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ABSTRACT

This paper presents a comparative study of Algot, a visual pro-
gramming language designed to bridge the syntax-semantics gap
via liveness and programming by demonstration, and the textual
programming language Python. We conducted an experimental,
within-subjects study with 24 undergraduate computer science stu-
dents who performed recursion-based tasks in each language while
their cognitive load was measured using an electroencephalogram
and a validated survey instrument. The students received a brief in-
troduction to Algot, but were all familiar with Python. The students
performed significantly better when programming in Algot, but the
cognitive load levels were similar according to both instruments.
Our results provide evidence that within the domain that was tested,
Algot can be quickly learned, and that students do not find it more
cognitively demanding than working in a familiar language.

CCS CONCEPTS

« Human-centered computing — Empirical studies in HCI;
« Social and professional topics — Computer science educa-
tion; « Software and its engineering — General programming
languages.
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1 INTRODUCTION

In the essay “Learnable Programming” from 2012 [70], interac-
tion designer Bret Victor made a compelling case that traditional
programming environments are too disconnected from the way
humans naturally understand and interact with the world, thereby
impeding the learning process for novices by obscuring the mechan-
ics of computation. By demonstrating how programming environ-
ments could provide immediate, tangible feedback and visualization
of data and control flow, Victor argued that programming could
become much more accessible and intuitive. Some have taken inspi-
ration from Victor’s essay to develop new tools and programming
environments, for example the live IDE extension Theseus [35], the
machine infrastructure for digital fabrication Imprimer [69], and
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our visual programming language Algot [67, 71], which is intended
to bridge the syntax-semantics gap of programming via its liveness
and its built-in implementation of programming by demonstration.

While the arguments that Victor puts forward are primarily
supported by intuition, three recent experimental studies on Al-
got may provide a tentative empirical foundation behind the ideas
expressed in the essay. One physiological study found that under-
graduate students experienced lower cognitive load when solving
simple programming tasks in Algot than in Python [68], another
found that secondary school students demonstrated a significantly
stronger grasp of recursion after programming in Algot than after
programming with the Make-a-Block feature in Scratch [66], and
the third found that undergraduate students understood existing
CS1-level programs composed in Algot significantly better than
equivalent Python programs [22]. A difference in cognitive mech-
anisms or mental models that students employ when solving the
tasks in Algot could plausibly explain the performance improve-
ments; by allowing students to compose or view programs in a way
that resembles their execution, students may be able to focus better
on the underlying algorithms they wish to implement or compre-
hend. With a deeper understanding of whether Algot improves
performance or lowers cognitive load for more complex tasks, com-
puter science educators might have a stronger reason to consider
applying its underlying ideas when constructing other educational
tools, materials or languages, such as liveness, programming by
demonstration, direct manipulation, or the default visibility of the
program state.

In this paper, we report on a comprehensive, within-subjects
study conducted on 24 undergraduate computer science students
who solved recursion-based programming exercises in Algot and
Python while the electrical activity of the brain was measured with
a 19-channel electroencephalogram (EEG). Electroencephalography,
awell-established functional neuroimaging technique, records brain
electrical activity and is widely used in cognitive neuroscience
research, including the study of cognitive load [3]. Our objective
with this study is twofold:

(1) We aim to expand on our comparative study published in
2024 [68], which measured undergraduates’ performance
in Algot and Python on two simple programming tasks
and used eye-tracking and galvanic skin measurements
to estimate their cognitive load. We wish to find whether
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students also perform better and experience lower cognitive
load in Algot when implementing more complex algorithms
that require recursion, as opposed to the simple tasks used
in the 2024 study. We also wish to address the discrepancy
in some of the physiological measurements of the 2024
study by using an EEG, a tool that is considered to give an
objective measure of task difficulty [31].

(2) By using two measures of cognitive load, (i) a survey some-
times used in computer science (CS) research (the Computer
Science Cognitive Load Component Survey; CS CLCS) [40]
and (ii) electroencephalogram measurements, we hope to
investigate the convergent validity of the former. Conver-
gent validity means assessing whether different measures
that purport to test the same construct yield similar results
in practice.

Our research questions are the following:

RQ1 Do students perform better when solving recursion-based
programming exercises in Algot compared to Python, thus
indicating that Algot might be more effective for learning
complex programming concepts?

RQ2 Do the survey results and the EEG data support the hypoth-
esis that students experience lower cognitive load when
programming in Algot as opposed to Python, particularly
for recursion-based tasks that are traditionally considered
challenging for novices?

RQ3 Is there a significant correlation between the subjective
measures of cognitive load (as assessed by the CS CLCS)
and the measures obtained through EEG, thereby providing
evidence of the convergent validity of the CS CLCS in the
context of programming education research?

To answer the research questions, we used quantitative methods
to analyze the data from the 24 participants. The participants were
first-year CS students who were familiar with Python but not Algot.
Despite the difference in their knowledge of the two programming
languages, our hypothesis was that students would perform better
and experience lower cognitive load when programming in Algot
than in Python, which would mirror the results from our earlier
cognitive load study on the same languages [68]. We also hypothe-
sized that there would be a significant correlation between the two
measures of cognitive load.

2 BACKGROUND

Cognitive load theory (CLT), which is rooted in research by John
Sweller from the 1980s [42, 59], provides insights into how our
brain processes and learns information. The theory suggests that
our working memory has a limited capacity for handling infor-
mation and this directly impacts our ability to learn new things.
When the information load exceeds our cognitive capacity, learning
efficiency drops, making it harder to absorb and retain new knowl-
edge. CLT has been very influential in educational psychology and
has shaped educational design [55], for example in rejecting tradi-
tional instructional techniques for “[not taking] into account the
limitations of the human cognitive architecture” [54].

Sweller has outlined three distinct forms of cognitive load, that
is intrinsic, extraneous, and germane load (see Fig. 1), which he
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Figure 1: Our illustration of the three types of cognitive load
according to Sweller’s theory [63].

compared in a 1998 paper [63]. Intrinsic load is tied to the funda-
mental complexity of the subject matter and varies according to
the learner’s existing understanding of the topic. Sweller identifies
“element interactivity” as the underlying mechanism of intrinsic
load [60, 61], in which an element is “anything that needs to be or
has been learned” [61]. When elements are learned in isolation (for
example when memorizing word translations that do not depend
on each other), the interactivity is low and so is the intrinsic load,
but the opposite is true when the elements are highly interactive,
or in other words, depend on each other.

Sweller considers “schema acquisition” to be one of two criti-
cal learning mechanisms, with a schema defined as a “cognitive
construct that organizes the elements of information according to
the manner with which they will be dealt” [60]. Beckmann con-
siders extraneous load as the result of “mental activities that do
not directly contribute to schema acquisition and automation” [5].
This may be the result of presenting information that is not neces-
sary for learning or by using poorly designed instructional designs.
Sweller suggests that in case of learning designs with low element
interactivity, high extraneous load may not significantly interfere
with learning [60]. Additionally, previous research shows that the
prior knowledge of students can decrease element interactivity [10],
consequently decreasing the intrinsic cognitive load. In a 1998 pa-
per [63], Sweller distinguishes between extraneous and germane
cognitive load by considering the former as as reflection of “the
effort required to process poorly designed instruction,” while the
latter “reflects the effort that contributes to the construction of
schemas.” Therefore, effective teaching strategies should focus on
minimizing extraneous load while carefully balancing intrinsic load
and enhancing germane load to promote effective learning.

Aspects of this model of cognitive load have been reconsidered
in recent years. In response to, among else, the results of empirical
studies, Sweller proposed a significant change in 2019, finding that
germane cognitive load is not a contributor to total cognitive load,
but rather contributes towards distributing extraneous working
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memory resources elsewhere [62]. A review of cognitive load theory
in CS education from 2022 [15] refers to the original as model “old
CLT” and the revised model as “new CLT,” noting that “germane
load has been at the heart of many critiques” of the old version and
that “new CLT” is closer to the original version of Sweller’s theory
from the 1980s than the 1998 version.

The three primary methods for measuring cognitive load are

dual-task measures, questionnaires, and physiological measures [73].

Dual-task measures refer to the approach of asking participants
to complete a secondary task along with the primary task. How-
ever, a disadvantage with this method is that performing the sec-
ondary task can significantly interfere with the performance on
the primary task [44, 73]. Surveys are a more frequent measure; the
Paas-scale [45] is a commonly used survey, and in CS education
research, the Computer Science Cognitive Load Component Survey
(CS CLCS) [40] by Morrison et al., an 11-item Likert-scale survey
adapted from a validated assessment from 2013 [34], has also been
used in some studies [18, 41]. Since both the CS CLCS and the
assessment that it is based on predate Sweller’s revised theory of
CL, it measures three factors—intrinsic, extraneous and germane
CL—and should be considered in the context of the “old CLT” A
recent replication study by Zavgorodniaia et al. [75] found evi-
dence for the internal reliability of the CS CLCS, meaning that the
three factors it measures were internally consistent. A two-factor
model measuring intrinsic and extraneous CL only, which had been
tested successfully in the domain of language education [26], was
found to be a worse fit for the data. However, as Zavgorodniaia et
al. mention, their analysis does not address the construct validity
of germane CL, which they consider an open question. Without
construct validity, it is not clear whether the CS CLCS measures
germane CL as defined by Sweller’s original theory, some other
dimension of cognitive load, or possibly something else.

Studies have identified a variety of physiological measurements
which may be effective in measuring cognitive load due to their
apparent convergent validity. For example, heart rate variability
has been found to correlate with self-reported measures of cogni-
tive load [57] and so has galvanic skin response [56]. Eye-tracking
analysis is sometimes used [74], for example microsaccades and
eye fixation [21] and pupil diameter analysis [30]; however, a dis-
advantage with this is that pupil diameter can be affected by many
other factors than cognitive load, such as light conditions [23, 73].

Electroencephalography (EEG), which involves using an elec-
trogram to measure the electrical activity of the brain, is also a
well-established method in cognitive load research and is consid-
ered appropriate in educational psychology [3]. Unlike electrocor-
ticography, which requires the surgical placement of electrodes on
the brain [39], EEG is a non-invasive technique that only requires
placing electrodes on the head using a cap designed for the purpose.
EEG is considered an objective measure of the mental load of an
activity [31], which is its primary advantage. Its limitations lie in its
poor spatial resolution and susceptibility to motion artifacts such as
blinking and moving and noise from electrical interference, breath-
ing and heartbeat [3]. Some of those limitations can be addressed
by the careful preprocessing of its output data.

Time-domain signals from the EEG are often transformed into
the frequency domain to identify gamma, theta, alpha, beta and
delta bands (see Fig. 2), which correspond to different brain states
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Figure 2: The five frequency bands which are typically con-
sidered in EEG research: gamma, beta, alpha, theta and delta.

and activities. Both the alpha and theta frequency power, meaning
how much energy is transferred by the signal per unit of time, has
for a long time been considered sensitive to cognitive load [27]
and task difficulty is considered to increase with theta power and
decrease with alpha power [19]; Holm et al. [25] proposed a index
for “acute external and cumulative internal load” that they dubbed
“brainbeat,” which can be found by simply dividing the theta power
with the alpha power. However, a 2022 review found that the theta
channel alone is the best measure of cognitive load [11]. The associa-
tion of the alpha channel with cognitive load is less straightforward
according to the same review [11] and has been considered incon-
sistent by others [53], with some studies finding that power in the
alpha band is lower in attention-demanding tasks [17] and oth-
ers that increases in the alpha band corresponds to an increase in
working memory load [43]. A 2014 study found indications that
“increases in alpha activity are a behaviorally adaptive mechanism
to meet the demands of increasing [working memory] load” [37].
A 2020 EEG study of 35 participants who were shown educational
videos of varying linguistic complexity found that theta power
is correlated with participants’ self-reported intrinsic cognitive
load [8]. The assessment instrument that was used for that study is
the same one that the CS CLCS is based on.

EEG measurements have applications in education outside of
cognitive load theory, for example to measure attention [28, 65]
or emotional states [2]. A review from 2021 on EEG studies in ed-
ucation found that EEG signals are “mostly used to test students’
concentration and meditation” and that most studies “lasted less
than an hour, the sample sizes of EEG signals-based studies were
limited, and the largest study group were university students” [4].
EEG has also been used for source localization, meaning the identi-
fication of regions within the brain where electrical activity orig-
inates; for example, a 1996 study assessed the role of the left and
right brain hemisphere for solving arithmetic sign comprehension
problems [16].

In CS education research, EEG equipment has not been used
often, but some studies have been conducted; for example, a study
from 2023 used light, portable EEG instruments on 36 students
in a CS class to gauge their attention levels and found that they
correlate with learning performance [64], and a 2019 study on
nine participants found that the difficulty of programming prob-
lems could be accurately predicted using EEG data [46]. A 2016
EEG study on program comprehension with sixteen participants
found a difference between novice and expert programmers in their
brainwaves coming from some electrodes [33]. Some studies on
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program comprehension have also looked at the difference fre-
quency bands; a 2017 study found significant differences in alpha
and theta bands when presenting participants with code samples
that were meant to be confusing and non-confusing [72], and a
2018 study found that the alpha, beta and theta bands have high
discriminatory power, allowing the identifications of code more
difficult to understand [29]. Likewise, a 2021 study found that theta
and beta bands might be useful for assessing the mental effort of dif-
ferent programming activities [38]. A 2022 study [47] on program
comprehension combined EEG with eye-tracking to understand
the relationship between efficacy and measures of programming
experience. Among other results, the authors found that according
to the brainbeat measure (theta power divided by alpha power),
programmers with high efficacy experienced lower cognitive load,
although the correlation was weak.

3 SYSTEM

Algot is a visual and graph-based educational programming lan-
guage that is intended to bridge the gap between code syntax and
its semantics [71]. Similar to block-based programming languages
like Scratch, Algot limits the potential of syntax errors via its drag-
and-drop interface, but unlike Scratch, Algot users do not have
to manipulate or comprehend textual code in order to construct
programs. Inspired by the essay “Learnable Programming” by in-
teraction designer Bret Victor [70], Algot makes the program state
visible at all times and allows programmers to interact with it us-
ing direct manipulation, meaning that in order to call a specific
function, the programmer will select visually, in either order, the
function itself and the specific parts of the state that they wish to
use as function arguments.

In Algot, the program state is represented as a graph, a de-
sign decision made by its creators due to the modelling power
of graphs [71]. The “state graph” is visible within the “state view”
and consists of multiple connected components that can take the
shape of trees, cyclic graphs, individual nodes, linked lists, or ma-
trices. The nodes in these components can take numbers or short
strings as values. By default, such as when creating a new node,
their values are set to zero. By applying base operations, which are
atomic operations that exist by default, the programmer can modify
the values of the nodes or the structure of the graph. For example,
in order to increment the value of a node containing a number, the
user first clicks on the Increment base operation (which is shown
in the right sidebar of the application) and then clicks the node in
the state graph that should be incremented. Doing so will have an
immediate, live visual effect, meaning that the programmer will see
the value change in the visual representation of the state graph as
soon as the operation has executed.

The Algot programming paradigm can be considered a form of
“programming by demonstration,” a common mode of programming
in robotics [6]. To construct new programs, the programmer enters
a three-layered demonstration view in which input nodes are first
specified (including “pattern-matching” nodes that are a part of the
same connected components as the input), followed by calling oper-
ations on the inputs in the same order that they should be executed.
These operations can be called conditionally depending on the re-
sults of “queries,” which are natural-language yes-or-no statements

about the structure or values of specific nodes (e.g., whether two
nodes share the same value). These queries are displayed as small
panel windows in the interface and can be viewed at all times. This
way, the programmer can ensure that an operation is only executed
if a given statement is true or false, which are options that can be
selected in the query panel. It is possible to use multiple, separate
queries together, in which case an operation is only executed if
every queries applies (e.g., if a node a has a smaller value than node
b, and a node ¢ does not have the value zero).

To execute the same operation repeatedly, the programmer is
expected to use recursion, which, like in textual languages, means
that they must call the same operation that they are currently
defining. For instance, Fig. 3 shows that the programmer could
apply the operation Count Nodes, which is currently being defined,
on any two of the visible nodes, just like it would be possible to
apply any other operation.

To illustrate how these ideas come together, consider an opera-
tion in Algot that populates a linked list with a specified number
of Fibonacci numbers. A possible way to do this would be the
following:

(a) Define the operation Fib with two input nodes that repre-
sent the linked list of Fibonacci numbers (k) and an index
(idx) that determines how many Fibonacci numbers should
be added. The node k is expected to have the value 1 and
should have a parent with the value 0, since those are the
two first Fibonacci numbers. After this, three nodes are now
visible in the demonstration view: idx, k, and k’s parent
node.

(b) Apply the query Is Zero? on the node idx to determine
branching paths within the operation’s logic. In this case,
only the negative case matters, so the false case in the query
window should be selected.

(c) Append a new node to k using the base operation Add

Child, and then call Sum on k’s parent, k, and the newly

created node. This will find the sum of the new node’s two

preceding values and store in the new node.

Still with the negative case of Is Zero? on idx in effect,

call the base operation Decrement on idx and call Fib re-

cursively on the newly created node and idx. If the value of

idx is zero after its value was decremented, this recursive

call will not execute.

It

=

One difference between computing the above in Algot and an-
other language such as Python is that the effects of each step is
immediately visible. For instance, the programmer will see in the
visual representation of the program state whether a new child
was created after the Add Child operation is selected, which can
potentially help the programmer better understand the meaning
and effect of what they are doing and whether they made a mistake.
For a more comprehensive treatment of Algot’s semantics, we refer
to our 2022 paper [71].

Algot has been the subject of three earlier empirical studies. One
is a controlled, experimental, between-subjects study in which sec-
ondary school students were asked to compose recursive programs
using Algot and the Make-a-Block feature in Scratch, followed by
taking a post-test assessment on their conceptual and mechanical
understanding of recursion [66]. Although neither group excelled
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Figure 3: A screenshot showing the Algot environment used in the study, slightly edited to reduce whitespace.

at the programming tasks nor the assessment, the students using
Algot performed significantly better than the Scratch group at both
the tasks and the post-test. Another study, which is similar to ours,
found that undergraduate students performed significantly better at
solving programming tasks in Algot than in Python and exhibited
lower cognitive load according to the post-test CS CLCS survey and
according to some of the physiological measures used (skin conduc-
tance and eye-tracking) [68]. However, the tasks used were simple,
featuring only simple constructs such as functions and variable
assignment. Lastly, one study on program comprehension featur-
ing typical CS1 programs from a CS1 problem repository found
that students displayed a better understanding of most existing
programs in Algot than Python, in particular those featuring trees
and matrices [22].

4 METHODS

Our study was conducted with first-year computer science students
at the University of Applied Sciences Vorarlberg, Austria, who were
all recruited from the course User-Centered Technologies. The
students were familiar with programming in Python from other
courses in their degree program and had been taught introductory
algorithms, data structures, and the problem-solving strategy of
recursion.

After signing consent forms, participants were asked to answer
two demographic questions about themselves (age and gender in a
free-form question) and given a pretest (Section 4.2). They were also
asked if they had worked with Algot before and were asked to self-
assess their experience with Python on a 10-point scale. Then they
were given an approximately 10-minute tutorial on Algot and the

Python environment used for the study and a refresher on recursion
and the notion of graphs and trees (Section 4.3). Following this,
students solved recursion-related problems in Algot and Python
under a within-subjects design with counterbalancing, in which two
equally large and randomly chosen groups programmed in Algot
first and the other in Python (Section 4.4), while their cognitive load
was measured with an electroencephalogram (EEG; Section 4.5).
Students were also recorded to helped identify possible artifacts
during the EEG data analysis. Students were given 15 minutes
for each set of problems, which amounted to 30 minutes in total.
Finally, they were asked to fill out the Computer Science Cognitive
Load Component Survey (CS CLCS) [40] about the Algot-based
tasks and the Python-based tasks on their perceived cognitive load
during the study (Section 4.5). While this survey is based on an
older theory of cognitive load, it was chosen for two reasons: to
make the study results more comparable with the results from a
recent cognitive load study on Algot and Python in which the CS
CLCS was chosen [68], and since instruments based on the more
recent version of the theory have not yet been widely adapted and
tested, especially in CS education.

We used quantitative methods to analyze the data. We applied
classical paired-samples t-tests to help find whether we could reject
the null hypothesis and accept the alternative hypothesis, i.e., that
programming in Algot induces lower cognitive load. We did the
same to determine if there was a statistical difference in perfor-
mance. We also calculated the correlation with the self-reported
and EEG-based measurements using Spearman’s p. All calculations
were conducted in the statistical software JASP [36] (v. 0.18.1).
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Participants were compensated with the equivalent of approx-
imately 30 USD in the local currency and with a small bonus on
the final exam, which was considered acceptable by the local ethics
committee due to the educational value of the study and the con-
nection to the intended course outcomes.

4.1 Ethics

The ethics application was an important process due to the nature
of the data that we intended to collect from the study participants.
We received ethics approval for our research from the ethics com-
mittee at the institution in which the study took place. Standard
ethical practices were followed, such as allowing students to with-
draw from the study at any time, and to keep the data secure with
no access to third parties. Furthermore, students were allowed to
participate in the study without using the EEG equipment, without
specifying a reason, and still receive full compensation for their
participation. We also followed the stipulation made by the ethics
committee that the teacher of the course from which the students
were recruited was not allowed to participate in the data collection;
instead, only researchers with no relationship to the students did
so.

4.2 Pretest

We administered a pretest with two questions from the recent Ne-
braska Assessment of Computing Knowledge (NACK; see Fig. 4),
chosen because the assessment is publicly accessible and has re-
cently been validated on a large number (N = 1318) of under-
graduate computer students using item response theory [48]. Since
students were only expected to spend about an hour in total on the
entire experiment, we could not administer the entire assessment.

The purpose of the pretest was twofold. First, we wished to gain
a better understanding of the computing knowledge background of
the participants, which is important since low scores would imply
that the participants lack foundational knowledge, compromising
the validity of the study. Second, we wished to improve the gener-
alizability of our findings; in case of follow-up studies, researchers
can compare their pretest results with ours to help find if differences
in computing knowledge among samples may explain variations in
outcomes.

4.3 Tutorial

We gave the participants a short general introduction to Algot,
including the state view and how to apply base operations on nodes.
We then showed them how to compute the following operations in
Algot:

(1) Increase the value of an input node by two.

(2) Increment the value of the child of an input node.

(3) Conditionally increment the value of an input node if it has

the same value as another input node.
(4) Increment all the values in a list using a recursive function.

We also showed participants how to use the online Python IDE,
including how to test their solution on example inputs and against
the hidden test cases that were used to evaluate their solution. The
order they were given the Algot and Python parts of the tutorial
was the same as the order they were assigned for solving the tasks.
Students were also shown how to solve a specific recursive problem

in both Algot and Python, namely how to count the number of
nodes in a tree that are larger than a given value (see the Python
example in Fig. 5). This problem resembled the ones they were
asked to solve in the study.

4.4 Tasks
The participants were asked to solve two tasks in Algot and Python:

(1) Compute the number of nodes in a binary tree (and in Algot,
to store it in one of the input nodes; see a screenshot in
Fig. 3).

(2) Double the values of all nodes in a linked list that are larger
than a given value.

The tasks were chosen since they tested two different types of
data structures (trees and linked lists), required recursion, and we
considered it realistic to solve them in 15 minutes in each language,
given the prior knowledge of the students. The participants were
provided with a helper sheet explaining the terminology (trees,
binary trees, nodes, root nodes, and linked lists). Similar to the 2024
study [68], students were provided with a list of functions in Python
they could use to solve the task such as get_value, get_children,
copy_value(a,b) and has_outgoing(a), and similar base opera-
tions and base queries in Algot.

4.5 Electroencephalogram

The EEG equipment used for the study was Neurofax EEG-1200, a
10-20 system manufactured by Nihon Kohden. We used a sampling
frequency of 200 Hz and all nineteen provided channels (see Fig. 6).
To analyze the data, we used EEGLAB [7], a MATLAB toolbox
designed for electrophysiological research that is widely used by
EEG researchers [12]. To process the data files from the Neuro-
Fax device, we used EEGLAB’s NihonKoden extension released by
Makoto Miyakoshi [1]. We began by applying a high-pass filter set
at 1 Hz, following the procedure recommended by the EEGLAB
developers. High-pass filters on EEG data have been shown to im-
prove performance [13] and although they have a small distorting
effect, they are a common pre-processing step as they help reduce
noise [58]. Following this, we used Clean Rawdata,' an EEGLAB
extension used by many authors [14, 20, 52], to process the data in
the following way, using default settings whenever possible:

(1) We removed channels with low activity (flat for more than
5 seconds), contained much noise (higher standard devia-
tion than 4), or were poorly correlated with other channels
(lower correlation than 0.8).

(2) We removed data using Artifact Subspace Reconstruction
(ASR) [9], a data artifact correction method that has become
increasingly popular in the EEG community [49].

(3) Lastly, we rejected bad portions of data where a set percent-
age of channels (25%) passed a standard deviation threshold.
The threshold window was set to the predefined value of
"-Inf, 7" standard deviations.

After the preprocessing of the data, we applied power spectral
analysis to compare the cognitive load of the participants while

!See https://eeglab.org/others/EEGLAB_Extensions.html or the GitHub repository
https://github.com/scen/clean_rawdata.
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1. Given the following code snippet, what are the
values of persons[0] and persons[1]?

int persons[10];
persons[0]=1;
persons[1]=2;

int temp=3;
temp=persons[0];
persons[@]=persons[1];
persons[1]=temp;

2. Why are algorithms necessary in computational problem solving?

L

1L

1L

IV. Algorithms are needed for programs to compile.

The concept of algorithm can be used to define the notion of de-
cidability — whether an outcome can be achieved by following a
set of steps.

An algorithm is a blue-print for the actual implementation of a
solution, enabling the conversion of a conceptual solution to a
program.

Expressing solutions in algorithms allow us to solve problems
without having to deal with programming details that might be
specific to a particular programming language.

Figure 4: Questions 5 and 8 from the Nebraska Assessment of Computing Knowledge [48], which were used on the pretest
ahead of the study. Each question came with five and four multiple choice options, respectively; see the original 2020 paper for

more information.

# Root is a node b is a number
def count_larger(root,
count = 0
if get_value(root) > b:

count = 1

in a binary tree.

b):

for child in
count +=

get_children(root):

count_larger (child, b)

return count

Figure 5: Example of recursive code in Python that was
shown in the tutorial to students. The functions get_value
and get_children were provided and explained.
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Figure 6: The standard 10-20 EEG model, showing all 19 chan-
nels.

programming in Algot and Python. We decomposed the time do-
main signals into the frequency domain over two bands: alpha (8-13
Hz) and theta (4-8 Hz), and then calculated the absolute power of

the bands using the unit ‘UH—VZZ which is suitable for describing the
power distribution over the frequency of a signal that has small
voltage levels such as those found in brainwave activity. The code
we used to find the power values can be found in the Swartz Cen-
ter for Computational Neuroscience’s wiki page “Makoto’s useful
EEGLAB code” along with a description of the above unit.?

We also compared the EEG data with the results from the CS
CLCS. We are not familiar with a widely-accepted procedure for
using EEG to distinguish between the types of cognitive load in
either Sweller’s original theory or Sweller’s revised 2019 theory of
cognitive load. As a simplification, we took the average values of the
extraneous and intrinsic components and compared it against the
theta value, which we consider the most reliable form of cognitive
load according to Chiki et al’s recent meta-review [11].

A sketch showing a part of the study setup can be seen in Fig. 7.

5 RESULTS

32 students registered for the study, of which one did not make
an appearance. 24 participated in the main EEG component of
the study. Each participant was tested at a time for approximately
one hour. The study spanned three days in total with about ten
participants attending each day.

One student was randomly selected to test the study materials
without EEG monitoring a day before the study began. This was to
lower the risk of software failure and to help identify errors. Five
additional other participants tested the equipment in a pilot setting
on the first day with limited tutoring and with only five active EEG
channels, which helped us refine the experimental setup, ensure
the equipment was working properly, and help those working with
the data collection familiarize themselves with the equipment, to
ensure the comfort and safety of all study participants and staff.

2See https://scen.ucsd.edu/wiki/Makoto%27s_useful EEGLAB_code#How_to_extract_
EEG_power_of_frequency_bands_.2806.2F06.2F2020_updated.29.
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Figure 7: A sketch showing a part of the testing environment
used in the study, showing the EEG cap in red and a video
camera attached to the monitor. Not drawn are the electrode
leads extending from the top of the cap onto the EEG record-
ing system and the keyboard used in the study below the
monitor.

Of the other remaining 25 students who participated, one chose
not to use the EEG equipment. The other 24 participants were
monitored with the EEG equipment using all nineteen channels.
The median age of the participants was 22 (u = 23.0,0 = 3.8). 23
were male and one was female. This section contains a summary
of their results. The raw data reported here is fully included in
Appendix A.

70.8% and 75.0% of the participants answered questions 1 and 2
correctly on the pretest, respectively (see Fig. 4). This is substantially
higher than the student score on the study in which the NACK was
validated (58% and 62%, respectively) [48]. The mean value for the
participants’ Python self-assessed knowledge was 5.2 (¢ = 1.2, min
3.0, max 7.0) on a 1-to-10 scale. No participant had worked with
Algot before.

5.1 Task performance

The performance on the Algot and Python tasks of the study can be
seen in Table 1. The table shows the number of tasks that students
solved completely correctly, i.e., passed all hidden test cases, which
we ensured sufficed for correctness. We note that although we
did not do a complete taxonomy of the incorrect solutions from
students, many of them made substantial progress even when they
were not able to completely solve the tasks in the 15 minutes given.

We computed classical paired samples t-test to determine if there
is a statistical significance in the mean performance. We used the
Shapiro-Wilk normality test to determine if we should use the
Student’s t-test or non-parametric Wilcoxon signed-rank t-test (a
widely accepted procedure for both paired and independent sam-
ples [51]), and finding significant results (suggesting deviations
from normality), we applied the Wilcoxon’s t-test. The result was
p = 0.033 < 0.05, suggesting we could reject the null hypothe-
sis. We also computed the effect size using Cohen’s d for repeated
measures (Cohen’s d,p,), finding the value 0.408 (SE = 0.214), in-
dicating that the mean student programming the tasks in Algot
performs approximately 0.4 standard deviations above the mean
student programming in Python.

Algot Performance Python Performance

Mean 0.708 0.375
Std. Deviation 0.908 0.647

Table 1: Descriptive statistics showing how many of the two
tasks students solved completely correctly (i.e., passed all
test cases) on the Algot and Python versions of the tasks. The
minimum and maximum possible values are 0.0 and 2.0.

We observed that many students made two types of mistakes
when programming in Algot:

e For the first task, on counting the number of nodes in a
binary tree, the students attempted to use the query Has
Outgoing? on a given node to determine whether or not
to proceed with the operation logic, resulting in programs
that only count the non-leaves of a tree.

o The students struggled with including all arguments in the
recursive call, perhaps confusing the intended “counter”
node with a global variable.

The errors students made in Python were more varied, with many
students demonstrating the recursion-related errors identified by
Hamouda et al. [24] such as neglecting to define a base case or
not being able to form a recursive call that reaches the base case.
Unresolved syntax errors also occurred, but we did not observe
syntax errors causing otherwise correct programs to fail.

5.2 Electroencephalogram

Preprocessing the EEG data indicated that the electrode signal
was mostly useful; out of the 24 participants, there were only four
instances when a channel (or in one case, two channels) had to be
removed from the data analysis due to a poor correlation with the
other channels (see the procedure in the method section). We find
it unlikely that this had a meaningful effect on the results.

The descriptive statistics of the mean power levels in the theta
and alpha bands for the Algot and Python epochs are shown in
Table 2. The results were inconclusive; on average, the theta val-
ues were very close and slightly, but not meaningfully, higher for
Python than Algot (Cohen’s dy, = 0.090). We consider those the
most reliable indication of cognitive load. The alpha values were
also very similar but slightly higher for Algot (Cohen’s dy, = 0.292).
For completeness, we also completed the mean “brainbeat” value—
the theta power divided with the alpha power—which were also
similar but slightly higher for Python (Cohen’s dyy, = 0.342) which
would indicate a higher cognitive load in Python. Wilcoxon’s signed-
rank t-test (chosen for the same reason as before) gave a p-value of
0.08 > 0.05, meaning the null hypothesis could not be rejected.

5.3 Cognitive Load Survey

We calculated the mean scores on the Computer Science Cognitive
Load Component Survey (CS CLCS) and found that the scores were
similar across the intrinsic, extraneous and germane cognitive load
(CL). The results are reported in Table 3. On the intrinsic and extra-
neous CL (undesirable CL), Algot scored lightly lower (Cohen’s dy,
was 0.138 and 0.135, respectively), and on the germane CL (more
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Theta (A) Theta (P) Alpha (A)

Alpha (P) Brainbeat (A) Brainbeat (P)

Mean 0.0347 0.0327
Std. Deviation 0.0180 0.0232
Minimum 0.0136 0.0119
Maximum 0.0826 0.1166

0.0150
0.0079
0.0065
0.0382

0.0131 2.37 2.61
0.0103 0.51 0.87
0.0070 1.50 1.24
0.0585 3.17 5.50

Table 2: Descriptive statistics of the powers of the alpha and theta bands when programming in Algot (A) and Python (P).

desirable CL), Algot scored slightly higher (Cohen’s dy, = 0.144).
However, the effect size is low for each component comparison.

We computed a paired samples t-test to find if the difference
is statistically significant. We first computed a normality check
and found that the intrinsic values passed (p = 0.089) but that the
extraneous and germane ones did not (p = 0.002 and p = 0.0024),
but for the sake of consistency, we applied the Wilcoxon signed-
rank t-test on all. We found that all the p-values were clearly above
0.05 (0.2011, 0.5094 and 0.3134, respectively), so the null hypothesis
could not be rejected.

Intrinsic Extraneous Germane

Mean (A) 4.1528 1.7639 4.4896
Mean (P) 4.3750 2.0139 4.2813
Std. Dev. (A) 1.9609 1.7207 2.3619

Std. Dev. (P) 1.7481 2.0276 1.8450

Table 3: Descriptive statistics from the CS CLCS for Algot (A)
and Python (P).

5.4 Correlations

For comparing the data, we chose Spearman’s p as our correlation
coefficient since it makes no assumption of normality or linearity
and is not sensitive to outliers. For the Python component of the
study, we found a negative correlation between the theta power
values and the average of the intrinsic and extraneous component
scores on the CS CLCS: Spearman’s p = —0.532,p = 0.0075. For
Algot, there was a much weaker and less statistically significant
relationship: Spearman’s p = 0.1372,p = 0.5226. We found no
meaningful relationship between the mean alpha power values and
the survey scores.

There was a weak positive but not statistically significant corre-
lation between the student’s self-assessment of their Python pro-
ficiency and their performance on the Python tasks (Spearman’s
p = 0.243,p = 0.253). The pretest performance was positively
correlated to both the performance on the Algot tasks (Spear-
man’s p = 0.355,p = 0.089) and the Python tasks (Spearman’s
p =0.377, p = 0.070).

5.5 Free-form feedback

We invited students to leave comments or feedback about their
study experience. We received twelve comments from the students
in the main part of the study and two additional comments from
the students in the pilot group. Since the comments were few and
brief, we did not find it meaningful to conduct a qualitative analysis.

Three students reported that they found the tasks difficult and two
additional students noted that they would have liked more time
to solve the tasks. Three students left positive comments about
Algot, e.g., “It was a great opportunity to take part in such a study
and see how all of that works. Also it was a great topic and I hope
the idea of programming with Algot gets developed more because
it is very intuitive to work like that and see what you are doing.
Thank you!”. Other comments suggested improvements in the study
environments, e.g., to split up the provided Python code into two
files, and to use an additional color for some of the Algot nodes.

6 DISCUSSION

In our study, we sought to answer three research questions. We
found the answers reported below.

RQ1 We found that students did perform statistically signifi-
cantly better on the study tasks when presented in Algot
instead of Python, despite the participants’ lack of familiar-
ity with Algot but prior exposure to Python. This is aligned
with the results from the 2024 study which compared stu-
dents’ performance in Algot and Python when solving sim-
ple tasks, which reported the same results direction [68].
However, the difference is less pronounced in this study,
which may reflect the increased difficulty of the tasks; as
the tasks become more challenging, it is likely that students
require more exposure to Algot in order to solve them suc-
cessfully. It is possible that the cognitive load demands of
working in a new language increase as the tasks become
more difficult and unfamiliar—possibly due to higher ele-
ment interactivity and the lack of pre-existing schemas to
efficiently process and integrate new information-and that
at the same time, the cognitive load of working in a familiar
language does not increase as much when the tasks become
more complex.

RQ2 The students’ cognitive load appeared similar across both
tasks according to both the EEG analysis and the survey
results (CS CLCS). This is in contrast to the results from the
2024 study. As research suggests that element interactivity
decreases with higher prior knowledge [10], the students
might have experienced lower cognitive load had they been
more familiar with Algot, but this should be corroborated
in future research. To help the reader interpret our EEG
results here, we note that some other EEG studies have also
found that both alpha and theta power can increase when
comparing one task or condition to another one [32, 50],
although in our case, the increase was not significant.

RQ3 With our data, we were not able to find convincing evidence
for a correlation between the EEG data and components
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of cognitive load according to the CS CLCS survey. While
there was a statistically significant negative correlation
between theta power values for the Python tasks and the
self-reported mean cognitive load on the intrinsic and ex-
traneous components, there was no such correlation for
the Algot tasks. While it is possible that the theta band
more accurately reflects cognitive load for programming in
Python, we find it more likely that the results occurred by
chance.

Overall, considering the statistically significant difference in
performance, we think that the results provide some evidence that
Algot can be comparatively helpful for beginners in composing non-
trivial programs. However, despite the difference in performance,
the cognitive load levels appeared to be similar according to both
the survey and the EEG results. It is important to note that the
participants had very different exposure to the two languages; on
one hand, they were familiar with Python, but had only been given
a brief tutorial on Algot. Although the cognitive load levels were
similar despite this imbalance, we do not think it necessarily means
that cognitive load levels would have been lower in Algot if the
participants had been equally familiar with the two languages.
However, we think this is a hypothesis worth exploring in future
studies.

We believe it is plausible that the performance results can be
at least partially explained by the principles put forward in Vic-
tor’s Learnable Programming essay [70] on, for example, keeping
the program state visible by default. However, we note that while
Algot was inspired by the essay, Victor describes visual extensions
to textual programming rather than purely visual programming.
Future work on programming language design for CS education
might explore on a more granular level how such proposed features
impact learning.

We think that this study may encourage educators or researchers
to consider alternative programming paradigms, such as those im-
plemented in Algot, in CS educational settings, particularly for
novices, and calls for longitudinal studies to explore whether lan-
guages like Algot have long-term benefits. Future work could also
explore whether and to what extent skills or knowledge gained
while programming in Algot transfer onto more mature, textual
languages. We also believe that the functional neuroimaging tech-
nique used in the study, the EEG, has been underexplored in CS
education research. While we compared very different approaches
to programming in our study, future experiments could investigate
more targeted approaches or interventions, or compare how dif-
ferent groups of learners solve programming assignments (such
as experts and novices). While we found the data collection with
our device to be time-consuming (as it spanned several days), the
advent of portable and inexpensive EEG devices has made it eco-
nomically feasible to test many students at once, making studies of
this type more accessible and scalable.

6.1 Limitations
Our study has several important limitations:

o The study environment may have had a negative impact on
the ecological validity of the study. Students do not typically
write programs while wearing EEG headsets and using

unfamiliar hardware (keyboard, mouse and computer) and
software. If students had solved the assignments on their
own computers in the comfort of their own home, it is likely
that their performance would have been better. We note,
though, that students did not appear to feel uncomfortable
using the EEG equipment and did not raise issues about the
hardware or the physical environment during the study or
in the free-form feedback.

e We believe that the lopsided gender ratio has a negative
impact on the external validity of the study. Ideally, more
female students would have participated.

e As noted in the discussion section, there is different inter-
pretations of how EEG data should be used to determine
cognitive load, in particular when it comes to the alpha
band. If the scientific consensus on this changes, it is possi-
ble that the data could be interpreted differently.

o As we also noted, the study was imbalanced since the partic-
ipants were familiar with Python but had no prior exposure
to Algot. The difference in performance may possibly have
been even more pronounced had the participants been on
equal footing in both languages, but we cannot attest that
based on our existing data, so it should be corroborated in
future studies. In a future work, researchers may also wish
to investigate whether this would affect the cognitive load
levels.

o The survey we used to measure cognitive load [40] is based
on the “old cognitive load theory,” which is founded on a
view of germane cognitive load that has been reinterpreted
under the “new cognitive load theory” from 2019 [15, 62].
If germane cognitive load, as understood under the older
version of the theory, has a poor construct validity, this
could have a negative impact on the validity of the study.
Although within the domain of computer programming,
confirmatory factor analysis on a similar assessment based
on the new theory did not appear to be a good fit [75], it
is possible that other such instruments may prove in the
future to be more appropriate than the instrument we used.

We note that the results are necessarily limited by the choice
of tasks. We believe that the task choice was reasonable in the
context of our study, but other tasks involving different algorithms
or computing concepts would likely have impacted the performance
and cognitive load of the study participants. We also note Algot
or Python are distinct in many ways, so it is difficult to attribute
the difference in performance to any specific points of difference
between the two of them, be it Algot’s visible program state, the
support for direct manipulation, or some other features in either
language. While we did not observe syntax errors being the sole
error in any Python solutions, it is possible that they contributed
towards some students failing to arrive at a correct solution.

7 CONCLUSION

We found evidence that undergraduate students programming in
the visual programming language Algot perform better at solv-
ing recursion-based tasks in Algot than Python, even though the
students were familiar with Python but had only received a short
tutorial about Algot as a part of the experimental protocol. We did,
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however, not find evidence that students experience lower cognitive
load while programming the tasks in Algot. We did not find strong
evidence that the two measures of cognitive load that we used,
a survey and an electroencephalogram, are correlated; however,
both measures indicated that the cognitive load level among the
students was similar. Our study contributes to the growing body
of research on visual programming languages and their impact on
learning and finds some evidence that Algot can be useful resource
in undergraduate computer science education.
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APPENDIX

The pretest, task performance, survey, and EEG results of all par-
ticipants who underwent the full EEG measurement are presented
in Table 4. For privacy reasons, demographic information and the
freeform feedback is not included here, nor are the results from
potentially identifiable participants (e.g., those who participated in
the pilot sessions or the participant who elected not to have their
data analyzed with the EEG equipment).
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An Electroencephalography Study on Cognitive Load in Visual and Textual Programming

[\
(s}

0.0306 0.0113 0.0393 0.0110 3.67 1.33 4.00 4.67 1.00 4.50
0.0271 0.0088 0.0209 0.0070 2.67 1.00 2.25 3.67 0.00 2.25
24 0.0292  0.0097 0.0232 0.0071 0 633 233 3.00 7.00 533 5.25
Table 4: Some raw data from the 24 participants whose EEG data was collected using all nineteen channels. The participant
IDs have been scrambled for privacy reasons and do not necessarily reflect the order of participation. PT: Pretest score (0-2).

SA: Self-reported proficiency with Python (1-10). A/P-6/a: Power over the theta and alpha bands for the Algot and Python
2
tasks, respectively, over the signal frequency, expressed as % P-A/P-P: Total score on the Alpha and Python tasks (0-2).

z

IN/EX/GE-A/P: Score on the intrinsic, extraneous and germane CL components on the CS CLCS for the Algot and Python tasks,
respectively (0-10).

[ )
w

ID | PT SA | A0 A-a P-0 P-a P-A P-P | IN-A EX-A GE-A IN-P EX-P GE-P
1 0 6 0.0826 0.0277 0.0418 0.0145 | 0 0 533  2.67 4.00 4.00 1.67 4.00
2 2 7 0.0632 0.028  0.0275 0.0148 | 1 1 6.00 0.00 575 633 233 5.25
3 0 3 0.0265 0.016 0.0189 0.0152 | 0 0 5.00 5.00 2.00 6.00 4.33 2.00
4 2 3 0.0203 0.0109 0.0119 0.0080 | O 0 3.00 233 2.00 3.00 1.67 250
5 2 5 0.0632 0.025  0.0531 0.0175 | 2 2 0.33  0.00 4.00 0.67 0.00 4.00
6 1 5 0.0435 0.0144 0.0303 0.0096 | 0 1 7.00 533 6.00 2.67 233 6.50
7 2 6 0.0245 0.0110 0.0237 0.0078 | 2 2 3.67 1.67 1.75 3.00 0.67 1.50
8 2 5 0.0226 0.0151 0.0261 0.0121 | 2 1 4.00 0.00 6.75 3.00 000 6.75
9 2 6 0.0278 0.0109 0.0226 0.0085 | 0 0 2.00 1.67 1.25 533 1.00 3.25
10 | 2 7 0.0364 0.0148 0.0188 0.0090 | 1 0 7.00  3.33 5,00 733 3.67 5.00
11 | 2 6 0.0421 0.0208 0.0314 0.0140 | O 0 3.33  0.00 3.00 333 000 3.00
12 | 2 3 0.0188 0.0074 0.0187 0.0072 | 1 0 3.00 0.67 6.50 6.00 6.67 2.00
13 | 1 3 0.0181 0.0076 0.0350 0.0106 | 2 0 0.00  0.00 9.25 2.67 000 875
14 | 1 5 0.0374 0.0136 0.0270 0.0117 | O 0 2.00 0.00 375 233 333 4.00
15 | 2 6 0.0315 0.0188 0.0316 0.0196 | 0 1 567 433 2.00 4.00 3.67 2.00
16 | 1 6 0.0307 0.0135 0.0202 0.0089 | O 0 6.00  2.67 525 5.67 267 525
17 | 0 6 0.0190 0.0071 0.0842 0.0153 | O 0 3.33 1.67 2.00 433 000 375
18 | 1 5 0.0195 0.0123 0.0205 0.0109 | 0 0 433  0.00 6.50 533 000 4.00
19 | 2 6 0.0697 0.0382 0.1166 0.0585 | 2 1 433  0.00 6.00 433 033 475
20 | 2 4 0.0136 0.0065 0.0193 0.0075 | O 0 4.67 433 575 3.00 567 525
21 |1 5 0.0352 0.0111 0.0230 0.0082 | 2 0 7.00  2.00 10.0 733 2.00 7.25

2 6 2 0

2 5 0 0

1 0
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