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ABSTRACT
We provide an overview of recent developments and future direc-
tions in the RowHammer vulnerability that plagues modern DRAM
(Dynamic RandomMemory Access) chips, which are used in almost
all computing systems as main memory.

RowHammer is the phenomenon in which repeatedly accessing
a row in a real DRAM chip causes bitflips (i.e., data corruption) in
physically nearby rows. This phenomenon leads to a serious and
widespread system security vulnerability, as many works since the
original RowHammer paper in 2014 have shown. Recent analysis of
the RowHammer phenomenon reveals that the problem is getting
much worse as DRAM technology scaling continues: newer DRAM
chips are fundamentally more vulnerable to RowHammer at the
device and circuit levels. Deeper analysis of RowHammer shows
that there are many dimensions to the problem as the vulnerability
is sensitive to many variables, including environmental conditions
(temperature & voltage), process variation, stored data patterns,
as well as memory access patterns and memory control policies.
As such, it has proven difficult to devise fully-secure and very
efficient (i.e., low-overhead in performance, energy, area) protection
mechanisms against RowHammer and attempts made by DRAM
manufacturers have been shown to lack security guarantees.

After reviewing various recent developments in exploiting, un-
derstanding, and mitigating RowHammer, we discuss future di-
rections that we believe are critical for solving the RowHammer
problem. We argue for two major directions to amplify research
and development efforts in: 1) building a much deeper understand-
ing of the problem and its many dimensions, in both cutting-edge
DRAM chips and computing systems deployed in the field, and 2)
the design and development of extremely efficient and fully-secure
solutions via system-memory cooperation.

CCS CONCEPTS
• Hardware → Dynamic memory; Hardware reliability; • Se-
curity and privacy→ Systems security.

KEYWORDS
DRAM, Security, Vulnerability, Technology Scaling, Reliability, Safety,
Errors, Memory Systems, Fault Attacks, RowHammer

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASPDAC ’23, January 16–19, 2023, Tokyo, Japan
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9783-4/23/01.
https://doi.org/10.1145/3566097.3568350

ACM Reference Format:
Onur Mutlu, Ataberk Olgun, and A. Giray Yağlıkcı. 2023. Fundamentally
Understanding and Solving RowHammer. In 28th Asia and South Pacific
Design Automation Conference (ASPDAC ’23), January 16–19, 2023, Tokyo,
Japan. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3566097.
3568350

1 INTRODUCTION
DRAM is the dominant technology used for main memory in almost
all computing systems due to its low latency and low cost per bit.
Modern DRAM chips suffer from a vulnerability commonly known
as RowHammer [72, 95, 96, 98]. RowHammer is caused by repeat-
edly accessing (i.e., hammering) one or more (aggressor) memory
rows. Hammering a row creates electromagnetic interference be-
tween the aggressor row and its physically-neighboring (victim)
rows. Due to this interference, cells in victim rows lose the ability
to correctly retain their data, which leads to data corruption (i.e.,
bitflips). These bitflips are repeatable: if hammering an aggressor
row causes a particular cell to experience a bitflip, doing so again
will lead to the same bitflip with high probability [72].

Unfortunately, DRAM becomes increasingly more susceptible to
RowHammer bitflips as its storage density increases (i.e., DRAM cell
size and cell-to-cell spacing reduce). Our recent work [70] across
1580 real DRAM chips of six different types shows that, in the last
decade, the minimum number of aggressor row activations needed
to cause a RowHammer bitflip (i.e., the RowHammer threshold)
has reduced by more than 10x and the number of bitflips caused
by the same number of row activations has increased by 500x. A
recent work [88] shows that commodity workloads on state-of-the-
art servers might already activate individual DRAM rows at rates
exceeding the RowHammer threshold.

On the one hand, such RowHammer bitflips can lead to system
reliability and safety problems, when caused by non-malicious
applications. On the other hand, malicious applications can be
written to induce RowHammer bitflips in a targeted manner, so as to
specifically degrade system security, privacy, safety and availability.
For example, by carefully selecting rows to hammer, an attacker can
induce bitflips in sensitive data stored in DRAM. Many prior works,
some of which are reviewed in [98], show that RowHammer can be
exploited in many ways to compromise system security (integrity,
confidentiality, availability) in real systems, since it breaks memory
isolation on top of whichmodern system security principles are built.
As such, RowHammer greatly threatens many aspects of computing
system robustness (which include system reliability, safety, security,
privacy, and availability) in a widespread and profound manner due
to the prevalent usage of DRAM in modern computing systems.

RowHammer-like disturbance issues have also been shown to be
present in emerging NVM (non-volatile memory) technologies [2,
39, 68, 83, 101]. For these technologies to be viable, dependable, and
secure, anticipation and solution of such issues are critical.
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In this paper, we provide an overview of the state-of-the-art re-
search and development focusing on the RowHammer vulnerability.
To this end, we first provide a very brief review of RowHammer re-
search until circa 2020 (Section 2), building on a recent overview pa-
per [98] that in more detail covers much of the RowHammer devel-
opments until its publication. Then, we describe two major develop-
ments in 2020 (Section 3), TRRespass [38] and Revisiting RowHam-
mer [70], which experimentally show that RowHammer is an open
and increasingly worsening problem, which motivated a large body
of follow-on work in both industry and academia. Afterwards, we
provide a broad overview of other recent developments in RowHam-
mer (Section 4). We consider three major types of RowHammer
developments: 1) works directed toward exploiting RowHammer,
2) works that aim to understand and model RowHammer, and 3)
works that propose techniques to mitigate/solve the RowHammer
problem. Finally, we discuss future directions in RowHammer re-
search (Section 5). We argue for two major broad directions to
focus more in future research and development efforts: 1) build-
ing a much deeper understanding of the problem and its many
dimensions/sensitivities, in both cutting-edge DRAM chips and
computing systems deployed in the field, and 2) the design and
development of extremely efficient and fully-secure architectural
solutions, which we believe can be achieved via much better system-
memory cooperation (as discussed in [94, 99]).

2 A BRIEF OVERVIEW OF ROWHAMMER
UNTIL 2020

Since its first public introduction and scientific analysis in 2014 [72],
RowHammer has led to significant follow-onwork in both academia
and industry, spanning multiple different communities, including
computer architecture, security, dependability, circuits, devices,
and systems. We briefly review works that appeared within the
timeframe 2014-2019. A more comprehensive overview of such
works, as well as others in popular technical media, can be found
in [98], and we refer the reader to that overview for more detail.

The ISCA 2014 work that introduced RowHammer [72] demon-
strated that more than 80% of the real commodity DDR3 DRAM
modules tested, from all three major DRAM manufacturers, are vul-
nerable to RowHammer. That is, real bitflips are possible to induce
using real user-level programs [125] on commonly-used CPU-based
systems. The work argued that RowHammer is a DRAM technology
scaling problem and since device- and circuit-level solutions are dif-
ficult and costly, RowHammer should be solved via system-memory
cooperation [72, 94]. This work also suggested that one can exploit
RowHammer bitflips to construct various types of disturbance at-
tacks that inject errors into other programs, crash the system, or
hijack control of the system.

Many futureworks building onKim et al. [72] did exactly that, i.e.,
they developed various types of attacks that exploit RowHammer
on real computing systems. These works include techniques that
compromise system integrity as well as confidentiality on various
types of systems, including mobile and server systems [1, 10, 12, 13,
16, 18, 20, 21, 26, 35, 37, 42, 43, 50, 53, 59, 77, 84, 95, 96, 113, 114, 117,
121, 134, 135, 141, 142, 145, 146, 151, 160]. A more detailed overview
of these works can be found in Section III-A of [98].

Multiple works at the device and circuit levels aimed to develop
a low-level understanding of the causes and effects of RowHammer
via low-level modeling and simulation of devices and circuits, and in
limited cases via experiments on DDR3 DRAM chips. These works
include [109, 110, 123, 156, 159]. A more recent work in 2021 [147]
complements this understanding with some newer device level
observations. Similarly, RowHammer-like behavior has been ana-
lyzed in NVM (non-volatile memory) devices via device and circuit
level simulation studies [2, 39, 68, 83, 101]. We refer the reader to
Sections III-C and III-H of [98] for a more detailed overview of such
device/circuit level works that aim to develop a better low-level
understanding of the causes and effects of RowHammer.

The original RowHammer paper in ISCA 2014 [72] proposed
seven different solution directions to RowHammer, several of which
were later implemented in variations in memory controllers and
DRAM chips. Building on these, many other academic and indus-
trial works in the 2014-2019 timeframe proposed various solutions
to RowHammer in both hardware and software. These works in-
clude [4–9, 18, 19, 36, 40, 41, 49, 51, 52, 69, 76, 78, 79, 82, 102, 135,
139, 140, 146, 150]. A detailed overview of these solutions can be
found in Section III-B of [98]. The BlockHammer paper in HPCA
2021 [155] provides a more up-to-date overview of major solutions
proposed until that time, with a detailed analysis of 14 solutions
across four different desirable properties and a rigorous evaluation
of six state-of-the-art solutions, along with an open-source release
of their source codes [127].

2.1 RowHammer Mitigations in Industry
After the public introduction of RowHammer in 2014, both system
and DRAM manufacturers took action to mitigate the problem in
the field and in future DRAM chips. As described in the original
RowHammer work [72], the solutions that can be deployed in the
field are limited due to the limited programmability support pro-
vided by modern memory controllers. As such, a major solution
deployed in the field has been to increase the refresh rate of DRAM,
as described in a security release by Apple [4]. Unfortunately, in-
creasing the refresh rate is not an effective or desirable solution [72]
due to its high performance and energy overheads [85].

On the system side, memory controller manufacturers like Intel
introduced mechanisms (e.g., [89], inspired by PARA, probabilistic
adjacent row activation [72]), broadly called pTRR (pseudo Target
Row Refresh) [38, 63], to mitigate RowHammer in future systems.
Unfortunately, such memory controller based victim row refresh
mechanisms are not aware of physical adjacency of aggressor and
victim rows in a DRAM chip and, as such, they might not provide
complete protection against RowHammer.

On the DRAM side, DRAM manufacturers introduced TRR (tar-
get row refresh) [38] mechanisms and claimed that their new DDR4
chips are RowHammer-free [38, 47, 81, 92] with the protection pro-
vided by these mechanisms. TRR is an umbrella term used for mech-
anisms that refresh target rows which are somehow determined to
be accessed frequently. Unfortunately, DRAM manufacturers did
not (and still do not) describe how their implementations securely
prevent RowHammer or reveal how their implementations work.

As such, circa 2019-2020, it was unclear whether or not RowHam-
mer bitflips were possible in real DDR4 DRAM chips. As we will
see next, two major works in 2020 showed that they were.
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3 MAJOR DEVELOPMENTS IN 2020
We first describe two major works, TRRespass [38] and Revisiting
RowHammer [70], which clearly demonstrate that RowHammer is
an open and worsening problem, state-of-the-art DRAM chips are
vulnerable, and proposed mitigations are not scalable/effective into
the future.

TRRespass [38] is the first work to show that TRR-protectedDDR4
DRAM chips that are advertised as Rowhammer-free are actually
vulnerable to RowHammer in the field. This work partially reverse
engineers the TRR and pTRR mechanisms employed in modern
DRAM chips and memory controllers. To overcome such protection
mechanisms, TRRespass introduces themany-sided RowHammer at-
tack, whose key idea is to hammer many (i.e., more than two) rows
to bypass TRR mitigations, e.g., by overflowing proprietary TRR ta-
bles that detect aggressor rows. Using this many-sided RowHammer
attack, the work demonstrated bitflips in real DDR4 DRAM chips
as well as LPDDR4(X) DRAM chips and showed that RowHammer
attacks are possible on systems that employ such chips. As such,
it was clear that the solutions implemented in industry were not
secure. TRRespass also argued that security by obscurity, as em-
ployed by DRAM manufacturers, is not a good solution approach.
Later follow-on work, called Uncovering TRR (U-TRR) [47], showed
in 2021 that one can almost completely reverse engineer the en-
tire TRR mechanism employed in any DRAM chip, by using an
FPGA-based DRAM testing infrastructure (i.e., SoftMC [48, 126]
and DRAM Bender [103]) and a methodology that uses retention
errors as side channels to discover when the DRAM-internal TRR
mechanism refreshes a victim row. U-TRR demonstrates that, by
doing so, one can craft specialized hammering/access patterns that
essentially induce large numbers of bitflips on any examined chip.

Revisiting RowHammer [70] takes a device/circuit-level approach
to understand the scaling properties of RowHammer by measuring
the fundamental vulnerability (i.e., with TRR mechanisms turned
off) of three different types of DRAM chips across at least two
different generations. This work tested 1580 DRAM chips and ex-
perimentally demonstrated that RowHammer is indisputably getting
worse in newer generation DRAM chips: when hammered, newer
DRAM chips experience the first bitflip much earlier (e.g., some
after only 4800 double-sided hammers) and they experience much
higher numbers of bitflips than older DRAM chips (as demonstrated
in Figure 11). In other words, the number of activations to induce a
RowHammer bitflip (i.e., the RowHammer threshold) reduced from
139K single-sided in 2014 [72] to 4.8K double-sided in 2020 [70].
Revisiting RowHammer also showed that if the scaling trend contin-
ues as such, all known solutions at the time would either not work
in future DRAM chips that are even more vulnerable (e.g., with a
RowHammer threshold of 256 or 128) or have prohibitively large
performance overheads. To our knowledge, this work is the largest
scaling study of RowHammer to date, covering many different types
and generations of DRAM chips and its results demonstrate the
criticality and difficulty of the RowHammer problem as technology
node size shrinks in DRAM manufacturing.

1Figure 1 (reproduced from Revisiting RowHammer [70]) illustrates a quantitative
summary of both the reduction in double-sided hammer count (x-axis) and the increase
in RowHammer bitflip rate (y-axis) with newer DRAM generations (e.g., DDR4-old in
blue to DDR4-new in yellow) across three major DRAM manufacturers (A, B, C).
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Figure 1: Hammer count (HC) vs. RowHammer bitflip rate
across 1580 DRAM chips from five different type-node con-
figurations. Reproduced from [70].

Alarmed by the key experimental results and takeaways demon-
strated by these two works [38, 70], industry took action to gather
forces to more seriously mitigate the RowHammer problem. To this
end, a major RowHammer task group was (re)organized in JEDEC
(Joint Electron Device Engineering Council [58]). This task group
produced whitepapers describing how to proceed to solve RowHam-
mer [56, 57], which argue for limited system-DRAM cooperation.
The mission of this task group continues.

JEDEC andDRAMmanufacturers also added a new RFM (Refresh
Management) feature to the DDR5 standard [55] to aid the in-DRAM
mitigationmechanisms. The key idea of RFM is to provide in-DRAM
TRR mechanisms with extra time (as needed) to securely refresh
all potential victim rows. RFM requires the memory controller to
count the number of activations at DRAM bank granularity and
issue an RFM refresh command when the activation count reaches
a threshold value (based on the RowHammer threshold and the
strength of the in-DRAM TRR mechanism of a DRAM chip), such
that a RowHammer defense mechanism implemented inside the
DRAM chip can refresh the victim rows. However, because the
memory controller tracks row activation counts at DRAM bank
granularity, the activation count can frequently reach the threshold
even when there is no RowHammer attack in the system. As a
result, the memory controller can issue many unnecessary RFM
commands, each of which makes a DRAM bank unavailable for
hundreds of nanoseconds, causing performance overhead.

4 RECENT ROWHAMMER DEVELOPMENTS
TRRespass [38] and Revisiting RowHammer [70], by demonstrating
the importance and openness of the problem, catalyzed the ongoing
RowHammer research and development efforts. We briefly review
such efforts from 2019-2020 until now.

4.1 Exploiting RowHammer
Many works since 2019-2020 developed new and different ways to
exploit the RowHammer vulnerability (e.g., [24, 25, 28, 31, 38, 47,
54, 75, 77, 86, 106, 120, 143, 144, 149, 157, 162, 164, 165]). Among
these, we briefly describe RAMBleed [77] and RowHammer-driven
fault attacks on neural networks [50, 86, 120, 144, 157] since they
demonstrate different uses of RowHammer from taking over a
system. We also briefly describe new attacks that build on many-
sided hammering, including SMASH [28], Blacksmith [54], and
Half-Double [75], as they provide new insights into how vulnerable
existing DDR4 DRAM chips are to RowHammer.

RAMBleed [77] shows that RowHammer bitflips can be used to
break confidentiality in an existing DRAM-based system: RowHam-
mer bitflips can be used as a side channel to determine the data
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values stored in a location a user-level program does not have read
access to. This work demonstrates an attack against OpenSSH [105]
where RAMBleed is used to leak an encryption key.

Several works [50, 86, 144, 157] demonstrate that targeted
RowHammer bitflips can be used to greatly degrade the inference
accuracy of a neural network. These works highlight potential
safety and security issues that may be caused by RowHammer in
systems that rely on neural networks for decision making (e.g., au-
tonomous vehicles). A recent work in 2022 [120] demonstrates that
RowHammer bitflips can be used as a side channel to recover the
weights stored in a neural network, which breaks confidentiality
and violates privacy.

Some works that build on TRRespass demonstrate new RowHam-
mer attacks that are relatively easy to perform on DDR4 DRAM
chips. SMASH (Synchronized MAny-Sided Hammering) [28] suc-
cessfully triggers RowHammer bitflips from JavaScript code by
exploiting many-sided hammering and synchronizing access pat-
terns with DRAM refresh operations to bypass TRR mitigations.
This work demonstrates an end-to-end JavaScript exploit to fully
compromise the Firefox web browser in 15 minutes. Blacksmith [54]
uses automated fuzzing in the frequency domain to discover non-
uniform access patterns that can bypass TRR mechanisms more
effectively than uniform many-sided hammering. By doing so, it
generates access patterns that hammer aggressor rows with differ-
ent phases, frequencies, and amplitudes, finding complex patterns
that trigger Rowhammer bitflips on all 40 tested DDR4 modules.

Building on the concept of many-sided RowHammer attacks,
Google introduced the Half Double hammering pattern in 2021 [75,
115, 116]. Half Double shows that hammering a "far" neighbor row
that is physically one row away from the victim row many times
and then hammering the immediately-adjacent "near" neighbor
row of the victim row a much smaller number of times leads to
bitflips in some DDR4 DRAM chips. This is concerning because,
when TRR-based RowHammer mitigations are employed, hammers
performed on the far neighbor row can lead to refreshes performed
by TRR on the near neighbor row, which in turn can lead to bitflips
in the victim row. This work highlights the intricacies in bitflip
mechanisms in modern DRAM chips and alerts that defenses should
be carefully designed to work in the presence of such intricacies.

Many other works from 2020-2022 (e.g., [24, 25, 31, 106, 143, 149,
162, 164, 165]) demonstrate various other RowHammer exploits,
advancing our understanding of how RowHammer bitflips can
be used to degrade system security. We refer the reader to the
individual papers for more detail. We believe that it is critical to
push the boundaries of system security research by understanding
the different ways in which RowHammer bitflips can cause security
issues and making RowHammer exploits more powerful, especially
in the presence of stronger mitigation mechanisms.

4.2 Understanding RowHammer
Recent works since 2020 (e.g., [2, 24, 39, 68, 70, 101, 106, 107, 147,
153]) study RowHammer from different aspects to develop a better
understanding. Among these, we briefly describe two major works:
A Deeper Look into RowHammer [107] and RowHammer under Re-
duced Wordline Voltage [153] because these two works analyze new
aspects of RowHammer by rigorously testing real DRAM chips.

A Deeper Look into RowHammer [107] presents an experimen-
tal characterization using 248 DDR4 and 24 DDR3 modern DRAM
chips from four major DRAM manufacturers to reveal how the
RowHammer vulnerability is affected by three fundamental prop-
erties: 1) DRAM chip temperature, 2) aggressor row active time,
and 3) victim DRAM cell’s physical location. The results clearly
indicate that a RowHammer bitflip is more likely to occur 1) in a
bounded range of temperature, 2) if the aggressor row is active for
longer time, and 3) in certain physical regions of the DRAMmodule
under attack. This work also shows how its findings can be used
to improve both RowHammer attacks and RowHammer defenses,
highlighting the importance of such deeper understanding from
the perspective of both attackers and defenders.

RowHammer under Reduced Wordline Voltage [153] presents an
experimental characterization using 272 real DDR4 DRAM chips
from three major manufacturers to demonstrate how reducing the
wordline voltage affects both RowHammer vulnerability and DRAM
operation. The authors show that reducing wordline voltage pro-
vides a significant reduction in the number of RowHammer bitflips
and increase in the minimum number of aggressor row activations
needed to cause a RowHammer bitflip, without significantly affect-
ing reliable DRAM operation. This work highlights how deeply
understanding low-level effects on RowHammer can aid in devel-
oping more RowHammer-resilient DRAM systems.

Several other works from 2020-2022 (e.g., [24, 44, 106, 108, 147])
present various other simulation and real experiment-based analy-
ses to gain insights into RowHammer and its effects, furthering our
fundamental understanding of the RowHammer phenomenon. We
refer the reader to the individual papers for more detail. We believe
that it is critical to continue to develop a broader and deeper un-
derstanding of RowHammer to improve both RowHammer attacks
and defenses, on the path to designing systems that can effectively
and efficiently guard against RowHammer.

4.3 Mitigating RowHammer
Revisiting RowHammer from ISCA 2020 [70] clearly demonstrated
that, as RowHammer continues to worsen in real DRAM chips,
it is critical to develop fully-secure, low-overhead, and scalable
mitigation techniques. As such, 2020 and later years saw a surge in
new RowHammer solutions. We briefly cover major recent ideas
and directions in RowHammer mitigation.

Graphene [111] uses the Misra-Gries algorithm [93] for online
frequent item counting [17, 33, 34, 67] to track and identify fre-
quently activated rows. Graphene then refreshes the rows neighbor-
ing those with activation counts that are close to the RowHammer
threshold. This work, while effective, secure, and low-performance-
overhead, requires large area overhead when scaled to address the
worsening RowHammer vulnerability, as it uses area-expensive
content addressable memory for storing metadata [155].

BlockHammer [127, 155] uses counting Bloom Filters to iden-
tify frequently-activated rows and throttles accesses to those rows
whose activation counts are close to the RowHammer threshold.
BlockHammer thus does not require any proprietary information
about DRAM chips (e.g., physical row adjacency information) and
therefore can be implemented completely and securely in the mem-
ory controller. This work experimentally demonstrates that Block-
Hammer’s performance overheads are low (similar to other best
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prior mechanisms) when there is no RowHammer attack. When
there is a RowHammer attack, BlockHammer improves both system
performance and energy consumption by throttling the attacker
thread. This work also introduces a metric called RowHammer Like-
lihood Index (RHLI), and shows that this metric can be accurately
computed to identify RowHammer attacks and report them to the
system software. As such, BlockHammer provides an example of a
system-level approach to mitigate RowHammer attacks’ impact.2
This work deeply analyzes 14 major RowHammer defense mecha-
nisms, with many quantitative and qualitative comparisons, and
forms a basis for methodically comparing different RowHammer
defenses.3

More recently, Self-Managing DRAM (SMD) [46, 130] takes a
very different approach to RowHammer mitigation: SMD modifies
the DRAM interface such that the DRAM chip can reject an activa-
tion command issued by the memory controller and thus gain time
to perform internal maintenance operations, such as RowHammer
mitigation. SMD observes that RowHammer mitigation is essen-
tially a DRAMmaintenance operation that can be best implemented
within the DRAM chip based on device-level information avail-
able to DRAM manufacturers. SMD essentially provides “breathing
room” (i.e., extra time) to the DRAM chip to autonomously im-
plement such maintenance operations completely and securely
within the DRAM chip, at low overheads. The results are promising:
by carefully scheduling RowHammer mitigation actions at a fine
enough granularity across different regions of a DRAM chip, in-
DRAMRowHammer mitigation mechanisms inspired by PARA [72]
and BlockHammer [155] (i.e., SMD-PRP and SMD-PRP+) can lead
to low performance and energy overheads [46].

Randomized Row Swap (RRS) [131] and AQUA [133] propose to
relocate aggressor rows whose activation counts are close to the
RowHammer threshold. These works adopt Graphene’s approach
to frequently-activated row detection. When such an aggressor row
is detected, RRS swaps it with another randomly chosen row in the
same bank, while AQUA moves the aggressor row into a dedicated
quarantine region that stores the most frequently accessed rows.
By doing so, both RRS and AQUA prevent a DRAM row from being
activated enough times to induce a RowHammer bitflip. RRS and
AQUA do not need to know the physical layout of DRAM rows or
make modifications to DRAM chips and thus they are compatible
with commodity DRAM chips. On the downside, RRS and AQUA
both perform data relocation over the memory bus, which requires
off-chip data movement and exacerbates the already pressing data
movement overhead in modern systems [14, 15, 27, 64, 94, 97, 137].
Row-relocation based RowHammer defenses can be accelerated
with in-DRAM data copy support [23, 45, 104, 122, 129, 136, 148].

Two recent works in 2022 aim to broadly reduce the overheads
of RowHammer mitigations. HiRA [154] shows that the perfor-
mance overheads of refresh-based in-DRAM RowHammer mitiga-
tion mechanisms can be reduced by performing refreshes in parallel
with accesses and other refreshes [22, 74], and this can be done, to

2BlockHammer is freely and openly available [127], along with six other RowHammer
mitigationmechanisms [72, 78, 111, 138, 140, 158], implemented in Ramulator [73, 124].
3The BlockHammer paper [155] identifies fourmajor desirable properties of a RowHam-
mer defense, and demonstrates that BlockHammer is the only mechanism that satisfies
all four properties. We refer the reader to Section 9 in [155] for more detail.

an extent, in real DRAM chips. Hydra [119] shows that the hard-
ware cost of counters used to track row activations can be reduced
by storing such counters in DRAM and caching them in small struc-
tures on chip. These two works highlight the various overheads of
RowHammer mitigation and take a step in improving efficiency of
broad classes of mitigation techniques.

Many other works from 2020-2023 (e.g., [3, 11, 29, 30, 32, 38,
44, 47, 60–62, 65, 71, 80, 87, 88, 90, 91, 100, 108, 118, 119, 132, 152,
154, 161, 163, 166]) propose various other RowHammer mitigation
mechanisms. We refer the reader to the individual papers for more
detail. As RowHammer is greatly worsening with DRAM technol-
ogy scaling, we strongly believe that there is still a critical need
and large potential to solve RowHammer at very low cost and very
high efficiency, as we discuss in Section 5.2.

5 FUTURE DIRECTIONS
Aside from continuing the path of prior research, including discov-
ering and developing new RowHammer attacks and access patterns,
we believe there are two major directions that are critical for future
research to investigate and amplify efforts in.

5.1 Building a Fundamental & Comprehensive
Understanding of RowHammer

Even though there are various detailed characterization studies
performed to understand various properties of RowHammer [24,
70, 72, 106, 107, 109, 153], there is still a lot we do not know about
RowHammer, its properties/sensitivities, and the manifestations of
such properties in cutting-edge and future DRAM chips. It is critical
to fundamentally understand the various properties of RowHammer
under different conditions and access patterns, in order to develop
fully-secure and efficient solutions (as we argue for in Section 5.2).

We believe that at least several properties of RowHammer are
critical to fundamentally understand going forward: sensitivity to 1)
aging of DRAM chips, 2) environmental conditions (e.g., operating
temperature, supply voltage), and 3) memory access patterns. There
is no detailed characterization study that evaluates if and how the
aging of a DRAM chip affects its RowHammer vulnerability. While
some environmental conditions and memory access patterns are ex-
perimentally demonstrated to significantly affect the RowHammer
vulnerability of a DRAM chip [70, 75, 107, 153], further research is
needed to develop a more detailed understanding on the relation-
ship between such properties and the RowHammer vulnerability
of a DRAM chip. This understanding is necessary and critical to
develop given that all existing RowHammer defense mechanisms
rely on and future RowHammer defense mechanisms will likely rely
on the measured RowHammer vulnerability of DRAM chips (e.g.,
the RowHammer threshold value) to securely prevent bitflips. Un-
derstanding the individual and combined effects of RowHammer’s
sensitivities to aging of DRAM chips, environmental conditions,
and memory access patterns could yield accurate methodologies
and infrastructures that can efficiently evaluate the RowHammer
vulnerability of a given DRAM chip and facilitate the development
of holistic solutions that completely prevent RowHammer across
the entire computing system. We believe FPGA-based infrastruc-
tures for testing DRAM chips, such as SoftMC [48, 126] and DRAM
Bender [103, 128], are critical to enabling such studies, as they have
been in the past.

5



ASPDAC ’23, January 16–19, 2023, Tokyo, Japan Mutlu et al.

We also believe that it is important to more profoundly under-
stand the effects of RowHammer on real systems and real applica-
tions, both malicious and non-malicious. To this end, it is critical
to do research that pushes the boundaries of generating RowHam-
mer bitflips on many different types of systems, including mobile
and server CPUs, GPUs, accelerators, FPGAs, as well as different
DRAM and memory types, including HBM and emerging NVM
technologies. Such research can not only discover new problems
and sensitivities but also pave the way to generalized solutions that
are applicable to many systems.

5.2 Designing Extremely Efficient Solutions to
RowHammer

As the RowHammer vulnerability worsens with DRAM tech-
nology scaling, developing extremely efficient and fully-secure
RowHammer solutions becomes increasingly important. Even
though many prior works develop various software- and hardware-
level RowHammer solutions, these solutions incur non-negligible
and increasingly more significant system performance, energy, and
hardware area overheads as RowHammer vulnerability worsens.

We believe that developing new low-cost (in terms of perfor-
mance, energy, area) and provably-secure RowHammer solutions
is critical to efficiently preventing RowHammer bitflips going for-
ward. As DRAM continues to scale, RowHammer bitflips can occur
at smaller activation counts and thus a benign workload’s DRAM
row activation rates can approach or even exceed the RowHammer
threshold [88, 119, 131, 133, 155]. Thus, a system may experience
bitflips or frequently trigger RowHammer defense mechanisms
even without a malicious party performing a RowHammer attack
in the system, leading to data corruption or significant performance
degradation. To avoid such problems, we advocate co-architecting
of the system and the memory together. A holistic solution that
takes a system-memory co-design approach (as advocated earlier
by [66, 72, 94, 99, 112]) can both prevent RowHammer bitflips and
detect RowHammer attacks while at the same time avoiding po-
tential performance and denial-of-service problems due to both
RowHammer attacks and RowHammer mitigation mechanisms.
For example, such a system can efficiently relocate/isolate data
or throttle/relocate/isolate threads such that the performance of
non-malicious applications is unaffected by RowHammer attacks
or mitigations.4 With worsening RowHammer vulnerability, such
holistic solutions could pave the way to extremely efficient and
fully-secure defenses against RowHammer.

We also believe that more flexible and efficient RowHammer
solutions can take advantage of the wide variation in RowHammer
vulnerability (as shown by [47, 70, 107, 153]) across 1) cells in a
DRAM chip, 2) DRAM chips, 3) manufacturers, 4) DRAM types and
generations, 5) environmental conditions, and 6) data patterns, to
statically and dynamically adapt to system and workload character-
istics. In current practice, RowHammer solutions need to be config-
ured for the DRAM chip with the smallest RowHammer threshold.
Such solutions are overly aggressive, as they try to cover the worst
possible case, i.e., the most RowHammer-vulnerable DRAM chip

4BlockHammer [127, 155] takes a step towards this direction by throttling the threads
that are identified as RowHammer attacks. We believe that there is more to be done
to further reduce the performance problems due to both Rowhammer attacks and
RowHammer mitigations.

that is acceptable to be sold, and can therefore induce large sys-
tem performance and energy overheads that are unnecessary in
the common case. We believe future RowHammer solutions need
to be easily (re)configurable or programmable, such that they can
statically and dynamically adapt to system and workload charac-
teristics, and there is significant research needed towards enabling
such flexible and efficient solutions.5

6 CONCLUSION
We provided a brief overview of the history and current state of
research and development on the RowHammer vulnerability. We
described major future research directions which we believe are
critical to fundamentally understanding and solving RowHammer.
We conclude that even though much research and development is
done on the topic, a lot more needs to be done going forward, since
RowHammer is a fundamental DRAM technology scaling problem
that is getting worse in newer DRAM chips that will continue to
be employed across almost all computing systems. We hope the
discussion and ideas provided in this paper provide a useful path
for the community to find ways of fundamentally understanding
and efficiently solving the RowHammer problem.
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