
Ramulator 2

Presenter: Haocong Luo

PhD Student, ETH Zurich

SAFARI Research Group

2

Motivation

• Robustness issues in DRAM
- Data retention

- Read disturbance (RowHammer, RowPress, etc.)

- …

• Performance issues in main memory system
- Performance overhead analysis of read disturbance

mitigation techniques

- Processing-in-Memory architectures

- Emerging memory technologies

- …

DRAM simulation infrastructures is needed to understand,
characterize, and evaluate the

robustness and performance of DRAM

3

Executive Summary

Ramulator 2.0: Modern, modular, and extensible
DRAM & memory system simulator

❑Fine-grained modeling of DRAM operation (cycle-level)

❑Unified functional and timing modeling of DRAM based on
hierarchical state-machines

❑Modular and extensible software architecture

❑Models a wide range of DRAM standards and memory
controller functionalities

❑Used in a wide range of research works

4

Outline

1. Motivation

2. Ramulator 2.0

3. Conclusion & Future Work

2.1 Simulator Design & Key Features

2.2 Case Studies

2.2.1 Cross-Sectional Study of RowHammer Mitigations

2.2.2 Evaluating the Performance of PRAC

2.2.3 BreakHammer: Throttling Suspect Threads

5

Outline

1. Motivation

2. Ramulator 2.0

3. Conclusion & Future Work

2.1 Simulator Design & Key Features

2.2 Case Studies

2.2.1 Cross-Sectional Study of RowHammer Mitigations

2.2.2 Evaluating the Performance of PRAC

2.2.3 BreakHammer: Throttling Suspect Threads

6

Ramulator 2.0

IEEE CAL Paper Open-source version Github repo:
CMU-SAFARI/ramulator2

7

Outline

1. Motivation

2. Ramulator 2.0

3. Conclusion & Future Work

2.1 Simulator Design & Key Features

2.2 Case Studies

2.2.1 Cross-Sectional Study of RowHammer Mitigations

2.2.2 Evaluating the Performance of PRAC

2.2.3 BreakHammer: Throttling Suspect Threads

8

• Hierarchical state-machine based modeling of DRAM

Ramulator 2.0 Design and Features (I)

Level: “Channel”
Id: 0
State: …

Level: “Rank”
Id: 1
State: …

Parent

Level: “Rank”
Id: 0
State: …

Sibling

Level: “BankGroup”
Id: 0
State: …

Children

Level: “BankGroup”
Id: 1
State: …

State of a DRAM node:
• Current state: open, close,

activating, etc.
• Timing constraints: Earliest

time in the future that each
DRAM command is allowed to
be issued

• Energy & power: Time spent
in each state and the number
of DRAM commands served
(DRAMPower model)

• Can be extended to include
more

9

• DRAM commands implemented as lambda functions that
hierarchically traverses and updates the states of the nodes

1. Checks the current states of the nodes to decode
which DRAM command to issue

2. Programmatically apply state changes

3. Updates the timing constraints, power metrics, etc.

• Templated library of generalized DRAM command lambda
functions allow reuse of command implementations across
different DRAM standards

Ramulator 2.0 Design and Features (II)

Example DRAM Command Decode Function

Applicable to:
DDR3, DDR4, DDR5
LPDDR4, LPDDR5
HBM (1/2/3), GDDR6

10

• Modular and extensible software architecture
- All components in the memory system modeled with the same

interface and different implementations

- Example: The memory controller include:
• Address Mapper, Request Scheduler, Refresh Controller, Row Policy,

etc.

• Each can be flexibly changed without hardcoding other parts

Ramulator 2.0 Design and Features (III)

11

• Modular and extensible software architecture
- All components in the memory system modeled with the same

interface and different implementations

- Example: The memory controller include:
• Address Mapper, Request Scheduler, Refresh Controller, Row Policy,

etc.

• Each can be flexibly changed without hardcoding other parts

Ramulator 2.0 Design and Features (IV)

Example: Memory Controller Plugins

12

• More in the paper
- More detailed explanation of modeling methodology

- Authoring of DRAM specifications (organization, timings, etc.)

- Memory controller plugin & RowHammer mitigations

- Performance comparison with other DRAM simulators

- …

Ramulator 2.0 Design and Features (V)

IEEE CAL Paper Open-source version Github repo:
CMU-SAFARI/ramulator2

13

Outline

1. Motivation

2. Ramulator 2.0

3. Conclusion & Future Work

2.1 Simulator Design & Key Features

2.2 Case Studies

2.2.1 Cross-Sectional Study of RowHammer Mitigations

2.2.2 Evaluating the Performance of PRAC

2.2.3 BreakHammer: Throttling Suspect Threads

14

Outline

1. Motivation

2. Ramulator 2.0

3. Conclusion & Future Work

2.1 Simulator Design & Key Features

2.2 Case Studies

2.2.1 Cross-Sectional Study of RowHammer Mitigations

2.2.2 Evaluating the Performance of PRAC

2.2.3 BreakHammer: Throttling Suspect Threads

15

• Cross-section performance overhead evaluation of
different RowHammer mitigation techniques
[Luo+, IEEE CAL 2023]

- Six different RowHammer mitigation techniques all
implemented as plugins to the same memory controller
implementation

Ramulator 2.0 Case Studies (I)

16

Outline

1. Motivation

2. Ramulator 2.0

3. Conclusion & Future Work

2.1 Simulator Design & Key Features

2.2 Case Studies

2.2.1 Cross-Sectional Study of RowHammer Mitigations

2.2.2 Evaluating the Performance of PRAC

2.2.3 BreakHammer: Throttling Suspect Threads

17

• New Read Disturbance Mitigation Features in DDR5

- RFM Command: New DRAM command that gives the memory
controller a longer time window so that the DRAM can refresh
potential victim rows

- Per Row Activation Counting (PRAC): In-DRAM per-row
activation counter (implemented as extra columns of cells)

• PRAC Workflow
- Row activations increment the PRAC counters

- If the counter value reaches a critical threshold, the DRAM
send a back-off signal to the memory controller

- Upon receiving the back-off signal, the memory controller
send RFM commands to refresh the potential victim rows

Ramulator 2.0 Case Studies (II)

18

• Performance evaluation of DDR5 Per Row Activation
Counting (PRAC) [Canpolat+, DRAMsec’24]

- Memory controller implementation extended with support for
per-row activation count tracking and back-off signal

Ramulator 2.0 Case Studies (III)

19

Outline

1. Motivation

2. Ramulator 2.0

3. Conclusion & Future Work

2.1 Simulator Design & Key Features

2.2 Case Studies

2.2.1 Cross-Sectional Study of RowHammer Mitigations

2.2.2 Evaluating the Performance of PRAC

2.2.3 BreakHammer: Throttling Suspect Threads

20

• BreakHammer: Enhancing RowHammer Mitigations
by Carefully Throttling Suspect Threads
[Canpolat+, MICRO’24]

- Goal: Reduce the performance overhead of RowHammer
mitigation mechanisms by carefully reducing the number of
performed RowHammer-preventive actions without
compromising system robustness

- Key Idea: Limit the dynamic memory request count of a
hardware thread based on how frequently the thread triggers
RowHammer-preventive actions

Ramulator 2.0 Case Studies (IV)

21

• BreakHammer: Enhancing RowHammer Mitigations
by Carefully Throttling Suspect Threads
[Canpolat+, MICRO’24]

- Key Mechanism: 1) Observe the triggered RowHammer
preventive actions, 2) identify suspect threads, and 3) reduce
the request count of the suspect threads

Ramulator 2.0 Case Studies (V)

22

• BreakHammer: Enhancing RowHammer Mitigations
by Carefully Throttling Suspect Threads
[Canpolat+, MICRO’24]

- BreakHammer’s performance scaling for existin RowHammer
mitigation mechanisms with an attacker present

Ramulator 2.0 Case Studies (VI)

23

Outline

1. Motivation

2. Ramulator 2.0

3. Conclusion & Future Work

2.1 Simulator Design & Key Features

2.2 Case Studies

2.2.1 Cross-Sectional Study of RowHammer Mitigations

2.2.2 Evaluating the Performance of PRAC

2.2.3 BreakHammer: Throttling Suspect Threads

24

Ramulator 2.0: Modern, modular, and extensible
DRAM & memory system simulator

❑Fine-grained modeling of DRAM operation (cycle-level)
❑Models a wide range of DRAM standards and memory

controller functionalities
❑Used in a wide range of research works

Ongoing & Future Works

❑Unit & regression test coverage
❑More DRAM standards and emerging technologies
❑More detailed memory controller modeling (i.e., pipelined

scheduler and gear ratio)
❑Generalizable modeling for PuM/PnM architectures
❑…

Conclusion & Future Work

DRAM Simulation
and Testing Infrastructures

Presenter: Haocong Luo

Ramulator 2
Paper

Github repo:
CMU-SAFARI/ramulator2

	Default Section
	Slide 1: Ramulator 2
	Slide 2: Motivation
	Slide 3: Executive Summary
	Slide 4: Outline
	Slide 5: Outline
	Slide 6: Ramulator 2.0
	Slide 7: Outline
	Slide 8: Ramulator 2.0 Design and Features (I)
	Slide 9: Ramulator 2.0 Design and Features (II)
	Slide 10: Ramulator 2.0 Design and Features (III)
	Slide 11: Ramulator 2.0 Design and Features (IV)
	Slide 12: Ramulator 2.0 Design and Features (V)
	Slide 13: Outline
	Slide 14: Outline
	Slide 15: Ramulator 2.0 Case Studies (I)
	Slide 16: Outline
	Slide 17: Ramulator 2.0 Case Studies (II)
	Slide 18: Ramulator 2.0 Case Studies (III)
	Slide 19: Outline
	Slide 20: Ramulator 2.0 Case Studies (IV)
	Slide 21: Ramulator 2.0 Case Studies (V)
	Slide 22: Ramulator 2.0 Case Studies (VI)
	Slide 23: Outline
	Slide 24: Conclusion & Future Work
	Slide 25: DRAM Simulation and Testing Infrastructures

