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Abstract

We present an algorithm that generates natural and intuitive defor-
mations via direct manipulation for a wide range of shape represen-
tations and editing scenarios. Our method builds a space deforma-
tion represented by a collection of affine transformations organized
in a graph structure. One transformation is associated with each
graph node and applies a deformation to the nearby space. Posi-
tional constraints are specified on the points of an embedded ob-
ject. As the user manipulates the constraints, a nonlinear minimiza-
tion problem is solved to find optimal values for the affine transfor-
mations. Feature preservation is encoded directly in the objective
function by measuring the deviation of each transformation from
a true rotation. This algorithm addresses the problem of “embed-
ded deformation” since it deforms space through direct manipula-
tion of objects embedded within it, while preserving the embedded
objects’ features. We demonstrate our method by editing meshes,
polygon soups, mesh animations, and animated particle systems.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Modeling packages

Keywords: Geometric modeling, Deformation, Shape editing

1 Introduction

Direct manipulation has proven to be an invaluable tool for mesh
editing since it provides an intuitive way for the user to interact with
a mesh during the modeling process. Sophisticated deformation
algorithms propagate the user’s changes throughout the mesh so
that features are deformed in a natural way. However, modeling
is only one of the many instances in which a user must interact
with a computer-generated object. Likewise, meshes are but one of
many representations in use today. While recent algorithms provide
powerful manipulation paradigms for mesh modeling, few apply to
other manipulation tasks or geometry representations.

Our work endeavors to extend the intuitive nature of mesh modeling
beyond the realm of meshes. Ultimately, direct manipulation with
natural feature deformation should apply to anything that can be
embedded in space. We refer to this overall problem as “embedded
deformation” since the algorithm must deform space through direct
manipulation of objects embedded within it, while preserving the
embedded objects’ features. With this goal in mind, we propose an
algorithm motivated by the following principles:

Generality. In order to accommodate a wide range of shape rep-
resentations, we incorporate a deformation model based on space
deformation that provides a global remapping of the ambient space.
Any geometric primitive embedded in this space can be deformed.
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Figure 1: Embedded deformation of several shape representations.

The space deformation in our algorithm is defined by a collection
of affine transformations, each of which induces a deformation on
the nearby space. Primitives are deformed by blending the effect of
transformations with overlapping influence.

Efficiency. Since the geometric complexity of objects can be
enormous, efficiency considerations dictate a reduced deformable
model that separates the complexity of the deformation algorithm
from the complexity of the geometry. We propose a reduced model
called a “deformation graph” that is simple, general, and inde-
pendent of any particular geometry representation. A deformation
graph consists of nodes connected by undirected edges. One affine
transformation is associated with each node so that the nodes pro-
vide spatial organization to the resulting deformation. Graph edges
connect nodes of overlapping influence and provide a means for in-
formation exchange so that a globally consistent deformation can
be found. Due to its simple structure, there are many ways to build
a deformation graph including point sampling, simplification, par-
ticle tracing, or even hand design.

Detail preservation. Detail preservation is a well-established
goal of any editing application: small-scale details should be pre-
served when a broad change in shape is made. Practically, this
requirement means that local features should rotate during defor-
mation, rather than stretch or shear. Applying this criterion to the
deformation graph framework is straightforward. Since the affine
transformations associated with the graph nodes represent localized
deformations, details are best preserved when these transformations
represent rotations.

Direct manipulation. We formulate deformation as an optimiza-
tion problem in which positional constraints are specified on points
that define an embedded object. In general, any point in space can
be constrained to move to any other point. As the user manipulates
the constraints, the algorithm finds optimal values for the affine
transformations. Detail preservation is encoded directly in the ob-
jective function by measuring the deviation of each transformation
from a true rotation. A regularization term ensures that neighboring
transformations are consistent with respect to one another.

Our framework has a number of advantages. Unlike previous meth-
ods, our deformation algorithm is independent of both the shape’s
representation and its geometric complexity while still providing in-
tuitive detail preserving edits via direct manipulation. Since feature
rotation is encoded directly in the optimization procedure, natural
edits are achieved solely through positional constraints. More cum-



bersome frame transformations are not required. The simplicity and
flexibility of the deformation graph make it easy to construct, since
a rough distribution of nodes in the region that the user wishes to
modify is sufficient. Although the optimization is nonlinear, com-
plex edits can be achieved with only a few hundred nodes. Thus,
the number of unknowns is small compared to the geometric com-
plexity of the embedded object. With our efficient numerical im-
plementation, even very detailed shapes can be edited interactively.

Our primary contribution is a novel deformation representation and
optimization procedure that unites the proven paradigms of direct
manipulation and detail preservation with the flexibility of space
deformations. We highlight the conceptual challenge of embedded
deformation and provide a solution that expands intuitive editing
to situations where it was previously lacking. Our method accom-
modates traditional meshes with multiple connected components,
polygon soups, point-based models with no connectivity informa-
tion, and mesh animations. Our system also allows the user to in-
teractively sculpt the result of a simulated particle system, easily
creating effects that would be cumbersome and costly to achieve by
tweaking simulation parameters (Figure 1).

2 Background

Early work in shape modeling focuses on space deformations [Barr
1984] that provide a global remapping of space. Free-form defor-
mation (FFD) [Sederberg and Parry 1988] parameterizes a space
deformation with a 3D lattice and provides an efficient way to apply
coarse deformations to complex shapes. However, achieving a fine-
scale deformation may require a detailed, hand-designed control
lattice [Coquillart 1990; MacCracken and Joy 1996] and an inordi-
nate amount of user manipulation. Although more intuitive control
can be provided through direct manipulation [Hsu et al. 1992], the
user is still restricted by the expressibility of the FFD algorithm.

With their “Wires” concept, Singh and Fiume [1998] present a flex-
ible and effective space deformation algorithm motivated by arma-
tures used in traditional sculpting. A collection of space curves
tracks deformable features of an object, providing a coarse approx-
imation to the shape and a means to deform it. Singh and Kokke-
vis [2000] generalize this concept to a polygon-based deformer. In
both cases, the user interacts solely with the proxy curves or poly-
gons rather than directly with the object being deformed. Rotations,
scales, and translations are inferred from the user interaction and
applied to the object. These methods give the user powerful tools
to design deformations and add detail to a shape. However, they are
not well suited to modify shapes that already are highly detailed
since the user must design armature curves or control polygons that
conform to details at the proper scale in order for the deformation
heuristics to generate acceptable results.

Due to the widespread availability of very detailed scanned meshes,
recent research focuses on high-quality mesh editing through intu-
itive user interfaces. Detail preservation is a central goal of such
algorithms. Multiresolution methods achieve detail-preserving ed-
its at varying scales by generating a hierarchy of simplified meshes
together with corresponding detail coefficients [Kobbelt et al. 1998;
Botsch and Kobbelt 2004]. While models with large geometric de-
tails may lead to local self-intersections or other artifacts [Botsch
et al. 2006b], the modeling metaphor presented by Kobbelt and col-
leagues [1998] in which a region-of-interest and handle region are
defined directly on the mesh is especially notable as it has been
applied in nearly every subsequent mesh editing paper.

Algorithms based on differential representations extract local shape
properties, such as curvature, scale, and orientation. By represent-
ing a mesh in terms of these values, editing can be phrased as an
energy minimization problem that strives to preserve them [Sorkine
2005]. Methods that perform only linear system solves require
heuristics or other special treatment of feature rotation, since natu-

ral shape deformation is inherently nonlinear [Botsch and Sorkine
2007]. Volumetric methods (e.g., [Zhou et al. 2005; Shi et al. 2006])
build a dissection of the interior and nearby exterior space for better
volume preservation, while subspace methods [Huang et al. 2006]
build a subspace structure for increased efficiency and stability.
Nonlinear methods (e.g., [Sheffer and Kraevoy 2004; Huang et al.
2006; Botsch et al. 2006a]) yield the highest quality edits, although
at higher computational costs.

These algorithms provide powerful tools for detail-preserving mesh
editing. However, these and other mesh editing techniques do not
meet the goals of embedded deformation since the deformation al-
gorithm is intimately tied to the shape representation. For example,
in the method presented by Huang and colleagues [2006], detail
preservation is expressed as a mesh-based Laplacian energy that is
computed in terms of vertices and their one-ring neighbors. The
work of Shi and colleagues [2006] and Zhou and colleagues [2005]
both use a Laplacian energy term based on a mesh representation.
The prism-based technique of Botsch and colleagues [2006a] uses
a deformation energy defined through a coupling of prisms along
mesh edges and requires a mesh representation with consistent
connectivity. These techniques do not apply to non-meshes, such
as point-based representations, particle systems, or polygon soups
where no connectivity structure can be assumed.

With our method, we adapt the intuitive click-and-drag modeling
metaphor used in mesh editing to the context of space deforma-
tions. Like Wires [Singh and Fiume 1998] and its polygon-based
extension [Singh and Kokkevis 2000], our method is not tied to one
particular representation and can be applied to any primitive de-
fined by points in 3D. However, unlike Wires or other space defor-
mation algorithms that do not explicitly preserve details [Hsu et al.
1992; Botsch and Kobbelt 2005], we successfully formulate detail
preservation within the space deformation framework. The com-
plexity of our deformation graph is independent of the complexity
of the shape being edited so that our technique can handle detailed
shapes interactively. The graph need not be a volumetric dissec-
tion and is simpler to construct than the volumetric or subspace
structures used by previous methods. The optimization problem is
nonlinear and exhibits comparable quality to nonlinear mesh-based
algorithms with less computational cost. Thus, our algorithm com-
bines the flexibility of space deformations to deform any primitive
independent of its geometric complexity with a simple and intuitive
click-and-drag interface and high-quality detail preservation.

3 Deformation Graph

The primary challenge of embedded deformation is to find a defor-
mation model that is general enough to apply to any object embed-
ded in space yet still provides intuitive direct manipulation, natural
feature preservation, and efficiency. We meet these goals with a
novel reduced deformable model called a “deformation graph” that
can express complex deformations of a variety of shape representa-
tions. In this model, a space deformation is defined by a collection
of affine transformations. One transformation is associated with
each node of a graph embedded in R3, so that the graph provides
spatial organization to the deformation. Each affine transformation
induces a localized deformation on the nearby space. Undirected
edges connect nodes of overlapping influence to indicate local de-
pendencies. The node positions are given by g j ∈ R3, j ∈ 1 . . .m,
and the set N( j) consists of all nodes that share an edge with node j.
The affine transformation for node j is specified by a 3× 3 matrix
R j and a 3× 1 translation vector t j. The influence of the transfor-
mation is centered at the node’s position so that it maps any point p
in R3 to the position p̃ according to

p̃ = R j(p−g j)+g j + t j. (1)

A deformed version of the graph itself is computed by applying
each affine transformation to its corresponding node. Since g j −g j



is the zero vector, the deformed position g̃ j of node j is simply
equal to g j + t j .

More interestingly, the deformation graph can be used to deform
any geometric model defined by vertices in R3. Since transfer-
ring the deformation to an embedded shape requires computation
proportional to the shape’s complexity, efficiency is of paramount
importance. Consequentially, we employ an algorithm similar to
the widely used and highly efficient skeleton-subspace deformation
from character animation. The influence of individual graph nodes
is smoothly blended so that the deformed position ṽi of each shape
vertex vi, i ∈ 1 . . .n, is a weighted sum of its position after applica-
tion of the deformation graph affine transformations:

ṽi =
m

∑
j=1

w j(vi)
[
R j(vi−g j)+g j + t j

]
. (2)

While linear blending may result in some artifacts for extremely
coarse graphs, they are negligible for moderately dense ones like
those shown in our examples. This result is not surprising, since
only a few extra joint transformations are needed to greatly reduce
artifacts exhibited by skeleton-subspace deformation [Weber 2000;
Mohr and Gleicher 2003]. In our case, the nodes are evenly dis-
tributed over the entire shape so that the blended transformations
are very similar to one another.

Normals are transformed similarly, according to the weighted sum
of each normal transformed by the inverse transpose of the node
transformations, and then renormalized:

ñi =
m

∑
j=1

w j(vi)R−1>
j ni. (3)

The weights w j(vi), j ∈ 1 . . .m, are spatially varying and thus de-
pend on the vertex position. Due to the graph structure, transforma-
tions that are close to one another will be the most similar. Thus, for
consistency and efficiency, we limit the influence of the deforma-
tion graph on a particular vertex to the k-nearest nodes. The weights
for each vertex are precomputed according to

w j(vi) = (1−‖vi−g j‖/dmax)2 (4)

and then normalized to sum to one. Here, dmax is the distance to
the k + 1-nearest node. We use k = 4 for all examples, except the
experiment in Figure 5 (d), where k = 8.

The layout of the deformation graph nodes should roughly conform
to the shape of the model being edited. In our experiments, a uni-
form sampling of the model surface produces the best results. Such
a sampling is easily accomplished by distributing points densely
over the surface, and repeatedly removing all points within a given
radius of a randomly chosen one until a desired sampling density is
reached. For meshes, simplification algorithms also produce good
results when the triangle aspect ratio is restricted to avoid long and
skinny triangles. For particle simulations, a simple and efficient
construction of the node layout can be achieved by sampling parti-
cle paths through time. The number of graph nodes determines the
expressibility of the deformation graph. Coarse edits can be made
with a small number of nodes, while highly detailed ones require
denser sampling. We find that full body pose changes are effec-
tively accomplished with 200 to 300 nodes.

Graph edges connect nodes of overlapping influence and are used to
enforce consistency in the overall deformation. Once the node po-
sitions are determined, the connectivity is computed automatically
by creating an edge between any two nodes that influence the same
vertex. Thus, the graph structure depends on how it is evaluated.

User edit
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Figure 2: A simple deformation graph shows the effect of the three
terms of the objective function. The quadrilaterals at each graph
node illustrate the deformation induced by the corresponding affine
transformation. Without the rotational term, unnatural shearing
can occur, as shown in the bottom right. The transformation for
node g2 is applied to neighboring nodes g1 and g3, yielding the
predicted positions shown on the bottom left as gray circles. The
regularization term minimizes the squared distance between these
predicted positions and their actual positions g̃1 and g̃3.

4 Optimization

Once the deformation graph has been specified, the user manipu-
lates an embedded primitive by selecting vertices and moving them
around. The vertices serve as positional constraints for an opti-
mization problem in which the affine transformations of the de-
formation graph comprise the unknown variables. The objective
function encodes detail preservation directly by specifying that the
affine transformations should be rotations. Consequently, local fea-
tures deform as rigidly as possible. A second energy term serves as
a regularizer for the deformation by indicating that the affine trans-
formations of adjacent graph nodes should agree with one another.

Rotation. In order for a 3× 3 matrix R to represent a rotation
in SO(3), it must satisfy six conditions: each of its three columns
must be unit length, and all columns must be orthogonal to one an-
other [Grassia 1998]. The squared deviation from these conditions
is given by the function Rot(R):

Rot(R) =(c1 · c2)2 +(c1 · c3)2 +(c2 · c3)2+

(c1 · c1−1)2 +(c2 · c2−1)2 +(c3 · c3−1)2
(5)

where c1, c2, and c3 are the 3×1 column vectors of R. This func-
tion is nonlinear in the matrix entries. The term Erot sums the rota-
tion error over all transformations of the deformation graph:

Erot =
m

∑
j=1

Rot(R j). (6)

Regularization. Conceptually, each of the affine transformations
represents a localized deformation centered at a graph node. Since
nearby transformations have overlapping influence, we must ensure
that the computed transformations are consistent with respect to one
another. We add a regularization term to the optimization inferred
from the graph structure. If nodes j and k are neighbors, they affect
a common subset of the embedded shape. The position of node k



predicted by node j’s affine transformation should match the actual
position given by applying node k’s transformation to itself (Fig-
ure 2). The regularization error Ereg sums the squared distances
between each node’s transformation applied to its neighbors and
the actual transformed neighbor positions:

Ereg =
m

∑
j=1

∑
k∈N( j)

α jk
∥∥R j(gk −g j)+g j + t j − (gk + tk)

∥∥2
2 . (7)

The weight α jk should be proportional to the degree to which the
influence of nodes j and k overlap. However, the exact amount of
overlap is ill defined for many shape representations, such as point-
based models and animated particle systems. In order to meet our
goal of generality, we use α jk = 1.0 for all examples. We notice no
artifacts compared to experiments using other weighting schemes.

This regularization equation bears some resemblance to the defor-
mation smoothness energy term used by previous work on template
deformation [Allen et al. 2003; Sumner and Popović 2004; Pauly
et al. 2005]. However, the transformed vertex positions are com-
pared, rather than the transformations themselves, and the transfor-
mations are relative to the node positions, rather than to the global
coordinate system.

Constraints. The user controls the optimization through direct
manipulation of the embedded shape and need not be aware of the
underlying deformation graph. To facilitate editing, our algorithm
supports two types of constraints: handle constraints, where a col-
lection of model vertices are selected and become handles that are
manipulated by the user, and fixed constraints, where a collection
of model vertices are selected and guaranteed to be fixed in place.

Handle constraints comprise the interface with which the user in-
teracts with an embedded object. These positional constraints are
specified by selecting and moving model vertices. They influence
the optimization since the deformed vertex positions are a function
of the graph’s affine transformations. We enforce these constraints
using a penalty formulation according to the term Econ which is
included in the objective function:

Econ =
p

∑
l=1

∥∥∥ṽindex(l)−ql

∥∥∥2

2
. (8)

Vertex ṽindex(l) is deformed by the deformation graph according to
Eq. 2. The vector ql is the user-specified position of constraint l,
and index(l) is the index of the constrained vertex.

Fixed constraints are specified through the same selection mech-
anism as handle constraints. However, they are implemented by
treating all node transformations that influence the selected vertices
as constants, rather than free variables, and removing them from the
optimization procedure. Their primary function is to allow the user
to define the portion of the mesh which is to be edited. Fixed con-
straints incur no computational overhead. Conversely, they speed
up the computation by reducing the number of unknowns. Thus,
the user can make a fine-scale edit by using a dense deformation
graph and marking all parts of the embedded object not in the edit
region as fixed.

Numerics. Our shape editing framework solves the following op-
timization problem:

min
R1,t1...Rm,tm

wrotErot +wregEreg +wconEcon.

subject to Rq = I, tq = 0,∀q ∈ fixed ids
(9)

We use the weights wrot = 1, wreg = 10, and wcon = 100 for all ex-
amples. Eq. 9 is nonlinear in terms of the 12m unknowns that define
the affine transformations. Fixed constraints are handled trivially by
treating the constrained variables as constants, leaving 12m− 12q

free variables if there are q fixed transformations. We implement
the iterative Gauss-Newton algorithm to solve the resulting uncon-
strained nonlinear least-squares problem [Madsen et al. 2004].

The Gauss-Newton algorithm linearizes the nonlinear problem with
Taylor expansion about x:

f(x+δ ) = f(x)+Jδ (10)

The vector f(x) stacks the equations that define the objective func-
tion so that f(x)>f(x) = F(x) = wrotErot +wregEreg +wconEcon, the
vector x stacks the entries in the affine transformations, and J is the
Jacobian matrix of f(x). Each Gauss-Newton iteration solves a lin-
earized problem to improve xk, the current estimate of the unknown
transformations:

δk = argmin
δ

‖f(xk)+Jδ‖2
2

xk+1 = xk +δk.
(11)

The process repeats until convergence, which we detect by moni-
toring the change in the objective function Fk = F(xk), the gradient
of the objective function, and the magnitude of the update vector δk
[Gill et al. 1989]:

|Fk −Fk−1|< ε(1+Fk)

‖∇Fk‖∞ < 3
√

ε(1+Fk) (12)

‖δk‖∞ < 2
√

ε(1+‖δk‖∞).

In our experiments, the optimization converges after about six iter-
ations with ε = 1.0×10−6.

In each iteration, we solve the resulting normal equations by
Cholesky factorization. Although the linear system J>J is very
sparse, it depends on x and thus changes at each iteration. There-
fore, the full factorization cannot be reused. However, the non-zero
structure remains unchanged so that a fill-reducing permutation of
the matrix and symbolic factorization based only on its non-zero
structure can be precomputed and reused [Toledo 2003]. These
steps, together with careful implementation of the routines to build
J and J>J, result in a very efficient solver. As shown in Table 1,
each iteration requires about 20ms for the presented examples.

5 Results

We have implemented the deformation graph optimization both as
an interactive editing application as well as an offline system for
applying scripted constraints to animated data. Live edits with the
interactive application are demonstrated in the conference video,
and key results are highlighted in this section.

Detail preservation. Figure 3 demonstrates that our algorithm
preserves features of the embedded shape. A bumpy plane is mod-
ified by fixing vertices on the left in place and translating those
on the right upward. Although this edit is purely translational, the
optimization finds node transformations that are as close as possi-
ble to true rotations while meeting the vertex constraints and main-
taining consistency. As a result, the bumps on the plane deform
in a natural fashion without shearing artifacts. These results are
comparable to the nonlinear prism-based approach of Botsch and
colleagues [2006a]. However, our algorithm uses a deformation
graph of only 299 nodes, whereas Botsch’s method performs the
optimization on the full 40,401 vertex model and requires a con-
sistent meshing of the surface. Figure 3 also demonstrates that our
method preserves details better than the radial-basis function (RBF)
approach of Botsch and Kobbelt [2005], where feature rotation is
not considered.

Figure 4 demonstrates detail preservation on a more complex exam-
ple. With a graph of only 222 nodes, our approach achieves a defor-
mation comparable in quality to the subspace method of Huang and
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Figure 3: When used to deform a bumpy plane, our method accurately preserves features without shearing or stretching artifacts. The quality
of our results is comparable to the “PriMo” approach of Botsch and colleagues [2006a] and superior to the radial-basis function method of
Botsch and Kobbelt [2005].
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Figure 4: We perform an edit similar to the one shown in Figure 9
of the work of Huang and colleagues [2006]. With a graph of only
222 nodes, our results are of comparable quality to Huang’s sub-
space gradient domain method. Performing the identical edit with
more complex graphs does not yield a significant change in quality.

colleagues [2006] in which the Laplacian energy is enforced on the
full mesh. Higher resolution graphs do not significantly improve
quality. Performing the same editing task with graphs of 425 and
1,048 nodes yields nearly identical results. Of course, if the graph
becomes too sparse to match the complexity of the deformation, ar-
tifacts will occur, as can be expected with any reduced deformable
model. Likewise, in the highly regular setting shown in Figure 5,
minor artifacts appear as a slight striped pattern. If additional nodes
are used for interpolation or a less regular graph (Figure 3), no arti-
facts are noticeable.

Intuitive editing. Figures 6 and 7 demonstrate the intuitive edit-
ing framework enabled by our system. High-quality edits are
achieved by placing only a handful of single-vertex handle con-
straints on the shape. Figure 6 shows detail-preserving edits on a
mesh consisting of 85,792 vertices. The raptor is deformed by dis-
placing positional constraints only, without the need to explicitly
specify frame rotations. Fine-scale details such as the teeth and
wrinkles are preserved. Furthermore, when the head or body is ma-
nipulated and the arms are left unconstrained, the arms rotate in a
natural way to follow the body movement. Thus, features are pre-
served at a wide range of scales. In this example, a full body pose is
sculpted using a graph of 226 nodes. The tail is lifted, arms crossed,
left leg moved forward, and head rotated to look backward. Then,
localized changes to the head are made with a more detailed graph
of 840 nodes. However, fixed constraints specified by selecting the

(a) (b) (c) (d)

Figure 5: A highly regular deformation graph with 200 nodes,
shown in (a), is used to create the deformation in (b). In this struc-
tured setting, minor artifacts are visible on the 13,024 vertex plane,
shown in (c), as a slight striped pattern when k=4 graph nodes are
used for transforming the mesh vertices. These artifacts disappear
in (d) when k=8 nodes are used and are not present with less struc-
tured graphs (Figure 3).

raptor’s body (green) leave only 138 active nodes for the head edit
so that the system remains interactive.

Figure 7 shows interactive edits on a scanned toy giraffe. The model
consists of a set of un-merged range scans that contain many holes
and outliers, with a total of 79,226 vertices in 180 separate con-
nected components. The deformation graph consisting of 221 nodes
is built automatically via uniform sampling, allowing the user to
directly edit the shape without time-consuming pre-processing to
obtain a consistent mesh representation.

Mesh animations. In addition to static geometry, our approach
also supports effective editing of dynamic shapes. The mesh anima-
tion of Figure 8 is modified to lengthen the horse’s legs and neck,
and turn its head. The deformation graph, constructed with mesh
simplification, is advected passively with the animated mesh. Since
the graph nodes are chosen to coincide with mesh vertices, no addi-
tional computation is required for the node positions to track the an-
imation. The user can script edits by setting keyframes on a single
pose. Translational offsets are computed from this keyframe data
and applied frame-by-frame to the animation sequence with our of-
fline application. The graph structure and weighting remains fixed
throughout the animation. The output mesh animation incorpo-
rates the user’s edits while preserving geometric details, such as the
horse’s facial features, as well as high-frequency motion, such as
the head bobbing. No multiresolution hierarchy or signal process-
ing is needed, unlike the method of Kircher and Garland [2006].
Although we do not address temporal coherence directly, we no-
ticed no coherence artifacts in our experiments.

Particle simulations. The particle simulation shown in Figure 9
is another example of a dynamic shape that can be edited with the
deformation graph framework. Our system allows small-scale cor-
rections that would be tedious to achieve by tweaking simulation
parameters, as well as more drastic modifications that go beyond
the capabilities of a pure simulation. In this example, particle posi-
tions are precomputed with a fluid simulation. A linear deformation
graph is built by sampling the path that a single particle travels over
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Figure 6: The user sculpts full body pose changes as well as detailed modifications to the raptor’s head. Yellow boxes indicate single-vertex
handle constraints, while the green region determines the fixed constraints.

Original Edit 1 Edit 2

Figure 7: Interactive edits on un-merged range scans.

Figure 8: Three frames from an edited mesh animation.

time. Nodes are created at fixed time intervals, and graph edges
connect each sample to the previous and subsequent ones. The in-
fluence of the graph on each particle is not fixed but varies with time
as the particle moves through space. As demonstrated in the video,
the user can interactively sculpt the shape of the particle stream.
The edited version retains the dynamic appearance of the simula-
tion, while conforming to the desired edits.

Efficiency. As Table 1 indicates, our implementation achieves in-
teractive performance for all examples shown. The time required
for each Gauss-Newton iteration, indicated by the “Solve” column,
is usually around 20 to 30ms. For the giraffe model, we show tim-
ing statistics for as many as 5,000 handle constraints, listed in the
“Csts” column. The solver still maintains interactive performance
with only 38ms required for each Gauss-Newton iteration. For the
dino model, the timing increases from 19ms for a graph of 222
nodes to 148ms for a graph of 1,048 nodes. The graph deformation
is transferred to the embedded shape using a software implemen-
tation of Eq. 2, with timing shown in the “Def” column. A GPU
implementation may further improve performance. Our application
deforms the mesh, displays the result, and polls the user-interface
at fixed intervals of 100ms, or sooner if the solver converges.

Original Edit 1

Edit 3Edit 2

Figure 9: Direct manipulation of simulated particles.

6 Conclusion

We have presented a shape manipulation algorithm for embedded
deformation that meets the goals of detail-preserving mesh editing
in the framework of space deformations. Our method is notable
due to its simplicity, efficiency, and versatility. For traditional mesh
editing, our algorithm performs comparably to existing nonlinear
methods. However, it applies as well to meshes with many con-
nected components, polygon soups, point-based representations,
and mesh animations. The deformation graph is easy to construct
and corresponds closely to the embedded shape. It facilitates mesh
animations since the graph can be passively moved with the mesh.
The reduced model ensures that the complexity of the deformation
algorithm is not tied to the geometric complexity of the embedded
object, while the optimization procedure strives to preserve shape
features in a natural fashion.

Current limitations of our method direct us to areas of future work.
The structure of the deformation graph is static during an edit-
ing operation and determines the achievable deformation complex-
ity. Fine-scale edits cannot be represented by a coarse-scale graph.
However, in our experience, this restriction is not severe, since
graph creation is light-weight. A coarse graph can easily be dis-
carded and replaced with a more detailed one. Nevertheless, a more
elegant solution would be to dynamically update the graph struc-
ture based on the user’s edits. The individual terms of the objective
function tell us when and where errors occur and indicate when
the graph is poorly suited for the desired deformation. These error
terms provide a starting point for a dynamic update strategy.



Model Vertices Nodes Csts Solve Def
Raptor 85,792 226 27 20 ms 22 ms
Giraffe 79,226 221 13 17 ms 20 ms
Horse 8,431 303 10 23 ms 2 ms
Fluid ˜1,070 107 8 4 ms 0.5 ms
Giraffe 79,226 221 670 20 ms 20 ms
Giraffe 79,226 221 1,900 25 ms 20 ms
Giraffe 79,226 221 5,000 38 ms 20 ms
Dino 10,002 222 540 19 ms 3 ms
Dino 10,002 425 540 41 ms 3 ms
Dino 10,002 1,048 540 148 ms 3 ms

Table 1: Statistics and performance data for the interactive edits.
Timing is measured in milliseconds on a 2.4GHz Intel Core 2 Duo
machine with 2GB of RAM. Our solver is single-threaded and uses
only one core. The number of vertices for the fluid model represents
the average per frame.

The spatial nature of our method may result in part of the graph
influencing an undesired area of the shape, such as a hand node
influencing the leg if a character’s arms are by its side. With mesh
representations, this problem is solved by considering geodesic dis-
tances along the surface. However, in our general setting, geodesics
are ill defined. Since these problems are rare, we believe the most
appropriate solution is to rely on the user to fine-tune the spatial
associations with a simple user interface to “cut” undesired con-
nections. For example, the user would draw a stroke between the
leg and the hand when the undesired influence becomes noticeable.

In our prototype implementation, we have incorporated only a
handful of different shape representations. Future work will explore
additional ones, such as NURBS, subdivision, and implicit sur-
faces, 2D images, and 3D volumetric data such as MRI scans, the
visible human data set, or simulated pressure fields. For NURBS
and subdivision surfaces, a straightforward extension to the posi-
tional constraints would allow the user to directly manipulate points
on the surface itself, rather than those that define the control hull.
The extension to implicit surfaces and sampled grid data is less
clear. However, one could imagine building a deformation graph
by sampling a user-selected level set and resampling the data af-
ter applying the solved-for deformation. Pursuing these goals will
extend intuitive editing to additional situations where it is lacking.
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