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Memory Dependence Prediction and Access Ordering for Memory Disambiguation 
and Renaming 
 
1. Introduction 
 The objective of modern superscalar processors is to maximize the instruction-
level parallelism (ILP) that can be extracted from programs. The most basic method used 
for extracting more ILP from programs is out-of-order execution [1]. Unfortunately, out-
of-order execution by itself does not provide a desired level of ILP. The program’s 
control flow [2] and data flow [3] impose serious limits on the level of parallelism that 
can be extracted. Therefore, most modern processors employ aggressive branch 
prediction mechanisms to relax the control flow constraints that limit the ILP. To 
overcome the data-flow limits, researchers have suggested the use of data speculation 
[3,4,5], but these schemes have not yet been implemented in superscalar processors. 
 In this paper, we would like to survey a number of published methods for 
increasing the ILP by relaxing the constraints imposed by memory dependences. In 
particular, we will survey methods for dynamic memory disambiguation and memory 
renaming. In Section 2, we will discuss the importance of relaxing the memory data-flow 
constraints and discuss the distinctions and similarities between memory disambiguation 
and memory renaming. Section 3 will present a survey of recent research articles 
published on both topics and will discuss the advantages and shortcomings of each 
approach. Section 4 will discuss the differences between those mechanisms and comment 
on their effectiveness. In Section 5, we will describe how some modern processors tackle 
the memory dependence problem. 
 
2. The Memory Dependence Problem 

Modern processors exploit ILP by executing instructions in an order that is 
different from the sequential program order, which is called out-of-order execution. In 
other words, independent instructions whose operands are ready can be scheduled and 
executed before older instructions that are still waiting for their operands. Hence, to 
support out-of-order execution, the hardware needs to be able to precisely determine the 
dependencies among instructions so that sequential program semantics will not be 
violated. In case of register dependencies, determining which instructions are dependent 
is easy due to the explicit encoding of architectural register names (numbers) in the 
instruction format. Memory dependencies are much harder to determine, because 
memory addresses are not explicitl y encoded in the instruction format and need to be 
dynamically generated. However, this dynamic generation of memory addresses is not 
done in sequential program order. Hence, when a load instruction is ready to be 
scheduled, it is li kely that there are older store instructions in the instruction window 
whose addresses have not yet been determined1. This problem is known as the “unknown 
address problem” [6]. A related concept, the process of determining if two memory 
instructions access the same memory location is called memory disambiguation. 

 

                                                 
1 Here, we would like to point out that the problem does not exist with the scheduling of ready store 
instructions, because they are completed in sequential program order to facilit ate easier recovery from 
control-flow mispredictions. 
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2.1 Non-speculative memory operation scheduling 
There are several ways to attack the “unknown address” problem. One possible 

solution is to execute all stores and loads in the total program order. Considering that load 
and store instructions comprise a large fraction of instructions in most programs, 
imposing a total order on memory reference instructions would seriously limit the ILP 
that can be extracted from programs. A slightly less conservative approach is to delay the 
scheduling of a load until all previous store addresses become available. This approach 
limits the amount of ILP extracted from memory disambiguation, because it is unlikely 
that a load will conflict with many of the previous stores.  

The ideal approach to non-speculative memory disambiguation is to delay a load 
only until a previous conflicting store operation’s address and data become known (If 
there is no conflicting store, the load can be scheduled right away). In this case a load is 
denied execution if the address or data of the youngest conflicting store that is older than 
the load is unknown. Hence, the conflicting load needs to have both the store address and 
store data for memory disambiguation. The dependency matrix of HPS [6] can be used 
for such an approach. This matrix relates each memory operation to every other memory 
operation. Memory operations are assigned a unique row in the dependency matrix. 
When a store with an unknown address is encountered and it corresponds to row i of the 
dependency matrix, bits in column i are set to 1. When the address becomes known, the 
bits of column i are cleared to 0. A memory operation corresponding to row k of the 
dependency matrix is allowed to proceed only when no preceding store operation has 
unknown address. This means that no bits in parts of row k that correspond to older 
operations should be 1. This approach opens more opportunities to exploit parallelism 
compared to the “store queue” approach of IBM 360/91, which stalls a store and all 
younger memory operations in the issue stage if the store address is not known yet [7]. 
However, with a large instruction window, the implementation cost of such a dependency 
matrix could be very high. 

The approaches described above were all non-speculative, meaning that using the 
above approaches, no load will l oad a wrong value into a register. Hence, no recovery 
action needs to be taken. The non-speculative nature of these schemes makes them 
unattractive if we want to maximize the opportunities to exploit more parallelism in 
programs. Hence, it makes sense to build predictors to predict whether a load will conflict 
with a previous store and make scheduling decisions based on the outcome of the 
predictors. The purpose of this survey is to examine several of these prediction 
mechanisms and determine their effectiveness with respect to two important issues: 
memory disambiguation and memory renaming. 

 
2.2 Speculative memory operation scheduling 
The aggressiveness of memory disambiguation using speculative scheduling also 

depends on how much more parallelism we want to exploit. A less aggressive approach is 
to predict whether a load will conflict with any older store in the instruction window. In 
this case, the load cannot be scheduled until all older stores execute2. Clearly, this is not 
the most aggressive approach, because the load may be unnecessarily delayed by having 
it to wait all older stores in the instruction window. A more aggressive scheme is to 
                                                 
2 By “execute” we mean that the store instruction determines its address and data value. 
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predict that a load conflicts with a pa rticular earlier store, if any, and delay the 
scheduling of the load until that particular store executes. This requires the predictor be 
able to form load-store conflict pairs. However, a load instruction will not be 
unnecessarily delayed when the prediction is correct. 

One extreme form of speculative memory operation scheduling is to always 
assume that the load that is to be scheduled will not conflict with any of the unknown 
store addresses. Hence, a load will always be scheduled regardless of the number of older 
stores with unknown addresses. This kind of extreme speculation is not the best 
performing technique due to the cost of recovery as a result of mispredictions. More 
intelli gent predictors are needed to keep the misprediction rate low.  

So far we have assumed that when a store instruction executes, it writes its data 
into a store buffer. A later load that is dependent on the store will access the store buffer 
and read the data from the store buffer. This is called load forwarding [8]. In order to be 
able to do load forwarding, a load needs to have its address calculated. A more aggressive 
form of memory dependence prediction/access mechanism, memory renaming, can 
enable the load instruction to retrieve its data before its effective address is calculated. In 
order to be able to perform memory renaming, the relationship between the load and the 
previous store instruction that generates the data the load needs to be identified [9]. The 
identified store-load pair can be associated with an identifier used to address the store 
data value, which bypasses the normal memory addressing mechanism. Hence, memory 
renaming assigns a new name (and location) to a memory address that is produced by a 
store and consumed by a later load. Through the use of this new name, the memory 
latency is hidden, even though the memory access for the load still needs to be completed 
for verification purposes. In a sense, load forwarding is a very naive form of memory 
renaming. However, by using the address of the memory location as the name of the new 
space allocated for the store data value, load forwarding requires that a load determine its 
address before it can be scheduled. Memory renaming, as proposed by Tyson and Austin 
[9], does not impose such a requirement and hence can hide memory latency of loads 
exposing more parallelism. 

 
 2.3 Outcomes of Memory Dependence Prediction 
 It is important to note that although memory disambiguation and memory 
renaming can use the same memory dependence predictor, the measure of success of the 
predictor is different for each case. To explain this better, we will use the notation of 
Yoaz, et. al. [10]. The memory dependence predictor has two possible outcomes for each 
load: The load can be predicted as conflicting with a previous store (PC: Predicted 
colli ding) or the load can be predicted as non-conflicting with any previous store (PNC: 
Predicted not colli ding). The actual execution may show that the load was actually 
conflicting with a previous store (AC: Actually colli ding) or it may turn out that the load 
was actually not conflicting with any older store (ANC: Actually not colli ding). Hence, 
the speculation space of the predictor is divided into four: A load can be PC-AC 
(Predicted colli ding, actually colli ding), PC-ANC (Predicted colli ding, actually not 
colli ding), PNC-AC (Predicted not colli ding, actually colli ding), or PNC-ANC (Predicted 
not colli ding, actually not colli ding). First and last cases correspond to correct 
predictions. Second and third cases (PC-ANC and PNC-AC) correspond to the 
misprediction cases and they deserve more attention. 
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 In case of memory disambiguation, PC-ANC case is undesirable but not very 
harmful. The cost of the PC-ANC misprediction is a lost opportunity in increasing 
parallelism. In other words, a load will be delayed unnecessarily, but no recovery action 
needs to be taken. However, PNC-AC misprediction is extremely undesirable, because in 
that case load will be supplied with the wrong data value and, in the best case, load and 
all of its dependent instructions need to be re-executed. As this recovery and re-execution 
is usually costly, we would like to avoid PNC-AC mispredictions for memory 
disambiguation. 
 The argument goes the opposite way for memory renaming. If a load suffers a 
PC-ANC misprediction, the load will be predicted conflicting with a wrong store and will 
be supplied a wrong value through renaming. Hence, the load and all it s dependent 
instructions need to be recovered and re-executed. On the other hand, a PNC-AC 
misprediction is not as costly, because the load will not get the wrong value through 
renaming. Only an opportunity for renaming will be lost. 
  
3. Review of Some Memory Dependence Prediction Mechanisms 
 In this section, we will review several mechanisms proposed for memory 
dependence prediction. For the most part, we will follow a chronological order. We will 
first start with the Address Resolution Buffer (ARB) proposed by Franklin and Sohi [11].  

 
3.1. Address Resolution Buffer 

 Franklin and Sohi, in [11], recognize that the dependency matrix of HPS [6] and 
the store queue of IBM 360/91 [7] have two drawbacks: 
 1. They do not provide the full speculative flexibilit y to the reference reordering 
process. 
 2. They require very wide associative searches in the disambiguation step (These 
searches are costly in terms of delay and hardware, especially in high frequency systems.) 
 The basic ARB directs memory references into bins based on their address, and 
the bins are used to enforce a temporal order amongst references to the same address. The 
ARB is a banked structure. Each bank of the ARB contains a number of rows, let’s say k. 
This means that each bank can hold k addresses to which a memory operation is pending 
in the current instruction window. The banking of the ARB interleaves the addresses 
among the banks. Hence, multiple disambiguation requests can be dispatched in one 
cycle, provided that they are all to different banks. Besides, the associativity of the search 
is reduced because an address needs to be compared only with the addresses in the 
matching bank. Hence, the ARB does reduce the associative search required by the 
dependency matrix and the store queue.  
 A figure of the 4-bank, 6-stage ARB is displayed in Figure 1. Each row in a bank 
corresponds to a memory address. In Figure 1, the top row in Bank 0 corresponds to 
memory address 2000. The rest of the entries in the row (other than the address) show the 
pending operations on that address. Each stage corresponds to a sequence number. The 
active sequence numbers are delineated by the head and tail pointers of the ARB. In 
Figure 1, sequence number 1 is the oldest instruction in the machine and corresponds to 
stage 1. We see that the instruction with sequence number two (stage 2) is a load to 
address 2000. Also, instruction with sequence number 3 (stage 3) is a non-committed 
store to address 2001 with a data value of 10. When a load with sequence number i is 
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executed, first, the ARB bank is determined using the load address. Then an associative 
search within the bank is performed to see if an earlier store is executed to the same 
address in the active ARB window. If so, the store with the closest sequence number is 
determined and the value of the store is forwarded to the load. If no preceding store to the 
same address exists in the ARB, the load is speculatively sent to the data cache. If the 
load address is not present in the ARB, a new row is allocated for the address and the 
load is entered into the appropriate spot. This is necessary to be able to initiate recovery if 
an older store later writes to the same address. When a store with sequence number j is 
executed, again the ARB bank is determined first. If no row exists for the address, a new 
one is allocated. The store bit of stage j of the ARB row entry is set to 1 and the value to 
be stored is recorded in stage j. If the store address was already in the ARB, the row is 
searched to see if there is a younger load that has executed without any intervening stores 
in-between. If that is the case recovery action is initiated. All i nstructions including and 
after the incorrect store are squashed. Tail pointer is moved back to point to the sequence 
number before the incorrect load. Hence, this scheme resembles a reorder buffer for 
memory instructions. It is worthwhile to note that a store can also be entered to ARB 
before its data value is available. This decreases the probabilit y of loads getting the 
incorrect value from the data cache. 
 

   
Figure 1. A 4-way interleaved, 6-stage ARB as shown in [11]. 

 
This brief description of the ARB shows that it can support speculative loads and 

load forwarding. However, the speculation mechanism of the ARB is not based on a 
predictor. Rather, a load is speculatively sent to the cache if an older store entry happens 
to not have executed yet. Hence, the misprediction rate of the ARB might be high for 
some benchmarks. Franklin and Sohi show that ARB outperforms the dependency 
matrix. The most attractive feature of the ARB is perhaps the reduction of the associative 
search in the memory disambiguation and load forwarding process. Such a reduction may 
be able to prevent the load forwarding and disambiguation process from becoming the 
bottleneck in a processor with a very large instruction window. 
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 3.2. Moshovos’ Work on Data Dependence Speculation 
 Andreas Moshovos was one of the first to extensively publish on the dependence 
behavior of loads and stores and techniques to predict and bypass these dependences. In 
[5], he proposes a technique that attempts: 
 1. to predict those instructions whose execution will violate a true data 
dependence 
 2. to delay the execution of those instructions as long as it is necessary to avoid 
the mis-speculation. 
 One of the most important observations of [5] is the fact that static store-load 
instruction pairs that cause most of the dynamic data mis-speculations are relatively few 
and exhibit temporal locality. This observation suggests that store-load dependences can 
be predicted based on past history. Hence, the store-load pairs can be allocated in a 
cache-like structure. When one of the instructions in the pair is later encountered, some 
steps need to be taken to synchronize the two instructions. This synchronization can be 
performed by the use of a hypothetical condition variable. When a store-load conflict is 
detected first, the store-load association can be assigned a condition variable, which is set 
to false. In the next instance of the load, when the load is ready to be scheduled, it first 
checks the condition variable of the association. Seeing that the condition variable is 
false, the load waits. Once the next instance of the store is executed it signals the 
condition variable by setting it to true. The load can now be scheduled and after it is 
scheduled it needs to set the condition variable back to false. Hence, synchronization is 
achieved between the store-load pair by means of simple synchronization structures. 
 Another important observation in [5] is the notion that the path followed to 
execute a load instruction might affect whether or not it is dependent on an older store. 
Hence, a dependence predictor might perform better if it includes path information. The 
dependence distance (the difference in the instance numbers of the instructions which are 
dependent) can be used to distinguish different paths taken to execute a load. This is 
especially important in loop-based dependences. Depending on the loop distance only 
some of the dynamic instances of a static load will be dependent on the dynamic 
instances of a store. Incorporating the dependence distance information to the prediction 
mechanism thus could save a lot of false dependences. 
  

3.2.1. Implementation Aspects of [5] 
 [5] proposes two tables to implement the suggested prediction/synchronization 
mechanism. The first table is the memory dependence prediction table (MDPT), which 
identifies a static dependence and provides a prediction as to whether the next dynamic 
occurrence of the store-load pair needs to be synchronized. Each entry of the table 
contains the load instruction address, store instruction address, and the dependence 
distance. Also an optional predictor, such as two-bit counters can be incorporated in the 
entry. One interesting question is whether an entry should always predict that the store-
load association requires synchronization. If the association is stable over time, having a 
sticky predictor (which always predicts that the pair will conflict) would be a good 
option. However, if this is not the case, then using a 2-bit counter scheme to provide 
hysteresis would be desirable. 
 The second table is the memory dependence status table (MDST), which tracks 
the status of current associations that are predicted as conflicting by the MDPT. An entry 
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of the MDPT supplies a condition variable to be used for synchronization. This status 
entry is used to coordinate the synchronization of the load and the store instructions that 
are in the instruction window. When the MDPT predicts that a store-load pair will 
conflict it allocates an MDST entry for the pair and initializes the condition variable. The 
hardware structures are updated based on the explanation of the synchronization above 
and the synchronization is satisfied.  
 It is important to note that for an MDPT entry to be allocated, a static load-store 
pair should incorrectly execute out-of-order. Hence, the proposed predictor learns from 
the past behavior of the pairs and bases its prediction on this past behavior. The memory 
dependence predictors we will examine later will all utili ze history-based learning. 
 
 3.2.2. Evaluation of the Prediction Scheme of [5] 
 In [5], different data dependence speculation policies are simulated on a 
multiscalar [12] processor simulator. The simulated policies are NEVER (Loads are 
never speculated), ALWAYS (Blind speculation), WAIT (Loads with true dependences 
wait for all previous stores to generate their addresses), and PSYNC (Perfect memory 
disambiguation: Loads with no memory dependences execute as soon as possible, loads 
with true dependences are synchronized with the corresponding stores). It is shown that 
ALWAYS scheme results in a 30% average speedup over the NEVER scheme on 5 
SPEC92 integer benchmarks (compress, espresso, gcc, sc, xlisp). It is also shown that 
ALWAYS scheme sometimes performs better than WAIT scheme but sometimes 
performs significantly worse due to the mis-speculation recovery penalties. The 
instruction window size also significantly affects the effectiveness of any scheme; as the 
instruction window gets larger, the effectiveness of dependence speculation increases. 
 The prediction scheme described in the paper is compared to the ALWAYS 
scheme. The proposed scheme achieves a speedup of around 10% for the five 
benchmarks. 

 
3.3. Moshovos’ Work on Memory Renaming and Bypassing 

 In [13], Moshovos and Sohi extend their work to bypass the memory on load 
accesses that are dependent on stores. They view the memory as an “ inter-operation 
communication agent” . This means that memory stores the value generated by an 
operation and that value will be sourced by a later operation. This dependency is implicit 
in the addressing modes. [13] tries to makes this dependency explicit by handling the 
memory communication in a separate name space other than memory address space. 
They use memory dependence prediction to generate this dynamic name space through 
which the dependent loads and stores can communicate without incurring the overhead of 
address calculation, memory disambiguation, and data cache access. Hence, they propose 
an aggressive way of doing memory renaming, which they call speculative memory 
cloaking. 
  

3.3.1. Speculative Memory Cloaking 
 It deserves some attention to explain the high-level mechanism of memory 
cloaking, because this approach speculatively exposes a high level of parallelism by 
possibly providing the load with its data value in the very early stages of the pipeline. 
The first step in cloaking is to build an association between a store-load pair. This is done 
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through the use of a dependency detection table (DDT). Once a load instruction generates 
a conflicting address with a previous store instruction in the DDT, a tag for the 
association is created and the dependent pair is stored in the dependency prediction and 
naming table (DPNT) along with the tag. When a later instance of the store instruction is 
brought to the processor, the DPNT is accessed and an association with the load will be 
found. At this point, a synonym is generated for the linkage between the two instructions 
and space is allocated in the synonym file (SF) and a pointer to this space is recorded in 
the DPNT. This synonym serves as a new name for the memory location that is accessed 
by the store-load pair. The space allocated in the SF is used to hold the data value 
produced by the store instruction. Initially, no valid value exists in this space, but when 
the store produces its value, the value is written into the allocated space in the SF. Note 
that the store does not need to have computed its address to be able to write its data value 
to the synonym file. Hence, the store instruction is essentially broken into two pieces: 
store address and store data (We will see later that a similar approach is taken by Pentium 
Pro). The traditional memory access that is required to verify the correctness of the 
cloaking needs the store address and the store data whereas the mechanism used for 
cloaking only requires the store data. 
 When the load associated with the store is brought into the instruction window, it 
accesses the DPNT and sees that space is allocated in the SF for its association with the 
store. Thus, the load accesses the synonym file and obtains the data value of the store if it 
is already computed. The instructions dependent on the load can therefore start executing 
speculatively using that value. When the load computes its address, the traditional 
memory system is accessed to obtain the real data of the load. This data is compared with 
the data value supplied by the SF. If they are the same, cloaking was successful. If not, 
recovery action needs to be taken to purge and re-execute the load and its dependent 
instructions.    
  

3.3.2. Prediction of Memory Dependences in [13] 
 As mentioned in Section 2.3, the predictor for memory cloaking (a form of 
renaming) needs to minimize the PC-ANC mispredictions to minimize the cost of 
recovery actions. Also, it is necessary to predict exactly with which store instruction the 
incoming load colli des. In [13], the latter requirement is accomplished by linking the 
dependent store and load using a newly allocated tag for the association. This scheme 
assigns a common tag to all dependences that have common producers (stores) or 
consumers (loads) and use that tag to identify all these dependences collectively. For 
example, if a load conflicts with multiple different stores based on the control flow path 
taken3, say store1 and store2, both store1-load and store2-load association will be assigned 
the same tag (A similar but more flexible approach is also taken by the store set predictor 
[14], which we will examine later). The correct association will be enforced based on 
which store is present in the instruction window. Of course, there is a slight problem if 
multiple instances of the same dependence (association) are in the instruction window at 
the same time. But this problem can be easily solved by creating different synonyms for 
different instances.       

                                                 
3 In code: if (condition) then store1 A; else store2 A; load A the load depends on both store1 and store2 but 
only with one of those for a given control flow path. 
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 This prediction scheme yields a PC-ANC misprediction rate of around 2% on 
SPEC95 Integer benchmarks (compiled for MIPS ISA) with reasonable hardware 
resources (2K DPNT entries) and for a 256-instruction window. It is important to point 
out that, as instruction window size increases and pipelines get deeper and deeper 
maintaining or improving the PC-ANC misprediction rate is crucial, because of the 
increasing mis-speculation recovery penalty. 
  

3.3.3. More Parallelism: Memory Bypassing 
 A more aggressive form of memory dependence speculation can be employed by 
observing that memory is a communication agent between arithmetic instructions in load-
store architectures. Hence, DEF-store-load-USE dependency chains that typically exist in 
these architectures can be sped up by converting them to DEF-USE chains (hence 
bypassing the memory access). This can only be done when the store-load dependence is 
predicted and when the DEF and USE instructions simultaneously exist in the instruction 
window. Although, this is a promising way to extract more parallelism, we will not go 
into details of this mechanism for the purposes of this paper except for noting that the key 
to effective bypassing is extremely accurate dependence prediction. 
  

3.4. Tyson and Austin’s Memory Renaming Scheme 
 At the same time with Moshovos [13], Tyson and Austin also published a scheme 
to implement memory renaming [9]. Our discussion will not be as extensive here, due to 
the similarities between [13] and [9]. The essential idea is very similar: Assign a common 
tag to store-load associations and access a value file (very similar to synonym file in [13]) 
in case of the recurrence of the association and forward the store data from the value file 
to a load that is in the very early stages of the pipeline. One distinction between the two 
schemes is the fact that store instructions do not write into the value file unless they are 
committed in [9]. Whereas, in store file [13], store data is written as soon as it becomes 
available. This probably reduces the amount of parallelism exposed by [9] compared to 
[13]. However, the implementation of [13] would be more complex because it requires 
detecting when the store data becomes available (separate from the store address 
availabilit y).  
 The initial binding of stores to loads is also done differently in [9]. When a store 
forwards a value to a later load, an association is formed between the store and the load in 
what is called the store/load cache and a tag is assigned for the association to index the 
value file. Hence, no separate structure (e.g. DDT in [13]) is used to detect dependences. 
The advantage of this is the reduced hardware cost. The disadvantage is that only store-
load dependences within the instruction window are detected and hence can be renamed. 
This disadvantage might be criti cal for obtaining higher performance, since, as shown in 
[13], most store-load dependences are distant, which means that the dependence is 
impossible to detect in a single instruction window because the associated store and load 
are never coexistent in the same instruction window. 
 Tyson and Austin’s paper also discusses two different recovery mechanisms in 
case of mis-speculation and hence deserves a littl e more attention. One recovery scheme 
is what they call squash recovery in which all i nstructions including and succeeding the 
mis-speculated load are squashed and re-fetched. A higher-performance recovery scheme 
is to only squash the dependent instructions and not squash the independent instructions, 
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called re-execution recovery. The implementation of this scheme is not presented, but it 
might be quite complex. However, it certainly reduces the cost of mis-speculation. Using 
this recovery scheme they report that their scheme achieves a speedup between 1% to 
42% for 10 benchmarks from SPEC95 suite. 
  

3.5. Two Other Memory Dependence Predictors 
 This section concludes our survey of dependence prediction mechanisms with the 
discussion of two relatively simple yet powerful predictors proposed in [14] and [10].  
  

3.5.1. The Store-set Predictor 
 This predictor [14] is proposed for memory disambiguation. The aim of the 
authors is to be able to schedule load instructions as soon as possible without causing any 
memory order violations. The predictor proposed is based on store-sets. A store set for a 
specific load is the set of all stores upon which the load has ever depended. The processor 
adds a store to the store set of the load if a memory order violation is caused when the 
load executes before that store. In the next instance of the load instruction, the store set is 
accessed to determine which stores the load will need to wait for before executing.  
 One important observation is that multiple loads can also depend on the same 
store. Hence, the same store can exist in the store-sets of different loads. [14] shows that 
the predictor needs to have this flexibilit y of a store existing in multiple different store 
sets in order to achieve high correct prediction rates. Hence, they describe a store-set 
merging predictor implementation. 
 The store set predictor consists of two tables. The first one is the store set ID table 
(SSIT), which connects the store-load associations. The second table is the last fetched 
store table (LFST), which keeps a track of the store currently in the instruction window 
for a particular ID. When a memory violation occurs, the SSIT might already have an 
entry for the load or the store. If only one of the instructions already have an ID, the other 
instruction is assigned that same ID. If neither the load nor the store already has an ID, a 
new ID is allocated and written into the SSIT in the following way: The SSIT is indexed 
using both load and store instruction’s program counters and the newly-allocated tag is 
written into those locations in the SSIT. Hence, the linkage between the load and store is 
formed through the SSIT. If both the load and the store have ID’s in the SSIT, one of the 
ID’s (smaller one) is declared the winner and both the load and store are assigned the 
same ID. This operation effectively merges the store sets of two different loads.  
 A diagram of the predictor is given in Figure 2. When a load is fetched, it 
accesses the SSIT and gets its store set ID. Using this store set ID, it accesses the LFST 
and gets the sequence number of the most recently fetched store in its store set. The load 
should not be ordered to execute before that store. 
 When a store is fetched it accesses the SSIT. If it finds a valid store-set ID, it first 
accesses the LFST and gets the most recently fetched store instruction in the store-set. 
The new store becomes dependent on the store in the LFST. This ensures that the stores 
are executed in the correct order. The fetched store also updates the LFST by inserting its 
sequence number to the appropriate entry. After the store instruction issues, it accesses 
the LFST and invalidates the entry if the entry still refers to itself. 
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Figure 2. Implementation of the store-set predictor as shown in [14]. 

 
 The elegance of the store-set predictor comes from its simplicity and 
effectiveness. Chrysos and Emer report that this mechanism, with reasonable hardware 
resources, achieves very close to the performance provided by a perfect memory 
disambiguation mechanism, where perfect means loads are scheduled as soon as the 
stores they are dependent on have finished execution and no memory order violations or 
false dependencies exist. They also report that blind speculation performs worse than no 
speculation (loads wait until all previous store addresses are known) for some 
benchmarks and the IPC difference for perfect memory disambiguation and no 
speculation is drastic (up to 300% performance improvement for some benchmarks). 
 
 3.5.2. Collision History Table (CHT) Predictor 
 The last predictor we will describe is the CHT predictor proposed by Yoaz et. al. 
[10]. As this predictor has many variants, we will only describe the basic idea without 
going into a lot of detail . The proposed Full CHT predictor only provides a prediction as 
to whether a load instruction will conflict with any store within the instruction window. It 
does not predict which store instruction the load will conflict with. Hence, it is easier to 
design but it does not provide the best possible information for disambiguation purposes.  
 However, predicting only whether a load will conflict simpli fies the predictor 
drastically. No associations of stores and loads need be kept. Besides, the predictor can 
store some “dependence distance” information about the dependences of a load 
instruction and make a worst case estimate as to how far in up in the scheduling window 
the load instruction can be moved so that it does not colli de with an older store. 
 An entry in the CHT consists of a tag (part of the load program counter), an n-bit 
counter that generates the prediction, and an optional distance field, which tells how 
many instructions in the scheduling window the load can be moved up. All l oads are 
inserted into this table when they are decoded. When a mis-speculation occurs for a load, 
the counter associated with the load is incremented. When a false dependence prediction 
is made for the load, the counter for that load is decremented. Hence, the CHT is very 
much like the current branch predictors. 
 [10] reports that a variation of this CHT mechanism is able to capture most of the 
benefit that can be gained from perfect memory disambiguation. 
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4. Comments on the Examined Prediction Mechanisms 
 We have surveyed six different mechanisms that can be used to attack the 
memory disambiguation problem and increase parallelism using memory renaming4. 
Each scheme has its advantages and disadvantages. Based on the surveyed papers, it is 
impossible to determine which scheme will work best on a given processor configuration. 
As suggested in Section 2.3, some predictors would be good for memory disambiguation 
and some would be good for memory renaming. Hence, the choice of the predictor 
depends on how aggressive we would like a superscalar processor handle the memory 
dataflow. Here, we would like to classify the discussed mechanisms and briefly discuss 
their limitations.  
 ARB is a mechanism for handling memory disambiguation. It does not provide 
enough support for memory renaming except for load forwarding. The biggest advantage 
of ARB is its abilit y to reduce the very-wide associative search in order to determine 
whether a load conflicts with a store. None of the other disambiguation schemes address 
this issue. The store-set predictor and the CHT predictor need to be supplemented with an 
ARB-like structure to be effective. As mentioned before, the store-set predictor and the 
CHT predictor are solely memory dependence predictors. The entry of loads and stores in 
these predictors require the detection of store-load conflicts. This detection mechanism 
can either be a store queue, a dependency matrix, or the ARB as discussed in sections 2 
and 3.1. If we think about the issue in another way, supplementing the ARB with a better 
prediction mechanism such as the store-set predictor or the CHT predictor also would 
improve the speculativeness and the accuracy of memory disambiguation.  
 To choose between the store-set predictor and the CHT predictor, we need to 
simulate different configurations of each predictor and choose the one that best fits our 
needs. This choice cannot be made based on the published papers. 
 For implementing memory renaming, Moshovos’ cloaking mechanism and Tyson 
and Austin’s memory renaming structures are attractive options. The choice of which one 
to implement, again depends on the available hardware resources and how aggressive we 
want the superscalar processor to get. Moshovos’ memory bypassing mechanism is by far 
the most aggressive suggestion in that it tries to convert DEF-store-load-USE chains into 
DEF-USE chains. However, the proposed bypassing scheme is only limited to instances 
when both DEF and USE instructions are in the instruction window. A more aggressive 
mechanism would try to apply this transformation to instances where DEF and USE do 
not co-exist in the instruction window. Memory cloaking does not try to reduce the DEF-
store-load-USE chains. Rather, it tries to service store-load dependences in a separate 
name space different from the memory name space. It has the advantage that the store 
and the load need not co-exist in the instruction window. Hence, it may be possible that a 
load gets its value from the synonym file, which was written into by a store 8K 
instructions ago. This flexibilit y of memory cloaking is its most important advantage over 
Tyson and Austin’s memory renaming. One drawback to implementing memory cloaking 
is its complexity and possible impact on cycle time.  

                                                 
4 We especially refrained from spending time to report the performance results presented in the papers, 
because the simulation environments, instruction set architectures, benchmarks, and microarchitecture 
designs on which the mechanisms are evaluated are extremely different. Hence, a comparison of the 
mechanisms based on the results presented in the surveyed papers would not be accurate. 
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 We would like to conclude this section by noting that the success of an aggressive 
memory dataflow engine depends heavily on the correctness of the predictors. As 
pipelines get deeper and instruction windows get larger, the mis-speculation penalty will 
bear more impact on the overall performance of the processors. Hence, the discussed 
predictors may need to be improved to accommodate the needs of very deep pipelines.     
  
5. Real L ife: Memory Disambiguation in Some Commercial Processors 
 Some of current processors (HP-PA 8000 [5], Alpha 21264 [15]) allow 
speculative loads to be issued to the memory system to alleviate the unknown-address 
problem. However, the memory dependence prediction mechanisms are not sophisticated. 
None of the processors (to our knowledge) employ aggressive memory renaming. 
 
 5.1. Alpha 21264 

The Alpha 21264 [15] performs blind speculation, meaning that if any of the 
earlier stores’ address is not available when a load is ready to get scheduled, the 
scheduler will always predict that the load will not conflict with the store. Hence, the load 
is always sent out to the memory system in the presence of unknown store addresses. In 
Alpha there are two queues for memory operations: LDQ for loads and STQ for stores. 
These queues both have 32 entries. Both queues position instructions in their fetch order, 
although they enter the queue out of order when they issue. Loads exit the LDQ in fetch 
order after loads retire and the load data is returned. Stores exit the STQ in fetch order 
after they retire and write their data into the data cache. To detect mis-speculations, when 
a store issues into the STQ, the younger load addresses in the LDQ are associatively 
compared with the store’s address. If a match is found, the LDQ squashes the matching 
load and all l ater loads and initiates recovery. The STQ also performs the function of load 
forwarding in Alpha 21264. 
 Once a mis-speculation is detected, the Alpha 21264 sets a bit in what is called a 
load wait table to signal that the mis-speculated load should not be executed out-of-order 
in the next execution. The implementation of this table is not explained in [15]. The load 
wait table is periodically cleared to avoid potential unnecessary waits. This cyclic 
clearing of prediction tables is also a concern with all of the previously described 
mechanisms. Chrysos and Emer [14] suggest periodic clearing of the SSIT. The reason 
for this is the fact that the program might have entered a different phase and the 
conflicting store load pair may not be conflicting any more. The CHT predictor [10] does 
not suffer from the problem as much because it incorporates n-bit counters to adjust the 
predictions. If the load instruction does not conflict with a store any more, the counters 
will pick up the new behavior and will not predict the load instruction as conflicting.      
   
 5.2. Pentium Pro 
 The Pentium Pro processor implements a memory order buffer to avoid memory 
order violations. Each load instruction is decoded into a single micro-operation (uop), 
whereas each store instruction is decoded into two uops. One is the STA (Store Address 
Calculation). The other is the STD (Store Data) [10]. Hence, the store is broken into two 
instructions. This has the advantage of breaking the dependencies of a store. Hence, the 
store data does not need to wait for the dependencies of the address calculation to be 
satisfied. Nor does the store address needs to wait for the dependencies for the store data 
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to be satisfied, which is more important for performance. This means that the store 
address can be made available earlier than the data (at times), which will aid memory 
disambiguation. Memory disambiguation in P6 processor family follows two basic rules 
[10]: 
 1. A load cannot be dispatched if an earlier, unresolved STA uop exists in the 
instruction window. In Pentium Pro, the existence of such an instruction is easily 
determined by checking the memory order buffer. 
 2. A load cannot execute out of order with an older STD coupled with an STA 
that references the same address of the load.  
 The memory order buffer is used to prevent loads from being blocked by earlier 
stores. It is also used to avoid memory order violations. Stores are buffered in the MOB 
and they exit the MOB when they retire. Incoming load instructions are checked 
associatively with all previous store addresses in the MOB to determine if they conflict. 
Only non-conflicting loads can execute out of order with earlier stores. 
 MOB of the Pentium Pro also implements load forwarding. For this to occur, the 
following conditions should be met [16]: 
 1. The store is complete in the MOB. 
 2. The addresses referenced by the store and load have the same alignment. 
 3. The data requested by the load is a subset of the data written by the store. 
 If these conditions are not met, the load forwarding (which is called store 
forwarding by Intel) cannot be completed and the load has to wait until the store is 
retired. This is a significant performance penalty. Hence, unaligned load-store 
dependences should be avoided in code compiled for Pentium Pro.   
 
6. Conclusion 
 In this paper, we have surveyed a number of approaches to memory dependence 
prediction and commented on their effectiveness in extracting more parallelism from 
programs. Then we examined the schemes employed by two of the current processors 
(Alpha 21264 and Pentium Pro) and saw that none of the proposed aggressive speculation 
techniques are employed by these processors. The importance of the memory dataflow 
would increase as the instruction windows get larger and memory system becomes more 
of a bottleneck and hence we would expect newer processors employing aggressive 
techniques such as memory renaming and bypassing to extract more ILP from programs. 
Hence, more research is needed in this area to improve the accuracy of the memory 
dependence predictors and to find out more aggressive ways to do memory operation 
reordering and renaming.      
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