
Microarchitecture-Based Introspection: A Technique for Transient-Fault
Tolerance in Microprocessors

Moinuddin K. Qureshi Onur Mutlu Yale N. Patt
Department of Electrical and Computer Engineering

The University of Texas at Austin
{moin, onur, patt}@hps.utexas.edu

Abstract

The increasing transient fault rate will necessitate on-
chip fault tolerance techniques in future processors. The
speed gap between the processor and the memory is also
increasing, causing the processor to stay idle for hundreds
of cycles while waiting for a long-latency cache miss to be
serviced. Even in the presence of aggressive prefetching
techniques, future processors are expected to waste signifi-
cant processing bandwidth waiting for main memory.

This paper proposes Microarchitecture-Based Introspec-
tion (MBI), a transient-fault detection technique, which uti-
lizes the wasted processing bandwidth during long-latency
cache misses for redundant execution of the instruction
stream. MBI has modest hardware cost, requires mini-
mal modifications to the existing microarchitecture, and is
particularly well suited for memory-intensive applications.
Our evaluation reveals that the time redundancy of MBI re-
sults in an average IPC reduction of only 7.1% for memory-
intensive benchmarks in the SPEC CPU2000 suite. The av-
erage IPC reduction for the entire suite is 14.5%.

1. Introduction

Transient faults present a serious challenge to the cor-
rect operation of future processors. A transient fault occurs
in a processor when a high-energy cosmic particle strikes
and inverts the logical state of a transistor. Technology
trends such as reduction in operating voltage, increase in
processor frequency, and increase in the number of on-chip
transistors indicate that the transient fault rate is likely to
increase by orders of magnitude [15]. In order to address
this problem, future processors will need to incorporate on-
chip fault tolerance techniques. Fault-tolerant techniques
with low hardware overhead are desirable because they
make fault-tolerance pervasive by giving the users an option
of fault-tolerance without committing to a heavy hardware
cost. Thus, if the user chooses not to have a fault-tolerant
processor, then only the small hardware resources dedicated
solely to fault tolerance will go unused. This paper inves-
tigates a low hardware overhead fault tolerance mechanism
that is relatively simple and can be easily incorporated in an
existing microarchitecture.

Fault tolerance has traditionally been achieved using two
techniques: redundant code and redundant execution. Stor-
age structures have regular patterns, which lend themselves
to redundant codes. These structures can easily be protected
with well-understood techniques such as parity and Error
Correcting Codes (ECC). In contrast, combinational logic
structures have irregular patterns, which often necessitate
redundant execution for fault tolerance. Redundant exe-
cution can further be classified into space redundancy and
time redundancy. Space redundancy is achieved by execut-
ing a task on multiple disjoint structures. Space redundancy
has low performance overhead but requires hardware in pro-
portion to the number of redundant structures. Time redun-
dancy is achieved by executing a task on the same hard-
ware multiple times. Time redundancy has low hardware
overhead but high performance overhead. The performance
overhead of time redundancy can be reduced if the redun-
dant execution is scheduled during idle cycles in which the
processing bandwidth is otherwise wasted. This paper fo-
cuses on utilizing the wasted processing bandwidth due to
long-latency cache misses for time redundancy.

Processor frequency has increased at a much faster rate
than DRAM memory speed, which has led to a widen-
ing speed gap between the processor and the memory.
This problem is partially addressed in current processors
through multi-level on-chip caches, providing fast access
to recently-accessed data. Unfortunately, a cache miss at
the highest level on-chip cache almost always stalls the
processor [5] because the latency to main memory is very
long (in the order of hundreds of cycles [21]). The stalled
processor cannot execute instructions until the long-latency
cache miss is completely serviced. Therefore, these cache
misses translate into idle cycles for the processor, resulting
in wasted processing bandwidth. The problem is even worse
for memory-intensive applications because these applica-
tions have large working sets, which cause frequent cache
misses. Applications that have traditionally required high
fault tolerance, such as transaction processing and database
workloads, tend to be memory-intensive [4]. In fact, a re-
cent study [3] showed that database workloads spend about
two-thirds of their execution time waiting for memory.

The processing bandwidth wasted due to long-latency
cache misses can be utilized for different purposes. Runa-

1

head execution [8] pre-executes the application during long-
latency cache misses in order to generate prefetches. Li et
al. [6] use the spare bandwidth to reduce power by reducing
the processor voltage while a cache miss is being serviced.
Similarly, the wasted processing bandwidth can be used for
increasing the fault tolerance of a processor by re-executing
the application during the idle cycles.

In this paper, we propose Microarchitecture-Based In-
trospection (MBI), a time redundancy technique, to detect
transient faults. MBI achieves time redundancy by schedul-
ing the redundant execution of a program during idle cy-
cles in which a long-latency cache miss is being serviced.
MBI provides transient fault coverage for the entire pipeline
starting from instruction fetch to instruction commit. This
technique is completely microarchitecture based and re-
quires no support from the compiler or the ISA. It requires
modest hardware overhead and minimal changes to the ex-
isting microarchitecture. Because the technique attempts to
utilize idle cycles caused by long-latency cache misses, it is
particularly well-suited for memory-intensive applications.
Our experiments show that using MBI for 13 memory-
intensive benchmarks from SPEC CPU2000 results in an
average IPC reduction of only 7.1%. The average IPC re-
duction for the entire SPEC CPU2000 suite is 14.5%.

2. Motivation and Overview

2.1. Motivation for Using Cache Miss Cycles for
Redundant Execution

To measure the amount of processing bandwidth wasted
due to long-latency cache misses, and its potential for re-
dundant execution, we perform three experiments.1 In the
first experiment, we simulate the baseline machine with a
perfect instruction cache, a perfect data cache, and a perfect
branch predictor. We measure the Cycles Per Instruction2

(CPI) of this configuration (CPI-PERF). Redundant execu-
tion can leverage the load values and the resolved branch
directions from the first execution of the instruction stream
and therefore does not need to incur data cache misses or
branch mispredictions. Hence, the CPI of the redundant ex-
ecution can be expected to be very close to CPI-PERF. In
the second experiment, we measure the CPI of the baseline
machine with a perfect L2 cache, but real first-level (L1)
caches and a real branch predictor. The CPI increase for the
second experiment with respect to the CPI of the first exper-
iment represents the CPI added due to real L1 caches and
branch predictor (CPI-L1-BP). In the third experiment, we
measure the CPI of the baseline machine with real L1 and

1Section 4 describes the baseline configuration and benchmarks. The
memory system includes a 1MB L2 cache and an aggressive prefetcher.

2We use CPI for the experiments in this section because CPI provides
a more intuitive breakdown of execution time due to the different compo-
nents in a processor. For experiments in all other sections, we use Instruc-
tions Per Cycle (IPC) to measure performance.

L2 caches and a real branch predictor. The CPI increase for
the third experiment with respect to the CPI of the second
experiment represents the CPI added due to a real L2 cache
(CPI-L2). Figure 1 shows the CPI breakdown in terms of
CPI-PERF, CPI-L1-BP, and CPI-L2 for each benchmark.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

C
yc

le
s

pe
r

In
st

ru
ct

io
n

CPI-L2
CPI-L1-BP
CPI-PERF

HIGH-MEM CATEGORY LOW-MEM CATEGORY

16

mcf art luc
as

am
mp

tw
olf

wup
wise

ap
si

vp
r

fac
ere

c

sw
im

ga
lge

l
gc

c
bz

ip2
vo

rte
x
mgr

id
pa

rse
r

ap
plu

eq
ua

ke

mes
a

ga
p

six
tra

ck

cra
fty

pe
rlb

mk

gz
ip

eo
n

fm
a3

d

Figure 1. CPI breakdown.

For each benchmark, the proportion of CPI-L2 in total
CPI represents the fraction of processing bandwidth that
gets wasted due to L2 misses. We sort the benchmarks with
respect to this proportion and classify them into two cate-
gories: HIGH-MEM and LOW-MEM. The thirteen bench-
marks that have the highest proportion of CPI-L2 in total
CPI are grouped in the HIGH-MEM category, and the re-
maining benchmarks are grouped in the LOW-MEM cate-
gory. The benchmarks in the LOW-MEM category have a
small CPI-L2 component in total CPI. These benchmarks
either have memory access patterns that are easily prefetch-
able or have working sets that fit in the L2 cache.

All benchmarks in the HIGH-MEM category, except gal-
gel, have CPI-L2 more than CPI-PERF. These benchmarks
have sufficient idle processing bandwidth to re-execute the
program with negligible performance degradation. Though
our technique is primarily targeted towards such memory-
intensive applications, we perform our studies for all the
benchmarks in the SPEC CPU2000 suite.

2.2. Overview

In this section, we provide a brief overview of MBI.
The operation of a machine implementing MBI has two
modes: performance mode and introspection mode. Instruc-
tions are processed for the first time in performance mode.
Later, for fault tolerance, instructions are processed again
in introspection mode. The architectural state (i.e., archi-
tectural registers and memory) is updated only during the
performance mode. The purpose of introspection mode is
to verify the results produced during performance mode.
Thus, the architectural state is not modified during intro-
spection mode unless an error is found. Figure 2 shows the
state machine for the MBI mechanism.

2

PERFORMANCE
MODE MODE

INTROSPECTION

OR BUFFER_FULL
LONG_LATENCY_CACHE_MISS

MISS_SERVICED
OR BUFFER_EMPTY

Figure 2. State machine for the MBI mechanism.

In performance mode, instruction processing proceeds
without paying attention to incorrect operation resulting
from transient faults. Instructions are fetched, executed,
and retired. The result of each retired instruction is stored
in a structure, called the backlog buffer. Writing results to
the backlog buffer is a post-retirement operation and does
not affect the instruction processing speed in performance
mode. When a long-latency cache miss occurs in perfor-
mance mode, the mechanism switches the state to introspec-
tion mode. In introspection mode, the processor re-executes
each instruction that was retired in performance mode and
compares the new result with the result of the previous ex-
ecution stored in the backlog buffer. If both results match,
then instruction processing for that instruction is assumed
to be fault-free and the respective entry is removed from the
backlog buffer. A mismatch between the two results signals
an error.

If there are no long-latency cache misses for a long pe-
riod, the processor will not enter introspection mode and the
backlog buffer will become full. To guarantee redundant ex-
ecution for all retired instructions, the processor is forced to
enter introspection mode when the backlog buffer becomes
full.3 The processor returns from introspection mode to
performance mode when either the backlog buffer becomes
empty or when the long-latency miss gets serviced.

3. Design

In this section, we provide details about the implemen-
tation and operation of MBI. Figure 3 shows the baseline
system and the extensions required to incorporate MBI into
an existing microarchitecture. The structures unique to MBI
are shaded.

We assume that the storage structures such as caches,
register files, and the backlog buffer are protected using
ECC and buses are protected using parity. The pipeline is
unprotected and vulnerable to transient faults.

3An alternative policy does not force the processor into introspection
mode when the backlog buffer is full. However, this policy will not pro-
vide redundant execution for all retired instructions and, therefore, will
not guarantee transient fault coverage for all instructions. The percentage
of instructions that are redundantly executed during an L2 miss (i.e., the
coverage of the instruction stream of this alternative policy) is shown in
Section 5.4.

R
E
T
I
R
EH

C

E
F

T

=
COMPARATOR

PROCESSOR PIPELINE
(VULNERABLE TO TRANSIENT FAULTS)

D CACHE

MODE

ERROR
PERF

ISPEC

ARF

ARF

I CACHE

L2 CACHE BUS
MEMORY

BACKLOG
BUFFER

HEAD−PTR

TAIL−PTR

Figure 3. Microarchitecture support for MBI.

3.1. Structures

MBI requires the following changes to the microarchi-
tecture:

1. Extra register file: The design includes two architec-
tural register files, PERF ARF and ISPEC ARF. Each
ARF contains the general purpose registers, control
registers, and the Program Counter (PC). The PERF
ARF is updated only in performance mode and the IS-
PEC ARF is updated only in introspection mode.

2. Backlog buffer: This storage structure keeps track of
the instructions that were retired in performance mode
but have not yet been processed in introspection mode.
It is implemented as a circular FIFO buffer and con-
tains two pointers: a tail pointer (TAIL-PTR) and
a head pointer (HEAD-PTR). The TAIL-PTR deter-
mines the entry in the backlog buffer where the result
of the next retiring instruction will be written. Results
are written in the backlog buffer only during perfor-
mance mode. When an instruction writes its result in
the backlog buffer, the TAIL-PTR is incremented to
point to the next entry. The HEAD-PTR determines
the location of the entry in the backlog buffer that will
provide the result to be compared with the next com-
pleted instruction in introspection mode. The results
are read from the backlog buffer only during intro-
spection mode. In our experiments, we assume that
the backlog buffer can store the results of 2K instruc-
tions. Section 5.2 analyzes the impact of varying the
size of the backlog buffer and Section 5.3 analyzes the
hardware cost of the backlog buffer.

3. Selection mechanism for load instructions: Because
store instructions update the D-cache in performance
mode, load instructions read their memory values from
the backlog buffer in introspection mode. A newly
added mux selects between the D-cache output and the
backlog buffer output, based on the mode of the pro-
cessor.

4. Comparator: A comparator is required to compare the
results of redundant execution with the results stored in

3

the backlog buffer. The comparator logic is accessed
after the retirement stage of the pipeline. If the inputs
to the comparator are different, an error is signaled in
introspection mode.

In addition, depending on the error handling policy, logic
for handling errors may be required.

3.2. Operation

A processor implementing MBI can be in performance
mode, introspection mode, or switching from one mode to
another. We describe the operation for all these cases.

• Operation in performance mode

In performance mode, the processor performs its nor-
mal operation without checking for errors resulting
from transient faults. When an instruction retires, it
updates the PERF ARF register file and its results are
also copied into the backlog buffer. Store instructions
update the D-cache and load instructions read their val-
ues from the D-cache.

• Operation in introspection mode

Instruction processing in introspection mode begins
with the oldest instruction that was retired in perfor-
mance mode but has not yet been processed in intro-
spection mode. In introspection mode, the processor
fetches the instructions from the I-cache and processes
them in the normal manner with four exceptions. First,
retired instructions update the ISPEC ARF register file.
Second, a load instruction reads its memory value from
the backlog buffer. Third, a store instruction does not
update the D-cache (memory system is not updated in
introspection mode). Finally, the prediction for a con-
ditional branch instruction is provided by the resolved
branch direction stored in the backlog buffer. In in-
trospection mode, the processor does not update the
branch predictor. This allows the branch predictor to
retain its history information for performance mode.

When an instruction retires in introspection mode, its
result is compared with the result stored in the backlog
buffer. A match denotes correct operation, whereas a
mismatch is signaled as an error. We discuss error han-
dling policies in Section 6.

• Switching from performance mode to introspection
mode

A processor in performance mode can switch to intro-
spection mode due to any of the following reasons:

1. Long-latency L2 cache miss

When there is a long-latency L2 cache miss, the
instruction causing the cache miss will reach the

head of the reorder-buffer and stall retirement un-
til the cache miss gets serviced. When the in-
struction causing the cache miss reaches the head
of the reorder-buffer, the processor waits for 30
cycles and switches to introspection mode. The
30 cycle wait allows the in-flight instructions to
execute and to possibly generate additional L2
misses.

2. Backlog buffer full
When the backlog buffer is full, the processor is
forced to enter introspection mode. This is done
to guarantee redundant execution, and, therefore,
transient fault coverage, for all instructions.

3. System call
Instructions retired in performance mode need to
go through redundant execution before the pro-
cessor executes a system call.4 This prevents ex-
ternal devices from accessing the possibly incor-
rect results of the instructions that have not been
verified through redundant execution. As system
calls are infrequent, entering introspection mode
before them does not cause a significant perfor-
mance degradation. For SPEC CPU2000 bench-
marks, only 0.0004% of the introspection mode
episodes were caused by system calls.

4. Self-modifying code
When self-modifying code is detected, the pro-
cessor is forced to enter introspection mode be-
fore modifying any of the instructions. Other-
wise, the two executions of the same instruc-
tion will likely give different results in perfor-
mance mode and introspection mode, even if
there is no transient fault. We do not have any
self-modifying code in our experiments because
we model the Alpha ISA, which disallows self-
modifying code.

If the processor switches from performance mode to
introspection mode because of a long-latency cache
miss, the entry into introspection mode is called
normal-introspection. Entry into introspection mode
for any other reason is called forced-introspection. The
process of switching to introspection mode comprises
two activities. First, the mode bit is switched to indi-
cate introspection mode so that subsequent writes to
the ARF update the ISPEC ARF. Second, the pipeline
is flushed and the PC from the ISPEC ARF is copied
into the PC of the fetch unit so that the processor be-
gins fetching the redundant instructions from the I-
cache.

4For critical system calls, such as the machine check exception, the
processor can transfer control without completing redundant execution of
all retired instructions.

4

• Switching from introspection mode to performance
mode.

For normal-introspection, the processor returns to per-
formance mode when the long-latency cache miss gets
serviced or when the backlog buffer becomes empty,
whichever is earlier. On the other hand, for forced-
introspection, the processor returns to performance
mode only when the backlog buffer becomes empty.
The process of returning to performance mode com-
prises two activities. First, the mode bit is switched to
indicate performance mode so that subsequent writes
to the ARF update the PERF ARF. Second, the pipeline
is flushed and the PC of the PERF ARF is copied into
the PC of the fetch unit.

4. Experimental Methodology

The experiments were performed with SPEC CPU2000
benchmarks compiled for the Alpha ISA with the -fast
optimizations and profiling feedback enabled. We perform
our studies with the reference input set by fast-forwarding
up to 15 billion instructions and simulating up to 200M in-
structions.

We evaluate MBI by modeling it in an execution-driven
performance simulator. Our baseline processor is an ag-
gressive eight-wide out-of-order superscalar processor that
implements the Alpha ISA. Table 1 describes the baseline
configuration. Because MBI is primarily targeted towards
utilizing the idle cycles during long-latency cache misses,
we model the memory system in detail. We faithfully model
port contention, bank conflicts, bandwidth, and queuing de-
lays. The cache hierarchy includes a relatively large, 1MB,
L2 cache. Because some of the cache misses can be easily
prefetched using a prefetcher, our baseline also contains a
state-of-the-art streaming prefetcher [18].

Table 1. Baseline configuration.

Instruction cache 16KB, 64B line-size, 4-way with LRU replacement;
8-wide fetch with 2 cycle access latency.

Branch Predictor 64K-entry gshare/64K-entry PAs hybrid with
64K-entry selector; 4K-entry, 4-way BTB;
minimum branch misprediction penalty is 24 cycles.

Decode/Issue 8-wide; reservation station contains 128 entries.
Execution units 8 general purpose functional units;

All INT instructions, except multiply, take 1 cycle;
INT multiply takes 8 cycles.
All FP operations, except FP divide, take 4 cycles;
FP divide takes 16 cycles.

Data Cache 16KB, 64B line-size, 4-way with LRU replacement,
2-cycle hit latency, 128-entry MSHR.

Unified L2 cache 1MB, 64B line-size, 8-way with LRU replacement,
15-cycle hit latency, 128-entry MSHR.

Memory 400-cycle minimum access latency; 32 banks.
Bus 16B-wide split-transaction bus at 4:1 speed ratio.
Prefetcher Stream-based prefetcher with 32 stream buffers.

5. Results and Analysis

5.1. Performance Overhead

MBI has two sources of performance overhead. The first
source is the latency involved in filling the pipeline after
switching from one mode to another. We call this over-
head the pipeline-fill penalty. The second source is forced-
introspection, which forces the processor to perform re-
dundant execution at the expense of performing its normal
operation. We call this overhead the forced-introspection
penalty.

Figure 4 shows the decrease in IPC of the baseline pro-
cessor when MBI is incorporated. To measure IPC, we only
count the instructions retired in performance mode. We
measure the IPC overhead for a suite by first calculating the
harmonic mean IPC of the baseline for the suite, then cal-
culating the harmonic mean IPC for the suite when MBI is
incorporated, and taking the percentage difference between
the two harmonic means.

0

5

10

15

20

25

30

35

40

45

50
%

 R
ed

uc
ti

on
 in

 I
P

C

HIGH-MEM CATEGORY LOW-MEM CATEGORY

 m
cf ar

t
 lu

ca
s

 am
mp

 tw
olf

 w
up

wise

 ap
si

 vp
r

 fa
ce

rec

 sw
im
 ga

lge
l
 gc

c
 bz

ip2

 vo
rte

x

 m
gr

id

 pa
rse

r

 ap
plu

 eq
ua

ke

 m
es

a
 ga

p

 si
xtr

ac
k

 cr
aft

y

 pe
rlb

mk

 gz
ip

 eo
n
 fm

a3
d

 A
V

G
-H

IG
H

-M
E

M
 A

V
G

-A
L

L

Figure 4. IPC reduction due to the MBI mechanism.

For benchmarks in the HIGH-MEM category, the IPC
overhead due to MBI is fairly low, averaging only 7.1%.
The average IPC overhead for all the 26 benchmarks is
14.5%. For mcf, art, twolf, vpr and swim, the IPC reduc-
tion is well below 5%. These benchmarks are memory in-
tensive and have frequent stalls due to long-latency cache
misses. For lucas, ammp, and wupwise, the IPC reduction
ranges from 12% to 16%. The bursty L2 cache miss be-
havior of these three benchmarks results in a high IPC over-
head even though these benchmarks spend more than half of
their execution time waiting for memory. In some of these
benchmarks, the program passes through two phases, P1
and P2, each phase containing many more instructions than
the size of the backlog buffer. Phase P1 causes a lot of long-
latency cache misses and therefore results in a lot of spare
processing bandwidth, whereas phase P2 does not contain
any long-latency cache misses. Phases P1 and P2 repeat
in an alternating pattern. Even though there is significant
spare processing bandwidth during P1, instructions in P2

5

cannot utilize it for redundant execution and the processor
is frequently forced to enter forced-introspection during P2,
which causes the reduction in IPC.

For benchmarks in the LOW-MEM category, the perfor-
mance overhead is high. All benchmarks, with the excep-
tion of vortex and parser, incur an IPC reduction of more
than 30%. For the LOW-MEM benchmarks when the pro-
cessor enters introspection mode, it is almost always be-
cause the backlog buffer is full. This results in frequent
incurrence of the forced-introspection penalty.

5.2. Impact of the Size of the Backlog Buffer

In the previous section, we assumed that the backlog
buffer can store the results of 2K instructions. In this sec-
tion, we analyze the sensitivity of the IPC overhead of MBI
to the capacity of the backlog buffer. We vary the size of the
backlog buffer from 1K entries to 4K entries and measure
the IPC overhead. Figure 5 shows the IPC variations when
the size of the backlog buffer is changed.

1K 2K 4K
0

5

10

15

20

25

%
 R

ed
uc

ti
on

 in
 I

P
C

gcc
average
ammp
art

Figure 5. Sensitivity of the IPC overhead to the size of the back-

log buffer. Y-axis represents the IPC overhead and X-axis rep-

resents the number of entries in the backlog buffer.

The IPC-overhead for ammp decreases from 14.9% to
9.2% as the backlog buffer size is increased from 1K-entry
to 4K-entry because a larger backlog buffer can reduce the
number of costly forced-introspection episodes. Bench-
mark art has a steady IPC overhead of 3.6% for all three
sizes of the backlog buffer. Art has frequent long-latency
cache misses, which obviates the need for a large backlog
buffer. Benchmark gcc has a large instruction working-set
size, and therefore it shows a slight increase in the IPC over-
head when the size of the backlog buffer is increased. A
large backlog buffer can increase the I-cache miss rate in
introspection mode, which in turn can increase the I-cache
miss rate in performance mode (because different instruc-
tions may need to be fetched from the I-cache in the two dif-
ferent modes). The average IPC-overhead decreases from
16.1% for a 1K-entry backlog buffer, to 13.9% for a 4K-
entry backlog buffer. A backlog buffer of 2K entries pro-
vides a good trade-off between IPC overhead (14.5%) and
hardware overhead. Therefore, we chose 2K entries as the
default size of the backlog buffer throughout our experi-
ments.

5.3. Storage Cost of the MBI Mechanism

The additional hardware required for the MBI mecha-
nism includes the backlog buffer, the extra register file (IS-
PEC ARF) and combinational logic such as mux and com-
parators. In this section, we estimate the storage cost of the
MBI mechanism. A straightforward, unoptimized imple-
mentation of the backlog buffer is to store the full instruc-
tion results in the backlog buffer entry. We assume that each
result value stored in the backlog buffer takes eight bytes.
Table 2 calculates the storage cost of the MBI mechanism
in terms of Register Bit Equivalents (RBE’s).

Table 2. Storage Cost of the MBI Mechanism.

ARF contains: 32 INT Regs 32*8B=256B
32 FP Regs 32*8B=256B
2 CNTL Regs 2*8B= 16B
1 PC 1*8B= 8B

Size of ARF 536B

Backlog buffer contains 2000 entries
Size of each backlog buffer entry 8 B
Size of backlog buffer 2000*8B= 16000B

Total storage cost of MBI 16536B

The storage cost of 16KB is fairly small, especially con-
sidering that the baseline contains a 1MB cache. This cost
can further be reduced by using compression schemes and
taking advantage of result values that require fewer than
8 bytes. It should be noted that the above calculations do
not quantify the cost of control logic for the backlog buffer
(such as ECC bits) and the cost of glue logic (such as selec-
tion mux and comparator). The hardware cost of the control
logic is fairly small in comparison to the storage cost tabu-
lated in Table 2. However, quantifying the exact cost of the
control logic is beyond the scope of this paper.

5.4. Reasons for Entering Introspection Mode

The processor enters introspection mode either because
of a long-latency cache miss (normal-introspection) or be-
cause it is forced to enter introspection mode (forced-
introspection). An episode of normal-introspection does
not cause a significant reduction in performance because it
uses idle processing bandwidth for redundant execution. On
the other hand, an episode of forced-introspection reduces
the performance of the processor because the processor is
forced to perform redundant execution at the expense of
normal execution. In this section, we present results on the
distribution of introspection episodes. Figure 5.4(A) shows
the breakdown of the introspection episodes into normal-
introspection and forced-introspection for a subset of the
studied benchmarks.

For mcf, art, twolf, and vpr, more than 96% of the in-
trospection episodes occur because of normal-introspection.
These benchmarks are memory intensive and frequently
experience long-latency cache misses. For apsi, approxi-
mately half of the introspection episodes occur because of

6

0

10

20

30

40

50

60

70

80

90

100

%
 o

f
al

l i
nt

ro
sp

ec
ti

on
 e

pi
so

de
s

 (A)

forced-introspection
normal-introspection

mcf art tw
olf ap

si
vp

r
ga

lge
l

gc
c

bz
ip2

vo
rte

x

pe
rlb

mk

gz
ip

eo
n

0

10

20

30

40

50

60

70

80

90

100

C
ov

er
ag

e
fo

r
al

l r
et

ir
ed

 in
st

.(
%

)

(B)

forced-introspection
normal-introspection

mcf art tw
olf ap

si
vp

r
ga

lge
l

gc
c

bz
ip2

vo
rte

x

pe
rlb

mk

gz
ip

eo
n

Figure 6. (A) Breakdown of introspection episodes into

normal-introspection and forced-introspection. (B) Redun-

dant execution coverage of normal-introspection and forced-

introspection.

forced-introspection. Although apsi generates a significant
number of long-latency cache misses, these misses tend to
be clustered. For perlbmk, gzip, and eon almost all the
introspection episodes occur because the backlog buffer is
full. These benchmarks do not have a substantial number
of long-latency cache misses and therefore require forced-
introspection.

When the processor is forced to enter introspection mode
because the backlog buffer is full, the processor always per-
forms redundant execution until the backlog buffer becomes
empty. In contrast, during normal-introspection, the pro-
cessor performs redundant execution either until the long-
latency cache miss gets serviced or until the backlog buffer
becomes empty, whichever is earlier. Thus, a typical forced-
introspection episode results in the execution of many more
instructions than a typical normal-introspection episode.
Figure 5.4(B) shows the redundant-execution coverage of
the instruction stream provided by normal-introspection and
forced-introspection.

For mcf, 12% of the instructions go through their redun-
dant execution due to forced-introspection. However, this
costs only 1.4% in terms of IPC because the benchmark
is memory bound. For twolf and vpr, less than 10% of
the instructions go through their redundant execution due
to forced-introspection. This translates to an IPC reduc-
tion of only 3% for these benchmarks. In contrast, for apsi,
galgel, and gcc almost 80% of the instructions go through
their redundant execution due to forced-introspection. Con-
sequently, these benchmarks incur an IPC overhead of more
than 20% (refer to Figure 4). Although these benchmarks
have a lot of CPI-L2 (theoretically enough to re-execute the
program without any performance loss), this idle process-
ing bandwidth comes in bursts and the MBI technique is
not able to exploit it.

5.5. Error Detection Latency

A redundant execution mechanism can have a delay be-
tween the first execution and the redundant execution of an
instruction. If there is an error in the first execution of an

instruction, then this error will not be detected until the in-
struction completes its redundant execution. The delay be-
tween the first execution and the redundant execution de-
termines the error detection latency of the fault tolerance
mechanism. MBI has a variable error detection latency.
Table 3 shows, for each benchmark, the average and worst-
case error detection latency of MBI.

Table 3. Error Detection Latency (in cycles).

HIGH-MEM Benchmarks LOW-MEM Benchmarks

Name Avg Worst-Case Name Avg Worst-Case
mcf 465 6976 vortex 467 18157
art 304 3552 mgrid 514 17401
lucas 307 7066 parser 957 8593
ammp 500 7829 applu 680 25941
twolf 481 10785 equake 795 5366
wupwise 457 7711 mesa 646 11449
apsi 1143 36183 gap 744 12187
vpr 487 5043 sixtrack 770 20978
facerec 475 9279 crafty 1190 19480
swim 807 16546 perlbmk 832 14330
galgel 790 8372 gzip 1106 7339
gcc 902 20075 eon 877 17954
bzip2 680 4793 fma3d 615 10936

Overall: Average = 692, Worst-Case = 36183

For all benchmarks except apsi, crafty, and gzip, the av-
erage error detection latency is less than 1000 cycles. Over
the entire SPEC CPU2000 suite, the average error detection
latency is 692 cycles, and the worst-case error detection la-
tency is 36183 cycles. The impact of the error detection
latency on the system operation is dependent on the fault
handling policy. For example, if the fault handling policy is
to terminate the faulting application, then the average error
detection latency of 692 cycles is clearly acceptable. How-
ever, if the fault-handling policy is to correct the error, then
the time it takes to correct the error may increase with the
error detection latency. The next section discusses error
handling policies.

6. Handling Errors

A fault in the processor can be detected only during in-
trospection mode. When a fault is detected, the faulting
instruction is re-executed one more time to ensure that the
fault was indeed during the first execution of that instruc-
tion. If the result produced during this re-execution matches
the result in the backlog buffer, then the fault is ignored.
However, if the result of the re-execution does not match
the result in the backlog buffer, then the fault is considered
an error and is dealt with in accordance with the error han-
dling policy. We discuss some of the error handling policies
that can be combined with MBI.

6.1. Fail-Safe Operation

The simplest error handling mechanism is to terminate
the error-causing application and generate a machine check

7

exception. This mechanism avoids any correction but al-
lows the processor to fail in a safe manner.

6.2. Restore a Checkpointed State

Another error handling mechanism, also known as Back-
ward Error Recovery (BER), is based on the concept of
checkpointing. Both memory state and processor state are
checkpointed at pre-determined intervals. When an error is
detected, the system is restored to the most-recent, error-
free checkpointed state. The BER scheme provides fast re-
covery from an error but has a high storage cost. Proposals
such as Multiversion memory [16] and ReVive [11] provide
cost-effective implementations of the BER mechanism.

6.3. Recovery with Undo Mechanism

The system can recover from an error if it can be re-
stored to a state where the effects of all the instructions
prior to the error-causing instruction are architecturally vis-
ible and no effects of the error-causing instruction, or any
subsequent instruction, are architecturally visible. The MBI
mechanism allows a unique error recovery technique that
can restore the system to the state of the last error-free in-
struction. Error recovery is performed by undoing the store
operations that were performed during performance mode
after the last error-free instruction. Figure 7(a) shows the
extensions added to the backlog buffer to facilitate error re-
covery.

ADDR: VAL

ADDR: VAL

(a)

ADDR: VAL

ADDR: VAL

Represents undo information
for store operations. ADDR is
the address and VAL is the old
value at that address.

A

F

G

H

I

K

L

M

B

C

D

E

J

UNDONE

UNDONE

UNDONE

UNDONE

(b)

TAIL−PTR

HEAD−PTR

HEAD−PTR
TAIL−PTR

are store instructions

ERROR

A

B

C

D

E

F

G

H

J

K

L

M

I

Instructions D, G, I and L

ADDR: VAL

Figure 7. (a) Extending the backlog buffer to keep track of undo

information for store instructions. (b) An example of error cor-

rection with the undo mechanism.

6.3.1. Structure. The backlog buffer tracks undo infor-
mation for each store instruction. The undo information
consists of the effective address of the store instruction and
the old value at that address. In Figure 7(a), instructions
labeled D, G, I, and L are store instructions and the shaded
regions represent the undo information associated with each
store instruction. The backlog buffer does not contain any
undo information for non-store instructions.

6.3.2. Operation. Error recovery consist of two parts: (1)
recovering the register state, and (2) recovering the mem-
ory state. Recovering the register state is relatively easy

because the register state in introspection mode is updated
only after the instruction is found to be fault-free. Thus,
during introspection mode, the ISPEC ARF register file al-
ways corresponds to the last instruction that was found to
be correct. When an error is detected, the register state of
ISPEC ARF is copied to PERF ARF.

Recovery of the memory state is more challenging be-
cause, at the time the error is detected, the store instructions
younger than the error-causing instruction have already up-
dated the memory. Therefore, memory updates caused by
these store instructions must be undone. We explain the
undo operation with an example. Figure 7(b) shows the
state of the backlog buffer for the instruction sequence A
to M. Instructions D, G, I, and L are store instructions and
the backlog buffer entries corresponding to the stores con-
tain undo information. While checking the result of instruc-
tion C in introspection mode, an error is detected. To re-
cover the memory state, all stores younger than instruction
C in the backlog buffer (stores D, G, I, and L) must be un-
done. To accomplish this, the backlog buffer is traversed
backwards starting with the TAIL-PTR. Any store instruc-
tion that is encountered during this backward traversal is
undone. The undo operation simply copies the old value
stored in the backlog buffer entry to the memory address
indicated in the backlog buffer entry. Backward traversal
of the backlog buffer continues until the the error-causing
instruction is reached. At that point, no effect of the error-
causing instruction, or any subsequent instruction, is archi-
tecturally visible. Thus the system has recovered from the
error detected at instruction C.

It should be noted that the undo mechanism assumes that
the store values are not read by other devices (such as other
processors if a multiprocessor system is used) before the
undo process takes place. For multiprocessor systems, the
undo mechanism can be used if other processors are not al-
lowed to read the values produced by a store instruction un-
til that instruction is found to be fault-free in introspection
mode. An alternative is to transfer the control to software
so that the processors that have consumed incorrect values
can be recovered to a consistent state. Design requirements
of the undo mechanism in multiprocessor systems is outside
the scope of this paper and is part of our future work.

6.3.3. Error Correction Latency. The duration between
when the error is detected and when the system is restored
to an error-free state is called the error correction latency.
The error correction latency of the undo mechanism is vari-
able and depends on the number of instructions between the
HEAD-PTR and TAIL-PTR. In the worst-case where every
entry in the backlog buffer is a store instruction, the TAIL-
PTR traverses through, and performs undo operation for,
every entry in the backlog buffer. Thus, the worst-case error
correction latency with a backlog buffer containing 2K en-
tries is as high as 2K undo operations. However, this latency

8

is very low compared to the time between errors and will not
significantly affect the availability of the system. For exam-
ple, even with an error rate of 1 error/hour, a 5GHz proces-
sor that can perform 1 undo operation per cycle will have an
availability of 99.99999% (Availability = (TE−TR)/TE ,
where TE is the mean time between errors, and TR is the
time the machine is not available due to an error).

7. Related Work

Commercial high reliability systems, such as the Tandem
Computer [2], the Compaq NonStop Himalaya [22], and the
IBM S/390 [17] use lock-step execution for detecting faults
in processors. Fault tolerance in these systems is achieved
at the expense of hardware replication.

An alternative to replication was proposed by Austin in
the form of DIVA [1]. For redundant execution, DIVA uses
a simple checker processor after the retirement stage of the
main processor. The assumption that the instruction fetch
stage and the instruction decode stage of the main proces-
sor are fault-free allows the checker processor to use the
instruction dependency information computed in the main
processor. Unlike DIVA, MBI provides fault coverage for
the entire pipeline, including the fetch and decode stages.
DIVA uses a physically separate processor for redundant
execution and can therefore detect both permanent and tran-
sient faults, whereas MBI provides coverage only for tran-
sient faults and would need to be combined with techniques
like RESO [10] to provide coverage for permanent faults.
The additional processor in DIVA, although simple, re-
quires considerable hardware overhead compared to MBI.
A low hardware overhead is desirable because it provides
the users with a choice to use or not to use the features of
fault tolerance. With MBI, if the user chooses not to have
fault tolerance, then only the hardware solely dedicated to
fault tolerance, which is relatively small, will go unused.

Rotenberg [14] proposed AR-SMT, which provides fault
tolerance by executing the application using two separate
threads. The primary thread inserts its results into a de-
lay buffer and the redundant thread uses these results for
speculative execution and fault detection. Both threads run
concurrently in the processor pipeline and have different
memory images. The approach of using SMT-based ma-
chines for fault tolerance was generalized in [13]. Both [14]
and [13] require a fine-grain multi-threaded machine capa-
ble of concurrently fetching, decoding, and executing from
more than one thread. Redundant execution, in both cases,
halves the fetch bandwidth, reduces the effective size of the
storage structures (e.g. reservation stations, caches) visible
to each thread, and increases the contention for execution
units. In contrast, operation in MBI is in either performance
mode or introspection mode. Therefore, in MBI, redundant
execution does not compete with the primary execution for
hardware resources at a fine-grain level. The MBI design

is also less intrusive than the SMT-based designs because it
does not require widespread modifications throughout the
processor pipeline.

Both MBI and SMT-based techniques target idle pro-
cessing bandwidth for fault tolerance. However, they tar-
get fundamentally different types of idle processing band-
width. SMT leverages the fine-grain idle processing slots
that remain unused due to limited ILP in each cycle. On the
other hand, MBI utilizes the coarse-grain idle processing
bandwidth that remains unused due to long-latency cache
misses. As such, MBI is well suited for memory-intensive
applications. SMT-based techniques, on the other hand, are
well suited for applications that are not significantly limited
in their performance by long-latency cache misses.

Mendelson and Suri proposed O3RS [7], which provides
transient-fault tolerance to only the out-of-order portion of
the processor pipeline. After an instruction is renamed, it
occupies two entries in the reservation stations. The two re-
sults obtained in this manner are compared for fault detec-
tion. The mechanism proposed by Ray et al. [12] replicates
instructions in the rename stage and provides transient-fault
coverage for all stages after the rename stage. Both [7]
and [12] assume fault protection for the stages before the
rename stage and require extra logic in the processor to han-
dle the simultaneous existence of primary and redundant in-
structions.

The related fault tolerance techniques described thus far
are hardware based. Fault tolerance can also be incorpo-
rated with software support. Wu et al. [23] proposed a tech-
nique to arrange the code such that redundant instructions
are statically mapped to use empty slots in execution units.
However, only applications with regular code behavior and
with latencies predictable at compile-time lend themselves
to static scheduling. The mechanism proposed in [9] exe-
cutes two different versions of the same program (with the
same functionality) and compares the outputs to detect tran-
sient and some permanent faults.

A transient fault may or may not cause an error depend-
ing on whether it affects the final outcome of the program.
A study of the effects of transient faults on the performance
of a superscalar processor is provided in [19]. Weaver et
al. [20] describe a mechanism to avoid signaling errors that
occur during the processing of dynamically dead instruc-
tions. All retired instructions are inserted into a FIFO buffer.
A faulty instruction is marked as possibly incorrect before
insertion into the FIFO buffer. Faults in a possibly incor-
rect instruction are ignored if the instruction is found to
be dynamically dead while it is in the FIFO buffer. Cur-
rently, the MBI mechanism detects errors for both dynami-
cally live and dynamically dead instructions. However, the
technique proposed in [20] can easily be incorporated in
the MBI mechanism by making minor modifications to the
backlog buffer.

9

8. Conclusion and Future Work

Future processors will need on-chip fault tolerance tech-
niques to tolerate the increasing transient fault rate. Future
processors will also be challenged by the speed gap between
the processor and the memory and will waste significant
processing bandwidth waiting for memory. Based on these
observations, this paper makes the following two contribu-
tions:

(1) A transient-fault detection technique, Micro-
architecture-Based Introspection (MBI), which uses the
wasted processing bandwidth during long-latency cache
misses for redundant execution. This technique has small
hardware cost and provides redundant execution coverage
for the entire pipeline (from instruction fetch to retirement).

(2) A fault recovery scheme for MBI that has a negligible
effect on system availability.

The time redundancy of MBI results in an average IPC
reduction of only 7.1% for memory-intensive benchmarks
and an average IPC reduction of 14.5% over the entire
SPEC CPU2000 suite.

MBI can be combined with runahead execution [8] to im-
prove both the reliability and the performance of memory-
intensive applications. MBI can also be combined with
SMT to utilize both fine-grain and coarse-grain idle pro-
cessing bandwidth for redundant execution. Exploring
these hybrid mechanisms is a part of our future work.

Acknowledgments

We thank Pradip Bose for the early discussions and con-
tinued feedback on this work. We also thank Sanjay Patel,
the anonymous reviewers, and the members of the HPS re-
search group for their helpful comments. This work was
supported by gifts from IBM, Intel, and the Cockrell foun-
dation. Moinuddin Qureshi is supported by an IBM fellow-
ship. Onur Mutlu is supported by an Intel fellowship.

References
[1] T. M. Austin. DIVA: A reliable substrate for deep submicron

microarchitecture design. In Proceedings of the 32nd Annual
ACM/IEEE International Symposium on Microarchitecture, pages
196–207, 1999.

[2] J. Bartlett, J. Gray, and B. Horst. Fault tolerance in Tandem computer
systems. Technical Report 86.2, Tandem Computers, Mar. 1986.

[3] R. Hankins, T. Diep, M. Annavaram, B. Hirano, H. Eri, H. Nueckel,
and J. Shen. Scaling and characterizing database workloads: Bridg-
ing the gap between research and practice. In Proceedings of the 36th
Annual ACM/IEEE International Symposium on Microarchitecture,
pages 151–163, 2003.

[4] W. W. Hsu, A. J. Smith, and H. C. Young. Characteristics of produc-
tion database workloads and the TPC benchmarks. IBM Journal of
Research and Development, 40(3):781–802, Mar. 2001.

[5] T. Karkhanis and J. E. Smith. A day in the life of a data cache miss.
In Second Annual Workshop on Memory Performance Issues, 2002.

[6] H. Li, Chen-Yong Cher, T. N. Vijaykumar, and K. Roy. VSV: L2-
miss-driven variable supply-voltage scaling for low power. In Pro-
ceedings of the 36th Annual ACM/IEEE International Symposium on
Microarchitecture, pages 19–28, 2003.

[7] A. Mendelson and N. Suri. Designing high-performance and reli-
able superscalar architectures: The out of order reliable superscalar
(o3rs) approach. In Proceedings of the International Conference on
Dependable Systems and Networks, 2000.

[8] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runahead execution:
An alternative to very large instruction windows for out-of-order pro-
cessors. In Proceedings of the Ninth IEEE International Symposium
on High Performance Computer Architecture, pages 129–140, 2003.

[9] N. Oh, S. Mitra, and E. J. McCluskey. ED4I: Error detection by di-
verse data and duplicated instructions. IEEE Transactions on Com-
puters, 51(2):180–199, Feb. 2002.

[10] J. H. Patel and L. Y. Fung. Concurrent Error Detection in ALUs by
REcomputing with Shifted Operands. IEEE Transactions on Com-
puters, 31(7):589–595, July 1982.

[11] M. Prvulovic, Z. Zhang, and J. Torrellas. ReVive: cost-effective ar-
chitectural support for rollback recovery in shared-memory multipro-
cessors. In Proceedings of the 29th Annual International Symposium
on Computer Architecture, pages 111–122, 2002.

[12] J. Ray, J. C. Hoe, and B. Falsafi. Dual use of superscalar datapath
for transient-fault detection and recovery. In Proceedings of the 34th
Annual ACM/IEEE International Symposium on Microarchitecture,
pages 214–224, 2001.

[13] S. K. Reinhardt and S. S. Mukherjee. Transient fault detection via si-
multaneous multithreading. In Proceedings of the 27th Annual Inter-
national Symposium on Computer Architecture, pages 25–36, 2000.

[14] E. Rotenberg. AR-SMT: A microarchitectural approach to fault tol-
erance in microprocessors. In Proceedings of the Twenty-Ninth An-
nual International Symposium on Fault-Tolerant Computing, pages
84–91, 1999.

[15] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi.
Modeling the effect of technology trends on the soft error rate of
combinational logic. In Proceedings of the International Conference
on Dependable Systems and Networks, pages 389–398, 2002.

[16] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood. Fast
checkpoint/recovery to support kilo-instruction speculation and hard-
ware fault tolerance. In Dept. of Computer Sciences Technical Report
CS-TR-2000-1420, October 2000.

[17] T. J. Slegal et al. IBM’s S/390 G5 Microprocessor Design. IEEE mi-
cro, pages 12–23, Mar. 1999.

[18] J. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy. POWER4
system microarchitecture. IBM Technical White Paper, Oct. 2001.

[19] N. J. Wang, J. Quek, T. M. Rafacz, and S. J. Patel. Characterizing the
effects of transient faults on a high-performance processor pipeline.
In Proceedings of the International Conference on Dependable Sys-
tems and Networks, pages 61–70, 2004.

[20] C. Weaver, J. Emer, S. S. Mukherjee, and S. K. Reinhardt. Tech-
niques to reduce the soft error rate of a high-performance micropro-
cessor. In Proceedings of the 31th Annual International Symposium
on Computer Architecture, pages 264–273, 2004.

[21] M. V. Wilkes. The memory gap and the future of high performance
memories. ACM Computer Architecture News, 29(1):2–7, Mar. 2001.

[22] A. Wood. Data integrity concepts, features, and technology. White
Paper, Tandem division, Compaq Computer Corporation.

[23] K. Wu and R. Karri. Selectively breaking data dependences to im-
prove the utilization of idle cycles in algorithm level re-computing
data paths. IEEE Transactions on Reliability, 52(4):501–511, Dec.
2003.

10

