available. This deaeases the probability of loads getting the
incorred value from the data cade.

[, 1
| 2001 : P . 1 10]
! T - o i
Ba” z’u?'rair'lu.zs L s Valwe” . . 1 i ™
| 2000 | | ; 1! ;
[IR i
Bank O o Ii v — | e i
Stage O ; Stage 1 Stape 2 Slage 3 Btage 4 | Stage 5
| |
Head Tail

fr Active ARB Window ——— .

Figure 1. A 4-way interleaved, 6-stage ARB as siownin [11].

This brief description d the ARB shows that it can suppat speaulative loads and
load forwarding. However, the speaulation medhanism of the ARB is not based on a
predictor. Rather, aload is peaulatively sent to the cade if an dder store entry happens
to na have exeauted yet. Hence, the misprediction rate of the ARB might be high for
some benchmarks. Franklin and Sohi show that ARB outperforms the dependency
matrix. The most attradive feaure of the ARB is perhaps the reduction d the asciative
seach in the memory disambiguation and load forwarding process Such areduction may
be ale to prevent the load forwarding and dsambiguation process from beaming the
battlenedk in a procesor with avery large instruction window.

EE 382N Literature Survey Onur Mutlu
10/9/2001

3.2.Moshoveos Work on Data Dependence Speaulation

Andreas Moshovos was one of the first to extensively puldish onthe dependence
behavior of loads and stores and techniques to predict and bypassthese dependences. In
[5], he propases atedhnique that attempts:

1. to predict those instructions whose exeaution will violate a true data
dependence

2. to delay the exeaution d those instructions as long as it is necessary to avoid
the mis-speaulation.

One of the most important observations of [5] is the fad that static store-load
instruction pairs that cause most of the dynamic data mis-speaulations are relatively few
and exhibit temporal locdity. This observation suggests that store-load dependences can
be predicted based on st history. Hence, the store-load peirs can be dlocaed in a
cade-like structure. When ore of the instructions in the pair is later encourtered, some
steps neel to be taken to synchronize the two instructions. This g/nchronization can be
performed by the use of a hypotheticd condtion variable. When a store-load corflict is
deteded first, the store-load association can be assgned a condtion variable, which is st
to false. In the next instance of the load, when the load is ready to be scheduled, it first
chedks the condtion variable of the aciation. Seang that the condtion variable is
fase, the load waits. Once the next instance of the store is exeauted it signals the
condtion variable by setting it to true. The load can nowv be scheduled and after it is
scheduled it neads to set the @ndtion variable badk to false. Hence, synchronization is
achieved between the store-load pair by means of simple synchronization structures.

Ancther important observation in [5] is the notion that the path followed to
exeaute aload instruction might affed whether or not it is dependent on an dder store.
Hence a dependence predictor might perform better if it includes path information. The
dependence distance (the difference in the instance numbers of the instructions which are
dependent) can be used to dstinguish dfferent paths taken to exeaute aload. This is
espedaly important in loop-based dependences. Depending on the loop dstance only
some of the dynamic instances of a static load will be dependent on the dynamic
instances of a store. Incorporating the dependence distance information to the prediction
mechanism thus could save alot of false dependences.

3.2.1. Implementation Aspects of [5]

[5] proposes two tables to implement the suggested predictiorn/synchronization
medhanism. The first table is the memory dependence prediction table (MDPT), which
identifies a static dependence and provides a prediction as to whether the next dynamic
occurrence of the store-load pair needs to be synchronized. Each entry of the table
contains the load instruction address store instruction address and the dependence
distance Also an optional predictor, such as two-bit counters can be incorporated in the
entry. One interesting question is whether an entry shoud always predict that the store-
load association requires s/nchronization. If the asociation is dable over time, having a
sticky predictor (which always predicts that the pair will conflict) would be a good
option. However, if this is not the cae, then using a 2-bit counter scheme to provide
hysteresis would be desirable.

The second table is the memory dependence status table (MDST), which traks
the status of current associations that are predicted as conflicting by the MDPT. An entry

EE 382N Literature Survey Onur Mutlu
10/9/2001

of the MDPT supgies a condtion variable to be used for synchronization. This gatus
entry is used to coordinate the synchronization d the load and the store instructions that
are in the instruction windonv. When the MDPT predicts that a store-load pair will
conflict it all ocates an MDST entry for the pair and initi alizes the cndtion variable. The
hardware structures are updated based onthe explanation d the synchronization above
and the synchronizationis satisfied.

It is important to nae that for an MDPT entry to be dlocaed, a static oad-store
pair shoud incorredly exeaute out-of-order. Hence the proposed predictor leans from
the past behavior of the pairs and bases its prediction onthis past behavior. The memory
dependence predictors we will examine later will all utili ze history-based leaning.

3.2.2. Evaluation of the Prediction Scheme of [5]

In [5], different data dependence speaulation pdicies are smulated on a
multiscdar [12] processor simulator. The simulated pdicies are NEVER (Loads are
never speaulated), ALWAY S (Blind speaulation), WAIT (Loads with true dependences
wait for al previous gores to generate their addresss), and PSYNC (Perfed memory
disambiguation: Loads with no memory dependences exeaute & 0n as posshble, loads
with true dependences are synchronized with the @rrespondng stores). It is siown that
ALWAY S scheme results in a 30% average speadup ower the NEVER scheme on 5
SFEC92 integer benchmarks (compress espresso, gcc, sc, xlisp). It is also shown that
ALWAY S scheme sometimes performs better than WAIT scheme but sometimes
performs sgnificantly worse due to the mis-speaulation rewmvery penaties. The
instruction window size dso significantly affeds the dfedivenessof any scheme; as the
instructionwindow gets larger, the df edivenessof dependence speaulation increases.

The prediction scheme described in the paper is compared to the ALWAY S
scheme. The proposed scheme adieves a speedup d around 1G6 for the five
benchmarks.

3.3.Moshovos Work on Memory Renaming and Bypassng

In [13], Moshovas and Sohi extend their work to bypass the memory on load
accesss that are dependent on stores. They view the memory as an “inter-operation
communicaion agent”. This means that memory stores the value generated by an
operation and that value will be sourced by a later operation. This dependency is implicit
in the aldressng modes. [13] tries to makes this dependency explicit by handing the
memory communicdion in a separate name space other than memory address pace
They use memory dependence prediction to generate this dynamic name spacethrough
which the dependent loads and stores can communicae withou incurring the overhead of
addresscdculation, memory disambiguation, and dcita cate acces Hence they propcse
an aggressve way of doing memory renaming, which they cdl speculative memory
cloaking.

3.3.1. Speculative Memory Cloaking

It deserves ome dtention to explain the high-level medhanism of memory
cloaking, becaise this approach speaulatively exposes a high level of paraleism by
paossbly providing the load with its data value in the very ealy stages of the pipeline.
Thefirst step in cloaking isto buld an association between a store-load pair. Thisis done

EE 382N Literature Survey Onur Mutlu
10/9/2001

through the use of a dependency detection table (DDT). Once aload instruction generates
a onflicting address with a previous gore instruction in the DDT, a tag for the
association is creded and the dependent pair is gored in the dependency prediction and
naming table (DPNT) along with the tag. When alater instance of the store instructionis
brought to the procesr, the DPNT is accessed and an association with the load will be
found.At this paint, a synonym is generated for the linkage between the two instructions
and spaceis al ocated in the synonym file (SF) and a pointer to this aceis recorded in
the DPNT. This g/nonym serves as a new name for the memory locaion that is accessed
by the store-load pair. The space #iocaed in the SF is used to hdd the data value
produced by the store instruction. Initialy, novalid vaue eists in this gace bu when
the store produces its value, the value is written into the dl ocated spacein the SF. Note
that the store does not need to have cmputed its addressto be ale to write its data value
to the synonym file. Hence, the store instruction is essentially broken into two pieces:
store aldressand store data (We will seelater that a similar approacd is taken by Pentium
Pro). The traditional memory access that is required to verify the corredness of the
cloaking needs the store aldress and the store data whereas the mechanism used for
cloaking only requires the store data.

When the load associated with the store is brought into the instruction window, it
accesses the DPNT and sees that spaceis alocated in the SF for its association with the
store. Thus, the load accesses the synonym file and oldains the data value of the store if it
is aready computed. The instructions dependent on the load can therefore start exeauting
speaulatively using that value. When the load computes its address the traditional
memory system is accessed to oltain the red data of the load. This datais compared with
the data value supdied by the SF. If they are the same, cloaking was succesdul. If nat,
recvery adion reals to be taken to puge and re-exeaute the load and its dependent
instructions.

3.3.2. Prediction of Memory Dependencesin [13]

As mentioned in Sedion 2.3, the predictor for memory cloaking (a form of
renaming) neels to minimize the PC-ANC mispredictions to minimize the st of
recmvery adions. Also, it is necessary to predict exadly with which store instruction the
incoming load collides. In [13], the latter requirement is accomplished by linking the
dependent store and load using a newly alocaed tag for the aociation. This £heme
assgns a mmmon tag to all dependences that have common prodwces (stores) or
consumers (loads) and wse that tag to identify all these dependences colledively. For
example, if aload conflicts with multiple different stores based onthe antrol flow path
taken®, say store; and store,, bath store;-load and store,-load asociation will be assgned
the same tag (A similar but more flexible gproadc is also taken hy the store set predictor
[14], which we will examine later). The mrred association will be enforced based on
which store is present in the instruction window. Of course, there is a slight problem if
multi ple instances of the same dependence (association) are in the instruction window at
the same time. But this problem can be eaily solved by creaing different synornyms for
different instances.

3In code: if (condition) then store; A; else store; A; load A the load depends on both store; and store, but
only with one of those for a given control flow path.

EE 382N Literature Survey Onur Mutlu
10/9/2001

This prediction scheme yields a PC-ANC misprediction rate of around 26 on
SPEC95 Integer benchmarks (compiled for MIPS ISA) with reasonable hardware
resources (2K DPNT entries) and for a 256-instruction window. It is important to pant
out that, as instruction window size increases and ppelines get deger and ceeer
maintaining or improving the PC-ANC misprediction rate is crucia, because of the
increasing mis-speaulation recvery penalty.

3.3.3. More Parallelism: Memory Bypassing

A more gygressve form of memory dependence speaulation can be employed by
observing that memory is a @mmunication agent between arithmetic instructions in load-
store achitedures. Hence, DEF-store-load-USE dependency chains that typicdly exist in
these achitedures can be sped up ly conwerting them to DEF-USE chains (hence
bypassng the memory accesg. This can oy be dore when the store-load dependenceis
predicted and when the DEF and USE instructions smultaneously exist in the instruction
window. Although, this is a promising way to extrad more parall elism, we will not go
into detail s of this medhanism for the purpases of this paper except for noting that the key
to effedive bypassng is extremely acairate dependence prediction.

3.4.Tyson and Austin’s Memory Renaming Scheme

At the same time with Moshovas [13], Tyson and Austin also puldi shed a scheme
to implement memory renaming [9]. Our discusson will not be a extensive here, due to
the simil arities between [13] and [9]. The essential ideais very similar: Assgn a mwmmon
tag to store-load associations and accessa value file (very similar to synonym filein [13)])
in case of the reaurrence of the asciation and forward the store data from the value file
to aload that is in the very ealy stages of the pipeline. One distinction ketween the two
schemes is the fad that store instructions do nd write into the value file unlessthey are
committed in [9]. Whereas, in store file [13], store data is written as oonas it becmes
avail able. This probably reduces the anourt of parallelism exposed by [9] compared to
[13]. However, the implementation d [13] would be more complex becaise it requires
deteding when the store data bemmes available (separate from the store aldress
avail abilit).

The initial binding of storesto loads is aso dore differently in [9]. When a store
forwards avalueto alater load, an associationis formed between the store andtheload in
what is cdled the store/load cache and a tag is assgned for the asciation to index the
value file. Hence no separate structure (e.g. DDT in [13]) is used to deted dependences.
The alvantage of this is the reduced hardware @st. The disadvantage is that only store-
load dependences within the instruction window are deteded and hence ca be renamed.
This disadvantage might be aiticd for obtaining higher performance, since as siown in
[13], most store-load dependences are distant, which means that the dependence is
imposgble to deted in a single instruction window because the asociated store and load
are never coexistent in the same instruction window.

Tyson and Austin’s paper also dscusses two dfferent recvery medianisms in
case of mis-speaulation and hence deserves a little more atention. One recovery scheme
is what they cdl squash recovery in which all instructions including and succeealing the
mis-speaulated load are squashed and re-fetched. A higher-performance recmvery scheme
is to ony squash the dependent instructions and nd squash the independent instructions,

EE 382N Literature Survey Onur Mutlu
10/9/2001

cdled re-execution recovery. The implementation d this sheme is not presented, bu it
might be quite mmplex. However, it certainly reduces the st of mis-speaulation. Using
this recovery scheme they report that their scheme adieves a speedup tetween 1% to
42% for 10 benchmarks from SFEC95 suite.

3.5.Two Other Memory Dependence Predictors
This sdion concludes our survey of dependence prediction medanisms with the
discusson d two relatively smple yet powerful predictors proposed in [14] and [10].

3.5.1. The Store-set Predictor

This predictor [14] is proposed for memory disambiguation. The am of the
authorsisto be aleto schedule load instructions as oonas passhble withou causing any
memory order violations. The predictor proposed is based onstore-sets. A store set for a
speafic load is the set of all stores uponwhich the load has ever depended. The procesor
adds a store to the store set of the load if a memory order violation is caused when the
load exeautes before that store. In the next instance of the load instruction, the store set is
accessd to determine which stores the load will need to wait for before exeauting.

One important observation is that multiple loads can adso depend onthe same
store. Hence, the same store can exist in the store-sets of different loads. [14] shows that
the predictor needs to have this flexibility of a store eisting in multiple different store
sets in order to adhieve high corred prediction rates. Hence they describe a store-set
merging predictor implementation.

The store set predictor consists of two tables. Thefirst oneisthe store set ID table
(S9T), which conreds the store-load associations. The second table is the last fetched
store table (LFST), which kegos atradk of the store arrently in the instruction window
for a particular ID. When a memory violation accurs, the SST might already have an
entry for the load or the store. If only one of the instructions already have an ID, the other
instruction is assgned that same ID. If neither the load na the store dready hasan ID, a
new ID is allocated and written into the ST in the following way: The ST is indexed
using both load and store instruction's program courters and the newly-all ocated tag is
written into thase locaions in the SIT. Hence the linkage between the load and store is
formed through the SST. If bath the load and the store have ID’s in the ST, ore of the
ID’s (smaller one) is dedared the winner and bdh the load and store ae asgned the
same ID. This operation eff edively merges the store sets of two dfferent loads.

A diagram of the predictor is given in Figure 2. When a load is fetched, it
acceses the ST and gets its dore set ID. Using this gore set ID, it accesses the LFST
and gets the sequence number of the most recantly fetched store in its dore set. The load
shoud na be ordered to exeaute before that store.

When a store is fetched it accesses the SST. If it finds avalid store-set 1D, it first
acceses the LFST and gets the most recently fetched store instruction in the store-set.
The new store becmes dependent on the store in the LFST. This ensures that the stores
are executed in the wrred order. The fetched store dso updites the LFST by inserting its
sequence number to the gpropriate entry. After the store instruction isaues, it accesses
the LFST andinvalidates the entry if the entry still refersto itself.

1C

EE 382N Literature Survey Onur Mutlu
10/9/2001

Load/Store PG Store Set 1D Tahle Last Faetched Store Tahle
{SSIT) (LFST)

Index

—® Store Inum

B SSID

Figure 2. Implementation of the store-set predictor as srownin[14].

The degance of the store-set predictor comes from its sSmplicity and
effediveness Chrysos and Emer report that this medianism, with ressonable hardware
resources, adhieves very close to the performance provided by a perfed memory
disambiguation medhanism, where perfed means loads are scheduled as on as the
stores they are dependent on have finished exeaution and nomemory order violations or
false dependencies exist. They also report that blind speaulation performs worse than no
speaulation (loads wait until all previous dore aldresses are known) for some
benchmarks and the IPC difference for perfed memory disambiguation and no
speaulationis drastic (up to 300% performanceimprovement for some benchmarks).

3.5.2. Collision History Table (CHT) Predictor

The last predictor we will describe isthe CHT predictor propcsed by Yoaz et. al.
[10]. As this predictor has many variants, we will only describe the basic ideawithou
going into alot of detall. The propased Full CHT predictor only provides a prediction as
to whether aload instruction will conflict with any store within the instruction window. It
does nat predict which store instruction the load will conflict with. Hence, it is easier to
design bu it does not provide the best possble information for disambiguation pupaoses.

However, predicting only whether a load will conflict simplifies the predictor
drasticdly. No associations of stores and loads need be kept. Besides, the predictor can
store some “dependence distance” information abou the dependences of a load
instruction and make aworst case estimate a to haw far in upin the scheduling window
the load instruction can be moved so that it does not colli de with an dder store.

An entry in the CHT consists of atag (part of the load program courter), an n-bit
counter that generates the prediction, and an opional distance field, which tells how
many instructions in the scheduling window the load can be moved up. All |oads are
inserted into this table when they are deaded. When a mis-speaulation accurs for aload,
the murter asociated with the load is incremented. When a fal se dependence prediction
is made for the load, the courter for that load is deaemented. Hence the CHT is very
much like the aurrent branch predictors.

[10] reports that a variation d this CHT medanism is able to cgpture most of the
benefit that can be gained from perfed memory disambiguation.

11

EE 382N Literature Survey Onur Mutlu
10/9/2001

4. Comments on the Examined Prediction Mechanisms

We have surveyed six different medhanisms that can be used to attadk the
memory disambiguation problem and increase parallelism using memory renaming®.
Eadh scheme has its advantages and dsadvantages. Based onthe surveyed papers, it is
impossble to determine which scheme will work best ona given processor configuration.
As suggested in Sedion 2.3,some predictors would be good for memory disambiguation
and some would be good for memory renaming. Hence the doice of the predictor
depends on hav aggressve we would like asuperscdar procesor hande the memory
dataflow. Here, we would like to classfy the discussed medhanisms and lriefly discuss
their limitations.

ARB is a medanism for handing memory disambiguation. It does nat provide
enowgh suppat for memory renaming except for load forwarding. The biggest advantage
of ARB is its ability to reduce the very-wide asociative seach in arder to determine
whether aload conflicts with a store. None of the other disambiguation schemes address
thisisaue. The store-set predictor and the CHT predictor need to be suppgemented with an
ARB-like structure to be dfedive. As mentioned before, the store-set predictor and the
CHT predictor are solely memory dependence predictors. The entry of loads and stores in
these predictors require the detedion d store-load corflicts. This detedion medanism
can either be astore queue, a dependency matrix, or the ARB as discussed in sedions 2
and 3.1.If we think abou the issue in another way, supdementing the ARB with a better
prediction medhanism such as the store-set predictor or the CHT predictor also would
improve the speaulativenessand the aceairacy of memory disambiguation.

To choaose between the store-set predictor and the CHT predictor, we need to
simulate different configurations of ead predictor and choase the one that best fits our
needs. This choice caaina be made based onthe pullished papers.

For implementing memory renaming, Moshovas' cloaking medhanism and Tyson
and Austin’s memory renaming structures are dtradive options. The dhoice of which ore
to implement, again depends on the avail able hardware resources and hav aggressve we
want the superscaar procesor to get. Moshoves' memory bypassng mechanism is by far
the most aggressve suggestion in that it tries to convert DEF-store-load-USE chains into
DEF-USE chains. However, the proposed bypassng scheme is only limited to instances
when bah DEF and USE instructions are in the instruction windowv. A more aygressve
mechanism would try to apply this transformation to instances where DEF and USE do
not co-exist in the instruction window. Memory cloaking does nat try to reduce the DEF-
store-load-USE chains. Rather, it tries to service store-load dependences in a separate
name spacedifferent from the memory name space It has the alvantage that the store
and the load need na co-exist in the instruction window. Hence, it may be possble that a
load gets its value from the synorym file, which was written into by a store 8K
instructions ago. This flexibility of memory cloaking is its most important advantage over
Tyson and Austin’s memory renaming. One drawbadk to implementing memory cloaking
isits complexity and passhbleimpad on cycletime.

* We espedally refrained from spending time to report the performance results presented in the papers,
because the simulation environments, instruction set architedures, benchmarks, and microarchitecure
designs on which the mechanisms are evaluated are extremely diff erent. Hence, a omparison of the
mecdhanisms based on the results presented in the surveyed papers would not be acarrate.

12

EE 382N Literature Survey Onur Mutlu
10/9/2001

We would like to conclude this dion by nating that the successof an aggressve
memory dataflow engine depends heavily on the corredness of the predictors. As
pipelines get degoer and instruction windows get larger, the mis-speaulation penalty will
bea more impad on the overal performance of the processors. Hence the discussed
predictors may need to be improved to acammodate the needs of very deep pipelines.

5. Real Life: Memory Disambiguation in Some Commercial Processors

Some of current procesors (HP-PA 8000 [5], Alpha 21264 [15]) adlow
speaulative loads to be issued to the memory system to aleviate the unknowvn-address
problem. However, the memory dependence prediction medcanisms are not sophisticated.
None of the procesors (to ou knowledge) employ aggressve memory renaming.

5.1.Alpha 21264

The Alpha 21264 [15] performs blind speaulation, meaning that if any of the
ealier stores address is not available when a load is ready to get scheduled, the
scheduler will always predict that the load will nat conflict with the store. Hence, the load
is dways snt out to the memory system in the presence of unknown store aldresses. In
Alpha there ae two queues for memory operations: LDQ for loads and STQ for stores.
These queues bath have 32 entries. Both queues pasition instructions in their fetch order,
athouwgh they enter the queue out of order when they issue. Loads exit the LDQ in fetch
order after loads retire and the load data is returned. Stores exit the STQ in fetch order
after they retire and write their data into the data cate. To deted mis-speaulations, when
a store isales into the STQ, the younger load addresses in the LDQ are asociatively
compared with the store's address If a match is found,the LDQ sguashes the matching
load and all | ater loads and initi ates recovery. The STQ also performs the function d load
forwarding in Alpha21264.

Once amis-speaulation is deteded, the Alpha 21264 sets a bit in what is cdled a
load wait table to signal that the mis-speaulated load shoud na be exeauted ou-of-order
in the next exeaution. The implementation d this table is not explained in [15]. The load
wait table is periodicdly cleaed to avoid pdential unrecessary waits. This cyclic
cleaing of prediction tables is aso a oncern with all of the previously described
medanisms. Chrysos and Emer [14] suggest periodic deaing of the SST. The reason
for this is the fad that the program might have eitered a different phase ad the
corflicting store load pair may not be anflicting any more. The CHT predictor [10] does
not suffer from the problem as much because it incorporates n-bit courters to adjust the
predictions. If the load instruction daes not conflict with a store any more, the courters
will pick upthe new behavior and will not predict the load instruction as conflicting.

5.2.Pentium Pro

The Pentium Pro procesor implements a memory order buffer to avoid memory
order violations. Each load instruction is deaded into a single micro-operation (uop),
whereas ead store instruction is deaded into two uops. One is the STA (Store Address
Calculation). The other is the STD (Store Data) [10]. Hence, the store is broken into two
instructions. This has the alvantage of bre&ing the dependencies of a store. Hence, the
store data does not neel to wait for the dependencies of the address cdculation to be
satisfied. Nor does the store aldressneels to wait for the dependencies for the store data

13

EE 382N Literature Survey Onur Mutlu
10/9/2001

to be satisfied, which is more important for performance This means that the store
address can be made available ealier than the data (at times), which will aid memory
disambiguation. Memory disambiguation in P6 processor family foll ows two basic rules
[10]:

1. A load canna be dispatched if an ealier, urresolved STA uop exists in the
instruction window. In Pentium Pro, the eistence of such an instruction is easly
determined by chedking the memory order buffer.

2. A load canna exeaute out of order with an dder STD cougded with an STA
that references the same aldressof the load.

The memory order buffer is used to prevent loads from being blocked by ealier
stores. It is also used to avoid memory order violations. Stores are buffered in the MOB
and they exit the MOB when they retire. Incoming load instructions are dedked
asciatively with al previous dore aldresses in the MOB to determine if they conflict.
Only non-conflicting loads can exeaute out of order with ealier stores.

MOB of the Pentium Pro aso implements load forwarding. For this to occur, the
foll owing condtions shoud be met [16]:

1. The storeis complete in the MOB.

2. The addresses referenced by the store and load have the same di gnment.

3. The datarequested by the load is a subset of the data written by the store.

If these condtions are not met, the load forwarding (which is cdled store
forwarding by Intel) canna be cmpleted and the load hes to wait until the store is
retired. This is a significant performance penalty. Hence urdligned load-store
dependences $roud be aroided in code compiled for Pentium Pro.

6. Conclusion

In this paper, we have surveyed a number of approadies to memory dependence
prediction and commented on their effediveness in extrading more paralelism from
programs. Then we examined the schemes employed by two o the aurrent procesors
(Alpha21264and Pentium Pro) and saw that nore of the propcsed aggressve speaulation
tedniques are employed by these procesors. The importance of the memory dataflow
would increase & the instruction windows get larger and memory system becomes more
of a bottlenedk and hence we would exped newer procesors employing aggressve
tedhniques such as memory renaming and bypassng to extrad more ILP from programs.
Hence, more reseach is nealed in this area to improve the acaragy of the memory
dependence predictors and to find out more aygressve ways to do memory operation
reordering and renaming.

14

EE 382N Literature Survey Onur Mutlu
10/9/2001

References:

[1] Tomasulo, R.M., “An Efficient Algorithm for Exploiting Multi ple Arithmetic
Units,” IBM Journal of Research and Development, Vol. 11, 1967, 2533.

[2] Lam, M. S. and Wilson, R. P., “Limits of Control Flow on Parall elism,”
Proceedings of the 19™ Annual Symposium on Computer Architecture, May 1992.

[3] Lipasti, M. H. and Shen, J. P., “Excealing the Dataflow limit viaValue
Speaulation.” Proceedings of the 29™ Annual ACM/IEEE Symposium on
Microarchitecture, Decanber 1996.

[4] Lipasti, M. H., Wilkerson, C. B., and Shen, J. P., “Value Locdity and Load Value
Prediction;” Proceedings of the 7" International Conference on Architectural Support for
Programming Languages and Operating Systems, October 1996.

[5] Moshovacs, A., Bread, S. E., Vijaykumar, T. N., and Sohi, G. S., “Dynamic
Speaulation and Synchronization d Data Dependences,” Proceedings of the 24" Annual
Symposium on Computer Architecture, June 1997.

[6] Patt, Y. N., Mélvin, S. W., Hwu, W. W., and Shebanow, M., “Criticd Issues
Regarding HPS A High Performance Microarchitedure,” Proceedings of the 18" Annual
ACM/IEEE Workshop on Microprogramming, Decenber 1985.

[7] Anderson,D. W., Sparado, F. J., and Tomasulo, R. M., “The IBM System/360
Model Madine Philosophy and Instruction-Handling,” IBM Journal of Research and
Development, Vol. 11, 1967, &4.

[8] Johrson, M., Superscalar Microprocessor Design. Englewood Cliffs, N.J.:
PrenticeHall, 191.

[9] Tyson, G. and Austin, T.M., “Improving the Accuracy and Performance of
Memory Communication Through Renaming,” Proceedings of the 30" Annual
ACM/IEEE Symposium on Microar chitecture, December 1997.

[10] Yoaz, A., Erez, M., Ronren, R., and Jourdan, S., “Speaulation Techniques for
Improving Load Related Instruction Scheduling,” Proceedings of the 26" Annual
Symposium on Computer Architecture, May 1999.

[11] Franklin, M. and Sohi, G. S, “ARB: A Hardware Mechanism for Dynamic
Memory Disambiguation,” |EEE Transactions on Computers, 455):552571,May 1996.

[12] Sohi, G. S, Bread, S. E., and Vijaykumar, T. N., “Multiscdar Procesors,”
Proceedings of the 22™ Annual Symposium on Computer Architecture, June 1995.

15

EE 382N Literature Survey Onur Mutlu
10/9/2001

[13] Moshoves, A. and Sohi G. S., “ Streamlining Inter-Operation Memory
Communication via Data Dependence Prediction.” Proceedings of the 30" Annual
ACM/IEEE Symposium on Microar chitecture, December 1997.

[14] Chrysos, G. Z. and Emer, J. S., “Memory Dependence Prediction Using Store
Sets,” Proceedings of the 25" Annual Symposium on Computer Architecture, July 1998.

[15] Kesder, R.E., “TheAlpha21264Processor”, IEEE Micro, 192), pp. 2436,
March-April 1999.

[16] “Optimizations Corner: Cleaning Memory and Partial Register Stallsin Your
Code”, http://www.gamasutra.com/feaures/19991221barad _pfv.htm.

16

