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Key Components of Zorua

Compiler: Statically finds program phases, annotates 
per-phase resource needs

Coordinator: Adaptive runtime system that makes 
oversubscription & resource allocation decisions

Overview
Problem: Tight coupling between programmer 
specified resource usage and hardware allocation 

Tight Coupling Between Resource Specification and Allocation Leads to Several Challenges

 Programming Ease  Performance Portability  Resource Efficiency
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Resource inefficiency results from 
worst-case static allocation

Zorua: Decouple Programmer/Software Resource Specification from Hardware Allocation

 Virtualizing major on-chip GPU resources:

 Dynamic allocation/deallocation of resources

 Careful oversubscription of resources                                                                                                
using a swap space in the memory hierarchy

 Two design challenges

• Control the extent of oversubscription

• Coordinate virtualization of multiple on-chip resources
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•Problem: Major on-chip resources in GPUs are managed by the 
programmer/software

•Key Issues: Leads to several challenges in obtaining high performance:
– Programming Ease: Requires programmer effort to optimize resource usage
– Performance Portability: Optimizations do not port well across different 
GPU architectures
– Resource Inefficiency: Underutilized resources even in optimized code 

•Our Goal: 
– Reduce dependence of performance on programmer-specified 
resource usage
– Enhance resource efficiency for optimized code 

•Our Approach: Decouple the programmer-specified resource usage from 
the allocation in the hardware

Programs need to be 
retuned to fit different GPUs

Requires programmer effort 
to avoid sub-optimal specifications
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Zorua reduces the performance loss from 
porting across GPU architectures

Zorua reduces the dependence of 
performance on resource specification

Zorua alleviates the performance cliffs 
resulting from un-optimized specifications

__global__ void CUDAkernel2DCT(float *dst, float *src, int I){
int OffsThreadInRow = threadIdx.y * B + threadIdx.x;
... 
for(unsigned int i = 0; i < B; i++)

bl_ptr[i * X] = src[i * I];

__syncthreads();
... 
CUDAsubroutineInplaceDCTvector(…);

for(unsigned int i = 0; i < B; i++)
dst[i *I] = bl_ptr[i * X]; 

. ..
}
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