throttLL'eM Predictive GPU Throttling for Energy Efficient LLM Inference Serving

Andreas K. Kakolyris Dimosthenis Masouros Petros Vavaroutsos Sotirios Xydis Dimitrios Soudris

Executive Summary

Problem: LLM inference consumes significant energy.

- Energy consumption is predicted to **increase** with further adoption
- Static optimization policies **violate** Service Level Objectives (SLOs)

Goal: Reduce the **energy consumption** of LLM inference serving **without violating SLOs**

Key Idea: Predict the future state of the serving system to find the minimum performance level required to achieve SLOs.

Key Mechanism: throttLL'eM

- Models the token generation latency based on system metrics.
- Predicts how these system metrics will evolve over time.
- Adjusts the parameters of the system to minimize energy consumption while meeting SLOs.

Key Result: *throttLL'eM* can reduce the energy consumption of LLM serving by **42%.**

Outline

Background

Motivation

throttLL'eM: Mechanism

Evaluation

Conclusion

Outline

Background

Motivation

throttLL'eM: Mechanism

Evaluation

Conclusion

1. Prompt Tokenization

• Convert input (sub-)words to a unique representation (tokens)

2. Prefill (Prompt) Phase

- Generate the first token of the answer
- · Generate KV cache
- Compute bound

"An"

Challenges of LLM inference

Challenges of LLM inference

Autoregressive Token Generation → **Unpredictability**

Variable Memory Footprint → Performance Variability

Challenges of LLM inference

Autoregressive Token Generation → **Unpredictability**

Variable Memory Footprint → Performance Variability

Inflight Batching [Yu+, OSDI'22] - Additional Performance Variability

Outline

Background

Motivation

throttLL'eM: Mechanism

Evaluation

Conclusion

Motivation: Performance-Energy Tradeoffs in LLM inference

- Lower frequencies increase the Time-Between-Tokens
- Performance degradation decreases when using larger batch sizes
- GPU power draw only depends on the frequency used

Motivation: System Level Performance-Efficiency Tradeoffs

- Throughput depends on Batch size
- Performance gains diminish when using increasingly higher frequencies
- Energy Efficiency also increases with batch size
- Highest energy efficiency in the

High efficiency is possible with minimal performance loss

Motivation: Modeling LLM performance

Inference slows down as context length increases

KV cache size is an accurate proxy for performance

- Constant Batch size
- Pearson Correlation of 0.92

Motivation: Energy Efficient LLM serving

Goal

Reduce energy consumption while meetings SLOs

Idea

Model performance at the iteration level to enable fine-grained energy efficiency optimization

Outline

Background

Motivation

throttLL'eM: Mechanism

Evaluation

Conclusion

throttLL'eM Modelling System Performance

throttLL'eM sweeps batch size, logs KV cache size and performance using randomly chosen frequencies

The gathered samples cover the entire system state space

throttLL'eM Modelling System Performance

throttLL'eM trains a Machine Learning model that predicts performance using the gathered samples

throttLL'eM: Online Stage

1) Predicting future states

2) Validate SLOs

3) Adjust System Performance

throttLL'eM Predicting future states

throttLL'eM employs a generation length prediction model to predict how many tokens a query will generate

throttLL'eM uses these predictions to forecast batch size and KV cache size at each future iteration

throttLL'eM: Online Stage

1) Predicting future states

2) Validate SLOs

3) Adjust System Performance

throttLL'eM Validating SLOs

Before scheduling a request, *throttLL'eM* predicts its impact on the future performance of the system

throttLL'eM Validating SLOs

throttLL'eM uses the performance predictions to check if the SLOs of running requests can be attained if the request is scheduled

throttLL'eM Validating SLOs

throttLL'eM uses the performance predictions to check if the SLOs of running requests can be attained if the request is scheduled

throttLL'eM: Online Stage

1) Predicting future states

2) Validate SLOs

3) Adjust System Performance

throttLL'eM Adjusting System Performance

throttLL'eM performs a binary search of the Frequency search space to find the minimum frequency that satisfies all SLOs

throttLL'eM Adjusting System Performance

throttLL'eM periodically checks and scales the capacity of the system using predetermined load thresholds

throttLL'eM: Overview

Outline

Background

Motivation

throttLL'eM: Mechanism

Evaluation

Conclusion

Evaluation Methodology

System Configuration: NVIDIA DGX-A100

Processor 2x AMD EPYC 7742

DRAM 1TB DDR4

GPUs 8x NVIDIA A100-SXM4-40GB

Software NVIDIA Triton + TensorRT-LLM backend

Evaluated LLMs: LLaMa family of models

LLaMa3 8B TP1 configuration

LLaMa2 13B TP1, TP2 and TP4 configurations

LLaMa3 70B TP8 configuration

• LLM Inference Trace:

- Inference trace from Azure
- Contains query input and generation lengths
- Time-scaled to match the peak performance of the evaluated system

Evaluation Results

1) Performance Modeling Evaluation

2) Frequency Scaling Evaluation

3) End-to-End throttLL'eM evaluation

Performance Modeling Evaluation

	train = 90%			train = 10%		
	\mathbb{R}^2	MAPE	MAE	R ²	MAPE	MAE
	(-)	(%)	(iters/s)	(-)	(%)	(iters/s)
Llama3-8B-TP1	0.99	4.1	0.85	0.98	4.2	0.93
Llama2-13B-TP1	0.98	2.8	0.74	0.97	3.0	0.79
Llama2-13B-TP2	0.99	3.1	0.90	0.99	3.4	0.99
Llama2-13B-TP4	0.99	3.3	0.97	0.99	3.4	1.01
Llama3-70B-TP8	0.97	5.8	0.69	0.96	6.5	0.77

 ${\sf R}^2$ score, MAPE and MAE for different train-test splits and model configurations

Distribution of accumulated drift per elapsed iteration

The performance prediction model achieves high performance, even with sparse datasets

throttLL'eM accumulates a relatively small average drift of 0.43ms per iteration

Evaluation Results

1) Performance Modeling Evaluation

2) Frequency Scaling Evaluation

3) End-to-End throttLL'eM evaluation

Frequency Scaling Evaluation

Distribution of **a)** Time-between-Tokens, **b)** End-to-End latency and **c)** Power consumption for the default implementation and throttLL'eM at 0%, 15% and 30% error levels for LLaMa2-13B-TP2

As the error level increases, throttLL'eM becomes more conservative, leading to lower energy efficiency

throttLL'eM significantly increases energy efficiency even at 30% prediction error level

Frequency Scaling Evaluation

Distribution of Time-between-Tokens for different models and configurations

Distribution of End-to-End latency for different models and configurations

Distribution of Power draw for different models and configurations

Frequency Scaling Evaluation

Time-to-First-Token for different models and configurations

Queueing time for different models and configurations

Average Frequency for different models and configurations

Evaluation Results

1) Performance Modeling Evaluation

2) Frequency Scaling Evaluation

3) End-to-End throttLL'eM evaluation

Ablation Study

throttLL'eM significantly increases energy efficiency by using both instance and frequency scaling

Autoscaling \rightarrow 20.8%

Frequency scaling \rightarrow 30.6%

throttLL'eM \rightarrow 41.7%.

Result Interpretation

By increasing the latency of individual LLM iterations:

- Increases the average batch size
- Reduces the number of performed forward passes

throttLL'eM performs fewer LLM inferences by using a larger batch size, increasing efficiency

Motivation (again): System Level Performance-Efficiency Tradeoffs

Outline

Background

Motivation

throttLL'eM: Mechanism

Evaluation

Conclusion

Conclusion

throttLL'eM

- Accurately models LLM performance
- Predicts how the state of the system evolves over time
- Accordingly scales the frequency and the capacity of the system to reduce the energy consumption while meeting SLOs

Key Results:

- $R^2 > 0.97$
- Small per iteration performance modelling drift of 0.43ms
- Energy efficiency savings of upwards of 41%

throttLL'eM Predictive GPU Throttling for Energy Efficient LLM Inference Serving

Andreas K. Kakolyris Dimosthenis Masouros Petros Vavaroutsos Sotirios Xydis Dimitrios Soudris

throttLL'eM Predictive GPU Throttling for Energy Efficient LLM Inference Serving

Backup Slides

Andreas K. Kakolyris Dimosthenis Masouros

Petros Vavaroutsos Sotirios Xydis Dimitrios Soudris

Motivation: Modeling LLM performance

- Tensor Parallelism exhibits the highest throughput
- Tensor Parallelism exhibits the highest energy efficiency
- Minimizing the number of GPUs used is necessary for optimal energy efficiency

Analysis on the trace

Autoscaling provides coarse-grained throughput adjustments Frequency scaling provides finer control

Time [s] 51

Ablation study and Comparison

- Autoscaling reduces energy consumption by 20.8%
- Frequency scaling reduces energy consumption by 30.6%
- **throttLl'eM** reduces energy consumption by **41.7%** over the baseline.

 Compared against a Retail-like DVFS inspired implementation, throttLL'eM achieves XXX lower power consumption on average and approach the SLO deadline more aggressively.

