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Abstract. Java+ITP is an experimental tool for the verification of
properties of a sequential imperative subset of the Java language. It
is based on an algebraic continuation passing style (CPS) semantics of
this fragment as an equational theory in Maude. It supports composi-
tional reasoning in a Hoare logic for this Java fragment that we propose
and prove correct with respect to the algebraic semantics. After being
decomposed, Hoare triples are translated into semantically equivalent
first-order verification conditions (VCs) which are then sent to Maude’s
Inductive Theorem Prover (ITP) to be discharged. The long-term goal
of this project is to use extensible and modular rewriting logic semantics
of programming languages, for which CPS axiomatizations are indeed
very useful, to develop similarly extensible and modular Hoare logics on
which generic program verification tools can be based.

1 Introduction

This work is part of a broader effort, namely, the rewriting logic semantics
project, to which a number of authors are contributing (see the recent surveys
[19, 18] and references there). The overall goal is to use rewriting logic semantic
definitions of programming languages, including concurrent ones, and languages
like Maude to generate efficient language implementations, including interpreters
and compilers, and also sophisticated program analysis tools for those languages,
including invariant checkers for infinite-state programs, model checkers, and the-
orem provers.

One of the appealing features of all these tools is their genericity : by exploit-
ing a common underlying semantics and maximizing the modularity of language
definitions it is often possible to generate program analysis tools for different
languages in a generic way, using a common infrastructure, yet with competitive
performance. In the case of interpreters, invariant checkers, and model checkers
this has been convincingly demonstrated for many languages, including large
subsets of Java and the JVM (see [19, 18] for a detailed discussion of different
such language case studies).
? This research has been supported by the ONR Grant N00014-02-1-0715.



For the case of theorem provers the situation is less advanced. One unresolved
and exciting research issue is finding generic and modular program logics in
the Hoare style [12], to mathematically justify such logics on the basis of their
rewriting logic semantics, and to develop generic theorem proving technology to
support reasoning with such program logics in different languages. We are not
there yet. In fact, we think that a sound way to approach this quite ambitious
goal is to gather empirical evidence through case studies to help us find the
outlines of such generic and modular program logics. This paper makes some
advances in this direction by focusing on a subset of sequential Java. Specifically
we:

1. Adapt the Maude-based continuation passing style (CPS) rewriting logic se-
mantics for a large fragment of Java given in [7] by adding to it extra features
making it suitable for theorem proving purposes. Although we focus for the
moment on a modest sequential fragment, there is ample evidence, both in
Java and in other languages (see the discussions in [19, 18]), supporting the
claim that CPS-based rewriting logic definitions are modular and extensi-
ble; therefore, we believe that our present work will naturally extend to more
ambitious language fragments in Java and in other languages.

2. Develop a Hoare logic for this fragment and mathematically justify the cor-
rectness of our Hoare rules based on the CPS semantics. Even for this modest
fragment this turns out to be nontrivial, because some of the standard Hoare
rules, including the rules for conditionals and for while loops, are in fact in-
valid and have to be properly generalized in order to be applicable to Java
programs.

3. Develop a mechanization of this Hoare logic supporting: (i) compositional
reasoning with the Hoare rules to decompose Hoare triples into simpler ones;
(ii) generation of first-order verification conditions (VCs); and (iii) discharg-
ing of such VCs by Maude’s inductive theorem prover (ITP) [4] using the
underlying CPS semantics. Java+ITP has been developed as an extension
of Maude’s ITP and is entirely written in Maude.

Although Java+ITP is primarily a research vehicle to help us advance the
longer-term goal of developing generic logics of programs and generic program
verifiers based on modular rewriting logic semantic definitions, we have also
found it quite useful as a teaching tool at the University of Illinois at Urbana-
Champaign to teach graduate students and seniors the essential ideas of algebraic
semantics and Hoare logic. It has been used quite extensively by students on a
graduate course on Program Verification (CS 476) and will also be used this
Winter on a Formal Methods graduate course (CS 477).

The conceptual basis of Java+ITP is exactly what one would expect of any
theorem proving tool based on a language’s rewriting logic semantics. As al-
ready mentioned, the CPS semantics of our Java fragment is axiomatized in
Maude. Since we focus for the moment on a sequential fragment, this defines
an equational theory JAVAX. Therefore, the language’s mathematical semantics
is precisely the initial algebra TJAVAX. We use this mathematical model TJAVAX to
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justify the semantics of our Hoare rules. Similarly, the first-order VCs associated
to Hoare triples are then inductive goals that are claimed to be satisfied by the
initial model TJAVAX, and that Maude’s ITP tries to discharge using the equational
theory JAVAX. Therefore, for this fragment we are within the well known alge-
braic semantics framework [10]; however, in future extensions including threads
and concurrency, the semantics will instead be given by a rewrite theory, and the
inductive reasoning will be based on the initial model of such a rewrite theory.

There is a substantial body of related work on Java logics, semantics and the-
orem proving tools, such as, for example, [16, 14, 13, 15, 9, 20, 17, 2, 3]. We discuss
this related work in Section 6; we also discuss there work closer to ours such as
the Maude ITP [4], on which our tool is based, the ASIP-ITP tool [6, 22], and of
course the JavaFAN project [7, 8], to which this work contributes at the theorem
proving level. The rest of the paper is organized as follows. The CPS semantics
of our Java fragment is summarized in Section 2. The first-order semantics of
Hoare triples based on the initial algebra semantics of the language is explained
in Section 3. Our Hoare logic and its justification are treated in Section 4. The
mechanization of such a logic in the Java+ITP tool, and its use in examples
are discussed in Section 5. Section 6 treats related work and conclusions. Three
appendices contain a mathematical proof of correctness for the loop rule, and
two proof scripts for Java programs.

2 Algebraic Semantics of a Sequential Java Subset

We present some of the highlights of the semantics of our chosen Java subset.
We do not show the whole syntax, state infrastructure and actual semantics be-
cause of space limitations. However, the whole definition is available on the web
at [23]. The Java fragment we are interested in includes arithmetic expressions,
assignments, sequential composition and loops. Our semantics uses a contin-
uation passing style (CPS) approach. This has the advantage of making our
semantic definitions easily extensible to accommodate additional Java features
in the future. For example, exceptions, objects, multi-threading and all other
Java features can be expressed using a CPS style as shown by the prototype
version in [7]. Our specification is similar in style to the prototype interpreter
for a much bigger Java subset in [7], but has some differences/optimizations that
take advantage of the sequential nature of our chosen subset. We illustrate our
semantics by making explicit its state infrastructure and showing the syntax and
semantics for a few selected features .

2.1 The State Infrastructure for Java

To be able to describe the semantics of Java we must specify how the execu-
tion of programs affects the state infrastructure, which contains the values for
the program variables and other state information. The state infrastructure is
defined by the following modules, where we separately specify the locations,
environments, values, stores and continuations that make up the state.

3



A program variable will not be directly mapped to its value but to a location
in the store. This leads to a two-level mapping, of variables to locations and of
locations to values. The LOCATION module defines what a location is, an example
location is l(17). It also shows how to concatenate multiple locations together,
as we generally work on lists of expressions, etc.

fmod LOCATION is

protecting INT .

sorts Location LocationList .

subsort Location < LocationList .

op noLoc : -> LocationList .

op _,_ : LocationList LocationList -> LocationList [assoc id: noLoc] .

op l : Nat -> Location .

endfm

The ENVIRONMENT module defines an environment as a finite map from names
to locations and also gives equations which define how it can be updated. It
imports the NAME module that defines names, lists of names and equality on
names.

fmod ENVIRONMENT is protecting LOCATION .

protecting NAME .

sort Env .

op noEnv : -> Env .

op [_,_] : Name Location -> Env .

op __ : Env Env -> Env [assoc comm id: noEnv] .

vars X Y : Name . vars Env : Env . vars L L’ : Location .

var Xl : NameList . var Ll : LocationList .

op _[_<-_] : Env NameList LocationList -> Env .

op _[_<-_] : Env Name Location -> Env .

eq Env[() <- noLoc] = Env .

eq Env[X,Y,Xl <- L,L’,Ll] = (Env [X <- L]) [Y,Xl <- L’,Ll] .

eq ([X,L] Env)[X <- L’] = ([X,L’] Env) .

ceq ([Y, L] Env)[X <- L’] = [Y, L] (Env [X <- L’])

if equalName(Y, X) = false .

eq noEnv [X <- L’] = [X,L’] .

endfm

For example, the environment

([’X, l(1)] [’Y, l(2)]) [’X,’Y,’Z <- l(3),l(4),l(5)]

evaluates to [’X,l(3)] [’Y,l(4)] [’Z,l(5)].
Values and stores are defined in the VALUE and STORE modules below. No

equations are given for the store (unlike for the environment). This is due to
our wish to stay extensible, which suggests that changes to the store should
not be done here, but should instead be done in conjunction with, at least in a
multi-threaded case, the currently working thread.
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fmod VALUE is

sorts Value ValueList .

subsort Value < ValueList .

op noVal : -> ValueList .

op _,_ : ValueList ValueList -> ValueList [assoc id: noVal] .

op [_] : ValueList -> Value .

endfm

fmod STORE is protecting LOCATION .

extending VALUE .

sort Store .

op noStore : -> Store .

op [_,_] : Location Value -> Store .

op __ : Store Store -> Store [assoc comm id: noStore] .

endfm

Environments and stores are defined in a very concrete way for this language.
Using a more abstract environment/store concept would have its advantages
from the point of view of program verification, as shown in [6, 22] for a very
simple language. But a more abstract concept of environment/stores does not
work nicely with the side effects and hiding that are possible in our language,
for which the concrete variant we have chosen is preferable. Furthermore, this
will make it easier to extend this subset of Java to a more complete version of
Java in the future. In contrast, a more abstract definition of state would not
allow more complex information, like exception, loop, or lock information, to be
explicitly stored.

Within continuations, which we define next, all the execution context is
stored. This can be viewed as “the rest of the program” which needs to be
executed. The two operators shown here are two different ending points of an
execution. Within the semantics we will define other operators with co-domain
Continuation as needed. For example every expression of sort Exp can be put
on the top (i.e. at the front) of a continuation.

fmod CONTINUATION is

sort Continuation .

op stop : -> Continuation .

op res : -> Continuation .

endfm

The state is made up of state attributes, which are the environment, store,
output and a counter for the next free memory location, each wrapped by some
operator. Its structure is that of a set of such attributes obtained by the usual
associative-commutative multiset union operator.

fmod STATE is extending ENVIRONMENT . extending STORE .

extending CONTINUATION .

sorts StateAttribute MyState .

subsort StateAttribute < MyState .

op empty : -> MyState .
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op _,_ : MyState MyState -> MyState [assoc comm id: empty] .

op e : Env -> StateAttribute .

op n : Nat -> StateAttribute .

op m : Store -> StateAttribute .

op out : Output -> StateAttribute .

sort SuperState .

sort WrappedState .

subsort WrappedState < SuperState .

op noState : -> WrappedState .

op state : MyState -> WrappedState .

op k : Continuation -> SuperState .

op _,_ : WrappedState WrappedState

-> WrappedState [assoc comm id: noState] .

op _,_ : SuperState SuperState

-> SuperState [assoc comm id: noState] .

endfm

The second set of sort declarations (and the operators for that) are needed
because we do not want the context, i.e., the Continuation, to be part of the
state, but only to be composable with it. So, instead of having e(..), m(..),
n(..), k(..) we now have state(e(..), m(..), n(..)), k(..).

Thanks to this structure we can check for termination of a program by simply
checking the sort of the state. If it is of sort SuperState, there is still some
continuation, and therefore code, left and the program has not yet terminated.
If instead the resulting state is a WrappedState, we know that all code has been
executed. The definition of what happens to an empty continuation needs to
support this and does so.

2.2 Syntax and Semantics of Some Features

The Java fragment we are interested in includes arithmetic expressions, assign-
ments, sequential composition and loops. Let us now take a look at the syntax
and semantics of some features of our Java subset. We first discuss addition,
then conditionals and finally loops.

Addition. The syntax of addition is defined making use of the definition of
generic expressions, which mainly just introduces the different possible forms of
expressions.

fmod ARITH-EXP-SYNTAX is ex GENERIC-EXP-SYNTAX .

op _+_ : Exp Exp -> Exp [prec 40 gather(E e)] .

...

The operator + -> defined in ARITH-EXP-SEMANTICS allows us to evaluate an
addition expression placed on top of a continuation. The first equation changes
the evaluation of E + E’ into first evaluating (E, E’), and then evaluating ->
+. The second equation evaluates -> + by adding the two integers obtained by
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evaluating the expressions and placing the result on the top of the continuation
stack.

fmod ARITH-EXP-SEMANTICS is protecting ARITH-EXP-SYNTAX .

extending GENERIC-EXP-SEMANTICS .

op + -> _ : Continuation -> Continuation .

vars E E’ : Exp . var K : Continuation . vars I I’ : Int .

eq k((E + E’) -> K) = k((E,E’) -> + -> K) .

eq k((int(I), int(I’)) -> + -> K) = k(int(I + I’) -> K) .

...

If-Then-Else. In Java, the If-Then-Else construct does not actually contain a
then but has instead the syntax specified in IF-SYNTAX, that imports Statement,
a construct different from expressions since it does not create a return value. By
the specified parsing precedences the dangling else problem is solved as in the
Java Language Specification [11], that is, the else part belongs to the innermost
if. We consider the If-Then as syntactic sugar and therefore give one equation
in IF-SYNTAX which translates it into our If-Then-Else, meaning that we do not
need to bother with it in the semantics at all. Also, one equation is enough for
this desugaring.

fmod IF-SYNTAX is ex STATEMENT-SYNTAX .

ex GENERIC-EXP-SYNTAX .

op if__else_ : Exp Statement Statement -> Statement [prec 110] .

op if__ : Exp Statement -> Statement [prec 115] .

var E : Exp . var St : Statement .

eq if E St = if E St else ; .

endfm

The evaluation of a conditional statement is split up into first evaluating the
condition, while freezing the two code parts in the continuation, and then, once
the condition is evaluated to either true or false, choosing the correct path.
Note that we need to import boolean expressions here.

fmod IF-SEMANTICS is ex IF-SYNTAX . ex GENERIC-EXP-SEMANTICS .

ex STATEMENT-SEMANTICS . ex BEXP-SEMANTICS .

op ? (_,_) -> _ : Statement Statement Continuation -> Continuation .

var E : Exp . vars St St’ : Statement . var K : Continuation .

eq k((if E St else St’) -> K) = k(E -> ? (St, St’) -> K) .

eq k(bool(true) -> ? (St, St’) -> K) = k(St -> K) .

eq k(bool(false) -> ? (St, St’) -> K) = k(St’ -> K) .

endfm

While loops. The syntax for while loops is straightforward. Note that the second
argument of a while is a statement, but one can always wrap the sequential
composition of several statements into a single block by using curly braces,
e.g. {S1 S2}, with S1 and S2 statements. A block counts as a single statement
again.
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fmod WHILE-SYNTAX is ex STATEMENT-SYNTAX .

ex GENERIC-EXP-SYNTAX .

op while__ : Exp Statement -> Statement [prec 110] .

endfm

Defining the semantics of loops is now very easy by using the semantics of
the conditional and unrolling the loop one step at a time:

fmod WHILE-SEMANTICS is ex WHILE-SYNTAX . ex GENERIC-EXP-SEMANTICS .

ex STATEMENT-SEMANTICS . ex IF-SEMANTICS .

var E : Exp . var St : Statement . var K : Continuation .

eq k((while E St) -> K) = k(E -> ?({St while E St}, ;) -> K) .

endfm

2.3 An Interpreter for our Java Subset

The complete functional definition gives a precise mathematic axiomatization, in
fact an initial algebra semantics of our chosen subset of Java that is sufficient for
reasoning and program verification purposes. But since the semantic equations
are ground confluent, the above semantic equations also give an operational
semantics to this Java subset.

Indeed, we can describe the execution of the language by algebraic simplifi-
cation with the equations from left to right. Therefore, our language definition
has in essence given us an interpreter for our language. Note that in a few mi-
nor points we do not adhere to the strict syntax of Java because of some of
the built-in types of Maude. For example, program variables are modeled with
Maude quoted identifiers and therefore always have a quote (’) in front, and inte-
gers are wrapped with the operator #i() to avoid operations in Maude’s built-in
INT module to interfere with arithmetic operations in Java. With initial we
create an initial empty state. By adding ‘| CODE’ to any state, where ‘CODE’ is
some code fragment, of sort BlockStatements, we can compute the state result-
ing from executing that code fragment in the given state. Also, with STATE[VAR]
the value of the variable VAR in a state STATE is returned. The equation accom-
plishing this is:

op _[_] : WrappedState Name -> Value .

var MYS: MyState . var X : Name . var L : Location . var Env : Env .

var V : Value . var M : Store .

eq state((MYS, e([X,L] Env), m([L,V] M)))[X] = V .

Some examples are:

red (initial | (int ’x = #i(1) ; int ’y = #i(20) ;

{’x = #i(300) ; } ’x = ’x + ’y ;))[’x] .

red (initial | (int ’x = #i(1) ; int ’y = #i(20) ;

{int ’x = #i(300) ; } ’x = ’x + ’y ;))[’x] .

which return
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rewrites: 86 in 10ms cpu (10ms real) (8600 rewrites/second)

result Value: int(320)

respectively, because of shadowing of the assignment to ’x in the block,

rewrites: 86 in 0ms cpu (0ms real) (~ rewrites/second)

result Value: int(21)

This is interesting because it shows how the dangling else problem is solved
correctly in this particular implementation.

red (initial | (int ’x = #i(0) ; if #b(false)

if #b(true) ’x = #i(1) ;

else ’x = #i(2) ;))[’x] .

According to the Java Language Specification [11], an else block belongs to
the innermost if part, unless parentheses show otherwise. The result in this case
is:

rewrites: 18 in 0ms cpu (0ms real) (~ rewrites/second)

result Value: int(0)

it would have been int(2) if the else was attributed (wrongly) to the outer if.
A simple swap example, where swap is just a short-hand notation for the

program defined by the equation swap = (int ’T = ’X ; ’X = ’Y ; ’Y = ’T
;), indeed swaps the values of ’X and ’Y, the results are 5, respectively 7, as
expected.

red (initial | (int ’X = #i(7) ; int ’Y = #i(5) ;

swap))[’X] .

red (initial | (int ’X = #i(7) ; int ’Y = #i(5) ;

swap))[’Y] .

A small factorial program

red (initial | (int ’n = #i(5) ; int ’c = #i(0) ; int ’x = #i(1) ;

while (’c < ’n) { ’c = ’c + #i(1) ;

’x = ’x * ’c ; })) [’x] .

computes the factorial of 5 and thus returns:

rewrites: 416 in 0ms cpu (0ms real) (~ rewrites/second)

result Value: int(120)
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3 Hoare Triples

3.1 Pre and Post Conditions

Recall the swap program we have just shown in Sect. 2.3. A correctness spec-
ification for that example program, when done in an equational setting, could
look like this:

(ctxState((int ’X ; ’int ’Y ;)) | (swap))[’X] = (ctxState((int ’X ; ’int ’Y ;)))[’Y]

(ctxState((int ’X ; ’int ’Y ;)) | (swap))[’Y] = (ctxState((int ’X ; ’int ’Y ;)))[’X]

We are able to verify this, using only the equations of our semantics and
Maude’s built-in equational simplification.

Now with S taking the place of ctxState((int ’X ; int ’Y ;)), and being
aware that that represents all possible states in which this program can be run,
the correctness specification can also be written like this:

(∀I : Int)(∀J : Int)(S)[’Y] = int(I) ∧ (S)[’X] = int(J)

⇒ (S | (swap))[’X] = int(I) ∧ (S | (swap))[’Y] = int(J)

Here we have the implicit precondition that we are starting in a state where
’X and ’Y are declared as described above. We shall call the equation

(S)[’Y] = int(I) ∧ (S)[’X] = int(J)

which is assumed to hold before the execution of the program, the precondition.
Note that this equation has a single occurrence of the state variable S in each

equation, and can be thought of as a state predicate, having the integer variables
I and J as parameters. Consider in the above specification the equation

(S | (swap))[’X] = int(I) ∧ (S | (swap))[’Y] = int(J)

which is supposed to hold after the execution of a program. This can also be
viewed as a state predicate, namely the state predicate

(†) (S)[’X] = int(I) ∧ (S)[’Y] = int(J)

applied not to S, but instead to the state S | (swap) after the execution. We
call (†) the postcondition. Note that it also has the integer variables I and J as
extra parameters.
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State Predicates. This example suggests a general notion of state predicate, in-
tuitively a property that holds or does not hold of a state, perhaps relative to
some extra data parameters. Since in our Java subset the only data are integers,
such parameters must be integer variables.

Therefore, for our language we can define a state predicate as a conjunction
of equations

t1 = t′1 ∧ . . . ∧ tn = t′n

in the module JAVAX, such that the set V of variables in all terms in the equations
has at most one variable S of sort State, which may possibly appear more than
once, and the remaining variables are all of sort Int.

One can of course generalize things further, by allowing an arbitrary first-
order formula (with the same condition on its variables V ) instead of just a
conjunction of equations. Also, the notion extends naturally to other sequential
languages which may have other data structures besides integers. However, in
practice the above notion is quite general; among other things because, using
an equationally defined equality predicate, we can express arbitrary Boolean
combinations of equations (and therefore any quantifier-free formula) as a single
equation.

3.2 Hoare Triples

The above example of our specification for swap is paradigmatic of a general
way of specifying properties of a sequential imperative program p by means of a
Hoare triple (after C.A.R. Hoare, see [12]),

{A} p {B}

where A and B are state predicates, called, respectively, the precondition, and
postcondition of the triple.

In this notation, the specification of swap becomes rephrased as,

{(S)[’Y]= int(I)∧(S)[’X]= int(J)} swap {(S)[’X]= int(I)∧(S)[’Y]= int(J)}

Given our algebraic approach to the semantics of imperative programs, this
is all just an (indeed very useful) façon de parler about an ordinary first-order
property satisfied by the initial model of our language, namely the initial algebra
TJAVAX. The module JAVAX is the module defining the semantics of our Java
subset. It imports all other modules, defining the syntax, state infrastructure,
and semantics.

Therefore, we define the partial correctness of a program p with respect to a
Hoare triple by the equivalence,

TJAVAX |= {A} p {B} ⇔

TJAVAX |= (∀V ) A ∧ ((S | p) : WrappedState) ⇒ (B(S/S | p)).
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Here the : means sort membership, which in turn means that program p
terminates when started in state S. Note that in the partial correctness inter-
pretation the termination condition is on the lefthand side of the implication.

Our swap example thus becomes

TJAVAX |= (∀I : Int)(∀J : Int)(∀S : State)(S)[’Y] = int(I) ∧ (S)[’X] = int(J)

∧ (S | swap) : WrappedState

⇒ (S | (swap))[’X] = int(I) ∧ (S | (swap))[’Y] = int(J).

which is just our original correctness condition with the addition of the termina-
tion condition by the sort requirement. Of course, since swap was a terminating
program, this was superfluous in that case, but it is not superfluous when loops
are involved.

4 A Hoare Logic for our Java Subset and its Justification

An important contribution of Hoare was to propose his triples as a compositional
logic of programs, by giving a collection of inference rules based on the structure
of the program text to decompose the proof of correctness of more complex
programs into proofs for simpler subprograms.

Hoare logic, however, is language-dependent: a Hoare rule valid for a con-
struct in a given language may be invalid in another. For example, the classical
Hoare rules for conditionals and for loops are both invalid even in our simple
Java fragment and have to be suitably modified. It becomes therefore important
to: (i) choose Hoare rules that adequately capture a given feature in a specific
language and (ii) to mathematically justify the correctness of such a rule. For
this second purpose, having a precise mathematical semantics of the language
in question is an essential prerequisite. We therefore introduce a Hoare logic for
our Java subset and justify the correctness of its rules based on our JAVAX formal
semantics.

For example, to prove the correctness of a sequential composition p q he gave
the rule,

{A} p {B} {B} q {C}
{A} p q {C}

which can be easily justified for our Java subset by analyzing both the semantic
equations and the semantics of the triples.

Another rule of easy justification in our Java semantics is the rule for the
skip program ‘;’, which takes the form,

{A} ; {A}
.

For conditionals we need to work a little harder, because the classical Hoare
rule for conditional is invalid. The key difficulty is that evaluating a conditional’s
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boolean expression may side effect the state. Here, evalTst(S, TE) gives the
boolean which the evaluation of the test expression TE in state S returns. Using
the operator ‘|’ we can separate the “execution” of a test expression from the
rest of the program. So we have now overloaded |’s meaning to both combine
a state and a program fragment and also to combine a state and an expression,
but because of the different typings involved no ambiguity arises and this is not a
problem. Furthermore, since in the Hoare triples we sometimes need to consider
the execution of an expression for side effect purposes only in conjunction with
the execution of a statement, our Hoare triples allow not only statements, but
also expressions. Any “sequential composition” of them using the | symbol in
an “ad-hoc” overloaded way is allowed. Note that such “compositions”, though
meaningful in terms of their effects on state, do not correspond to legal Java
programs; however, they are needed in the Hoare rules. Of course, both uses of
| are closely related, since, for example, given a state s, an expression e, and a
statement p we semantically interpret the effect of e | p on s by the equation

s | (e | p) = (s | e) | p.

It is not possible to use the usual Java program concatenation here, because
the test expression is not of the same sort as the other statements. But using
the | operator it can be evaluated first, so that its side effects change the state,
and then the result gets thrown away and the execution continues as usual. This
is our way to allow the expression to be used as if it were a statement, just for
its side effects.

The function evalTst evaluates a test expression in a given state to a boolean
value. As it is a bit cumbersome to write this out multiple times in some of the
rules, we overload our notation a little and use a test t in two different ways in
the following. In the property part of a Hoare triple, t will stand for the equality
evalTst(S, t) = true, with S the variable for the distinguished state for which
that property has to hold, and similarly, ¬t will stand for evalTst(S, t) =
false. That use of t (respectively its negation) only gives us the boolean value
and does not change the state. Whenever the state S is not obvious, we will fall
back on the evalTst notation. The other way we use t in is in the code part
as usual (within if or while constructs) or just for its possible state change
as described above. The different uses of t are illustrated in our Hoare rule for
conditionals,

{A ∧ t} t | p {B} {A ∧ ¬t} t | q {B}
{A} if t p else q {B}

This captures the usual semantics of if, just as in the simpler languages,
but in contrast here, since t can have side effects, we have ‘t |’ in front of the
execution of the two branches of the conditional in the respective cases. It is not
enough to know that t evaluates to either true or false, which is what the two
properties assure, but t needs to be also executed for its possible side effects.
This Hoare rule still simplifies things, since we now do not have to take a decision
based on the test value anymore, but we just have to have the test expression
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executed. One could also give a sequential composition rule for ‘|’ additionally.
The extra effort here is necessary because of side effects!

Another very useful rule, of easy justification based on the semantics of Hoare
Triples, is the consequence rule,

A ⇒ A1 {A1} p {B1} B1 ⇒ B

{A} p {B}
The most important rule in our language subset is the proof rule for the

partial correctness of while loops. Here we face the same problem as with condi-
tionals, because the loop condition can also have side effects. It takes the form,

{A ∧ t} t | p {A} {A ∧ ¬t} t {A ∧ ¬t}
{A} while t p {A ∧ ¬t}

This rule requires a somewhat more involved justification, which is done in
the proof in Appendix A. The state predicate A is called an invariant of the
loop. This rule needs the additional Hoare triple for the test:

(\) {A ∧ ¬t} t {A ∧ ¬t}

because of the way side effects can propagate with the loop unrolling. A loop
works like this:

while t p → t | p | while t p → ... →

t | p | ... | t | p | while t p → t | p | ... | t | p | t

In the final state that is thus attained, the test t does not necessarily evaluate
to false. In the state before the final state it did indeed evaluate to false, but
its side effect could cause its next evaluation to be true again. To prevent this,
the Hoare triple (\) has to be added to the proof obligation of the loop rule.

An example Java program where this problem appears is the following:

int ’i = #i(0) ; while ( ! ( (’i = ’i + #i(1) ) == #i(1))) ...

Here in the condition check ’i is increased to 1, so the equality holds and
therefore the negation is false and the loop is never entered. But if the condition
were evaluated in this final state, ’i would get the value 2, the equality would
not hold and therefore the negation would hold. So here the condition is not
false in the final state.

A Factorial Example. Consider the factorial program in Section 2.3. To prove its
correctness, intuitively that it correctly computes the factorial function, we first
need to define mathematically such a function, by defining an operator facValue
and its defining equations,

op facValue : Int -> Int .

var I : Int .

ceq facValue(I) = 1 if 0 < I = false .

ceq facValue(I) = I * facValue(I - 1) if 0 < I = true .
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To avoid complications with non-termination we have defined the factorial
of a negative number to be 1.

We are only interested in the meaningful results of the factorial function.
Therefore, we should give the requirement that the input variable ’N is nonneg-
ative as a precondition, yielding the specification,

{(S[’N] = int(I)) ∧ (0 <= I = true)} facx {S[’X] = int(facValue(I))}.

The above specification takes the point of view of a customer who speci-
fies properties of the desired program. An implementer may then give to the
customer the following facx program:

’C = #i(0) ; ’X = #i(1) ;

while (’C < ’N) { ’C = ’C + #i(1) ; ’X = ’X * ’C ; }

The question, then, is how to prove this program correct. To do so we can:

– use the Hoare logic rules, which we have justified, and
– use inductive reasoning, since the correctness of Hoare triples reduces to

satisfaction of first-order formulas in the initial model TJAVAX.

A proof script of this program in our Java+ITP Tool is given in Appendix B.

5 The Java+ITP Tool

The latest version (extended by us with support for this Java subset) of the ITP
is downloadable from [23] together with the semantics of the Java fragment.
It has an extension of the list of commands of the ITP specifically designed to
support Hoare logic reasoning in our programming language. How the Java+ITP
tool works in detail and is interfaced with Maude’s ITP is also explained on the
above-mentioned web-page.

5.1 Proving Hoare Triples in the ITP with the javax Command

In Java+ITP the javax command translates a Hoare triple into its semantically
equivalent inductive theorem proving goal. For example, a goal consisting of the
Hoare triple

{P} C {Q}

is translated into the (universally quantified) ITP goal

P ⇒ Q(S/(S| C))

where S is the distinguished variable of sort WrappedState.
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5.2 Proving While Loops with javax-inv

The javax command allows a user to enter a Hoare triple goal into the ITP
to prove the correctness of the program mentioned in the triple. However, the
compositional approach favored by Hoare logic suggests that we should first
decompose the original Hoare triple into simpler ones by using the Hoare logic
inference system. For this reason, the Java+ITP tool not only does automate
the entering of Hoare triples into the ITP. It also automates the application of
some Hoare rules. For while loop programs, this is accomplished by means of
the javax-inv command. We consider while loop programs of the general form
wlp = init loop, with loop = while t p. That is, we allow the subprogram
init to be executed before the while loop proper, since this is a very common
situation.

The javax-inv command allows the specification of the following informa-
tion about a while loop program wlp of the form just described:

– the precondition P and postcondition Q against which one wants to prove
wlp correct.

– the invariant A that should be used to decompose the original Hoare triple
into simpler ones using the Hoare rules.

The javax-inv command then does the following things:

– it applies the composition rule to:

{P} init {A} {A} loop {Q}
{P} init loop {Q}

– it then applies the consequence rule to further decompose the second subgoal

A ⇒ A {A} loop {A ∧ ¬t} (A ∧ ¬t) ⇒ Q

{A} loop {Q}

– it finally applies the loop rule:

{A ∧ t} t | p {A} {A ∧ ¬t} t {A ∧ ¬t}
{A} while t p {A ∧ ¬t}

As a consequence, the following four subgoals are generated:

1. {P} init {A}
2. {A ∧ t} t | p {A}
3. (A ∧ ¬t) ⇒ Q
4. {A ∧ ¬t} t {A ∧ ¬t}.

The implementation of the javax-inv command in the ITP then implicitly
applies the javax command to the Hoare triples (1), (2) and (4), so that we end
up with the following four ITP goals:

1. P ⇒ A(S/S|init)
2. (A ∧ t) ⇒ A(S/S|t|p)
3. (A ∧ ¬t) ⇒ Q
4. (A ∧ ¬t) ⇒ A(S/S|t) ∧ (evalTst(S/S|t, t) = false)
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5.3 Supporting Compositionality

From a user’s perspective, the commands javax and javax-inv directly cre-
ate the first order goals for their corresponding Hoare triples. However, by the
way these commands are structured they do not allow application to more com-
plex programs such as, for example, a program of the form init1 loop1 init2
loop2. But obviously, by applying the composition rule, with a suitable middle
condition, a program like this could be split up into two parts, so that each could
be treated by the commands that we have already discussed.

To allow this kind of compositional reasoning, Java+ITP provides several
commands. First of all, to enter a Hoare triple into the tool without translat-
ing it into its corresponding first-order goal the add-hoare-triple command
can be used. Furthermore, Java+ITP also offers a decompose command, which
decomposes a Hoare triple and its code into two Hoare triples with a suitable
middle condition (provided by the user). That is, given {A} P {B} with A and
B state predicates and P a program we can decompose this into the two Hoare
triples {A} P1 {C} and {C} P2 {B} with C a state predicate and P1 and P2 two
programs, all three provided by the user giving the decompose command, where
the two programs need to make up P, i.e. P = P1 P2.

After having decomposed in this way the original Hoare triple for a pro-
gram into several simpler Hoare triples, Java+ITP then supports translating
such simpler triples into first-order goals. This is accomplished with the com-
mands create-FO-goal-hoare, and create-FO-goal-hoare-inv, which are the
respective analogues of the javax and javax-inv commands.

This support for compositionality allows us to tackle more complicated pro-
grams, for example programs involving multiple loops. Using the above com-
mands we can create a number of Hoare triple goals from just one starting goal
and then can generate the respective first order goals for all of them and dis-
charge them with the ITP.

5.4 An Example: A Binomial Coefficient Program

We show the usefulness of introducing Hoare triples, decomposing them and
then proving the separate subgoals with an example of the binomial coefficient
function

(
n
k

)
. The details of this decomposition and proof can be found in Ap-

pendix C. The main facts are the program:

op choose-program : -> BlockStatements .

eq choose-program = (

int ’N ; int ’Nfac ; int ’K ; int ’Kfac ;

int ’N-Kfac ; int ’BC ; int ’I ;

’I = #i(0) ; ’Nfac = #i(1) ;

while (’I < ’N) {

’I = ’I + #i(1) ;

’Nfac = ’Nfac * ’I ;

}
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’I = #i(0) ; ’Kfac = #i(1) ;

while (’I < ’K) {

’I = ’I + #i(1) ;

’Kfac = ’Kfac * ’I ;

}

’I = #i(0) ; ’N-Kfac = #i(1) ;

while (’I < (’N - ’K)) {

’I = ’I + #i(1) ;

’N-Kfac = ’N-Kfac * ’I ;

}

’BC = ’Nfac / (’Kfac * ’N-Kfac) ;

) .

and the property to be verified:

{int-val(S:WrappedState[’N])= (N:Int) ∧ int-val(S:WrappedState[’K])= K:Int

∧ 0 <= N:Int = true ∧ 0 <= K:Int = true ∧ 0 <= N:Int - K:Int = true}

choose-program

{int-val(S:WrappedState[’Nfac]) = (N:Int)! ∧ int-val(S:WrappedState[’Kfac]) = (K:Int)!

∧int-val(S:WrappedState[’N-Kfac]) = (N:Int - K:Int)!

∧int-val(S:WrappedState[’BC]) = choose(N:Int, K:Int)}

The basic idea is then to give suitable middle conditions to split the Hoare
triples apart. The empty lines of the program indicate the split positions within
the program.

6 Related Work and Conclusions

We first discuss related work using rewriting logic and the Maude system [5].
The CPS style has been found to be quite expressive and extensible in sev-
eral experiments in the rewriting semantics project [19, 18]; it has in particular
been used for Java in the JavaFAN project [7, 8]. We have adopted this seman-
tics in Java+ITP for extensibility reasons; but, as discussed in Section 2, we
structured the state and added extra functionality to suit theorem proving uses.
Java+ITP is an extension of Maude’s ITP [4]. A project similar to ours, namely
the ASIP+ITP tool [6, 22], has been carried out by M. Clavel and J. Santa-Cruz
at UCM in Madrid. While benefitting from their experience, we had to address
and solve new research issues. ASIP+ITP is based on a considerably simpler pro-
gramming language used by Goguen and Malcolm [10]; one whose expressions
do not have any side effects, whose variables can be directly mapped to values
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in memory, and where the whole semantics cannot be extended to accommo-
date new features. We are primarily interested in modularity and extensibility
of programming languages and Hoare logics, and view Java+ITP as a research
vehicle to advance those goals. Another difference is Java+ITP’s support for
compositional reasoning: in ASIP+ITP VCs for Hoare triples, including those
for loops, can be generated, but triples cannot be decomposed into simpler ones.
Still partially in this framework, W. Ahrendt, A. Roth and the first author report
in [2] on a cross-validation of a Java semantics given in the rewriting semantics
framework against the Java program transformation rules of the KeY prover [1].

Commenting more broadly on Java verification work, the Java Modeling Lan-
guage, JML [3], is a good way to specify the relevant properties of programs.
We have not yet made use of JML in this work, but extending Java+ITP in
this direction seems worthwhile. In [15], B. Jacobs, C. Marché and N. Rauch
give an overview of the capabilities of different tools by comparing how they can
deal with a real-world example program. They look at ESC/Java [9], Jive [20],
Krakatoa [17] and the LOOP project [16]. ESC/Java [9] is only a checker which
is neither sound nor complete. Jive [20] is based on Hoare logic, but it has no
side effects, at least not in the expressions which are used to take decisions, like
the if and while test expressions. Therefore the resulting Hoare logic is much
simpler. Krakatoa [17] uses a modeling of the Java heap and it makes use of
several sub-tools which create the proof obligations for it. They work with Java
but do not have a Hoare logic approach.

In the LOOP project [16], a denotational semantics of Java is formalized as
a PVS theory. Java programs are compiled into semantical objects, and proofs
are performed in the PVS theory directly. On top of that, a Hoare-style and a
weakest precondition (wp) style calculus are formalized as a PVS theory, and are
verified against the semantics within PVS. As opposed to ‘usual’ Hoare-style or
wp calculi, these ones work on the semantical objects, not on the Java syntax. In
his weakest-precondition reasoning work [14], B. Jacobs also works only on the
semantical object level. Similarly, M. Huismann, in her thesis [13], also works
on this semantic translation of the source code into the type theory (of PVS
or Isabelle). The Hoare logic is given on that level only, not on the Java source
code, which is the difference to our work.

In conclusion, we view Java+ITP as a research vehicle to investigate mod-
ularity and extensibility of programming languages and of Hoare logics. It has
served us well for this purpose, by uncovering subtleties in the Hoare logic needed
for Java not present in toy languages, and not even present in the Hoare logics
of Java tools like Jive. Keeping the compositional Hoare logic reasoning at the
source code level is also one of the goals that, in contrast to other approaches,
we have advanced. But of course this is just a snapshot of work in progress. Our
Java fragment is still quite modest, so we should soon add new features to it
such as exceptions and objects; we expect this to be easy thanks to the CPS
semantics. After this, threads and concurrency should also be added, and Hoare
rules for these new features should also be investigated. Our goal is of course
modularity, so that our Hoare rules will be applicable not just to Java, but to

19



any other languages using some of the same features in a modular way, but this
still remains an exciting goal for the future.
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A Justification of the Loop Rule

We have justified other rules in Hoare logic, but we still need a justification for
the soundness of the loop rule,

{A ∧ t} t | p {A} {A ∧ ¬t} t {A ∧ ¬t}
{A} while t p {A ∧ ¬t}

We will approach the justification of the loop rule in a slightly roundabout
way, by means of some observations and auxiliary lemmas that will place us in
a good position to prove its soundness.

First Observation: All terms of sort WrappedState have a canonical form
by the equations.

Second Observation: Using the assumption that the semantic rules of
JAVAX are ground confluent, for any ground terms s of sort WrappedState and
p of sort BlockStatements we have,

E ` (∀∅) s | p : WrappedState ⇔ (∃!s′ ∈ TJAVAX,WrappedState) s | p
∗−→E s′,

where E are the equations of JAVAX.
Lemma: For any ground terms s0 of sort WrappedState, t of sort Exp (and

assuming it will evaluate to a boolean value, i.e. it is a test), and p of sort
BlockStatements, if we have,

E ` (∀∅) s0 | while t p : WrappedState

then any rewriting sequence, s0|while t p
∗−→E s′ with s′ ∈ TJAVAX,WrappedState

must be of the form,

s0 | while t p
+−→E s1 , k(while t p -> stop)

+−→E . . .

+−→E sn , k(while t p -> stop)
+−→E s′

with n ≥ 0, with si of sort WrappedState, 0 ≤ i ≤ n, with sn| t
+−→E s′

and E ` (∀∅) evalTst(sn, t) = false. In general we cannot guarantee that
E ` (∀∅) evalTst(s′, t) = false holds, but in the case we look at later, it will
hold, as detailed there. Also, for 0 ≤ i < n,

– si , k(t -> p -> stop)
∗−→E si+1

– E ` (∀∅) evalTst(si, t) = true.

Proof: By induction on the number n of different occurrences of expressions
of the form si , k(while t p -> stop), with si of sort WrappedState, 0 ≤ i ≤ n,
that appear in the sequence s0 | while t p

∗−→E s′. q.e.d.
Notation: given a program p, we use the notation pn, working also for

programs composed of an Exp t and BlockStatements p′, p = t|p′, to mean:

– p0 = ;
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– pn+1 = p|pn

We use composition with | instead of composition with because the
internal types in p need not match, i.e. (t|p′)2 = (t|p′|t|p′) and not (t|p′ t|p′)
where p′ t would be illegal.

Corollary: For any ground terms s0 of sort WrappedState, t of sort Exp,
and p of sort BlockStatements, if we have,

E ` (∀∅) s0 | while t p : WrappedState

then there is an n ≥ 0 such that:

– E ` (∀∅) s0 | while t p = s0 | (t|p)n|t
– E ` (∀∅) evalTst(s0 | (t|p)i, t) = true, 0 ≤ i < n
– E ` (∀∅) evalTst(s0 | (t|p)n, t) = false.

Theorem: The loop rule is sound.
Proof: We have to prove that the assumption

{A ∧ t} t | p {A} {A ∧ ¬t} t {A ∧ ¬t}

implies

(†) {A} while t p {A ∧ ¬t}

By the semantics of Hoare triples applied to (†), we only need to show,

TJAVAX |= (∀V ) A ∧ (S|loop):WrappedState

⇒ A(S/S | loop) ∧ (evalTst(S | loop,t) = false),

where, by definition, loop = while t p. Let us put the termination assumption
((S|loop):WrappedState) to the side, then we have,

(‡) TJAVAX |= (∀V ) A ⇒ A(S/S | loop) ∧ (evalTst(S | loop,t) = false),

But, by definition of satisfaction of a universally quantified formula in an
initial algebra, this is equivalent to proving, from the above assumption,

(∀s ∈ TJAVAX,WrappedState) TJAVAX |= (∀V − {S}) A(S/s)

⇒ A(S/s|loop) ∧ (evalTst(s|loop, t) = false)

That is, for each s ∈ TJAVAX,WrappedState, we have to show,

([) TJAVAX |= (∀V − {S}) A(S/s) ⇒ A(S/s|loop) ∧ (evalTst(s|loop, t) = false).
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By the termination assumption and the last corollary we know that, for each
ground substitution θ : V − {S} −→ TΣJAVAX

, if

(?) TJAVAX |= (∀∅) (θ(A(S/s)),

then there is an n ≥ 0 such that:

1. E ` (∀∅) s | loop = s|(t|p)n|t
2. E ` (∀∅) evalTst(s|(t|p)i, t) = true, 0 ≤ i < n
3. E ` (∀∅) evalTst(s|(t|p)n, t) = false.

We also know that (4)E ` (∀∅) evalTst(s|(t|p)n|t, t) = false holds if A
holds. That is because (3) tells us that the test is false in that state and then with
the second assumption we see that the test will stay false after being executed.
At the positions where we use (4) A holds.

Since (1) and (4) take care of the implication of the second conjunct in ([)
(A is on the lefthand side of the implication), we have reduced the whole matter
to showing that, if (?) holds, then we must have,

(\) TJAVAX |= θ(A(S/s|(t|p)n|t)).

But this now follows by substitutivity from the first assumption and (1)–(3),
by the chain of implications, where the last step requires (4) and the second
assumption (A obviously holds).

TJAVAX |= θ(A(S/s)) ⇒ θ(A(S/s)) ∧ evalTst(s, t) = true

⇒ θ(A(S/s|t|p)) ∧ evalTst(s|t|p, t) = true . . .

⇒ θ(A(S/s|(t|p)n−1)) ∧ evalTst(s|(t|p)n−1, t) = true

⇒ θ(A(S/s|(t|p)n)) ∧ evalTst(s|(t|p)n, t) = false ⇒ θ(A(S/s|(t|p)n
|t))

q.e.d.

B Factorial Example Proof Script

First the ITP and the Java subset need to be loaded in Maude, you can get these
on the Java+ITP website [23]. There you can also find all the following code in
files. To introduce the goal you first load a module which contains the definition
of the code and of the helper function (both already shown in the main part of
the paper):

fmod FACX-JAVAX is

including JAVAX .

op facValue : Int -> Int .

var I : Int .

ceq facValue(I) = 1

if 0 < I = false .
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ceq facValue(I) = I * facValue(I - 1)

if 0 < I = true .

op facx-init : -> BlockStatements .

op facx : -> BlockStatements .

eq facx-init = (int ’C ; int ’X ; int ’N ;) .

eq facx =

’C = #i(0) ; ’X = #i(1) ;

while (’C < ’N) {

’C = ’C + #i(1) ;

’X = ’X * ’C ;

} .

endfm

Then you can introduce the actual goal by the following:

select ITP-TOOL .

loop init-itp .

(javax-inv FACX-JAVAX :

--- specification constants

(N:Int)

--- precondition

((int-val(S:WrappedState[’N])) = (N:Int)

& (0 <= N:Int) = (true))

--- program

facx-init

facx

--- postcondition

((int-val(S:WrappedState[’X]))

= (facValue(N:Int)))

--- invariant

((int-val(S:WrappedState[’X]))

= (facValue(int-val(S:WrappedState[’C])))

&

(0 <= int-val(S:WrappedState[’C]))

= (true)

&

(int-val(S:WrappedState[’C]) <=

int-val(S:WrappedState[’N]))

= (true)

&

(int-val(S:WrappedState[’N]))

= (N:Int))

.)

This is the proof script you need to use then:

--- init

(auto .) (cnj .) (cnj .) (cnj .)
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(auto .) (auto .) (auto .) (auto .)

--- post

(auto .)

--- inv

(auto .) (cnj .) (cnj .) (cnj .)

(auto .) (auto .) (auto .) (auto .)

--- testKeepsInv

(auto .) (cnj .) (cnj .) (cnj .) (cnj .)

(auto .) (auto .) (auto .) (auto .) (auto .)

C Binomial Coefficient Example

We first load the Java semantics, then load the ITP version we use, then load
this module:

fmod CHOOSE-JAVAX is

including JAVAX .

op _! : Int -> NzInt [prec 27] .

vars I J : Int .

ceq I ! = 1 if 0 < I = false .

ceq I ! = I * (I - 1) ! if 0 < I = true .

op choose : Int Int -> Int .

eq choose(I, J) = I ! quo (J ! * (I - J) !) .

op choose-init : -> BlockStatements .

eq choose-init = (int ’N ; int ’Nfac ; int ’K ; int ’Kfac ;

int ’N-Kfac ; int ’BC ; int ’I ;) .

op facN : -> BlockStatements .

eq facN =

’I = #i(0) ; ’Nfac = #i(1) ;

while (’I < ’N) {

’I = ’I + #i(1) ;

’Nfac = ’Nfac * ’I ;

} .

op facK : -> BlockStatements .

eq facK =

’I = #i(0) ; ’Kfac = #i(1) ;

while (’I < ’K) {

’I = ’I + #i(1) ;

’Kfac = ’Kfac * ’I ;

} .

op facN-K : -> BlockStatements .

eq facN-K =

’I = #i(0) ; ’N-Kfac = #i(1) ;

while (’I < (’N - ’K)) {

’I = ’I + #i(1) ;

’N-Kfac = ’N-Kfac * ’I ;

} .

op divNKN-K : -> BlockStatements .

eq divNKN-K = ’BC = ’Nfac / (’Kfac * ’N-Kfac) ; .
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op choose : -> BlockStatements .

eq choose = facN facK facN-K divNKN-K .

---- choose without the named parts after the /

op choose/facN : -> BlockStatements .

eq choose/facN = facK facN-K divNKN-K .

op choose/facN+facK : -> BlockStatements .

eq choose/facN+facK = facN-K divNKN-K .

endfm

This module includes the auxiliary functions ! and choose before defining
the parts of the program, i.e. first compute N!, then K!, then (N-K)! and finally
compute the necessary quotient. The whole program is then pieced together and
a few postfix programs of choose (which will later be used in the decomposition)
are defined. Then we need to use these commands:

select ITP-TOOL .

loop init-itp .

(add-hoare-triple CHOOSE-JAVAX :

--- specification variables

(N:Int ; K:Int)

--- precondition

((int-val(S:WrappedState[’N])) = (N:Int)

& (0 <= N:Int) = (true)

& (int-val(S:WrappedState[’K])) = (K:Int)

& (0 <= K:Int) = (true)

& (0 <= N:Int - K:Int) = (true))

--- program

choose

--- postcondition

((int-val(S:WrappedState[’Nfac]))

= ((N:Int)!)

& (int-val(S:WrappedState[’Kfac]))

= ((K:Int)!)

& (int-val(S:WrappedState[’N-Kfac]))

= ((N:Int - K:Int)!)

& (int-val(S:WrappedState[’BC]))

= (choose(N:Int, K:Int)))

--- initialization code

choose-init

.)

(decomp:

---- name of the HT

choose@0

---- prefix code

facN

---- midcondition

((int-val(S:WrappedState[’N])) = (N:Int)
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& (0 <= N:Int) = (true)

& (int-val(S:WrappedState[’K])) = (K:Int)

& (0 <= K:Int) = (true)

& (0 <= N:Int - K:Int) = (true)

& (int-val(S:WrappedState[’Nfac]))

= ((N:Int)!))

---- rest of code

choose/facN

.)

We first create the overall goal and then start decomposing it. We do not
show all decomposition commands because of space restrictions, but only the
first one. There are two more decompositions necessary. Let us call by INIT this,
for space and overview reasons:

((((int-val(S:WrappedState[’N])= N:Int)

&(int-val(S:WrappedState[’K])= K:Int))

&(0 <= N:Int - K:Int = true))

&(0 <= N:Int = true))

&(0 <= K:Int = true)

After all the decompositions the ITP shows us the following, where it shows
the actual code, not INIT:

=================================

hoare-label: choose@1.0

=================================

{INIT}

facN

{(int-val(S:WrappedState[’Nfac])= N:Int !)

&INIT}

=================================

hoare-label: choose@2.1.0

=================================

{(int-val(S:WrappedState[’Nfac])= N:Int !)

&INIT}

facK

{((int-val(S:WrappedState[’Kfac])= K:Int !)

&(int-val(S:WrappedState[’Nfac])= N:Int !))

&INIT}

=================================

hoare-label: choose@2.2.1.0

=================================

{((int-val(S:WrappedState[’Kfac])= K:Int !)

&(int-val(S:WrappedState[’Nfac])= N:Int !))

&INIT}

facN-K

{(((int-val(S:WrappedState[’N-Kfac])=(N:Int - K:Int)!))

&(int-val(S:WrappedState[’Kfac])= K:Int !)

&(int-val(S:WrappedState[’Nfac])= N:Int !))
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&INIT}

=================================

hoare-label: choose@2.2.2.0

=================================

{(((int-val(S:WrappedState[’N-Kfac])=(N:Int - K:Int)!)

&(int-val(S:WrappedState[’Kfac])= K:Int !))

&(int-val(S:WrappedState[’Nfac])= N:Int !))

&INIT}

divNKN-K

{(((int-val(S:WrappedState[’BC])= choose(N:Int,K:Int))

&(int-val(S:WrappedState[’N-Kfac])=(N:Int - K:Int)!))

&(int-val(S:WrappedState[’Kfac])= K:Int !))

&(int-val(S:WrappedState[’Nfac])= N:Int !)

&INIT}

From these Hoare triples we create the actual first order goals by commands
like this:

(create-FO-goal-hoare-inv:

---- name of the HT

choose@1.0

--- invariant

((int-val(S:WrappedState[’Nfac]))

= ((int-val(S:WrappedState[’I]))!)

& (0 <= int-val(S:WrappedState[’I]))= (true)

& (int-val(S:WrappedState[’I]) <= int-val(S:WrappedState[’N]))= (true)

& (int-val(S:WrappedState[’N]))= (N:Int)

& (int-val(S:WrappedState[’K]))= (K:Int)

& (0 <= N:Int) = (true)

& (0 <= K:Int) = (true)

& (0 <= N:Int - K:Int) = (true)

)

.)

This creates the actual first-order goal from the Hoare triple. We need to
use this command for the other two loop cases (with a fitting invariant) and a
simpler version without an invariant for the last part, then we have all the goals
we need to show. Again, because of space limitations we do not show the other
invariants and we do not show the answer by the ITP because those goals are
fairly large because of the states that they include.

All the details can be found on the web site, together with the list of necessary
commands to discharge all the goals. That list of commands exclusively consists
of the auto command to discharge goals automatically and the cnj command
to separate conjunctive goals and prove them one at a time.

Currently one of the created subgoals for the third loop cannot be proven
because it has too many preconditions which somehow create an infinitely loop-
ing module in the ITP. However, if the unnecessary preconditions are removed,
it can be easily discharged. Simplified, given the relevant precondition A and the
goal of the proof X we can show that A implies X. Now two irrelevant (for this part

29



of the proof, but they need to be carried through for later) extra preconditions
B and C are available, adding each one of them to A still allows to prove X, but
when adding both of them the ITP falls into an infinite loop. This is probably
created by some interaction of B and C and the proof goal X. This is currently
under closer scrutiny to find the source of the problem.

We justify that this is no problem for now, by taking a look at A, B, C⇒ X.
Obviously A, B, C⇒ A holds. As mentioned before we can show with the ITP
that A⇒ X and therefore we can conclude that A, B, C⇒ X actually holds.
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