
The Hidden Program State Hurts Everyone
Sverrir Thorgeirsson

sverrir.thorgeirsson@inf.ethz.ch
ETH Zürich
Switzerland

Oliver Graf
olgraf@ethz.ch
ETH Zürich
Switzerland

Zhendong Su
zhendong.su@inf.ethz.ch

ETH Zürich
Switzerland

Abstract
While visual scaffolding, live programming, and direct manipu-
lation of the program state are considered useful programming
paradigms for novices, they might not always offer the same bene-
fits to experienced software developers. In this essay, we will use
chess as a proxy for exploring how these paradigms can also support
those who have an intuitive understanding of the program state
and its connection with textual code. We will consider the visual
programming language Algot and recent user studies conducted
on the language to uncover insights into how direct manipulation
and programming by demonstration can benefit everyone.

CCS Concepts
• Human-centered computing→ Visualization theory, con-
cepts and paradigms; • General and reference → Experimenta-
tion.

Keywords
visual programming, live programming, programming by demon-
stration, low-code, no-code, direct manipulation, program compre-
hension

1 Introduction
Many chess grandmasters are well-known for staring into empty
space when playing the game. Like experienced computer program-
mers who can visualise flows of data without visual aids, strong
chess players do not need the crutch of the chessboard when plan-
ning their moves. Thanks to their visual memory and visual percep-
tion, chess masters can traverse relevant branches of the game tree
with ease while keeping track of the entire game state in their mind.
This ability allows them to play entire games without looking at the
board, and the strongest ones can even play multiple games blind-
folded while maintaining a high quality of play. For such players,
the mental engagement with an imagined board during blindfold
play is merely an extension rather than a deviation of what they
do consistently during ordinary gameplay.

Given this profound ability of chess masters to visualise and
manipulate the game state mentally, to what extent is the presence
of the game board helpful? Does it make any difference at all? The
tools that masters use for training and game preparation offer a
clue. Professional players, for instance world champion Garry Kas-
parov [8], typically use sophisticated software such as ChessBase
or Chess Assistant,1 which includes, for example, large databases
of tournament games, integrated opening tree views with move
popularity and success statistics, engine analysis, and endgame
tablebases, with the chess games that are under review represented
textually in algebraic notation. An example of an online tool with

1See the products on chessbase.com and chessok.com, respectively.

Figure 1: Grandmaster Vasyl Ivanchuk playing chess without
looking at the board. Photo copyright: David Llada, 2019.

these capabilities can be see in Figure 4. Such tools are comparable
to modern integrated development environments (IDEs) in that
the tools used for the analysis and understanding of chess games
resemble the ones used by software developers to understand and
debug code. There is, however, one key difference: chess prepara-
tion software contains a digital representation of the chess board.
No matter the skill level, chess players are accustomed to not only
constantly seeing the game state, but also to directly manipulate
it when exploring new moves or variations. Unfortunately, similar
affordances are typically not available to developers, whose primary
method of modifying the program state is to edit an opaque tex-
tual representation of the state under a dual-coding mindset where
one must constantly maintain a mental model of the program’s
execution alongside the actual code.

In the essay Learnable Programming from 2012, interaction de-
signer Bret Victor states that programming novices need tools that
allow them to see the program state in real time [25]. To demon-
strate the point, Victor shows how the program context can be

chessbase.com
chessok.com


Thorgeirsson, Graf, and Su

Figure 2: Our rendition of visual scaffolding of the program
state of a simple traffic simulation program, with the code
on top and the state representation on the bottom. When the
programmer hovers over the line isBlocked(car), the tile
in front of every car that is being iterated over is highlighted
in red, indicating whether it can move forward or not.

embedded in the code, for example by highlighting relevant parts
of the program state when the matching lines of code are selected.
For instance, a model of traffic flow could visually present how
vehicles move through a network of roads, with the current speed
or positions of vehicles highlighted as the corresponding lines of
code are selected or edited (see Figure 2). This approach is one form
of scaffolding, which means supporting the learner’s development
by providing structures to guide their progression. While Victor’s
essay has influenced various systems in the twelve years since it
was published [13, 17, 24], some have found it too limited on the
grounds that excessive visual aids would be redundant or even
distracting for experts, contributing to higher cognitive load. For
example, in a comment on the essay on the Hacker News forum,
software developer Scott Schneider writes that “chess masters don’t
need to be shown the legal moves on a board for a bishop; their
understanding of the problem is so innate at that point that they
no longer play the game in such elementary terms” [18] (see Figure
3). However, we believe that this line of criticism might be too
narrow; software meant for chess preparation, medical imaging,
financial modelling, and geographic analysis all contain examples
of how even experts can benefit from visualisations when carrying

Figure 3: A screenshot from lichess.org showing a scaffolded
representation of the chess board. The tiles that the black
queen (center) can access are marked by green dots. Experi-
enced chess players may find this presentation distracting.

out complex cognitive activities, with the implementation details
determining their effectiveness.

In this essay, we explore the question: if the visual scaffolding
advocated by Victor and others is the equivalent of a naive, digital
chess board with distracting piece visualisations suitable only for
beginners, what would be the software development equivalent of
sophisticated chess software like ChessBase that has transformed
the way chess is studied and played? In other words, how can state
visualisation and interactivity in software development tools go
beyond the needs of novices and elevate the experience of seasoned
programmers? To answer the question, we consider Algot [21, 27],
a visual programming language inspired by Victor’s essay that im-
plements programming by demonstration, direct manipulation, and
live programming. Four studies from this year indicate that the
language is effective for helping learners at the secondary and ter-
tiary education level when compared against the textual language
Python and the block-based visual language Scratch [5, 20, 22, 23].
However, it is less clear whether a language like Algot can meet
the demands of professional developers engaged in tasks with a
complex program state. We will consider how the principles used in
Algot, namely direct manipulation and programming by demonstra-
tion, could be extended to support more mature software developers
in their work.

2 Background
Don Norman defines the core of interaction design as the bridging
of two gulfs: the Gulf of Evaluation and the Gulf of Execution [14].
The former represents the challenge users face in understanding the



The Hidden Program State Hurts Everyone

Figure 4: The game analysis interface of the chess website lichess.org. The left part of the screenshot shows a standard, digital
visual representation of the game state (the chess position) which can be changed using direct manipulation. The right part
(from top to bottom) shows an engine evaluation of the position, an interactive algebraic representation of the moves played in
the game, an ECO code that describes the opening played, an integrated opening tree views with move popularity and success
statistics, and a short list of top-rated games that that have reached the given position.

outcomes of their interactions with a system, essentially measuring
the gap between the system’s response to user actions and the
user’s expectations regarding these actions. The latter refers to a
user’s ability to enact their intentions within a system, focusing
on the difference between the user’s goals and the means provided
by the system to achieve these goals. For example, in a software
environment, the gulf of executionmight involve how tomanipulate
code to achieve their intended outcomes, and in chess, it could mean
how to help the user understand why a piece could perform this
move, and the effects of that action. Good interaction design needs
to bridge both these gulfs and support the user in comprehending
them both at the same time.

The current state of computer programming does not achieve
this. Currently, the programming process more or less works as
follows: the user edits a text document, compiles it to a machine-
executable form, observes its execution, analyses the execution for
potential flaws and errors, and then edits the document accordingly.
This is what we call the debug-compile-execute cycle. While such
processes are not unique to programming, they are still onerous and
inefficient, and are generally avoided when possible. For example, if
one tried to find a recipe for a chocolate cake only by trial-and-error–
carefully adding and removing ingredients, adjusting temperatures

and mixing times–it might eventually result in something useful,
but it would be considered both frustrating and wasteful.

To build something like chess preparation software for com-
puter programming, consider first how it differs from traditional
programming environments in terms of visual representation and
user interaction. First, chess software excels in using the visual
dimension, directly representing the game state through the chess
board and piece positions. This way, users can get an immediate
and intuitive response as they explore existing games. In contrast,
traditional programming environments have historically been less
visually oriented. Modern Integrated Development Environments
(IDEs) have made strides in this direction, incorporating features
like syntax highlighting and real-time syntax checking. These fea-
tures introduce a form of “liveness,” providing immediate feedback
to users as they edit code. However, the state itself is seldom visu-
alised. More importantly, chess software allows users to directly
interact with the object of interest—the game board, representing
the game state—by using it to explore chess moves. This approach
to interface development, combining incremental, reversible actions
and immediately visible effects, is known as direct manipulation,
an idea described by Ben Shneiderman in 1993 [2, 19]. In program-
ming, this can be likened to the effect of pointing a garden hose:
the programmer guides the changes to their program until they



Thorgeirsson, Graf, and Su

correspond to the correct solution, as they would guide the stream
from the garden hose. Systems that offer sufficiently rapid feedback
can give users the impression that they are acting on the objects
themselves rather than an intermediary, which in turn lowers cog-
nitive load by reducing the relevant information that the user must
keep track of [10].

Direct manipulation is a steep requirement for a programming
environment, but some strides have been made by the use of pro-
gramming by demonstration (PbD), a methodology or a paradigm
in which the users demonstrate the actions of their programs in-
stead of writing down abstract instructions. PbD is prevalent in
robotics, where the user can move the robot by hand or drag its
limbs into the correct position using a visual interface instead of
by programming the rotation degrees of its joints. However, for
general programming, the most significant drawback of this ap-
proach is that attempts to generalize a working program based on
a demonstration may not always capture the user’s intent [9]; in
other words, attempts to synthesize a program based on a demon-
stration can be difficult or impossible due to a lack of information.
Programming by example, a closely related idea in which the pro-
grammer supplies input-output examples, can suffer from the same
problem.

Some existing educational tools implement some of these paradigms,
at least in part. For example, the block-based programming lan-
guage Scratch [16] visualises the program (and, to some degree,
its state) and does away with the cognitive overhead imposed by
language syntax by having the programmer create programs by
arranging and lightly modifying blocks of code. Another example
from computer science education, Python Tutor [7], is a popular
state visualisation tool for Python and other languages that also
features a reverse debugger. Like Scratch, it is not a direct manip-
ulation system, but has shown positive results in programming
education [12]. Lastly, AlgoTouch [1] is a direct-manipulation pro-
gramming tool which creates programs via the user performing
some concrete executions on a visualised program state. While
it is also associated with positive learning outcomes, it currently
appears to be primarily intended for simple array algorithms.

Outside of education, low-code and no-code development tools
have gained popularity in recent years [9]. These tools are primar-
ily intended for citizen developers, which are people who typically
possess domain expertise but lack formal experience with com-
puter programming or computer science. These platforms often
incorporate visual programming elements and drag-and-drop inter-
faces, allowing users to create applications with minimal traditional
coding. While these tools have found success in certain domains,
particularly in business process automation and simple web appli-
cation development, they still face limitations in terms of flexibility
and scalability for more complex software projects.

3 Reflections on Algot
Algot is a visual, graph-based programming language that has been
under development since 2019. It was first described in a 2021
research paper [21] and a new version was described at Onward!
in 2022 [27]. The research on Algot is ongoing and the language
is subject to continuous evaluation in experimental user studies,
some of which we will discuss in this section.

Unlike text-based and block-based programming languages, Al-
got programs are composed without writing or manipulating code.
This is achieved by what we consider programming by demon-
stration; first, one specifies input for a program, and second, one
performs actions on this input in the same order that they are meant
to be executed when the function is called. During demonstrations,
operations can be performed conditionally and repeatedly. Condi-
tionals are realised via queries, which are binary questions that can
be asked about the program state (e.g., whether two nodes share
the same value). Repeated operations are not realised via iteration
but recursion, i.e., by calling the same operation that is currently
being defined.

In Algot, the state is represented as a (directed) graph. It can
consist of many different connected cyclic or acyclic components, or
specific instances of those such as linked lists, trees and individual
nodes. Pattern matching can be used to perform operations or
queries on nodes belonging to the same connected components as
the input nodes. For example, to define a map-like operation 𝑓 that
computes the same operation 𝑔 on every node in a linked list, one
would call 𝑔 on the head of a list and call 𝑓 recursively on the child
of the list head. When the end of the list is reached and no child is
found, the operation will terminate without throwing an error.

Figure 5 shows an example of checking a binary search tree for
existence of a value in Algot using pre-defined atomic operations.
To do so, the programmer may do the following:

(1) Create a query comparing the root of the BST Root and the
input value v. If the values are the same, set the result of
the custom query to true.

(2) If Root is greater than v, recursively call BST Search using
the left child as the new root, otherwise run it with the
right child.

To understand better how this works, the reader is encouraged
to test this out for themselves at algot.org.

A similar program in Python would resemble the one given
in Listing 1. There are, however, a few differences. First, Algot
does not process a return statement, meaning that queries handle
computations via side effects only. In custom queries, the boolean
return value is implied by treating the query result element like
a mutable variable. Second, the Algot program does not need to
contain an explicit base case; once the current root does not have
children anymore, the recursive call will not have a full set of
(existing) arguments anymore and the operation will terminate.

Many computer scientists are skeptical of the notion of allowing
state mutations at all, so a programming language that contains
no other method of computation might be considered particularly
ineffective. While this does make it harder to make mathematical
arguments about Algot programs or to prove their correctness, we
believe that any cognitive arguments against mutations, namely
that they make programs harder to understand, are at least partially
addressed by making the state visible throughout the program exe-
cution. We also believe that, by avoiding explicit return statements,
Algot can eliminate or reduce the likelihood of novices developing
certain misconceptions about recursion. For example, students of-
ten misunderstand the mechanics of active and passive control in
recursive function flow [3, 4], but in Algot, students are unlikely to
be confused where a function is supposed to terminate or which

algot.org


The Hidden Program State Hurts Everyone

Figure 5: A screenshot of an Algot operation that checks whether the input value v exists in the binary search tree with root
Root. Recent additions to the system include support for example-based programming (all nodes have concrete values), an
interactive semantic representation of the program (see the sidebar on the bottom left), and a system for users to define their
own queries.

variables a function under a recursive call can access. This is be-
cause state changes in Algot are observable, explicit, and presented
linearly (see bottom left of Figure 5) instead of following the more
typical interruption-based mechanism of intermittent return values
in the base case and the recursive calls.

def bst_search(root, v):
if root is None:

return False
if root.value == v:

return True
if v < root.value:

return bst_search(root.left, v)
return bst_search(root.right, v)

Listing 1: A Python implementation of a function which
checks if a value exists in a given binary search tree.

Four controlled, experimental studies on Algot published this
year support the notion that this approach is helpful for novices [5,
20, 22, 23]. For instance, in one study, 23 secondary-school students
were taught recursion in Algot (the experimental group) and Scratch
(the control group), a block-based programming language that most
students were familiar with. They were then asked to compute
certain recursive functions and to take a post-test measuring their
conceptual and procedural understanding of recursion. Despite
the low number of participants, there was strong and statistically
significant evidence that students using Algot did better on the
assigned tasks and the post-test [20]. Our hypothesis, based on the

textual feedback from the students, is that the difference in results
has mostly to do with students being able to visualise the state
when programming, but the other properties of the language may
also be a contributing factor.

However, it is less clear to us how a programming language based
on direct manipulation and programming by demonstration could
support more experienced programmers. For instance, the program
in Listing 1 is trivial for an expert to implement. It is not obvious
why someone would prefer to do so in Algot, having to do multiple
tiring mouse clicks in the process instead of what could just as well
be implemented in a Python one-liner. This is aligned with our
experience that experienced developers are less accepting and less
patient of the language than beginners, which may explain why
they are no less likely to develop conceptual misconceptions about
its mechanisms. To show experts the usefulness of the paradigms
it implements, namely direct manipulation, live programming, and
programming by demonstration, we have built small extensions to
the language that may make it more relatable to those accustomed
to textual programming and may improve on its expressiveness to
make it easier to build more complex applications.

First, we note that there is nothing about the programming
paradigms we used that precludes us from introducing a return
statement. In fact, we have taken a step towards this direction with
the introduction of a custom queries. Expanding on the original
query system introduced at Onward! in 2022 [27], our extension
support users in defining their own queries using the same demon-
stration mechanism that is used for operations. Figure 5 shows



Thorgeirsson, Graf, and Su

an example of how the system can be used recursively to define
a query that determines if a binary search tree contains a given
value. The center of the screen shows a small window labelled
“the query result” which represents the boolean return value of the
query. The value, which is false by default, can be changed by
direct manipulation of the two buttons inside of the window. This
action is interpreted as any other Algot operation and can therefore
be conditionalised; for instance, we may wish to change it to true
if the input integer is zero, and otherwise decrease the value by
two and then call the query recursively if the value is still positive.
The code could be represented as the Python program shown in
Listing 2, using the base query compareNumbers.2

queryResult = False
def BSTSearch(root, v):

global queryResult
if root == v:

queryResult = True
if root > v:

BSTSearch(root.left, v)
if root < v:

BSTSearch(root.right, v)

Listing 2: An alternative implementation in Python of search-
ing a binary search tree.

Here, queryResult is the implicit return value of function. The
code is hence functionally equivalent to the more common and
idiomatic approach shown in Listing 1.

From a cognitive standpoint, we think that one meaningful dis-
tinction between these two approaches is that the former one shows
explicitlywhat the function is returning (the variable queryResult),
allowing the programmer to follow how this value changes through-
out the definition of the program, and to change it any time using
direct manipulation. Note that while queryResult is a global vari-
able that can bemodified within each recursive call, it is inaccessible
outside the query definition. We think that this is a balanced way
to introduce higher state awareness without adding unnecessary
visual distractions. This method could be further extended in Algot
by allowing the programmer to set nodes or connected components
as the global return value inside a query-value window equivalent,
or by marking specific nodes as designated return values.

A second change that we have made is the introduction of
example-based programming, which was first mentioned as fu-
ture work in a 2022 paper on Algot [27]. As shown in the example
in Figure 5, every node has a specific, concrete value that is chosen
by the programmer when a new operation is first defined. When
needed, additional sets of example values can be defined at any
point during the operation composition. We find that this is a non-
intrusive method of helping beginners and experts visualise state
changes throughout the program execution. This addition should
also help the programmer assess the correctness of the programs
by borrowing same principle as test-driven development, namely
to write tests prior to defining functions.

Third, we have introduced a proper program editor, also visible
in Figure 5 on the bottom left. We agree with Victor that the pro-
grammer should be able to “follow the program execution over time”
2For more information on how custom queries can be be implemented, see a video
demonstration here of a simple Algot program: https://algot.org/AlgotIsEven.mp4.

as opposed to “only seeing a single point in time at any instant” [25],
so by using the arrow buttons, it is possible to view the program
state after any given operation was executed. Furthermore, it is
possible to edit programs by rearranging operations via drag-and-
drop or by stepping into function calls like in visual debuggers. We
did find, however, that the visual scaffolding can become excessive
when trying to intertwine the visual and textual representation. For
example, we tested highlighting the relevant nodes and operation
when the programmer hovers over the matching syntax (e.g., in
the example in Figure 5, to highlight the nodes d,f and c and the
operation Dot Product in the right sidebar when hovering over
the fifth syntactic element). We found this distracting and likely
to contribute to the programmer’s extraneous cognitive load, simi-
larly to how the visual scaffolding of chess piece movement (see
Figure 3).

Last, we have begun implementing more advanced data repre-
sentation in Algot to facilitate development at scale, starting with
explaining data in context. Algot nodes can contain two types of
data: numbers and strings. The existing base operations are type-
aware; for example, when increment has been selected, nodes
with a string value fade out of view, becoming unselectable. We
consider this to be what Repenning might call a “pragmatic affor-
dance” of a visual programming language [15]. Our intention is
to take this one step further by supporting abstract data types in
which a single node can represent any arbitrary connected com-
ponent together with its own operations, and the developer can at
any time switch between an abstract, high-level view of the data
or drill down to concrete details when necessary. For instance, an
Algot list could contain nodes representing hospital patients, each
containing hierarchical data in a tree structure such as medical
history, current treatments, and upcoming appointments, each of
which could in turn represent a more complex data structure in its
own node encapsulation. This way, developers could work with
large, complex data, as opposed to toy examples, while still working
with direct manipulation, live programming, and programming by
demonstration.

4 What does this all mean?
In the previous section, we reflected on our experience and vision
of how Algot implements the kind of visual scaffolding and state
awareness that we think developers at every skill level could ben-
efit from. The question remains how all of this could be brought
together into a cohesive system.

Graphs were chosen as the underlying data structure of Algot
due to their versatility and modelling power [27]. For example, a
chess board could be expressed as a graphwith 64 vertices and edges
representing adjacent squares or possible piece movements. The
simpler example in Figure 6 shows how a classical chess problem
could be easier to solve and understand with a graph representation.
We note that while all the examples that we have shown in this
essay have represented graphs in the same textbook style with
circular nodes connected by linear edges, there is nothing stopping
us from letting the programmer programmatically customize or
transform the visual representation of graphs according to their
specific needs or preferences.

https://algot.org/AlgotIsEven.mp4


The Hidden Program State Hurts Everyone

Figure 6: Top: Guarini’s problem (first published in 1512),
which is the earliest chessboard puzzle in the world [26].
The goal is to find a sequence of moves such that the black
and white knights switch positions. Middle: The chess board
represented as a graph where the edges indicate the legal
moves of each knight. Bottom: An untangled copy of the
same graph, demonstrating how easy it is to solve the prob-
lem after a different state representation has been found.

We believe that with the proper auxiliary tools and extensions,
some of which we discussed in the last section, Algot or a language
built on the same principles can serve as a general-purpose lan-
guage that aids developers in the same sense that domain-specific
visual systems, such as the ones we discussed in the introduction,
can help specialists with narrow subjects. One line of criticism of
Victor’s Learnable Programming essay is that it is “problem-specific”
and that “[t]he control flow visualisation works great for toy prob-
lems when learning programming, but quickly breaks down in the
real world [...]. You’re working with billions of seemingly random
integers, or with strings, or even more complex data structures.
How are you going to visualize that over time?” [11]. But we be-
lieve that by using graphs with nodes of nested, abstract data types,

we can represent virtually anything, from the elementary algo-
rithms we showed in the previous section, to the simple geometric
shapes shown in Victor’s essay (given the right visual transforma-
tion tools), to complex business applications with large amounts of
data. While the entire state may not always be visualized at once,
we propose that the state graph can be expanded or collapsed as
needed, providing a scalable visualization that can adapt to the
complexity and size of the data involved.

One struggle with getting developers to adopt such systems
is path dependency. For example, Paul Graham has pointed out
with what he called the “Blub Paradox” that programmers often
judge the power of a programming language by what they already
know, rather than its objective merits or potential for growth; a
hypothetical “Blub” programmer is content with programming in
Blub, thinks in Blub, and finds that other languages are weird and
full of “other hairy stuff” [6]. The purpose of this essay is not just
to share our vision of software development or to advocate for
a specific visual programming language, but to call on others to
move beyond “Blub” and participate in bringing to life the vision
of scalable, general-purpose direct manipulation systems in which
programmers can direct their faculties to other, more intellectually
meaningful tasks than constantly maintaining a mental represen-
tation of the program state. This may require a shift in thinking
about what programming entails and what that means is largely
unknown to us, and we encourage those interested in exploring
that vision to get in touch.

5 Acknowledgements
We thank Sandra Wiklander for helping create and find photos for
this essay and David Llada for the permission to use the photo in Fig-
ure 1 (link: https://www.flickr.com/photos/davidllada/47517860951).

References
[1] Michel Adam, Moncef Daoud, and Patrice Frison. 2019. Direct manipulation

versus text-based programming: An experiment report. In Proceedings of the 2019
ACM Conference on Innovation and Technology in Computer Science Education.
353–359. https://doi.org/10.1145/3304221.3319738

[2] David M Frohlich. 1993. The history and future of direct manipulation. Be-
haviour & Information Technology 12, 6 (1993), 315–329. https://doi.org/10.1080/
01449299308924396

[3] Carlisle Eldwidge George. 1996. Investigating the effectiveness of a software-
reinforced approach to understanding recursion. Ph. D. Dissertation. Goldsmiths
College (University of London).

[4] Carlisle E George. 2000. EROSI—visualising recursion and discovering new errors.
ACMSIGCSE Bulletin 32, 1 (2000), 305–309. https://doi.org/10.1145/331795.331875

[5] Oliver Graf, Sverrir Thorgeirsson, and Zhendong Su. 2024. Assessing Live
Programming for Program Comprehension. In Proceedings of the 29th Innovation
and Technology in Computer Science Education Conference (ITiCSE 2024). ACM,
Milan, Italy. https://doi.org/10.1145/3649217.3653547

[6] Paul Graham. 2005. Beating the Averages. https://paulgraham.com/avg.html.
Accessed: 2024-04-15.

[7] Philip J. Guo. 2013. Online Python tutor: embeddable web-based program visual-
ization for CS education. In Proceeding of the 44th ACM Technical Symposium on
Computer Science Education (SIGCSE ’13). Association for Computing Machinery,
New York, NY, USA, 579–584. https://doi.org/10.1145/2445196.2445368

[8] John Hartmann. 2008. Garry Kasparov Is a cyborg, or What ChessBase Teaches
Us about Technology. (2008).

[9] Martin Hirzel. 2023. Low-Code Programming Models. Commun. ACM 66, 10
(sep 2023), 76–85. https://doi.org/10.1145/3587691

[10] Edwin L Hutchins, James D Hollan, and Donald A Norman. 1985. Direct manip-
ulation interfaces. Human–computer interaction 1, 4 (1985), 311–338.

[11] Jules Jacobs. 2012. Comment on Bret Victor: Learnable Programming. https:
//news.ycombinator.com/item?id=4578339. Accessed: 2024-04-16.

[12] Oscar Karnalim and Mewati Ayub. 2017. The effectiveness of a program visu-
alization tool on introductory programming: A case study with PythonTutor.

https://www.flickr.com/photos/davidllada/47517860951
https://doi.org/10.1145/3304221.3319738
https://doi.org/10.1080/01449299308924396
https://doi.org/10.1080/01449299308924396
https://doi.org/10.1145/331795.331875
https://doi.org/10.1145/3649217.3653547
https://paulgraham.com/avg.html
https://doi.org/10.1145/2445196.2445368
https://doi.org/10.1145/3587691
https://news.ycombinator.com/item?id=4578339
https://news.ycombinator.com/item?id=4578339


Thorgeirsson, Graf, and Su

CommIT (Communication and Information Technology) Journal 11, 2 (2017), 67–76.
https://doi.org/10.21512/commit.v11i2.3704

[13] Tom Lieber, Joel R Brandt, and Rob C Miller. 2014. Addressing misconceptions
about code with always-on programming visualizations. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. 2481–2490. https:
//doi.org/10.1145/2556288.2557409

[14] Don Norman. 2013. The design of everyday things: Revised and expanded edition.
Basic books.

[15] Alexander Repenning. 2017. Moving Beyond Syntax: Lessons from 20 Years of
Blocks Programing in AgentSheets. J. Vis. Lang. Sentient Syst. 3, 1 (2017), 68–91.
https://doi.org/10.18293/VLSS2017-010

[16] Mitchel Resnick, JohnMaloney, AndrésMonroy-Hernández, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, et al. 2009. Scratch: programming for all. Commun. ACM 52, 11 (2009),
60–67. https://doi.org/10.1145/1592761.1592779

[17] Charles Roberts, Matthew Wright, and JoAnn Kuchera-Morin. 2015. Beyond
editing: extended interaction with textual code fragments. In NIME. 126–131.
https://doi.org/10.5555/2993778.2993812

[18] Scott Schneider. 2012. Comment on Bret Victor: Learnable Programming. https:
//news.ycombinator.com/item?id=4577609. Accessed: 2023-04-16.

[19] Ben Shneiderman. 1982. The future of interactive systems and the emergence of
direct manipulation. Behaviour & Information Technology 1, 3 (1982), 237–256.

[20] Sverrir Thorgeirsson, Lennart Lais, Theo Weidmann, and Zhendong Su. 2024.
Recursion in Secondary Computer Science Education: A Comparative Study
of Visual Programming Approaches. In Proceedings of the 55th ACM Technical
Symposium on Computer Science Education (SIGCSE 2024). Portland, Oregon.
https://doi.org/10.1145/3626252.3630916

[21] Sverrir Thorgeirsson and Zhendong Su. 2021. Algot: An Educational Pro-
gramming Language with Human-Intuitive Visual Syntax. In 2021 IEEE Sympo-
sium on Visual Languages and Human-Centric Computing (VL/HCC). IEEE, 1–5.
https://doi.org/10.1109/VL/HCC51201.2021.9576166

[22] Sverrir Thorgeirsson, Theo Weidmann, Karl-Heinz Weidmann, and Zhendong
Su. 2024. Comparing Cognitive Load Among Undergraduate Students Program-
ming in Python and the Visual Language Algot. In Proceedings of the 55th ACM
Technical Symposium on Computer Science Education (SIGCSE 2024). Portland,
Oregon. https://doi.org/10.1145/3626252.3630808

[23] Sverrir Thorgeirsson, Chengyu Zhang, Theo B. Weidmann, Karl-Heinz Weid-
mann, and Zhendong Su. 2024. An Electroencephalography Study on Cognitive
Load in Visual and Textual Programming. In Proceedings of the 2024 ACM Con-
ference on International Computing Education Research. In press. (ICER ’24). ACM,
Melbourne, VIC, Australia. https://doi.org/10.1145/3632620.3671124

[24] Jasper Tran O’Leary, Gabrielle Benabdallah, and Nadya Peek. 2023. Imprimer:
Computational Notebooks for CNC Milling. In Proceedings of the 2023 CHI Con-
ference on Human Factors in Computing Systems. 1–15. https://doi.org/doi.org/
10.1145/3544548.3581334

[25] Bret Victor. 2012. Learnable programming: Designing a programming system for
understanding programs. URL: http://worrydream. com/LearnableProgramming
(2012).

[26] John J Watkins. 2004. Across the board: the mathematics of chessboard problems.
Princeton University Press.

[27] Theo B Weidmann, Sverrir Thorgeirsson, and Zhendong Su. 2022. Bridging
the Syntax-Semantics Gap of Programming. In Proceedings of the 2022 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software. 80–94. https://doi.org/10.1145/3563835.3567668

https://doi.org/10.21512/commit.v11i2.3704
https://doi.org/10.1145/2556288.2557409
https://doi.org/10.1145/2556288.2557409
https://doi.org/10.18293/VLSS2017-010
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.5555/2993778.2993812
https://news.ycombinator.com/item?id=4577609
https://news.ycombinator.com/item?id=4577609
https://doi.org/10.1145/3626252.3630916
https://doi.org/10.1109/VL/HCC51201.2021.9576166
https://doi.org/10.1145/3626252.3630808
https://doi.org/10.1145/3632620.3671124
https://doi.org/doi.org/10.1145/3544548.3581334
https://doi.org/doi.org/10.1145/3544548.3581334
https://doi.org/10.1145/3563835.3567668

	Abstract
	1 Introduction
	2 Background
	3 Reflections on Algot
	4 What does this all mean?
	5 Acknowledgements
	References

