
Algot: An Educational Programming Language with
Human-Intuitive Visual Syntax

Sverrir Thorgeirsson
ETH Zürich

Zürich, Switzerland
sverrir.thorgeirsson@inf.ethz.ch

Zhendong Su
ETH Zürich

Zürich, Switzerland
zhendong.su@inf.ethz.ch

Abstract—Empirical research suggests that programming lan-
guage syntax is a common impediment for beginners, a concern
that is mitigated to a varying degree by visual programming. In
this paper, we introduce a novel visual programming language
that is founded on program synthesis and the programming-by-
demonstration paradigm. By using an intuitive visual syntax, we
show how we can meet our primary goal of providing support
to computer programming novices in exploring foundational
programming concepts. We present the language’s current and
planned use in computer science education, provide preliminary
evidence for its effectiveness, and discuss its future possibilities.

Index Terms—computer science education, visual program-
ming, programming-by-demonstration

I. INTRODUCTION

Computer programming is often perceived as a demanding
cognitive activity which is difficult for beginners to learn
and for experts to perform well. In particular, courses on
introductory programming are reported to have high failure
rates, a contested assertion [1], [2] that is nevertheless used to
argue in favor of new paradigms, approaches, and interventions
in computer science education.

For over a decade, the block-based programming language
Scratch has been at the forefront of efforts to make program-
ming easier and more accessible. Originally designed to appeal
explicitly to children via youth-oriented media manipulation
activities, such as animated stories and games [3], Scratch
has been an enormously successful experiment with millions
of users [4] inside and outside of the classroom. Aside from
presenting programming in a simple and visually appealing
environment, Scratch makes syntax errors—a significant prac-
tical concern for beginners—effectively impossible; its drag-
and-drop language design means that the user cannot join two
blocks if doing so results in an invalid statement [5].

Despite this radical departure in code composition when
compared to textual programming, the resulting imperative
code resembles familiar textual languages. Since Scratch is
often considered a stepping stone for beginners before they
arrive at more conventional languages [6], [7], keeping similar
syntax can be an attractive design property. However, it also
means that some conceptual problems with textual program-
ming syntax may persist, even if the users cannot compose
code with syntax errors.

In this paper, we present a minimal, non-arithmetic visual
language prototype (Fig. 1), Algot, that is also motivated by the

Fig. 1: A screenshot of the Algot system. The picture shows a
snapshot of a program construction where the user has instan-
tiated several arrays and a tree. For a full system description,
see Section III.

needs of beginners to programming. However, we have taken
a different approach in the sense that our language syntax,
both in terms of composition and outcome, imitates its visual
semantics to an extreme extent. In doing so, we do not only
eliminate syntax errors, but also aim to make programming
more intuitive. We will briefly discuss possible applications
of the language and our vision for its future use.

II. BACKGROUND

A. Introductory Computer Science

When preparing an illuminating classroom study that was
published in 2006 [8], researchers designed a categorization
of CS student errors with items such as “stuck on basic
design”, “problem naming things”, and errors pertaining to
specific programming concepts such as loops and boolean
expressions. This list, which has since been adopted by other
CS education researchers [9], was then used to classify the
types of errors that prompted students to ask for help. The
category “trivial mechanics”, which covers mistakes such as
missing semicolons and indentation errors, contained by far



the most frequent problem types that prompted students to
seek assistance.

Although the results of this study have been slightly mis-
represented,1 they are important since they quantify to which
extent syntax errors impact beginner programmers. Generally
speaking, syntax has been considered a cognitive load for
students [11], a barrier [12], [13], and a source of frustration
and boredom [14]. Efforts to circumvent or change syntax
education have taken shape both via innovative programming
language design and by making syntax and problem-solving
separate parts of the introductory CS curriculum [15].

Algorithm visualization (AV) as an intervention in computer
science education dates back to at least the late 1970s with
the production of the short film Sorting Out Sorting [16].
Since then, hundreds of AVs have been implemented [17],
and many of them remain in use in the classroom, often as a
complement to other educational materials. AV research is an
active field, and recent developments include the JavaScript
AV development library (JSAV) [18], a library that allows
instructors to construct their own visualizations using modern
web technologies.

A review in 2002 by Naps et al. [19] found that AV
tools have limited educational benefits unless they engage
the user in an active learning activity. Some suggested types
of engagement are to ask students to create their own input
dataset, to make predictions regarding future visualization
states, and to construct their own visualizations. Mirroring
Bloom’s knowledge-based taxonomy [20], Naps et al. [19]
define a non-hierarchical engagement taxonomy of AVs that
emphasizes interaction and presentation. A study by Hund-
hausen et al. [21] also found that students do not benefit from
passively viewing AVs and that the manner in which students
engage with the tool is the most important factor in predicting
its effectiveness.

B. Programming-by-Demonstration

The process under which a computer program is generated
from an algorithm may be considered a mapping from a
syntactic domain (e.g., symbol manipulation or visual opera-
tions in a programming language) to a semantic domain [22].
This process is an example of an implementation, which in a
broad sense means a realization of a specification [23]. Un-
der the programming-by-example (PbE) paradigm [24], [25],
implementation occurs when the user generates a program
by generating input-output examples and some mechanism
synthesizes the examples to a program, for example a rule-
based expert system or a machine learning algorithm. Distinct
demonstrations (e.g., input-output examples) can be used to
generate the same program.

Research into PbE is closely tied to its parent field of
program synthesis, which develops mechanisms for construct-
ing programs from input-output examples or other forms of

1Leinonen et al. [10] claim that a majority of the issues that students faced
were due to “trivial mechanics,” but during both years in which the study
took place, it was only the plurality of the issues; for instance, the general
category “background problems” contained a greater source of errors.

TABLE I: Design principles from Victor’s essay Learnable
Programming [30]. Items (a)–(e): principles for the program-
ming environment. Items (i)–(v): principles for the program-
ming language. Each interpretation is directly from the essay.

The learner can Interpretation

(a) read the vocabulary what do these words mean?
(b) follow the flow what happens when?
(c) see the state what is the computer thinking?
(d) create by reacting start somewhere, then sculpt
(e) create by abstracting start concrete, then generalize

The language provides Interpretation

(i) identity and metaphor how can I relate the
computer’s world to my own?

(ii) decomposition how do I break down my thoughts
into mind-sized pieces?

(iii) recomposition how do I glue pieces together?
(iv) readability what do these words mean?

user intent. As such, this is not a new line of research.
In 1998, Lau and Weld suggested that PbE systems should
use a machine learning methodology for program generation;
they consider the alternative of rule-based heuristics (pop-
ular in early artificial intelligence research) to be “brittle,
laborious to construct, and difficult to extend” [26]. In the
modern day, machine-learning based PbE is an active area
of research within robotics, where the paradigm is instead
called programming-by-demonstration and is used to allow
non-experts to program robots by demonstrating behavior via
examples [27] [28].

C. Creation-Design Connection
Bret Victor, software engineering innovator and interface

designer, held an influential lecture in 2011 titled Inventing
on Principle [29]. In this talk, Victor presents his principle
that creators need an “immediate connection” with their cre-
ations. To support his claim, Victor used several examples to
demonstrate how direct manipulation on graphical components
can foster exploration and creativity.

In Victor’s follow-up essay Learnable Programming [30],
he claims that the goals of a programming system are to
“support and encourage powerful ways of thinking” and “to
enable programmers to see and understand the execution of
their programs.” To that end, some design principles for new
programming languages and their environment are put forward
(see Table I).

III. SYSTEM

A. Language Description
Algot is a minimal programming language that was created

under the following design principles:
1) The program state should always be visible to the user

(design principle c in Table I). Composed commands
are both executed immediately and have an immediate
visible effect on the program state.

2) Whenever appropriate, the operations of the program
share the same syntactic and semantic meaning (design
principle a in Table I).



(1) To COMPARE two elements, click on them in any order. The selected elements will change their hue to indicate that they
are under comparison; if one element is larger than the other, it will be displayed in green while the other one is displayed in
red. If the elements are equal, they are displayed as gray.

(2) To SWAP elements, one can either
(a) click on an element that is under comparison. If there exist two such elements, they will now be swapped.
(b) drag one element onto another. The two elements will be swapped.

(3) To CANCEL an element comparison, the user will click on an unmarked part of the screen. This is considered a command
and will be displayed as such in the history bar; in programming terms, it is equivalent to explicitly terminating the scope
initialized by the previous command.

(4) To INSERT one or more elements anywhere, drag them to the corresponding index.
(5) Similarly, to COPY variables to a data structure, the user will drag it onto the data structure name.
(6) To initialize a NEW DATA STRUCTURE, select the corresponding gray icon.
a) For arrays, its number of empty elements in the array is determined by which gray element is selected. To initialize an

empty array, the user initializes an array with only a single element.
b) For trees, the user can initialize a new tree by selecting the gray tree icon (bottom left on Fig. 1). To insert a node to an

existing tree, the user should either (i) select a gray child node to insert an node with no value, or (ii) drag a node onto a
gray element.

(7) To concatenate (MERGE) two arrays, the user will drag an array name onto another.

Fig. 2: A brief description of the central Algot array commands along with each corresponding icon.

Fig. 3: A demonstration of an Algot implementation of the algorithm merge sort. The textual representations of the language
operations have been colored for clarity and diagrams of the program state have been embedded.

3) The language environment should have a mechanism to
automatically repeat similar operations if a pattern is
detected.

4) The language should support the creation of algorithm
visualizations that are on the highest level of Naps et
al.’s engagement taxonomy.

To realize this vision, we implemented the programming
environment in the following way:

1) The environment contains the following three modules:
a) Visual representation of all variables and data

structures that have been initialized. This module
supports direct manipulation to modify the pro-
gram state.

b) A scrollable history bar that displays all the com-
mands that have been composed and executed since
the program was initialized. The user can interact
with the icons in the history bar by hovering and

clicking.
c) A control bar with some added functionality, i.e.,

the buttons repeat (see below), undo and restart.
A screenshot of this can be seen in Fig. 1.

2) The commands that the language supports can be seen
in Fig. 2. For example, the INSERT operation can be
performed by dragging an element onto a new area (such
as an array index), causing the respective elements to
change place. This is a visual metaphor that shows how
we use the language syntax to imitate the corresponding
semantics.

3) The environment has a repeat-button that uses a simple
rule table to make programming less tedious for the user.
If a match is found in the rule table, the repeat button
becomes selectable. For example, Rule 1 indicates that
if the user has been swapping adjacent elements in an
array, selecting the repeat button will swap the next



Fig. 4: Four snapshots of the COMPARE and SWAP
operations in action.

adjacent pair, provided it exists.
4) As the user creates the programs by directly manipulat-

ing visual representations of data structures, the resulting
programs function as algorithm visualizations; learners
can therefore use the language to both construct and
present their own visualizations.

We believe that the advantage of using a rule-based system
to synthesize programming instructions, in comparison to a
machine learning-based approach (Section II-b), is that the
language becomes simpler to use, understand and reason
about.

By describing the language as minimal, we mean that its
expressiveness is limited. The language supports the following
concepts:

a) primitive conditionals, i.e., only one level of nesting.
Algot’s central operation is number comparison. Com-
paring two numbers creates a new scope for a single
command.

b) iteration by means of program synthesis. When it is
possible to select the repeat button, the prior commands
have followed a pattern that can be continued. Selecting
the button will continue this pattern.

c) variable assignment. One-dimensional variables can be
initialized by initializing an array of length one, and the
variable can be assigned a value with the INSERT
operation.

More system information can be found on the project
homepage (algot.com).

B. Examples

To give a glimpse into the capabilities of the system,
we include two example programs and a discussion of their
mechanics. We refer to the visual commands of the language
by using the textual labels in Table 2.

The example program in Fig. 3 shows how the user can
use the merge sort algorithm to sort an input array with 8

Fig. 5: A demonstration of adding a new value to a max-heap
using Algot.

integer elements. To demonstrate how the operations impact
the program state, the code has been illustrated with UI
screenshots after certain operations have been executed.

Fig. 5 shows how the program state changes when perform-
ing operations on a tree (a). In this case, the user wants to
insert a value to a binary max heap. To do so, the typical
procedure is to insert the element at the end of the heap and
then percolate up, i.e., iteratively compare and swap values
with its parent until the root of the tree is reached or a parent
node with a higher value is found. Here, the user inserts the
value 7 as a child to the node 4 (b), then compares (c) and
swaps (d) the parent node 4 and the child node 7. Comparing
the root node 9 and its child node 7 (e) shows that the root
node is larger, so no change is made (d).

IV. APPLICATIONS

In its current form, Algot could be described as an
algorithm-focused programming language; it can be used
for precise algorithm demonstrations without using or un-
derstanding textual programming syntax. As such, a natural
application for the language and its environment is to assess
its users’ procedural understanding of algorithms. Further-
more, the programming-by-demonstration paradigm makes the
language highly suitable for knowledge-based assessment; if
Algot can identify what the user wants, it should also mean
that the user understands it themselves.

A second educational application is exploration. Exploration
is considered by contemporary learning theorists important for
learners [31], and there is ongoing research interest in combin-
ing direct instruction with constructivist-inspired exploratory
learning activities [32], [33]. In computer science education,
Algot can be used to support exploration during problem-
solving activities, either on its own or as a complement to
textual programming tasks.

Beyond education, it is our aim to expand the language to
support more general programming. To do this, we plan to
start by adding support for a visual handling of arithmetic
and boolean connectives, input-output communication with
files outside of the system, and additional data structures.
Future work includes how to achieve this while preserving
our language design principles and keeping the complexity of
the system to a minimum.

https://algot.com


V. ACKNOWLEDGEMENTS

We would like to thank the members of the online com-
munity Future of Coding (futureofcoding.org) for the helpful
conversations during the development of the project.

REFERENCES

[1] A. V. Robins, “Novice programmers and introductory programming,”
The Cambridge handbook of computing education research, vol. 1, pp.
327–376, 2019.

[2] J. Bennedsen and M. E. Caspersen, “Failure rates in introductory
programming: 12 years later,” ACM inroads, vol. 10, no. 2, pp. 30–36,
2019.

[3] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond, “The
Scratch programming language and environment,” ACM Transactions on
Computing Education (TOCE), vol. 10, no. 4, pp. 1–15, 2010.

[4] D. Weintrop, “Block-based programming in computer science educa-
tion,” Communications of the ACM, vol. 62, no. 8, pp. 22–25, 2019.

[5] D. Weintrop and U. Wilensky, “Comparing block-based and text-
based programming in high school computer science classrooms,” ACM
Transactions on Computing Education (TOCE), vol. 18, no. 1, pp. 1–25,
2017.

[6] R. B. Shapiro and M. Ahrens, “Beyond blocks: Syntax and semantics,”
Communications of the ACM, vol. 59, no. 5, pp. 39–41, 2016.

[7] D. Bau, J. Gray, C. Kelleher, J. Sheldon, and F. Turbak, “Learnable pro-
gramming: blocks and beyond,” Communications of the ACM, vol. 60,
no. 6, pp. 72–80, 2017.

[8] A. Robins, P. Haden, and S. Garner, “Problem distributions in a
cs1 course,” in Proceedings of the 8th Australasian Conference on
Computing Education-Volume 52, 2006, pp. 165–173.

[9] P. A. Silva, B. J. Polo, and M. E. Crosby, “Adapting the studio based
learning methodology to computer science education,” in New directions
for computing education. Springer, 2017, pp. 119–142.

[10] A. Leinonen, H. Nygren, N. Pirttinen, A. Hellas, and J. Leinonen, “Ex-
ploring the applicability of simple syntax writing practice for learning
programming,” in Proceedings of the 50th ACM Technical Symposium
on Computer Science Education, 2019, pp. 84–90.

[11] R. Lister, “Computing education research programming, syntax and
cognitive load,” ACM Inroads, vol. 2, no. 2, pp. 21–22, 2011.

[12] P. Denny, A. Luxton-Reilly, E. Tempero, and J. Hendrickx, “Understand-
ing the syntax barrier for novices,” in Proceedings of the 16th annual
joint conference on Innovation and technology in computer science
education, 2011, pp. 208–212.

[13] A. Stefik and S. Siebert, “An empirical investigation into programming
language syntax,” ACM Transactions on Computing Education (TOCE),
vol. 13, no. 4, pp. 1–40, 2013.

[14] N. Bosch and S. D’Mello, “The affective experience of novice com-
puter programmers,” International journal of artificial intelligence in
education, vol. 27, no. 1, pp. 181–206, 2017.

[15] J. M. Edwards, E. K. Fulton, J. D. Holmes, J. L. Valentin, D. V.
Beard, and K. R. Parker, “Separation of syntax and problem solving
in introductory computer programming,” in 2018 IEEE Frontiers in
Education Conference (FIE). IEEE, 2018, pp. 1–5.

[16] R. Baecker, “Sorting Out Sorting: A case study of software visualization
for teaching computer science,” Software visualization: Programming as
a multimedia experience, vol. 1, pp. 369–381, 1998.

[17] C. A. Shaffer, M. L. Cooper, A. J. D. Alon, M. Akbar, M. Stewart,
S. Ponce, and S. H. Edwards, “Algorithm visualization: The state of the
field,” ACM Transactions on Computing Education (TOCE), vol. 10,
no. 3, pp. 1–22, 2010.

[18] V. Karavirta and C. A. Shaffer, “Creating engaging online learning
material with the JSAV JavaScript algorithm visualization library,” IEEE
Transactions on Learning Technologies, vol. 9, no. 2, pp. 171–183, 2015.

[19] T. L. Naps, G. Rößling, V. Almstrum, W. Dann, R. Fleischer, C. Hund-
hausen, A. Korhonen, L. Malmi, M. McNally, S. Rodger et al., “Ex-
ploring the role of visualization and engagement in computer science
education,” in Working group reports from ITiCSE on innovation and
technology in computer science education, 2002, pp. 131–152.

[20] B. S. Bloom, “Taxonomy of educational objectives: The classification
of educational goals,” Cognitive domain, 1956.

[21] C. D. Hundhausen, S. A. Douglas, and J. T. Stasko, “A meta-study of
algorithm visualization effectiveness,” Journal of Visual Languages &
Computing, vol. 13, no. 3, pp. 259–290, 2002.

[22] W. J. Rapaport, “Implementation is semantic interpretation,” The Monist,
vol. 82, no. 1, pp. 109–130, 1999.

[23] R. Turner and N. Angius, “The philosophy of computer science,” 2013.
[24] A. Cypher and D. C. Halbert, Watch what I do: programming by

demonstration. MIT press, 1993.
[25] D. C. Halbert, “Programming by example,” Ph.D. dissertation, Univer-

sity of California, Berkeley, 1984.
[26] T. A. Lau and D. S. Weld, “Programming by demonstration: An

inductive learning formulation,” in Proceedings of the 4th international
conference on Intelligent user interfaces, 1998, pp. 145–152.

[27] F. Steinmetz, V. Nitsch, and F. Stulp, “Intuitive task-level programming
by demonstration through semantic skill recognition,” IEEE Robotics
and Automation Letters, vol. 4, no. 4, pp. 3742–3749, 2019.

[28] S. Calinon, “Learning from demonstration (programming by demonstra-
tion),” Encyclopedia of Robotics, pp. 1–8, 2018.

[29] B. Victor, “Inventing on principle,” https://vimeo.com/36579366, Febru-
ary 2012.

[30] ——, “Learnable Programming: designing a programming system
for understanding programs.” Published online: http://worrydream.com/
LearnableProgramming, 2012.

[31] A. M. Loehr, E. R. Fyfe, and B. Rittle-Johnson, “Wait for it... delaying
instruction improves mathematics problem solving: A classroom study,”
The Journal of Problem Solving, vol. 7, no. 1, p. 5, 2014.

[32] J. P. Weaver, R. J. Chastain, D. A. DeCaro, and M. S. DeCaro, “Reverse
the routine: Problem solving before instruction improves conceptual
knowledge in undergraduate physics,” Contemporary Educational Psy-
chology, vol. 52, pp. 36–47, 2018.

[33] K. Loibl and T. Leuders, “Errors during exploration and consolida-
tion—the effectiveness of productive failure as sequentially guided
discovery learning,” Journal für Mathematik-Didaktik, vol. 39, no. 1,
pp. 69–96, 2018.

https://futureofcoding.org
https://vimeo.com/36579366
http://worrydream. com/LearnableProgramming
http://worrydream. com/LearnableProgramming

	Introduction
	Background
	Introductory Computer Science
	Programming-by-Demonstration
	Creation-Design Connection

	System
	Language Description
	Examples

	Applications
	Acknowledgements
	References

