FlashMemory

[ SuMmMIT |

ThyNVM

Sottware-Transparent Crash Consistency
for Persistent Memory

Onur Mutlu
omutlu@ethz.ch

(joint work with Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu)

August 8, 2016
Flash Memory Summit 2016, Santa Clara, CA

semseemne 1 3 J 1 pAV|Alogl  Carnegie Mellon

SAFARI




Original Paper (1) Fla§nMéinorY

(SUMMIT

ThyNVM: Enabling Software-Transparent Crash Consistency
in Persistent Memory Systems

Jinglei Ren*™ Jishen Zhao* Samira Khan™ Jongmoo Choi*™ Yongwei Wu* Onur Mutlu®

TCarnegie Mellon University *Tsinghua University
*University of California, Santa Cruz 'University of Virginia *Dankook University

jinglei.ren@persper.com jishen.zhao@ucsc.edu samirakhan@cmu.edu
choijm@dankook.ac.kr wuyw@tsinghua.edu.cn onur@cmu.edu

SAFARI 2



Original Paper (II) Fashemwey

(SUMMIT

= Presented at ACM/IEEE MICRO Conference in Dec 2015.

= Full paper for details:

o Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei
Wu, and Onur Mutlu,
"ThyNVM: Enabling Software-Transparent Crash
Consistency in Persistent Memory Systems"”
Proceedings of the
48th International Symposium on Microarchitecture (MICRO),
Waikiki, Hawaii, USA, December 2015.
Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]
[Poster (pptx) (pdf)]
[Source Code]

a https://users.ece.cmu.edu/~omutlu/pub/ThyNVM-transparent-
crash-consistency-for-persistent-memory micro15.pdf

SAFARI 3




The Main Memory System FlaéliMéﬁiorY

Processor Main Memory Storage (SSD/HDD)

and caches \ /

= Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

= Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits

SAFARI 4



Limits of Charge Memory FlaéllMéiIiorY

 SUMMIT |

Difficult charge placement and control
o Flash: floating gate charge
o DRAM: capacitor charge, transistor leakage

Reliable sensing becomes difficult as charge
storage unit size reduces

1 — GATE ¢
83— FLOATING GATE

SENSE




Emerging NVM Technologies FlasnMéiIiorY

 SUMMIT |

Some emerging resistive memory technologies seem more
scalable than DRAM (and they are non-volatile)

Example: Phase Change Memory BL
o Data stored by changing phase of material
Data read by detecting material’s resistance ;
Expected to scale to 9nm (2022 [ITRS]) w SENSE
Prototyped at 20nm (Raoux+, IBM JRD 2008) ? Vv
Expected to be denser than DRAM: can store multiple bits/cell

PCM

a
a
a
a

But, emerging technologies have (many) shortcomings
o Can they be enabled to replace/augment/surpass DRAM?

SAFARI 0



Promising NVM Technologies FlasllMéinory

 SUMMIT |

PCM
o Inject current to change material phase
o Resistance determined by phase

STT-MRAM
o Inject current to change magnet polarity
o Resistance determined by polarity

Memristors/RRAM/ReRAM
o Inject current to change atomic structure
o Resistance determined by atom distance



NVM as Main Memory Replacement FlaéhMéﬁiorY

Very promising
o persistence, high capacity, OK latency, low idle power

Can enable merging of memory and storage

Two example works that show benefits

o Lee, Ipek, Mutlu, Burger, “Architecting Phase Change
Memory as a Scalable DRAM Alternative,” ISCA 20009.

o Kultursay, Kandemir, Sivasubramaniam, Mutlu,
“Evaluating STT-RAM as an Energy-Efficient Main
Memory Alternative,” ISPASS 2013.



Two Example Works FlashMéiIiory

 SUMMIT |

Architecting Phase Change Memory as a
Scalable DRAM Alternative

Benjamin C. Leet Engin Ipeki Onur Mutlut Doug Burger;s

tComputer Architecture Group tComputer Architecture Laboratory
Microsoft Research Carnegie Mellon University
Redmond, WA Pittsburgh, PA
{blee, ipek, dburger}@microsoft.com onur@cmu.edu

Evaluating STT-RAM as an
Energy-Eftficient Main Memory Alternative

Emre Kiiltiirsay*, Mahmut Kandemir*, Anand Sivasubramaniam®, and Onur Mutlu'
*The Pennsylvania State University and TCarnegie Mellon University



Architected STT-MRAM as Main Memory

= 4-core, 4GB main memory, multiprogrammed workloads
= ~6% performance loss, ~60% energy savings vs. DRAM

OSTT-RAM (base B STT-RAM (opt
08% (base) (opt)

Q
o 96% -
c=_.
m§94/0
E 92% -
5 2 0% —I—
E 2880/0 n T T T T T T T T T T T
S D 0 D X H o NSO D @
LRSS LSS S S S S
B ACT+PRE OWB HRB
100%
S  80%
g‘,é 60%
P 40%
Q
28 o HHHHHHTFHHHHE
L g 0% -
LD N 0 D »K 6B o N O @
SFFFSFFSETSESLY

Kultursay+, “"Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.
10



A More Viable Approach: Hybrid Memory Systems

CPU
DRAM NVM
Ctrl Ctrl

NVM Type X

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon+, “"Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best
Paper Award.




Some Opportunities with Emerging Technologies

Merging of memory and storage

o e.g., a single interface to manage all data

New applications
o e.g., ultra-fast checkpoint and restore

More robust system design
o e.g., reducing data loss

Processing tightly-coupled with memory
o e.g., enabling efficient search and filtering

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 12
SAFARI Storage and Memory,” WEED 2013.



TWO-LEVEL STORAGE MODEL

2

5 vid VOLATILE
FAST

= BYTE ADDR
NONVOLATILE

S SLOW

. BLOCK ADDR




TWO-LEVEL STORAGE MODEL

>
o
O

VOLATILE

FAST
BYTE ADDR

NONVOLATILE

BLOCK ADDR

MEMORY

1/0 PCM, STT-RA

STORAGE

Non-volatile memories combine

characteristics of memory and storage




Coordinated Memory and Storage with NVM (I)

= The traditional two-level storage model is a bottleneck with NVM
o Volatile data in memory - a load/store interface
o Persistent data in storage - a file system interface

o Problem: Operating system (OS) and file system (FS) code to locate, translate,
buffer data become performance and energy bottlenecks with fast NVM stores

~ Two-Level Store

Load/Store

Main Memory

Processor
and caches

fop#n, fread, fwrite, ...

------
......
........
........
........

Persistent ( G Phase-Change)
Stdtege(ESD/HDD)

SAFARI

15



Coordinated Memory and Storage with NVM (1)

= Goal: Unify memory and storage management in a single unit to
eliminate wasted work to locate, transfer, and translate data
o Improves both energy and performance
o Simplifies programming model as well

__ Unified Memory/Storage

Persistent Memory

Manager
Processor
and caches
Load/Store H Feedback

Ll
Persistent (e.g., Phase-Change) Memory

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 1
SAFARI Storage and Memory,” WEED 2013.



FlashMemory
[ sSsuUMMIT |

PERSISTENT MEMORY

) 4 3| B ,
. SRR RO e
HAAR 1itif MetnofnmbntfihifronSiar sl

-
s 3
W
<o
==
2
<5

Provides an opportunity to manipulate
persistent data directly

17



Performance Benetits ot Persistent Memory

M User CPU [ User Memory M Syscall CPU [ Syscall I/O

10 ~24X

£ 08 \

|_

5 \

L3

§ 0.4

\

s 0.2

= ~9X
0 —_—

HDD 2-level NVM 2-level  Persistent Memory

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 18
SAFARI Storage and Memory,” WEED 2013.



Energy Benefits of Persistent Memory

B User CPU [J SyscallCPU @ DRAM [J NVM m HDD

o o o
N o) N e o

Fraction of Total Energy

©
N

HDD 2-level NVM 2-level  Persistent Memory

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
SAFARI Storage and Memory,” WEED 2013.

19



On Persistent Memory Benefits & Challenges

= Justin Meza, Yixin Luo, Samira Khan, Jishen Zhao, Yuan Xie, and
Onur Mutluy,

"A Case for Efficient Hardware-Software Cooperative
Management of Storage and Memory"

Proceedings of the 5th Workshop on Energy-Efficient Design
(WEED), Tel-Aviv, Israel, June 2013. Slides (pptx) Slides (pdf)

A Case for Efficient Hardware/Software Cooperative Management of Storage and Memory

Justin Meza*  Yixin Luo* Samira Khan** Jishen Zhao' Yuan Xie™®  Onur Mutlu*
*Carnegie Mellon University ~ "Pennsylvania State University ~ *Intel Labs =~ $AMD Research

SAFARI 20



The Persistent Memory Manager (PMM)

= EXposes a load/store interface to access persistent data

o Applications can directly access persistent memory = no conversion,
translation, location overhead for persistent data

= Manages data placement, location, persistence, security
a To get the best of multiple forms of storage

= Manages metadata storage and retrieval
a This can lead to overheads that need to be managed

= Exposes hooks and interfaces for system software
o To enable better data placement and management decisions

= Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

SAFARI 21



The Persistent Memory Manager (PMM)

int main (void) {
// data in file.dat 1s persistent
FILE myData = "file.dat";
myData = new int[64];

Persistent objects

}

void updateValue (int n, int value) {
FILE myData = "file.dat";
myData [n] = value; // value is persistent

O 0 1O\ N Wi -

Store l Hints from SW/OS/runtime

Software Persistent Memory Manager
Hardware Data Layout, Persistence, Metadata, Security, ...

I

| DRAM | Fiash | Nvm |[ HDD ]

PMM uses access and hint information to allocate, locate, migrate
and access data in the heterogeneous array of devices




One Key Challenge

How to ensure consistency of system/data if all
memory is persistent?

Two extremes

o Programmer transparent: Let the system handle it
o Programmer only: Let the programmer handle it

Many alternatives in-between...

SAFARI 23



CHALLENGE: CRASH CONSISTENCY

Persistent Memory System

System crash can result in

permanent data corruption in NVM




CURRENT SOLUTIONS

Explicit interfaces to manage consistency
— NV-Heaps srios11;, BPFS 1sosp0s;, MINEMOSYNE iaspiosiay

AtomicBegin {

Insert a new node;
} AtomicEnd;

Limits adoption of NVM

Have to rewrite code with clear partition
between volatile and non-volatile data

Burden on the programmers

25



OUR APPROACH: ThyNVM
Goal:

Software-transparent crash consistency
in persistent memory systems




ThyNVM: Summary

—

A new hardware-based
checkpointing mechanism

 Checkpoints at multiple granularities to
reduce both checkpointing latency and
metadata overhead

* Overlaps checkpointing and execution to
reduce checkpointing latency

 Adapts to DRAM and NVM characteristics

Performs within 4.9% of an idealized DRAM

with zero cost consistency



OUTLINE

Crash Consistency Problem

Current Solutions

ThyNVM

Evaluation

Conclusion




CRASH CONSISTENCY PROBLEM

Add a node to a linked list

2. Link to prea 1. Link to next

System crash can result in

iInconsistent memory state



M

OUTLINE Flashemory

Crash Consistency Problem

Current Solutions

ThyNVM

Evaluation

Conclusion




CURRENT SOLUTIONS  rishyiennn

 SUMMIT |

Explicit interfaces to manage consistency
— NV-Heaps srios11;, BPFS 1sosp0s;, MINEMOSYNE iaspiosia

..., YT S TS
Example Code

update a node In a persistent hash table

vold hashtable update (hashtable t* ht,
~voilid *key, void *data)
{

list t* chain = get chain(ht, key);

palr t* pair; -

palr t updatePair;

updatePair.first = key;

palr = (pair t*) list find(chain,
— &updatePair) ;

palr—->second = data;

31



CURRENT SOLUTIONS  rishyiennn

 SUMMIT |

volid TMhashtable update (TMARCGDECL
hashtable t* ht, void *key, void*data)
{

list t* chain = get chain (ht, key);

palr t* pair; N

palir t updatePair;

updatePair.first = key;

palir = (pair t*) TMLIST FIND (chain,

supdatePair) ;

palr—->second = data;



CURRENT SOLUTIONS  resvenor

(SUMMIT

Manual declaration of persistent components

oid TMhashtable update (TMARCGDECL

33



CURRENT SOLUTIONS  rsshuens

(SUMMIT

Manual declaration of persistent components

oid TMhashtable update (TMARCGDECL
get chain(ht, key)

Need a new implementation

34



CURRENT SOLUTIONS  rsshuens

(SUMMIT

Manual declaration of persistent components

oid TMhashtable update (TMARCGDECL
get chain(ht, key)

Need a new implementation

TMLIST FIND

Third party code
can be inconsistent

35



CURRENT SOLUTIONS  resvenor

(SUMMIT

Manual declaration of persistent components

oid TMhashtable update (TMARCGDECL

get chain(ht, key)
Need a new implementation

TMLIST FIND

Prohibited Third party code
Operation can be inconsistent

Burden on the programmers




M

OUTLINE Flashemory

Crash Consistency Problem

Current Solutions

ThyNVM

Evaluation

Conclusion




OUR GOAL rlaéhMéﬁiory

(SUMMIT

Software transparent consistency

in persistent memory systems

 Execute legacy applications
* Reduce burden on programmers

 Enable easier integration of NVM



NO MODIFICATION
IN THE CODE

void hashtable update(hashtable t* ht,
{ void *key, void ¥data)

List_t* chain = get_chain(ht, key);

pair_t* pair;

pair _t updatePair;

updatePair.first = key;

pair = (pair_t*) list _find(chain,
&updatePair) ;

gair—>second = data;



RUN THE EXACT SAME CODE...

void hashtable update (hashtable t* ht,
void *key, void *data) {
list t* chain = get chain(ht, key);
pair t* pair;
pair t updatePair;

updatePair.first = key;

pair = (pair t*) list find(chain,
&updatePair) ;

pair->second = data;

}

i e e

PersistentiVMlemory System

Software transparent

memory crash consistency




ThyNVM APPROACH risshvionn

(SUMMIT

Periodic checkpointing of data
| managed by hardware ‘

time
m Checkpointing Running Checkpointing
— —

‘ Epoch 0 ‘ Epoch 1 \

Transparent to application and system




CHECKPOINTING OVERHEAD

1. Metadata overhead
Metadata Table

Working location | Checkpoint location

Xl
YI

*

2. Checkpointing latency



1. METADATA AND
CHECKPOINTING GRANULARITY

Working location Checkpoint location
X X’

Y Y

B
BB rAGE B CACHE BLOCK
HE

PAGE BLOCK
GRANULARITY GRANULARITY

One Entry Per Page One Entry Per Block
Small Metadata Huge Metadata

J

43



2. LATENCY AND LOCATION
DRAM-BASED WRITEBACK

2. Update the
metadata table
LY 1. \Writeback data |k
from DRAM

NVM

Long Iatency of writing back data to NVM



2. LATENCY AND LOCATION
NVM-BASED REMAPPING

2. Update the
metadata table
Y new location

Short latency in NVM-based remapping



ThyNVM KEY MECHANISMS

Checkpointing granularity
 Small granularity: large metadata
 Large granularity: small metadata

Latency and location
 Writeback from DRAM: long latency
e Remap in NVM: short latenc

Based on these, we propose two key

NEERIHUE

1. Dual granularity checkpointing
2. Overlap of execution and checkpointing



1. DUAL GRANULARITY CHECKPOINTING

Page Writeback Block Remapping
in DRAM in NVM
m l
GOOD FOR GOOD FOR
STREAMING WRITES RANDOM WRITES

High write locality pages in DRAM,

low write locality pages in NVM




TRADEOFF SPACE

Checkpointing granularity

Small (cache block) Large (page)

DRAM | @ Inefficient @ rartially efficient
(based on | x Large metadata overhead v Small metadata overhead
writeback) | ¥ Long checkpointing latency | ¥ Long checkpointing latency

Q Partially efficient Q Inefficient

x Large metadata overhead v Small metadata overhead

v Short checkpointing latency | v Short checkpointing latency
v Fast remapping x Slow remapping

(on the critical path)

NVM
(based on
remapping)

Location of
working copy

Table 1: Tradeoff space of options combining checkpointing
granularity choice and location choice of the working copy
of data. The table shows four options and their pros and
cons. Boldfaced text indicates the most critical pro or con
that determines the efficiency of an option.



2. OVERLAPPING
CHECKPOINTING AND EXECUTION

time

Epoch O Epoch 1 ‘

Checkpointing

Epoch 0
Epoch 1
Epoch 2

—>

Hides the long latency of Page Writeback




OUTLINE -

Crash Consistency Problem

Current Solutions

ThyNVM

Evaluation

Conclusion




SYSTEM ARCHITECTURE

DRAM

1

CPU CPU |[eo CPU
Core Core Core
| I |
Shared LLC
||
Address Translation Tables| Memory
BTT PTT | Controller
DRAM Read Queue NVM Read Queue
m NVM
DRAM Write Queue NVM Write Queue

Figure 2: Architecture overview of ThyNVM.




MEMORY ADDRESS SPACE

Hardware address space

/| Working Data
/ Region DRAM

/ EEBTTPTTICRU )

/ Checkpoint
Physical address space /’ Region A

Oxf...f Oxf...f

~ NVM

Home Region
(Checkpoint
Region B)
0x0 0x0 )

Processor’s view Memory controller’s view
(software visible)

Working Data Region: WP97° 'WPIock (when creating Cyqs:)

Ckpt Regions A and B: Cj4s¢, Cpenuits W block

active

Physical pages
and blocks

Figure 4: ThyNVM address space layout.



METHODOLOGY FiashMeinory

 SUMMIT |

Cycle accurate x86 simulator Gem5

Comparison Points:
Ideal DRAM: DRAM-based, no cost for consistency
— Lowest latency system

Ideal NVM: NVM-based, no cost for consistency
— NVM has higher latency than DRAM

Journaling: Hybrid, commit dirty cache blocks
— Leverages DRAM to buffer dirty blocks

Shadow Paging: Hybrid, copy-on-write pages
— Leverages DRAM to buffer dirty pages



ADAPTIVITY TO ACCESS PATTERN

RANDOM SEQUENTIAL
) 3 ()] 3
222 32 2 | 32
g2 ®) o g2 S
'T;_u — — = o ; Q
EG 1 E‘El] o =
o~ = -
2 2

O_ O_

Journal Shadow ThyNVM Journal Shadow ThyNVM
N

" Journaling is better for Random and

Shadow paging is better for Sequential
ThyNVM adapts to both access patterns




OVERLAPPING
CHECKPOINTING AND EXECUTION

RANDOM SEQUENTIAL

@l

Journal Shadow ThyNVM Journal Shadow ThyNVM

(@)

o
(o))
o

I
o

I
o

N
o

Percentage of
S

Execution Time
Percentage of
Execution Time

o
o

~\

Can spend 35-45% of the execution
on checkpointing

Stalls the application for a negligible time




PERFORMANCE OF LEGACY CODE

B |deal DRAM ¥ Ideal NVM N ThyNVM

. 180kl

© o o o

Normalized IPC

gcc bwaves milc leslie. soplex Gems Ibm omnet

Within -4.9%/+2.7% of an
idealized DRAM/NVM system

Provides consistency without

significant performance overhead




KEY-VALUE STORE X THROUGHPUT

350

D oo0 L i ideal DRAM = |
S — TR |deal NVM =
2x 250 e SJﬁu(;nal e
S 200 | adow x|
93 50 | Sk ThyNVM — |

= NG
9 100} %o
=3

-o'E- 50 _. | . | . | ) | .

16 64 256 1024 4096
Request size (B)
(a) Hash table based key-value store

S 160 F T T

< S dl I S ldeal DRAM -=-
cgE 140 - % Ideal NVM & 1
oSXx 120 r I Journal - A
S< 100 f Ny _Shadow x4
gé_ 80 L * « \"\\;\\\‘}\ThYNVM —
fo 60
Fo 40t

= 20 L

16 64 256 1024 4096
Request size (B)
(b) Red-black tree based key-value store

Figure 9: Transaction throughput for two key-value stores:
(a) hash table based, (b) red-black tree based.

Storage throughput close to Ideal DRAM




OUTLINE -

Crash Consistency Problem

Current Solutions

ThyNVM

Evaluation

Conclusion




ThyNVM rasMagon
A e P T e
A new hardware-based
checkpointing mechanism,

with no programming effort
 Checkpoints at multiple granularities to
minimize both latency and metadata

 Overlaps checkpointing and execution

 Adapts to DRAM and NVM characteristics
Can enable widespread adoption

of persistent memory




FlashMemory

 SUMMIT |

Source Code and More Available at
http://persper.com/thynvm

ThyNVM

Enabling Software-transparent
Crash Consistency
In Persistent Memory Systems



Our Other FMS 2016 Talks AashMienory

(SUMMIT

"A Large-Scale Study of Flash Memory Errors in the Field”
o Onur Mutlu (ETH Zurich & CMU) August 10 @ 3:50pm

o Study of flash-based SSD errors in Facebook data centers
over the course of 4 years

o First large-scale field study of flash memory reliability
o Forum F-22: SSD Testing (Testing Track)

Practical Threshold Voltage Distribution Modeling
o Yixin Luo (CMU PhD Student) August 10 @ 4:20pm
o Forum E-22: Controllers and Flash Technology

"WARM: Improving NAND Flash Memory Lifetime with
Write-hothess Aware Retention Management”

o Saugata Ghose (CMU Researcher) August 10 @ 5:45pm
o Forum C-22: SSD Concepts (SSDs Track)

SAFARI 61




Referenced Papers and Talks FlaéhMéﬁiow

(SUMMIT

= All are available at
http://users.ece.cmu.edu/~omutlu/projects.htm
http://users.ece.cmu.edu/~omutlu/talks.htm

= And, many other previous works on
o NVM & Persistent Memory
o DRAM
o Hybrid memories
o NAND flash memory

SAFARI 62



\ 4
N B P

FlashMemory

Thank you.

Feel free to email me with any questions & feedback

omutlu@ethz.ch
http://users.ece.cmu.edu/~omutlu/




FlashMemory

[ SuMmMIT |

ThyNVM

Sottware-Transparent Crash Consistency
for Persistent Memory

Onur Mutlu
omutlu@ethz.ch

(joint work with Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu)

August 8, 2016
Flash Memory Summit 2016, Santa Clara, CA

semseemne 1 3 J 1 pAV|Alogl  Carnegie Mellon

SAFARI




\ /
J

FlashMemory

Reterences to Papers and Talks




Challenges and Opportunities in Memory

= Onur Mutluy,
"Rethinking Memory System Design"
Keynote talk at
2016 ACM SIGPLAN International Symposium on Memory
Management (ISMM), Santa Barbara, CA, USA, June 2016.
Slides (pptx) (pdf)]
| Abstract]

= Onur Mutlu and Lavanya Subramanian,
"Research Problems and Opportunities in Memory Systems"

Invited Article in Supercomputing Frontiers and Innovations
(SUPERFRI), 2015.

SAFARI 66



Phase Change Memory As DRAM Replacement

= Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger,
"Architecting Phase Change Memory as a Scalable
DRAM Alternative”
Proceedings of the
36th International Symposium on Computer Architecture
(ISCA), pages 2-13, Austin, TX, June 2009. Slides (pdf)

= Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo
Zhao, Engin Ipek, Onur Mutlu, and Doug Burger,
"Phase Change Technology and the Future of Main
Memory"
IEEE Micro, Special Issue: Micro's Top Picks from 2009
Computer Architecture Conferences (MICRO TOP PICKS),
Vol. 30, No. 1, pages 60-70, January/February 2010.

SAFARI 07




STT-MRAM As DRAM Replacement

= Emre Kultursay, Mahmut Kandemir, Anand
Sivasubramaniam, and Onur Mutlu,
"Evaluating STT-RAM as an Energy-Efficient Main
Memory Alternative"

Proceedings of the
2013 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), Austin, TX,

April 2013. Slides (pptx) (pdf)

SAFARI 68



Taking Advantage of Persistence in Memory

= Justin Meza, Yixin Luo, Samira Khan, Jishen Zhao, Yuan Xie, and
Onur Mutluy,
"A Case for Efficient Hardware-Software Cooperative
Management of Storage and Memory"
Proceedings of the 5th Workshop on Energy-Efficient Design
(WEED), Tel-Aviv, Israel, June 2013. Slides (pptx) Slides (pdf)

= Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu,
and Onur Mutlu,

"ThyNVM: Enabling Software-Transparent Crash Consistency in
Persistent Memory Systems"

Proceedings of the 48th International Symposium on Microarchitecture
(MICRO), Waikiki, Hawaii, USA, December 2015.

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [

Poster (pptx) (pdf)]
[Source Code]

SAFARI 69




Hybrid DRAM + NVM Systems (I)

= HanBin Yoon, Justin Meza, Rachata Ausavarungnirun, Rachael Harding,
and Onur Mutluy,
"Row Buffer Locality Aware Caching Policies for Hybrid
Memories"
Proceedings of the
30th IEEE International Conference on Computer Design (ICCD),
Montreal, Quebec, Canada, September 2012. Slides (pptx) (pdf)
Best paper award (in Computer Systems and Applications
track).

= Justin Meza, Jichuan Chang, HanBin Yoon, Onur Mutlu, and
Parthasarathy Ranganathan,
"Enabling Efficient and Scalable Hybrid Memories
Using Fine-Granularity DRAM Cache Management™
IEEE Computer Architecture Letters (CAL), February 2012.

SAFARI 0




Hybrid DRAM + NVM Systems (II)

= Dongwoo Kang, Seungjae Baek, Jongmoo Choi, Donghee Lee,
Sam H. Noh, and Onur Mutlu,
"Amnesic Cache Management for Non-Volatile Memory"
Proceedings of the
31st International Conference on Massive Storage Systems and
Technologies (MSST), Santa Clara, CA, June 2015.
[Slides (pdf)]

SAFARI "



NVM Design and Architecture

= HanBin Yoon, Justin Meza, Naveen Muralimanohar, Norman P.

Jouppi, and Onur Mutlu,

"Efficient Data Mapping and Buffering Techniques for
Multi-Level Cell Phase-Change Memories"

ACM Transactions on Architecture and Code Optimization
(TACO), Vol. 11, No. 4, December 2014. [Slides (ppt) (pdf)]
Presented at the 10th HIPEAC Conference, Amsterdam,
Netherlands, January 2015.

[Slides (ppt) (pdf)]

= Justin Meza, Jing Li, and Onur Mutlu,
"Evaluating Row Buffer Locality in Future Non-Volatile Main

Memories"
SAFARI Technical Report, TR-SAFARI-2012-002, Carnegie Mellon
University, December 2012.

SAFARI

72



"en  Our FMS Talks and Posters

* Onur Mutlu, ThyNVM: Software-Transparent Crash Consistency for
Persistent Memory, FMS 2016.

* Onur Mutlu, Large-Scale Study of In-the-Field Flash Failures, FMS 2016.

* Yixin Luo, Practical Threshold Voltage Distribution Modeling, FMS 2016.

» Saugata Ghose, Write-hotness Aware Retention Management, FMS 2016.
* Onur Mutlu, Read Disturb Errors in MLC NAND Flash Memory, FMS 2015.
* Yixin Luo, Data Retention in MLC NAND Flash Memory, FMS 2015.

* Onur Mutlu,
Error Analysis and Management for MLC NAND Flash Memory, FMS 2014.

* FMS 2016 posters:

- WARM: Improving NAND Flash Memory Lifetime with Write-hotness Aware
Retention Management

- Read Disturb Errors in MLC NAND Flash Memory
- Data Retention in MLC NAND Flash Memory

SAFARI 73



"= Our Flash Memory Works (1)

1. Retention noise study and management

1) Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal, Osman
Unsal, and Ken Mai,
Flash Correct-and-Refresh: Retention-Aware Error Management for
Increased Flash Memory Lifetime, ICCD 2012.

2) Yu Cai, Yixin Luo, Erich F. Haratsch, Ken Mai, and Onur Mutlu,
Data Retention in MLC NAND Flash Memory: Characterization, Optimization
and Recovery, HPCA 2015.

3) Yixin Luo, Yu Cai, Saugata Ghose, Jongmoo Choi, and Onur Mutlu,
WARM: Improving NAND Flash Memory Lifetime with Write-hotness Aware
Retention Management, MSST 2015.

2. Flash-based SSD prototyping and testing platform

4) Yu Cai, Erich F. Haratsh, Mark McCartney, Ken Mai,
FPGA-based solid-state drive prototyping platform, FCCM 2011.

SAFAR] 74



"= Our Flash Memory Works (1)

3. Overall flash error analysis

5) Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai,

Error Patterns in MLC NAND Flash Memory: Measurement, Characterization,
and Analysis, DATE 2012.

6) Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal, Osman
Unsal, and Ken Mai,

Error Analysis and Retention-Aware Error Management for NAND Flash
Memory, ITJ 2013.

4. Program and erase noise study

7) Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai,
Threshold Voltage Distribution in MLC NAND Flash Memory:
Characterization, Analysis and Modeling, DATE 2013.

SAFAR] 75



e Our Flash Memory Works (111)

5. Cell-to-cell interference characterization and tolerance

8) Yu Cai, Onur Mutlu, Erich F. Haratsch, and Ken Mai,

Program Interference in MLC NAND Flash Memory: Characterization,
Modeling, and Mitigation, ICCD 2013.

9) Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Osman Unsal, Adrian
Cristal, and Ken Mai,
Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories,
SIGMETRICS 2014.

6. Read disturb noise study

10) Yu Cai, Yixin Luo, Saugata Ghose, Erich F. Haratsch, Ken Mai, and Onur Mutlu,
Read Disturb Errors in MLC NAND Flash Memory: Characterization and

Mitigation, DSN 2015.

SAFARI 76



"= Our Flash Memory Works (V)

7. Flash errors in the field

11) Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
A Large-Scale Study of Flash Memory Errors in the Field, SIGMETRICS 2015.

8. Persistent memory

12) Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu, and Onur
Mutlu,

ThyNVM: Enabling Software-Transparent Crash Consistency in Persistent
Memory Systems, MICRO 2015.

SAFARI 77



Referenced Papers and Talks FlaéhMéﬁiow

(SUMMIT

= All are available at
http://users.ece.cmu.edu/~omutlu/projects.htm
http://users.ece.cmu.edu/~omutlu/talks.htm

= And, many other previous works on NAND flash memory
errors and management

SAFARI 78



Related Videos and Course Materials HashMemory

= Undergraduate Computer Architecture Course Lecture
Videos (2013, 2014, 2015)

= Undergraduate Computer Architecture Course
Materials (2013, 2014, 2015)

= Graduate Computer Architecture Lecture Videos
(2013, 2015)

= Parallel Computer Architecture Course Materials
(Lecture Videos)

= Memory Systems Short Course Materials
(Lecture Video on Main Memory and DRAM Basics)
SAFARI 79




\ /
J

FlashMemory

Additional Slides on
Persistent Memory and NVM




Phase Change Memory: Pros and Cons

= Pros over DRAM
o Better technology scaling (capacity and cost)
o Non volatility
o Low idle power (no refresh)

= Cons
o Higher latencies: ~4-15x DRAM (especially write)
a Higher active energy: ~2-50x DRAM (especially write)
a Lower endurance (a cell dies after ~108 writes)
o Reliability issues (resistance drift)

= Challenges in enabling PCM as DRAM replacement/helper:
o Mitigate PCM shortcomings

o Find the right way to place PCM in the system
SAFARI

81



PCM-based Main Memory (I)

= How should PCM-based (main) memory be organized?

CPU CPU CPU
IcipdiciRgicsh
GCGQ-—a | -G | @D
Q-G | - CE | @D

= Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC'09]:
o How to partition/migrate data between PCM and DRAM

SAFARI 82



PCM-based Main Memory (11)

= How should PCM-based (main) memory be organized?

CPU CPU CPU
o)~ L)~
Q- - —Cc | @&«
Q-G -G | @

= Pure PCM main memory [Lee et al., ISCA'09, Top Picks’10]:

o How to redesign entire hierarchy (and cores) to overcome
PCM shortcomings

SAFARI 83



An Initial Study: Replace DRAM with PCM

Lee, Ipek, Mutlu, Burger, “Architecting Phase Change
Memory as a Scalable DRAM Alternative,” ISCA 2009.

o Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC)
o Derived “average” PCM parameters for F=90nm

Density \ Latency
> 9-12F? using BJT > 50ns Rd, 150ns Wr
> 1.5x DRAM .~ |> 4x,12x DRAM
Endurance Energy

> 404A Rd, 150A Wr
> 1E-08x DRAM | > 2x,43x DRAM

SAFARI 84



Results: Naive Replacement of DRAM with PCM

Replace DRAM with PCM in a 4-core, 4MB L2 system
PCM organized the same as DRAM: row buffers, banks, peripherals
1.6x delay, 2.2x energy, 500-hour average lifetime

PCM Performance :: 2048Bx1 Buffer PCM Endurance :: 2048Bx1 Buffer

0.2
3 4 I Delay

-EnergyMem 0.18

2.8
0.14

0.16
26
z2
a 0.12
: 0.
T g, 0.08
' 0.0
0.8!
06l 0.04
0.4/ 0.0
0.2!

is mg rad oce art equ swi avg IS mg rad oce art equ swu avg

Normalized to
R N N NN
I\J -h 0‘) O’J N

Years

-h
D

N

(=
o

Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a
Scalable DRAM Alternative,” ISCA 2009.

SAFARI 85



Results: Architected PCM as Main Memory

= 1.2x delay, 1.0x energy, 5.6-year average lifetime
= Scaling improves energy, endurance, density

PCM Performance .. 512Bx4 Buffer PCM Endurance .. 512Bx4 Buffer
1.8[———— 16
Il Delay — DiffLine (648)

1.6 I EnergyMem

14! I I DiffWord (4B)

cg IS mg rad oce art equ swi avg cg is mg rad oce art equ SWI avg

14

-
N

o

oo —

Years
@

2]

Normalized to DRAM
(]
o

o
'
I

©
(¥
N}

o
o

= Caveat 1: Worst-case lifetime is much shorter (no guarantees)
= Caveat 2: Intensive applications see large performance and energy hits

= Caveat 3: Optimistic PCM parameters?
SAFARI 86



A More Viable Approach: Hybrid Memory Systems

CPU

DRAM PCM
Ctrl  Ctrl

Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon+, “"Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best
Paper Award.

SAFARI




Data Placement Between DRAM and PCM

Idea: Characterize data access patterns and guide data
placement in hybrid memory

Streaming accesses: As fast in PCM as in DRAM
Random accesses: Much faster in DRAM

Idea: Place random access data with some reuse in DRAM;
streaming data in PCM

Yoon+, “"Row Buffer Locality-Aware Data Placement in
Hybrid Memories,” ICCD 2012 Best Paper Award.

SAFARI 88



Hybrid vs. All-PCM/DRAM [iccp’12]

®16GBPCM BERBLA-Dyn B016GB DRAM

2 1.2

1.6 29% o <

=3

N 4 - 2 o |

2 - - 77

= 1.2 319 ’

o0 <

s 1 - = 0.6 -

=08 - - I

: 31% better performance than all PCM,

within 29% of all DRAM performance

0 - — 0 - —

Yoon+, “Row Buffer Locality-Aware Data Placement in Hybrid Memories,” ICCD 2012 Best Paper Award.



STT-MRAM as Main Memory

Magnetic Tunnel Junction (MTJ) device
o Reference layer: Fixed magnetic orientation
o Free layer: Parallel or anti-parallel

Magnetic orientation of the free layer
determines logical state of device

o High vs. low resistance

Write: Push large current through MTJ to
change orientation of free layer

Read: Sense current flow

Kultursay et al., “Evaluating STT-RAM as an Energy-
Efficient Main Memory Alternative,” ISPASS 2013.

SAFARI

Logical 0
Reference Layer )

Barrier

—)

Free Layer

Logical 1
Reference Layer )

Barrier

<4

Free Layer

Word Line
—L MT.
[ I_l L
Access
Transistor _
Bit Line Sense Line



STT-MRAM: Pros and Cons

= Pros over DRAM
o Better technology scaling
o Non volatility
o Low idle power (no refresh)

= Cons
a Higher write latency
o Higher write energy
o Reliability?

= Another level of freedom

a Can trade off non-volatility for lower write latency/energy (by
reducing the size of the MTJ)

SAFARI

91



Architected STT-MRAM as Main Memory

= 4-core, 4GB main memory, multiprogrammed workloads
= ~6% performance loss, ~60% energy savings vs. DRAM

OSTT-RAM (base)  ESTT-RAM (opt)

98%
96% -

s
§§94°/0‘
E 92% -
5 2 0% —I—
E g880/0‘ T T T T T T T T T T T
S D 0 D > H o DO D
PRSP SN UIP AU UIPN PN UIPNUIPNSIPAUSRS

B ACT+PRE OWB ERB

0% -
6\\.\9 d’.\/é\\.\} ‘i\’b&\q\-b‘ .@@.&@.{_\@.&&\.\9 N QQ'

X 3
S S & SIS
R R P R S I

Kultursay+, “"Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.
SAFARI 92




Other Opportunities with Emerging Technologies

Merging of memory and storage

o e.g., a single interface to manage all data

New applications
o e.g., ultra-fast checkpoint and restore

More robust system design
o e.g., reducing data loss

Processing tightly-coupled with memory
o e.g., enabling efficient search and filtering

SAFARI )3



Coordinated Memory and Storage with NVM (I)

= The traditional two-level storage model is a bottleneck with NVM
o Volatile data in memory - a load/store interface
o Persistent data in storage - a file system interface

o Problem: Operating system (OS) and file system (FS) code to locate, translate,
buffer data become performance and energy bottlenecks with fast NVM stores

~ Two-Level Store

Load/Store

Main Memory

Processor
and caches

fop#n, fread, fwrite, ...

------
......
........
........
........

Persistent ( G Phase-Change)
Stdtege(ESD/HDD)

SAFARI

94



Coordinated Memory and Storage with NVM (1)

= Goal: Unify memory and storage management in a single unit to
eliminate wasted work to locate, transfer, and translate data
o Improves both energy and performance
o Simplifies programming model as well

__ Unified Memory/Storage

Persistent Memory
Manager

Processor
and caches
Load/Store Feedback

Ll
Persistent (e.g., Phase-Change) Memory

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 95
SAFARI Storage and Memory,” WEED 2013.



The Persistent Memory Manager (PMM)

= EXposes a load/store interface to access persistent data

o Applications can directly access persistent memory = no conversion,
translation, location overhead for persistent data

= Manages data placement, location, persistence, security
a To get the best of multiple forms of storage

= Manages metadata storage and retrieval
a This can lead to overheads that need to be managed

= Exposes hooks and interfaces for system software
o To enable better data placement and management decisions

= Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

96



The Persistent Memory Manager (PMM)

int main (void) {
// data in file.dat 1s persistent
FILE myData = "file.dat";
myData = new int[64];

Persistent objects

}

void updateValue (int n, int value) {
FILE myData = "file.dat";
myData [n] = value; // value is persistent

O 0 1O\ N Wi -

Store l Hints from SW/OS/runtime

Software Persistent Memory Manager
Hardware Data Layout, Persistence, Metadata, Security, ...

I

| DRAM | Fiash | Nvm |[ HDD ]

PMM uses access and hint information to allocate, locate, migrate
and access data in the heterogeneous array of devices




Performance Benetits of a Single-Level Store

M User CPU [ User Memory M Syscall CPU [ Syscall I/O

10 ~24X

£ 08 \

|_

5 \

L3

§ 0.4

\

s 0.2

= ~9X
0 —_—

HDD 2-level NVM 2-level  Persistent Memory

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 08
SAFARI Storage and Memory,” WEED 2013.



Energy Benefits of a Single-Level Store

B User CPU [J SyscallCPU @ DRAM [J NVM m HDD

o o o
N o) N e o

Fraction of Total Energy

©
N

HDD 2-level NVM 2-level  Persistent Memory

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
SAFARI Storage and Memory,” WEED 2013.

99



