A Case for Toggle-Aware Compression for GPU Systems

Gennady Pekhimenko,

Nandita Vijaykumar,

Onur Mutlu, Todd C. Mowry

Evgeny Bolotin, Stephen W. Keckler

SAFARI Carnegie Mellon

Executive Summary

Data compression is a known technique to decrease the bandwidth pressure

Observation: Compression significantly increases the energy cost of communication by increasing the number of bit toggles (bit flips)

Our approach: Toggle-Aware Compression

- Energy Control (EC): send compressed data only when it is beneficial
- Metadata Consolidation (MC): consolidates metadata bits to reduce the bit toggle count

Key results: 2.2X increase in bit toggles reduced to only 1.1X with most of the performance benefits preserved

Performance and Energy Efficiency

Energy efficiency

Applications today are data-intensive

Memory Caching

Databases

Graphics

Computation vs. Communication

Modern memory systems are bandwidth constrained

Data movement is very costly

- Integer operation: ~1 pJ
- Floating operation: ~20 pJ
- Low-power memory access: ~1200 pJ

Implication

Transfer less or keep data near processing units

Sources:
Bill Dally (NVIDIA/Stanford)
Kayvon Fatahalian (CMU)

Potential for Data Compression

Significant redundancy in memory transfers:

How can we exploit this redundancy?

- Bandwidth compression
 - Provides effect of a higher effective bandwidth without increasing the number of wires or raising the frequency

Bandwidth Compression for GPUs

Compression is effective in providing higher bandwidth

Common Wisdom about Compression

A new problem:

Significant increase in the bit toggle count (# bit flips), despite less bits sent

What is a Bit Toggle?

How energy is spent in data transfers:

Energy of data transfers (e.g., NoC, DRAM) is proportional to the bit toggle count

Excessive Number of Bit Toggles

Uncompressed Cache Line

Effect of Compression on Bit Toggles

Compression significantly increases bit toggle count

Outline

- Motivation
- Key Observations
- Toggle-Aware Compression:
 - Energy Control (EC)
 - Metadata Consolidation (MC)
- Evaluation
- Conclusion

Energy Control Decision Flow

How to Make the EC Decision?

- Energy
 - Battery life
- Energy X Delay
 - Balance performance and energy
- Energy X Delay²
 - Fixed power with voltage scaling
- Energy: ~ Toggle #, Delay ~ 1/(Comp. Ratio)
 - When bandwidth utilization (BU) is high (>50%)
 use 1 / (1 BU) coefficient

EC in the System

Energy Control Summary

- *Bit toggle count*: compressed vs. uncompressed
- Use a heuristic (Energy X Delay or Energy X Delay² metric) to estimate the trade-off
- Take bandwidth utilization into account
- Throttle compression when it is not beneficial

Metadata Consolidation

Compressed Cache Line with FPC, 4-byte flits

0x5,0x3A00, 0x5, 0x3A01, 0x5, 0x3A02, 0x5, 0x3A03, ...

Toggles = 18

Toggle-aware FPC: all metadata consolidated

0x3A00, 0x3A01, 0x3A02, 0x3A03, 0x5 0x5 ... 0x5

Toggles = 2

Consolidated Metadata

Outline

- Motivation
- Key Observations
- Toggle-Aware Compression:
 - Energy Control (EC)
 - Metadata Consolidation (MC)
- Evaluation
- Conclusion

Methodology

- Simulator: GPGPU-Sim 3.2.x and in-house simulator
- Workloads:
 - NVIDIA apps (discrete and mobile): 221 apps
 - Open-source (Lonestar, Rodinia, MapReduce): 21 apps
- System parameters (Fermi):
 - 15 SMs, 32 threads/warp
 - 48 warps/SM, 32768 registers, 32KB Shared Memory
 - Core: 1.4GHz, GTO scheduler, 2 schedulers/SM
 - Memory: 177.4GB/s BW, GDDR5
 - Cache: L1 16KB; L2 768KB

Effect of EC on Bit Toggle Count

- ✓ EC significantly reduces the bit toggle count
- ✓ Works for different compression algorithms

Effect of EC on Compression Ratio

EC preserves most of the benefits of compression

Bit Toggles for C-Pack Algorithm

Different tradeoffs for different applications

DRAM Energy for C-Pack

7% average DRAM energy reduction, up to 28% for TRA

Effect of Metadata Consolidation (MC)

MC is effective in reducing the bit toggle count But less effective than EC

Other Results in the Paper

- On-chip interconnect results
 - Higher impact of bit toggles on the interconnect energy, but lower overall energy impact
- Data bus inversion (DBI)
 - EC and MC benefits are independent on whether DBI encoding is used
- Complexity estimation
 - Energy and latency
- Analyzing different EC decision functions
 - Energy x Delay vs. Energy x Delay²

Conclusion

Data compression is a known technique to decrease the bandwidth pressure

Observation: Compression significantly increases the energy cost of communication by increasing the number of bit toggles (bit flips)

Our approach: Toggle-Aware Compression

- Energy Control (EC): send compressed data only when it is beneficial
- Metadata Consolidation (MC): consolidate metadata bits to reduce the bit toggle count

Key results: 2.2X increase in bit toggles reduced to only 1.1X with most of the performance benefits preserved

A Case for Toggle-Aware Compression for GPU Systems

Gennady Pekhimenko,

Nandita Vijaykumar,

Onur Mutlu, Todd C. Mowry

Evgeny Bolotin, Stephen W. Keckler

SAFARI Carnegie Mellon

