
Abstract This paper identifies non-stationary effects in grid
like Network-on-Chip (NoC) traffic and proposes QuaLe, a novel
statistical physics-inspired model, that can account for non-sta-
tionarity observed in packet arrival processes. Using a wide set of
real application traces, we demonstrate the need for a multi-frac-
tal approach and analyze various packet arrival properties
accordingly. As a case study, we show the benefits of our multi-
fractal approach in estimating the probability of missing dead-
lines in packet scheduling for chip multiprocessors (CMPs).

Keywords: Chip Multi-Processors, Networks-on-Chip, Self-Simi-
lar Stochastic Processes, Multi-fractal Analysis.

I. INTRODUCTION

Traditionally, on-chip communication used a bus-based or
point-to-point communication infrastructure. Given the lack of
scalability in these approaches, Networks-on-Chip (NoC)
emerged as a promising solution to on-chip communication
[7]. General purpose CMPs with NoC-based communication
are typically implemented in a tile-based structure where each
tile consists of a processing element (PE), private/shared cache
banks and a router [8].

On-chip networks resemble traditional data networks as the
switches, routers and the packet-based communication consti-
tute the basic elements of both types of networks. However,
on-chip networks differ from general computer networks in
many aspects, most notably in terms of optimizations needed
to satisfy various performance, power, and area constraints.
Nevertheless, the need for an in-depth understanding of the
network traffic is unavoidably common to all networks as it is
the key for optimized network design.

Previous research includes several attempts to analyze and
model the traffic behavior observed in different network types
such as local area networks (LAN), wide area networks
(WAN) [30] and the Internet (WWW) [6]. These papers focus
on identifying self-similarity in network traces, leaving the
issue of a more general multi-fractal model open. Since NoC
design is a relatively new research area, the need for a multi-
fractal traffic approach is yet unaddressed. 

In this paper, we propose a statistical physics-inspired
model which is able to capture the statistical characteristics of
NoC traffic patterns accurately and explain the transition of the
NoC traffic from mono to multifractal behavior. More pre-
cisely, in our approach, we consider each buffer in the NoC
architecture as being characterized by a fitness distribution
(with or without time dependency) based on whether or not the
changes in the NoC traffic occur as a function of the intrinsic
variability exhibited by the target applications or due to the

fluctuations in the number of applications executing on the
NoC at any given time.

Based on the statistical features of the fitness distribution,
we demonstrate that the NoC traffic can exhibit either a
monofractal or multifractal behavior. Also, in contrast to tradi-
tional network designers that frequently use synthetic traffic
patterns (e.g., uniform-random, immediate neighbor, tornado,
or hotspot) for testing their designs, in this paper, we analyze
network behavior using traces from a wide set of real applica-
tions and eliminate the inaccuracies observed in statistical net-
work traffic models due to the use of artificial traffic patterns.

In summary, our main contributions are as follows:
 • We propose QuaLe, a novel quantum-leap-inspired model for

characterizing packet arrival processes which can capture the mul-
tifractal characteristics of NoC traffic in CMP platforms. Similar
to Quale, defined as the universal property of an object which is
independent from the object itself, our quantum-leap model intro-
duces the fitness concept as a tool to encompass the universal mul-
tifractal behavior that is observed in NoC traffic due to various
interactions among various traffic flows.

 • We illustrate the existence of non-stationary effects in NoC
traffic and quantify the degree of multifractality when running
various real world applications. We also estimate the probability
of missing real-time deadlines and thereby discuss the implica-
tions of the multifractal approach in packet scheduling for CMPs.

The rest of the paper is organized as follows: Section II
provides a brief background on the theoretical concepts we use
throughout the paper. Section III reviews the scientific
approaches proposed for self-similar traffic. In Section IV, we
present QuaLe, a novel statistical physics-inspired model
which is able to account for the multifractal nature of NoC traf-
fic. In Section V, we present our experimental methodology. In
Section VI, we present an in-depth analysis of the main theo-
retical findings and in Section VII, we discuss their implica-
tions in CMP design, pointing out some future research
directions. We conclude the paper by summarizing our main
contributions in Section VIII.

II. BACKGROUND ON SELF-SIMILARITY

Self-similarity is a real-life concept that has been observed
in many natural phenomena [36]. An object or data is called
self-similar if it is still similar to the shape of the entire object/
data when we zoom in at different scales. 

To better understand the self-similar (or fractal) nature of
some objects, we show two examples in Figure 1: Figure 1.a
shows that as we zoom in over a 3D Euclidean object, the final
object starts to deviate significantly from the initial one. In
contrast, Figure 1.b shows a 3D perspective of a mountainous
area displaying self-similarity as we zoom in across its surface.
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Apart from self-similar characteristics observed in various
geometrical objects, self-similarity can be also conceived in a
temporal manner. For instance, some data are considered to be
self-similar in time, if the time series preserves its temporal
properties with respect to scaling in time.

Along the same lines, the self-similarity property of a sto-
chastic process X(t) implies that its distribution over two non-
overlapping time intervals (i.e., X(t) and X(bt), for any real

) remains the same up to a scaling factor (i.e,
, where  is

called the Hurst parameter). In addition, a self-similar stochas-
tic process is called long-range dependent (LRD), if its auto-
correlation function decays as a power law  [20].
Moreover, if the H exponent varies in time, the stochastic pro-
cess is called multifractal. 

III. RELATED WORK AND NOVEL CONTRIBUTION

The concept of self-similarity dates back to the early efforts
of A. N. Kolmogorov to explain the chaotic nature of turbu-
lence [16]. More precisely, in that paper, Kolmogorov pro-
poses a mathematical formalism relating the self-similarity and
small scale statistics of turbulent flows to the energy dissipa-
tion and universal scaling laws. Later on, several attempts were
made to bridge more closely the theory with real measure-
ments [12]; this includes the non-stationary aspects of turbu-
lence via random cascade models [24][18][11][2][28]. We
should also note that Mandelbrot constructed a mathematical
formalism of roughness, and introduced the concept of fractal
to denote the geometric scale-inference [19]. Over the years,
self-similarity and multifractal formalisms have found applica-
tion in many other fields such as diffusion-limited aggregation
[32], dielectric breakdown [1], biological systems [33].

More recently, self-similarity and fractal approaches have
been employed to study the structure of complex networks
[9][23] or elucidate the departure of experimental measure-
ments in various information networks from the standard Pois-
son assumption of packet arrival time distribution
[26][15][10]. Other experimental studies identify the existence

of self similar behavior in World Wide Web, local and wide
area networks [6][30]. 

Informally, self-similarity in network traffic can be per-
ceived as statistical similarity observed in bursty patterns of
network traffic over a wide range of time-scales. This corre-
sponds to scale-invariant burstiness [27][29][31] or mono-frac-
tal behavior in network traffic, where the level of burstiness is
typically captured via a single (Hurst) parameter. The most sig-
nificant impact of self-similar behavior is the existence of
long-range dependence (LRD), or long-range memory effects.

In the NoC context, applications are mapped to the avail-
able network resources. This leads to interactions and conten-
tion at various network resources. Analyzing the actual
characteristics of the network traffic is therefore a primary
concern for optimization purposes. Indeed, one of the major
challenges in constructing an accurate performance model for
network analysis is the presence of non-stationary effects in
traffic behavior. This is because operating the network close to
(or at) criticality can only make the non-stationarity become
more pronounced and the analysis more difficult. To date,
there exist many experimental studies that demonstrate the
existence of LRD, self-similarity, and even multifractality to
some extent in various traffic traces [6][30]. However, propos-
ing a model that is able to explain many features of the net-
work traffic while being intrinsically related to the dynamics of
NoCs remains an open problem. 

Towards this end, we present a statistical physics model for
NoC traffic characterization based on fitness distributions
which is able to retrieve the mono-fractal and multi-fractal
behaviors as particular cases. We test the validity of the theo-
retical conclusions by investigating the multifractal features of
several application configurations running on a CMP platform
where communication happens via the NoC approach.

IV. QUALE: A QUANTUM LEAP INSPIRED TRAFFIC MODEL FOR 
NOCS

To investigate the temporal characteristics of NoC traffic,
we adopt the quantum approach proposed in [4][5] and assume
that, at any point in time, each buffer is characterized by a fit-
ness function E. More precisely, we establish an analogy
between thermodynamic systems and communication net-
works such that the number of packets stored in a buffer corre-
sponds to the number of particles on a certain energy level.
Consequently, the routing of packets (which naturally affect
the number of arrivals at a certain buffer in the network)
becomes similar to the migration of particles (i.e., quantum
leap) among different energy levels.

Within this quantum approach, the number of particles is
determined by a fitness function E. Similarly, we assume that
this fitness function determines the number of arrivals at a cer-
tain buffer. To study the temporal behavior of packet arrivals,
we denote by ai(t) and  the cumulative number of
arrivals at buffer i by time t and the probability that buffer i,
characterized by fitness E received a packets by time t, respec-
tively.

As a first step in analyzing the multifractality of the NoC
traffic, we investigate the statistical properties of the 
distribution of packet arrivals at any buffer i (i.e., ,
where NB is the number of buffers in the network) by using a
master equation as follows: 
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Figure 1. a) An iterated zoom in process over a 3D sphere showing that
Euclidean objects do not display self-similar characteristics. b) An
iterated zoom in process over a mountainous area which displays a self-
similar behavior in valley branching. 
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(1)

In Equation 1, A(t) represents the total number of packets
in the network up to time t, y is the scaling exponent which
depends on the fitness E as described in [5] and g(y, t) denotes
the distribution of scaling exponents y in packet arrivals. Note
that g(y, t) changes as a function of traffic patterns at time t.

Equation 1 involves two main components. The first term
states that the probability distribution  is proportional
with time. Therefore, this term captures the long-term memory
effects of the arrival process. The second term encompasses
the statistical properties of the arrival process ai(t) at buffer i as
a function of changes in the traffic patterns. For instance, as
shown in Figure 2.a, one can assume that between t1 and t2
only Application 1 is running in the system and thus the distri-
bution g(y, t) is skewed around a single or few fractal expo-
nents. In contrast, when a new application enters into the
system, depending on the network region where it is mapped
to, the traffic pattern and the communication load may vary
drastically. This situation has also a significant effect on the
g(y, t) distribution associated with each buffer, causing it to
become either more or less skewed around some particular val-
ues (see the change in the g(y, t) distribution of the input buffer
at location (2,4) in Figure 2.b due to Application 2 entering the
system). Simply speaking, the second term of Equation 1 states
that the distribution of a new self-similar (i.e., re-scaled) sto-
chastic process can be obtained from an initial distribution via
a scaling relationship [20].

By substituting the k-th order moment of the number of
arrivals at node i  into Equation 1, we
obtain its time dependence as follows:

(2)

 where  denotes the maximum number of packets
injected by time t and the nonlinear exponents τ(k) represent a
multifractal signature. It should be noted that when there are
no changes in the network traffic pattern and the fitness distri-
bution  associated with buffer i obeys the relation

, Equation 2 characterizes a mono-fractal
stochastic process.

Based on the nonlinear exponents τ(k), the multifractal
spectrum can be expressed as follows:

(3)

where α represents the fractal dimension. Different from
mono-fractal processes, the multifractal spectrum defined in
Equation 3 states that a stochastic process can be characterized
by multiple fractal dimensions α and their normalized weights
f(α). 

Generally speaking, if the multifractal spectrum f(α) is
large around a certain fractal dimension α, then there are many
points characterized by this fractal dimension. In other words,
the multifractal spectrum plays the role of a probability distri-
bution function for the scaling exponents characterizing a sto-
chastic process. Moreover, if the support of fractal dimensions
α is wide, then we can state that the stochastic process is char-
acterized by many α exponents. As such, a multifractal spec-
trum is more likely to characterize the NoC traffic of CMP
platforms as the complexity of the application and the distribu-
tion g(y, t) increases.

V. EXPERIMENTAL METHODOLOGY

The experimental results are obtained using an in-house
cycle-accurate x86 NoC based CMP simulator. The front end
of the simulator depends on Pin [17] and iDNA [3]. The high-
level view of the simulated architecture is presented in
Figure 2. In this architecture, the NoC routers are virtual chan-
nel (VC) buffered 2D-mesh routers with 5 physical ports: one
for each {North, South, East, West} direction and extra one for
the local core the router is attached to. 

The NoC traffic is dominated by the communication
between PEs and shared L2 cache banks. Each PE has a private
L1 cache. When an application cannot find the data in its pri-
vate L1 cache, an address packet is created and sent to the L2
cache bank the requested data resides in. When the requested
data becomes available in the L2 cache, a data packet is
injected into the network as a reply to the received request.

We model a static non-uniform cache architecture (S-
NUCA) where the L2 cache bank the cache line resides in is
determined via the lower order bits in the address of the cache
line. Therefore, depending on the requested data address, an
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Figure 2. Schematic representation showing: a) An application task graph mapped at time t1 onto a 4×6 NoC architecture and the distribution g(y,t) of
scaling exponents associated with the input buffer of the PE located at (2,4). b) At time t2, a new application task graph is mapped onto the same
architecture. Due to the changes in the overall traffic patterns and the increase in the communication load, the distribution g(y,t) associated with the
input buffer of the local PE located at (2,4) can become very different compared to case a).
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address packet might be destined to any of the shared cache
banks in the network. In addition, we model our PEs to be self-
throttling, thus preventing a PE from injecting new packets
into the network when its injection buffers are full. Table 1
lists the major system parameters.

 We model the PEs and the caches as in real systems.Thus,
we do not have a direct control over the packet injection rate of
real applications. L1 misses result in the creation of new
address packets, which are then sent to the shared L2 caches to
request data. Therefore, a smaller L1 cache size results in a
higher number of misses and implicitly a higher packet injec-
tion rate, whereas a larger cache results in a lower injection
rate. To discuss the impact of changing the injection rate over
the distributions of inter-arrival times, we report in Section VI
statistical information using different L1 cache sizes.

For our simulation experiments, we use a subset of SPEC
2006 applications [14]. Each benchmark is compiled using gcc
4.1.2 with -O3 optimizations and a representative execution

phase is chosen using PinPoints [25]. Our experiments involve
two different scenarios simulated on a 10x10 mesh NoC: 

 • Single-application scenarios: In this set of simulations,
out of 100 PEs, only one PE executes an application. Depend-
ing on the requested memory address, address (request) pack-
ets may hit on any L2 bank in the system. We also vary the
data packet size (i.e., 1 flit, 4 flits and 8 flits) and L1 cache size
(i.e., 8K, 16K, 32K, 64K).

 • Dynamic multiple-application scenarios: In this set of
simulations, all 100 PEs are utilized. We randomly divide the
applications into three groups (see Table 2). The applications
in the first group are executed during the entire run. The appli-
cations in the second group are dynamically replaced with the
applications in the third group. We perform experiments with
dynamic multiple-applications scenario on a 10×10 mesh NoC
using two different L1 cache sizes (i.e., 64K and 8K), and two
different routing algorithms (XY wormhole routing and deflec-
tion wormhole routing [22]) with 8-flit long data packets.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

A.  Impact of Workload on Traffic Statistics
One way to elucidate the presence of temporal scaling in

the NoC traffic involves computing the power spectrum of the
inter-arrival times of data packets because the power spectrum
of a time series measures the magnitude of variability and the
degree of scaling as a function of frequency. To be more pre-
cise, a time series exhibits a scaling behavior over a certain
frequency interval  if the power spectrum obeys a power
law relation , where  is the scaling exponent.
In other words, the slopes observed in the power spectrum
show that the fluctuations in variance are scale-invariant to
certain frequency bands. Moreover, stochastic processes exhib-
iting a nonlinear power spectrum are called non-stationary
[20][33]. Apart from mathematical intricacies, the power spec-
trum of inter-arrival times can show if the NoC traffic is non-
stationary, i.e., whether or not the properties of the applications
traffic patterns change as time progresses.

Figure 3.a, Figure 3.b, and Figure 3.c show the power spec-
trum of benchmark 400.perlbench (on the log-log scale) while
running on a 10×10 mesh NoC with various L1 cache sizes
(e.g., 8K, 16K, 32K, 64K) and for several data packet sizes (1
flit (a), 4 flits (b) and 8 flits (c)). Figure 3.a shows that by
reducing the L1 cache size from 64K to 8K, the non-stationary
effects become more pronounced. For instance, for 1-flit long
data packets, the slope of the power spectrum in Figure 3.a
increases from 0.09257 to 1.07. This can be regarded as a non-
stationarity signature since a stationary stochastic process
would have a slope close to zero (i.e., it would look like an
horizontal line). Similar trends can be observed in Figure 3.b
and Figure 3.c for data packet sizes of 4 and 8 flits where the
power spectrum slopes change in the range of [0.084, 1.072]
and [0.09232, 1.075], respectively. This shows that the impact
of packet size on the network traffic statistics is minimal, espe-
cially when compared against the influence of packet injection
rate.

The impact of the increased packet injection rate over non-
stationarity is also confirmed by power spectrum of data from
several other applications: 403.gcc (Figure 3.d), 444.namd

Table 1: Baseline processor, cache, memory and network
configurations used in the experimental setup.

Processing Ele-
ment pipeline

2 GHz Processing Element, 128-entry instruction window, 
12-stage pipeline

Fetch / Exec /
Commit width

3 instructions per cycle in each core; only 1 can be a mem-
ory operation

L1 caches Private, per-PE, 4-way set associative, 128B block size
L2 caches Shared 1MB bank per PE, 16-way set associative, 128B 

block size, XOR based address-to-bank mapping
Network router Buffered, wormhole switched, XY routing, Virtual chan-

nel (VC) flow control, 4 VCs per port, Round-Robin 
packet scheduling, 4 flit buffer depth, 1 flit per Address 
Packet, 4 or 8 flits per data packet

Network topol-
ogy

10x10 2D-mesh, each tile has a router, PE, private L1 
cache, shared L2 cache bank

Table 2: Classification of SPEC 2006 applications.

Set Application Description Inj. Rate 
(Packets/

Cycle)
SET-I 400.perlbench Perl scripting language 0.001147

401.bzip2 File compressor 0.039072
403.gcc C Language optimizing compiler 0.052649

445.gobmk Go playing program 0.025125
450.soplex Simplex Linear Program solver 0.077675

454.calculix 3D Finite Element code 0.005126
482.sphinx Speech recognition 0.049308

SET-II 429.mcf Single-depot vehicle scheduler 0.196724
462.libquantum Quantum computer simulation 0.096904

464.h264ref Video compression program 0.012494
433.milc Quantum Chromodynamics 0.047728

437.leslie3d Computational fluid dynamics 0.096399
447.dealII Adaptive finite elements 0.007556

SET-III 456.hmmer A gene sequence database search 0.044859
458.sjeng Chess & variants playing games 0.015726

471.omnetpp Ethernet network simulator 0.043674
473.astar 2D path finding library 0.016980

435.gromacs Simulator for Lysosome protein 0.015665
444.namd Biomolecular systems simulator 0.065465

f1 f2,[ ]
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(Figure 3.e), and 482.sphinx3 (Figure 3.f). In contrast to previ-
ously discussed applications, these plots show a more complex
behavior which require nonlinear fits (see the dashed lines) and
display multiple scale breaks. This kind of more complex non-
linear behavior observed in the power spectra of these applica-
tions shows not only the existence of non-stationarity, but also
a more complex behavior than a monofractal one.

Considering the data presented in Figure 3, it can be stated
that the power spectrum exhibits a wide range of scaling in
time. These observations should not only raise awareness to
non-stationarity effects, but also suggest that fractional Brown-
ian motion [20] and other similar approaches are not necessar-
ily adequate for modeling real NoC traces as they rely on a
single scaling exponent characterized by a single fractal
dimension. Instead, the richness of scaling displayed by vari-
ous traces supports the existence of multiple fractal dimen-
sions. We discuss this issue later in the paper.
B.  Multiscale Analysis of NoC Traffic

Rather than complicating the traffic characterization prob-
lem, the multifractal approach basically reduces the statistics
of a long times series to a distribution of scaling exponents
(i.e., Equation 3) which encompasses the non-stationary
aspects as well [13]. Therefore, we investigate next the pres-
ence of multifractality in NoC traffic.

Single application scenarios: Figure 4 reports the multi-
fractal spectrum (see Equation 2) of the inter-arrival times of

the data packets for three applications from single application
scenarios (400.perlbench (a), 403.gcc(b), and 401.bzip2 (c)), run-
ning on a 10×10 mesh NoC with various L1 cache sizes (i.e., 8K,
16K, 32K, 64K).

For all these applications and data packet sizes, the support
of the multifractal spectrum shrinks with the increasing packet
injection rate. However, this does not imply, the existence of a
monofractal behavior because for a mono-fractal process, the
spectrum would appear as a delta function (i.e., as a very nar-
row spike) centered around a certain value on the x-axis. In
other words, for a mono-fractal stochastic process, if the time
series of inter-arrival times between data packets were seg-
mented into disjoint sets, each newly created time segment
would be characterized by the same fractal dimension. On the
other hand, for a multi-fractal stochastic process, each of the
newly created time segment can have its own fractal dimension
based on the particular characteristics of the time dependent
generated network traffic. From this discussion, it can be con-
cluded that the network evolves toward a congested state as the
multifractal spectrum shrinks.

We should also note that the 403.gcc and 437.leslie3d
applications exhibit opposite behaviors with increasing packet
injection rate, especially in terms of persistence tendency. The
persistence tendency means that the stochastic process is char-
acterized by some kind of periodicity reflected via higher cor-
relation moments; this implies that the process exhibits higher

Figure 3. Power spectrum of inter-arrival times of data packets for different applications running on a 10×10 NoC with various L1 cache sizes:
400.perlbench for three different packet sizes: 1 flit (a), 4 flits (b) and 8 flits (c). Power spectrum of the inter-arrival times of data packets for three
applications: 403.gcc (d), 444.namd (e) and482.sphinx3 (f) running on a 10×10 NoC with various L1 cache sizes and 4-flit long data packets.

a) b) c)

d) e) f)



order memory effects [21]. On the other hand, the anti-persis-
tent tendency shows that the stochastic process deviates from
time periodicity and has memory effects of lesser degree.

While the multifractal spectrum for 403.gcc shrinks
towards the anti-persistent region (lower support of fractal
dimensions - left), the multifractal spectrum of 401.bzip2
application shrinks towards the persistent region (higher sup-
port of fractal dimensions - right). Nevertheless, both graphs
display a broad range of fractal dimensions concentrated
around 1 which confirms the existence of multiscale, as well as
a high degree of memory.

Dynamic multiple-application scenarios: To investigate
the impact of running multiple applications on the NoC traffic
characteristics, we report the multifractal spectrum of the inter-
arrival times of the data packets for six applications from
dynamic multiple-applications scenarios, running on a 10×10
mesh NoC with two L1 cache sizes (i.e., 8K, 64K) and 8-flit data
packets:

 • 401.bzip2 runs on the PE at (0,0) and 433.milc runs on the PE
at (9,9) in Figure 4.d;

 • 401.bzip2 runs on the PE at (0,0) and 437.leslie3d runs on the
PE at (9,9) in Figure 4.e;

 • 450.soplex runs on the PE at (0,0) and 464.h264ref runs on the
PE at (9,9) in Figure 4.f.

All these plots exhibit a wide range of fractal dimensions
which correspond to a highly nonlinear exponent τ(k) in
Equation 2. It should also be noted that, with the increased
communication load, the multifractal spectrum shrinks around
1 which corresponds to a high degree of memory effects. We
also notice that the multifractal spectrum for 401.bzip2 and
464.h264ref exhibit a short discontinuity which can be attrib-
uted to the artifacts of fitting simulation data. However, this
does not affect the conclusion about the existence of multifrac-
tal behavior. Also, the asymmetry displayed by all these multi-
fractal spectra can be interpreted as the heterogeneity observed
in both single and multiple application workloads traffic pat-
terns. As discussed in the next section, the existence of multi-
fractality in NoC traffic has direct implications in the design
and optimization of NoC architectures. 

VII. CAUSES AND IMPLICATIONS OF MULTI-FRACTAL BEHAV-
IOR CASE STUDY ON ESTIMATING DEADLINES

In this section, we discuss possible causes of multifractality
of the data inter-arrival times. We especially consider the com-
pute versus stall times of applications. Finally, we briefly dis-
cuss a few implications of multi-fractality in CMP scheduling. 

Compute vs. Stall times, Request-Reply Latencies, and
MLP: Generally speaking, during its execution an application
alternates between useful compute periods (i.e. periods when

Figure 4. Multifractal spectrum of the inter-arrival times of the data packets for three applications running on a 10×10 NoC with varying L1 cache sizes:
400.perlbench with 1 flit (a), 403.gcc with 4 flit (b), 401.bzip2 with 4 flit (c) data packets. The broad range of fractal dimensions exhibited in these graphs
confirm the existence of multifractality in NoC traffic. Multifractal spectrum of inter-arrival times of data packets for six applications from dynamic
multiple-applications scenarios, running on a 10×10 mesh NoC with various L1 cache sizes (i.e., 8K, 64K) and 8 flits data packets: 401.bzip2 (d) mapped
on the PE located at (0,0) and the 433.milc mapped on PE located at (9,9), 401.bzip2 (e) mapped on the PE located at (0,0) and the 437.leslie3d mapped on
PE located at (9,9) in Figure 4.e, and 450.soplex mapped on the PE located at (0,0) and the 464.h264ref (f) mapped on PE located at (9,9) in Figure 4.f.
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there is forward progress on the application execution) and
useless stall periods [34]. While a PE is in the stall state, it
makes no progress on the application execution. 

The stall time experienced by a PE is tightly coupled with
the experienced request-reply latencies. We define the request-
reply latency (RRL) as the time elapsed between the creation
of an address request (address packet) and the receiving of its
associated reply (data packet). 

If we consider the use of strict in-order PEs that cannot
overlap the latency of multiple packets, then the stall time
experienced by a PE is dependent only on request-reply laten-
cies, and can be defined as the sum of request-reply latencies
of all packets. However, in our experimental setup, we evalu-
ate state-of-the-art out-of-order execution PEs that can overlap
the latency of multiple packets. Therefore, the stall time expe-
rienced by the core is not a simple sum of all packet latencies.
The degree of memory level parallelism an application has is
one of the most significant reason why the experienced stall
time deviates from the sum of the request-reply latencies.

Memory Level Parallelism (MLP) is defined as issuing and
servicing of multiple requests in parallel [35]. During the exe-
cution of an application by an out-of-order PE, an application
might have multiple outstanding requests. The latencies for
some of the requests will overlap with the latencies of older
requests. The degree of overlap between request latencies
relates to the application MLP; higher MLP applications have
more overlap among their requests.

Implications: With increasing amount of traffic in the
NoC, request-reply latencies start to increase. As a result, stall
periods start dominating the compute periods, leaving the PE
idle for most of its execution time and thus reducing its perfor-
mance. In our experiments with multiple-application scenarios,
we observe that the stall times dominate the processing times
for several applications1. This is especially true for applica-
tions with high injection rates (e.g., 450.soplex - See Table 2). 

Case Study: In Figure 5.a, we report the probability of
request-reply latencies exceeding a certain threshold for
450.soplex. The presented data is collected in a dynamic multi-

application scenario where 450.soplex runs on the PE located
at (2,4) of a 10×10 mesh NoC. The routing algorithm is XY
routing and the simulation runs for 10M clock cycles. We
should note that the PE located at (2,4) running 450.soplex
spends 82.7% of the execution time in stall state. The dotted
line represents the standard Markovian behavior which corre-
sponds to an exponential probability of the request-reply laten-
cies to exceed a given threshold. More precisely, the
probability of request reply latency to exceed a certain thresh-
old is given by: , where b and c are the
shape and scale parameters, respectively.

As it can be observed from Figure 5.a, the Markovian
curve underestimates the probability of exceeding a certain
latency (i.e., the probability of missing a deadline). For
instance, according to the Markovian curve the probability of
waiting for a certain data packet approximately 600 clock
cycles is 0.0001, while it becomes 0.007 for the multifractal
curves. Thus, Markovian curves are quite optimistic in their
estimations. This implies that when the multifractal effects are
ignored, the likelihood of missing a deadline and failing to pre-
dict the actual request-reply latency is at least an order of mag-
nitude higher. For completeness purposes, in Figure 5.b we
report the magnitude and burstiness of request-reply latencies
encountered at node (2,4) over the entire simulation.

In Figure 5.c we present the probability of exceeding a cer-
tain threshold in request-reply latency for another application,
433.milc. The presented data is again collected in a dynamic
multi-application scenario, at the node located at (4,4) of a
10×10 mesh NoC using two different L1 cache sizes (i.e., 64K
and 8K). In this scenario, the PE located at (4,4) running
433.milc is stalled 60% of the time. The Markovian curve
again underestimates the probability of exceeding a certain
threshold in data latency. However, the difference between the
estimations of multifractal curves and the Markovian curve is
higher, especially when the packet injection rate is higher. For
instance, the Markovian case predicts a probability of 0.00006
to exceed a threshold of 530 clock cycles, while the multifrac-
tal approach predicts a probability of 0.0045. 

Effect of the Routing Algorithm: Different from the
results presented in Figure 5.a, in the experiment presented in
Figure 5.c, wormhole deflection is used as the routing algo-

1.If a core spends more than 60% of its execution in stall state, we
say that its stall times dominate its processing times.

Figure 5. a) The probability of the latency encountered by a data request to exceed a certain threshold for the PE located at (2,4) when running
450.soplex on a 10×10 NoC with 64K and 8K L1 cache sizes , XY wormhole routing and 8 flits per packet. b) The plot for the latencies encountered for
each data requested by node (2,4) from other nodes on the 10×10 NoC. c) The probability of the latency encountered by a data request to exceed a certain
threshold for the PE at (4,4), running 433.milc on a 10×10 NoC with two L1 cache sizes (64K and 8K), wormhole deflection routing and 8 flits per packet.
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rithm. Comparing the results presented in Figure 5.a and
Figure 5.c, it can be observed that the two multifractal proba-
bility curves corresponding to 64K and 8K L1 cache sizes are
almost the same in Figure 5.a while they drastically deviate
from one another in Figure 5.c. This is mostly due to the
change in the routing algorithm. Therefore, it can be stated that
the fixed XY routing does not introduce secondary effects as
the deflection algorithm does. In addition, the higher degree of
freedom in packet routing introduces i) higher latencies as L1
cache size decreases and ii) a more pronounced nonlinear
behavior in the distribution of stall times. Using the QuaLe
model in Section IV, it can be shown that the distribution of
stall times has multifractal features that are captured via the fit-
ness distribution. 

Future Work: There are two major directions for future
research. First, understanding the reasons for multi-fractality in
NoCs is important. We hypothesize that the discrepancy
between the Markovian curves and multi-fractal curves are due
to effects like memory-level parallelism and phase behavior in
the memory intensity of applications. Further research is
needed to pinpoint the causes of multi-fractality.

Second, developing better NoC policies based on the
understanding of multi-fractality can prove fruitful. In our
experiments, we have used application/distribution oblivious
routing and packet arbitration policies (XY and deflection
routing as routing algorithms and round-robin for packet arbi-
tration). However, as discussed in this section, stall times,
which are a function of the application network intensity and
memory level parallelism, tend to dominate compute times.
Therefore, new research aimed at designing application/stall
time aware routing and scheduling policies, that can account
for the multifractal features of various applications and thus
prioritize the applications in the network accordingly, can be
very promising.

VIII. CONCLUSION

This paper provides evidence that in NoC-based CMP sys-
tems with a large number of components, the NoC traffic needs
to be characterized using a multifractal approach rather than
standard Markovian approach. Using a new theoretical model,
we have investigated the effect of packet injection rate and the
data packet sizes on the multifractal spectrum of NoC traffic.
For several applications, we have shown how the existence of
multifractality can be identified and used in estimating the
probability of missing a deadline for applications with packet
deadline requirements. We have further shown that the stall
times experienced by the applications start dominating the
compute times, especially in loaded traffic scenarios, reducing
the utilization of cores drastically. Therefore, our future work
will focus on developing application/distribution aware routing
and scheduling policies for CMP platforms based on multifrac-
tal features of the NoC traffic model proposed in this paper.
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