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Abstract. We present a novel pipeline that takes smartphone videos of
the intraoral region of newborn cleft patients as input and produces a 3D
mesh. The mesh can be used to facilitate the plate treatment of the cleft
and support surgery planning. A retrained LoFTR-based method creates
an initial sparse point cloud. Next, we utilize our collection of existing
scans of previous patients to train an implicit shape model. The shape
model allows for refined denoising of the initial sparse point cloud and;
therefore, enhances the camera pose estimation. Finally, we complete
the model with a dense reconstruction based on multi-view stereo. With
Moving Least Squares and Poisson reconstruction we convert the point
cloud into a mesh. This method is low-cost in hardware acquisition and
supports minimal training time for a user to utilize it.
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1 Introduction

Cleft lip and palate is the most common craniofacial birth defect with an es-
timated prevalence of 1 in 700 [13]. Presurgical orthopedic (PSO) treatment is
commonly used to narrow the cleft and to enable a single-surgical repair [12].
The treatment involves the fabrication of a patient-specific plate that is inserted
into the mouth and on the palate of a patient. This prevents the tongue from
reaching inside the palate cleft and supports a natural narrowing of the cleft.
The plate additionally eases food consumption and helps early speech develop-
ment [2]. The creation of such an orthopedic plate consists of two steps. First,
the practitioner acquires a 3D model of the specific intraoral region, either using
an intraoral scanner or through silicon impression and subsequent fabrication
of a plaster cast. Second, the digital or physical 3D model is used to design a
person-specific well-fitting plate.
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By using an entirely digital process, and hence 3D digital models of the cleft
lip and palate, the automatic computation of the plate is enabled [18]. While
plaster casts can be digitized and serve as input to the digital plate computation,
the mesh quality is typically lower, and more importantly, the impression is taken
under airway-endangering conditions [6]. Therefore, a fully digital alternative via
intraoral scanners is the preferred capture technology today. However, clinics in
low- and middle-income countries (LMICs) very often do not have access to such
scanning devices, due to their high costs and requirement of trained personnel.

In this work, we aim to provide an alternative solution to intraoral scanners
targeted at LMICs, such that the previously developed digital plate computation
[18] can be applied. Our method turns a smartphone into an intraoral scanner,
which outputs a digital 3D model of the cleft lip and palate just from a set of
captured photographs. We leverage state-of-the-art deep learning based meth-
ods from Computer Vision for the first step of our 3D reconstruction [21], and
combine it with a cleft shape prior trained on a collected data set of cleft lip
and palate scans. We show that the domain-specific prior serves as a denoiser,
leading to higher-quality meshes than domain-agnostic approaches. We further
present the entire digital processing pipeline - from the raw input video to the
final fabricated plate - and discuss the design choices of each step. Our results
highlight the enormous potential of smartphone scanners for LMICs, and our
work can be seen as a first step towards achieving this goal. Our contributions
can be summarized as:

– Introduction of the detector-free local feature matching using transformer
networks (LoFTR) to the medical community.

– A learned shape prior for cleft lip and palate, which was trained on a dataset
of patient scans and is based on deep signed distance function.

– A complete digital processing pipeline: from an RGB smartphone video as
input to the final printed orthopedic plate.

2 Related work

Neural approaches have led to drastic improvements of image-based 3D recon-
struction quality across disciplines. In the following, we focus our discussion on
photogrammetry and data-driven shape models.

Photogrammetry: Photogrammetry was dominated for a long time by detector-
based local feature matchers. Two successful and prominent techniques are
Scale-Invariant Feature Transform (SIFT) [11] and ORB [16]. These methods
are hand-crafted and have been adopted in most computer vision-based tasks
until recently. With the success of learning-based methods in many fields, pho-
togrammetry progressed as well. NeRF-based methods such as NeuS [22] build a
full implicit representation of the shape from the input images and camera pose
estimations. Other recent notable methods include SuperPoint [8] as a feature
extractor and SuperGlue [17] as a feature matcher that works in tandem with
SuperPoint. The recently proposed detector-free method Detector-Free Local
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Fig. 1. Selected input images highlighting the challenges of the uncontrolled capture.

Feature Matching with Transformers (LoFTR) added the transformer network
structure to correlate points spatially and build semi-dense correspondences be-
tween two images, offering more robust reconstructions for low feature surfaces.
These properties are of great benefit for the reconstruction of the cleft region
and is; therefore, featured as a central part of our proposed solution.

Data-driven shape models: Data-Driven Shape Models find their origin in the
concept of PCA-based models. They have been explored in a variety of different
fields, though the main area of research focuses on faces [3, 4]. The main focus
of a morphable model is to learn the shape of an object class and compress that
information into a compact latent. They are often used as a prior to fit observa-
tional data to and create a result within expectation of possible observations. In
recent years, the statistical approach was replaced with learning-based methods.
One prominent method is DeepSDF [14] and its variants [5, 9]. We leverage the
representative power of DeepSDF and train it on cleft data to create a domain-
specific shape prior, which is particularly useful in our setting where we have
noisy and incomplete point data.

3 Methods

The goal of our work is to compute a digital 3D model of the cleft lip and palate
based on an intraoral smartphone video, which is precise enough to compute and
3D print an orthopedic plate for the pre-surgical treatment. The smartphone
video is captured in an uncontrolled environment, specifically, by doctors in a
clinical setting at hospitals. This comes with multiple challenges for an image-
based 3D reconstruction technique, including data that is captured through a
mirror, with unsteady hand motion, movement of the infant during the capturing
process, varying light conditions, occlusions due to the operators’ hands, small
capturing angles and limited mouth opening. Moreover, the intraoral surface
has low quality features, no clear edges or corners, the surface is very reflective
and the object of interest might undergo movement of even non-rigid nature.
Since not all mobile phones are equipped with depth sensors, our reconstruction
method is solely using RGB input data. Figure 1 shows example images that
serve as input to our method.
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Our reconstruction pipeline consists of multiple steps. We first pre-process
the video to mask out the relevant region and sub-sample the frames based
on a quality score and a given interval (Section 3.1). Next, we create a semi-
dense reconstruction with LoFTR [21] (Section 3.2) and refine the reconstruction
with DeepSDF [14] (Section 3.3). These two steps represent the core of our
method. The refined semi-dense reconstruction is then completed to a dense
reconstruction with Multi-View Stereo (MVS) [20]. Next, we fit our shape prior
to our dense reconstruction and remove points with a distance greater than
0.5mm. We use Moving Least Squares (MLS) [1] (radius = 2mm, order = 3 )
to smooth out the resulting point cloud. This step is manually verified and the
parameters adapted, if necessary. Finally, we use Poisson Reconstruction [10]
(tree depth = 8 ) to create a mesh. This resulting mesh then serves as the input
to the orthopedic plate computation [18]. In Figure 2 we show our pipeline to
reconstruct the palatal area.

Fig. 2. Our pipeline uses a smartphone video as input that was captured in an uncon-
trolled clinical setting. After pre-processing, we compute a semi-dense reconstruction
and use our DeepSDF shape prior as a denoiser, before computing the final mesh.

3.1 Data pre-processing

We semi-automatically mask all the frames of the video input to only include the
palate region using MiVOS [7] as masking tool. This prevents ill-posed equation
systems for the camera and point positions which are caused by the mirror in
the image. We then automatically sub-sample the frames based on a heuristic
approach to improve the average quality of the images and further reduce the
processing time of the pipeline. We sub-sample at fixed intervals while consider-
ing within a range of each interval the quality of the image depending on their
blurriness. To calculate the quality score, we apply a Laplacian kernel pixel-wise
to each image.
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3.2 Semi-dense reconstruction

For the semi-dense reconstruction, we use the state-of-the-art approach LoFTR [21],
which outperforms classical feature extraction and matching methods. We veri-
fied the performance of LoFTR against a classic Structure from Motion and MVS
approach with COLMAP [19, 20], SuperGlue+SuperPoint [17, 8] and NeuS [22].
LoFTR was the most robust approach over all cases, while it occasionally was
outperformed for a single reconstruction. LoFTR takes a number of image pairs
to be matched against each other as input. We use the two matching methods
NETVLAD and sequential matching for pair finding. NETVLAD calculates the
best n pairs based on global feature descriptions in all images. Sequential match-
ing takes advantage that the input format is a video and matches each frame
to the next m sub-sampled frames. LoFTR finds matches between the resulting
image pairs and we use COLMAP to extract a semi-dense reconstruction out of
the resulting meshes.

3.3 Data-driven shape prior

We use Deep Signed Distance Function (DeepSDF) [14], which has the advantage
that it can be fit to point clouds, even if they are a noisy representation of
a shape. The quality of the meshes produced by the model when fitted to a
noisy point cloud is not sufficient for our targeted medical purpose. However,
it provides a rough shape estimation for the current reconstruction. We utilize
this shape estimation to denoise the point cloud that we get with the semi-dense
reconstruction with LoFTR. In DeepSDF, two networks are trained in parallel.
The first network is an encoder that receives sampled points of an observation
and their signed distance to the mesh. The output is a latent code. The second
network takes the latent code together with a single point and estimates the
signed distance of that point to the mesh. We first align our point cloud with
the canonical frame of reference of DeepSDF. We then sample the point cloud
and create a shape estimation using our DeepSDF model. We apply the inverse
transform of the initial alignment to the shape model estimation, such that it is
re-projected into the reconstruction space. We calculate the distance from the
point cloud to the closest point on the mesh and reject points over a threshold d.
We track the removed points to their corresponding features and matches, and
discard those as well. This in turn leads to refined camera poses, as the noisy
points are no longer part of the equations system. Finally, we recompute the
triangulation - now with reduced noise - to refine the result.

3.4 Data collection

We collected a data set of cleft lip and palate shapes, which consists of 188
intraoral scans and 553 plaster casts of the intraoral region of 489 cleft patients.
The patients at scan time have an age of mostly 1-14 months. 178 of the patients
are classified with a unilateral cleft and 86 with a bilateral, while the remaining
are either not clearly classifiable or classified as a different cleft type. This data
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set was used to train the DeepSDF model. For video acquisition we used a Google
Pixel 4 and chose the 4k camera with 25 fps. We instructed the doctors to fulfill
a steady slow ellipsoid movement with either a camera or a mirror to capture
as many different viewing angles as possible. The duration of a video is usually
between 15 and 30 seconds. Additionally, we tried to minimize occlusions, such
as tubes, and non-rigid movement in the area of interest. As the object in focus
are infants, sometimes awake, the videos have high variance in quality.

4 Results

In the following, we evaluate the quality of the 3D reconstructions (Section 4.1)
and show the resulting pre-surgical plates (Section 4.2), demonstrating a proof-
of-concept for the clinical use of a smartphone-based cleft and palate scanner.
We further evaluate the effectiveness of the learned shape prior in Section 4.3.

4.1 3D reconstruction

We show the reconstruction quality for two unilateral cleft and two bilateral
cleft cases in Figure 3, and compare the reconstructed shapes (second row) to
the ground truth intraoral scans (top row). We display the color-coded error
maps for the entire shape (third row), with blue and red corresponding to 0mm
and 1.5mm, respectively. As expected, higher errors can be observed near the
boundary, while smaller errors can be found in the relevant region near the ridges.
The latter reflects the area that is relevant for the plate, as the final, fabricated
plate needs to fit tightly to these ridges. We therefore evaluate the error for the
particular area of interest as visualized in the last row. For the selected patient
cases, we achieve a mean error of [0.11, 0.39, 0.37, 0.28]mm in the relevant area.

4.2 Plate evaluation

In order to evaluate if the accuracy of our smartphone based reconstruction is
high enough for clinical settings, we used the digital plate computation algorithm
of Schnabel et al. [18] and quantitatively assess the difference of the resulting
digital plates when using an intraoral scan as input (second column) versus using
our 3D reconstructed shape (third column) in Figure 4. For the two selected
patient cases, we achieve a mean error of 0.11mm and 0.24mm, respectively.
Note that the error is again only relevant along the ridges, and hence larger
errors in the area that bridges the ridge areas are acceptable. Since it is difficult
to conclude from these numbers if the resulting physical plate will fit well on a
patient’s palate, we 3D printed four selected plates using the previously reported
clinical procedure [18], and collected feedback from three healthcare professionals
who assessed the fitting quality. Out of four plates, they assessed two, three and
three plates, respectively, to be applicable after no or only minor subtractive
adjustments.
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Fig. 3. From left to right we show four selected unilateral and bilateral patient cases.
From top to bottom we show the ground truth meshes acquired with an intraoral
scanner, our reconstructed meshes, and the error maps for the entire shape and partial
area relevant for the pre-surgical plate.

4.3 Learned shape prior

The learned shape prior is a crucial part of our pipeline, and we therefore eval-
uate the expressiveness of our DeepSDF model for two selected cleft shapes in
Figure 5. For the reconstruction of these two introral scans, the model achieves an
average error of 0.14mm and 0.16mm in the area of interest, respectively. While
the overall shape is approached quite accurately, it is also visible that very fine
structural details are smoothed, which is a common problem of DeepSDF.

In our algorithm we use the DeepSDF shape prior as a denoiser. We have
compared our method with the common denoisers Statistical Outlier Removal
(SOR) and PointCleanNet (PCN) [15], and evaluated the methods based on
correct identification of noise and of points that should be retained. Our data-
driven shape prior noise removal outperforms the other methods (in percentages)
for 1) correctly retained correct points (PCN: 45, SOR: 60, ours: 66), 2) incor-
rectly retained noisy points (PCN: 55, SOR: 40, ours: 34), 3) correctly removed
noisy points (PCN: 81, SOR: 81, ours: 86), 4) incorrectly removed correct points
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Fig. 4. For two selected cases we compare the resulting digital plates, once computed
with an intraoral scan (second column) and our 3D reconstructed shape (third column).
We visualize the plates on the original scan (left). The color-coded errors (right) are
absolute distances of the region of interest around the ridges.

Fig. 5. Reconstruction of an intraoral scan (left) through our DeepSDF model (middle)
and color-coded errors in the area of interest (right).

(PCN: 19, SOR: 19, ours: 14). Note that we hand-tuned the parameters for the
alternative methods and applied multiple iterations to optimize their results.

5 Conclusion

We have presented a first smartphone-based scanning solution for the 3D recon-
struction of the cleft and palatal region. All steps in our pipeline are data-driven
and outperform conventional approaches when applied to input captured in un-
controlled clinical settings. We have demonstrated a proof-of-concept by comput-
ing and fabricating plates based on our reconstruction, which can then be used
for the pre-surgical treatment of cleft lip and palate. The evaluation of the clin-
icians was overall positive, indicating great promise for using smartphone-based
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scanners in clinical settings. However, a larger evaluation and clinical study is
needed to draw a resulting conclusion.

Limitations Our current approach is heavily dependent on the quality of the in-
put video. In some cases the video was too short, the infant moved too much or
the camera was too shaky. This led to a failure of reconstruction. In addition, in
some cases it proved to be difficult to capture the outside regions of the ridges as
they were often occluded by the lips. Some error margin can be explained due to
the global shape model and the necessary smoothing in the post-processing step,
both of which reduce high frequency details in the reconstructions. Finally, there
is a potential to further increase the automation level of our pipeline and elimi-
nate the remaining manual steps such as initial mask segmentation or alignment
of shape model and reconstruction.

Prospect of application Our image-based 3D reconstruction approach enables the
use of the PSO in low- and middle- income countries, where intraoral scanners
are often not available. Our method relies solely on RGB images, which reduces
requirements related to hardware. It further supports remote check ups, as the
equipment is affordable and available and the image capture process is innocuous.
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