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Executive Summary

Problem: LLM inference consumes significant energy.
* Energy consumption is predicted to increase with further adoption
 Static optimization policies violate Service Level Objectives (SLOs)

Goal: Reduce the energy consumption of LLM inference serving
without violating SLOs

Key Idea: the future state of the serving system to find the
required to achieve SLOs.

Key Mechanism: throttLL'eM

* Models the token generation latency based on system metrics.

* Predicts how these system metrics will evolve over time.

* Adjusts the parameters of the system to minimize energy
consumption while meeting SLOs.

Key Result: throttLL'eM can reduce the energy consumption of LLM
serving by 42 %.
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Background on LLM inference

“Can you explain how LLMs work?”
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2. Prefill (Prompt) Phase An

* Generate the first token of the answer
* Generate KV cache

* Compute bound
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Background on LLM inference

“Can you explain how LLMs work?”
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4. Generation Termination
* EOS token generated

* max_tokens generated
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Motivation:
Performance-Energy Tradeoffs in LLM inference

= Lower frequencies increase the

Time-Between-Tokens

= Performance degradation decreases

when using larger batch sizes

= GPU power draw only depends on

Power [Watt]

the frequency used




Motivation:
System Level Performance-Efficiency Tradeoffs

Throughput [TPS]
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Motivation:
Modeling LLM performance

Inference slows down as context

length increases
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Motivation: Energy Efficient LLM serving

{ Goal }

Reduce energy consumption while meetings SLOs

[ ]

l Idea )|

Model performance at the iteration level to enable fine-grained
energy efficiency optimization
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throttLL'eM
Modelling System Performance

throttLL'eM sweeps batch size, logs KV cache size and
performance using randomly chosen frequencies
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throttLL'eM
Modelling System Performance

throttLL'eM trains a Machine Learning model that predicts
performance using the gathered samples
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throttLL'eM: Online Stage

1) Predicting future states
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throttLL'eM
Predicting future states

throttLL'eM employs a generation length prediction model to
predict how many tokens a query will generate

throttLL'eM uses these predictions to forecast batch size and KV
cache size at each future iteration

Batch Sima
!
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throttLL'eM: Online Stage

2) Validate SLOs
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throttLL'eM
Validating SLOs

Before scheduling a request, throttLL'eM predicts its impact on the
future performance of the system

Batch Size Prediction
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throttLL'eM
Validating SLOs

throttLL'eM uses the performance predictions to check if the SLOs of
running requests can be attained if the request is scheduled

Performance Prediction
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throttlLL'eM

Validating SLOs

throttLL'eM uses the performance predictions to check if the SLOs of
running requests can be attained if the request is scheduled
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throttLL'eM: Online Stage

3) Adjust System Performance
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throttLL'eM
Adjusting System Performance

throttLL'eM performs a binary search of the Frequency search space
to find the minimum frequency that satisfies all SLOs
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throttLL'eM
Adjusting System Performance

throttLL'eM periodically checks and scales the capacity of the
system using predetermined load thresholds

RPS
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throttLL'eM: Overview

“Can you explain how LLMs work?”
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Evaluation Methodology

* System Configuration: NVIDIA DGX-A100

Processor 2x AMD EPYC 7742

DRAM 1TB DDR4

GPUs 8x NVIDIA A100-SXM4-40GB

Software NVIDIA Triton + TensorRT-LLM backend

* Evaluated LLMs: LLaMa family of models

LLaMa3 8B  TP1 configuration
LLaMa2 13B TP1, TP2 and TP4 configurations
LLaMa3 70B TP8 configuration

* LLM Inference Trace:
* Inference trace from Azure
* Contains query input and generation lengths
* Time-scaled to match the peak performance of the evaluated system
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Evaluation Results

1) Performance Modeling Evaluation
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Performance Modeling Evaluation

train = 90% train = 10%
R* | MAPE | MAE R* | MAPE | MAE
(-) (%) (iters/s) (-) (%) (iters/s)
Llama3-8B-TP1 | 0.99 4.1 0.85 0.98 4.2 0.93
Llama2-13B-TP1 | 0.98 2.8 0.74 0.97 3.0 0.79
Llama2-13B-TP2 | 0.99 3.1 0.90 0.99 3.4 0.99
Llama2-13B-TP4 | 0.99 3.3 0.97 0.99 34 1.01
Llama3-70B-TP8 | 0.97 5.8 0.69 0.96 6.5 0.77

R? score, MAPE and MAE for different train-test splits and model Distribution of accumulated
configurations drift per elapsed iteration

The performance prediction model achieves high performance,
even with sparse datasets

throttLL'eM accumulates a relatively small average drift of 0.43ms
per iteration
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Evaluation Results

2) Frequency Scaling Evaluation
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Frequency Scaling Evaluation
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Distribution of a) Time-between-Tokens, b) End-to-End latency and c¢) Power
consumption for the default implementation and throttLL'eM at 0%, 15% and
30% error levels for LLaMa2-13B-TP2

As the error level increases, throttLL'eM becomes more
conservative, leading to lower energy efficiency

throttLL'eM significantly increases energy efficiency even at 30%
prediction error level
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Frequency Scaling Evaluation
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Frequency Scaling Evaluation
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Evaluation Results

3) End-to-End throttLL'eM evaluation
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Ablation Study

Triton TP4
Autoscaling (0%)
Throttling TP4 (0%)
throttLLL’eM (0%)
throttLL’eM (15%0)
throttLL’ eM (30%)

0 2500 5000 0O 05 1
p99"" E2E [s]  Energy [kJ] Eff. [TP]J]

throttLL'eM significantly increases energy efficiency by using both
instance and frequency scaling

Autoscaling — 20.8%

Frequency scaling — 30.6%

throttLL'eM - 41.7%.
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Result Interpretation

| e ETP T ERGMEAN |

By increasing the latency of

individual LLM iterations: = E 50 =
w
= ﬁ 30 =
=

* Increases the average batch size = 2 10 7

* Reduces the number of performed 0] s
forward passes PRI Sk £ Sl Sy

| TP TP T EEGMEAN |

I_Imj
i
HH —
5,
E!
1d =

"2 .-
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batch size, increasing efficiency
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Motivation (again):
System Level Performance-Efficiency Tradeoffs
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Conclusion

throttLL'eM

Accurately models LLM performance

Predicts how the state of the system evolves over time
Accordingly scales the frequency and the capacity of the system
to reduce the energy consumption while meeting SLOs

Key Results:

R%> 0.97
Small per iteration performance modelling drift of 0.43ms

Energy efficiency savings of upwards of 41%
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Motivation:
Modeling LLM performance

m Tensor Parallelism exhibits the

highest throughput

£ & 8 &
| | |

m Tensor Parallelism exhibits the

Throughput [TPS]

highest energy efficiency
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= Minimizing the number of GPUs

used is necessary for optimal

energy efficiency
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Batch Size [#]
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Analysis on the trace

TPS max bead=1.5

to load increment while
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Autoscaling provides coarse-grained throughput adjustments
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Ablation study and Comparison

* Autoscaling reduces energy

1 ) Triton TP4
consumption by 20.8% Autoscaling (0%)

 Frequency scaling reduces e ot (0%
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more aggressively.
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