
..

THREAD CLUSTER MEMORY
SCHEDULING

..

MEMORY SCHEDULERS IN MULTICORE SYSTEMS SHOULD CAREFULLY SCHEDULE

MEMORY REQUESTS FROM DIFFERENT THREADS TO ENSURE HIGH SYSTEM PERFORMANCE

AND FAIR, FAST PROGRESS OF EACH THREAD. NO EXISTING MEMORY SCHEDULER

PROVIDES BOTH THE HIGHEST SYSTEM PERFORMANCE AND HIGHEST FAIRNESS. THREAD

CLUSTER MEMORY SCHEDULING IS A NEW ALGORITHM THAT ACHIEVES THE BEST OF

BOTH WORLDS BY DIFFERENTIATING LATENCY-SENSITIVE THREADS FROM BANDWIDTH-

SENSITIVE ONES AND EMPLOYING DIFFERENT SCHEDULING POLICIES FOR EACH.

......High latency of off-chip memory
accesses has long been a critical bottleneck in
thread performance—particularly in chip-
multiprocessors where memory is shared
among concurrently executing threads.
When a thread accesses memory, it contends
with other threads and, as a result, can slow
down. Inter-thread memory contention, if
not properly managed, can have devastating
effects on individual thread performance as
well as overall system throughput, leading to
system underuse and even thread starvation.1

A memory scheduling algorithm’s effec-
tiveness is commonly evaluated on the basis
of two objectives: fairness2-4 and system
throughput.3-5 No single thread should be
disproportionately slowed down, but on the
other hand, the overall system’s throughput
should remain high. Intuitively, fairness
and high system throughput ensure that all
threads progress at a relatively even and fast
pace. Designing a memory scheduler that
achieves both high fairness and high system
throughput is a difficult task.

Applying a single memory scheduling
policy across all threads, an approach

commonly employed by existing memory
scheduling algorithms, can’t address the dis-
parate needs of different threads. Therefore,
existing algorithms can’t decouple the system
throughput and fairness goals and achieve
them simultaneously.

By using a multifaceted approach, our
TCM (Thread Cluster Memory) scheduling
algorithm can achieve both the highest system
throughput and the highest system fairness
of any known memory scheduling approach.

Problems with existing approaches
TCM can solve several problems that

existing approaches can’t handle. (See the
‘‘Related work in memory scheduling
algorithms’’ sidebar for more information.)

Bias toward one metric
Previously proposed memory scheduling

algorithms are biased toward either fairness
or system throughput. To illustrate this,
Figure 1 plots the unfairness (the slowdown
of the thread that incurs the highest slow-
down compared to when it is run alone)
and system throughput (weighted speedup)

[3B2-14] mmi2011010078.3d 20/1/011 14:35 Page 78

Yoongu Kim

Michael Papamichael

Onur Mutlu

Mor Harchol-Balter

Carnegie Mellon University

..

78 Published by the IEEE Computer Society 0272-1732/11/$26.00 �c 2011 IEEE

of four previous, state-of-the-art algorithms.
An ideal memory scheduling algorithm
would fall near the plot’s lower (better fair-
ness) right (better system throughput).
Unfortunately, no previous scheduling algo-
rithm achieves the best fairness and the best
system throughput simultaneously.

Single-faceted approaches are inadequate
Previous memory scheduling algorithms

can’t balance fairness and system throughput,
because they employ the same policy for all
threads. Such a single-faceted approach can’t
address different threads’ disparate needs.

For example, in one extreme, by trying to
equalize the amount of bandwidth each
thread receives, a scheduling algorithm
could achieve some notion of fairness, but
at a large expense to system throughput.2

At the opposite extreme, strictly prioritizing
certain favorable threads over all others
would increase system throughput, but at a
large expense to fairness.5 As a result, such
relatively single-faceted approaches can’t
provide the highest fairness and system
throughput simultaneously.

Balancing fairness and system throughput
A workload can consist of a diverse mix of

threads that exhibit different memory access
behavior. A well-designed memory schedul-
ing algorithm should strive to maximize
overall system throughput, but at the same
time, it should bound the worst-case slow-
down experienced by any one thread.
These two goals often conflict and form a
trade-off between fairness and system
throughput.

To simultaneously achieve high fairness
and system throughput, the memory schedul-
ing algorithm must consider threads’ memory
access behavior because memory access behav-
ior of threads affects how those threads inter-
fere in the memory system (as we show later).

Key insights
Our new scheduling algorithm exploits

differences in thread memory behavior to op-
timize for both system throughput and fair-
ness. It is based on several key insights that
we developed and integrated in our paper pre-
sented at the 43rd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture.6

First, prior studies have demonstrated
the system throughput benefits of priori-
tizing non-memory-intensive threads
over memory-intensive threads.4,5,7 Non-
memory-intensive threads seldom generate
memory requests and have greater potential
for making fast progress in the processor.
Therefore, to maximize system throughput, a
memory scheduling algorithm should priori-
tize non-memory-intensive threads. Doing so
doesn’t degrade fairness, because non-
memory-intensive threads are ‘‘light’’ and
rarely interfere with memory-intensive threads.

Second, we observe that unfairness prob-
lems usually stem from interference among
memory-intensive threads. When we priori-
tize threads on the basis of memory inten-
sity,5 medium-intensity threads deny
memory access to higher-intensity threads.
As a result, higher-intensity threads experi-
ence large slowdowns and suffer from unfair-
ness or even starvation.

Third, we observe that periodically shuf-
fling the priority order among memory-
intensive threads reduces unfairness because
threads take turns gaining prioritized access
to memory. However, we find that shuffling
symmetrically (where each thread has an
equal chance of being at all priority levels)
can be ineffective because threads aren’t
equal in their propensity to interfere with
others. Therefore, a memory scheduling

[3B2-14] mmi2011010078.3d 20/1/011 14:35 Page 79

Highe
r p

er
for

man
ce

an
d fa

irn
es

s

FR-FCFS
STFM
PAR-BS
ATLAS

2

4

6

8

10

12

14

16

9.08.88.6

System throughput

8.48.28.0
M

ax
im

um
 s

lo
w

d
ow

n
(u

nf
ai

rn
es

s)

Figure 1. Performance and fairness of state-of-the-art memory scheduling

algorithms. The lower right corner is toward the ideal operation point.

..

JANUARY/FEBRUARY 2011 79

algorithm should shuffle thread priorities
such that a thread that’s more likely to
cause interference has a smaller chance of
being assigned a high priority.

Fourth, as previous work has shown,4,5,8

scheduling decisions should be made in a
synchronized manner across all banks such
that each thread’s concurrent requests are
serviced in parallel, without being serialized
because of interference from other threads.

Memory access behavior
TCM defines a thread’s memory access

behavior using three components from previ-
ous work: memory intensity,5 bank-level
parallelism,4 and row-buffer locality.9

Memory intensity
Memory intensity is the frequency at

which a thread misses in the last-level cache
and generates memory requests. It is

measured in the unit of (cache) misses per
thousand instructions (MPKI).

Bank-level parallelism
A thread’s bank-level parallelism is the av-

erage number of banks to which it has out-
standing memory requests when the thread
has at least one outstanding request. In the
extreme case where a thread concurrently
accesses all banks at all times, its bank-level
parallelism would equal the total number
of banks in the memory subsystem.

Row-buffer locality
A memory bank is internally organized as a

2D structure of rows and columns. The col-
umn is the smallest addressable unit of mem-
ory, and multiple columns make up a single
row. When a thread accesses a particular col-
umn within a particular row, the memory
bank places that row into a small internal

[3B2-14] mmi2011010078.3d 20/1/011 14:35 Page 80

...

Related work in memory scheduling algorithms

We describe related work on memory scheduling and qualitatively com-

pare Thread Cluster Memory to several previous designs. Our main article

compares TCM quantitatively with four state-of-the-art schedulers.

Thread-unaware schedulers
Researchers have examined memory controller designs that don’t

distinguish between different threads1-7 within the context of single-

threaded, vector, or streaming architectures. Existing systems commonly

employ variants of the FR-FCFS (first-ready, first-come first-serve) sched-

uling policy,1,2 which prioritizes row-hit requests over other requests.

Recent work explored reducing the cost of the FR-FCFS design for accel-

erators.8 These policies aim to maximize DRAM throughput. Thread-

unaware scheduling policies have been shown to be low-performance

and prone to starvation when multiple competing threads share the

memory controller in general-purpose multicore and multithreaded

systems.9-15

Thread-aware schedulers
In contrast, researchers have recently designed thread-aware memory

schedulers to improve fairness and provide quality of service (QoS). Fair-

queueing memory schedulers adapt variants of the fair-queueing algo-

rithm from computer networks to build a memory scheduler that provides

QoS to each thread.10,11 The Stall-Time Fair Memory (STFM) scheduler

uses heuristics to estimate each thread’s slowdown compared to when

it runs alone, and it prioritizes the thread that has slowed down the

most.13 These algorithms aim to maximize fairness, although they can

also lead to throughput improvements by increasing system utilization.

The ATLAS (Adaptive Per-Thread Least Attained Service) scheduler

strives to maximize system throughput by prioritizing threads that have

attained the least service from the memory controllers.15 This increase

in system throughput comes at the cost of fairness because the most

memory-intensive threads receive the lowest priority and experience

very high slowdowns.

Parallelism-aware batch scheduling (PAR-BS) strives to balance fair-

ness and system throughput.14 For fairness, PAR-BS groups memory

requests into batches and prioritizes the oldest batch. For throughput,

PAR-BS prioritizes threads that are less memory intensive, within the

oldest batch. However, the batching policy limits system throughput; it

implicitly penalizes non-memory-intensive threads because memory-

intensive threads usually insert many more requests into a batch.

Ipek et al. leverage machine-learning techniques to implement mem-

ory scheduling policies;12 Zhu et al. describe memory scheduling optimi-

zations for simultaneous multithreading (SMT) processors.16 Neither

considers fairness or system throughput when threads compete. Lee et al.

describe a mechanism to adaptively prioritize between prefetch and de-

mand requests in a memory scheduler;17 their mechanism can be com-

bined with ours.

References

1. W.K. Zuravlev and T. Robinson, Controller for a Synchronous

DRAM that Maximizes Throughput by Allowing Memory

Requests and Commands to Be Issued Out of Order, US

patent 5,630,096, to Microunity Systems Eng., Inc., 1997.

..

80 IEEE MICRO

...

TOP PICKS

buffer called the row buffer. If a subsequent
memory request accesses the same row that’s
in the row buffer (called a row-buffer hit), it
can be serviced much more quickly. A
thread’s row-buffer locality is the row buffer’s
average hit rate across all banks.

Latency- versus bandwidth-sensitive threads
From a memory intensity perspective, we

classify threads as either latency sensitive or
bandwidth sensitive. Latency-sensitive
threads spend most of their time at the pro-
cessor and issue memory requests sparsely.
Although the number of generated memory
requests is low, latency-sensitive threads are
sensitive to the memory subsystem’s latency;
every additional cycle spent waiting on mem-
ory is a wasted cycle that could have been
spent on computation. In contrast, band-
width-sensitive threads experience frequent
cache misses and thus spend a lot of time

waiting on pending memory requests. There-
fore, the memory subsystem’s throughput
greatly affects their progress. Even if a mem-
ory request is quickly serviced, subsequent
memory requests will once again stall
execution.

Exploiting differences in memory
access behavior

Threads are not created equal in terms of
memory access behavior. By being aware of
their differences, the scheduling algorithm
can decouple the two objectives of system
throughput and fairness to achieve them
simultaneously.

System throughput: Prioritize light threads
Exploiting differences in threads’ mem-

ory intensity lets us improve system through-
put. Prior studies have demonstrated the
system throughput benefits of prioritizing

[3B2-14] mmi2011010078.3d 20/1/011 14:35 Page 81

2. S. Rixner et al., ‘‘Memory Access Scheduling,’’ Proc. 27th

Ann. Int’l Symp. Computer Architecture (ISCA 00), ACM

Press, 2000, pp. 128-138.

3. L. Zhang et al., ‘‘The Impulse Memory Controller,’’ IEEE

Trans. Computers, vol. 50, no. 11, 2001, pp. 1117-1132.

4. S.A. McKee et al., ‘‘Dynamic Access Ordering for Streamed

Computations,’’ IEEE Trans. Computers, vol. 49, no. 11,

2000, pp. 1255-1271.

5. I. Hur and C. Lin, ‘‘Adaptive History-Based Memory Schedu-

lers,’’ Proc. 37th Ann. IEEE/ACM Int’l Symp. Microarchitec-

ture, IEEE CS Press, 2004, pp. 343-354.

6. J. Shao and B.T. Davis, ‘‘A Burst Scheduling Access Reordering

Mechanism,’’ Proc. IEEE 13th Int’l Symp. High Performance Com-

puter Architecture (HPCA 07), IEEE CS Press, 2007, pp. 285-294.

7. C. Natarajan et al., A Study of Performance Impact of Mem-

ory Controller Features in Multi-processor Server Environ-

ment,’’ Proc. 3rd Workshop Memory Performance Issues

(WMPI 04), ACM Press, 2004, pp. 80-87.

8. G.L. Yuan, A. Bakhoda, and T.M. Aamodt, ‘‘Complexity Effec-

tive Memory Access Scheduling for Many-Core Accelerator

Architectures,’’ Proc. 42nd Ann. IEEE/ACM Int’l Symp. Micro-

architecture, ACM Press, 2009, 34-44.

9. T. Moscibroda and O. Mutlu, ‘‘Memory Performance Attacks:

Denial of Memory Service in Multi-core Systems,’’ Proc. 16th

USENIX Security Symp. (SS 07), Usenix Assoc., 2007,

pp. 257-274.

10. K.J. Nesbit et al., ‘‘Fair Queuing Memory Systems,’’ Proc.

39th Ann. IEEE/ACM Int’l Symp. Microarchitecture, IEEE CS

Press, 2006, pp. 208-222.

11. N. Rafique, W.-T. Lim, and M. Thottethodi, ‘‘Effective

Management of DRAM Bandwidth in Multicore Process-

ors,’’ Proc. 16th Int’l Conf. Parallel Architecture and Com-

pilation Techniques (PACT 07), IEEE CS Press, 2007,

pp. 245-258.

12. E. Ipek et al., ‘‘Self-Optimizing Memory Controllers: A Reinforce-

ment Learning Approach,’’ Proc. 35th Ann. Int’l Symp. Computer

Architecture (ISCA 08), IEEE CS Press, 2008, pp. 39-50.

13. O. Mutlu and T. Moscibroda, ‘‘Stall-Time Fair Memory Ac-

cess Scheduling for Chip Multiprocessors,’’ Proc. 40th Ann.

IEEE/ACM Int’l Symp. Microarchitecture, IEEE CS Press,

2007, pp. 146-160.

14. O. Mutlu and T. Moscibroda, ‘‘Parallelism-Aware Batch

Scheduling: Enhancing Both Performance and Fairness

of Shared DRAM Systems,’’ Proc. 35th Ann. Int’l Symp.

Computer Architecture (ISCA 08), IEEE CS Press, 2008,

pp. 63-74.

15. Y. Kim et al., ‘‘ATLAS: A Scalable and High-Performance

Scheduling Algorithm for Multiple Memory Controllers,’’

Proc. IEEE 16th Int’l Symp. High Performance Computer

Architecture (HPCA 10), IEEE Press, 2010, doi:10.1109/

HPCA.2010.5416658.

16. Z. Zhu and Z. Zhang, ‘‘A Performance Comparison of DRAM

Memory System Optimizations for SMT Processors,’’ Proc.

11th Int’l Symp. High-Performance Computer Architecture

(HPCA 05), IEEE CS Press, 2005, pp. 213-224.

17. C.J. Lee et al., ‘‘Prefetch-Aware DRAM Controllers,’’ Proc.

41st Ann. IEEE/ACM Int’l Symp. Microarchitecture, IEEE CS

Press, 2008, pp. 200-209.

..

JANUARY/FEBRUARY 2011 81

‘‘light’’ (that is, latency-sensitive) threads
over ‘‘heavy’’ (that is, bandwidth-intensive)
threads.4,5,7 Latency-sensitive threads only
seldom generate memory requests and have
greater potential for making fast progress in
the processor. Therefore, to maximize system
throughput, a memory scheduling algorithm
should prioritize such threads and shield
them from the heavy threads’ interference.
Doing so doesn’t degrade fairness, because
light threads rarely interfere with heavy
threads.

Fairness: Minimize interference among
heavy threads

We’ve observed that unfairness problems
usually stem from interference among
bandwidth-sensitive threads. Their numer-
ous memory requests conflict with one an-
other and destroy each thread’s parallelism
and locality. However, depending on their
bank-level parallelism and row-buffer local-
ity, memory-intensive threads have varying
susceptibility to interference.

To illustrate this point, we ran experi-
ments with two bandwidth-sensitive threads
that we specifically constructed to have the
same memory intensity but different bank-
level parallelism and row-buffer locality. As
Table 1 shows, the random-access thread
has low row-buffer locality and high bank-
level parallelism, whereas the streaming
thread has low bank-level parallelism and
high row-buffer locality.

Which of the two threads is more prone
to large slowdowns when run together?
Figure 2 shows the slowdown these two
threads experience for two scheduling policies:
one which strictly prioritizes the random-
access thread over the streaming thread, and
one which strictly prioritizes the streaming
thread over the random-access thread.
Clearly, as Figure 2 shows, the random-access
thread is more susceptible to being slowed
down because it experiences a slowdown of
more than 11� when it’s deprioritized,
which is significantly greater than the stream-
ing thread’s slowdown when it’s deprioritized.

[3B2-14] mmi2011010078.3d 20/1/011 14:35 Page 82

14

12

10

8

6

4

2

0

S
lo

w
d

ow
n

Streaming
thread

Random-access
thread

14

12

10

8

6

4

(a) (b)

2

0

S
lo

w
d

ow
n

Streaming
thread

Random-access
thread

Figure 2. Effect of prioritization choices between the random-access thread and the streaming thread. Strictly prioritizing

the random-access thread (a) vs. the streaming thread (b).

Table 1. Two examples of bandwidth-sensitive threads:

random-access vs. streaming.

Memory access behavior

Thread type Memory intensity Bank-level parallelism Row-buffer locality

Random-access High (100 MPKI) High (72.7% of maximum) Low (0.1%)

Streaming High (100 MPKI) Low (0.3% of maximum) High (99%)..
*MPKI: misses per thousand instructions.

..

82 IEEE MICRO

...

TOP PICKS

The random-access thread is more sus-
ceptible to slowdown for two reasons.
First, the streaming thread generates a steady
stream of requests to a bank at a given time,
leading to a temporary denial of service to
any thread that accesses the same bank. Sec-
ond, a thread with high bank-level parallel-
ism is more susceptible to memory
interference from another thread, because a
bank conflict leads to the loss of bank-level
parallelism, thus leading to serialization of
otherwise parallel requests. Therefore, all
else being the same, a scheduling algorithm
should favor the thread with higher bank-
level parallelism when distributing the mem-
ory bandwidth among bandwidth-sensitive
threads. We used this insight to develop a
new memory scheduling algorithm that
intelligently prioritizes between bandwidth-
sensitive threads.

Thread Cluster Memory scheduler
Our algorithm comprises three main

components: clustering threads, prioritizing
the latency-sensitive cluster, and employing
different scheduling policies for different
clusters.

First, to accommodate the disparate
memory needs of concurrently executing
threads sharing memory, TCM dynamically
groups threads into two clusters on the
basis of their memory intensity: a latency-
sensitive cluster containing lower-memory-
intensity threads and a bandwidth-sensitive
cluster containing higher-memory-intensity
threads. By employing different scheduling
policies within each cluster, TCM can
decouple the system throughput and fairness
goals and optimize for each one separately.

Second, TCM always strictly prioritizes
memory requests from the latency-sensitive
cluster’s threads over requests from the
bandwidth-sensitive cluster’s threads. As
we explained earlier, prioritizing latency-
sensitive threads increases overall system
throughput because they have greater poten-
tial for making progress. Servicing memory
requests from such light threads lets them
continue with their computation.

To ensure sufficient bandwidth is left for
the bandwidth-sensitive cluster, TCM limits
the number of threads placed in the latency-
sensitive cluster, such that they consume only

a small fraction of the total memory
bandwidth.

Third, to achieve high system throughput
and to minimize unfairness, TCM employs a
different scheduling policy for each cluster.
The policy for the latency-sensitive cluster
is geared toward high performance and low
latency, because that cluster’s threads have
the greatest potential for making fast progress
if their memory requests are serviced
promptly. By contrast, the policy for the
bandwidth-sensitive cluster is geared toward
maximizing fairness, because that cluster’s
threads have heavy memory bandwidth de-
mand and are susceptible to detrimental
slowdowns if not given a sufficient share of
the memory bandwidth.

Grouping threads into two clusters
TCM periodically ranks all threads

according to their memory intensity at
fixed-length time intervals called quanta. It
places the least memory-intensive threads in
the latency-sensitive cluster and the remain-
ing threads in the bandwidth-sensitive
cluster. Throughout each quantum, TCM
monitors each thread’s memory bandwidth
usage in terms of the memory service time
it has received; calculated across all banks
in the memory subsystem, TCM defines a
thread’s memory service time as the number
of cycles that the banks were kept busy serv-
icing the thread’s requests. The total memory
bandwidth usage is the sum of each thread’s
memory bandwidth usage.

TCM groups the threads into two clusters
at the beginning of every quantum using a
parameter called ClusterThresh to specify
the amount of bandwidth the latency-
sensitive cluster consumes (as a fraction of
the previous quantum’s total memory band-
width usage). Our experimental results show
that for a system with N threads, a Cluster-
Thresh value ranging from 2/N to 6/N—
that is, forming the latency-sensitive cluster
such that it consumes 2/N to 6/N of
the total memory bandwidth usage can pro-
vide a smooth transition between different
performance-fairness trade-off points.

TCM groups threads into clusters in a
synchronized manner across all memory
controllers to better exploit bank-level
parallelism.4,5,8 To agree on the same thread

[3B2-14] mmi2011010078.3d 20/1/011 14:35 Page 83

..

JANUARY/FEBRUARY 2011 83

clustering, the memory controllers exchange
information at the end of every quantum,
as has been done in previous work.5 We set
our time quantum’s length to 1 million
cycles, which is short enough to detect
phase changes in the threads’ memory behav-
ior and long enough to minimize the com-
munication overhead of synchronizing
multiple memory controllers. Our original
paper shows the pseudocode for the thread-
clustering algorithm.6

Latency-sensitive cluster: Maximize
system throughput

Within the latency-sensitive cluster, TCM
enforces a strict priority, with the least
memory-intensive thread receiving the high-
est priority. Such a thread is more likely to
make large contributions to overall system
throughput.

Bandwidth-sensitive cluster: Fairly sharing
the memory

Bandwidth-sensitive threads should fairly
share memory bandwidth to ensure no single
thread is disproportionately slowed down.
To achieve this, we must periodically shuffle
the bandwidth-sensitive cluster’s thread pri-
ority order. As we mentioned earlier, to pre-
serve bank-level parallelism, this shuffling
must occur in a synchronized manner across
all memory banks, such that at any point in
time all banks agree on a global thread prior-
ity order.

The problem with a round-robin approach.
Shuffling the priority order in a round-
robin fashion among bandwidth-sensitive
threads seems like a simple solution, but
our experiments revealed two problems.
First, a round-robin shuffling algorithm is
oblivious to inter-thread interference: it
doesn’t know which threads are more likely
to slow down others. The second issue is
more subtle and is tied to the way memory
banks handle thread priorities. When
choosing which memory request to service
next, each bank first considers the requests
from the highest-priority thread according
to the current priority order. If that thread
has no requests, the bank then considers
the next-highest-priority thread, and so on.
Therefore, a thread doesn’t have to be at

the top priority position to get some of its
requests serviced. In other words, memory
service leaks from highest-priority levels to
lower ones.

This memory service leakage is the second
reason the simple round-robin algorithm
performs poorly. In particular, the problem
with a round-robin approach is that a thread
always maintains its relative position with re-
spect to other threads. This means that fortu-
nate threads scheduled behind leaky threads
will consistently receive more service than
other threads scheduled behind nonleaky
threads, resulting in unfairness. This problem
becomes more evident when we consider the
threads’ different memory access behavior.
For instance, a streaming thread that exhibits
high row-buffer locality and low bank-level
parallelism will severely leak memory service
time at all memory banks except for the
single bank it’s currently accessing.

Thread niceness and insertion shuffle. To
alleviate the problems stemming from mem-
ory service leakage and minimize inter-
thread interference, TCM employs a new
shuffling algorithm, called insertion shuffle.
(We derived the name from its similarity
to the insertion sort algorithm. Each inter-
mediate state during an insertion sort
corresponds to a permutation in insertion
shuffle.) Insertion shuffle reduces memory
interference and increases fairness by
exploiting heterogeneity in the bank-level
parallelism and row-buffer locality among
different threads.

We introduce a new metric, called nice-
ness, which captures a thread’s propensity
to cause interference and its susceptibility
to interference. A thread with high row-
buffer locality is likely to make consecutive
accesses to a few banks and thus make
them congested. Under such circumstances,
another thread with high bank-level parallel-
ism becomes vulnerable to memory interfer-
ence because it’s subject to transient high
loads at any of the many banks it’s concur-
rently accessing. So, a thread with high
bank-level parallelism is fragile (more likely
to be interfered with), whereas one with
high row-buffer locality is hostile (more
likely to cause interference to others). We
define a thread’s niceness to increase with

[3B2-14] mmi2011010078.3d 20/1/011 14:35 Page 84

..

84 IEEE MICRO

...

TOP PICKS

a thread’s relative fragility and to decrease
with its relative hostility. Within the
bandwidth-sensitive cluster, if threadi has
the (bi)th highest bank-level parallelism
and the (ri)th highest row-buffer locality,
we formally define its niceness as follows:

Nicenessi � bi � ri.

Every quantum, TCM sorts threads by
their niceness value to yield a ranking,
where the nicest thread receives the highest
rank. Subsequently, every ShuffleInterval
cycles, the insertion shuffle algorithm per-
turbs this ranking. This perturbation is
done in such a way that reduces the time
during which the least nice threads are priori-
tized over the nicest threads, ultimately
resulting in less interference. Figure 3
shows successive permutations of the priority
order for both the round-robin and insertion
shuffle algorithms for four threads. In the
case of insertion shuffle, the least nice thread
spends most of its time at the lowest priority
position, whereas the remaining nicer threads
are at higher priorities and thus can synergis-
tically leak their memory service time among
themselves. (Algorithm 2 in our original
paper shows the pseudocode for the insertion
shuffle algorithm.6)

Handling threads with similar behavior. If
the bandwidth-sensitive cluster consists of
homogeneous threads with similar memory
behavior, TCM disables insertion shuffle
and falls back to random shuffle to prevent
unfair treatment of threads because of
marginal differences in niceness values.

To do this, TCM inspects whether threads
exhibit sufficient diversity in memory
access behavior before applying insertion
shuffling. Our original paper explains
exactly how TCM does this, describes ran-
dom shuffling, and evaluates the perfor-
mance and fairness benefits of random
shuffling.6

Summary: TCM prioritization rules
Figure 4 summarizes how TCM priori-

tizes threads’ memory requests. When
requests from multiple threads compete to
access a bank, the higher-ranked thread
(where ranking depends on the thread clus-
ter) has priority. If two requests have the
same thread rank, TCM favors row-buffer
hit requests. All else being equal, TCM
favors older requests.

System software support
TCM supports thread weights (or prior-

ities) that the operating system assigns, such

[3B2-14] mmi2011010078.3d 20/1/011 14:35 Page 85

Nicest thread Least nice thread Nicest thread Least nice thread

Time

R
an

k

Time

R
an

k

(a) (b)

Figure 3. Visualizing two shuffling algorithms: round-robin shuffle (a) and insertion shuffle (b).

1. Highest-rank first: Requests from higher-ranked threads have priority

over others.

* Latency-sensitive threads have higher rank than bandwidth-sensitive

threads.

* Within the latency-sensitive cluster, lower-MPKI threads have higher rank

than others.

* Within the bandwidth-sensitive cluster, insertion shuffling determines

rank order.

2. Row-hit first: Row buffer hit requests have priority over others.

3. Oldest first: Older requests have priority over others.

Figure 4. TCM request prioritization rules.

..

JANUARY/FEBRUARY 2011 85

that threads with larger weights have higher
priority in the memory controller. However,
given a thread with a large thread weight,
blindly prioritizing it can potentially lead
to the destruction of all other threads’
performance.

TCM solves this problem by honoring
thread weights within the context of thread
clusters. For example, even if the operating
system assigns a large weight to a
bandwidth-sensitive thread, TCM doesn’t
prioritize it over the latency-sensitive
threads, because doing so would signifi-
cantly degrade all latency-sensitive threads’
performance without significantly improv-
ing the higher-weight thread’s performance.
Thus, TCM prioritizes threads only
within their respective cluster: within the
bandwidth-sensitive cluster, TCM employs
a weighted shuffling that takes into account
thread weight; within the latency-sensitive
cluster, TCM interprets a thread’s memory
intensity as its MPKI scaled down by its
weight.

Fairness and performance trade-off knob
ClusterThresh is exposed to the system

software such that the software can adjust
its value to achieve the desired balance
between throughput and fairness, as we will
soon show.

Evaluation
We evaluated TCM using an in-house cycle-

level x86 CMP simulator. We modeled the
memory subsystem using DDR2 (double data
rate) timing parameters,10 which we verified
using DRAMSim11 and measurements from
real hardware. Our main results are from
a 24-core CMP with four memory control-
lers, where each core has a 512-Kbyte private
level-two (L2) cache. Our original paper
explains our model and methodology in detail
and evaluates the sensitivity of our results
to changes in system and TCM parameters.6

We used the SPEC CPU2006 bench-
marks for evaluation. We formed 96 multi-
programmed workloads of varying memory
intensity, which we simulated for 100 mil-
lion cycles.

We measured system throughput using
weighted speedup,12 and we measured fair-
ness using maximum slowdown;13 these are
common metrics for multiprogrammed
workload evaluation. We also report har-
monic speedup,14 which measures a balance
of fairness and throughput.

Evaluation: Best of both throughput and fairness
We compared TCM’s performance

against four previous memory scheduling
algorithms: FR-FCFS (first-ready, first-
come, first-serve),9 STFM (Stall-Time Fair
Memory) scheduler,3 PAR-BS4 (parallelism-
aware batch scheduling—the best existing
algorithm for fairness), and ATLAS5 (Adap-
tive Per-Thread Least Attained Service—the
best existing algorithm for system through-
put). Figure 5 shows where each scheduling
algorithm lies with regard to fairness and
system throughput, averaged across all
96 workloads of varying memory intensity.
The lower right part of the figure corre-
sponds to better fairness (lower maximum
slowdown) and better system throughput
(higher weighted speedup). TCM improves
system throughput and reduces maximum
slowdown by 4.6 percent and 38.6 percent
compared to ATLAS (previous work provid-
ing the best system throughput) and 7.6 per-
cent and 4.6 percent compared to PAR-BS
(previous work providing the best fairness).
We conclude that TCM achieves the best
system throughput and the best fairness, out-
performing every algorithm with regard to

[3B2-14] mmi2011010078.3d 20/1/011 14:35 Page 86

6

8

10

12

14

16

10.09.59.0

Weighted speedup

8.58.0

M
ax

im
um

 s
lo

w
d

ow
n

FR-FCFS
STFM
PAR-BS
ATLAS
TCM

Figure 5. Performance and fairness of TCM vs. other algorithms across

all 96 workloads.

..

86 IEEE MICRO

...

TOP PICKS

weighted speedup, maximum slowdown, and
harmonic speedup (shown in Figure 6b).

Note that TCM’s performance as shown
here is for just a single operating point. As
the next section shows, TCM provides the
flexibility to smoothly transition along a
range of performance-fairness trade-off points.

Evaluation: Trading off between
performance and fairness

To study each memory scheduler’s
robustness, as well as the ability to adapt to
different performance and fairness goals,
we varied each scheduler’s most salient con-
figuration parameters, as described in our
original paper.6 For TCM, we varied the
ClusterThresh from 2/24 to 6/24 in 1/24-
increments. Figure 6 shows the performance
and fairness results. The lower right part of
Figure 6a and the upper right part of
Figure 6b correspond to better operating
points for both performance and fairness.

In contrast to previous memory schedul-
ing algorithms, TCM exposes a smooth con-
tinuum between system throughput and
fairness. By adjusting the clustering threshold
between latency- and bandwidth-sensitive
clusters, TCM can trade system throughput
and fairness for one another. As a result,
TCM has a wide range of balanced operating
points that provide both high system
throughput and fairness. No previous algo-
rithm provides the same degree of flexibility
as TCM. For example, ATLAS always re-
mains biased toward system throughput

(that is, its maximum slowdown changes lit-
tle). Similarly, PAR-BS remains biased to-
ward fairness (that is, its weighted speedup
changes little). TCM provides an effective
knob for trading off between fairness and
performance, enabling operation at various
desirable operating points, depending on sys-
tem requirements.

Further analyses
Our original paper shows how TCM sup-

ports thread weights assigned by the system
software, evaluates TCM using different
workload compositions where the fraction
of memory-intensive threads varies, and ana-
lyzes different shuffling algorithms’ effect on
fairness.6 We also provide sensitivity results
where the system configurations are varied
(including 512-Kbyte to 2-Mbyte caches,
4 to 32 cores, and 1 to 16 memory control-
lers), showing that TCM provides the best
system throughput and fairness across all
configurations.

W e’ve developed a new way of think-
ing about memory controller de-

sign: treating thread groups differently
instead of having a single unified policy
for all threads. We’ve also developed basic
principles for fair and high-performance
management of memory bandwidth. As we
describe below, these principles would likely
apply to other shared hardware resources,
hopefully inspiring innovative research
beyond memory controllers.

[3B2-14] mmi2011010078.3d 20/1/011 14:35 Page 87

12

10

8

6

4

2

M
ax

im
um

 s
lo

w
d

ow
n

(lo
w

er
 is

 b
et

te
r)

12 13 14
Weighted speedup

15 16
(a)

2
24

3
24

4
24

5
24

6
24

FR-FCFS
STFM
PAR-BS
ATLAS
TCM

0.50

0.45

0.40

0.35

0.30

0.25

H
ar

m
on

ic
 s

p
ee

d
up

(h
ig

he
r

is
 b

et
te

r)

12 13 14
Weighted speedup

15 16
(b)

2
24

3
24

4
24

6
24

5
24

FR-FCFS
STFM
PAR-BS
ATLAS
TCM

Figure 6. Performance and fairness trade off as algorithmic parameters are varied (for 32 workloads): maximum slowdown

(a) and harmonic speedup (b) vs. weighted speedup.

..

JANUARY/FEBRUARY 2011 87

First, thread clusters can be a building
block for shared hardware resource manage-
ment. Our paper introduces the idea of clus-
tering threads into multiple groups according
to their resource usage patterns and treating
each group differently to maximize system
performance and fairness. Architects can
use the notion of thread clustering as a build-
ing block for managing not only memory
bandwidth, but also other shared resources,
such as cache bandwidth and capacity, inter-
connect bandwidth, I/O bandwidth, and
system energy and power.

Second, priority shuffling provides a sub-
strate for fair service and starvation avoid-
ance. Our paper introduces the idea of
thread priority shuffling in hardware to pro-
vide memory-intensive threads with fair ser-
vice. We show that even simple shuffling
algorithms can alleviate the unfairness prob-
lem, and we also introduce more elaborate
shuffling algorithms that perturb thread pri-
orities in a coordinated manner, such that
inter-thread interference is minimized. We
envision these same mechanisms being used
to provide fair access to other on-chip and
off-chip resources.

Third, different treatment of latency-
sensitive versus bandwidth-sensitive threads
can benefit the management of other system
resources. Our scheduler is the first to
distinguish between latency-sensitive and
bandwidth-sensitive threads and employ dif-
ferent scheduling policies based on this dis-
tinction. To maximize resource efficiency
and maintain fairness, we prioritize latency-
sensitive threads (which use little bandwidth)
over bandwidth-sensitive ones and divide the
remaining unused bandwidth fairly between
the bandwidth-sensitive threads. Architects
can apply this key idea to efficiently manage
other shared system resources.

Fourth, our paper demonstrates one way
of quantifying a thread’s propensity to
cause interference and its susceptibility to
interference, which we call niceness, in the
memory system. The notion of niceness
can inspire other research that develops sim-
ilar or better metrics useful for the manage-
ment of memory controllers and other
resources.

Fifth, TCM is the first memory scheduler
that enables a robust, smooth, and flexible

trade-off between fairness and performance,
which allows it to be tailored to the specific
fairness and performance requirements of
different systems and workloads. As quality-
of-service requirements and performance
demands continue to vary widely across
applications, especially in consolidated sys-
tems that run a large number of workloads
(such as data centers and cloud computing),
we expect different shared resources will be
designed to provide similar configurability
and fairness-performance trade-off to allow
the system software to select the best opera-
tion points. M I CR O

Acknowledgments
We thank the anonymous reviewers and

members of the Computer Architecture
Lab at Carnegie Mellon University for their
valuable feedback. Yoongu Kim is supported
by a PhD fellowship from the Korea Foun-
dation for Advanced Studies. We gratefully
acknowledge the support of the Gigascale
Systems Research Center, Intel, and CyLab.
This research was partially supported by a
National Science Foundation Career Award
(CCF-0953246).

..
References

1. T. Moscibroda and O. Mutlu, ‘‘Memory Per-

formance Attacks: Denial of Memory Ser-

vice in Multi-core Systems,’’ Proc. 16th

USENIX Security Symp. (SS 07), Usenix

Assoc., 2007, pp. 257-274.

2. K.J. Nesbit et al., ‘‘Fair Queuing Memory

Systems,’’ Proc. 39th Ann. IEEE/ACM Int’l

Symp. Microarchitecture, IEEE CS Press,

2006, pp. 208-222.

3. O. Mutlu and T. Moscibroda, ‘‘Stall-Time

Fair Memory Access Scheduling for Chip

Multiprocessors,’’ Proc. 40th Ann. IEEE/

ACM Int’l Symp. Microarchitecture, IEEE

CS Press, 2007, pp. 146-160.

4. O. Mutlu and T. Moscibroda, ‘‘Parallelism-

Aware Batch Scheduling: Enhancing Both

Performance and Fairness of Shared

DRAM Systems,’’ Proc. 35th Ann. Int’l

Symp. Computer Architecture (ISCA 08),

IEEE CS Press, 2008, pp. 63-74.

5. Y. Kim et al., ‘‘ATLAS: A Scalable and High-

Performance Scheduling Algorithm for

Multiple Memory Controllers,’’ Proc. IEEE

[3B2-14] mmi2011010078.3d 20/1/011 14:35 Page 88

..

88 IEEE MICRO

...

TOP PICKS

16th Int’l Symp. High Performance Com-

puter Architecture (HPCA 10), IEEE Press,

2010, doi:10.1109/HPCA.2010.5416658.

6. Y. Kim et al., ‘‘Thread Cluster Memory

Scheduling: Exploiting Differences in Mem-

ory Access Behavior,’’ Proc. 43rd Ann.

IEEE/ACM Int’l Symp. Microarchitecture,

IEEE CS Press, 2010.

7. H. Zheng et al., ‘‘Memory Access Schedul-

ing Schemes for Systems with Multi-core

Processors,’’ Proc. 37th Int’l Conf. Parallel

Processing (ICPP 08), IEEE CS Press,

2008, pp. 406-413.

8. T. Moscibroda and O. Mutlu, ‘‘Distributed

Order Scheduling and Its Application to

Multi-core DRAM Controllers,’’ Proc. 27th

ACM Symp. Principles of Distributed Com-

puting (PODC 08), ACM Press, 2008,

pp. 365-374.

9. S. Rixner et al., ‘‘Memory Access Schedul-

ing,’’ Proc. 27th Ann. Int’l Symp. Computer

Architecture (ISCA 00), ACM Press, 2000,

pp. 128-138.

10. ‘‘1Gb DDR2 SDRAM Component:

MT47H128M8HQ-25,’’ data sheet, Micron,

2010.

11. D. Wang et al., ‘‘DRAMsim: A Memory

System Simulator,’’ SIGARCH Computer

Architecture News, vol. 33, no. 4, 2005,

pp. 100-107.

12. A. Snavely and D.M. Tullsen, ‘‘Symbiotic

Job Scheduling for a Simultaneous Multi-

threading Processor,’’ Proc. 9th Int’l Conf.

Architectural Support for Programming Lan-

guages and Operating Systems (ASPLOS

IX), ACM Press, 2000, pp. 234-244.

13. R. Das et al., ‘‘Application-Aware Prioritization

Mechanisms for On-Chip Networks,’’ Proc.

42nd Ann. IEEE/ACM Int’l Symp. Microarchi-

tecture, ACM Press, 2009, pp. 280-291.

14. K. Luo, J. Gummaraju, and M. Franklin,

‘‘Balancing Throughput and Fairness in

SMT Processors,’’ Proc. IEEE Int’l Symp.

Performance Analysis of Systems and Soft-

ware, IEEE CS Press, 2001, pp. 164-171.

Yoongu Kim is a PhD student in the
Department of Electrical and Computer

Engineering at Carnegie Mellon University.
His research interests include scheduling
problems that arise in computer architecture.
He has a BS in electrical engineering from
Seoul National University.

Michael Papamichael is a PhD candidate in
the Department of Computer Science at
Carnegie Mellon University. His research
interests include computer architecture, par-
ticularly uncore modeling and FPGA (field-
programmable gate array)-accelerated simula-
tion and instrumentation for multiprocessor
architectures. He has an MS in computer
science from the University of Crete.

Onur Mutlu is an assistant professor in the
Department of Electrical and Computer
Engineering at Carnegie Mellon University.
His research interests include computer
architecture and systems. He has a PhD in
electrical and computer engineering from the
University of Texas at Austin. He’s a
member of IEEE and the ACM.

Mor Harchol-Balter is an associate profes-
sor in the Department of Computer Science
at Carnegie Mellon University. Her research
interests include designing new resource
allocation policies, power management po-
licies, and scheduling policies for server farms
and distributed systems. She has a PhD in
computer science from the University of
California, Berkeley. She’s a member of
IEEE, the ACM, and Informs (the Institute
for Operations Research and the Manage-
ment Sciences).

Direct questions and comments to Yoongu
Kim at Carnegie Mellon Univ., 5000 Forbes
Ave., Hamerschlag Hall, A-313, Pittsburgh,
PA 15213; yoonguk@ece.cmu.edu.

[3B2-14] mmi2011010078.3d 20/1/011 14:35 Page 89

..

JANUARY/FEBRUARY 2011 89

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange. For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.002400
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

