
Zorua
A Holistic Approach to

Resource Virtualization in GPUs

Session 2A – Monday, 5:20 PM

Nandita Vijaykumar, Kevin Hsieh, Gennady Pekhimenko,
Samira Khan, Ashish Shrestha, Saugata Ghose,

Adwait Jog, Phillip B. Gibbons, Onur Mutlu

Key Components of Zorua

Compiler: Statically finds program phases, annotates
per-phase resource needs

Coordinator: Adaptive runtime system that makes
oversubscription & resource allocation decisions

Overview
Problem: Tight coupling between programmer
specified resource usage and hardware allocation

Tight Coupling Between Resource Specification and Allocation Leads to Several Challenges

 Programming Ease  Performance Portability  Resource Efficiency

0.8

1.0

1.2

1.4

1.6

0 128 256 384 512 640 768 896 1024

N
o
r
m
a
l
i
z
e
d

E
x
e
c
u
t
i
o
n

T
i
m
e

Threads/Block

Performance
Cliffs

MST (Minimum Spanning Tree)

0.6

1.0

1.4

1.8

2.2

2.6

0 100 200 300 400 500

N
o
r
m
a
l
i
z
e
d

E
x
e
c
u
t
i
o
n

T
i
m
e

Threads/Block

Maxwell Kepler Fermi
3.16

DCT (Discrete Cosine Transform)

Resource inefficiency results from
worst-case static allocation

Zorua: Decouple Programmer/Software Resource Specification from Hardware Allocation

 Virtualizing major on-chip GPU resources:

 Dynamic allocation/deallocation of resources

 Careful oversubscription of resources
using a swap space in the memory hierarchy

 Two design challenges

• Control the extent of oversubscription

• Coordinate virtualization of multiple on-chip resources

Physical ResourcesVirtual Resources Swap Space

Register File

Thread SlotsThread Slots

Register File

Scratchpad
Memory

Scratchpad
Memory

Key Results

0%

50%

100%

150%

BH DCT MST NQU RD SLA SP SSSP AVG

M
a
x
i
m
u
m

P
o
r
t
i
n
g

P
e
r
f
o
r
m
a
n
c
e

L
o
s
s

Baseline WLM Zorua

Register File

Thread Slots

Scratchpad
Memory

Hardware

Programmer/Software
<#Threads,#Registers,Scratchpad(B)> per block

•Problem: Major on-chip resources in GPUs are managed by the
programmer/software

•Key Issues: Leads to several challenges in obtaining high performance:
– Programming Ease: Requires programmer effort to optimize resource usage
– Performance Portability: Optimizations do not port well across different
GPU architectures
– Resource Inefficiency: Underutilized resources even in optimized code

•Our Goal:
– Reduce dependence of performance on programmer-specified
resource usage
– Enhance resource efficiency for optimized code

•Our Approach: Decouple the programmer-specified resource usage from
the allocation in the hardware

Programs need to be
retuned to fit different GPUs

Requires programmer effort
to avoid sub-optimal specifications

Phase 3

Pending

Schedulable

Warp
Scheduler

Allocate Required
Resources

Phase 2
Thread Block

Phase 1

0.5

1

1.5

2

9000 29000 49000

Scratchpad/Block

Baseline WLM Zorua

Zorua reduces the performance loss from
porting across GPU architectures

Zorua reduces the dependence of
performance on resource specification

Zorua alleviates the performance cliffs
resulting from un-optimized specifications

__global__ void CUDAkernel2DCT(float *dst, float *src, int I){
int OffsThreadInRow = threadIdx.y * B + threadIdx.x;
...
for(unsigned int i = 0; i < B; i++)

bl_ptr[i * X] = src[i * I];

__syncthreads();
...
CUDAsubroutineInplaceDCTvector(…);

for(unsigned int i = 0; i < B; i++)
dst[i *I] = bl_ptr[i * X];

. ..
}

32 regs

16 regs

16 regs

