Functional Programming: Exercise Session 2

» Sheet 2: Main focus on logic, some Haskell programming
» Next week: Lecture and exercises will shift to Haskell

» This exercise session:

» Some comments on sheet 1: Evaluation, elimination rules
» Semantics of logics

» Soundness of rules

» Practice for sheet 2: Rules for V and 3



Evaluation

v

Evaluation order will be discussed in more detail later, but useful
to already have a general idea of it.

Haskell has a lazy evaluation strategy. It first evaluates the
leftmost and outermost reducible expression.

Outermost = (if possible first try to) evaluate the function, then
evaluate the arguments. When do you need to evaluate the
arguments first?

Lazy = only arguments which are required are necessary

fst (0+1)+(1+1),1+2+3+4+5+6)
= 0+1)+(1+1)
—1+(1+1)—=>1+2<=3

However, lazy/eager not really important for the Fibonacci
example



Evaluation

fibLouis 0 = 0 —-— fibLouis.1
fibLouis 1 =1 —-— fibLouis.2
fibLouis n = fibLouis (n-1) + fibLouis (n-2) -- fibLouis.3
fibLouis 4 =

(fibLouis (4-1) + fibLouis (4-2)) = - fibLouis.3

(fibLouis 3 + fibLouis (4-2)) - arith

((fibLouis (3-1) + fibLouis (3-2)) + fibLouis (4-2)) = - fibLouis.3

((fibLouis 2 + fibLouis (3-2)) + fibLouis (4-2)) = - arith

(((fibLouis (2-1) + fibLouis (2-2)) + fibLouis (3-2)) + fibLouis (4-2)) = - fibLouis.3

(((fibLouis 1 + fibLouis (2-2)) + fibLouis (3-2)) + fibLouis (4-2)) = - arith

(((1 + fibLouis (2-2)) + fibLouis (3-2)) + fibLouis (4-2)) = - fibLouis.2

(((1 + fibLouis 0) + fibLouis (3-2)) + fibLouis (4-2)) = — arith

(((1 + 0) + fibLouis (3-2)) + fibLouis (4-2)) = - fibLouis.1l

((1 + fibLouis (3-2)) + fibLouis (4-2)) = - arith

((1 + fibLouis 1) + fibLouis (4-2)) = - arith

((1 + 1) + fibLouis (4-2)) = - fibLouis.1l

(2 + fibLouis (4-2)) = - arith

(2 + fibLouis 2) = - arith

(2 + (fibLouis (2-1) + fibLouis (2-2))) = - fibLouis.3

(2 + (fibLouis 1 + fibLouis (2-2))) = - arith

(2 + (1 + fibLouis (2-2))) = - fibLouis.2

(2 + (1 + fibLouis 0)) = - arith

(2 + (1 +0)) = - fibLouis.l

(2 + 1) = - arith

3 - arith



How to find ND proofs?

» Strategy rather than an exact algorithm (problem can be
undecidable, depending on the logic)

» Backwards: Apply introduction rules until the required sequents
can be derived by elimination rules.

» Forward: Find out how elimination rules can be applied to
assumptions to derive required sequents.

» Backwards: Write down the previously found derivations.

» The forward “planning step” is required since you might have to
guess which rule to apply and how to instantiate the premises:

rNFAAB r-AAB
———F—F A-EL ——— — A-ER
Nr-A r-B

» Note that — —E might require switching back to applying
introduction rules for the second premise.



Blackboard: Assignment 4 (b) (i)



Why should proofs follow such a rigid structure?

>
>
>

More comfortable rules can be derived!
Machine checkable proofs and proof search:
Xavier Leroy: Formal verification of a realistic compiler
http://pauillac.inria.fr/~xleroy/bibrefs/
Leroy—Compcert—-CACM.html
Formal, machine-checked verification of the seL4 microkernel:
> http://www.drdobbs.com/embedded/222400553?pgno=2
» http://www.ok—labs.com/whitepapers/sample/
seld-formal-verification-of-an-os—kernel
Other formal methods:
> http://cacm.acm.org/magazines/2010/2/
69367-type-theory-comes-of-age/fulltext
> http://cacm.acm.org/magazines/2010/2/
69362-software-model-checking-takes-off/fulltext


http://pauillac.inria.fr/~xleroy/bibrefs/Leroy-Compcert-CACM.html
http://pauillac.inria.fr/~xleroy/bibrefs/Leroy-Compcert-CACM.html
http://www.drdobbs.com/embedded/222400553?pgno=2
http://www.ok-labs.com/whitepapers/sample/sel4-formal-verification-of-an-os-kernel
http://www.ok-labs.com/whitepapers/sample/sel4-formal-verification-of-an-os-kernel
http://cacm.acm.org/magazines/2010/2/69367-type-theory-comes-of-age/fulltext
http://cacm.acm.org/magazines/2010/2/69367-type-theory-comes-of-age/fulltext
http://cacm.acm.org/magazines/2010/2/69362-software-model-checking-takes-off/fulltext
http://cacm.acm.org/magazines/2010/2/69362-software-model-checking-takes-off/fulltext

Semantics of Logics

» We want to assign meaning (semantics) to logical formulae
» Typically, one does this by defining a satisfaction relation

SkF

which describes when a situation S satisfies a formula F

» Details vary from logic to logic: what is the satisfaction relation,
what constitutes a formula, and what constitutes a situation



Semantics of Propositional Logic

» In propositional logic, situations are the so-called valuations,
functions assigning a value py € {L, T} to each variable p. The
satisfaction relation is then defined as follows:

> M= p,ifpu

» M=AABifME=Aand M =B

» MEAVB,ifMj=AorMEB

» M= A— B, ifwhenever M = Athen M |= B

» A situation M which satisfies the formula F is called a model for
F.

» Exercise: find one valuation which is, and one which isn’t a
model for the formulapA g — r



Semantics of Predicate Logic

» A structure is a pair § = (Us, Is) where Us is an nonempty set,
the universe, and /s is a mapping from predicate and function
symbols of the given logic to predicates and functions over Us

» An interpretation is a pair J = (8, v), where 8 = (Us, Is) is a
structure and v : V — Us a valuation.

» J |= ¢ is defined as the smallest relation between interpretations
and formulas such that

S, v) Ep(t,....ta) if (I(t),...,I(t:)) € p°, where I = (S, v)

S, v) EVx.A i.f (S, vix — a]) = A, forallae Us
S,v) E3ax.A if (8,v[x+— a]) E A, forsome a e Us



Semantics and Syntax

» Semantic entailment: ¢4, ..., ¢« [ ¢ if for all situations A, if
AE¢r, ..., AE=¢cthen A= ¢

» Syntactic entailment is what we have seen so far: ' I ¢ if we can
“derive” ¢ from I’

» We'd like the two to be in sync

» Soundness of logic: If ¢1, ..., ¢k F ¢ derivable, then
Pty Ok E D

» Completeness of logic: If ¢1,..., 0k = &, then ¢, ..., 0k &
derivable



Soundness of Rules

» Arule
Mo ... Tkl ok

Fo
is sound if for all T';, ¢;, ', and ¢

M Eod1,... .Mk = o
implies
M=o
» Example: We show that

)
—— V-IL
Nr-ovey

is sound as follows:
Let T, ¢, and ¢ be arbitrary and assume that I' |= ¢.
Then show I = ¢ V 9.



Soundness of V-IL

M=o

— V-IL

Fr=o¢ovay

1 Let o, v, and T = Gy, ..., Gk be arbitrary and assume that ' = ¢.
(unfold definition of semantic entailment)

2 Then for all structures A, if A = Gjfor1 </ < kthen A = ¢.
(AEéVYifAE ¢ orA =1y by definition of =)

3 Then for all structures A, if A = Gjfor1 <i< kthen A | ¢ V.
(fold definition of semantic entailment)

4 ThenT E ¢ V.



Notes: Predicate Logic on Sheet 2

» You have to pay attention to the scope of variables and the side
conditions.
» Syntax: V and 3 extend as far to the right as possible.
ANVYX. P(x) = Q(x) = B(x) = AA(¥Yx. P(x) — (Q(x) — B(x)))
> VX1 Xo ... Xp. P shortcut for Vxy.Vxo. ...Vx,. P



Renaming of Bound Variables in Formulas

» Formulas modulo renaming of bound variables:
vx. P(x) =Vy.P(y)
» Renaming has to be capture avoiding:
Vx. Q(x,z) #Vz.Q(z, 2)
The second argument of Q was free before, then bound by V.



Side Conditions of V-l and 3-E

3x. PO F 3x. P(x) ™ 3x. P(x), P(x) F P(x) ;XEM
3x. P(x) F P(x) v’ .
Ix. P(x) F Vx.P(x) ;-I

F (3x. P(x)) — Vx.P(x)

Where is the error?
(*) x not free in any assumptions in I', (**) x not freein B or I'.



Side Conditions of V-l and 3-E

3x. PO F 3x. P(x) ™ 3x. P(x), PO F P(x)

Ix. P(x) F P(x) - IIE
Ix. P(x) F Vx.P(x) i-l

F (3x. P(x)) — Vx.P(x)

Where is the error?
(*) x not free in any assumptions in I', (**) x not freein B or I'.
(**) violated, renaming required.

Jy. P(y) = 3y. P(y) A Jy. P(y), P(y) F P(x)

H_E**
3y PO F P(x)
3. P(x) F P(x) St
Ix. P(x) - Vx.P(x) N

F (3x. P(x)) — Vx.P(x)
Note that formula is unproven, as it is actually false!



Exercises |

1 vx. L — P(x)
2 Vx.P(x),P(t) - QF Q



Exercises I

3 (Vxy.P(x,y)) — (Yba. P(a,b))

4 3x. P(x) F —(Vx.=P(x))

5vxyz P(x,y)AP(y,z) — P(x,z),P(a,b), P(b,c) - P(a,c)
6 —(Vx.—P(x)) - 3x. P(x) using TND



