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Key Contributions in RawHash2

A new adaptive quantization that better fits
the expected nanopore signal pattern to achieve high accuracy

Improved chaining algorithm with sensitive penalty scores

Weighted decision making for more robust mapping

Frequency filter and minimizer sketching 
to reduce seed matches for faster and space-efficient mapping
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Better Understanding of  Noise
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• Key Idea: Quantizing raw signals with non-equal bucket widths 
to maximize load balancing
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Adaptive Quantization
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• Weighted mapping decisions

• Sampling strategies for reduced storage and computation overheads
• Frequency filter and minimizer sketching

• Improved chaining algorithm
• More sensitive scoring functions
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Other Key Improvements in RawHash2
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Real-Time Mapping with RawHash2
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• Two settings for RawHash2:
• RawHash2: All hash values without sampling
• RawHash2-Minimizer: Minimizer sketching

• Compared to UNCALLED [Kovaka+, Nat. Biotech.'21],
Sigmap [Zhang+, ISMB/ECCB'21], and RawHash [Firtina+, ISMB/ECCB'23]

• Use cases for real-time genome analysis:
1. Read mapping
2. Relative abundance estimation
3. Contamination analysis
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Evaluation Methodology



• Data generation throughput of a single nanopore: ~450 bp/sec
• A single nanopore device contains roughly 512 to 2500 nanopores

• Computation throughput of a single CPU thread: bases processed/sec
• Scalability: The number of nanopores that a single CPU thread can process
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Key Results – Throughput
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RawHash2 average speedup:
26.5× (UNCALLED), 19.2× (Sigmap), and 4× (RawHash)

RawHash2-Minimizer average speedup: 2.5× (RawHash2)



• Accuracy of mapping positions (F1 score)
• Ground truth: Mapping positions of basecalled sequences using minimap2

10

Key Results – Mapping Accuracy

RawHash2 provides the best accuracy in all datasets
(up to ~2.4× for large genomes)
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Average Sequenced Length
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RawHash2 can reduce sequencing time and cost:
on average by 1.9× compared to UNCALLED and RawHash
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Benefits of  Sequence Until
• Running RawHash with and without Sequence Until

Sequence Until enables sequencing only 7%
of the entire sample while providing high accuracy

UNCALLED and RawHash benefit from Sequence Until
significantly by enabling up to 100× reductions in sequencing
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Conclusion

Many opportunities for analyzing raw nanopore signals in real-time:
– Many hash-based sketching techniques can now be used for raw signals
– Indexing is very cheap: Many future use cases with the on-the-fly index construction
– We should rethink the algorithms to fully perform downstream analysis with raw signals

Key Results: Across 3 use cases and 5 genomes of varying sizes
– 27× 19×, and 4× better average throughput compared to the state-of-the-art works
– Most accurate raw signal mapper for all datasets
– Sequence Until reduces the sequencing time and cost by 15×

Key Contributions:
1) The first hash-based mechanism for mapping raw nanopore signals
2) The novel Sequence Until technique can accurately and dynamically stop
the entire sequencing of all reads at once if further sequencing is not necessary
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Sequencing Data Analysis
Heuristic 

Algorithms
Data Structures

Filters

Distributed
Computing

Hardware 
Accelerators

Quick, accurate, and 
energy-efficient analysis✓

✕
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Minimizer Sketching
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Spaced Seeding
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Strobemer Sketches
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Hash-Based Sketching and Seed Matching
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Chaining (Two Points)
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Chaining (Multiple Points)
• Exact hash value matches: Needed for finding matching 

regions between a reference genome and a read

• What if there are mutations or errors?
• No hash (seed) match will occur in such positions

• The chaining algorithm links exact matches in a proximity 
even though there are gaps (no seed matches) between 
them



Alignment
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Sequence Alignment



<latexit sha1_base64="b/GPUo8HQToGNLj8IB7vzjeDhqU="></latexit>

1
<latexit sha1_base64="aL0HWU/TFPWUd37xYFJvXd1ATcA="></latexit>

3

<latexit sha1_base64="RkJd00oxPEp6IB1kAqSBMGiSyZ0="></latexit>

2
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Nanopore Sequencing
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Source of  Noise in Nanopore Sequencing
• Stochastic thermal fluctuations in the ionic current

• Random ionic movement due to inherent thermal energy (Brownian motion)

• Variations in the translocation speed
• Mainly due to the motor protein

• Environmental factors
• Temperature: Affecting enzymes including the motor protein
• pH levels: Affecting charge and the shape of molecules

• Maybe: Aging & material-related noise between nanopores
• Their effects potentially can be minimized with normalization techniques



• Dual reader head

• Motor protein with more consistent translocation speed in R10

• Duplex sequencing in R10

27

R9 vs. R10 Chemistries
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Proteomics with Nanopores

Motone+, “Multi-pass, single-molecule nanopore reading of long protein strands”, Nature 2024.



Applications of  Read Until
Depletion: Reads mapping to a particular reference genome is ejected

Enrichment: Reads not mapping to a particular reference genome is ejected

• Microbiome studies by removing host DNA

• Eliminating known residual DNA or RNA (e.g., mitochondrial DNA)

• High abundance genome removal

• Removing contaminated organisms

• Targeted sequencing (e.g., to a particular region of interest in the genome)

• Low abundance genome enrichment
29



Applications of  Run Until & Sequence Until
Run Until: Stopping the entire sequencing run

Sequence Until: Run Until with accuracy-aware decision making

• Stopping when reads reach to a particular depth of coverage

• Stopping when the abundance of all genomes reach a particular threshold

• Stopping when relative abundance estimations do not change substantially 
(for high-abundance genomes)

• Stopping when finding that the sample is contaminated with a particular set 
of genomes

• …
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• Polymerase Chain Reaction (PCR) as a way of in vitro “analysis”
• Can increase the quantity of DNA in a sample
• Non-dynamic targeted sequencing (e.g., low abundance known targets)
• Requires additional resources: Time and money for preparation and 

execution of PCR

• Adaptive sampling as a way of in silico (i.e., computational) analysis
• Cannot increase the existing quantity of DNA in a sample
• Dynamic targeted sequencing: Decisions can be made based on real-time 

analysis (e.g., Sequence Until)
• Minimal additional resources

• Almost no additional resources for preparation and execution
• Simultaneous enrichment and depletion is possible
• Better suited for rapid whole genome sequencing

• Beauty of computational analysis (e.g., high flexibility – no need for primers)

• PCR and adaptive sampling can be combined depending on the 
analysis type

31

In Vitro (e.g., PCR) vs. In Silico



• Useful for any application that requires exact genomic position
• Variant calling in downstream analysis
• Specifically: Identifying rare variants in cancer genomics
• Methylation profiling

• Accurate and flexible depth of coverage estimation
• Alternative: DNA quantification (without computational analysis)

• DNA quantification is challenging for metagenomics analysis
• Computational method: We can map to almost entire set of known 

reference genomes to accurately estimate the coverage of a metagenomics 
sample

• Transcriptome analysis
• Accurately quantifying expression levels & alternative splicing

• Better resolution (i.e., more sensitive analysis) for any other application 
that does not specifically require mapping positions

32

Finding Mapping Positions



Reference-to-Event Conversion
• K-mer model: Provides expected event values for each k-mer

• Preconstructed based on nanopore sequencer characteristics

• Use the k-mer model to convert all k-mers 
of a reference genome to their expected event values
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Enabling Analysis From Electrical Signals
• K many nucleotides (k-mers) sequenced at a time
• Event: A segment of the raw signal

• Corresponds to a particular k-mer

• Observation: Event values generated after sequencing the same k-mer 
are similar in value (not necessarily the same)

� �	� 	�� �	� ���� ��	� �	�� ��	� ����

	�


�

��

��


�

���

���

���

��
���

���
���

�

Raw Nanopore Signal

Calculate
Means

Event Value

2.21Normalize

A
C
T
T
G
G Segment

Event

� �	� 	�� �	� ���� ��	� �	�� ��	� ����

	�


�

��

��


�

���

���

���

��
���

���
���

�

pA
m
pe
re

Time
ACTTGGk-mer

34



35

Quantization -- RawHash
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Packing and Hashing
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Sequence Until – RawHash & UNCALLED
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Sequence Until – RawHash
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Presets
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Versions – RawHash



• Basecalled real-time analysis
• ReadFish, ReadBouncer, RUBRIC: Basecalled read mapping
• SPUMONI, SPUMONI 2: Basecalled binary classification using r-index
• Coriolis: Basecalled metagenomics classification
• baseLess: k-mer calling for classification

• Raw signal analysis without basecalling
• SquiggleNet, DeepSelectNet, RawMap: Target/non-target classification 
• Sigmoni: Target/non-target classification using r-index
• UNCALLED, Sigmap, RawHash: Read mapping
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Related Works
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Adaptive Quantization



• RawHash Chaining

• RawHash2 Chaining
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Chaining Scores – RawHash vs RawHash2
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Datasets
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Accuracy
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Mapping Accuracy – Radar
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Mapping Accuracy – All Metrics
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Combined Benefits – Radar
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Sequenced Length
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Computational Resources #1
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Computational Resources #2
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Average Time Spent per Read



53

FAST5 vs. POD5. vs S/BLOW5
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Flow Cell Types R9 vs R10.4
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Ratio of  Filtered Seed Hits



56

Presets
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Versions


