
Does Deliberately Failing Improve Learning in
Introductory Computer Science?

Sverrir Thorgeirsson, Tanmay Sinha, Felix Friedrich, Zhendong Su

ETH Zürich, Switzerland

Abstract. We report our experience with technology-enhanced Produc-
tive Failure (PF) in an introductory computer science course. First, we
sought to assess whether the use of algorithm visualization tools during
the PF problem-solving phase enhanced learning. Second, we used an
experimental study to measure learning effects of administering failure-
driven scaffolding (FDS) during the PF sessions, that is, explicitly nudg-
ing generation with suboptimal representations deliberately designed to
lead to failures. Results from surveys and log data indicated that our
visualization tools helped students explore the problem space and per-
formance data signaled that FDS improved students’ constructive rea-
soning (Cohen’s d 0.194, BF01 2.55) and did not harm posttest scores
(BF01 3.17) relative to no explicit scaffolding during problem-solving
prior to instruction. Further, similar levels of induced frustration (BF01

3.29) and curiosity (BF01 3.27) were observed across the conditions.

Keywords: active learning, failure, problem-solving, scaffolding

1 Introduction

Pedagogical activities inspired by active learning approaches are both expected
and well-received by computer science undergraduates [1], and have a positive
effect on their learning outcomes [3]. Within that family, a constructivist learning
design called productive failure (PF) has received significant attention in the
literature [5]. PF sessions consist of a (i) problem-solving phase, where students
are given challenging problems that they are not expected to solve successfully,
followed by an (ii) instruction phase, where an instructor illustrates the correct
solution. Meta-analyses (e.g., [9]) show strong evidence in favor of PF and more
generally, learning designs where problem-solving precedes instruction.

PF was initially described as a learning design with no explicit scaffold-
ing. However, there has been recent interest in similar designs that incorporate
failure-driven scaffolding (FDS), where students’ self-generation activity in the
problem-solving phase is complemented with prompts that nudge them to gen-
erate and reason with additional suboptimal numerical and graphical represen-
tations resulting in problem-solving failure by design. Comparative studies in
tertiary data science education have shown that students receiving FDS demon-
strate higher quality of constructive reasoning [8, 10], that is, provide meaningful
elaborations going beyond what was presented. By challenging understanding,



2 Sverrir Thorgeirsson, Tanmay Sinha, Felix Friedrich, Zhendong Su

FDS may help students activate relevant prior knowledge, reveal knowledge gaps,
and aid recognition of deep domain features. However, despite holding promise,
this learning design has not yet been explored in computer science.

Here, we report application of PF and FDS in a CS2 course, Computer Sci-
ence II, with just over a hundred enrolled students. This course introduces algo-
rithms and data structures to non-CS majors in the engineering departments of
ETH Zürich. Throughout the course, we conducted technology-enhanced PF ses-
sions which incorporated (i) online programming environment with an integrated
testing and debugging suite, which was also used for homework assignments, and
(ii) custom, interactive algorithm visualization (AV) environments designed to
support an alternative and a more inclusive form of domain exploration. We
focused on following three research questions (RQs) in our work.

RQ1 How does the provision of FDS during PF sessions impact learning outcomes
of conceptual understanding and constructive reasoning for CS2 students?
H1 Students receiving FDS during PF sessions will demonstrate better learn-

ing outcomes of conceptual understanding and constructive reasoning
(compared to students who do not receive FDS).

RQ2 What is the impact of providing interactive AV environment to CS2 students
during the problem-solving phase of PF sessions (with or without FDS)?
H2 Students working with the interactive AV environment will have positive

perceptions about its usefulness in facilitating problem-solving.
RQ3 How do affective factors differentially facilitate learning from FDS in the PF

sessions for CS2 students?
H3 Students receiving FDS within PF will demonstrate higher frustration

and discomfort as well as higher curiosity to know more about the topic.

2 Method

2.1 Study Design

After ethics approval and informed consent, we ran an experimental study on
three PF sessions in an introductory computer science course in 2021 (N = 64,
n = 28 female). All sessions were run remotely. In the problem-solving phase of
each session, students were asked to devise their own algorithm to solve a prob-
lem that they had not encountered before in class. The problems involved (i)
sorting numbers by size, (ii) finding shortest paths in a graph, and (iii) solving
the cluster assignment problem. We chose these problems for two reasons. First,
their discovery implies or requires insight into the key concepts covered in the
course. Second, they follow design principles described by Kapur and Bielaczyc
[5], namely that they have multiple solution paths and are sufficiently rich to al-
low “explanation and elaboration” and “compare and contrast” activities during
the instruction phase between the canonical solution and student solutions.

In contrast to previous pilot PF sessions, we placed special emphasis on
the PF design fidelity [9]. For example, we constructed interactive, visual en-
vironments (see Figure 1) for each problem that students could use to explore



Does Deliberately Failing Improve Learning in Introductory CS? 3

the problem space and generate multiple solutions, despite lacking coding pro-
ficiency. For the session on sorting algorithms, a custom visualization based on
the visual programming environment Algot [11] was used, which allowed students
to demonstrate algorithms under the programming-by-demonstration paradigm.
The remaining AVs can be viewed at http://sverrir.helonia.com/pfvis. By in-
troducing AVs, we also hoped to make use of the dual coding framework em-
phasizing that AVs can be effective when presented together with code as they
provide an additional, non-verbal model of the target knowledge [4], thereby
offering learners a deeper domain understanding. Our aim was for these AVs to
rank well on the AV engagement taxonomy introduced by Naps et al. [7]. To
improve PF design fidelity further, we introduced failure-driven scaffolds dur-
ing the problem-solving phase and measured how deliberately designed failure
affected learning. Finally, we designed an appropriate social surround emphasiz-
ing that the PF sessions were an opportunity to learn and arriving at a correct
solution was not the goal, and spent greater instruction time on explaining how
the correct solution relates to student-generated solutions.

Fig. 1. The visualization environment introduced in the first PF session on sorting
algorithms, which is based on the visual programming environment Algot [11].

To measure the effects of FDS, we set up an in-vivo experiment in which
some students were randomly assigned FDS during the problem-solving phase,
while others were given no explicit scaffolds at all and therefore engaged only in
free generation prior to instruction. For example, during the second session on
the shortest path problem, all students were given a Python implementation of
a graph, preliminary code, and some test cases. However, students in the FDS
group were suggested to model their solution based on an implementation of a
relatively suboptimal solution (depth-first search), thus making it more challeng-
ing to reach the canonical solution when compared to, for example, breadth-first
search. Similarly, during the third session on the clustering problem, all students



4 Sverrir Thorgeirsson, Tanmay Sinha, Felix Friedrich, Zhendong Su

were also given some cues with Python functions that they could use to reach
a solution. Students in the FDS group were however given additional functions
that they were prompted to use (e.g., nearest neighbor class), which is not
used in the k-means clustering algorithm, and therefore, by design, would likely
lead to a suboptimal solution. Taken together, randomly assigning instructional
treatments during the problem-solving phase (for high internal validity) as they
occur in live classrooms (for high ecological validity), is a strength of our work.

The follow-up instruction phase was identical for both conditions. Posttest
questions focused on conceptual understanding of the targeted topics and con-
structive reasoning. For example, one posttest question introduced the widest
path problem and the longest path problem and asked whether and how Dijk-
stra’s algorithm, which had meanwhile been taught during the lecture, could be
modified to solve them. Similarly, another posttest question included a version
of the anti-clustering problem, which has a similar conceptual relationship to
the clustering problem as the longest path problem has to the shortest path
problem. All students were invited to use interactive visualization environments.
Here, students could run visualizations of unlabeled sorting algorithms and test
them on different inputs, construct paths from a given source node to a sink
node on an undirected, weighted graph, as well as assign classes to randomly
generated color-coded coordinates on a plane. We measured how students inter-
acted with the visualization environment by administering surveys that focused
on perceptions of induced frustration and curiosity to learn more.

2.2 Analysis Plan

To answer RQ1, we graded constructive reasoning and conceptual understanding
outcomes on a 5-point scale, in the former case by identifying meaningful elabo-
rations beyond what we presented in class, and in the latter case by identifying
correct answers to our questions. Since our sample sizes were small, we used
Bayesian analyses to compare the learning outcomes between our conditions.
Specifically, we carried out a Bayesian Mann-Whitney U-test with 1000 samples
and computed Bayes Factor BF01 to test the null hypothesis that administering
FDS would have no effect on conceptual understanding and constructive rea-
soning. To answer RQ2, we conducted a content analysis of answers to analyze
student perceptions of the usefulness of visualization modules. We then used
the log data to find the frequency of students’ interaction with the modules
and calculated correlation between the quality of solutions and the use of the
visualization. Interaction events, included, for example, actions such as the ad-
dition or removal of nodes in the graph. To answer RQ3, we quantitatively and
qualitatively analyzed student responses from relevant surveys [8].

3 Results

3.1 Learning Outcomes (RQ1)

Results for one of the topics (shortest path) showed that students who received
FDS scored similarly (M = 2.5, SD = 1.07) on the conceptual understanding



Does Deliberately Failing Improve Learning in Introductory CS? 5

posttest as students who did not receive FDS (M = 2.61, SD = 1.26). Although
this difference was not statistically significant (p = 0.32) and we failed to reject
the null hypothesis, this comparison had a BF01 of 3.17, indicating positive or
substantial odds favoring the null. The effect size for this comparison was small
(Cohen’s d -0.095). For constructive reasoning, students receiving FDS scored
descriptively higher (M = 1.55, SD = 1.65) relative to students not receiving
FDS (M = 1.21, SD = 1.87), with a moderate effect size (Cohen’s d 0.194), de-
spite non-significance of results (p = 0.39). This comparison had a BF01 of 2.55,
indicating only weak or anecdotal odds favoring the null. Taken together, these
results partially support hypothesis H1 of students in the FDS condition scor-
ing higher on the conceptual understanding posttest and constructive reasoning,
however only for the latter.

3.2 Use of the Visualization Module (RQ2)

Of the 64 students who participated in the second PF session on shortest path
algorithms, all answered a question about the visualization module in a survey
provided immediately after the end of the problem-solving phase. 54 students
(84%) responded affirmatively when asked if they found the visualization module
useful, 6 (9%) responded with a “no” or “not really,” and 4 (6%) had mixed
reactions such as “a little.” No student reported that they did not use it. Of
those who explained why the module was helpful, responses focused on reasons
such as it “made me realize that my algorithm is crap,” helped to “generate an
idea,” and “just saves time.” Of those who had critical comments, one student
claimed that while it was better than nothing, it did not help with developing
code as it did not support “call stacks and such.” One student said that they
preferred to work out the solution on pen and paper.

The responses to the survey for the clustering algorithms topic, which was
administered online (and outside of class time) a few days after the lecture,
showed that 15/25 (60%) students found the visualization module useful, 5 (20%)
did not, 4 (16%) had mixed responses such as “a little bit”, and one student (4%)
claimed not to have looked at it. Two students left technical suggestions about
ways to improve the module. In terms of logged data, we saw a fairly high level
of engagement, evidenced by the frequency of interaction events per student
(average of 14). The frequency of interactions, however did not correlate with
learning outcomes (ρ = 0.075), suggesting the need to quantify the quality of
student problem-solving actions in future work. Taken together, these results
support hypothesis H2 of students perceiving the interactive AV environment to
be useful in facilitating their problem-solving (with or without FDS).

3.3 Underlying Affective Factors (RQ3)

Results from student reactions collected indicated that 27/62 (43.5%) students
responded affirmatively to whether they wanted to learn more about the topic,
12 had reserved responses such as “kind of” or “a little bit,” and 23 responded
negatively. Overall, there was no difference in reported curiosity (M = 0.47, SD



6 Sverrir Thorgeirsson, Tanmay Sinha, Felix Friedrich, Zhendong Su

= 0.51 for FDS versus M = 0.41, SD = 0.5 for control, BF01 = 3.27, Cohen’s
d 0.121). Some students further elaborated on their answers. Of those who re-
sponded affirmatively, some wrote that “you get curious because you failed,” “I
have a lot to learn,” and that their failure to solve the exercise prompted them
to find and study Dijkstra’s algorithm. Of those who had reserved responses, one
wrote that they would have preferred to discuss the exercise in small groups. Of
other students who submitted negative responses, one wrote that the topic itself
was “super interesting” but the exercise itself made them feel frustrated.

We asked students directly about frustration in the same post-experiment
survey and also found it to be similar across our conditions (M = 0.73, SD =
0.45 for FDS versus M = 0.79, SD = 0.41 for control, BF01 = 3.29, Cohen’s
d 0.141). Of the 64 students who responded, 49 reported that the exercise was
frustrating to solve. Many of those students added qualifying statements such
as “code always frustrates me”, “there’s always some kind of frustration with
coding for me”, “on the other hand I am glad that I did find a part of a solution”,
and “I feel very lost in [the course] in general.” Taken together, these results do
not support hypothesis H3 of relevant affective factors differentially impacting
how students perceive and learn from PF and FDS.

4 Discussion and Conclusion

Our first research question (RQ1) focused on whether students who received ad-
ditionally received FDS within PF sessions would demonstrate improved learning
outcomes. We expected our results to align with prior work in data science edu-
cation [8, 10]. Despite the non-significance of results (owing to our small sample
size of 41 students), evidence from Bayesian analyses suggests that students ex-
posed to FDS had conceptual understanding posttest scores similar to (not worse
than) students who did not receive FDS. We further found an effect size (d =
0.194) favoring FDS for students’ constructive reasoning. A contextual interpre-
tation of this effect size, drawing on empirical research from the highest-quality
field research on factors affecting objective educational outcomes [6], suggests
that our effects are large and correspond to the effects of having a very high-
quality teacher (versus an average teacher) for one year [2]. Simply put, our effect
size estimate of d = 0.194 translates to a 55.5% chance that a person picked at
random from the FDS group will have a higher quality of constructive reasoning
than a person picked at random from a control group not receiving FDS.

Our second research question (RQ2) focused on the effects of the interactive
visualization module and the extent to which it helped students during the
problem-solving phase. The survey responses to this question (N = 99 in total)
were very positive, suggesting high perceptions of usefulness among students.
We could not find direct evidence that using the module improved learning
outcomes, but a possible explanation is that high-performing students may not
have needed the visualization module as much to explore the problem space.

Our third research question (RQ3) focused on the role that affective fac-
tors may play in facilitating learning from FDS in generative problem-solving.



Does Deliberately Failing Improve Learning in Introductory CS? 7

When working with algorithmic representations deliberately designed to lead to
failures, we posit that students would naturally experience frustration and dis-
comfort. However, because this discomfort fuels task progress via problem-space
exploration in the presence of FDS, students have a chance to explore relevant
problem parameters and develop intuition for what (does not) work. With im-
proved awareness of knowledge gaps, students are better poised to be interested
in and learn from the canonical solution. Results showed that not only are FDS
students similarly curious, but they also do not experience more frustration.

Acknowledgments

We thank Gustav Hammarhjelm and Dr. Tracy Ewen for valuable feedback on
an earlier version of the paper and Dr. Ralf Sasse for helping organize the study.

References

1. Caceffo, R., Gama, G., Azevedo, R.: Exploring active learning approaches to com-
puter science classes. In: Proceedings of the 49th ACM Technical Symposium on
Computer Science Education (2018)

2. Hanushek, E.A.: Valuing teachers: How much is a good teacher worth. Education
next 11(3), 40–45 (2011)

3. Hao, Q., Barnes, B., Wright, E., Kim, E.: Effects of active learning environments
and instructional methods in computer science education. In: Proceedings of the
49th ACM Technical Symposium on Computer Science Education. pp. 934–939
(2018)

4. Hundhausen, C.D., Douglas, S.A., Stasko, J.T.: A meta-study of algorithm visu-
alization effectiveness. Journal of Visual Languages & Computing 13(3), 259–290
(2002)

5. Kapur, M., Bielaczyc, K.: Designing for productive failure. Journal of the Learning
Sciences 21(1), 45–83 (2012)

6. Kraft, M.A.: Interpreting effect sizes of education interventions. Educational Re-
searcher 49(4), 241–253 (2020)

7. Naps, T.L., Rößling, G., Almstrum, V., Dann, W., Fleischer, R., Hundhausen, C.,
Korhonen, A., Malmi, L., McNally, M., Rodger, S., et al.: Exploring the role of
visualization and engagement in computer science education. In: Working group
reports from ITiCSE on Innovation and technology in computer science education,
pp. 131–152 (2002)

8. Sinha, T., Kapur, M.: Robust effects of the efficacy of explicit failure-driven scaf-
folding in problem-solving prior to instruction: A replication and extension. Learn-
ing and Instruction 75, 101488 (2021)

9. Sinha, T., Kapur, M.: When problem solving followed by instruction works: Evi-
dence for productive failure. Review of Educational Research 91(5), 761–798 (2021)

10. Sinha, T., Kapur, M., West, R., Catasta, M., Hauswirth, M., Trninic, D.: Differ-
ential benefits of explicit failure-driven and success-driven scaffolding in problem-
solving prior to instruction. Journal of Educational Psychology 113(3), 530 (2021)

11. Thorgeirsson, S., Su, Z.: Algot: An educational programming language with
human-intuitive visual syntax. In: 2021 IEEE Symposium on Visual Languages
and Human-Centric Computing. pp. 1–5. IEEE (2021)


