
Parallelism-Aware Batch Scheduling:
Paving the Way to High-Performance and Fair Memory Controllers∗

Onur Mutlu†§ Thomas Moscibroda†
†Microsoft Research §Carnegie Mellon University

ABSTRACT
In modern processors, the DRAM system is shared among
concurrently-executing threads. Memory requests from a thread
can delay requests from other threads by causing bank/bus/row-
buffer conflicts. Conventional DRAM controllers are unaware
of inter-thread interference, which causes two problems. First,
some threads are unfairly penalized and denied DRAM service
for long time periods. Second, as we show in our ISCA-35 pa-
per, each thread’s memory-level parallelism can be destroyed. A
thread’s outstanding requests that would have been serviced in
parallel can effectively become serialized, exposing the latency
of each request. As a result, both single-thread performance and
system performance/fairness degrade.

Our ISCA-35 paper proposes parallelism-aware batch schedul-
ing (PAR-BS), a new approach to designing a shared DRAM
controller. PAR-BS is based on two new basic building blocks
which collectively reduce inter-thread interference in DRAM, en-
sure fairness, and preserve the memory-level parallelism of each
thread. As a result, PAR-BS reduces the memory-related stall-
time experienced by the threads. In addition, PAR-BS provides
fairness, avoids starvation of any thread, and seamlessly incorpo-
rates support for system-level thread priorities. Our evaluations
show that PAR-BS significantly improves both fairness and sys-
tem performance compared to four previous DRAM controllers
across a wide variety of workloads and systems.

1 Summary
1.1 The Problem: Uncontrolled Inter-Thread

Interference in the DRAM System
The DRAM memory system is one of the major limiters of com-
puter system performance. In modern processors, which are
overwhelmingly multi-core (or multithreaded), the DRAM sys-
tem is shared among the concurrently-executing threads. Dif-
ferent threads running on different cores can delay each other
by causing resource contention. One thread’s memory re-
quests can cause DRAM bank conflicts, row-buffer conflicts, and
data/address bus conflicts to another’s. As the number of on-
chip cores increases, the pressure on the DRAM system and
hence the interference among threads sharing it increases.

Unfortunately, conventional DRAM controllers are unaware
of this interference. They schedule requests to simply maximize
DRAM data throughput. For example, the commonly-employed
FR-FCFS scheduling policy [20, 19] is thread-unaware: it pri-
oritizes 1) row-hit requests and 2) all else being equal, older
requests over others. Uncontrolled inter-thread interference in
DRAM scheduling results in two major problems, which are im-
pediments to building viable and scalable multi-core systems.

1. Unfairness and Denial of DRAM Service: First, as
previous work [16, 11, 14] showed, some threads can be unfairly
prioritized, while more important threads can be starved for long
time periods waiting to access memory.1 In fact, programs can
be written to deny DRAM service to more important programs
running on the same chip [11]. Such unfairness 1) results in low
system performance/utilization [16, 11, 14], 2) makes the system
vulnerable to denial of service [11], and 3) makes the system
uncontrollable, i.e., unable to enforce thread priorities [14].

∗The full paper is: “Parallelism-Aware Batch Schedul-
ing: Enhancing both Performance and Fairness of Shared
DRAM Systems,” O. Mutlu and T. Moscibroda, ISCA-
35, June 2008. The full paper can be downloaded from
http://research.microsoft.com/∼onur/pub/parbs isca08.pdf. An ani-
mated presentation summarizing the paper can be downloaded from
http://research.microsoft.com/∼onur/pub/mutlu isca08 talk.ppt

1For example, the FR-FCFS policy unfairly prioritizes threads with
high row-buffer hit rates over those with low row-buffer hit rates.

2. Destruction of Memory-Level Parallelism (MLP):
Second, our ISCA-35 paper shows that inter-thread interference
results in another, new problem: it can destroy the bank-level
access parallelism of individual threads, effectively serializing
the memory requests whose latencies would otherwise have been
largely overlapped (had there been no interference). Many so-
phisticated single-thread performance improvement techniques,
such as out-of-order execution [21], non-blocking caches [10],
and runahead execution [5, 13] are used/designed to amortize
the cost of long DRAM memory latencies by generating mul-
tiple outstanding DRAM requests (by exploiting memory-level
parallelism [8]). The effectiveness of these techniques criti-
cally depends on whether the thread’s outstanding DRAM re-
quests are actually serviced in parallel by different DRAM banks
(i.e., whether or not intra-thread bank-level parallelism is main-
tained). In a single-threaded system, this is not a problem: since
the thread has exclusive access to DRAM banks, its requests are
serviced in parallel.2 However, in a multi-threaded/multi-core
system, multiple threads share the DRAM controller. As ex-
isting controllers make no attempt to preserve the bank-level
parallelism of each thread, each thread’s outstanding requests
can be serviced serially (due to interference from other threads’
requests), instead of in parallel. This new problem makes conven-
tional single-thread memory latency tolerance techniques less ef-
fective in systems where multiple threads share the DRAM mem-
ory. As a result, each thread’s performance can degrade signifi-
cantly, which in turn degrades overall system performance.

Figure 1 demonstrates the problem pictorially: if two threads
(T0 and T1) each have two outstanding requests to two differ-
ent banks, an existing DRAM controller may first service T0’s
request to Bank 0 in parallel with T1’s request to Bank 1, and
subsequently T1’s request to Bank 0 in parallel with T0’s request
to Bank 1. This service order exposes two bank access latencies
to each thread. In contrast, a parallelism-aware controller would
service each thread’s requests in parallel (e.g., T0’s requests first,
then T1’s), thereby exposing only one bank access latency to one
of the threads, without slowing down the other. Ultimately, this
improves both single-thread and system performance.

BANK 0 BANK 1

S
er

vi
ce

 o
rd

er

{DRAM SCHEDULER

CONVENTIONAL

2 Bank Latencies

2 Bank Latencies

(in Cores)
Execution Timeline Stall TimeDRAM Controller

(service order)

T0

T1

BANK 0 BANK 1

S
er

vi
ce

 o
rd

er

{PARALLELISM−AWARE

DRAM SCHEDULER

Saved
cycles

2 Bank Latencies

1 Bank LatencyT0

T1

Time

������
������
������

������
������
������

�����
�����
�����

�����
�����
�����

����������
����������
����������

����������
����������
����������

������
������
������
������

����������
����������
����������
����������

T1−Req0

T0−Req0

T0−Req1

T1−Req1
T0−Req0 T0−Req1

T1−Req1

T1−Req0

T1−Req0 T1−Req1

T0−Req1T0−Req0

T0−Req1

T0−Req0

T1−Req0

T1−Req1

STALL

STALL

COMPUTE

COMPUTE

STALL

COMPUTE

COMPUTESTALL

STALL

Figure 1: Destruction of memory-level parallelism in DRAM control
(top) and how a parallelism-aware controller can do better (bottom)

The goal of our ISCA-35 paper is to design a DRAM con-
troller that controls and limits inter-thread interference to solve
the above two problems. To achieve this goal, our paper de-
scribes a new DRAM scheduler that 1) provides fairness and
starvation-freedom to threads sharing the DRAM system, 2) pre-
serves each thread’s DRAM bank parallelism, thereby improving
each thread’s memory latency tolerance, and 3) is configurable
enough to enable different service levels (i.e., Quality of Service)
to threads with different priorities.

2As long as they are not to the same bank.

This is a summary of the original paper, entitled "Parallelism-Aware Batch Scheduling: Enhancing both 
Performance and Fairness of Shared DRAM Systems" which appears in ISCA 2008 [15].

1



1.2 Solution: Parallelism-Awareness and Batching
Our PAR-BS controller is based on two key principles.

1. Parallelism-Awareness: To preserve a thread’s bank-
level parallelism, a DRAM controller needs to service a thread’s
requests (to different banks) back-to-back (i.e., one right after
another, without any interfering requests from other threads),
because this way, each thread’s request service latencies overlap.

2. Request Batching: Parallelism-aware scheduling by it-
self could cause unfairness and even starvation of requests. To
prevent this, PAR-BS groups a fixed number of oldest requests
from each thread into a batch, and services the requests from
the current batch before all other requests. The controller forms
a new batch when all requests belonging to the previous one are
fully serviced. Since there is no out-of-order servicing of requests
across batches, no thread can indefinitely deny service to an-
other. Thus, batching ensures fairness and forward progress. It
also provides a convenient granularity (i.e., a batch) within which
the PAR-BS scheduler can service requests according to the first
principle, in a possibly unfair but parallelism-aware manner.

1.2.1 Operation of PAR-BS
The operation of PAR-BS is explained in detail with examples
and animations in our ISCA-35 paper [15] and presentation [12],
respectively. Here, we briefly describe its key components.

Batching: Each memory request has a bit (marked bit) as-
sociated with it. Rule 1 describes batching using this bit:

Rule 1 Batch Formation
1: Forming a new batch: A new batch is formed when there

are no marked requests left in the memory request buffer.
2: Marking: When forming a new batch, PAR-BS marks up to

Marking-Cap outstanding requests per bank for each thread;
all marked requests constitute the batch. (Marking-Cap is
determined by the system or empirically by the designer)

Within-batch prioritization: Within a batch of requests
(i.e., the set of marked requests), any DRAM command schedul-
ing policy (e.g., FR-FCFS, FCFS, or [16, 14]) could be employed
to prioritize requests. However, no existing policy preserves a
thread’s bank parallelism in the presence of inter-thread inter-
ference. PAR-BS prioritizes requests as shown in Rule 2 in or-
der to achieve two objectives: 1) exploit row-buffer locality, 2)
preserve each thread’s bank parallelism. To achieve the latter
objective, when a new batch is formed, the DRAM scheduler
computes a ranking among all threads that have requests in the
batch. While the batch is processed, requests from higher-ranked
threads are prioritized over those from lower-ranked threads (and
the computed ranking remains the same). This ensures that each
thread’s requests are serviced back-to-back within the batch.
Rule 2 PAR-BS Scheduler: Request Prioritization

1: BS—Marked-requests-first: Marked requests are prior-
itized over requests that are not marked (batching: ensure
fairness and avoid starvation).

2: RH—Row-hit-first: Row-hit requests are prioritized over
row-conflict/closed requests (exploit row-buffer locality).

3: RANK—Higher-rank-first: Requests from threads with
higher rank are prioritized over requests from lower-ranked
threads (preserve memory-level parallelism).

4: FCFS—Oldest-first: Older requests over younger ones.

Thread ranking: The thread ranking scheme affects both
system throughput and fairness. A good ranking scheme should
1) maximize system throughput and 2) minimize stall-time un-
fairness [14] (i.e., equalize the slowdown of threads compared to
when each is run alone in order to allow proportional progress
of each thread, a property assumed by existing operating system
schedulers). As we explain in our paper (Section 4.2), these two
objectives call for the same ranking scheme. Maximizing sys-
tem throughput within a batch is achieved by minimizing the
average stall-time of threads within the batch. This, in turn, is
achieved by servicing threads with inherently low memory stall-
time (i.e., memory non-intensive threads) early within the batch.
Doing so also improves stall-time fairness. The insight is that if
a thread has low stall-time to begin with (i.e., is non-intensive),
delaying it results in a higher slowdown and increased unfairness

as opposed to delaying a memory-intensive thread. To achieve
both objectives, PAR-BS uses the shortest-job-first principle to
rank threads. The controller estimates each thread’s stall-time
within the batch. Then, it ranks threads with shorter estimated
stall-time higher. Rule 3 shows how this is done:
Rule 3 Thread Ranking: Shortest Stall-Time First within Batch

For each thread, the scheduler finds 1) the maximum number
of marked requests to any given bank (called max-bank-load)
and 2) the total number of marked requests (total-load)
1: Max rule: A thread with lower max-bank-load is ranked

higher than a thread with higher max-bank-load.
2: Total rule: In case of a tie, a thread with lower total-load

is ranked higher than a thread with higher total-load.

1.2.2 Configurability: Support for Thread Priorities
PAR-BS seamlessly incorporates support for system-level thread
priorities. First, it marks requests from lower-priority threads
less frequently. Lowest-priority threads’ requests are never
marked. Second, given the choice between two requests, PAR-BS
prioritizes the higher priority thread’s request. For details and
a quantitative evaluation, see Sections 5 and 8.4 of our paper.

1.2.3 Implementation and Hardware Cost
PAR-BS’s storage cost on an 8-core CMP is only 1412 bits (see
Sec. 6 of [15]). PAR-BS is solely based on simple request prior-
itization rules, similarly to existing DRAM scheduling policies.
It does not require any complex operations (e.g., division) unlike
other QoS-aware schedulers (e.g., [16, 14]).

1.2.4 Comparisons with Other DRAM Controllers
Our ISCA-35 paper comprehensively compares PAR-BS
with four previously-proposed throughput- or fairness-oriented
DRAM controllers (FR-FCFS [20], FCFS [20], NFQ [16], and
STFM [14]) qualitatively (Sec. 2, 4, 8) and quantitatively (Sec.
8). None of the previous controllers try to preserve the memory-
level parallelism of individual threads. In addition, each of
them unfairly penalizes threads with certain properties (Sec. 8)
whereas PAR-BS’s request batching provides a high degree of
fairness and starvation-freedom for all threads.

1.2.5 Experimental Results
We evaluated PAR-BS on a wide variety of workloads consisting
of SPEC CPU2006 and Windows applications on 4-,8-, and 16-
core systems using an x86 CMP simulator.3 Figure 2 summarizes
our main results. PAR-BS provides the best fairness, the high-
est system throughput (weighted-speedup), and the best thread
turnaround time (in terms of hmean-speedup) [7] averaged over
all workloads.4 On the 4-core system, PAR-BS improves fairness
by 1.11X/2.56X, hmean-speedup by 8.3%/32.6%, and weighted-
speedup by 4.4%/12.4% compared to respectively the best pre-
vious technique, stall-time fair memory (STFM) scheduler [14],
and the commonly-employed FR-FCFS scheduler. Hence, PAR-
BS significantly outperforms the best-performing DRAM con-
troller, while requiring substantially simpler hardware. PAR-BS
is also robust: it does not degrade fairness, performance, or max-
imum latency on any workload.

We provide insights into why PAR-BS performs better than
other techniques via detailed case studies and analyses (Sec. 2, 4,
8.1), analyze tradeoffs in the PAR-BS design, evaluate batching
and parallelism-awareness in isolation (Sec. 8.3), evaluate alter-
native designs we examined (Sec. 8.3), and quantitatively show
PAR-BS’s support for thread priorities is effective (Sec. 8.4).
Our presentation [12] shows that PAR-BS is very effective with
multiple memory controllers, even without any coordination.

2 Novelty and Long-Term Impact
The DRAM system is a critical shared resource that determines
the performance and scalability of multi-core systems: if the
cores cannot be supplied data in an efficient manner, they can-
not perform useful computation. A DRAM controller’s schedul-
ing policy determines both the individual thread performance
and overall system performance. As the number of cores on

3Our experimental methodology is described in Section 6 of [15].
4100, 16, and 12 workloads on the 4-,8-, and 16-core systems.

2



1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

U
nf

ai
rn

es
s 

(l
ow

er
 is

 b
et

te
r)

FR-FCFS
FCFS
NFQ
STFM
PAR-BS

4-CORE 8-CORE 16-CORE 0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

W
ei

gh
te

d 
Sp

ee
du

p

FR-FCFS
FCFS
NFQ
STFM
PAR-BS

4-CORE 8-CORE 16-CORE
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

H
m

ea
n 

Sp
ee

du
p

FR-FCFS
FCFS
NFQ
STFM
PAR-BS

4-CORE 8-CORE 16-CORE

Figure 2: Performance of PAR-BS vs. other DRAM scheduling techniques in terms of (a) unfairness [14], (b) system throughput (weighted-
speedup) [7], and (c) inverse of thread turnaround time (hmean-speedup) [7]. The best achievable unfairness value is 1 in these workloads.

a die continues to increase faster than off-chip DRAM band-
width, techniques that distribute the limited DRAM perfor-
mance fairly across threads while maximizing single-thread per-
formance become increasingly necessary. No existing DRAM
controller recognizes the destruction of a thread’s memory-
level parallelism as a problem. Our ISCA-35 paper presents
a simple, low-complexity DRAM controller that both pre-
serves single-thread MLP (and hence performance) and provides
fairness/QoS/starvation-freedom to threads sharing the DRAM.

2.1 Contributions and Impact on Future Research
Our paper makes three major contributions which will likely have
long-term impact on both industry and academia:
1. The Problem of Memory-Level Parallelism Destruc-
tion: We identify a new problem in shared memory systems:
inter-thread interference can destroy the MLP and serialize re-
quests of individual threads, leading to significant degrada-
tion in both single-thread and system performance in multi-
core/multi-threaded systems. This problem did not exist in
single-core/single-threaded systems. Computer architects (and
compiler designers) strive very hard to parallelize a thread’s
memory requests to tolerate memory latency and have devel-
oped/used many techniques (e.g., [21, 10, 5, 8, 17, 13, 23, 1, 4, 2,
3, 18, 22, 6]), to exploit MLP. Our paper shows that these tech-
niques, including out-of-order execution, can become ineffective
when multiple threads interfere in the memory system. Over
time, this new research problem can lead to novel techniques to
preserve MLP (and thus the hard-extracted single-thread per-
formance) in other shared system resources as well as memory
controllers.
2. A Building Block for Preserving Memory Parallelism:
Our paper introduces the idea of thread ranking and rank-based
scheduling to preserve the MLP of individual threads. We pro-
pose several specific mechanisms to rank threads within a batch,
and show that shortest stall-time first ranking performs the best.
Even when unfairness is not a problem, preserving MLP signifi-
cantly improves single-thread and system performance (see Sec.
8.1.3). In the long term, the idea of thread ranking can be used
as a building block for new techniques to preserve MLP in other
shared resources (e.g., caches, interconnects, the I/O system).
3. A Building Block for Memory System Fairness/QoS:
Our paper introduces the idea of request batching to provide
fairness and starvation-freedom to threads sharing the DRAM
system. As we show (in Sec. 8.3.3), this idea can be employed
with any existing/future DRAM scheduling technique to improve
fairness. The concept of “request batching” provides not only
fairness at very low hardware cost but also a framework for new
scheduling optimizations within the batch. In the long term,
we believe this framework will enable sophisticated within-batch
DRAM scheduling policies that aggressively exploit the increas-
ingly valuable DRAM bandwidth. For example, a DRAM con-
troller can use this framework to provide fairness while maxi-
mizing DRAM throughput within a batch using machine learn-
ing [9]. Batching can also be used as a building block for fairness
in other shared system resources.

2.2 Long-Term Impact on Industry
The importance of both the problems (MLP destruction and un-
fairness) and the solution presented in our paper will increase in
future systems. The importance of “preserving MLP” is likely to
increase as memory latency tolerance techniques continue to be
necessary to keep/improve single-thread performance in multi-
core systems. The importance of effectively/fairly managing the
DRAM system will also increase as the number of cores sharing
the DRAM system is increasing faster than memory performance

(bandwidth, speed, latency, and parallelism). In addition, future
systems will likely execute increasingly diverse workloads (e.g.,
using virtualization on data centers for server consolidation) that
have very different memory performance requirements and ac-
cess characteristics. As more and more diverse threads share the
DRAM, both the serialization of otherwise-parallel requests and
unfairness will increase.

As a result, DRAM controllers will likely be one of the pri-
mary performance/QoS limiters in future computer systems. To
keep area, power, testing and verification overheads minimal,
the modifications to the DRAM controller should be low-cost
and simple. Our paper offers a low-cost, implementable solution
that preserves MLP and provides fairness in the DRAM system.

2.3 Conclusion
The two major building blocks proposed in this paper can be
used/extended to improve the management of other shared re-
sources in multi-core/multithreaded systems. For example, the
ideas of batching and thread-ranking/parallelism-awareness are
directly applicable to provide effective sharing of cache band-
width. We believe that these ideas are also applicable to preserve
both MLP and fairness in shared resources, such as on-chip in-
terconnects, caches, prefetchers.

Our ISCA paper presents a new problem and practical ideas
for designing fair and MLP-preserving memory systems. We be-
lieve and hope the problem discovered in this paper will inspire
new solutions and our building blocks will enable both indus-
try and academia to design fair and high-performance shared
resource management techniques.

REFERENCES
[1] H. Akkary et al. Checkpoint processing and recovery: Towards scal-

able large instruction window processors. In MICRO-36, 2003.
[2] S. Chaudhry, P. Caprioli, S. Yip, and M. Tremblay. High-performance

throughput computing. IEEE Micro, 25(3):32–45, May 2005.
[3] Y. Chou et al. Store memory-level parallelism optimizations for com-

mercial applications. In MICRO-38, 2005.
[4] Y. Chou, B. Fahs, and S. Abraham. Microarchitecture optimizations

for exploiting memory-level parallelism. In ISCA-31, 2004.
[5] J. Dundas and T. Mudge. Improving data cache performance by pre-

executing instructions under a cache miss. In ICS-11, 1997.
[6] S. Eyerman and L. Eeckhout. A memory-level parallelism aware fetch

policy for SMT processors. In HPCA-13, 2007.
[7] S. Eyerman and L. Eeckhout. System-level performance metrics for

multiprogram workloads. IEEE Micro, 28(3):42–53, 2008.
[8] A. Glew. MLP yes! ILP no! In ASPLOS WACI, 1998.
[9] E. Ipek et al. Self-optimizing memory controllers: A reinforcement

learning approach. In ISCA-35, 2008.
[10] D. Kroft. Lockup-free instruction fetch/prefetch cache organization.

In ISCA-8, 1981.
[11] T. Moscibroda and O. Mutlu. Memory performance attacks: Denial

of memory service in multi-core systems. In USENIX Security, 2007.
[12] O. Mutlu. Parallelism-Aware Batch Scheduling. http://research.

microsoft.com/~onur/pub/mutlu_isca08_talk.ppt.
[13] O. Mutlu et al. Runahead execution: An alternative to very large

instruction windows for out-of-order processors. In HPCA-9, 2003.
[14] O. Mutlu and T. Moscibroda. Stall-time fair memory access schedul-

ing for chip multiprocessors. In MICRO-40, 2007.
[15] O. Mutlu and T. Moscibroda. Parallelism-aware batch scheduling:

Enhancing both performance and fairness of shared DRAM systems.
In ISCA-35, 2008.

[16] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith. Fair queuing
memory systems. In MICRO-39, 2006.

[17] V. S. Pai and S. Adve. Code transformations to improve memory
parallelism. In MICRO-32, 1999.

[18] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt. A case for
MLP-aware cache replacement. In ISCA-33, 2006.

[19] S. Rixner. Memory controller optimizations for web servers. In
MICRO-37, 2004.

[20] S. Rixner et al. Memory access scheduling. In ISCA-27, 2000.
[21] R. M. Tomasulo. An efficient algorithm for exploiting multiple arith-

metic units. IBM Journal of RD, 11:25–33, Jan. 1967.
[22] J. Tuck, L. Ceze, and J. Torrellas. Scalable cache miss handling for

high memory-level parallelism. In MICRO-39, 2006.
[23] H. Zhou and T. M. Conte. Enhancing memory level parallelism via

recovery-free value prediction. In ICS-17, 2003.

3




