Functional Programming: Exercise Session 3

» Comments on sheet 2:
» Mind Thy Syntax Trees
» Kickstart your modeling career
» Haskell
» Headache and its Aspirin
» Practice for sheet 3

» Induction over naturals
» Some functions on lists

Thou Shalt Mind Thy Syntax Trees

» The most common mistakes had to deal with using inapplicable
rules

» You have to “parse” the formula correctly. Refresher:

Form, the formulae in first-order logic, is the smallest set
where

. Le Form,

2. p"(t,...,th)ye Formif p" € Pand t; € Term, forall 1< j< n,
3. Ao B e Formif A€ Form, B € Form,and o € {A,V,—}, and
4. Qx.A€ Formif A€ Form, x € V,and Q € {v,3}

'y

Thou Shalt Mind Thy Syntax Trees (cont)

» Example: if you have a sequent of the form ' - Vx.P(x) — Q,
you *cannot* apply imp-I to it

» Example 2: can’'t use AER to conclude I - P(x) from
I 3x.P(x) A Q(x)

» Why?

» Can you think of a wrong proof exploting such “rules”?

» Side note: if a rule has side conditions, check them! And let us
know that you did (a remark at the end is fine)

» Example: Assignment 3. (b) and (c)

Existential (Introduction/Elimination) Issues

» Correct proof, with I' := 3x. P(x) A Q(x)
AX

I, P(x) A Q(x)F P(x) A Q(x)

. r, P(x) A Q(x) - Q(x) NER
M+ 3x. P(x) A Q(X) LPOANQX)FIy- Q) ..
Ix. P(x) A Q(x) F Jy. Q(y)
» Failed proof attempt, with same I := 3x. P(x) A Q(x)
77
M, P(2) A Q(2) F7?7 A Q(X)
AX AER
M3z P(z) A Q(2) LPEAAQADFAX) ..
M= Q(x) -

Ix. P(x) A Q(x) F 3y. Q(y)

Note use of z. Using x instead is not allowed by JE’s side condition!

Models

v

Parts where we asked for models of formulas were mostly correct
Mistakes when asked for non-models
Vx.(3y.r(x,y) Aq(y)) = (Vy-r(x,y) = a(y))
» I(r) = (a,b),(b,c),(c,a), I(q) =a
VX.Vy. r(x,y) = r(y,x) = x=y
» Hint: can you reformulate this to use conjunction? What property of
the relation r does formula specify?
» I(r) ={(a,b),(b,a)}
» I(r) ={(a a).(a b)}

v

v

v

Haskell

» Exercise 4 not too difficult and pretty much everybody nailed it
» Except the I/O: repeat on good input, stop on bad!
» Style remark
if x==0 then True else False => x==
foo x | <expr> = True => foo x = <expr>
| otherwise = False
» Exercise 5 becomes much easier once we know how to work
with lists

Headache of the week

Claim: If f: R — Ris f(x) = x, for all x € R, then f is continuous.
Proof: Let ¢ be an arbitrary real number. Let e be an arbitrary
positive real number. Choose § = e. Note that 6 > 0 since ¢ > 0. Let
X be an arbitrary real number. Assume that |x — ¢| < §. As f(x) = x
and f(c) = c, it follows that |f(x) — f(c)| < ¢, because we chose § = e.
Q.E.D.

Turn the above argumentation into a formal proof, that is, use the
proof rules from the lecture to derive

F (Vx. f(x) = X) = VC.Ve.e > 0 — 36.6 > OAVX. [x—c| < § — |f(x)—f(c)| <

Induction over Nat

» Assume we're given a function sum with the following definition:
sum 0 = 0 —-— sum.1l
sum n = sum (n-1) + n —— sum.?2

> Let's prove: ¥n € N. sum n = 221

» Note: when do we use sum.1, and when sum.2?

Functions on Lists

» Lists are one of the main tools in Haskell
» Lots of predefined functions (e.g. in Prelude, Data.List)

—-— test 1if list is equal to the empty list ([1])

null :: [a] —-> Bool
null [] = True
null _ = False

—— return head of the list

head :: [a] -> a

head [] = error "head: not defined on empty list"
head (x:_) = X

tail :: [a]l -> [a]

tail T[] = error "tail: not defined on empty list"
tail (_:xs) = xs

(:) :: a —-> [a] —> [a]

Functions on Lists (cont.)

—— return the last element of the list
last :: [a] —> a

—— return all elements of the list except the last one

init :: [a] -> [a]

(++) :: [a]l —> [a]l -> [a]

length :: [a] —-> Int

reverse :: [a] —-> [a]

('Y :: Int —> [a] -> a ——- zero-based

Exercise: Implement 3 of the functions listed above. E.g., last, init, ...

More Functions

| reverse :: [a] —> [a]

| map :: (a -> b) -> [a] —>
| intersperse :: a -> [a] -
| intercalate :: [a] —> [[
\

| take Int -> [a] —> [a]
| drop :: Int -> [a] —-> [a]
| splitAt Int —> [a] —>
| break ::

| (a —> Bool) -> ([a]l —> (I
| elem :: Eq a => a —> [a]

| concat :: [[a]]1-> [a]

Exercise: Implement 2 of the functions listed above.

al,
-> Bool

reverse [1,2,3]
map (+1) [1,2,3]
intersperse ’,’
intercalate ", "

"Haskell, C#, Ja
take 3 [1..] = [
drop 7 [1..10] =
splitAt 3 "FOO,B
break (=='",") "F
1 ‘elem’ [2,3,1]
concat [[1],[2,3

	Sheet 2
	Sheet 3

