
Recursion in Secondary Computer Science Education:
A Comparative Study of Visual Programming

Approaches
Sverrir Thorgeirsson∗

sverrir.thorgeirsson@inf.ethz.ch
ETH Zürich

Zürich, Switzerland

Lennart C. Lais∗
lelais@student.ethz.ch

ETH Zürich
Zürich, Switzerland

Theo B. Weidmann
tweidmann@ethz.ch

ETH Zürich
Zürich, Switzerland

Zhendong Su
zhendong.su@inf.ethz.ch

ETH Zürich
Zürich, Switzerland

Abstract
While recursion is a fundamental technique in computer pro-
gramming, it is challenging for novices, for example since it
requires tracing non-linear and hierarchical sequences of exe-
cution. Though algorithm visualizations and visual program-
ming may be helpful, such tools need to offer sufficiently
expressive environments that support active, constructivist
learning via exploration and experimentation. In this study,
we investigated whether Algot, a visual programming lan-
guage that relies on a novel programming-by-demonstration
paradigm, is effective for teaching recursion to 14-17 year
old students, and whether it compares favorably to the popu-
lar visual programming language Scratch. We conducted an
experimental study with 23 participants where they learned
recursion in a video tutorial using Algot and Scratch, worked
out code exercises in each respective language, and then
solved a post-test on recursion. Despite the participants be-
ing more familiar with Scratch than Algot, our results indi-
cated that students instructed with Algot demonstrated a
significantly better understanding of recursion (Bayes Factor
= 14.09, 𝑝 = 0.005, Cohen’s 𝑑 = 1.30). We also found that stu-
dents reported a similar level of enjoyment of each language.
These findings provide preliminary evidence about the effec-
tiveness of the programming-by-demonstration paradigm,
as implemented in Algot, in aiding the comprehension of
complex programming concepts like recursion.

CCS Concepts: •Human-centered computing→ Empir-
ical studies in visualization; • Social and professional
topics → K-12 education.

Keywords: visual programming, block-based programming,
recursion, programming by demonstration, educational tech-
nology, secondary education

∗Sverrir Thorgeirsson and Lennart Lais are co-primary authors.

1 Introduction
Recursion is a fundamental technique in computer program-
ming in which tasks are broken down into smaller subtasks
that are a self-similar or simpler version of the original prob-
lem. In computer science (CS) education, it is also a repre-
sentative computational thinking strategy that exemplifies,
for example, Piaget’s notion of reflective abstraction [4], but
also decomposition, pattern recognition, and algorithmic
problem-solving. However, it is considered a difficult topic
for novices to grasp [1, 19, 38]. This may be partially due
the non-linear control flow which makes it hard to trace the
flow of execution, but also since recursive algorithms intro-
duce complexities when it comes to function calls, parameter
passing, and scope of variables.
In this paper, we investigated whether Algot [35, 39], a

visual programming language specifically designed for CS ed-
ucation, is effective as a tool for teaching recursion at the sec-
ondary education level. Unlike most other programming lan-
guages, Algot is based on a programming-by-demonstration
computational model where users can define, run, and in-
teract with their programs using direct manipulation while
seeing an explicit visual representation of control flow and
data structures. Our hypothesis is that Algot provides an
effective way to teach CS concepts that are normally con-
sidered particularly difficult in K12 education. To evaluate
how well Algot can teach recursion at the secondary school
level, and to understand how Algot compares against other
visual programming languages, we designed a controlled
study where Algot was compared against Scratch [27], a
block-based programming language that is popular in CS
education and is familiar to most students in the local school
district. We asked participants aged 14 to 17 to first com-
plete a pre-test, then watch a tutorial for each programming
language, solve recursion-based programming tasks in each
language, fill out a post-test based on a recursion concept
inventory [11], and lastly to complete a survey about their
experience.

https://orcid.org/0000-0002-4455-7551
https://orcid.org/0009-0007-4278-1836
https://orcid.org/0000-0002-5484-2815
https://orcid.org/0000-0002-6731-6937


Sverrir Thorgeirsson, Lennart C. Lais, Theo B. Weidmann, and Zhendong Su

Figure 1. A screenshot of Algot (lightly edited for space reasons) showing the user-defined operation Sum of Intersection. The
bottom left shows the semantics of the operation.

We had two primary research questions that we sought
to answer with our study:
RQ1 Can Algot be used effectively to teach recursion to

14-17 year old students?
RQ2 For the same age group, how does Algot’s effective-

ness in teaching recursion compare to an established
educational programming language like Scratch?

We also collected ancillary data to help answer two sec-
ondary research questions, namely (i) whether the combined
use of Algot and Scratch affects students’ understanding and
application of recursion in programming, and (ii) whether
students find a difference in enjoyment level after program-
ming in each environment.

2 Related Work
While recursion has been described by Papert as “partic-
ularly able to evoke an excited response” among children
[24], it is also frequently considered a “notoriously difficult”
topic to learn or master [1, 19, 38]. Attempts to identify
recursion-related misconceptions and interventions span
many decades. One explanation is that students struggle
to cultivate a mental model of the program stack, without
which it is hard to understand the backward flow of control
after reaching a recursive function’s base case [7, 30]. Ad-
ditionally, a lack of real-world examples can compound the
conceptual difficulties [1, 25].

In early secondary education, some authors have proposed
and experimented with teaching recursion with “unplugged”
activities [9, 20, 33], which means group problem-solving
activities without the direct use of technology, by using spe-
cific programming languages such as Logo [9] or Python

[18], or by using a combination of tools [33]. Many authors
have advocating for a conceptual approach [2, 5, 8, 26, 31],
stressing the importance of examples [25, 30, 32] and the
use of visualization [7, 9, 14]. Two controlled experiments
on high-school students have found that specific approaches
are more effective than others; one that found logic program-
ming helped students gain a better mental model of recursion
than procedural programming [10], and another study found
that the computer game Cargo-Bot, which allows the user to
write sequenced, nested instructions to control a robot, was
more helpful in improving the students’ understanding of
recursion than a direct instruction approach with Java [34].

3 Background
3.1 Algot
Algot is a visual programming language specifically designed
for computer science education [35, 39]. Unlike block-based
programming languages where the program logic is repre-
sented by interlocked blocks of code, programming in Algot
does not require comprehending or manipulating code as
a semantic structure. Instead, Algot uses programming-by-
demonstration as its computational model where programs
are created by selecting from pre-defined and user-created
queries and functions which are applied on graphs or spe-
cific types of graphs such as trees, linked lists, and individual
nodes. The motivation behind Algot is to remove a barrier
to learning by making the meaning of programs more trans-
parent; defining a program in Algot is similar to how the
program is executed, echoing the concepts put forward in
Bret Victor’s 2012 essay on learnable programming [37]. A
comparative study found that undergraduates experienced



Recursion in Secondary Computer Science Education: Visual Programming Approaches

lower cognitive load and performed better when solving sim-
ple programming tasks in Algot than in the textual language
Python [36].
To explain how Algot can be used, we provide an illus-

trated example of using Algot to compute the sum of the
intersection of two linked lists. Figure 1 shows how a new
operation is defined in Algot using the Demonstration View
of Algot, which consists of three stages called the Input Stage,
Query Stage and Action Stage:

1. Input Stage: The input arguments are specified. Nodes
that belong to the same connected component as the
input nodes can also be identified via pattern match-
ing. In this case, three input nodes are specified (the
head of two lists, a and b, and the node sum storing
the sum) but also a’s child node u.

2. Query Stage: The programmer specifies binary ques-
tions about the nodes by applying queries (e.g., whether
two nodes have the same value). Five base queries
are provided by default and the programmer can cre-
ate their own, for example Is in List?, as shown here,
which checks whether the value of its first argument
is contained in the list headed by its second argument.

3. Action Stage: Custom or pre-defined operations are
called on the input arguments or newly created nodes.
If any queries are active, the operations will be called
conditionally. In this example, if two conditions are
correct, namely that the value of a is not in the list
headed by its child u, and that a is in the list headed
by b, then the node sum is increased by the value
of a. Then the operation Sum of Intersection is called
recursively on u, b and sum.

We have two clarifying remarks. First, note that when
an operation is called on non-existent input nodes, this is
not considered an error but the operation will simply not be
executed. This means that in the next recursive call of Sum
of Intersection, if the child node u does not exist, the opera-
tion will terminate at this point. In general, this behaviour
can eliminate the need for explicitly defining a base case or
stating when the algorithm should terminate. Second, when
operations changes the structure of the state, such as when
new nodes or edges are created or deleted, this is shown
visually in the demonstration view.

Figure 2 shows the results of applying the operation Sum
of Intersection in the Algot state view, an interactive part of
Algot which resembles the action stage of the demonstration
view. Here, the operation was called on input arguments rep-
resenting two linked lists and a singleton node that initially
had the value zero.
This example is sufficiently complex to show the main

capabilities of Algot but also simple enough to be described
concisely. For more details on the computational model be-
hind Algot, we refer to a recent paper by its creators [39].

Figure 2. A screenshot showing the user-defined function
Sum of Intersection applied on the two input linked lists
marked a and b in the Algot state view. The intersection of
the two lists is {8, 4, 2} and thus the sum 14 is stored in the
third function argument c.

3.2 Scratch
First released in 2007, Scratch is a block-based programming
language specifically designed to introduce computer pro-
gramming to young people [27]. Its visual interface allows
learners to create programs by putting together predefined
blocks of code. This approach helps beginners in several
ways, for example by preventing syntax errors, but also by
reducing the need for prior knowledge by visually present-
ing the language’s capabilities [40]. More than just an edu-
cational programming language, Scratch is now a very large
online community whose usage doubled over the COVID-19
pandemic [3] and now boosts over a million active monthly
users as of the 2023 school year [6].

Soon after Scratch was released, Harvey and Möning [13]
noted that Scratch lacked support for “the impressive phe-
nomenon of recursion, one of the central ideas of computer
science” which, among other reasons, inhibited the use of
Scratch in the introductory CS curriculum. To address this,
the authors introduced a Scratch extension named Build Your
Own Block (BYOB), later reimplemented as its own spin-off
language Snap!, which is explicitly designed to teach recur-
sion and higher-order functions [12]. Perhaps inspired by
Snap!, Scratch 2.0 (released in 2013) contains support for cus-
tom procedures via the Make a Block functionality [16, 23],
which enables recursive programming, but unlike Snap!,
does not support higher-order functions by allowing custom
blocks to generate their own blocks. Like user-defined oper-
ations in Algot, these custom blocks do not possess a return
statement, but can modify global variables via side effects.



Sverrir Thorgeirsson, Lennart C. Lais, Theo B. Weidmann, and Zhendong Su

Figure 3.A screenshot depicting a function in Scratch whose
control-flow is determined by several different blocks of code.
This example shows a recursive functionwhich computes the
sum of a list. In our study, students were given the function
block and asked to complete it.

Figure 3 shows an example of a recursive function in Scratch
3.0 using this feature.
While the Make a Block feature in Scratch is not as ex-

pressive as custom blocks in Snap!, its simplicity may make
it easier to understand and use in certain contexts. Some
Scratch textbooks [15, 22] and online educational materi-
als [21, 29] geared towards young students use this feature
to teach recursion, for example by featuring examples with
repeating geographical patterns. However, to our best knowl-
edge, the efficiency or usage of Make a Block in Scratch for
teaching recursion has not yet been subject to empirical
research.

4 Method
Upon securing ethics approval from our institution, we re-
cruited 23 individuals ranging from 14 to 17 years old who
provided their informed consent to take part in our study.
These individuals were compensated with gift cards worth
35 Swiss Francs. All participants were recruited from a scout
group in Zürich, Switzerland. This study required some fa-
miliarity with computer programming, a prerequisite com-
monly met in this age group due to the inclusion of computer
science in the local secondary education curriculum.
When arriving at the study location, participants were

randomly divided into an experimental group and a con-
trol group. Both groups (i) filled out a pre-study survey on
their perceived programming skills and programming lan-
guage knowledge, (ii) underwent instruction on recursion
and Algot and Scratch, respectively, via a video tutorial, (iii)
proceeded to solve exercises in each respective language
(Figures 3 and 5) and then (iv) completed a post-test (Fig-
ure 4). Lastly, participants filled out a survey on their study

a) Heating Function

The heating function controls how much a heater heats.
At what level is the heating after the heating function
has been executed with input 4? Select a number or
“Infinite recursion” if you think the function never stops.

Heater with input X:

When X equals 5:

Set the heater to level 3

If X is not equal to 5:

Run Heater with input X+1

Reduce X by 1

Set the heater to level 1

The alternatives given were 1, 2, 3 and Infinite recursion.

b) Countdown Function

When the Countdown function is executed, the screen
should count down from the second input to the first
input. For example, if Countdown is called with inputs
2 and 5, the screen should show 5, 4, 3, 2. Complete the
function by filling in the missing line.
Countdown with inputs X and Y:

If X is smaller or equal to Y:

Show Y on the screen

[missing line]

Alternatives:
a) Run Countdown with inputs X-1 and Y

b) Run Countdown with inputs X and Y-1

c) Run Countdown with inputs X+1 and Y

d) Run Countdown with inputs X and Y+1

e) None of the above

c) Recursion Explanation

In general terms, explain the approach of solving a
problem with a recursive program.

Figure 4. Three questions from the post-test. The last ques-
tions was graded with the assistance of a simple grading
rubric. The multiple-choice questions shown are adapted
from the first and third questions on the second iteration of
the Basic Recursion Concept Inventory [11].

experience that asked on a 5-point scale whether they en-
joyed programming in each respective language and if they
had some suggestions for improvements. Participants could
view the tutorial at any time during the study until the post-
test was administered. The tasks were completed on the



Recursion in Secondary Computer Science Education: Visual Programming Approaches

participants’ own laptop computers, but in person and un-
der supervision. Participants were given an hour in total to
complete the experiment.

When designing the video tutorials on recursion, we incor-
porated the aforementioned guidelines and suggestions on
how recursion should be taught, for example by introducing
students to a concrete, real-world example in the form of
Matryoshka dolls, using a three-step approach proposed by
Ginat for solving problems recursively [8], and by showing
a visual step-by-step execution of a recursive function.

Task 1: Complete the operation GenerateTree which
takes as input a node with value 𝑛 and generates a tree
starting with the value 𝑛 such that the value of a node
should be equal to its height on the graph, every node
should have two children except for the nodes with the
value 0, and the nodes with the value 0 should have the
color green.
Task 2: In this task, all the values in a list should be
added together. Complete the function ListSum for this.
The input head is the start node of the list and its sum
is to be stored in the input node sum. The operation
should work regardless of the initial value of node sum.

Figure 5. The two tasks that students were asked to complete
in Algot. Students received similar instructions in Scratch.
Both groups were also shown illustrations to better under-
stand the tasks (for instance Figure 6).

The post-test was loosely adapted from the basic recur-
sion concept inventory by Hamouda et al. [11], a set of ques-
tions that aims to identify misconceptions about recursion.
The existing version of the concept inventory was not suit-
able since it is explicitly designed for C-like languages and
tests misconceptions about recursion that we believe are un-
likely to occur in Algot or Scratch. For example, errors that

Figure 6. A screenshot showing an Algot representation
of a perfect binary tree whose node values are equal to the
node depth minus the tree height. In one task of the study,
students were provided with a similar diagram and asked to
create functions that can generate such trees.

arise from misconceptions about the return statement can-
not arise in Scratch or Algot, as they lack a return statement.
We, nonetheless, selected parts that seemed appropriate and
adjusted them to our needs. Two different versions of the
post-test were used to prevent potential knowledge leak-
age between sessions and to discourage self-discovery of
answers outside the study’s framework, but we intended the
versions to be equally difficult. The first three items were
multiple-choice questions with four or five alternatives, and
the last question (included on both versions) asked for a
free-form response on how recursion works. Examples are
shown in Figure 4.
Two weeks after the experimental session, participants

were asked to return and complete the experiment again,
but under the conditions of the opposite group and while
taking the other version of the post-test. The purpose of this
was to allow participants to experience both environments
so that we could gather comparative feedback—after the
end of the second session, participants completed a survey
asking them to compare their experience with the two pro-
gramming environments—and to help determine whether a
combined use of Algot and Scratch is effective by estimating
whether the average post-test score increased across ses-
sions. The purpose of the second session was, however, not
to gather additional research data to answer our first two
research questions due to the strong possibility of transfer
or carryover effects.

5 Results
23 participants were divided randomly into two groups. The
results of one participant had to be excluded due to technical
difficulties, so in the final sample, the control group and the
test group had 11 participants each. The remaining partici-
pants (7 male and 15 female) were balanced in both age (avg.
age 15.5) and self-reported programming background. The
pre-test survey indicated that 16 of the 22 remaining partic-
ipants were familiar with programming in Scratch. Of the
remaining 6, 4 had some exposure to Python, 1 to C/C++, and
1 was unsure. 5 participants considered themselves to have
a below-average programming background, 15 reported an
average background, and 2 claimed to be above average. No
student had any prior exposure to recursion.
Table 1 and the visualization of the results in Figure 7

shows that the test group (Algot) had higher post-test scores
than the control group (Scratch) with a large effect size (Co-
hen’s 𝑑 is 1.30). We used Bayesian and classical statistical
tests to evaluate the null hypothesis against the alternative
hypothesis, namely that Algot-instructed students perform
better on the test than Scratch-instructed students under our
experimental conditions. A Bayesian independent samples
Student’s t-test returned the Bayes factor 14.09, meaning
that the data is approximately 14 times more likely under
the alternative hypothesis than the null hypothesis. A Bayes



Sverrir Thorgeirsson, Lennart C. Lais, Theo B. Weidmann, and Zhendong Su

Group Test (Algot) Control (Scratch)

Group size 11 11
Average age 15.5 15.5
Post-test score

Mean score 3.46 1.55
Std. deviation 1.92 0.82
Task performance

One task solved 3 2
Two tasks solved 2 0
No tasks solved 6 9

Table 1. The performance of 22 participants on the program-
ming tasks and on the post-test. The effect size was 1.30
(Cohen’s 𝑑). The maximum post-test score is 8.

Figure 7. A bar chart showing the post-test performance
of the 22 participants. The highest possible grade is 8. The
grades that share a column are equivalent.

factor above 10 is considered strong evidence [17]. A classi-
cal Welch’s t-test, chosen because it makes no assumption
about the variances of the populations being equal, gave
the p-value 5 · 10−3, meaning the null hypothesis could be
rejected (𝑝 < 0.05).

To help determine if the performance difference could be
attributed to the control group receiving an inadequate intro-
duction to Scratch in our tutorial, we also tested excluding
the results of the participants who had no prior experience
with Scratch. Under this exclusion, the average post-test
scores for the test and control group 3.43 and 1.78, respec-
tively, which is a slightly lower gap (1.65 vs 1.92).

Table 1 also shows the performance on the programming
tasks. 45% (5 of 11) of the experimental group could solve
at least one task perfectly and 18% (2 of 11) could do so
in Scratch. Among those who could not solve any tasks

correctly, the performance was varied; some came very close
to correct solutions, while others made little or no progress.

18 participants were able to attend two experimental ses-
sions two weeks apart where those from the original Algot
group used Scratch (𝑛 = 9), and vice versa (𝑛 = 9). The
average post-test performance improved from 2.50 to 3.11,
but a Bayesian paired samples Student’s t-test resulted in
BF+0 = 0.38 against the alternative hypothesis that the per-
formance would improve. As for average enjoyment of pro-
gramming in Algot and Scratch, the results were similar (2.20
and 2.40, respectively, on a 5-point scale where 4.00 is the
most enjoyment). Using the same statistical test, the Bayes
Factor was 0.38 when comparing the null hypothesis against
the alternative hypothesis that the enjoyment was different.

The participants’ textual feedback about both Scratch and
Algot was generally positive. Students were particularly ap-
preciative of the video tutorials. A common negative re-
mark about Scratch was that it contains too many blocks
and too much selection. A common negative remark about
Algot was the query system required too many clicks (cur-
rently, to remain in the same scope within an Algot program,
the user must frequently re-select the same query result).
When students who used both languages were asked if they
could suggest improvements by borrowing any features from
the other, the responses were varied, with some neutral re-
sponses (translated from German) such as “I think both pro-
grams should stay the same,“ and “I find both good. Each in
it’s own way. But I have have already done a lot in Scratch,
therefore it was easier for me to work with Scratch and I
made better progress.” However, some were particularly ap-
preciative of Algot (“Algot doesn’t have to add anything from
Scratch. Scratch could be made a bit more clear by offering
less blocks and colors,” “I like Algot better,” and “Algot has
a simpler design. Once you have understood it, you really
can do it.”) and two went in the other direction (“Scratch is
clearer,” and “I didn’t understand Algot at all.“).

6 Discussion and Threats to Validity
Since recursion is a topic that is typically reserved for older
students, and because highly diverse learning outcomes are
commonly reported in CS education [28], we correctly pre-
dicted significant diversity in performance and high failure
rates among our participants. However, a significant number
of participants (5/11) in the test group were able to solve
at least one task successfully. These students were able to
learn our new programming language Algot, learn about
recursion, and apply what they learned to solve a non-trivial
programming task, all within the time span of one hour. We
believe that with more exposure and practice with Algot,
students would be able to perform even better. Altogether,
we believe we have found at least promising preliminary ev-
idence in favor of RQ1, that Algot can be used effectively to
teach recursion to 14-17 year old students. Further research



Recursion in Secondary Computer Science Education: Visual Programming Approaches

may explore longer-term engagement with Algot to fully
harness its potential in enhancing programming proficiency.
For RQ2, we found strong evidence (BF+0 = 14.09) that

within our experimental setting, students who are instructed
in Algot rather than Scratch achieve a better understanding
of recursion and can demonstrate greater ability to solve
simple programming tasks that require recursion. This is
in spite of the disparity in prior programming knowledge
between the two groups; the participants learned Algot only
with a brief tutorial, but most participants were familiar
with Scratch (and some noted explicitly in their textual feed-
back that this was helpful). We believe that the results are
significant given that Algot is not only designed with a spe-
cific focus on recursion but also functions as a standalone
programming language. Given the promise shown in this
study, we are optimistic that Algot could serve as an effective
tool for imparting broader computer science concepts and
computational thinking skills to this age group.

Our ancillary data revealed that the average post-test per-
formance improved on average between sessions (from 2.50
to 3.11), but this improvement was weak and due to the low
Bayes Factor, we cannot reject that it happened due to ran-
dom chance. Note that while similar learning outcomes on
both the first and second session would support the null
hypothesis, score improvements could be attributed not only
to the alternative hypothesis but also to general learning
effects. Similarly, the difference in enjoyment of the two pro-
gramming languages was low and the overall enjoyment
seemed neutral on average. Students might report different
levels of enjoyment to a different set of tasks, for example
ones with clear real-world applications.
Note that our choice of a post-test is a potential threat

to the construct validity of the study; as noted before, we
developed our own drawing from the Basic Recursion Con-
cept Inventory (BRCI) [11] due to the lack of an established
assessment instrument suitable for the study. Our post-test
has not been validated and the BRCI has not been thoroughly
tested. However, we made every effort to ensure that our test
was fair and as unbiased as possible within the context of the
study, and while it may not be a comprehensive measure of
proficiency with recursion, we believe that it does assess key
recursion concepts such as recursive calls, state at various
recursion depths, and the understanding of recursive control
flow. As for the internal validity, we note that most students
were familiar with Scratch but had not programmed in Algot.
However, we think that this strengthens the direction of our
results since the experimental group performed better on
the post-tests and the tasks themselves.

To conclude, we find the results promising and encourage
further investigation into the long-term potential and effec-
tiveness in CS education of expressive visual programming
languages such as Algot that support direct manipulation
and programming-by-demonstration.

References
[1] John R Anderson, Peter Pirolli, and Robert Farrell. 2014. Learning to

program recursive functions. In The nature of expertise. Psychology
Press, 153–183.

[2] Alan C Benander and Barbara A Benander. 2008. Student monks–
Teaching recursion in an IS or CS programming course using the
Towers of Hanoi. Journal of Information Systems Education 19, 4
(2008), 455.

[3] Bryan Braun. 2022. Scratch is a big deal. https://www.bryanbraun.
com/2022/07/16/scratch-is-a-big-deal/#scratch-at-scale Accessed: 6
August 2023.

[4] Ibrahim Cetin and Ed Dubinsky. 2017. Reflective abstraction in com-
putational thinking. The Journal of Mathematical Behavior 47 (2017),
70–80.

[5] Jeffrey Edgington. 2007. Teaching and Viewing Recursion as Delega-
tion. J. Comput. Sci. Coll. 23, 1 (oct 2007), 241–246.

[6] Scratch Foundation. 2023. Scratch Community Statistics. https:
//scratch.mit.edu/statistics/ Accessed: 6 August 2023.

[7] Carlisle E. George. 2000. EROSI—visualising Recursion and Discov-
ering New Errors. SIGCSE Bull. 32, 1 (mar 2000), 305–309. https:
//doi.org/10.1145/331795.331875

[8] David Ginat and Eyal Shifroni. 1999. Teaching recursion in a proce-
dural environment - How much should we emphasize the computing
model? ACM Sigcse Bulletin 31, 127–131. https://doi.org/10.1145/
299649.299718

[9] Katherine Gunion, ToddMilford, and Ulrike Stege. 2009. Curing Recur-
sion Aversion. In Proceedings of the 14th Annual ACM SIGCSE Confer-
ence on Innovation and Technology in Computer Science Education (Paris,
France) (ITiCSE ’09). Association for Computing Machinery, New York,
NY, USA, 124–128. https://doi.org/10.1145/1562877.1562919

[10] Bruria Haberman. 2004. How Learning Logic Programming Af-
fects Recursion Comprehension. Computer Science Education
14, 1 (2004), 37–53. https://doi.org/10.1076/csed.14.1.37.23500
arXiv:https://doi.org/10.1076/csed.14.1.37.23500

[11] Sally Hamouda, Stephen H Edwards, Hicham G Elmongui, Jeremy V
Ernst, and CliffordA Shaffer. 2017. A basic recursion concept inventory.
Computer Science Education 27, 2 (2017), 121–148.

[12] Brian Harvey. 2012. The beauty and joy of computing: Computer
science for everyone. Proceedings of Constructionism (2012), 33–39.

[13] Brian Harvey and Jens Mönig. 2010. Bringing “no ceiling” to scratch:
Can one language serve kids and computer scientists. Proc. Construc-
tionism (2010), 1–10.

[14] Wen-Jung Hsin. 2008. Teaching Recursion Using Recursion Graphs. J.
Comput. Sci. Coll. 23, 4 (apr 2008), 217–222.

[15] A.B. Joshi and R. Pande. 2016. Advanced Scratch Programming: Learn
to Design Programs for Challenging Games, Puzzles, and Animations.
CreateSpace Independent Publishing Platform. https://books.google.
se/books?id=_e8ktAEACAAJ

[16] Ivan Kalas and Laura Benton. 2017. Defining procedures in early
computing education. In Tomorrow’s Learning: Involving Everyone.
Learning with and about Technologies and Computing: 11th IFIP TC
3 World Conference on Computers in Education, WCCE 2017, Dublin,
Ireland, July 3-6, 2017, Revised Selected Papers 11. Springer, 567–578.

[17] Robert E Kass and Adrian E Raftery. 1995. Bayes factors. Journal of
the american statistical association 90, 430 (1995), 773–795.

[18] Dennis Komm. 2021. Teaching Recursion in High School. In Infor-
matics in Schools. Rethinking Computing Education, Erik Barendsen
and Christos Chytas (Eds.). Springer International Publishing, Cham,
69–80.

[19] Elynn Lee, Victoria Shan, Bradley Beth, and Calvin Lin. 2014. A struc-
tured approach to teaching recursion using cargo-bot. In Proceedings
of the tenth annual conference on International computing education
research. 59–66.

https://www.bryanbraun.com/2022/07/16/scratch-is-a-big-deal/#scratch-at-scale
https://www.bryanbraun.com/2022/07/16/scratch-is-a-big-deal/#scratch-at-scale
https://scratch.mit.edu/statistics/
https://scratch.mit.edu/statistics/
https://doi.org/10.1145/331795.331875
https://doi.org/10.1145/331795.331875
https://doi.org/10.1145/299649.299718
https://doi.org/10.1145/299649.299718
https://doi.org/10.1145/1562877.1562919
https://doi.org/10.1076/csed.14.1.37.23500
https://arxiv.org/abs/https://doi.org/10.1076/csed.14.1.37.23500
https://books.google.se/books?id=_e8ktAEACAAJ
https://books.google.se/books?id=_e8ktAEACAAJ


Sverrir Thorgeirsson, Lennart C. Lais, Theo B. Weidmann, and Zhendong Su

[20] Violetta Lonati, Dario Malchiodi, Mattia Monga, and Anna Morpurgo.
2017. Nothing to Fear but Fear Itself: Introducing Recursion in Lower
Secondary Schools. In 2017 International Conference on Learning and
Teaching in Computing and Engineering (LaTICE). 91–98. https://doi.
org/10.1109/LaTiCE.2017.23

[21] CoderDojo Malahide. 2013. Scratch Level 3: Custom Blocks and Re-
cursion. http://coderdojomalahide.com/wp-content/uploads/2013/
05/Scratch_Level3_Custom-Blocks-and-Recursion.pdf Accessed: 9
August 2023.

[22] Majed Marji. 2014. Learn to program with Scratch: A visual introduction
to programming with games, art, science, and math. No Starch Press.

[23] Giulia Paparo, Marco Hartmann, and Mareen Grillenberger. 2021. A
Scratch Challenge: Middle School Students Working with Variables,
Lists and Procedures. In Proceedings of the 21st Koli Calling Interna-
tional Conference on Computing Education Research. 1–10.

[24] Seymour Papert. 1980. Mindstorms: Children, Computers, and Powerful
Ideas. Basic Books, New York, NY.

[25] Peter L. Pirolli and John R. Anderson. 1985. The role of learning from
examples in the acquisition of recursive programming skills. Canadian
Journal of Psychology / Revue canadienne de psychologie 39, 2 (June
1985), 240–272. https://doi.org/10.1037/h0080061

[26] Irene Polycarpou, Ana Pasztor, and Malek Adjouadi. 2008. A Concep-
tual Approach to Teaching Induction for Computer Science. SIGCSE
Bull. 40, 1 (mar 2008), 9–13. https://doi.org/10.1145/1352322.1352142

[27] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie
Rusk, Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosen-
baum, Jay Silver, Brian Silverman, et al. 2009. Scratch: programming
for all. Commun. ACM 52, 11 (2009), 60–67.

[28] Anthony V Robins. 2019. 12 novice programmers and introductory
programming. The Cambridge handbook of computing education re-
search (2019), 327.

[29] Dylan Ryder. 2014. Scratch Programming: Advanced Fractal
Fun. https://www.edutopia.org/blog/scratch-programming-
advanced-fractal-fun-dylan-ryder Accessed: 6 August 2023.

[30] Ian Sanders and Tamarisk Scholtz. 2012. First year students' under-
standing of the flow of control in recursive algorithms. African Journal
of Research in Mathematics, Science and Technology Education 16, 3
(Jan. 2012), 348–362. https://doi.org/10.1080/10288457.2012.10740750

[31] Raja Sooriamurthi. 2001. Problems in Comprehending Recursion and
Suggested Solutions. In Proceedings of the 6th Annual Conference on

Innovation and Technology in Computer Science Education (Canterbury,
United Kingdom) (ITiCSE ’01). Association for Computing Machinery,
New York, NY, USA, 25–28. https://doi.org/10.1145/377435.377458

[32] Linda Stern and Lee Naish. 2002. Visual Representations for Recursive
Algorithms. In Proceedings of the 33rd SIGCSE Technical Symposium
on Computer Science Education (Cincinnati, Kentucky) (SIGCSE ’02).
Association for Computing Machinery, New York, NY, USA, 196–200.
https://doi.org/10.1145/563340.563414

[33] Maciej M. Syslo and Anna Beata Kwiatkowska. 2014. Introducing
Students to Recursion: A Multi-facet and Multi-tool Approach. In
Informatics in Schools. Teaching and Learning Perspectives, Yasemin
Gülbahar and Erinç Karataş (Eds.). Springer International Publishing,
Cham, 124–137.

[34] Joe Tessler, Bradley Beth, and Calvin Lin. 2013. Using Cargo-Bot to
Provide Contextualized Learning of Recursion. In Proceedings of the
Ninth Annual International ACM Conference on International Comput-
ing Education Research (San Diego, San California, USA) (ICER ’13).
Association for Computing Machinery, New York, NY, USA, 161–168.
https://doi.org/10.1145/2493394.2493411

[35] Sverrir Thorgeirsson and Zhendong Su. 2021. Algot: an educational
programming language with human-intuitive visual syntax. In 2021
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, 1–5.

[36] Sverrir Thorgeirsson, Theo B. Weidmann, Karl-Heinz Weidmann, and
Zhendong Su. 2024. Comparing Cognitive Load Among Undergradu-
ate Students Programming in Python and the Visual Language Algot.
In Proceedings of the 55th ACM Technical Symposium on Computer
Science Education (SIGCSE 2024). Portland, Oregon. In Press.

[37] Bret Victor. 2012. Learnable programming: Designing a program-
ming system for understanding programs. URL: http://worrydream.
com/LearnableProgramming (2012).

[38] Juan Diego Tascón Vidarte, Christian Rinderknecht, Jee-In Kim, and
HyungSeok Kim. 2010. A tangible interface for learning recursion
and functional programming. In 2010 International Symposium on
Ubiquitous Virtual Reality. IEEE, 32–35.

[39] Theo B Weidmann, Sverrir Thorgeirsson, and Zhendong Su. 2022.
Bridging the Syntax-Semantics Gap of Programming. In Proceedings
of the 2022 ACM SIGPLAN International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software. 80–94.

[40] David Weintrop. 2019. Block-based programming in computer science
education. Commun. ACM 62, 8 (2019), 22–25.

https://doi.org/10.1109/LaTiCE.2017.23
https://doi.org/10.1109/LaTiCE.2017.23
http://coderdojomalahide.com/wp-content/uploads/2013/05/Scratch_Level3_Custom-Blocks-and-Recursion.pdf
http://coderdojomalahide.com/wp-content/uploads/2013/05/Scratch_Level3_Custom-Blocks-and-Recursion.pdf
https://doi.org/10.1037/h0080061
https://doi.org/10.1145/1352322.1352142
https://www.edutopia.org/blog/scratch-programming-advanced-fractal-fun-dylan-ryder
https://www.edutopia.org/blog/scratch-programming-advanced-fractal-fun-dylan-ryder
https://doi.org/10.1080/10288457.2012.10740750
https://doi.org/10.1145/377435.377458
https://doi.org/10.1145/563340.563414
https://doi.org/10.1145/2493394.2493411

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Algot
	3.2 Scratch

	4 Method
	5 Results
	6 Discussion and Threats to Validity
	References

