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ABSTRACT
Despite software testing being an important part of computing
education, the subject has not been strongly emphasized in the
tertiary-level computing curriculum. This has been attributed to
the difficulties involved in teaching the subject, for example because
existing tools are difficult to navigate and require students to learn
additional programming syntax in order to use them. In this paper,
we introduce the new visual programming environment TestVision
for learning unit testing and mutation testing in a hands-on, con-
structivist setting where test cases can be composed and executed
via direct manipulation of visual elements rather than by writing
code. We conducted a twofold study on the system with tertiary-
level students. In the first study, twenty tertiary-level students were
asked to complete interactive tutorials within the environment
while their screens were recorded. We used the data to develop
a taxonomy of the usability errors in the system. In the second
study, nine graduate students from a course on software testing
were invited to test the system while receiving a lecture on how to
use it, after which their feedback was collected via free-form survey
responses and the User Experience Questionnaire Plus. According
to the results, students perceive the environment as well-designed,
easy to use, and a useful tool for learning software testing.

CCS CONCEPTS
• Human-centered computing→ Visualization systems and
tools; • Social and professional topics→ Computing educa-
tion.

KEYWORDS
software testing, direct manipulation, programming by demonstra-
tion, tertiary education, mutation testing

1 INTRODUCTION
Software testing education is important for several reasons. First,
as highlighted in a recent, comprehensive metareview on the sub-
ject [17], computer code has become increasingly complex and
widespread across almost every industry, which has caused a grow-
ing need for quality assurance analysts with the relevant training.
In fact, besides being just the purview of specialists, testing has also
come to be considered “one of the most important skills an engi-
neer should have” [1] and the ability to use processes such as unit
testing has been identified as one attribute that distinguishes great
software engineers [22], underscoring the need to incorporate the
subject in general computing education. Additionally, besides its
role in training software developers, a second, less instrumentalist
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argument for software testing education is how it can contribute to-
wards critical thinking and problem-solving skill development; for
example, testing and debugging have been identified as important
computational thinking practices [11].

In spite of this, we believe that testing has received relatively little
attention from the computing education community in comparison
to, for example, code composition and comprehension. This may be
attributed to the perception that the subject is difficult to teach [1].
In particular, one challenge is the lack of suitable testing tools;
Garousi et al. [16] find that “to do (automated) testing, students need
to learn new tools and libraries, which are often not easy to learn,
especially in the earlier (first or second) years of a degree.” This
view is well-supported by their review of the literature; for instance,
Clarke et al. [5] claim that students “continue to be frustrated” over
difficulties in finding suitable testing tools. Developing suitable
software is not simple; for example, it has been suggested that
such software is particularly hard for beginners since learning
additional syntax for defining tests compounds the difficulty of
learning programming syntax in general, which is hard enough
as it is [8]. More generally, Neto et al. [25] find that due to the
difficulties involved in having students “deal with peculiarities of
the specific techniques and tools for software testing,” the topic
may not be given the attention it deserves, which can contribute to
the feeling among students that testing is hard or unimportant.

In this systems and tools paper, we aim to support students and
educators by introducing a new programming environment for
teaching software testing called TestVision. For one, we wish to
address the aforementioned drawbacks in other tools by enabling
students to define and execute test cases visually, as opposed to
requiring students to master yet another domain-specific language
with its unique syntax. However, we only see this as a necessary
first step of our implementation. More generally, our vision is based
on the idea that students struggle with testing for similar reasons
as they struggle with programming or with using creative, interac-
tive systems in general, namely what Don Norman identifies as the
“Gulfs of Evaluation and Execution” [26], meaning that there’s a cog-
nitive gap between users’ intentions and the system’s provisions,
as well as between the system’s responses and users’ interpreta-
tions. In the context of testing, this implies that students do not
see immediate and clear feedback linking the tests they write to
the outcomes those tests produce. To address this, we believe that
our system should (i) keep the program state visible at all times,
thus allowing for live, iterative testing where the effects of differ-
ent inputs and code changes can be observed instantly, and (ii)
allow programmers to work with the visualization directly using
an interaction paradigm called direct manipulation.
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To achieve this vision, we have built TestVision on top of Al-
got [34, 37], a visual, graph-based programming language that
supports liveness and direct manipulation and maintains a constant
visual representation of the program state. We believe that Algot
should be a suitable choice since controlled, experimental studies on
secondary and tertiary-level students have found that the language
can be learned very fast, both for composing code [33, 35, 36] and
comprehending it [19], and does not induce high cognitive load
in the domains that have been tested. Besides supporting users in
defining test cases visually, we allow students to assess the quality
of their test cases via visual branch coverage metrics and mutation
testing, which allows students to define and test mutants in the
same way that they can define unit tests. Our goal is to both support
secondary-level students by making software testing more acces-
sible and immediate through a visual and interactive tool and to
support tertiary-level students by providing advanced test quality
assessment features such as mutation testing and branch coverage
metrics.

To our knowledge, applying visualization and direct manipula-
tion in the context of software testing education is a novel contribu-
tion. Using our system, we aim to contribute to all three key research
questions identified by the Garousi et al. review [17]; by making
testing more accessible and immediate, we hope to (1) change the
mental models of students to appreciate software testing and (2)
motivate them to engage with the topic, and with our test quality
modules, we hope to (3) introduce a measure that “help[s] educators
assess the quality of software testing beyond ‘just’ code coverage.”

In the remaining parts of the paper, we will describe the context
and background fromwhich the system arises (Sections 2 and 3) and
offer a comprehensive overview of how it works (Section 4). We will
also describe the methodology and design process behind the two
studies in which we tested it (Section 5) and report on the usability
taxonomy and other results we gathered from our studies (Section
6). Finally, we will discuss our results and the implications of our
work (Section 7). We note that the system itself can be accessed at
this link: https://testvision.algot.org.

2 RELATEDWORK
In their 2020 review, Garousi et al. [17] identify 62 research pa-
pers that propose or discuss a specific tool for software testing
education. Approximately a third of these papers (20) discuss three
tools; (i) Web-Cat [31] (from 2003), an early web environment with
features that were new at the time (such as auto-grading and on-
line submissions of assignments), (ii) WReSTT-Cyle [6] (from 2010;
now called STEM-CYLE), a collection of online tutorials on testing
with support for social networking and gamification, (iii) Code
Defenders [30] (from 2016), a novel multiplayer game for teaching
mutation testing, with one objective of “[engaging] learners in mu-
tation testing activities in a fun way.” These approaches all involve
textual programming.

We are aware of few systems using visual approaches to software
testing and none that involve direct manipulation. Of the former,
two early tools for testing education incorporate visualization to
some degree; Light Views [29] from 2000, which was “one of the
first environments used for software testing education” [38], could
be used to visualize solution paths and state changes for programs

written in Java, helping students generate comprehensive test cases.
An unnamed educational system from 2005 would also provide a
“visual representation of the testing mechanism” according to its
authors [9]. The available information on these systems appears to
be limited.

From the adjacent area of software built for testing visual pro-
gramming languages, Whisker [18, 32] is a tool for automated and
property-based testing of programs written in the visual block-
based language Scratch. Although syntax errors in Scratch are
impossible due to the block-based language paradigm, other bugs
will still occur [12, 15], so a system like Whisker can be useful;
an evaluation on a large number of Scratch programs found that
Whisker can achieve high error coverage under a fully automated
approach [12]. However, it does not appear that Whisker was de-
signed with software testing education in mind in particular, but
rather to help Scratch programmers write more correct programs.

3 BACKGROUND
Our system, TestVision, builds on top of the visual programming
language Algot and adds features that allow users to test their
programs and assess the quality of their tests. This is achieved
through coverage metrics and mutation testing. The goal of the
system is to introduce users to tools that can be used to improve the
quality of a test suite and help them write better tests, a skill that
many software engineers lack [4]. The following subsections will
cover the theory behind the features implemented in our system.

3.1 Algot
Algot is a visual programming language designed to bridge the
syntax-semantics gap through direct manipulation of the program
state, which is represented as a graph that is always visible to the
programmer [34, 37]. Each node of the state graph contains a value
of type integer, float, or string. By applying built-in or user-defined
operations to nodes in the graph, the program state can be modified,
which will result in immediate changes to the program state. For
example, operations can introduce new nodes to the graph, delete
existing ones, introduce new edges between nodes, or change the
value stored in a node. It is also possible to conditionally apply
operations through queries, which are special built-in operations
that can be used to check the conditions within the graph state.

The central part of Algot’s interface is the playground, which
contains the current representation of the program state. When
executing operations on nodes of the graph, the values are instantly
updated, allowing the user to directly interact with the results of the
operation. For example, if the playground contains three nodes with
the values 1, 2, and 0, selecting the “Sum” operation and clicking
on the nodes in the listed order will store the result of adding 1 and
2 in the node that previously contained the value 0. This makes it
very easy for users to test different operations and experiment in
Algot.

Algot also allows users to create their own operations without
having towrite any code. This is done through the programming-by-
demonstration paradigm, where users apply operations sequentially
on input nodes they define. This process occurs in an environment
similar to the playground, making it easy for users to create new
operations. It is also possible to conditionally execute steps of an
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operation using queries. While Algot does not support loops, it
allows users to recursively call an operation. For more details on
the system, we refer to a 2022 overview [37].

Several controlled, experimental studies on Algot have been
conducted. Two studies found students programming in Algot ex-
perienced lower cognitive load when creating programs in Algot
compared to Python for the same tasks, one making use of an elec-
troencephalogram [35, 36]. A study on secondary school students
found that students learning recursion in Algot performed better
on a recursion-related posttest than students learning about recur-
sion using the block-based language Scratch [33]. Last, a study on
program comprehension in Algot found that students understood
programs better when presented in Algot than in Python [19].

3.2 Unit Testing
In unit testing, the program is divided into individual components,
which are tested separately. These components are usually the
smallest testable parts of a program, such as functions or methods.
In Algot, this would correspond to a user-defined operation. The
goal is to test each unit independently to ensure that it performs
as expected, rather than testing the system as a whole. Unit test-
ing is commonly used in practice and almost every programming
language has its own unit testing framework [10].

To determine how much of the code is covered by a test suite
and thereby assess its thoroughness, metrics such as branch cover-
age are used. With branch coverage, the developer can check that
every possible branch in the program is covered by at least one test,
ensuring that every line of code is tested at least once. In C-like
languages, branches are introduced by if, switch, and ternary state-
ments, as well as loops. Although branch coverage is widely used
by real-world developers, it is inadequate for assessing the fault
detection capability of a test suite because it only checks whether
each branch is executed, not whether the state of the program has
been affected by a bug [28].

3.3 Mutation Testing
Mutation testing is a software testing technique for assessing the
quality of a test suite. It introduces faults into a program using mu-
tation operators, which emulate common programming mistakes,
such as switching a logical OR operation for a logical AND. The
core assumption is that if a test suite can detect small changes in a
program, it can also detect more complex faults. This is called the
“Coupling Effect” [13]. All generated mutants are then run against
the test suite to see whether the existing tests catch all introduced
mistakes. If a mutant fails at least one test, it is considered killed. If a
mutant manages to pass all tests, the test suite should be expanded
to kill it.

Mutants that are killed by almost every test are considered triv-
ial, whereas mutants that pass almost every test are considered
stubborn. It is also possible for mutants to be equivalent to the orig-
inal program. In this case, it is impossible to kill them. Detecting
equivalent mutants requires human interaction since the problem of
determining whether two programs are equivalent is undecidable.

A commonly used metric in mutation testing is the mutation
score, which is calculated by dividing the number of killed mutants
by the total number of mutants. The goal of the developer should

be to achieve a high mutation score to ensure that the test suite
is comprehensive enough. The mutation score is considered the
state-of-the-art coverage metric due to its ability to measure the
fault detection capabilities of a test suite [28].

Since mutation testing can be computationally expensive due
to the generation of a large amount of mutants and the need to
run each mutant against the entire test suite, the concept of weak
mutation testing exists. In weak mutation testing, the program state
is compared immediately after executing the mutated statement,
instead of comparing the final program output. This usually results
in a decreased runtime; however, it can lead to mutants passing
tests they would have failed in strong mutation testing.

Our web search on the topic showed that mutation testing is
taught in software testing courses at many universities around
the world. It has been shown to be an effective tool for teaching
software testing [3] and can be used by students to assess the quality
of their test suites.

4 SYSTEM
Algot is implemented as a web application using TypeScript with
the React-based Next.js framework and MongoDB for persistent
storage. TestVision builds on top of Algot, adding new testing
capabilities aimed at familiarizing beginners with the basics of
software testing. Additionally, it includes mutation testing features
and branch coveragemetrics, which can be used to assess the quality
of test suites. These features are targeted towards programmers
who are already familiar with the basics of testing and are intended
for use in software testing courses. The goal is to not only teach
students how to write tests but also how to write good tests and
judge their adequacy.1

We argue that the visual and interactive environment of Algot
can deepen students’ understanding of software testing by allowing
for experimentation and exploration. This knowledge can then be
applied to other programming languages, hopefully enabling them
to write better tests - an important skill for any software engineer.

The new testing features include:
(1) Testing Tab: Located in the left side-panel, this tab allows

users to create and run tests.
(2) Test Editor: A dedicated interface for writing tests, based

on the Algot operation editor.
(3) Branch Coverage Metrics: Display the extent of code

execution and help assess the effectiveness of the tests.
(4) Step-Through Debugger: A tool for examining test exe-

cution step by step.
(5) Mutation Testing Screen: This interface enables the au-

tomatic generation of mutants and running them against
test suites. This allows the user to check the quality of a
test suite and improve their test-writing skills.

(6) Tutorials: Comprehensive guides for both unit testing and
mutation testing.

The system’s features were designed with Algot’s programming-
by-demonstration paradigm in mind: for example, tests are defined
by visually constructing the expected inputs and outputs, similar
to how operations are defined, and do not require the user to write

1We note again that the system itself can be accessed at this link:
https://testvision.algot.org.
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any code or assertions. The mutation testing features allow the
user to experiment with different mutation operators and receive
instant visual feedback. This enables users to interactively learn
about more advanced concepts of mutation testing, such as weak
mutation testing. All new features will be discussed in detail in
the following subsections. Note that we have also included in our
supplementary materials three CS1-style program examples that
show how TestVision works.

4.1 Testing Tab
All new testing-related features introduced by TestVision can be
accessed via the testing tab in the left side-panel of Algot, as shown
in the top left of Figure 1. This extension of the existing interface
allows users to efficiently switch between operations and their cor-
responding tests. All tests are grouped by operation into individual
test suites, following the convention in software engineering of
testing each component separately. The goal is to implicitly teach
this practice to users of TestVision.

At the top of the testing tab, the current passing rate of the
selected test suite and the achieved branch coverage are displayed.
Thesemetrics provide users with a quick estimation of how effective
their tests are and introduce them to commonly used metrics in
software testing. Also at the top of the sidebar are controls to create
new tests, run all tests, and open the mutation testing screen for
the current test suite. The mutation testing screen will be covered
in detail in a later subsection.

Below the controls, a list of all tests for the currently selected
operation is displayed. Each entry in the list contains the name
of the test and controls to run, debug, or delete it. By clicking
on the test, the user can open the test editor. It is also possible
to rename the test by double-clicking its name. This behavior is
consistent with the existing operation tab in Algot and allows users
to assign more meaningful names to their tests. Below the test
name, additional information about the test is displayed, including
the achieved branch coverage of the individual test and whether
it has passed or failed, along with possible error messages. This
information is automatically displayed when the test is run and can
be hidden by the user.

4.2 Calculating the Branch Coverage
Metrics are an important tool in software testing, allowing devel-
opers to judge how much of the code they are covering with their
tests and assess the effectiveness of their test suite. We believe it is
important to introduce beginners to these metrics, as they are very
helpful for writing good tests. For this reason, Algot’s interpreter
was extended to allow for the calculation of the branch coverage of
an operation execution. An example of this can be seen in the left
sidebar at the top left of Figure 1.

Branches in Algot can only be introduced by queries, which
evaluate to either true or false. Each query represents a decision
point in the execution path, introducing branches in the process.
Actions taken during an operation can be conditional on the result
of one or more queries. However, queries cannot be dependent on
the result of other queries. In the case where an action is dependent
on multiple queries, the conjunction of the query results is taken,
only evaluating to true if all subqueries evaluate to true.

The branch coverage achieved by a test is calculated by aggregat-
ing the results of queries for each action dependent on one, across
recursive calls. For example, if a query evaluates to true during the
first call and to false in the second recursive call, the aggregated
result for that query would contain both true and false. Conversely,
if a query only results in false across all calls, the aggregated re-
sult would contain only false. The number of covered branches is
then determined from these aggregated results. Once the operation
terminates, the total number of branches is calculated by doubling
the number of actions dependent on queries, since each query can
result in either true or false. If an action depends on the result of
multiple queries, their conjunction is treated as a single branching
point.

Consider the following operation as an example (shown in Fig-
ure 2): Take two nodes as input arguments and decrement the value
of the first node until it is equal to the value of the second node
or 0. This operation has two actions, both dependent on the same
two queries: "Is the value of the first node not equal to the value of
the second node?" and "Is the value of the first node not equal to
zero?".

If we call this operation with two nodes containing the values 4
and 2, we will have two calls—one initial call and one recursive call.
In the first iteration, both queries evaluate to true, decrementing the
value of the first node and triggering the recursive call. In the second
recursive call, the value of the first node is again decremented, and
the operation terminates, as both nodes now have the same value
and the conjunction of the queries evaluates to false.

We can now determine the total number of branches by counting
the number of queries performed during the operation. Since we
had two calls and each call evaluated two queries, we end up with
4 branches. As the query for the first action only resulted in true,
and the query for the second action evaluated to both true and
false across the recursive calls, we can conclude that 3 out of the 4
possible branches were covered. This results in a branch coverage
of 3

4 = 75%.

4.3 Test Editor
Tests in TestVision consist of three parts: the input graph, the input
nodes, and the output graph. The input graph defines the structure
of the test input, and the input nodes are the nodes within this
graph that are passed to the operation as arguments. An example
of this can be seen at the top left of Figure 1. The output graph
describes the expected shape and values of the output.

To determine whether a test has passed, the operation is exe-
cuted on the input nodes, and the output is compared to the output
graph defined in the test. If they match, the test passes; if they differ,
the test fails. This approach is based on traditional testing methods
used in textual programming languages, allowing users to apply the
concepts they learn in TestVision to other programming languages.
However, it requires solving the graph isomorphism problem to
determine the test outcome. Although the graph isomorphism prob-
lem is not known to be solvable in polynomial time [14], this has
not been an issue in the user studies and testing. There exists a
quasi-polynomial algorithm [2], but it has not been implemented
in TestVision as it has not proven necessary.



A Direct Manipulation Programming Environment for Teaching Introductory and Advanced Software Testing

Figure 1: Different components of Algot’s new testing features, clockwise from the top-left: (a) First stage of the test editor
with the new testing tab on the left-hand side (b) Step-through debugger (c) Mutation inspection screen of an action mutant
(d) Mutation testing screen with the three different mutation operation types on the left-hand side

Figure 2: An example operation for calculating branch cov-
erage in TestVision (screenshot edited to reduce whitespace).

Therefore, the editor must allow the user to define all three parts
of a test: the input graph, the input nodes, and the output graph. It is
based on the existing operation editor of Algot and is separated into
two stages. By reusing parts of the existing interface, users can apply
what they have already learned about writing operations in Algot
to the new testing features. In traditional text-based languages,
programmers often have to learn a separate testing framework

and write boiler-plate testing code in which they can insert their
assertions. This is because, in many languages, testing is not part of
the standard library and third-party solutions have to be important.

For beginners, this can be a complicated process, especially be-
cause they have to learn language-specific testing methods. In
TestVision, this process is streamlined, allowing the user to concen-
trate on the concepts of testing itself rather than learning a testing
framework. We believe that this improves the learning process
for beginners, enabling them to focus on the ideas and thinking
patterns of testing, rather than memorizing how to use a testing
framework. First, the user defines the input graph and selects the
input nodes. This is done in the same way as any other graph is
defined in Algot. In this stage, a new tool is added to the right side-
bar, allowing the selection of the input arguments to the operation
and their order. Not all nodes of the graph have to be selected as
inputs, since Algot operations can also operate on nodes that are
connected to input arguments.

In the second stage, the user defines the expected output graph.
This is also done in the familiar graph editor.
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4.4 Step-through Debugger
The step-through debugger can be opened for any test and used to
inspect why a test is failing, as shown at the top right of Figure 1.
This follows Algot’s philosophy of always displaying the program
state and allows users to see the results of each individual step,
which may help them better understand how tests are run and eval-
uated. To enable the debugger, Algot’s interpreter was extended to
allow for partial function applications. This adjustment allows each
action performed during an operation to be applied individually,
enabling users to step through functions.

At the center of the debugger is a non-editable graph view of
the current program state. Next to the graph view is a list of all
steps executed during the operation, grouped by operation call.
These groups can be collapsed, making it easier to quickly navigate
through recursive functions. The current step is highlighted in the
list, and the user can continue stepping through the operation by
using the arrow keys. With each step, the state of the graph is up-
dated, allowing the user to see the effects of each action performed
by the operation.

4.5 Mutation Testing Screen
The mutation testing screen can be opened for any test suite and
allows for automatic mutant generation and running the mutants
against the test suite. An example of this can be seen at the bottom
left of Figure 1. The goal of mutation testing is to give users an
additional tool, beyond branch coverage, to help them assess how
effective their test suite is. Mutation testing has been proven to be
effective for teaching software testing, as it gamifies the testing
process [3].

Operations in Algot involve a set of actions performed on a set
of input nodes that are part of a graph. These three aspects can
be mutated and constitute the three different mutant generation
categories:

(1) Input Mutation: This category mutates the input argu-
ments to the operation. There is one mutation operator,
which changes the order of the arguments to the operation.

(2) Action Mutation: This category mutates the actions exe-
cuted by an operation. There are five different mutation op-
erators available, all based on common mutation operators
from textual languages, such as switching mathematical
operators [20].

(3) Pattern Mutation: This category mutates the input graph.
It is equivalent to swapping references within a struct in
a C-like language. There is one mutation operator in this
category, which swaps the children of a node if it has more
than one child.

Every mutation operator can be enabled individually, automati-
cally updating the list of all mutants on the right-hand side of the
screen. When hovering over the button of a mutation operator, a
popup appears explaining what it changes in the operation. This is
illustrated at the bottom right of Figure 1, where the action with
index 2 was mutated. There are also tutorial screens for each muta-
tion category, showing visual examples of how they work, which
can be opened by clicking on the help button next to the category
name. Each entry in the list of generated mutants is labeled by
category and can be inspected by clicking on it. Using the arrow

keys, users can quickly navigate through all generated mutants and
inspect them. These features allow users to experiment with dif-
ferent mutation operators very easily, while also providing instant
visual feedback. We believe that the quick feedback loop can be
very beneficial for the learning process.

The mutant inspection screen consists of three parts, correspond-
ing to each component of an Algot operation: the actions executed
by the operation, the input nodes to the operation, and the input
graph. The part changed by the mutant is highlighted in orange,
making it easy to spot the applied mutation. For mutations in the
action mutation category, the exact step that was altered is addi-
tionally highlighted. By pressing the Shift-key, users can toggle the
view between the original operation and the mutant. This feature
helps users understand how the applied mutation operator works
and how it changes the operation. If users have trouble understand-
ing why a mutant is not killed by the test suite, they can make use
of the step-through debugger to see why it passes a specific test
case.

At the top of the mutant inspection screen, there are labels
showing the current state of the mutant. After running the tests on
the mutants, the labels are updated to indicate whether the mutant
is alive or killed. By hovering over the label, users can see which
tests the mutant passes or fails. If the mutant is killed by 90% or
more of the tests, it is considered trivial and a badge is displayed
next to its name. If it is only killed by 10% or fewer of the tests, it
is considered stubborn, and a badge is shown. Users interested in
learning more about trivial and stubborn mutants can hover over
the badges, rewarding their exploration.

There is a button that allows users to mark a mutant as equiva-
lent, as detecting whether a mutant is equivalent requires human
intelligence [7], with an explanation available on hover. When a
mutant is marked as equivalent, it is excluded from the calculation
of the mutation score. The mutation score, a common metric in
mutation testing [20], is calculated by dividing the number of killed
mutants by the total number of mutants and is used to judge the
effectiveness of a test suite.

Above the list of all mutants is a box displaying metrics about
the mutants, including the number of generated mutants, the afore-
mentioned mutation score, and the achieved branch coverage of the
test suite. These statistics are also visualized using progress bars,
with red and green colors indicating the performance of the test
suite. For example, the use of green helps users intuitively under-
stand that a high mutation score is desirable. The box also contains
controls to run the mutation test and to hide killed mutants. Since
it is easy to generate a large number of mutants, this feature helps
users identify mutants that are not killed by the test suite.

Additionally, there is a switch that allows users to toggle between
strong and weak mutations. With strong mutation, the tests are run
in their entirety, checking whether the output matches the expected
test output. However, since mutation testing can generate a large
number of mutants and each mutant is run against every test, this
can lead to long runtimes. To address this, weak mutation testing
only executes the test until after the mutated action is performed,
resulting in faster runtimes. Weak mutation testing is commonly
used in practical applications of mutation testing [27], but its results
are less accurate since the states are compared early, which may
lead to mutants being mislabeled as alive or killed.
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4.6 Tutorials
Algot has a tutorial that teaches users how to create and use opera-
tions, guiding them through the interface. This tutorial is presented
in a floating window that provides instructions and positive vi-
sual feedback upon task completion. For TestVision, two additional
tutorials have been added.

The first tutorial guides users through the new testing tab, test
editor, and step-through debugger. It starts by introducing a new
operation that calculates the greatest common divisor (GCD) of two
nodes. Users are instructed to apply it to nodes in the playground
to understand its usage. Next, they create a simple test for the GCD
operation and run it, which includes an overview of the new test
editor. After running the test, the concept of branch coverage is
introduced, explaining how it helps assess the effectiveness of a
test suite. Users then test how the GCD operation handles divide-
by-zero exceptions, learning about the importance of testing edge
cases. Finally, they use the step-through-debugger to identify the
bug causing the mishandling of zero inputs.

The second tutorial introduces the mutation testing features of
TestVision and covers the mutation testing screen. It begins by
adding an operation that computes the dot product of two vectors.
Users are asked to test this operation in the playground, similar
to the previous tutorial. Next, users write a test for the operation,
covering a specific input case provided by the tutorial. The tutorial
then explains mutation testing, how it works, and how it can be
used to assess the quality of a test suite. Users are instructed to test
different mutation operators and to write new tests for mutants
not killed by the test suite. This also includes an introduction to
the mutant inspection screen and the mutation score. After killing
all mutants but one, users are asked to inspect why the remaining
mutant is not killed by the test suite, learning about equivalent
mutants and how to mark them accordingly in the interface.

The general philosophy behind the tutorials is to avoid overload-
ing users with information. This is achieved by gradually intro-
ducing users to the concepts of testing and mutation testing, and
allowing them to learn more details through exploration. For exam-
ple, users can read hover texts and open information screens, which
rewards interested users. The tutorials aim to teach users how to
write tests in TestVision and how to use metrics such as branch
coverage and the mutation score to assess the quality of their tests.
We argue that these skills can be applied to other programming
languages, enabling users to evaluate the quality of their tests and
improve their test-writing capabilities.

5 METHODS
After receiving ethics approval from our institution, we sought to
evaluate the usability of the software in two separate user studies:

• First, with the help of the Decision Science Laboratory
at ETH Zürich, we recruited twenty participants from a
large volunteer pool of tertiary-level students (>10,000).
The precondition for participating was to have completed
at least one course in computer programming, but they
were not required to be enrolled in a computer science
degree program. We asked the students to proceed through
an interactive, digital tutorial on the system in a computer
laboratory while their screens were recorded. To help us

find how usable the system is, we sought to (i) determine
how many participants could successfully complete the
tutorial, (ii) identify and classify design errors encountered
during the session, and (iii) analyze the feedback collected
from their participants, including textual feedback and their
responses to a 10-stage Likert scale on whether they believe
the system can help them learn about software testing.

• Second, we recruited nine participants from a course on au-
tomatic software testing for master’s students in computer
science. All registered students in the course were invited
to participate. First, before the tutorial began, the students
were asked on a free-form survey question to identify which
topics from the course they found challenging. Then we
presented the system live while the students followed our
presentation on their own laptops and tested the system
for themselves. Afterwards, we asked the participants to
rate their perceptions of the system using the standard-
ized User Experience Questionnaire Plus [23] with the four
scales novelty, usefulness, intuitive use and clarity. Each scale
is measured by taking the average of a 7-point rating of
four adjective-antonym pairs. For example, to assess the
usefulness of the system, students will consider the pairs
useless–useful, not helpful–helpful, not beneficial–beneficial,
not rewarding–rewarding.
We also asked participants to offer their feedback using five
free-form survey questions:
– (Q1) Please describe your impression of the software.
– (Q2) Could you describe any challenges you can iden-

tify with the software?
– (Q3) Do you think that the software can help you with

your learning goals?
– (Q4) What improvements or additional features could

improve the software?
– (Q5) Do you have any other comments regarding the

software that you would like to share?

Participants were also asked about their age and gender using
free-form questions. The participants in the first study were also
asked about their education level and their familiarity with software
testing using a slider-style question.

Note that we anticipated that we would make substantial im-
provements to the system in response to the feedback collected
from the participants in the first study. Therefore, we did not antici-
pate that the systems shown to the participants in the two separate
user studies would be precisely the same.

6 RESULTS
6.1 First session
Twenty participants attended our first session, all of which com-
pleted the study. Ten participants were female and ten were male.
Of the nineteen participants who answered our question about their
age, their median age was 23 (range: 21 to 31). Thirteen participants
were enrolled in a master’s program and seven were enrolled in a
bachelor’s program. None had used Algot before. All students had
completed at least one course in computer programming. Seventeen
chose to answer our question about their familiarity with software
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testing; according to the slider we used, the average value was 19%,
indicating low familiarity.

6.1.1 Survey results. We also analyzed free-form responses to the
question “Do you have comments about anything that could be
improved?”. Thirteen students chose to respond. Four students
mentioned the interactive tutorial, for example “I got stuck on one
explanation of the tutorial. It would be nice if it is possible to still
continue with the tutorial.” Another suggested that the tutorial
should have a “back” button. One student said “I was first a bit
overwhelmed by the amount of bars and tabs that [I] can open.”
One student asked if it was possible to use non-directed edges and
another proposed “being able to add steps in between steps and
being able to rearrange steps with clicking and dragging.” Other
comments mentioned various errors ranging from typographical
errors to more technical ones, e.g., “[o]pening the GCD operation
did only showme node a and the isZero query for b, the other nodes
(b,A) were missing, though I somehow got Algot to show me the
other nodes once, but then the operation [didn’t] work anymore.”
The same student mentioned that “the overall UI, UX, how to do
stuff in Algot” was clear.

All twenty participants answered the question on how much
the system could help with understanding software testing. The
average response was 5.2 (𝜎 = 2.0, min = 3, max = 9) on the 10-point
scale used.

6.1.2 Usability Taxonomy. We analyzed all twenty screen record-
ings taken during the first user study and identified and classified
usability problems of the new testing features and interfaces in-
troduced by TestVision. Since the first session targeted individuals
with no prior testing knowledge, the mutation testing parts of the
software were not included in this study.

The classification of the identified usability problems was per-
formed using the Usability Problem Taxonomy (UPT) by Keenan
et al. This model assists in identifying common issues in user in-
terfaces and has been shown to be reliable [21]. The UPT catego-
rizes usability problems from both task and artifact perspectives.
The task component addresses problems users encounter while
performing tasks, whereas the artifact component focuses on diffi-
culties related to objects within the user interface. Each component
includes further subcategories, allowing for more specific classi-
fication, such as issues with object appearance, naming/labeling,
and non-message feedback. If a usability problem cannot be further
specified within a component, it is considered fully classified (FC).
If there are additional subcategories available for classification, it is
partially classified (PC). If it does not fit within the component’s
categories, it is null classified (NC). After categorizing all usability
problems, they can be grouped by their classification, facilitating
the identification of common issues within the user interface.

From the UPT in Table 1, we can see that some usability issues
are not specific to TestVision, namely points (1), (2), and (6). One
interesting observation is that users were able to find a bug during
the tutorial using the new testing features but were unable to fix
this bug in the operation editor. It is difficult to determine whether
this is due to the user interface, the students’ inexperience with
Algot, or the difficulty of the task. Further usability studies would
be valuable to explore this issue.

The second most common usability issue was that participants
mistook the operation editor for the playground. Both use the same
graph editor for different purposes: the playground displays the
current state of the workspace, while the operation editor shows
the implementation of a specific operation. If a user creates a new
operation and does not have any nodes in the playground, the visual
difference between the two is very subtle. This violates the principle
of feedback in human-machine interaction, which states that users
should receive information about what action has been performed
[26]. This issue should be addressed by creating a more distinct
visual separation between the playground and the operation editor,
such as using a different background color.

Another non-testing related issue was that two users uninten-
tionally created an infinite recursion while defining an operation
by creating a new node and applying the operation itself on it.
This behavior shows that users were unaware they were defin-
ing the operation, which led to the creation of hundreds of nodes,
causing visible confusion. As with the previous issue, this problem
can also be attributed to the lack of visual distinction between the
playground and the operation editor.

Additionally, this confusion suggests a further problem, as users
first click on the "New Operation" button before creating the re-
cursion. This button looks very similar to the buttons for calling
user-defined and built-in operations, even though it behaves very
differently. This represents a lack of consistency in the user inter-
face and could also explain why users were not aware that they
opened the test editor, as users expect objects that look alike and are
in close proximity to each other to behave similarly [26]. Although
this was an issue for only two participants, it should be addressed
by relocating the "New Operation" button or making it visually
distinct from the operations below it.

The most common issue related to the new testing features was
that participants were unsure what to set the output of a test to
when it caused a divide-by-zero exception, a scenario covered by the
testing tutorial. The task states: If your test input results in undefined
behavior, simply return the input graph unchanged (in the output
stage of the test). The issue could be due to the wording, which
may need a clearer explanation. This might also be addressed by
introducing error handling in Algot, making it more obvious what
to do in the case of an exception.

A further issue discovered in the testing interface is that some
users forgot to select the input nodes from the input graph in a
test. This could be because this behavior differs from text-based
programming languages that the participants were already familiar
with, requiring them to define two types of inputs: the shape of the
input graph and the actual nodes that are passed to the operation. If
the user attempts to run a test without selecting the input nodes, an
error message is displayed stating, "Test failed: Wrong input count."
However, the user might be confused by this wording if they have
already defined the input graph but forgot to select the arguments.

This issue could be addressed by improving the wording in the
error message and explicitly prompting the user to select input
nodes after defining the input graph in the test editor. Additionally,
a new error message could be introduced when the user forgets to
define an input graph, making it more distinct from the case where
they simply forgot to select the input nodes. Another approach
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# #Users Problem Description Artifact
Classification

Artifact
Outcome

Task
Classification

Task
Outcome

1 8
The user attempts to debug the
GCDoperation but does not suc-
ceed.

Artifact NC Task-facilitation PC

2 7 The user confuses the operation
editor for the playground.

Object appear-
ance FC Task-mapping PC

3 5

The user is not sure what to set
the GCD output to in the case of
an exception during the testing
tutorial.

On-screen text FC Task-facilitation PC

4 4
The user edits the GCD oper-
ation, making it impossible to
complete the testing tutorial.

Direct manipula-
tion FC Keeping the user

task on track FC

5 3
The user forgets to select the
test input nodes when defining
a test.

Non-message
feedback FC Task-facilitation PC

6 2
When creating a new operation,
the user unintentionally applies
the operation on itself.

Naming/labeling FC Keeping the user
task on track FC

Table 1: Usability Problem Taxonomy (UPT) [21] from the first user study with twenty participants, gathered from analyzing
the screen recordings of the students.

would be to move the selection of input nodes to a separate stage
in the test editor, making it more difficult to miss.

Finally, there also was a usability issue where users accidentally
edited the GCD operation added by the testing tutorial. In all cases,
they removed the exit condition of the recursion, leading to error
messages due to reaching the maximum recursion depth of Algot
when running tests. The users believed they had found a bug in
TestVision and stopped doing the tutorial, even though they had
caused the exception themselves. In the study, all participants who
started the testing tutorial but did not complete it stopped because
they had edited the GCD operation. There are two possible fixes for
this issue: either the GCD operation added by the testing tutorial
should be made static so users cannot edit it, or a warning message
should be displayed when the operation is edited. This issue might
also be prevented by making the editor more visually distinct from
the playground, as users may have been unaware that they were
editing the operation, as discussed before.

6.2 Second session
Nine participants attended our second session, of which two were
female and seven were male. The median age was 23 (range: 22 to
26). Before the session took place, many of the errors pointed out in
the first session had been resolved.We note that anonymized results
from this session can be found in our supplementary materials.

The normalized results from the UEQ+ can be seen in Table 2. The
average value across the four scales chosen was 1.72, which is high
according to a recent benchmark of the UEQ+ [24], with the score
comparing favorably against the interfaces of well-known industry

software. The scores had a relatively low standard deviation and
were rather consistent; of the 130 rating points collected in total,
only two (1.5%) were below 0. The free-form responses were well-
aligned with UEQ+ results; all nine students left positive comments
when asked for their impression (Q1), finding it “modern and clear
[S1]” “good softwarewith a clear UI [S2],” “it is a very fancy software.
It’s my first time to use it, yet I find it quite easy to start with [S4],”
“it looks good and easy to navigate [S6],” “very well thought out
and beautifully designed [S9],” “the software seems very helpful to
solve/understand problems before coding them [S7],” “nice to see
visually what happens during mutation testing [S8]” and “design
very good, minimal and easy to understand [S5].” The least positive
feedback came from student S8, who said “the software is usable, but
there can be improvements such as when designing an operation,
the close button "x" can be more obvious.”

Eight of the nine students answered affirmatively that the soft-
ware could help them with their learning goals (Q3), e.g., “Yes. The
visual nature of the software helps a lot with that [S1]” and “I think
it is very nice to learn about testing with it [S9]”. Four students
mentioned that it would be helpful for mutation testing in particular
(e.g., “It helped me clear up on questions on mutation testing and
solidify my course knowledge [S9],” ”It is for sure easier to grasp
mutation testing visually [S3]“ and “Yes it can be useful to learn
recursion for beginners and the feature about mutation testing is
very well done and I would use it to actually understand better how
mutation testing works [S1]”). The only ambivalent student wrote
“Unsure. I’d have to really dig deep to try it myself [S8].”
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Scale Mean 95% CL interval SD Min Max

Novelty 1.89 [1.21, 2.57] 0.98 0.25 3.00

Usefulness 1.69 [1.04, 2.34] 0.87 0.25 2.50

Intuitive Use 1.56 [0.64, 2.49] 1.29 -0.75 2.75

Clarity 1.78 [1.21, 2.36] 0.69 0.75 3.00
Table 2: The normalized results from the User Experience
Questionnaire Plus (UEQ+) with the mean, its confidence in-
terval, standard deviation (SD), andminimum andmaximum
scores. Each rating represents the average response to four
questions. The ratings are on a scale from -3 (most negative
possible) to 3 (most positive possible).

When probed for challenges with the software or improvements
that could be made (Q2 and Q4), three students (S1, S6, and S9)
mentioned that theywould like to be able to assign newnames to the
nodes in the graph. S5, S7, and S8 suggested more documentation
and/or additional guided tutorials. S2 proposed more features like
support for object-oriented programming and floating points, and
S9 mentioned support for additional testing concepts like symbolic
execution. S3 said “the challenge I can identify is how to deploy the
written program in Algot to real life.” Seven of the nine students
chose to leave additional comments about the software (Q5); two
students praised the tutorial in particular (“really clear [S3]” and
“‘really good [S5]”) but two students (S5 and S8) found it too fast or
that it covered too much material. Two students (S2 and S4) praised
the software implementation. The last remaining response to Q5
was a question on the software versioning.

According to the free-form question that was asked before the
system was presented, students had identified the following course
topics as challenging or difficult: symbolic execution (S1 and S9),
mutation testing (S4 and S8), abstract interpretation (S6) and data-
flow analysis (S1).

7 DISCUSSION
Our twofold study yielded two types of results; first, we captured
operational data on how the system is used by its intended audi-
ence (tertiary-level students) and cast light on the usage challenges
involved, and second, we captured perceptual data on how users
experience the usability of the system. In addition to how the first
dataset helped us improve the system, our hope is educators can
use the usability taxonomy that we synthesized to (i) better under-
stand the design and design history of the tool and (ii) be better
prepared for how students might experience it when encounter-
ing it in the classroom. For example, our usability study helped us
discover an unintended consequence of attempting to make the
different system interfaces similar; our intention by having the
playground and the testing module incorporate a similar design
was to make it easier for students to apply their knowledge across
different environments, but this also resulted in students having
trouble distinguishing between them. To make the best use of the
system, we believe that it would be effective to begin with direct

instruction, teacher-led activities before students experiment with
it on their own, similar to the setup we used in the second study.

Our perceptual data on the system usability was neutral in the
first study session (average rating 5.2/10) but very high in the sec-
ond study session (1.7/3.0 on the Usability Experience Plus). The
data should be interpreted cautiously given the low number of
participants (especially in the second study), but our qualitative
interpretation of the free-form data also indicates that the system
was very well-received and that direct manipulation can bring the
subject matter closer to students. We believe that the difference
in results can be attributed to two factors; first, the design of the
system was improved somewhat between the two sessions, and
second, the students in the latter session were all enrolled in a
course on software testing, meaning that they were likely more
interested in testing and more likely to understand how our system
could be used.

With respect to the delimitations of the study and the threats
to validity, we note that neither of our study sessions measured
learning gains resulting from the system or related metrics such
as task performance, cognitive load, or motivation. Instead, we
measured students’ perceptions on whether the system is usable
and whether it can help them learn. Although the responses to the
last question were positive, this does not mean that learning gains
will necessarily materialize in practice. Furthermore, although the
responses were collected anonymously, it is possible that student
responses were impacted by acquiescence or social desirability bias.
Additionally, although our study showed that most students in our
first session could complete the interactive tutorials successfully
within the time allotted, which we take as evidence for the system
usability, we do not have evidence that they could also do so for
more complex tasks.

We find that controlled studies comparing the system with tradi-
tional forms of teaching software testing would be useful. However,
there are currently some challenges involved in conducting such
a study due to the lack of a validated assessment instrument or a
concept inventory on software testing, or more generally, a robust
understanding of what competency with software testing looks like
and can be measured. Therefore, in addition to encouraging others
to explore our tool in their research, we also call for more research
on validated measurements in the domain of software testing; of
the 62 papers identified by Garousi et al. [17] on software testing
education, none were on this subtopic.

8 CONCLUSION
Our paper presented TestVision, a system for teaching students
about software testing within a direct manipulation and live pro-
gramming environment that allows students to define tests without
working with a single line of code. Our paper presents the design
of the system, a twofold empirical study on it with tertiary-level
students, and a usability taxonomy resulting from our study. We
found that students had positive perceptions on the usability of the
system according to the User Experience Questionnaire Plus [23]
and free-form questions, and that they also believed that the system
could help them learn.
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