Comparing Cognitive Load Among Undergraduate
Students Programming in Python and the Visual
Language Algot

Sverrir Thorgeirsson*
sverrir.thorgeirsson@inf.ethz.ch
ETH Zurich
Zurich, Switzerland

Karl-Heinz Weidmann
karl-heinz.weidmann@fhv.at
University of Applied Sciences Vorarlberg
Dornbirn, Austria

Abstract

This paper examines whether undergraduate students
perform better and experience lower cognitive load
when programming in Algot, a visual programming
language that supports programming by demonstra-

tion, than in the textual programming language Python.

We recruited 38 first-semester computer science uni-
versity students who had received prior instruction in
the programming language Python but were unfamil-
iar with Algot. Participants reviewed a 12-minute video
tutorial about Algot and performed the same program-
ming tasks in Python and Algot. We graded student
submissions, estimated cognitive load through physio-
logical measures and a validated post-test survey, and
evaluated free-form feedback. Our results indicated
that students experienced lower negative (extraneous
and intrinsic) and higher positive (germane) cognitive
load when programming in Algot. Additionally, stu-
dents programming in Algot scored an average grade
of 5.8 out of 10, compared to an average grade of 3.4
when using Python for the same tasks, and according
to the free-form feedback, Algot is perceived as well-
designed and easy to learn.

CCS Concepts: - Human-centered computing — Empir-
ical studies in HCI; - Social and professional topics —
Computer science education; « Software and its engi-
neering — General programming languages.

Keywords: visual programming, programming by demon-
stration, undergraduate education, algorithms and data struc-
tures, cognitive load

1 Introduction

The perception of computer programming as a challenging
activity has led researchers and practitioners to propose

*Sverrir Thorgeirsson and Theo B. Weidmann are co-primary authors.

Theo B. Weidmann*
tweidmann@ethz.ch
ETH Zurich
Zurich, Switzerland

Zhendong Su
zhendong.su@inf.ethz.ch
ETH Zurich
Zurich, Switzerland

visual languages to simplify both the learning and instruc-
tion of programming. In particular, block-based languages
like Scratch [21] are favored by some educators as they ad-
dress the challenge of syntax errors and offer a clear, visual
overview of what the language can achieve [33]. However,
these languages do not necessarily address the need for a
direct, tangible connection between how a program is com-
posed and its effects when it is run. For beginners and expe-
rienced programmers alike, it has been suggested that this
disconnect can pose a significant challenge [30].

Algot [29, 32] is a visual programming language that takes
a different approach than block-based languages. Rather than
arranging and filling in templates of imperative code, the
Algot environment supports a novel programming by demon-
stration paradigm where the user can create programs by
directly manipulating a close approximation of the program
state and by posing related, natural-language queries. This
way, Algot aims to simplify the learning process by making
program meanings clearer; when defining a program in Al-
got, it mirrors the execution process, reflecting ideas from
Bret Victor’s 2012 paper on learnable programming [31].

In an earlier paper, we speculated that the Algot program-
ming paradigm may reduce students’ cognitive load in com-
parison to textual programming [32]. While another study in-
dicates that Algot may have some effectiveness in education
[28], until now, the hypothesis has Algot lowers students’
cognitive load not been subjected to empirical evaluation at
the tertiary level. In this paper, we present the first study
on Algot among first-semester university students pursuing
a degree in computer science. After administering a pre-
study self-evaluation survey of the participants’ program-
ming skills, we conducted a controlled experiment in which
the participants completed the same task in Algot and the
textual programming language Python, a common choice
[20, 22] for first-semester programming courses. While the
participants completed the tasks, we measured their cog-
nitive load via their physiological responses (eye fixations
and galvanic skin response) followed by a validated post-test

https://orcid.org/0000-0002-4455-7551
https://orcid.org/0000-0002-5484-2815
https://orcid.org/0009-0005-3019-3733
https://orcid.org/0000-0002-6731-6937

Sverrir Thorgeirsson, Theo B. Weidmann, Karl-Heinz Weidmann, and Zhendong Su

Figure 1. A sketch of the testing environment used in the
study, showing the eye-tracking equipment (top of monitor),
test instructions, the electrode cable extending from the par-
ticipant’s left hand, and a digital clock for participants to
keep track of time.

survey on cognitive load intended for computer science [14].
We also graded the quality of their solutions and collected
their free-form feedback on Algot and the study design. We
sought to answer the following research questions:

RQ1 What is the difference in cognitive load between Algot
and Python when solving introductory programming
tasks?

HO Students experience no significant difference in
cognitive load when programming in Algot.

H1 Students experience lower cognitive load when
programming in Algot.

H2 Students experience lower cognitive load when
programming in Python.

RQ2 What are the perceived advantages and challenges of
using Algot for programming, as reported by students,
compared to a traditional programming language like
Python?

HO Students report mixed results or no significant dif-
ferences between Algot and Python.

H1 Students mostly report advantages of using Algot,
such as ease of use or reduced likelihood of errors.

H2 Students mostly report disadvantages of using Al-
got, such as limitations in language features or the
need for additional learning resources.

We used a mixed methods design incorporating quantita-
tive methods to answer RQ1 and qualitative data analysis to
analyze the free-form feedback to answer RQ2.

2 Background
2.1 Cognitive Load Theory

Cognitive load theory is a theoretical framework that at-
tempts to explain how the cognitive system processes infor-
mation and how it affects learning. Originating primarily
through the work of John Sweller in the 1980s [17, 25], the
framework expanded and evolved significantly in the 1990s
[18] and has since become a major theory in the fields of
instructional design [7] and multimedia learning [13]. Cog-
nitive load theory posits that working memory has limited
capacity, and that the amount of cognitive resources avail-
able for processing new information is limited [26]. When
cognitive resources are exceeded, learning becomes less ef-
ficient and may even be impeded. In other words, learners
can be overwhelmed by the demands of a task, making it
difficult for them to process and retain new information.

Sweller [27] characterizes three types of cognitive load:
intrinsic, extraneous, and germane. Intrinsic cognitive load
refers to the inherent difficulty of the material being learned
and is determined by the complexity of the topic and the
learner’s prior knowledge of the subject. Extraneous cog-
nitive load refers to the mental effort required to process
information that is not essential for learning. It is caused
by irrelevant information or poorly designed instructional
materials. Germane cognitive load refers to the mental effort
required to integrate new information into existing knowl-
edge and to construct meaningful representations of the
learned material. Consequently, effective instruction should
aim to manage extraneous load, optimize intrinsic load, and
maximize germane load to facilitate learning.

In response to conflicting empirical studies on cognitive
load, Sweller suggested in 2019 that germane cognitive load
does not contribute to the total cognitive load, but instead
redistributes working memory resources from extraneous
activities [26]. This addresses some perceived conceptual
flaws with the original model such as its “tautological char-
acter” or unfalsifiability [3]. A 2022 review of cognitive load
theory in CS education [4] calls the former model “old CLT”.

Some instruments that have been found to correlate with
cognitive load are electroencephalography (EEG) [2], func-
tional near-infrared spectroscopy (fNIRS) [6] and heart rate
variability (HRV) [24]. Eye-tracking is also commonly used,
for example in visual computing [34]; some common mea-
sures are pupil diameter and microsaccades [9]. Eye fixation
is also commonly used, although to a lesser degree in studies
on computer programming [8]. Additionally, galvanic skin
response has been found to be a good indicator of cognitive
load with high granularity [23]. Surveys on cognitive load
such as the Paas scale [19] are also commonly used, either
on their own or in combination with physiological measures.
An 11-item Likert-scale survey on self-reported cognitive
load [14], adopted from an earlier validated instrument [11]
but intended specifically for CS education research, has been

Comparing Cognitive Load in Python and Algot

X %
© Qquery Operations Queries Patterns

© ssaner

o Is Zero?

° Has Edge?
° Has Outgoing?

Figure 2. A screenshot of operation demonstration view in

Algot. The user has set two input variables a and d and used

pattern matching to find a parent node of a.

° Is Less Than?

commonly used [5, 15]. As with the original version, this
instrument is intended to measure the three aforementioned
types of cognitive load: intrinsic, extraneous, and germane.

2.2 Algot

Algot is a visual programming language originally designed
for education [29, 32]. The central research insight driving
the development of Algot is its ability to overcome the syntax-
semantics barrier of programming through direct manipula-
tion of the program state. By enabling learners to interact
with the program state visually, Algot may allow them to fo-
cus on understanding core algorithmic concepts rather than
wrestling with syntax. This approach distinguishes Algot
from other programming languages and is intended to foster
a deeper learning experience.

In Algot, the program state is a graph. The use of a graph
to represent state is a natural choice, as the state in most
other languages form graphs too: In object-oriented pro-
gramming, as propagated by Python, for example, objects
form the object graph, where objects are regarded as nodes,
while the references between them form edges. In Algot, this
state graph is always visible in the state view (see center area
in Fig. 2). The state view allows the programmer to apply
operations and queries:

e Operations are applied to nodes and modify the state
graph, for example by deleting nodes, adding edges or
changing the value of a node. An operation applied in
the state view takes effect immediately. Certain base
operations are available in the system by default. Ad-
ditionally, the user can import libraries of operations
created by other users.

e Queries are natural-language binary questions shown
about a selection of nodes such as, “Is the value of this
node zero?” or “Is the value of node A less than the
value of node B?”.

Programs are implemented in Algot by defining new oper-
ations. An operation can be implemented via demonstration
at any time in the left sidebar of the application (see Fig. 3).
When doing so, the programmer enters the demonstration
view (see Fig. 2). Operations in Algot are defined in three
stages:

® Workspace & My Operations = %, Operations) Queries

Basics
@ revroce
+ Termpiate n Adachia

&' sum Parent and Grandparent /70~

Store sum of ¢ plus binto a

Weicome to Algot!

{ elete Node:

Math

sum

Maltiply

m Add Child

No help provided.

Figure 3. A screenshot showing the latest version of the
main Algot user interface, showing the state view (center)
and some of the available base operations (right).

1. Input stage: The input nodes of the operation are spec-
ified. In this stage, the programmer can use builtin
pattern matching to find any nodes in the connected
component of any input node.

2. Query stage: The programmer can run queries on
the modeled input nodes. Fig. 2 shows some of the
available queries that the programmer can ask about
the input nodes, such as whether a has a lower value
than b, or whether the node d has any outgoing edges.

3. Action stage: The programmer manipulates the nodes
from the input stage using existing operations (base
operations, imported operations or user-created op-
erations). Each action taken can be predicated on the
query results from the query stage.

For instance, to define an operation in Algot that computes
a pre-defined number of Fibonacci numbers and outputs
them as a linked list, the user might:

(a) define an operation Fib which takes two inputs, k and
idx, and use pattern matching to find the parent of k,
that is m (see Fig. 2);

(b) then apply the query Is Zero? on idx, and on a
negative result, append a child node c to k and call
the base operation Sum on m, k and c;

(c) and finally, decrement idx, call the query Is Zero?
on idx again, and on a negative result, call Fib on ¢
and idx.

This operation could then be used be used in a wrapper
function which computes Fib on the two first Fibonacci
numbers 0 and 1, or could be used to generate a list with
other starting values.

We refer the reader to our earlier paper [32] for a more
detailed description of the Algot semantics.

3 Method

After receiving ethics approval, the participants were re-
cruited from a first-semester computer science (CS) course

Sverrir Thorgeirsson, Theo B. Weidmann, Karl-Heinz Weidmann, and Zhendong Su

for CS majors at the University of Applied Science Sciences,
Vorarlberg, Austria, where the study was conducted.. All
40 students enrolled in the class were invited to participate.
Students received no financial compensation for their partic-
ipation, but received extra course credit.

Students who agreed to participate were asked to indi-
cate their familiarity with a few textual programming lan-
guages in order to help us determine which language the
control group should use. After reviewing the results, we
chose Python because it scored highly and its syntax is be-
lieved to be suitable for students [20]. All participants had
been taught basic Python concepts in lectures from their
degree program, for example lists, loops, conditionals, func-
tions and parameters. To calibrate the difficulty of the Python
exercises used and the ideal duration of the experiment, we
conducted a pilot experiment with a professional software
developer as a volunteer two months before the study was
conducted.

The study took place in a usability laboratory with one
participant tested at a time. Participants were first given 15
minutes to review a 12-minute video tutorial describing (i)
how to use a simplified version of Code Expert, an online de-
velopment environment developed and used at ETH Zurich
which is suitable for programming in Python, and (ii) the ba-
sics of how to program in Algot. All participants were given
the same tutorial and they were free to pause or rewind it.
Both Code Expert and Algot are web-based tools specifically
designed for use in education environments, and thus allow
for a fair comparison.

We did not expect the participants in the study to be famil-
iar with either Algot or Code Expert. Participants only knew
which language they would be using once they arrived at the
test location. To limit acquiescence bias in the post-test sur-
vey, students were not told which language or environment
was the focus of the study.

To achieve more robust results, we adopted a within-
subjects test design where each participant was asked to
complete two tasks, once in Python and once in Algot. Par-
ticipants were given 15 minutes to solve each task. We used
counterbalancing to control for order effects. Both tasks were
on manipulating a graph, a topic that the participants had
learned in an earlier course on algorithms and data struc-
tures.

The tasks were:

1. Define an operation that takes as an input a single
node a, appends two child nodes to a and assigns them
the same value as a.

2. Define an operation that takes as an input two nodes
a and b such that a has a child c. If a does not have
the value 0, change ¢’s parent to b.

The chosen tasks are simple but incorporate important
concepts in introductory CS, such as functions and function
calls, parameters and arguments, variable assignment, lists,

def add_child_nodes(def move_child_nodes(a,

node) : b):
b = add_child(node) c = get_children(a)lo
c = add_child(node)]

if not is_zero(a):
remove_edges (c)
add_edge_to(b, c)

copy_value(node, b)
copy_value(node, c)

Figure 4. Reference solutions for the tasks in Python. All
structures and concepts used in this solution were studied
by students in their courses.

and conditional statements. On a high level, the tasks require
some skills with decomposition, pattern recognition and
abstraction.

Participants were provided with a template for both lan-
guages and six functions for accessing and manipulating
the graph: is_zero, get children, remove_edges, add_child,
copy_value and add_edge_to. Documentation for these func-
tions was provided at the top of the template. The reference
solution for Python is seen in Fig. 4 and required students to
write four lines of code for each task. The available functions
and documentation closely resembles the base operations
available in Algot. The expected solutions in both languages
thus proceed almost identically.

We evaluated the quality of the participants’ solutions and
their responses on the 11-item survey on cognitive load [14].
We asked students to complete the survey for both the Algot
and Python task settings. Lastly, we invited participants to
provide free-form feedback on the study or either of the code
environments. We evaluated the responses using qualitative
coding to identify key themes and to possibly gain further
insight into our results.

To measure the participants’ physiological responses while
they completed the assignments, we measured their galvanic
skin response and eye movements. These measures were
selected to provide objective, physiological indicators of cog-
nitive load to complement the other data collected. For eye
movements, we chose to focus on fixation rather than mi-
crosaccades or pupil dilation. Accurate microsaccade mea-
surements would have required head-stabilized eye tracking
with a chin rest, but we opted for head-free eyetracking (see
Fig. 1) since this is a more natural and realistic setting. Fur-
thermore, comparing pupil dilations across the two tasks
would have required a controlled, consistent luminance level
between the two tasks.

To measure fixations, we used a Tobii eye tracker with
a sampling frequency of 60 Hz. The eye tracker uses the
Tobii Fixation Filter algorithm to process and analyze the
fixation data, a robust algorithm that accurately identifies
fixations by considering factors such as velocity threshold,
minimum fixation duration, and noise reduction [16]. For our
data analysis, we used the Tobii validity marker to ensure
the reliability of the fixation data. The validity marker helps

Comparing Cognitive Load in Python and Algot

in identifying and filtering out data points with low validity,
such as those affected by blinks, off-screen gaze, or other
artifacts that could compromise data quality. For fixation, we
only considered time points with the validity code 0 out of
4, i.e., where the data is considered highly trustworthy. We
note that given the distinct visual presentations of the two
programming environments, the eye-tracking comparisons
should be interpreted with caution.

3.1 Evaluation of Task Solutions

To evaluate the accuracy of the solutions that participants
produced in both Algot and Python, we manually reviewed
screen recordings of all tests. For both tasks, we selected
four grading criteria that closely correspond to the steps that
must be performed to solve the task and are detailed in Table
2. Each criterion is either fulfilled or unfulfilled, represented
by 1 or 0 points, respectively. When reviewing the screen
recordings, we graded the best solution each participant
produced at any point even if they later changed the solution.
Points were also awarded in Python if undefined variables a,
b or ¢ were used and the intention was clear.

Note that achieving full points does not strictly imply that
the solution is correct. For example, even if the edge from
ato c¢ in Task 2 was removed unconditionally, we awarded
points.

4 Results

Out of the 40 students invited to participate in the study, 38
consented to do so. According to our demographic survey, 13
participants were female and 25 were male. The participants
ranged in age from 18 to 36 with a median age of 21.

As reported below, we used Bayesian analysis to inter-
pret some of the data. All the Bayes factors reported have
estimation errors below 0.1%.

4.1 Self-Reported Cognitive Load

Table 1. The results from the Cognitive Load Component
Survey showing the mean and standard deviation (SD)

what we refer to as the alternative hypothesis; the null hy-
pothesis is the mutually exclusive claim. The tests returned
BF;y = 15.4 for intrinsic load, BF;, = 28.8 for extraneous
load, and BF;y = 2249 for germane load. BF;, values above
10 indicate strong evidence in favor of the alternative hy-
pothesis.

We also computed a classical Paired Samples t-test for
our hypothesis on the intrinsic, extraneous and germane
cognitive load, returning the p-values 0.002, 0.001, and p <
0.001, respectively, meaning that under the framework of
frequentist statistics, we could reject the null hypothesis.

4.2 Textual Feedback

Of the 38 students who participated, 34 submitted textual
feedback. We used software for qualitative data analysis,
MAXQDA[10], to color code the responses. After reading
through the responses to get a general sense of the data,
we identified four feedback categories: Study Design, User
Interface (UI), Algot, Python:

1. 14 participants submitted feedback or opinions on the
study design. Five participants suggested that the pre-
sentation of the provided Python functions could have
been improved, such as with syntax highlighting and
a more clear indication of their return value. Three
participants expressed that the computer laboratory
setting fell short compared to their usual program-
ming environments due to an unfamiliar keyboard
or lack of access to the internet or a debugger. Three
participants would have liked a longer or a more de-
tailed tutorial. Three participants left only positive
comments, e.g., “Everything you have to know about
the study was perfectly introduced and explained. As
I tried the study, I always knew in which phase I was
currently”

2. 13 participants had Ul-related suggestions or com-
ments on parts they found confusing. All of these
comments were on Algot. The comments were diverse
and without a strong common theme. Examples: Two

Cognitive Load ‘ Algot Mean SD ‘ Python Mean SD

participants found it too easy to accidentally delete
nodes, one participant was unsure about the meaning

Intrinsic Load 2.56 2.18 3.55
Extraneous Load 1.45 1.51 2.50
Germane Load 5.37 2.19 3.46

of certain words used in the interface such as “append”,
and one student was unsure how to delete nodes.
3. 10 participants left general comments on Algot. All of

Descriptive statistics from the Cognitive Load Component
Survey can be seen in Table 1. Using the statistical soft-
ware JASP [12], we computed the Bayesian Paired Samples
Student’s t-test to test our hypothesis, that students experi-
enced (i) lower intrinsic and extraneous cognitive load, and
(ii) higher germane cognitive load when programming the
tasks in Algot than when programming in Python. This is

these comments were positive remarks on the system
or the language, such as “I liked the simplicity of Al-
got,” “It was easier to solve the exercise in Algot, at
least for someone with little knowledge,” “Algot was
much easier to use than Python, “The Algot program
was very simple to understand”, “I really like Algot.
It reminds me of Scratch,” “I liked Algot. I could see
(younger) children use it, to make their first steps into

programming” and “Algot: it tempts a person to try

Sverrir Thorgeirsson, Theo B. Weidmann, Karl-Heinz Weidmann, and Zhendong Su

it out because it is very nicely formatted & designed
(color, structure, descriptions, etc)”

4. 12 students left comments that mentioned Python.
Most of these comments had to do with the study
design. None of the comments were positive. One
student remarked “In Python, I didnAAZt understand
what was going on, which nodes are already there, if
my code actually did anything or what I had to change
in my code”

In general, the free-form data suggests that students found
it easier solving the tasks in Algot than Python, which aligns
with the results from the cognitive load survey instrument.
Some comments from participants related to the validity of
the study and to which extent the results can be generalized
are discussed further in Section 6.

4.3 Task Solutions

We graded each submission on four criteria on a scale from
0 to 1 such that each criterion had equal weight. The results
can be seen in Table 2. The average grade on the Algot test
component was significantly higher than on the Python com-
ponent. For completeness, we computed a Bayesian Paired
Value T-Test to test the hypothesis that students would per-
form better on the tasks with Algot than Python, which
resulted in BF;o = 6413.

Table 2. Accuracy of the solution

Task 1 Algot Python
Solution adds first child u to a 0.55 0.44
Solution adds second child v to a 0.55 0.44
Solution copies value from a to u 0.50 0.23
Solution copies value from a to v 0.50 0.26
Fully Correct Solution 50% 18%
Task 2 Algot Python
Solution accesses the child node ¢ 0.73 0.10
Solution checks whether c is 0 and

correctly employs it as a predicate 0.65 0.31
Solution adds edge from b to ¢ 0.52 0.36
Solution removes edge from a to c 0.60 0.52
Fully Correct Solution 47% 5%
Average Grade Algot Python
Mean 0.58 0.34
Std. Deviation 0.42 0.34

4.4 Physiological measurements

4.4.1 Eye fixation. After preprocessing the data and ap-
plying the Tobii Fixation Filter to identify all high-validity
time points with gaze events classified as “fixation,” we

time-normalized the data to calculate the percentage of time
each participant spent fixating during the task. Data from
three participants had to be excluded since some of the eye-
tracking data from the first day of testing was accidentally
overwritten. On average, participants fixated longer while
solving the Algot task (48.0%, SD = 0.215) compared to the
Python task (21.5%, SD = 0.188). A Bayesian Paired Samples
Student’s T-Test yielded a BF;, value of 0.065, indicating a
low probability that our alternative hypothesis is true, i.e.,
that students would exhibit fewer fixation periods when
programming in Algot than Python.

In addition to our pre-planned analysis, we took a granular
look at the data and calculated the frequency of participants
fixating for more than 0.5 seconds, which suggests deep men-
tal processing [1]. Here, the results were nearly identical (22%
for both tasks). When we further increased this threshold to
1 and 2 seconds, respectively, the percentage of time spent
fixating decreases for the Algot task in comparison to the
Python task (9.2% versus 10.4%) and (1.4% versus 3.1%).

4.4.2 Galvanic skin response. After preprocessing the
skin conductance data, we calculated three measures for
each of the two tasks, Algot and Python: the mean SCL (Skin
Conductance Level), which represents the overall level of
arousal or general stress; the mean SCR (Skin Conductance
Response) amplitude, which indicates the average strength
of the individual skin conductance responses; and the SCR
frequency, which reflects the proportion of data points as-
sociated with skin conductance responses, providing infor-
mation about the occurrence of these responses during the
tasks. The descriptive statistics for these measures can be
seen in Table 3.

Table 3. Bayesian Paired Samples Student’s T-Test for three
galvanic skin conductance metrics

Algot Python BFj %

Mean SCL 34990 35080 0.28
Mean SCR Amp. 0.362 0.622 7.00
Mean SCR Freq. 0.133 0.158 8.57

On average, participants exhibited lower skin conductance
during the Algot task compared to the Python task. Our
Bayesian Paired Samples Student’s T-Test provided evidence
for differences in SCR amplitude and frequency between the
two tasks (7.00 and 8.57), suggesting that participants experi-
enced lower cognitive load during the Algot task. However,
the analysis did not show a significant difference in the mean
SCL between the tasks.

Comparing Cognitive Load in Python and Algot

5 Discussion and Threats to Validity

In this study, we sought to answer two research questions.
The first research question (RQ1) asked how Algot affects stu-
dents’ cognitive load compared to a textual programming lan-
guage like Python when solving introductory programming
tasks. Our findings suggest that students experience lower
cognitive load when programming in Algot, as indicated by
the self-report surveys, the participants’ performance, and
to some extent the physiological data. Specifically, the lower
SCR amplitude and frequency values observed for the Al-
got task compared to the Python task support H1. However,
the similar SCL values and the eye fixation data imply that
the tasks may differ in certain aspects of cognitive load, but
not in others, or that the lack of difference might be due to
variability in the physiological data or other uncontrolled
external factors.

The second research question (RQ2) aimed to explore the
perceived advantages and challenges of using Algot for pro-
gramming, as reported by students, compared to a traditional
programming language like Python. The free-form feedback
on the self-report surveys indicates that participants found
the Algot task easier, more engaging, and less demanding
than the Python task, suggesting that the hypothesis H1
(“students mostly report advantages of using Algot, such as
ease of use or reduced likelihood of errors”) is correct.

Our hypothesis is that the difference in results can be
attributed to Algot having a short feedback loop and a visible
program state, which are features considered helpful for
beginners [31]. As a prime example, participants struggled
in the rubric “Solution accesses the child node ¢” for Task 2
in Python, asking them to access a parent-child relation. This
same subtask became easier in Algot due to a visual state.
Additionally, some mistakes participants made in Python,
such as passing arguments in the wrong order to add_edge_to,
can be detected visually in Algot.

However, our results are limited by the scope of the study
such as the task selection and educational level of the par-
ticipants, and some challenges might surface as learners
progress to more complex programming tasks. In future
studies, it would be beneficial to delve deeper into long-term
learning effects, potential pitfalls, and how Algot scales with
more advanced programming concepts. Note that the tasks
were not chosen with the aim of being easier to complete
in one language than another, but rather that they could be
completed by first-semester CS students in the limited time
allocated under a thorough, within-subjects study design
where one individual is tested at a time using physiological
measurements.

Other threats to validity of the study are the ecological
validity, as the controlled laboratory environment might
not reflect the settings in which students typically program,
which may have affected their performance and cognitive
load; a few students noted explicitly that this affected their

performance. Additionally, for the internal validity, we note
that two minor experimental mishaps occurred during the
study: The testing environment terminated too early for the
first participant, and another participant encountered an
unstable internet connection during the Python tasks, but
still achieved a full score. We took this into account when
analyzing the physiological data.

6 Conclusion

This study aimed to compare the cognitive load experienced
by participants while completing tasks in two different pro-
gramming languages, Algot and Python. Our findings sug-
gest that, on average, participants experienced lower cogni-
tive load in the Algot tasks as indicated by the self-report
surveys, the participants’ performance, and to some extent
the captured physiological data. We presented a hypothesis
to explain these effects.

References

[1] Amine Abbad-Andaloussi, Thierry Sorg, and Barbara Weber. 2022.
Estimating developers’ cognitive load at a fine-grained level using eye-
tracking measures. In Proceedings of the 30th IEEE/ACM International
Conference on Program Comprehension. 111-121.

[2] Pavlo Antonenko, Fred Paas, Roland Grabner, and Tamara Van Gog.
2010. Using electroencephalography to measure cognitive load. Edu-
cational psychology review 22 (2010), 425-438.

[3] Ton De Jong. 2010. Cognitive load theory, educational research, and
instructional design: Some food for thought. Instructional science 38,
2 (2010), 105-134.

[4] Rodrigo Duran, Albina Zavgorodniaia, and Juha Sorva. 2022. Cognitive
Load Theory in Computing Education Research: A Review. ACM
Transactions on Computing Education (TOCE) 22, 4 (2022), 1-27.

[5] Barbara] Ericson, Lauren E Margulieux, and Jochen Rick. 2017. Solving
parsons problems versus fixing and writing code. In Proceedings of
the 17th Koli Calling international conference on computing education
research. 20-29.

[6] Frank A Fishburn, Megan E Norr, Andrei V Medvedev, and Chandan J
Vaidya. 2014. Sensitivity of fNIRS to cognitive state and load. Frontiers
in human neuroscience 8 (2014), 76.

[7] Paul Ginns and Jimmie Leppink. 2019. Special issue on cognitive load
theory. Educational Psychology Review 31 (2019), 255-259.

[8] Lucian José Gongales, Kleinner Farias, and Bruno C da Silva. 2021.
Measuring the cognitive load of software developers: An extended
Systematic Mapping Study. Information and Software Technology 136
(2021), 106563.

[9] Krzysztof Krejtz, Andrew T Duchowski, Anna Niedzielska, Cezary
Biele, and Izabela Krejtz. 2018. Eye tracking cognitive load using pupil
diameter and microsaccades with fixed gaze. PloS one 13, 9 (2018),
€0203629.

[10] Udo Kuckartz and Stefan Radiker. 2019. Analyzing qualitative data
with MAXQDA. Springer.

[11] Jimmie Leppink, Fred Paas, Cees PM Van der Vleuten, Tamara Van Gog,
and Jeroen JG Van Merriénboer. 2013. Development of an instrument
for measuring different types of cognitive load. Behavior research
methods 45 (2013), 1058-1072.

[12] Jonathon Love, Ravi Selker, Maarten Marsman, Tahira Jamil, Damian
Dropmann, Josine Verhagen, Alexander Ly, Quentin F Gronau, Martin
Smira, Sacha Epskamp, et al. 2019. JASP: Graphical statistical software
for common statistical designs. Journal of Statistical Software 88 (2019),
1-17.

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

Sverrir Thorgeirsson, Theo B. Weidmann, Karl-Heinz Weidmann, and Zhendong Su

Richard Mayer and Richard E Mayer. 2014. The Cambridge handbook
of multimedia learning (second ed.). Cambridge university press.
Briana B Morrison, Brian Dorn, and Mark Guzdial. 2014. Measuring
cognitive load in introductory CS: adaptation of an instrument. In
Proceedings of the tenth annual conference on International computing
education research. ACM, 131-138.

Briana B Morrison, Lauren E Margulieux, and Mark Guzdial. 2015. Sub-
goals, context, and worked examples in learning computing problem
solving. In Proceedings of the eleventh annual international conference
on international computing education research. 21-29.

Anneli Olsen. 2012. The Tobii I-VT fixation filter. Tobii Technology 21
(2012), 4-19.

Elizabeth Owen and John Sweller. 1985. What do students learn while
solving mathematics problems? Journal of educational psychology 77,
3 (1985), 272.

Fred Paas, Alexander Renkl, and John Sweller. 2003. Cognitive load
theory and instructional design: Recent developments. Educational
psychologist 38, 1 (2003), 1-4.

Fred GWC Paas. 1992. Training strategies for attaining transfer of
problem-solving skill in statistics: a cognitive-load approach. Journal
of educational psychology 84, 4 (1992), 429.

Atanas Radenski. 2006. "Python first": A lab-based digital introduction
to computer science. ACM SIGCSE Bulletin 38, 3 (2006), 197-201.
Mitchel Resnick, John Maloney, Andrés Monroy-Hernandez, Natalie
Rusk, Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosen-
baum, Jay Silver, Brian Silverman, et al. 2009. Scratch: programming
for all. Commun. ACM 52, 11 (2009), 60-67.

Christine Shannon. 2003. Another breadth-first approach to CSI using
Python. ACM SIGCSE Bulletin 35, 1 (2003), 248-251.

Yu Shi, Natalie Ruiz, Ronnie Taib, Eric Choi, and Fang Chen. 2007.
Galvanic skin response (GSR) as an index of cognitive load. In CHI'07
extended abstracts on Human factors in computing systems. 2651-2656.
Soroosh Solhjoo, Mark C Haigney, Elexis McBee, Jeroen JG van Mer-
rienboer, Lambert Schuwirth, Anthony R Artino, Alexis Battista, Tem-
ple A Ratcliffe, Howard D Lee, and Steven J Durning. 2019. Heart

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

rate and heart rate variability correlate with clinical reasoning perfor-
mance and self-reported measures of cognitive load. Scientific reports
9,1(2019), 1-9.

John Sweller. 1988. Cognitive load during problem solving: Effects on
learning. Cognitive science 12, 2 (1988), 257-285.

John Sweller, Jeroen JG van Merriénboer, and Fred Paas. 2019. Cogni-
tive architecture and instructional design: 20 years later. Educational
Psychology Review 31 (2019), 261-292.

John Sweller, Jeroen JG Van Merrienboer, and Fred GWC Paas. 1998.
Cognitive architecture and instructional design. Educational psychol-
ogy review (1998), 251-296.

Sverrir Thorgeirsson, Lennart Lais, Theo Weidmann, and Zhendong
Su. 2024. Recursion in Secondary Computer Science Education: A
Comparative Study of Visual Programming Approaches. In Proceedings
of the 55th ACM Technical Symposium on Computer Science Education
(SIGCSE 2024). Portland, Oregon. In Press.

Sverrir Thorgeirsson and Zhendong Su. 2021. Algot: an educational
programming language with human-intuitive visual syntax. In 2021
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, 1-5.

Bret Victor. 2012. Inventing on principle. In Invited talk at the Canadian
University Software Engineering Conference (CUSEC), Vol. 5.

Bret Victor. 2012. Learnable programming: Designing a program-
ming system for understanding programs. URL: http://worrydream.
com/LearnableProgramming (2012).

Theo B Weidmann, Sverrir Thorgeirsson, and Zhendong Su. 2022.
Bridging the Syntax-Semantics Gap of Programming. In Proceedings
of the 2022 ACM SIGPLAN International Symposium on New Ideas, New

Paradigms, and Reflections on Programming and Software. 80-94.
David Weintrop. 2019. Block-based programming in computer science

education. Commun. ACM 62, 8 (2019), 22-25.

[34] Johannes Zagermann, Ulrike Pfeil, and Harald Reiterer. 2016. Measur-

ing cognitive load using eye tracking technology in visual computing.
In Proceedings of the sixth workshop on beyond time and errors on novel
evaluation methods for visualization. 78-85.

	Abstract
	1 Introduction
	2 Background
	2.1 Cognitive Load Theory
	2.2 Algot

	3 Method
	3.1 Evaluation of Task Solutions

	4 Results
	4.1 Self-Reported Cognitive Load
	4.2 Textual Feedback
	4.3 Task Solutions
	4.4 Physiological measurements

	5 Discussion and Threats to Validity
	6 Conclusion
	References

