
Map, Filter, and Conquer: A Visual Tool for Learning
Higher-Order Functions

Silvan Renggli
sili.renggli@gmail.com

ETH Zurich
Zurich, Switzerland

Sverrir Thorgeirsson
sverrir.thorgeirsson@inf.ethz.ch

ETH Zurich
Zurich, Switzerland

Theo B. Weidmann
theo.weidmann@inf.ethz.ch

ETH Zurich
Zurich, Switzerland

Zhendong Su
zhendong.su@inf.ethz.ch

ETH Zurich
Zurich, Switzerland

Abstract
Higher-order functions are increasingly common in modern pro-
gramming languages, yet there is a shortage of evidence-based tools
and teaching strategies to help students learn them effectively. We
introduce a visual tool that lets learners construct, view, and execute
higher-order functions using direct manipulation and programming
by demonstration. To evaluate its effectiveness, we conducted a
randomized, within-subjects studywith 27 university students, com-
paring our tool against Python as a control. The results show that
students performed significantly better and reported lower cogni-
tive load when solving simple problems with our tool. However,
both groups showed similar performance on tasks that involved
mapping input-output pairs to the correct higher-order function.
Our findings suggest that visual, direct-manipulation tools can help
students develop stronger procedural knowledge of higher-order
functions, although additional scaffolding may be needed to foster
deeper conceptual understanding.

CCS Concepts
• Social and professional topics → Computing education; •
Human-centered computing → Empirical studies in HCI.

Keywords
higher-order functions, functional programming, visual program-
ming, live programming, direct manipulation, undergraduate edu-
cation

ACM Reference Format:
Silvan Renggli, Sverrir Thorgeirsson, Theo B. Weidmann, and Zhendong
Su. 2025. Map, Filter, and Conquer: A Visual Tool for Learning Higher-
Order Functions. In Proceedings of the 30th ACM Conference on Innovation
and Technology in Computer Science Education V. 1 (ITiCSE 2025), June 27-
July 2, 2025, Nijmegen, Netherlands. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3724363.3729111

This work is licensed under a Creative Commons Attribution 4.0 International License.
ITiCSE 2025, Nijmegen, Netherlands
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1567-9/2025/06
https://doi.org/10.1145/3724363.3729111

1 Introduction
Functional programming has gained renewed interest in modern
software development because of its potential to produce reli-
able, scalable, and maintainable systems [8]. Many traditionally
imperative languages now incorporate functional programming
constructs—such as Python’s lambda expressions and JavaScript’s
map and reduce—which means that there is a growing need for
computer science students and software engineers to develop profi-
ciency in these techniques. However, research indicates that learn-
ers frequently encounter difficulties with fundamental functional
programming concepts, including recursive functions [16, 18], pat-
tern matching [22], and higher-order functions [1] (HOFs).

Among these core functional concepts, we consider HOFs par-
ticularly important to computing education for two reasons. First,
by discovering effective pedagogical approaches and tools that
foster a deeper understanding of HOFs, students will develop a
stronger foundation for more advanced topics in functional pro-
gramming. Second, HOFs have also become increasingly important
in themselves; for example, in concurrency and parallel program-
ming, HOFs enable developers to abstract common coordination
patterns and support complex interactions among multiple pro-
cesses. They also play a pivotal role in data-centric applications,
where constructs such as map, filter, and reduce are frequently
used for batch and real-time processing tasks.

In this paper, we introduce a system that allows students to learn
about and implement HOFs visually without the need for any tex-
tual code. To the best of our knowledge, this system is the first of
its kind to achieve that. The purpose behind our system is to make
the topic more accessible for novices and to lower the barrier to
entry, to support experimentation, to provide fast and live visual
feedback so as to reduce misconceptions, and to promote active
learning pedagogy where students can immediately start working
with the subject without much preparatory work on behalf of the
instructor. To achieve this, we built our system as an extension to
the visual programming language Algot. We found that Algot is
a suitable choice given the success of other Algot extensions [6],
that controlled, experimental studies have found evidence that the
language is helpful for teaching recursion compared to other visual
alternatives [18], that students programming in Algot experience
lower or comparable cognitive load than when programming in
Python [20, 21], and that it works effectively for program compre-
hension [7].

681

https://doi.org/10.1145/3724363.3729111
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3724363.3729111
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3724363.3729111&domain=pdf&date_stamp=2025-06-17


ITiCSE 2025, June 27-July 2, 2025, Nijmegen, Netherlands Silvan Renggli, Sverrir Thorgeirsson, Theo B. Weidmann, and Zhendong Su

Figure 1: A screenshot of our system, which is an extension to the visual programming language Algot. The task shown here is
from the tutorial used in our study.

To evaluate whether the system is useful for helping students
learn about HOFs, we conducted a within-subject study on tertiary-
level students with Python as a control environment. The partic-
ipants followed interactive tutorials on HOFs in our system and
in Python and solved tasks in each respective language. They also
solved tasks based on behavioral properties of HOFs as introduced
in a 2021 paper by Krishnamurthi and Fisler [11]. Our aim with the
study was to answer the following research questions:
RQ1 Do novices experience lower cognitive load after receiving

instruction and solving tasks on HOFs in our system than
in Python?

RQ2 Do novices perform better at tasks involving HOFs in our
system than in Python?

RQ3 Do novices perform better at conceptual tasks involving
HOFs after working in our system than after working in
Python?

Our hypothesis was that the research questions would be re-
solved affirmatively, i.e., that students would perform better on all
counts using our system and also experience lower cognitive load.

We consider the contribution of this paper to be twofold. First,
the system we introduce provides a novel approach to teaching
HOFs in a purely visual environment, thereby eliminating many
syntactic and conceptual barriers that can hinder novices. A sec-
ond contribution is our study methodology, which we believe is
a thorough yet simple way to help future investigations into the
teaching of functional programming concepts.

2 Background
A central tenet of functional programming is the treatment of func-
tions as first-class citizens, meaning functions can be passed as

arguments to other functions or returned as results. The behavior
of a function as a value is governed by its type signature, which
specifies the types of its inputs and the type of its output. A function
that either accepts another function as an argument or returns a
function as its result is referred to as a higher-order function (HOF).

HOFs play a pivotal role in numerous applications. In particu-
lar, they are frequently used for data processing [3] and machine
learning [5], and they enable developers to write more modular,
reusable, and composable code [9]. As these benefits have become
increasingly important, many traditionally imperative program-
ming languages—such as Python (with lambda functions) and Java
(with its stream API)—now integrate HOFs as well.

There are not many educational studies on how HOFs should be
taught or how students learn to use them. However, a new line of
research on the subject began with a 2021 study by Krishnamurthi
and Fisler [11], which introduced a novel method for assessing
students’ understanding of higher-order functions through input-
output behavior. Specifically, their approach required students to
cluster and classify input-output pairs based on whether they could
have been produced by the same underlying HOF. A follow-up
experience report by Rivera and Krishnamurthi [14] also used input-
output pairs as an instrument to analyze what makes some HOF
problems more difficult than others, and another paper [15] looked
into, among else, how well students understand individual HOFs
based on their behavior.

More generally, some studies find that introducing students to
programming through functional programming can offer notable
advantages, including the potential for better-structured code and
fewer errors [10]. Additionally, functional programming languages
often resemble the algebraic or mathematical notations students

682



Map, Filter, and Conquer: A Visual Tool for Learning Higher-Order Functions ITiCSE 2025, June 27-July 2, 2025, Nijmegen, Netherlands

already know, thereby reducing the learning curve [4]. However,
starting with functional programming also has drawbacks. Beyond
HOFs, students frequently struggle with concepts common in func-
tional programming such as recursion [16, 18] and the representa-
tion of types and data structures [1] in functional programs.

3 System
Our system (see Figure 1) builds on top of the live, visual pro-
gramming language Algot, which implements direct manipulation,
programming by demonstration, and liveness [19, 23]. In Algot, the
program state is represented as a directed graph inwhich nodes hold
values and edges act as references. The programmer can directly
modify this graph by applying either built-in, atomic operations or
user-defined operations on individual nodes. For example, applying
the Sum operation to two nodes and storing the result in a third can
be done with a few clicks, while Add Child attaches a new child
node to an existing node. Lists are implemented as graphs where
each node has no more than one child.

Programs in Algot are composed using a visual semantic ap-
proach based on programming by demonstration. Rather than typ-
ing code in a conventional text-based language, users execute oper-
ations by selecting the operation and then clicking on the relevant
input nodes. Algot immediately reflects the results in the program
state that is kept visible at all times [17], maintaining a live, inter-
active environment. More complex, repeated behavior is achieved
by defining custom operations through a sequence of these atomic
steps, and recursion is used instead of loops, which are common in
imperative languages. Conditional execution is similarly facilitated
through queries, which ask natural-language questions about node
values (e.g., Is Zero?) and allow the user to branch based on the
query’s result.

Figure 2: A screenshot from the system showing two nodes
with operation values. The user is currently setting the value
of a node using the value dialog with the operation selection.

Our extension to Algot allows a node to hold an operation or
query as value. Internally, this is handled by saving the operation or
query’s unique identifier, while the interface displays the associated
icon and name. To support this functionality, we modified the exist-
ing Set Value and Set Example Value operations, allowing users
to select any available operation or query for assignment to a node

(see Figure 2). To allow a user to execute an operation that is stored
in a node, we added the Execute Operation base operation to our
new version of the system. This operation takes a node containing
an operation as the first argument and then executes the stored
operation on the remaining inputs. A design challenge arises from
the fact that different operations may require different numbers
of arguments. To address this, Execute Operation dynamically
adapts its parameter list to match the arity of the stored operation.
Users must therefore provide an example where the maximum num-
ber of parameters for a given operation is specified; if an operation
receives fewer arguments than required, it is not executed, and if it
receives more, it simply ignores the extra inputs, consuming only
those needed.

4 Method
After receiving ethics approval from our institution, we conducted
a controlled, experimental study on tertiary-level students in a
computer laboratory setting, with screen recordings used to keep
track of the their performance. The students received 25 CHF per
hour in compensation for their participation. We adopted a within-
subjects design in which each participant used our system (the
experimental condition) and Python in a Jupyter notebook envi-
ronment (the control condition) to learn about HOFs. After each
session, the students’ learning was measured. To limit learning ef-
fects, we used counterbalancing and a short distractor task between
the two sessions.

Our participants were recruited from a large pool (>10,000) of stu-
dents enrolled in universities in Zürich, Switzerland. The inclusion
criteria were to have completed at least one computer program-
ming course at university level, to have at least a basic level of
experience of Python, and to have no prior knowledge of HOFs.
To determine the number of participants needed, we performed
power analysis using the TTestPower function in the statsmodels
module in Python, assuming a moderate effect size (0.5), a standard
significance level (alpha = 0.05), one-sided hypothesis testing, and
a desired power of 0.80. We recruited 27 participants after finding
that this was the required number.

1: ("cs019", "ma054", "cs033", "cs018", "visa039") -> ("cs019")

2: (1, 2, 3, 4) -> (1, 2, 3, 4)

3: ("cs019", "ma054", "cs033", "cs018", "visa039") -> ("ma054",

"visa039")

4: ("a", "b", "d", "e") -> ("a", "e")

5: (4, 6, 2, 1) -> <>

6: ("red", "green", "blue") -> (3, 5, 4)

7: (true, true, false, true, false, true, false) -> true

8: (1, 4, 4, 2, 6, 1) -> 3

9: (4, 6, 2, 1) -> (1, 1, 1, 1)

10: (true, true, false, true, false, true, false) -> (true, true)

11: (4, 6, 2, 5) -> (1, 1, 1)

12: (1, 4, 4, 2, 6, 1) -> (1, 4, 2, 6, 1)

13: ("cs019", "ma054", "cs033", "cs018", "visa039") -> 2

14: (1, 2, 3, 4, 5) -> (1, 4, 9, 16, 25)

15: (1, 7, 2, 3, -1, 4, 2, 6, 8, 7, 9, -5) -> (1, 7, 2, 3)

16: (1, 2, 3, 2, 1) -> 5

Figure 3: The input-output pairs provided in both the pretest
and the behavioral questions of the study. The list is a modi-
fied version from Krishnamurthi and Fisler [11].

683



ITiCSE 2025, June 27-July 2, 2025, Nijmegen, Netherlands Silvan Renggli, Sverrir Thorgeirsson, Theo B. Weidmann, and Zhendong Su

The total study duration was two hours. Each participant began
by solving a pretest which was a modified version of the one used in
the earlier study by Krishnamurthi and Fisler [11], in which input-
output pairs were offered and the participants were asked to assign
them to five clusters based on “similarity”. The participants were
given the same instructions as documented in the Krishnamurthi
and Fisler paper, but we reduced the number of input-output pairs
and simplified some of them. The total list can be seen in Figure 3.
The pretest helped us discover if, due to random chance, there was
any significant skill difference between the groups of students that
began with either intervention, which could possibly undermine
the results.

Pretest

Tutorial A Tutorial B

Behavioral
Quiz

Cognitive Load
Survey

Distractor
Task

Tutorial B Tutorial A

Behavioral
Quiz

Cognitive Load
Survey

Figure 4: The within-subjects crossover design that we used
in the study. Each participant was given each tutorial once.

Following the pretest, half of the participants were given an up-
to-45-minute tutorial on HOFs, one using our system and the other
half in Jupyter. Each tutorial instructed the students on how to use
four HOFs: map, filter, take-while and reduce (also known as
fold). These four functions were the same ones that were used
by Krishnamurthi and Fisler, with the exception of ormap, which
we chose to omit due to the time constraints of the study and
because it is less common than the others. Both tutorials were
interactive and required students to test what they had learned. For
example, the part of the Python tutorial on take-while function
began by defining how the function works, and then demonstrated
how it would transform the list <ant, ape, dog, rabbit, cow,
goat> when given a boolean function that returns true only when
the input begins with the letter ’a’. As this was presented in a

Jupyter notebook, students could run the code by themselves. They
were then asked to modify the code (change the condition to only
keep strings with three characters) and observe how the output
changed. The instruction on the other three functions was similar.
The tutorial in our system was designed to be as similar as possible
to the one in Jupyter, in which the same four HOFs were presented
using the same text and students asked to implement them using
concrete examples.

After each tutorial ended, the participants were asked to solve
questions on the behavioral features of HOFs, similarly to the
Krishnamurthi and Fisler study. They were then asked to self-assess
their cognitive load during the tutorial using the Paas scale [13],
which is a short instrument that is often used for that purpose. After
this, they were given a short distractor task (simple arithmetic
questions), and then proceeded with the other tutorial and the
same behavioral questions as before, followed by submitting their
response on the Paas scale again. Figure 4 shows the overall study
design.

At the end of each tutorial, the participants were asked to use the
HOFs that they learned about to map a given input to a given output.
We measured the accuracy of their solutions on these questions
and the time that they needed to solve them. The four input-output
pairs that we asked about were: (1) [3, 4, 2, 5]→ [9, 16, 4, 25], (2)
[’h’, ’o’, ’f’, ’!’] → ’hof!’, (3) [3, 4, -1, 6] → [3, 4], and (4) [’bob’,
’alice’, ’daniel’, ’andy’] → [’alice’, ’andy’].

All calculations were conducted in the statistical software JASP
(v. 0.18.1). For more information on our statistical analysis methods,
we refer to the JASP user guide [12].

5 Results
5.1 Participants and pretest
27 students participated in the study, of which there were 11 women
and 16 men. The median age of the participants was 23 (standard
deviation 4.2 years). 14 participants were enrolled in engineering
and technology-related programs. One participant claimed to have
used the programming language Algot before, while the other 26
did not. All 27 participants completed the study.

To grade the performance on the prestest, we used the same
procedure as Krishnamurthi and Fisler [11], calculating the sum
of the Jaccard similarities of the elements in the student-created
sets and the ground truth sets. The students who started with the
experimental condition had similar pretest scores (avg. 1.34) as
those that began with the control condition (avg. 1.47), and there
was no significant difference (𝑝 = 0.50), suggesting that the order
randomization was likely balanced.

5.2 Cognitive load
After first conducting a Shapiro-Wilk normality test and not finding
evidence for deviations of normality in the data (𝑝 = 0.16), we
conducted Student’s paired samples t-test to compare the difference
in perceived cognitive load for the two conditions (see Table 1). We
found strong evidence that students experienced lower perceived
cognitive load in the experimental condition (𝑝 < 0.001). Cohen’s
d was 1.03, indicating a strong effect size according to Cohen’s
benchmarks [2]. The average result for the control environment
(6.04) was closest to the label “rather high mental effort,” while

684



Map, Filter, and Conquer: A Visual Tool for Learning Higher-Order Functions ITiCSE 2025, June 27-July 2, 2025, Nijmegen, Netherlands

the average result for the experimental environment (4.78) was
in between “rather low mental effort” and “neither low nor high
mental effort’.’ A frequency distribution can be found in Figure 5.

1 2 3 4 5 6 7 8 9

0

2

4

6

8

Paas scale result

Fr
eq
ue
nc
y

Experimental condition
Control condition

Figure 5: Frequency distribution of cognitive load scores for
the experimental and control conditions. The scale covers
the range of 1 to 9, with 1 indicating “very, very low mental
effort” and a score of 9 suggesting “very, very high mental
effort.”

Descriptive statistics

Control CL Experimental CL

Mean 6.04 4.78
SD 1.45 1.83
SE 0.28 0.35
Coeff. of variance 0.24 0.38

Paired Student’s T-Test

𝑝-value < .001
Cohen’s 𝑑 1.03
SE (Cohen’s 𝑑) 0.17

Table 1: The cognitive load (CL) scores according to the Paas
scale for the Python environment (control) and for our direct
manipulation system (experimental). We report the p-value
for our alternative hypothesis that students would experi-
ence lower CL under the experimental condition.

5.3 Behavioral tasks
Next, we looked into the performance on the behavioral concept
questions (see Figure 3). We tested two separate grading scales;
first, a binary scale where either one or zero points were awarded
for correctly identifying exactly which of the four HOFs that could
map the given input to the given output, and second, a partial-
credit method that captures more information, under which each

student’s score was the fraction of correct HOFs they selected
minus the fraction of incorrect HOFs they chose, with a floor of
zero. Under both scales, the difference between the two groups was
minimal (score pairs of 0.43 and 0.41, and 0.53 and 0.51, respectively,
with 𝑝 > 0.05 in both cases under our hypothesis testing).

5.4 Program implementations
For analyzing the performance on the programming tasks provided
in each environment, we again computed a Student’s t-test. For each
participant, we counted the number of errors they made in each
task. For grading the Python performance in the control condition,
we used two grading mechanisms; one in which we ignored syntax
errors, and one where we did not. To account for the fact that
students could use trial-and-error to discover the correct solution
to the tasks, we used a strict grading scheme that only graded
the first attempt of solving each task. This meant that we only
considered the first time a cell was run in the Python environment
and the first time a HOF was executed in the Algot environment.

Task 1 Task 2 Task 3 Task 4

20

40

60

80

100

30

67

22
15

81

70
63 64

48

37
33

52

Fr
eq
ue
nc
y
%

Error Frequency on First Try

Figure 6: The percentage of errors that were made in the four
programming tasks on the first attempt. The blue line (30
on task 1) corresponds to the experimental condition, the
red line (81 on Task 1) corresponds to the control condition,
and the purple line (48 on Task 1) corresponds to the control
condition if syntax errors are ignored.

Figure 6 shows the error frequency for the four tasks in each
environment. The error rate was lowest in the experimental con-
dition. We use a paired-samples Student’s t test to analyze the
significance of the difference. The experimental condition had the
lowest error frequency (M = 1.33, SD = 1.11), followed by the control
condition without syntax errors (M = 1.70, SD = 1.41) and then the
control condition with syntax errors (M = 2.89, SD = 0.89). The
Student’s t test revealed a significant difference between the condi-
tions t(26) = −7.211, p < 0.01 and a large effect size (d = −1.388),
whereas the difference between Algot and Python with no syntax
errors was non-significant t(26) = −1.629, p = 0.058. These results
suggest that the inability of users to make syntax errors contributed
to the stronger performance in our system.

685



ITiCSE 2025, June 27-July 2, 2025, Nijmegen, Netherlands Silvan Renggli, Sverrir Thorgeirsson, Theo B. Weidmann, and Zhendong Su

Figure 7: A raincloud plot showing the time used by each
student on the parts of the experiment.

5.5 Time use
We found a significant difference between the time usage between
the Algot and Python environments; on average, the participants
spent 16.8 minutes (SD = 5.3) working through the Algot (experi-
mental) environment, while they spent 25.6 minutes (SD = 10.3) on
in the Python (control) environment. A Student’s t-test indicated
the difference was significant (𝑝 < 0.001) and the effect size was
large (Cohen’s 𝑑 = 1.07). This is consistent with the cognitive load
results, which suggested that the control condition was more chal-
lenging. Figure 7 shows a raincloud plot of the difference in time
use between the two groups; the plot and our inferential statistics
indicate that the difference was not driven by outliers.

5.6 Textual feedback
At the end of the study, participants were invited to offer optional
feedback on their experience. Due to the low number of responses,
we did not conduct qualitative analysis, but we found that the re-
sponses might help us put the results into context. One student
wrote that “[A]lgot was easier, as syntax played no role and I could
focus more on the meaning than in [J]upyter,” which is an observa-
tion that is well-aligned with the results. Another student wrote
that “[v]isualiz[ing] Algot makes my understanding easier” and
another that “Algot was easier to comprehend than writing codes
myself,” and another that “It was quite pleasant and mostly well
explained, even when I take intro account that I had a Python
[i]ntroductory [c]ourse but did not use Python for a while.” One
student offered a contrasting perspective, writing that it was “[v]ery
[repetitive], [I] can’t imagine it being more useful than just straight
up code, [because] of complexity reasons and also overview. The
environment looked great though and it was easy and needed no
coding experience.”

6 Discussion
In response to RQ1, we found that students’ self-reported cognitive
load was significantly lower when using our system than when
using Python, For RQ2, we also found that novices perform sig-
nificantly better at HOF tasks in our system than in Python, even

though the participants in our study had prior experience with
Python by design. However, for RQ3, we did not find evidence
that the students were better at the conceptual tasks (the behavior-
based questions) after exposure to our system than after exposure
to Python, which may possibly be due to the brevity of the inter-
vention. This indicates that our hypothesis was confirmed for the
first two research questions and not the third one.

Overall, we find that these results suggest at least that direct
manipulation systems for teaching advanced computer program-
ming concepts have some partial utility. By allowing learners to
visualize and interact with higher-order functions directly without
syntactic overhead, such systems can promote experimentation
and reduce cognitive barriers. Direct manipulation tools also of-
fer immediate feedback on how operations transform data, which
may accelerate students’ comprehension and help them identify
misconceptions early on. As a result, students may be more willing
to explore complex notions, including function composition and
parameter passing, when their programming environment clearly
illustrates each step of the process.

As for the threats to the validity of our study, we note that the
conclusions are limited by the task and HOF selection; although
we took care to select representative tasks, a different choice might
have resulted in a different outcome. We also note that although
the power analysis indicates that we recruited a sufficient number
of participants, our study might be underpowered if the true effect
size is lower than 0.5, which could have contributed to the non-
significant results for our third research question. We also note that
although we took steps to limit learning effects, they might still
have moderated the difference in results of the two conditions. A
larger, between-subjects version of our study design would offer
more conclusive evidence. Last, we note that our grading criteria
had an impact on the outcome; by only scoring participants’ first
attempt on each task, we eliminated the possibility that novices
would eventually guess their way to a solution through repeated
trial-and-error. However, this choice also omitted any evidence of
iterative refinement or incremental learning that might occur after
an initial misconception. Future studies could address this trade-off
by tracking partial credit for progressive improvements, by not
giving students the option to test their solution before they submit
it, or by more complex tasks that reduce the likelihood of arriving
at the correct solution through guesswork alone.

7 Conclusion
In this work, we introduced a live, direct manipulation system de-
signed to help novices learn higher-order functions by interacting
with visual representations instead of writing textual code. Through
a controlled study of 27 students, we found that participants re-
ported significantly lower cognitive load in our system compared
to Python and made significantly fewer errors in basic HOF pro-
gramming tasks. A comparison of conceptual understanding after
each intervention was inconclusive. Overall, our findings suggest
that visual, direct-manipulation environments have some promise
for teaching higher-order functions. Future efforts can build on our
approach by expanding the range of topics, employing longer-term
interventions, and exploring how visual methods integrate with
more advanced functional paradigms.

686



Map, Filter, and Conquer: A Visual Tool for Learning Higher-Order Functions ITiCSE 2025, June 27-July 2, 2025, Nijmegen, Netherlands

References
[1] Christopher Chambers, Sheng Chen, Duc Le, and Christopher Scaffidi. 2012.

The function, and dysfunction, of information sources in learning functional
programming. J. Comput. Sci. Coll. 28, 1 (Oct. 2012), 220–226.

[2] Jacob Cohen. 1988. Statistical Power Analysis for the Behavioral Sciences (2nd ed.).
Routledge. https://doi.org/10.4324/9780203771587

[3] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing
on large clusters. Commun. ACM 51, 1 (Jan. 2008), 107–113. https://doi.org/10.
1145/1327452.1327492

[4] Robert Bruce Findler, John Clements, Cormac Flanagan, Matthew Flatt, Shri-
ram Krishnamurthi, Paul Steckler, and Matthias Felleisen. 2002. DrScheme: a
programming environment for Scheme. J. Funct. Program. 12, 2 (March 2002),
159–182. https://doi.org/10.1017/S0956796801004208

[5] Deqing Fu, Tian-Qi Chen, Robin Jia, and Vatsal Sharan. 2024. Transformers
learn to achieve second-order convergence rates for in-context linear regression.
Advances in Neural Information Processing Systems 37 (2024), 98675–98716.

[6] Maximilian Georg Barth, Sverrir Thorgeirsson, and Zhendong Su. 2024. A Di-
rect Manipulation Programming Environment for Teaching Introductory and
Advanced Software Testing. In Proceedings of the 24th Koli Calling Interna-
tional Conference on Computing Education Research (Koli Calling ’24). Asso-
ciation for Computing Machinery, New York, NY, USA, Article 2, 11 pages.
https://doi.org/10.1145/3699538.3699564

[7] Oliver Graf, Sverrir Thorgeirsson, and Zhendong Su. 2024. Assessing Live Pro-
gramming for Program Comprehension. In Proceedings of the 2024 on Innova-
tion and Technology in Computer Science Education V. 1 (Milan, Italy) (ITiCSE
2024). Association for Computing Machinery, New York, NY, USA, 520–526.
https://doi.org/10.1145/3649217.3653547

[8] Zhenjiang Hu, John Hughes, and Meng Wang. 2015. How functional
programming mattered. National Science Review 2, 3 (07 2015), 349–370.
https://doi.org/10.1093/nsr/nwv042 arXiv:https://academic.oup.com/nsr/article-
pdf/2/3/349/31566307/nwv042.pdf

[9] J. Hughes. 1989. Why Functional Programming Matters. Comput. J. 32, 2 (1989),
98–107. https://doi.org/10.1093/comjnl/32.2.98

[10] Stef Joosten, Klaas Berg, and Gerrit Hoeven. 1993. Teaching Functional Pro-
gramming to First-Year Students. Journal of Functional Programming 3 (01 1993),
49–65. https://doi.org/10.1017/S0956796800000599

[11] Shriram Krishnamurthi and Kathi Fisler. 2021. Developing Behavioral Con-
cepts of Higher-Order Functions. In Proceedings of the 17th ACM Conference
on International Computing Education Research (Virtual Event, USA) (ICER
2021). Association for Computing Machinery, New York, NY, USA, 306–318.
https://doi.org/10.1145/3446871.3469739

[12] Jonathon Love, Ravi Selker, Maarten Marsman, Tahira Jamil, Damian Dropmann,
Josine Verhagen, Alexander Ly, Quentin F Gronau, Martin Šmíra, Sacha Epskamp,
et al. 2019. JASP: Graphical statistical software for common statistical designs.

Journal of Statistical Software 88 (2019), 1–17.
[13] Fred GWC Paas. 1992. Training strategies for attaining transfer of problem-

solving skill in statistics: a cognitive-load approach. Journal of educational
psychology 84, 4 (1992), 429.

[14] Elijah Rivera and Shriram Krishnamurthi. 2022. Structural versus pipeline com-
position of higher-order functions (experience report). Proceedings of the ACM
on Programming Languages 6, ICFP (2022), 343–356.

[15] Elijah Rivera, Shriram Krishnamurthi, and Robert Goldstone. 2022. Plan Compo-
sition Using Higher-Order Functions. In Proceedings of the 2022 ACM Conference
on International Computing Education Research-Volume 1. 84–104.

[16] Judith Segal. 1994. Empirical studies of functional programming learners
evaluating recursive functions. Instructional Science 22, 5 (1994), 385–411.
http://www.jstor.org/stable/23369999

[17] Sverrir Thorgeirsson, Oliver Graf, and Zhendong Su. 2024. The Hidden Program
State Hurts Everyone. In Proceedings of the 2024 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Programming and
Software (Pasadena, CA, USA) (Onward! ’24). Association for Computing Machin-
ery, New York, NY, USA, 266–274. https://doi.org/10.1145/3689492.3689813

[18] Sverrir Thorgeirsson, Lennart C. Lais, Theo B. Weidmann, and Zhendong Su.
2024. Recursion in Secondary Computer Science Education: A Comparative Study
of Visual Programming Approaches. In Proceedings of the 55th ACM Technical
Symposium on Computer Science Education V. 1 (SIGCSE 2024). Association for
Computing Machinery, 1321–1327. https://doi.org/10.1145/3626252.3630916

[19] Sverrir Thorgeirsson and Zhendong Su. 2021. Algot: An Educational Pro-
gramming Language with Human-Intuitive Visual Syntax. 2021 IEEE Sympo-
sium on Visual Languages and Human-Centric Computing (VL/HCC) (2021), 1–5.
https://api.semanticscholar.org/CorpusID:240156985

[20] Sverrir Thorgeirsson, Theo B Weidmann, Karl-Heinz Weidmann, and Zhen-
dong Su. 2024. Comparing Cognitive Load Among Undergraduate Students
Programming in Python and the Visual Language Algot. In Proceedings of the
55th ACM Technical Symposium on Computer Science Education V. 1. 1328–1334.
https://doi.org/10.1145/3626252.3630808

[21] Sverrir Thorgeirsson, Chengyu Zhang, Theo B. Weidmann, Karl-Heinz Weid-
mann, and Zhendong Su. 2024. An Electroencephalography Study on Cognitive
Load in Visual and Textual Programming. In Proceedings of the 2024 ACM Confer-
ence on International Computing Education Research (ICER ’24). ACM, Melbourne,
VIC, Australia. https://doi.org/10.1145/3626252.3630808

[22] Isomöttönen V. Tirronen V, Uusi-Mäkelä S. 2015. Understanding beginners’
mistakes with Haskell. Journal of Functional Programming 25 (2015). https:
//doi.org/10.1017/S0956796815000179

[23] Theo B Weidmann, Sverrir Thorgeirsson, and Zhendong Su. 2022. Bridging
the Syntax-Semantics Gap of Programming. In Proceedings of the 2022 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software. 80–94. https://doi.org/10.1145/3563835.3567668

687

https://doi.org/10.4324/9780203771587
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1017/S0956796801004208
https://doi.org/10.1145/3699538.3699564
https://doi.org/10.1145/3649217.3653547
https://doi.org/10.1093/nsr/nwv042
https://arxiv.org/abs/https://academic.oup.com/nsr/article-pdf/2/3/349/31566307/nwv042.pdf
https://arxiv.org/abs/https://academic.oup.com/nsr/article-pdf/2/3/349/31566307/nwv042.pdf
https://doi.org/10.1093/comjnl/32.2.98
https://doi.org/10.1017/S0956796800000599
https://doi.org/10.1145/3446871.3469739
http://www.jstor.org/stable/23369999
https://doi.org/10.1145/3689492.3689813
https://doi.org/10.1145/3626252.3630916
https://api.semanticscholar.org/CorpusID:240156985
https://doi.org/10.1145/3626252.3630808
https://doi.org/10.1145/3626252.3630808
https://doi.org/10.1017/S0956796815000179
https://doi.org/10.1017/S0956796815000179
https://doi.org/10.1145/3563835.3567668

	Abstract
	1 Introduction
	2 Background
	3 System
	4 Method
	5 Results
	5.1 Participants and pretest
	5.2 Cognitive load
	5.3 Behavioral tasks
	5.4 Program implementations
	5.5 Time use
	5.6 Textual feedback

	6 Discussion
	7 Conclusion
	References



