Ramulator 2

Presenter: Haocong Luo
PhD Student, ETH Zurich
SAFARI Research Group

SAFARI ETHzurich

* Robustness issues in DRAM
- Data retention
- Read disturbance (RowHammer, RowPress, etc.)

* Performance issues in main memory system

- Performance overhead analysis of read disturbance
mitigation techniques

- Processing-in-Memory architectures
- Emerging memory technologies

DRAM simulation infrastructures is needed to understand,
characterize, and evaluate the
robustness and performance of DRAM

SAFARI 2

Executive Summary

Ramulator 2.0: Modern, modular, and extensible
DRAM & memory system simulator
UFine-grained modeling of DRAM operation (cycle-level)

Unified functional and timing modeling of DRAM based on
hierarchical state-machines

(Modular and extensible software architecture

(UModels a wide range of DRAM standards and memory
controller functionalities

Used in a wide range of research works

SAFARI 3

Outline

1. Motivation

2. Ramulator 2.0

2.1 Simulator Design & Key Features

2.2 Case Studies

2.2.1 Cross-Sectional Study of RowHammer Mitigations

2.2.2 Evaluating the Performance of PRAC

2.2.3 BreakHammer: Throttling Suspect Threads

3. Conclusion & Future Work

SAFARI

Outline

1. Motivation

2. Ramulator 2.0

2.1 Simulator Design & Key Features

2.2 Case Studies

2.2.1 Cross-Sectional Study of RowHammer Mitigations

2.2.2 Evaluating the Performance of PRAC

2.2.3 BreakHammer: Throttling Suspect Threads

3. Conclusion & Future Work

SAFARI

Ramulator 2.0

Ramulator 2.0: A Modern, Modular, and
Extensible DRAM Simulator

Haocong Luo, Yahya Can Tugrul, F. Nisa Bostanci, Ataberk Olgun, A. Giray Yaglik¢t, and Onur Mutlu

Abstract—We present Ramulator 2.0, a highly modular and extensible DRAM simulator that enables rapid and agile implementation
and evaluation of design changes in the memory controller and DRAM to meet the increasing research effort in improving the
performance, security, and reliability of memory systems. Ramulator 2.0 abstracts and models key components in a DRAM-based
memory system and their interactions into shared interfaces and independent implementations. Doing so enables easy modification
and extension of the modeled functions of the memory controller and DRAM in Ramulator 2.0. The DRAM specification syntax of
Ramulator 2.0 is concise and human-readable, facilitating easy modifications and extensions. Ramulator 2.0 implements a library of
reusable templated lambda functions to model the functionalities of DRAM commands to simplify the implementation of new DRAM
standards, including DDR5, LPDDRS5, HBM3, and GDDR6. We showcase Ramulator 2.0’s modularity and extensibility by implementing
and evaluating a wide variety of RowHammer mitigation techniques that require different memory controller design changes. These
techniques are added modularly as separate implementations without changing any code in the baseline memory controller
implementation. Ramulator 2.0 is rigorously validated and maintains a fast simulation speed compared to existing cycle-accurate
DRAM simulators. Ramulator 2.0 is open-sourced under the permissive MIT license at https:/github.com/CMU-SAFARI/ramulator2.

[=]i 3 [m]

[=]

IEEE CAL Paper Open-source version Github repo:
CMU-SAFARI/ramulator2

SAFARI 6

Outline

1. Motivation

2. Ramulator 2.0

2.1 Simulator Design & Key Features

2.2 Case Studies

2.2.1 Cross-Sectional Study of RowHammer Mitigations

2.2.2 Evaluating the Performance of PRAC

2.2.3 BreakHammer: Throttling Suspect Threads

3. Conclusion & Future Work

SAFARI

Ramulator 2.0 Design and Features (I)

* Hierarchical state-machine based modeling of DRAM

Level: “Channel”

Id: ©
State: ..
T Parent
Level: “Rank” | Sibling
Id: ©
State: ..

ChildrenR

Level:

Id. 1

" Rank"

State: ..

Level: “BankGroup”
Id: ©
State: ..

Level:

Id: 1

“BankGroup”

State: ..

SAFARI

State of a DRAM node:

Current state: open, close,
activating, etc.

Timing constraints: Earliest
time in the future that each
DRAM command is allowed to
be issued

Energy & power: Time spent
in each state and the number
of DRAM commands served
(DRAMPower model)

Can be extended to include
more

Ramulator 2.0 Design and Features (II)

* DRAM commands implemented as lambda functions that
hierarchically traverses and updates the states of the nodes

1. Checks the current states of the nodes to decode
which DRAM command to issue

2. Programmatically apply state changes
3. Updates the timing constraints, power metrics, etc.

* Templated library of generalized DRAM command lambda
functions allow reuse of command implementations across
different DRAM standards

template <class DRAM_t>
int RequireAllBanksClosed (typename DRAM_t::Nodex node,
int cmd, int target_id, Clk_t clk) {

Applicable to:
if I{bar_‘1k—>m_state == DRAM_t::m_states["Closed"]) { DDR3, DDR4, DDR5
) elee (o LPDDR4, LPDDRS
: return T::m_commands["PREab"]; HBM (1/2/3)’ GDDR6

return cmd;
bi
Example DRAM Command Decode Function

SAFARI 9

Ramulator 2.0 Design and Features (III)

e Modular and extensible software architecture

- All components in the memory system modeled with the same
interface and different implementations
- Example: The memory controller include:

» Address Mapper, Request Scheduler, Refresh Controller, Row Policy,
etc.

* Each can be flexibly changed without hardcoding other parts

gem5 DRAM Memory MOP4CLXOR Generic Controller FRFCFS DDR5 All Bank PARA
Address Mapper DRAM Controller Request Scheduler DRAM Device Refresh Manager
tick() 0 send(mem_req) smap{mem _req) e enqueue(mem req]
Legend —»E‘ D— D— !
! | |
l

Y

priority_enqueue(refresh) '
Interface L
decode_req
! L
schedule_re
Memory Request Path 1 e _req() > 0 (mem_req) >

retur

DRAM Command Path

N

e return cmd check_ready (cmd) D

»
Maintenance Request Path

1
1
I 1 1
update(cmd)
Plugin Update Path : ® p (| >]

@ priority_enqueue(victim_row_refresh)

|j<_ ___________ © mem_req.call back) | @ issue_cmd(cmd) :El
SAFARI 10

"N

Ramulator 2.0 Design and Features (1V)

e Modular and extensible software architecture

- All components in the memory system modeled with the same
interface and different implementations
- Example: The memory controller include:

» Address Mapper, Request Scheduler, Refresh Controller, Row Policy,
etc.

* Each can be flexibly changed without hardcoding other parts

Example: Memory Controller Plugins

(D) update(cmd) :
@ priority_enqueue(victim_row_refresh)

SAFARI 11

Ramulator 2.0 Design and Features (V)

* More in the paper
- More detailed explanation of modeling methodology
- Authoring of DRAM specifications (organization, timings, etc.)
- Memory controller plugin & RowHammer mitigations
- Performance comparison with other DRAM simulators

Ramulator 2.0: A Modern, Modular, and
Extensible DRAM Simulator

Haocong Luo, Yahya Can Tugrul, F. Nisa Bostanci, Ataberk Olgun, A. Giray Yaglik¢i, and Onur Mutlu

010

[=]

IEEE CAL Paper Open-source version Github repo:
CMU-SAFARI/ramulator2

SAFARI 12

Outline

1. Motivation

2. Ramulator 2.0

2.1 Simulator Design & Key Features

2.2 Case Studies

2.2.1 Cross-Sectional Study of RowHammer Mitigations

2.2.2 Evaluating the Performance of PRAC

2.2.3 BreakHammer: Throttling Suspect Threads

3. Conclusion & Future Work

SAFARI

Outline

1. Motivation

2. Ramulator 2.0

2.1 Simulator Design & Key Features

2.2 Case Studies

2.2.1 Cross-Sectional Study of RowHammer Mitigations

2.2.2 Evaluating the Performance of PRAC

2.2.3 BreakHammer: Throttling Suspect Threads

3. Conclusion & Future Work

SAFARI

Ramulator 2.0 Case Studies (I)

* Cross-section performance overhead evaluation of
different RowHammer mitigation techniques
[Luo+, IEEE CAL 2023]

- Six different RowHammer mitigation techniques all

implemented as plugins to the same memory controller
implementation

1.0{-

®
2 0.8

PARA
Hydra
TWiCe-Ideal
Graphene
RRS

Ideal

ﬁ 0.6

] 0.4

malized

.
0 0.2

0_

5000 2000 1000 500 200 100 50 20 10
RowHammer Threshold (tRH)

SAFARI 15

Outline

1. Motivation

2. Ramulator 2.0

2.1 Simulator Design & Key Features

2.2 Case Studies

2.2.1 Cross-Sectional Study of RowHammer Mitigations

2.2.2 Evaluating the Performance of PRAC

2.2.3 BreakHammer: Throttling Suspect Threads

3. Conclusion & Future Work

SAFARI

Ramulator 2.0 Case Studies (II)

* New Read Disturbance Mitigation Features in DDR5

- RFM Command: New DRAM command that gives the memory
controller a longer time window so that the DRAM can refresh
potential victim rows

- Per Row Activation Counting (PRAC): In-DRAM per-row
activation counter (implemented as extra columns of cells)

 PRAC Workflow

- Row activations increment the PRAC counters

- If the counter value reaches a critical threshold, the DRAM
send a back-off signal to the memory controller

- Upon receiving the back-off signal, the memory controller
send RFM commands to refresh the potential victim rows

SAFARI 17

Ramulator 2.0 Case Studies (III)

 Performance evaluation of DDR5 Per Row Activation
Counting (PRAC) [Canpolat+, DRAMsec’'24]

- Memory controller implementation extended with support for
per-row activation count tracking and back-off signal

[Graphene 1 PARA [PRAC-4 I8 PRAC+PRFM
[Hydra [PRFM 1 PRAC-1 I PRAC-Optimistic

] 3 Hh rh

Normalized
Weighted Speedup

©c o o o o -
o N B~ OO 00 O
A TR R B B

1024 512 256 128 64
RowHammer Threshold (Ngy)

SAFARI 18

Outline

1. Motivation

2. Ramulator 2.0

2.1 Simulator Design & Key Features

2.2 Case Studies

2.2.1 Cross-Sectional Study of RowHammer Mitigations

2.2.2 Evaluating the Performance of PRAC

2.2.3 BreakHammer: Throttling Suspect Threads

3. Conclusion & Future Work

SAFARI

Ramulator 2.0 Case Studies (IV)

* BreakHammer: Enhancing RowHammer Mitigations
by Carefully Throttling Suspect Threads
[Canpolat+, MICRO’24]

- Goal: Reduce the performance overhead of RowHammer
mitigation mechanisms by carefully reducing the number of
performed RowHammer-preventive actions without
compromising system robustness

- Key Idea: Limit the dynamic memory request count of a
hardware thread based on how frequently the thread triggers
RowHammer-preventive actions

SAFARI 20

Ramulator 2.0 Case Studies (V)

* BreakHammer: Enhancing RowHammer Mitigations
by Carefully Throttling Suspect Threads
[Canpolat+, MICRO’24]

- Key Mechanism: 1) Observe the triggered RowHammer
preventive actions, 2) identify suspect threads, and 3) reduce
the request count of the suspect threads

Processor Chi
i BreakHammer o
<.l Private |
Core 1 caches [€” Memory «(Thread 1)
Bandwidth| N Thread 2
Usage Suspect H
Corel+}> Private |, Throttler | |ldentification|«{Thread N) o
4 | Caches Shared - - - 2
Caches Observing Actlonsn I 5
Memory Controller s
RowHammer §
< : Mitigation Mechanism "l <« 0O
.| Private |_
Corel«*| naches (< (Memory Request Scheduler)
A
v v
(Direct Memory Access (DMA))

SAFARI 21

Ramulator 2.0 Case Studies (VI)

* BreakHammer: Enhancing RowHammer Mitigations
by Carefully Throttling Suspect Threads
[Canpolat+, MICRO’24]

- BreakHammer’s performance scaling for existin RowHammer
mitigation mechanisms with an attacker present

[PARA [Graphene [Hydra [/ TwWiCe 1 AQUA [REGA 1 RFM [PRAC

[PARA+BH [Graphene+BH EE Hydra+BH [EEE TwiCe+BH EEE AQUA+BH [REGA+BH EE RFM+BH X PRAC+BH

4096 2048 1024 512 256 128
RowHammer Threshold (Ngy)

Normalized
Weighted Speedup
(Benign Applications)
o EN
o b o U O

SAFARI 22

Outline

1. Motivation

2. Ramulator 2.0

2.1 Simulator Design & Key Features

2.2 Case Studies

2.2.1 Cross-Sectional Study of RowHammer Mitigations

2.2.2 Evaluating the Performance of PRAC

2.2.3 BreakHammer: Throttling Suspect Threads

3. Conclusion & Future Work

SAFARI

Conclusion & Future Work

Ramulator 2.0: Modern, modular, and extensible
DRAM & memory system simulator

Fine-grained modeling of DRAM operation (cycle-level)

(UModels a wide range of DRAM standards and memory
controller functionalities

Used in a wide range of research works

Ongoing & Future Works

Unit & regression test coverage

dMore DRAM standards and emerging technologies

More detailed memory controller modeling (i.e., pipelined
scheduler and gear ratio)

Generalizable modeling for PuM/PnM architectures

d...

SAFARI 24

DRAM Simulation
and Testing Infrastructures

Presenter: Haocong Luo

Ramulator 2 Github repo:
Paper CMU-SAFARI/ramulator2

SAFARI ETHzurich

	Default Section
	Slide 1: Ramulator 2
	Slide 2: Motivation
	Slide 3: Executive Summary
	Slide 4: Outline
	Slide 5: Outline
	Slide 6: Ramulator 2.0
	Slide 7: Outline
	Slide 8: Ramulator 2.0 Design and Features (I)
	Slide 9: Ramulator 2.0 Design and Features (II)
	Slide 10: Ramulator 2.0 Design and Features (III)
	Slide 11: Ramulator 2.0 Design and Features (IV)
	Slide 12: Ramulator 2.0 Design and Features (V)
	Slide 13: Outline
	Slide 14: Outline
	Slide 15: Ramulator 2.0 Case Studies (I)
	Slide 16: Outline
	Slide 17: Ramulator 2.0 Case Studies (II)
	Slide 18: Ramulator 2.0 Case Studies (III)
	Slide 19: Outline
	Slide 20: Ramulator 2.0 Case Studies (IV)
	Slide 21: Ramulator 2.0 Case Studies (V)
	Slide 22: Ramulator 2.0 Case Studies (VI)
	Slide 23: Outline
	Slide 24: Conclusion & Future Work
	Slide 25: DRAM Simulation and Testing Infrastructures

