
Functional Programming: Exercise Session 2

I Sheet 2: Main focus on logic, some Haskell programming
I Next week: Lecture and exercises will shift to Haskell
I This exercise session:

I Some comments on sheet 1: Evaluation, elimination rules
I Semantics of logics
I Soundness of rules
I Practice for sheet 2: Rules for ∀ and ∃

Evaluation

I Evaluation order will be discussed in more detail later, but useful
to already have a general idea of it.

I Haskell has a lazy evaluation strategy. It first evaluates the
leftmost and outermost reducible expression.

I Outermost = (if possible first try to) evaluate the function, then
evaluate the arguments. When do you need to evaluate the
arguments first?

I Lazy = only arguments which are required are necessary

fst ((0 + 1) + (1 + 1),1 + 2 + 3 + 4 + 5 + 6)

↪→ (0 + 1) + (1 + 1)

↪→ 1 + (1 + 1) ↪→ 1 + 2 ↪→ 3

I However, lazy/eager not really important for the Fibonacci
example

Evaluation
fibLouis 0 = 0 -- fibLouis.1
fibLouis 1 = 1 -- fibLouis.2
fibLouis n = fibLouis (n-1) + fibLouis (n-2) -- fibLouis.3

fibLouis 4 =
(fibLouis (4-1) + fibLouis (4-2)) = - fibLouis.3
(fibLouis 3 + fibLouis (4-2)) = - arith
((fibLouis (3-1) + fibLouis (3-2)) + fibLouis (4-2)) = - fibLouis.3
((fibLouis 2 + fibLouis (3-2)) + fibLouis (4-2)) = - arith
(((fibLouis (2-1) + fibLouis (2-2)) + fibLouis (3-2)) + fibLouis (4-2)) = - fibLouis.3
(((fibLouis 1 + fibLouis (2-2)) + fibLouis (3-2)) + fibLouis (4-2)) = - arith
(((1 + fibLouis (2-2)) + fibLouis (3-2)) + fibLouis (4-2)) = - fibLouis.2
(((1 + fibLouis 0) + fibLouis (3-2)) + fibLouis (4-2)) = - arith
(((1 + 0) + fibLouis (3-2)) + fibLouis (4-2)) = - fibLouis.1
((1 + fibLouis (3-2)) + fibLouis (4-2)) = - arith
((1 + fibLouis 1) + fibLouis (4-2)) = - arith
((1 + 1) + fibLouis (4-2)) = - fibLouis.1
(2 + fibLouis (4-2)) = - arith
(2 + fibLouis 2) = - arith
(2 + (fibLouis (2-1) + fibLouis (2-2))) = - fibLouis.3
(2 + (fibLouis 1 + fibLouis (2-2))) = - arith
(2 + (1 + fibLouis (2-2))) = - fibLouis.2
(2 + (1 + fibLouis 0)) = - arith
(2 + (1 + 0)) = - fibLouis.1
(2 + 1) = - arith
3 - arith

How to find ND proofs?

I Strategy rather than an exact algorithm (problem can be
undecidable, depending on the logic)

I Backwards: Apply introduction rules until the required sequents
can be derived by elimination rules.

I Forward: Find out how elimination rules can be applied to
assumptions to derive required sequents.

I Backwards: Write down the previously found derivations.
I The forward “planning step” is required since you might have to

guess which rule to apply and how to instantiate the premises:

Γ ` A ∧ B
Γ ` A

∧-EL
Γ ` A ∧ B

Γ ` B
∧-ER

I Note that→−E might require switching back to applying
introduction rules for the second premise.

Blackboard: Assignment 4 (b) (i)

Why should proofs follow such a rigid structure?
I More comfortable rules can be derived!
I Machine checkable proofs and proof search:
I Xavier Leroy: Formal verification of a realistic compiler
http://pauillac.inria.fr/~xleroy/bibrefs/
Leroy-Compcert-CACM.html

I Formal, machine-checked verification of the seL4 microkernel:
I http://www.drdobbs.com/embedded/222400553?pgno=2
I http://www.ok-labs.com/whitepapers/sample/
sel4-formal-verification-of-an-os-kernel

I Other formal methods:
I http://cacm.acm.org/magazines/2010/2/
69367-type-theory-comes-of-age/fulltext

I http://cacm.acm.org/magazines/2010/2/
69362-software-model-checking-takes-off/fulltext

http://pauillac.inria.fr/~xleroy/bibrefs/Leroy-Compcert-CACM.html
http://pauillac.inria.fr/~xleroy/bibrefs/Leroy-Compcert-CACM.html
http://www.drdobbs.com/embedded/222400553?pgno=2
http://www.ok-labs.com/whitepapers/sample/sel4-formal-verification-of-an-os-kernel
http://www.ok-labs.com/whitepapers/sample/sel4-formal-verification-of-an-os-kernel
http://cacm.acm.org/magazines/2010/2/69367-type-theory-comes-of-age/fulltext
http://cacm.acm.org/magazines/2010/2/69367-type-theory-comes-of-age/fulltext
http://cacm.acm.org/magazines/2010/2/69362-software-model-checking-takes-off/fulltext
http://cacm.acm.org/magazines/2010/2/69362-software-model-checking-takes-off/fulltext

Semantics of Logics

I We want to assign meaning (semantics) to logical formulae
I Typically, one does this by defining a satisfaction relation

S |= F

which describes when a situation S satisfies a formula F
I Details vary from logic to logic: what is the satisfaction relation,

what constitutes a formula, and what constitutes a situation

Semantics of Propositional Logic

I In propositional logic, situations are the so-called valuations,
functions assigning a value pM ∈ {⊥,>} to each variable p. The
satisfaction relation is then defined as follows:

I M |= p, if pM
I M |= A ∧ B, if M |= A and M |= B
I M |= A ∨ B, if M |= A or M |= B
I M |= A → B, if whenever M |= A then M |= B

I A situation M which satisfies the formula F is called a model for
F .

I Exercise: find one valuation which is, and one which isn’t a
model for the formula p ∧ q → r

Semantics of Predicate Logic

I A structure is a pair S = 〈US, IS〉 where US is an nonempty set,
the universe, and IS is a mapping from predicate and function
symbols of the given logic to predicates and functions over US

I An interpretation is a pair I = 〈S, v〉, where S = 〈US, IS〉 is a
structure and v : V→ US a valuation.

I I |= φ is defined as the smallest relation between interpretations
and formulas such that

〈S, v〉 |= p(t1, . . . , tn) if
(
I(t1), . . . , I(tn)

)
∈ pS, where I = 〈S, v〉

...
〈S, v〉 |= ∀x .A if 〈S, v [x 7→ a]〉 |= A, for all a ∈ US

〈S, v〉 |= ∃x .A if 〈S, v [x 7→ a]〉 |= A, for some a ∈ US

Semantics and Syntax

I Semantic entailment: φ1, . . . , φk |= φ if for all situations A, if
A |= φ1, . . . , A |= φk then A |= φ

I Syntactic entailment is what we have seen so far: Γ ` φ if we can
“derive” φ from Γ

I We’d like the two to be in sync
I Soundness of logic: If φ1, . . . , φk ` φ derivable, then
φ1, . . . , φk |= φ

I Completeness of logic: If φ1, . . . , φk |= φ, then φ1, . . . , φk ` φ
derivable

Soundness of Rules

I A rule
Γ1 ` φ1 . . . Γk ` φk

Γ ` φ

is sound if for all Γi , φi , Γ, and φ

Γ1 |= φ1, . . . , Γk |= φk

implies
Γ |= φ

I Example: We show that

Γ ` φ
Γ ` φ ∨ ψ

∨-IL

is sound as follows:
Let Γ, φ, and ψ be arbitrary and assume that Γ |= φ.
Then show Γ |= φ ∨ ψ.

Soundness of ∨-IL

Γ ` φ
Γ ` φ ∨ ψ

∨-IL

1 Let φ, ψ, and Γ = G1, . . . ,Gk be arbitrary and assume that Γ |= φ.
(unfold definition of semantic entailment)

2 Then for all structures A, if A |= Gi for 1 ≤ i ≤ k then A |= φ.
(A |= φ ∨ ψ if A |= φ or A |= ψ by definition of |=)

3 Then for all structures A, if A |= Gi for 1 ≤ i ≤ k then A |= φ ∨ ψ.
(fold definition of semantic entailment)

4 Then Γ |= φ ∨ ψ.

Notes: Predicate Logic on Sheet 2

I You have to pay attention to the scope of variables and the side
conditions.

I Syntax: ∀ and ∃ extend as far to the right as possible.
A∧ ∀x . P(x)→ Q(x)→ B(x) = A∧ (∀x . P(x)→ (Q(x)→ B(x)))

I ∀x1 x2 . . . xn. P shortcut for ∀x1.∀x2. . . .∀xn.P

Renaming of Bound Variables in Formulas

I Formulas modulo renaming of bound variables:
∀x .P(x) ≡ ∀y .P(y)

I Renaming has to be capture avoiding:
∀x .Q(x , z) 6= ∀z.Q(z, z)

The second argument of Q was free before, then bound by ∀.

Side Conditions of ∀-I and ∃-E

∃x .P(x) ` ∃x .P(x)
AX
∃x .P(x),P(x) ` P(x)

AX

∃x .P(x) ` P(x)
∃-E∗∗

∃x .P(x) ` ∀x .P(x)
∀-I∗

` (∃x .P(x))→ ∀x .P(x)
→-I

Where is the error?
(*) x not free in any assumptions in Γ, (**) x not free in B or Γ.

(**) violated, renaming required.

∃y .P(y) ` ∃y .P(y)
AX
∃y .P(y),P(y) ` P(x)

∃y .P(y) ` P(x)
∃-E∗∗

∃x .P(x) ` P(x)
RENAME

∃x .P(x) ` ∀x .P(x)
∀-I∗

` (∃x .P(x))→ ∀x .P(x)
→-I

Note that formula is unproven, as it is actually false!

Side Conditions of ∀-I and ∃-E

∃x .P(x) ` ∃x .P(x)
AX
∃x .P(x),P(x) ` P(x)

AX

∃x .P(x) ` P(x)
∃-E∗∗

∃x .P(x) ` ∀x .P(x)
∀-I∗

` (∃x .P(x))→ ∀x .P(x)
→-I

Where is the error?
(*) x not free in any assumptions in Γ, (**) x not free in B or Γ.
(**) violated, renaming required.

∃y .P(y) ` ∃y .P(y)
AX
∃y .P(y),P(y) ` P(x)

∃y .P(y) ` P(x)
∃-E∗∗

∃x .P(x) ` P(x)
RENAME

∃x .P(x) ` ∀x .P(x)
∀-I∗

` (∃x .P(x))→ ∀x .P(x)
→-I

Note that formula is unproven, as it is actually false!

Exercises I

1 ∀x .⊥ → P(x)

2 ∀x .P(x),P(t)→ Q ` Q

Exercises II

3 (∀x y .P(x , y))→ (∀b a.P(a,b))

4 ∃x .P(x) ` ¬(∀x .¬P(x))

5 ∀x y z.P(x , y) ∧ P(y , z)→ P(x , z),P(a,b),P(b, c) ` P(a, c)

6 ¬(∀x .¬P(x)) ` ∃x .P(x) using TND

