
Functional Programming: Exercise Session 3

I Comments on sheet 2:
I Mind Thy Syntax Trees
I Kickstart your modeling career
I Haskell
I Headache and its Aspirin

I Practice for sheet 3
I Induction over naturals
I Some functions on lists



Thou Shalt Mind Thy Syntax Trees

I The most common mistakes had to deal with using inapplicable
rules

I You have to “parse” the formula correctly. Refresher:

Form, the formulae in first-order logic, is the smallest set
where

1. ⊥∈ Form,
2. pn(t1, . . . , tn)∈Form if pn ∈ P and tj ∈ Term, for all 1≤ j≤ n,
3. A ◦ B ∈ Form if A ∈ Form, B ∈ Form, and ◦ ∈ {∧,∨,→}, and
4. Qx .A ∈ Form if A ∈ Form, x ∈ V, and Q ∈ {∀, ∃}



Thou Shalt Mind Thy Syntax Trees (cont)

I Example: if you have a sequent of the form Γ ` ∀x .P(x)→ Q,
you *cannot* apply imp-I to it

I Example 2: can’t use ∧ER to conclude Γ ` P(x) from
Γ ` ∃x .P(x) ∧Q(x)

I Why?
I Can you think of a wrong proof exploting such “rules”?
I Side note: if a rule has side conditions, check them! And let us

know that you did (a remark at the end is fine)
I Example: Assignment 3. (b) and (c)



Existential (Introduction/Elimination) Issues

I Correct proof, with Γ := ∃x .P(x) ∧Q(x)

Γ ` ∃x .P(x) ∧Q(x)
AX

Γ, P(x) ∧Q(x) ` P(x) ∧Q(x)
AX

Γ, P(x) ∧Q(x) ` Q(x)
∧ER

Γ, P(x) ∧Q(x) ` ∃y .Q(y)
∃I

∃x .P(x) ∧Q(x) ` ∃y .Q(y)
∃E∗∗

I Failed proof attempt, with same Γ := ∃x .P(x) ∧Q(x)

Γ ` ∃z.P(z) ∧Q(z)
AX

???

Γ, P(z) ∧Q(z) `?? ∧Q(x)

Γ, P(z) ∧Q(z) ` Q(x)
∧ER

Γ ` Q(x)
∃E∗∗

∃x .P(x) ∧Q(x) ` ∃y .Q(y)
∃I

Note use of z. Using x instead is not allowed by ∃E’s side condition!



Models

I Parts where we asked for models of formulas were mostly correct
I Mistakes when asked for non-models
I ∀x . (∃y . r(x , y) ∧ q(y))→ (∀y . r(x , y)→ q(y))

I I(r) = (a, b), (b, c), (c, a), I(q) = a
I ∀x .∀y . r(x , y)→ r(y , x)→ x = y

I Hint: can you reformulate this to use conjunction? What property of
the relation r does formula specify?

I I(r) = {(a, b), (b, a)}
I I(r) = {(a, a), (a, b)}



Haskell

I Exercise 4 not too difficult and pretty much everybody nailed it
I Except the I/O: repeat on good input, stop on bad!

I Style remark
if x==0 then True else False => x==0
foo x | <expr> = True => foo x = <expr>

| otherwise = False

I Exercise 5 becomes much easier once we know how to work
with lists



Headache of the week

Claim: If f : R→ R is f (x) = x , for all x ∈ R, then f is continuous.
Proof: Let c be an arbitrary real number. Let ε be an arbitrary
positive real number. Choose δ = ε. Note that δ > 0 since ε > 0. Let
x be an arbitrary real number. Assume that |x − c| < δ. As f (x) = x
and f (c) = c, it follows that |f (x)− f (c)| < ε, because we chose δ = ε.
Q.E.D.

Turn the above argumentation into a formal proof, that is, use the
proof rules from the lecture to derive

`
(
∀x . f (x) = x

)
→ ∀c.∀ε. ε > 0→ ∃δ. δ > 0∧∀x . |x−c| < δ → |f (x)−f (c)| < ε .



Induction over Nat

I Assume we’re given a function sum with the following definition:
sum 0 = 0 -- sum.1
sum n = sum (n-1) + n -- sum.2

I Let’s prove: ∀n ∈ N. sum n = n(n+1)
2

I Note: when do we use sum.1, and when sum.2?



Functions on Lists
I Lists are one of the main tools in Haskell
I Lots of predefined functions (e.g. in Prelude, Data.List)

-- test if list is equal to the empty list ([])
null :: [a] -> Bool
null [] = True
null _ = False

-- return head of the list
head :: [a] -> a
head [] = error "head: not defined on empty list"
head (x:_) = x

tail :: [a] -> [a]
tail [] = error "tail: not defined on empty list"
tail (_:xs) = xs

(:) :: a -> [a] -> [a]



Functions on Lists (cont.)

-- return the last element of the list
last :: [a] -> a

-- return all elements of the list except the last one
init :: [a] -> [a]

(++) :: [a] -> [a] -> [a]
length :: [a] -> Int
reverse :: [a] -> [a]
(!!) :: Int -> [a] -> a -- zero-based

Exercise: Implement 3 of the functions listed above. E.g., last , init , ...



More Functions

| reverse :: [a] -> [a] | reverse [1,2,3] = [3,2,1] |
| map :: (a -> b) -> [a] -> [b] | map (+1) [1,2,3] = [2,3,4] |
| intersperse :: a -> [a] -> [a] | intersperse ’,’ "123" ="1,2,3" |
| intercalate :: [a] -> [ [a] ]-> [a] | intercalate ", " ["Haskell", "C#", "Java"] = |
| | "Haskell, C#, Java" |
| take :: Int -> [a] -> [a] | take 3 [1..] = [1,2,3] |
| drop :: Int -> [a] -> [a] | drop 7 [1..10] = [8,9,10] |
| splitAt :: Int -> [a] -> ([a], [a]) | splitAt 3 "FOO,BAR" = ("FOO",",BAR") |
| break :: | break (==’,’) "FOO,BAR" = ("FOO",",BAR") |
| (a -> Bool) -> ([a] -> ([a], [a])) | |
| elem :: Eq a => a -> [a] -> Bool | 1 ‘elem‘ [2,3,1] = True |
| concat :: [ [a] ]-> [a] | concat [[1],[2,3]] = [1,2,3] |

Exercise: Implement 2 of the functions listed above.
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