
Bridging the Syntax-Semantics Gap of Programming
Theo B. Weidmann∗

ETH Zurich
Switzerland

tweidmann@ethz.ch

Sverrir Thorgeirsson∗
ETH Zurich
Switzerland

sverrir.thorgeirsson@inf.ethz.ch

Zhendong Su
ETH Zurich
Switzerland

zhendong.su@inf.ethz.ch

Abstract
Computer programming typically requires people to de-
scribe operations in a formally specified textual language.
Unfortunately, working with syntax is a significant cognitive
load, making programming difficult for beginners and time-
consuming for professional developers. In response to this,
contemporary research often focuses on abstracting or im-
proving the process of composing code. We believe, however,
that one fundamental reason why programming is difficult
is the disconnect between the symbols and metaphors used
in code and the mechanics they represent. Programming
languages use abstractions whose superficial similarities to
natural language neither effectively help users understand
programs nor enable them to work creatively. To tackle this
fundamental limitation, this paper introduces a new lan-
guage based on a novel programming-by-demonstration par-
adigm that (i) enables users to experiment and test their
programs, (ii) allows describing complex operations without
the need to learn any syntax, and (iii) always displays an
approximation of the program state while programming a
new operation. We explain the rationales behind our new
approach and present our design and implementation using
illustrative examples and a supplemental video recording.

CCS Concepts: • Human-centered computing → Visual-
ization systems and tools; • Applied computing → Interac-
tive learning environments; • Software and its engineering
→ General programming languages.

Keywords: programming-by-demonstration, visual program-
ming, non-textual programming, end-user programming,
learnable programming

1 Introduction
Most computer programs today are created using formally
specified programming languages. To manipulate the state
of the computer, programmers need to compose a textual
representation of a program that strictly adheres to a formal
grammar. However, the words of the textual representation
have little to no inherent connection to the state change
they provoke [17]. Consequently, programmers have to map
abstract syntax to concrete state changes in their mind, while
rarely seeing the program’s state. This creates obstacles not
only for people learning to program but also for professional
software developers.

∗Theo B. Weidmann and Sverrir Thorgeirsson are co-primary authors.

In the computer science (CS) education community, syn-
tax has been considered a cognitive load [18], a barrier to
learning [7, 29], and a source of negative emotions such as
frustration and boredom [4]. In industry, developers often
have a clear idea of what they want to achieve, but syntax
makes it time-consuming to convert high-level ideas into
executable code; studies have found that as much as 35% of a
developer’s worktime is spent searching for code examples
online [12, 37]. Research such as Heyman et al. [12] pro-
poses solutions for enhancing code auto-completion to also
take the developer’s intent into consideration. Other studies
have advocated for new auxiliary software tools, such as
debuggers or visualizations.
In our view, many of the recently proposed innovations,

while useful, are too incremental and do not address the root
cause that explains why programming is difficult, namely
what has been called “the tension between human compre-
hension and computer interpretation” [16]. We believe that
common programming languages use abstractions that ob-
fuscate the meaning of code, and that those abstractions
are concealed by code’s superficial similarity to natural lan-
guage. As a remedy, a radical new approach to programming
is needed.
In this paper, we present a solution to this problem by

introducing a new version of the programming language
Algot [30] that uses programming-by-demonstration and a
visual representation of the state. With this system, we make
three key contributions:

• We present a system for constructing complex opera-
tions that does not require learning textual syntax.

• We show how a programming-by-demonstration en-
vironment might display an approximation of the pro-
gram state and allow it to be manipulated.

• We introduce a new programming paradigm based on
recursion that decreases control flow complexity in
three simple stages.

In the remainder of this paper, we first offer the reader
a glimpse at Algot (Section 2). Then we describe important
background concepts (Section 3) and explain the motivation
and design rationales behind our work (Section 4). Following
this, we explain in detail how our web-based implementation
of Algot works (Section 5) and support our explanation with
examples (Section 6) and a short, silent video recording1,
1Algot is a highly interactive system and any textual description of it is
limited. For the reader’s comprehension, we highly recommend reviewing
this video before reading the system description.



Theo B. Weidmann, Sverrir Thorgeirsson, and Zhendong Su

def bubblesort(a):
swapped = False
for n in range(len(a)-1, 0, -1):

for i in range(n):
if a[i] > a[i+1]:

swapped = True
a[i], a[i+1] = a[i+1], a[i]

if not swapped:
return

Figure 1. An implementation of bubble sort in Python.

class Node:
def __init__(self , value):

self.value = value
self.left = None
self.right = None

def insert(item , tree):
if (item < tree.value):

if (tree.left != None):
insert(item , tree.left)

else:
tree.left = Node(item)

else:
if (tree.right != None):

insert(item , tree.right)
else:

tree.right = Node(item)

Figure 2. An implementation of binary tree insertion in
Python.

available at https://vimeo.com/729159376. Finally, we briefly
discuss future developments (Section 7) and our vision for
its use in education and industry (Section 8) before offering
concluding thoughts (Section 9).

2 Motivating Examples
We motivate our work by providing a brief high-level com-
parison between a popular textual language (Python) and
Algot. This is merely meant to give the reader a taste of
Algot — we will give an exact description of the system and
examples later in the paper.
Fig. 1 shows an example implementation of the sorting

algorithm bubble sort in Python. While the algorithm is con-
ceptually simple, the code is not straightforward; the pro-
grammer needs to work with and understand multiple con-
structs that are typical for implementations of bubble sort in
textual programming languages, such as iteration structures,
control structures, and assignment statements [15]. For be-
ginners, this is far from ideal, as research indicates that they
struggle with understanding “the iteration pattern used in
the comparison procedure, how nesting loops work and the
meaning of both the variables and the counters used” [15, 33].
The same research indicates that beginners also seemingly

Figure 3. A partial screenshot of the implementation of
bubble sort on a linked list in Algot. Using pattern matching,
the programmer has selected the root (1) and then its child
(2) of a two-node tree and then defines a query (right) to
compare their values. The three stage input-query-action
panel is visible on the top. The action phase is active.

Figure 4. A partial screenshot of implementing binary tree
insertion. The new value is inserted into either the left or
the right subtree after comparison.

lack the ability to initialize the counters used and pay no
attention to “initializing or terminating the whole sorting
procedure.”

In contrast, we believe that Algot brings the implementa-
tion of algorithms like bubble sort closer to the actual cogni-
tive mechanisms that humans use to understand and define
algorithms, namely via simple-to-understand queries, visual
pattern matching, and a three-stage input-action demon-
stration process that is congruent with how people explain
algorithms to each other. Fig. 3 shows a snapshot of how
these constructs look when the language is used to imple-
ment bubble sort.
As a visual language, Algot can offer additional benefits.

Many computer science students and professional developers
are accustomed to visual graph representations from classes

https://vimeo.com/729159376


Bridging the Syntax-Semantics Gap of Programming

and textbooks. This representation of data structures is more
convenient for human reasoning than textual source code
and is thereby more accessible. Algot tries to automatically
layout graphs in a customary shape to support the program-
mer in their work. Fig. 2 shows a Python implementation
of inserting a value into a binary search tree. For compar-
ison, Fig. 4 shows part of the implementation of the same
algorithm in Algot.
Later in this paper, we will describe in detail how Algot

works and offer comprehensive illustrative examples that
show some of its capabilities.

3 Background
In this section, we introduce background concepts that in-
spired the new version of Algot and which we refer back to
later in the paper.

3.1 Algot
We expand on our past work Algot [30], a visual program-
ming language aimed at beginners to explore foundational
programming concepts. AlgotâĂŹs “language syntax, both
in terms of composition and outcome, imitates its visual
semantics.” That is, data structures are presented visually,
and the user manipulates the program state using the mouse
only — by clicking and using drag and drop. The result of
any action is immediately visible.

A history bar displays all the commands the user has exe-
cuted. The entirety of the executed commands can be under-
stood as a program. Using a rule table, the system detects
patterns and offers to automatically repeat similar opera-
tions, eliminating the need for control loops.
We proposed two main applications. First, the environ-

ment can be used to test students’ understanding of an algo-
rithm by asking them to execute the algorithm on a provided
sample input. Second, the tool can serve for exploration as
part of problem-solving.
Designed as a minimal language, Algot’s expressiveness

is limited to manipulating arrays and trees. To overcome
this, our new version builds on our original principles and
insights to build a computationally more powerful platform.

3.2 Learnable Programming
Bret Victor, software engineering innovator and interaction
designer, argued in an influential 2011 talk that creators
should have an “immediate connection” with their creations
[31]. To illustrate his claim, Victor showed two design tools
with a graphics/code split screen and compared the diffi-
culty of implementing new functionality by writing code,
for example, by updating a variable in a platform game to
change a character’s speed, and using direct manipulation
on the graphical component to achieve the same effect. Vic-
tor demonstrated not only how the latter option was easier

and more accurate, but also how it could facilitate explo-
ration and creativity. While the immediacy of the change
is important in itself — development environments with a
long edit-compile-run cycle, even to the tune of just several
seconds, have a negative impact on some developers [36] —
it also relieves the programmer of continuous task switching
between code and effect.

3.3 Block-Based Programming
Block-based programming languages such as Scratch have
been instrumental in making programming more accessible.
Scratch was originally aimed at a younger audience, featur-
ing illustrations and sounds [19] that appeal to children and
adolescents. Since its inception, Scratch has reached millions
[34] and has become a prime example of block-based pro-
gramming.
Block-based languages like Scratch are not only visually

appealing but also help beginners by making it harder to
make syntax errors. Due to the way instructions are con-
nected by drag-and-drop, constructing a syntactically in-
valid statement is not possible [35]. However, block-based
programming languages are similar to textual programming
in that they still require users to mentally convert verbal
instructions to state updates. While Scratch takes some steps
towards experimentation (e.g., individual blocks can be run
by clicking) and making state visible (e.g., variables can be
displayed individually), the syntax — the way users program
— is still only connected to actual state changes through
natural-language-like instructions. For example, the term
variable requires prior knowledge to understand and is not
intuitively clear to children, or those with no background in
computer science.

3.4 Programming-by-Demonstration
Programming-by-example (PBE) is a paradigm that allows
the programmer to specify their intention via input-output
examples [10, 22]. The examples are then used to generate
precise instructions via program synthesis. One advantage
with this approach is that it is congruent with human commu-
nication; we may find it easier to explain complex concepts
by using examples instead of definitions or procedures.

Programming-by-demonstration (PBD) is a closely related
concept. Many authors consider it synonymous with PBE
[17], but it may be distinguished from PBE in that the pro-
grammer is more involved; instead of only offering input-
output examples, they will demonstrate in some sense how
an algorithm is intended to work on one or more input exam-
ples. PBD has a long history in robotics where it can reduce
the amount of tedious programming [3].
In combination with visual programming, PBD has been

used in CS education to teach programming to novices. Smith
et al. developed educational software called Creator that
relies on visual before-after rules and PBD in an effort to
“bring the system closer to the user” as opposed to “bringing



Theo B. Weidmann, Sverrir Thorgeirsson, and Zhendong Su

the user closer to the system” [28]. Similarly, the system
Melba [9] uses PBE and visual programming to help novices
learn computer programming.

4 Approach
We set out to develop a system that makes programming less
difficult and more approachable by bridging the gap between
the representation of the program and the representation
of the program state while trying to streamline both. The
aim of this section is to motivate why we arrived at certain
design decisions starting from three key insights; the next
section will describe the different components and how they
fit together in detail.

4.1 Key Insights
State Should Be Relatable, Visible and Editable. Many
existing programming languages feature complicated state
models such as object-orientation with dynamic method
binding. Such features can lead to a wide range of issues
such as the Fragile Baseclass Problem [21], aliasing, which
can make programs difficult to understand and maintain
[23], or limitations of structural coverage analysis, which
poses a concern in safety-critical systems for aviation [6].
Conventional imperative languages such as C, Java, and
C#, also separate state into local variables on the stack and
objects living on the heap. This separation can be confusing
and lead to misunderstandings. For example, the question
‘Is Java "pass-by-reference" or "pass-by-value"?’ [1] is one of
the highest scoring questions of all times on Stack Overflow
with more than 2.4 million views. Even systems designed for
beginners like Scratch tend to scatter state by maintaining
variables, position for individual objects, or drawings on
screen. We believe that a scattered state leads to additional
cognitive overhead and instead intend to maintain a single
central state. Algot avoids variables as separate entities from
other state.

Moreover, the program state is not visible in most existing
programming environments. Tools such as debuggers or
loggers allow the program state to be inspected, but these
tools are often an afterthought [32] and tend to pose an
additional hurdle for beginners. Finally, being able to visually
manipulate the system state allows for easy experimentation
and testing.
Based on these considerations, we choose to model the

state as a single graph, where each node stores a numerical
value. Graphs possess three characteristics that fit our needs:
First, graphs have a common, agreed upon visual represen-
tation. Second, graphs can be easily explained both formally
or by their visualization with boxes and arrows. Graphs can
even be built as a physical model using readily available ma-
terials such as rope and paper balls. Third, graphs are among
the key concepts in computer science due to their modelling

power. For example, data structures, relations or programs
can be expressed in terms of graphs.

In our implementation, themain view of the system, which
we call the state view, conveniently displays the state graph
using intelligent automatic layouting and allows the user
to apply manipulating operations. The results of applying
operations are immediately visible.

Programming Should Resemble What Happens When
the Program Runs. Henry Lieberman [17] noted the gap
between the programming language and the operations ex-
pressed by it when introducing the term programming-by-
demonstration:

There were these things called "programming
languages" that didn’t have much to do with
what you were actually working on. You had to
write out all the instructions for the program
in advance, without being able to see what any
of them did. [17]

In the spirit of Lieberman’s programming-by-demonstration
concept, we designed an environment where the computer
is told what to do by showing it the actions it should take.
In Algot, demonstration takes place in an environment that
is as similar to the state view as possible.

When demonstrating new operations in Algot, users work
with abstract nodes that represent a set of concrete nodes
of the state graph at run-time.2 Abstract nodes are bound
to a fixed set of concrete nodes for a given execution of an
operation. Yet, users work with abstract nodes the same way
they work with concrete nodes in the state view. Abstract
nodes can be selected during demonstration like concrete
nodes and the same operations are offered. Moreover, we try
to visualize the graph as it changeswhen applying operations.
For example, we try to accurately show new nodes that the
user added to the graph.

Lieberman also notes:
I guessed that youâĂŹd have to learn some spe-
cial instructions that would tell it what would
change from example to example and what
would stay the same. [17]

We implement this vision by introducing a way of asking
questions about the current program state during operation
demonstration and using the answers to these questions as
predicates. This effectively allows the programmer to tell
what will change from example to example.

Structure Operations in Three Simple Stages with Re-
cursion. Nesting of control flow structures in conventional
textual languages is a significant source of complexity. For
example, Shin and Williams [26] showed that nesting com-
plexity can predict security vulnerabilities. Another study

2We will provide an in-depth explanation of abstract nodes in Section 5.



Bridging the Syntax-Semantics Gap of Programming

Figure 5. A screenshot of the Algot environment with the Operations menu selected. One node in the state graph (top left) has
been selected by the programmer and six base operations can be performed on them (see the toolbar at the bottom).

by Ajami et al. [2] found that loops were harder for program-
mers to interpret and led to more errors than if the same
program was expressed only using if statements. Further-
more, the study suggested that flat structures are slightly
easier to understand.
Algot takes a radical approach that eliminates most nest-

ing from programs except for predication and operation
applications, while relying on recursion for repetitive tasks.

In education, past research [13] has indicated that students
who were taught functional programming first had the same
abilities as their peers who were taught programming using
an imperative language. Moreover, Chakravarty and Keller
[5] argue that programming should be taught language ag-
nostically and they propose functional languages because
they “help us to replace the tyranny of syntax by a princi-
pled approach that (1) conveys elementary techniques of
programming, (2) introduces essential concepts of comput-
ing, and (3) fosters the development of analytic thinking and
problem solving skills” [5].
Although quantitative research on the benefits of func-

tional programming approaches in software engineering is
limited [14], it has been suggested [11] that functional pro-
gramming can be beneficial in constructing correct programs
when combined with formal specification.

Finally, to make our programming-by-demonstration par-
adigm feasible, we impose a specific structure to reduce
complexity on operations defined by the user. We take in-
spiration from the "sense-think-act" [27] paradigm used in

robotics to describe the operation of a robot. A robot will
first consider its sensor inputs, process the inputs to answer
questions according to its purpose and then finally take ac-
tion based on the insights it has gathered. We implement this
via input, query, and action stage (see next section). This rigid
structure of operations keeps the user interface manageable
and easy to understand.

4.2 Implementation
We implement Algot using web technologies, only requiring
a modern web browser to experiment with operations and
create programs. This ensures that Algot will be widely ac-
cessible and also allows for easy sharing of programs with
other people using share links. We rely on state-of-the-art
frameworks such as React, Next.js and Redux for our imple-
mentation.

5 System Overview
The program state in Algot is a single directed graph called
the state graph, which is always visible to the programmer.
The state graph typically consists of many disconnected
components, with each component representing a separate
data structure. By applying operations to nodes in the graph,
the programmer modifies the state graph with an immedi-
ate visible effect. Operations consist of either changing the
graph structure by adding or removing nodes or edges, or
by changing the values of the nodes, or any combination
thereof.



Theo B. Weidmann, Sverrir Thorgeirsson, and Zhendong Su

To perform an operation that requires input, the program-
mer first sequentially selects the nodes that should serve as
arguments. Algot displays small numbers on the selected
nodes that reflect the order in which they were selected. Op-
erations are displayed contextually to the user, meaning that
operations with an arity that matches the number of selected
input nodes are available. Some operations require no in-
put, for example, when creating a new singleton component;
such operations are available when no selection is made.
Our user interface implementation can be seen in Fig.

5. The state graph is displayed on the right (blue nodes)
and the available operations are displayed in the bottom
toolbar (orange icons). Connected components in the state
graph are laid out automatically. The system is intended to
be unobtrusive to decrease the programmer’s cognitive load,
but to make the environment more usable, it comes equipped
with an undo and a reset button (top right).

5.1 User-Defined Operations
The environment is equipped by default with base operations
(see Table 1). Base operations can be used to generate any
finite graph, within the limitations of memory. When Algot
is used as a programming system, the base operations are
used as building blocks to create more complex and powerful
operations.
To program a new operation, the user enters the demon-

stration view (see Fig. 6). In contrast to the state view, the
demonstration view contains abstract nodes, which have a
name and represent a set of concrete nodes. These names
serve purely as comments to help programmers keep track
of nodes. Input abstract nodes (blue) have unknown values
and relations to other nodes, while non-input abstract nodes
(orange) are new nodes created by the programmer during
the operation definition.

Operations are programmed in three stages:

1. Input stage: The input nodes of the operation are spec-
ified. Pattern matching allows matching subgraphs
starting from input nodes.

2. Query stage: The operation queries the current state
of the state graph.

3. Action stage: The operationmanipulates the state graph
based on the nodes from the input stage and the query
results from the query stage.

We will now provide more detail on each stage.

5.1.1 Input Stage. In the input stage (Fig. 7), the program-
mer specifies how many input nodes the operation takes. For
each input the programmer creates, they can build a directed,
acyclic connected component such that the corresponding in-
put node is some node in the component. The other nodes in
the subgraph are new pattern matching abstract nodes (pink).
This means that when the operation is executed, Algot will
try to match the concrete nodes with the abstract nodes of

the pattern matching component. To do this, the subgraph
is traversed in both directions starting from the input node.

The matching algorithm keeps track of which nodes have
been matched previously when matching new nodes and
uses these nodes to anchor further matches. For example,
when an input node 𝑎 is a child of some parent node and has
left and right siblings in the pattern graph, pattern matching
will match the siblings relative to 𝑎. This means that if the
pattern graph only shows one left sibling for 𝑎 but the con-
crete graph features several left siblings, the right-most left
sibling will be matched. Matching for right siblings happens
analogously from left to right.

5.1.2 Query Stage. In the query stage (Fig. 8), the program-
mer will run queries instead of operations on the input nodes.
This means that the programmer can ask closed questions
about the nodes gathered in the input stage, whose answers
can be used to predicate operation applications during the
action stage. All queries that are currently available in Algot
can be seen in Table 1.

When the user runs a query, a query result panel is added
to the demonstration view. Fig. 6 shows the query result
panel of applying the Is Zero? query on the input node 𝑖𝑑𝑥 .

It is important to note that when the operation is executed,
the query stage runs strictly before the action stage. That
is, all queries are performed in the initial, unmodified state
graph and the results stay the same for the entire execution
of the operation. As a consequence, modifications to the state
graph are not reflected in query results.

5.1.3 Action Stage. The action stage (Fig. 9) is similar to
the state view. It allows the user to select abstract input nodes
and apply operations as within the state view.

Because some operations, such as the New Node operation,
for example, create new nodes that the user might want
to use as part of the operation, we introduce the notion of
operation outputs. Table 1 denotes the base operations that
have an output value.

When a user applies an operation that produces an output,
the output will be displayed in the state view, mimicking
the concrete state change when the operation is applied.
For example, in Figure 6 the user has added a child node to
abstract node 𝑐 . The new child node 𝑑 is visualized as a child
of 𝑐 just like in the state view.
Despite this, the graph displayed in the action stage is

only an approximation. For instance, applying further oper-
ations to 𝑐 might actually delete the child 𝑑 again without
the graph updating. Correctly visualizing the graph in the
action stage is an undecidable problem in general. We choose
to over-approximate by conservatively keeping nodes and
edges that might be deleted. For any point in the operation
definition and any concrete execution at this point, the set
of nodes and set of edges displayed in the action stage are
supersets of the set of nodes and the set of edges of the con-
crete state graph, respectively. The abstract graph is thus a



Bridging the Syntax-Semantics Gap of Programming

Figure 6. A user defines a Tribonacci function in Algot using the demonstration view. Tribonacci is similar to the Fibonacci
sequence, but takes the sum of the previous three elements. The programmer is in the process of applying the Tribonacci
Helper operation recursively to the nodes labelled b and idx.

Figure 7. A screenshot of the input stage. Here, the pro-
grammer can create connected graphs that include the input
nodes (blue). In this example, the node d is the grandchild
of the input node a, which can later be used as operation
inputs in the action stage.

sound approximation and displays all nodes the programmer
might want to interact with. However, this also implies that
the abstract graph might display nodes or edges that do not
exist in some concrete executions of the operation. If the
programmer interacts with such a node and the node does
not exist in a concrete execution, no action will be taken at
run-time, which is useful in many cases. On the other hand,

Figure 8. A screenshot of the query stage. Two queries have
been made (upper middle) and the user has the option to add
another one (bottom) based on the two selected elements
(age and b).

this can also hide some programming errors, when the pro-
grammer mistakenly assumes that a node that is displayed
in the abstract graph will always exist.

To apply query results as predicates, programmers use the
checkmark to indicate that the next step should be taken only
if the answer to the query is positive, and the cross button
if the next step should be taken only in the negative case.



Theo B. Weidmann, Sverrir Thorgeirsson, and Zhendong Su

Figure 9. A screenshot of the action stage. Note its resem-
blance to the state view. Four nodes have been selected (age,
VA, VF, ratio) and a user-defined operation Max Intake Ratio
that takes four inputs is displayed contextually.

Multiple predicates can be applied at the same time. To do so,
the programmer selects multiple predication buttons before
demonstrating the operation application. This step will then
be taken only if all of the predicates hold at run-time.

All applied operations are listed as steps in the left menu
(Fig. 6) and users can delete operation applications from the
list.
Finally, let us highlight the support for recursion in Al-

got. Since our paradigm does not feature any explicit looping
constructs, any form of repeated execution is achieved via re-
cursion. Recursion is straightforward because the operation
currently being demonstrated is also available in the toolbar.
Thus, the user simply selects appropriate input nodes for the
recursive application and clicks the operation in the toolbar.
We will give more examples of recursion in the next section.

5.2 Tutorial
Algot also includes a built-in tutorial that teaches new users
the basics of the system. The tutorial (see Fig. 10) is step-
by-step and integrates with the system to detect if the user
has successfully completed the current task. When the task
is completed, the user can proceed to the next step. The
tutorial covers the basics of the state view, such as creating
nodes, selecting nodes and applying operations to them, and
of creating operations, by introducing the input, query and
action stage.

6 Examples
To illustrate the full power of the system, we describe some
example operations. The first example shows the basics of
programming-by-demonstration in Algot. Each example will
make use of additional concepts.

6.1 Simple Example — Add Child with +1
In this simple example, we want to combine two base opera-
tions to a single operation. Algot supports the Increment and
the Add Child operation as can be seen in Table 1. The goal

Figure 10. A screenshot of the tutorial window, which the
user can freely move inside the Algot user interface.

Figure 11. We demonstrate the steps taken in the action
stage by the operation from 6.1 by first incrementing the
abstract node 𝑎 and then adding a child to it.

is to define a new operation Increment and Add Child that
performs both operations at once.
We create a new operation, give the operation the right

name, select a matching icon, and then bring up the demon-
stration view. In the input stage, we add a new input to the
operation by clicking the "Add New Input" button. A new
input abstract node appears, which represents the only input
to our new operation. Because the new Increment and Add
Child operation performs all its steps unconditionally, we
do not need to run any queries and move on directly to the
action stage.
Next, in the action stage, we simply select the input ab-

stract node and click Increment. Finally, we select the input
abstract node again and click Add Child. This is illustrated
in Fig. 11. These steps are identical to the steps a user would
perform to increment a node and add a child in the state
view.



Bridging the Syntax-Semantics Gap of Programming

Table 1. The base operations and queries in Algot.

Operation Input Description Output Operation Input Description

Delete Node 𝑎
Removes 𝑎 from the
graph

Remove Edges 𝑎
Removes all edges from 𝑎

(regardless of direction)

Increment 𝑎
Increases the value
of 𝑎 by 1

Sum 𝑎, 𝑏, 𝑐

Takes the sum of the values
of 𝑎 and 𝑏 and stores the
result in 𝑐

Prompt 𝑎

Asks the user for a value
interactively and stores
the value in 𝑎

Subtract 𝑎, 𝑏, 𝑐

Takes the difference
between the values of 𝑎 and
𝑏 and stores the result in 𝑐

Decrement 𝑎
Decreases the value
of 𝑎 by 1

Query Input Description

Add Edge 𝑎, 𝑏
Adds an edge from
𝑎 to 𝑏

Is Same? 𝑎, 𝑏 True iff 𝑎 is the same node as 𝑏

Copy Value 𝑎, 𝑏
Sets the value of 𝑏
to the value of 𝑎

Is Zero? 𝑎 True iff the value of 𝑎 is 0

New Node
Creates a new node
𝑎 with value 0

a Has Edge? 𝑎, 𝑏 True iff 𝑎 has an edge to 𝑏

Add Child 𝑎
Adds a new node 𝑏
with value 0 to the
graph and draws an
edge from 𝑎 to 𝑏

b
Has Outgoing? 𝑎

True iff 𝑎 has any edges
to other nodes

Is Less Than? 𝑎, 𝑏
True iff the value of 𝑎
is smaller than the value of 𝑏

6.2 A Mathematical Function — The Minimum
We will focus next on implementing a more meaningful op-
eration: The minimum of two values. We model the function
as an operation taking three inputs: Two nodes a and b of
which we want to compute the minimum and a node result
into which we will store the computed minimum. We create
the new operation, model these inputs in the input stage,
and continue to the query stage. We need to base our actions
in the action stage on whether a or b has the smaller value.
To do so, we select a and b in the query stage and click Is
Less Than? in the toolbar. A query result panel appears that
we can use to predicate our actions in the action stage.

Now in the action stage we want to copy the value of the
node with the smaller value to result. Let us first consider
the case where a contains the smaller value. We click the
checkmark in the query result panel. This indicates to Algot
that we want to execute the next action only if the answer
to the question is yes, i.e. if a is less than b. After we clicked
the checkmark, we select a and result and click Copy Value in
the toolbar. (See Fig. 12) We then demonstrate the other case
analogously by clicking the cross instead of the checkmark.

6.3 Pattern Matching — Incrementing the Right
Sibling

We previously discussed how pattern matching allows us to
interact with nodes that are connected to an input node. We
showcase this feature by creating an operation that incre-
ments the right sibling node of the selected node in a tree.
We give an example of a right sibling in Fig. 13, where we
have marked the right sibling of the selected node with an
‘X’ for illustration purposes.

After creating an operation for this task, we add an input
node in the input stage. The new input will represent the
node whose right sibling we want to increment. Next, we
will model the subtree that contains the sibling using pattern
matching. When selecting the new input node, the toolbar
displays options such as Append Child, Append Parent and
others. We will first select Append Parent to model the parent
that the input node has. Then, we select the new parent node
and clickAppend Child tomodel the right sibling. The process
of creating the pattern and the final pattern is depicted in
Fig. 14.



Theo B. Weidmann, Sverrir Thorgeirsson, and Zhendong Su

Figure 12. We demonstrate part of our Minimum operation
from 6.2. The action is predicated and will only be executed
if the value of 𝑎 is less than the value of 𝑏.

Figure 13. The right sibling (marked with an ‘X’ for illustra-
tion purposes) of the selected node (left).

Finally, let us move directly to the action stage, select the
right sibling (called 𝑐 in Fig. 14) and click Increment Child in
the toolbar.

6.4 The Power of Recursion — Fibonacci
In this example, we show how Algot makes use of recursion
by computing the first 𝑛 Fibonacci numbers. Our approach
works inductively by assuming that we have a linked list of
already computed Fibonacci numbers (such as in Fig. 17).

With this assumption, we create a new operation Fibonacci.
We add an input that represents the tail of the list. Due to
our assumption, the tail of the list 𝑓𝑖 corresponds to the latest
Fibonacci number computed. To compute the next Fibonacci
number, we also need the predecessor 𝑓𝑖−1 of 𝑓𝑖 . Because 𝑓𝑖
is the tail of the list, we select 𝑓𝑖 , click Add Parent and obtain
a pattern matching node that corresponds to 𝑓𝑖−1.

Figure 14. The process of creating the pattern and the final
pattern for the operation from 6.3.

Figure 15.We first add a child for the next Fibonacci number
and then calculate its value.

We proceed to the action stage and proceed as follows to
calculate the next element of the list: First, select 𝑓𝑖 and click
Add Child to create a tail of the list representing 𝑓𝑖+1. Then,
select 𝑓𝑖−1, 𝑓𝑖 and 𝑓𝑖+1 and apply the Sum operation to store
the sum of 𝑓𝑖−1 and 𝑓𝑖 into 𝑓𝑖+1. All of this can be seen in Fig.
15.

It seems tempting to use recursion right away and apply
our new operation Fibonacci directly to 𝑓𝑖+1. Yet, of course,
this would lead to infinite recursion. Instead let us go back
to the input stage and add another input counter, which
indicates how many more Fibonacci numbers the operation
is supposed to calculate. If the value of counter is zero, the
operation does not do anything. To this end, we need to
query whether counter is zero in the query stage.

Then, we delete our previous demonstration and redemon-
strate the steps our operations should take in the action stage:

1. When the counter is not 0, add a child 𝑓𝑖+1 to 𝑓𝑖 .



Bridging the Syntax-Semantics Gap of Programming

Figure 16. The programmer uses the Fibonacci operation
recursively.

Figure 17. On the left is a linked list with the first two
Fibonacci numbers 0 and 1. On the right is the counter of
how many Fibonacci numbers to compute with value 10.

2. When the counter is not 0, store the sum of 𝑓𝑖−1 to 𝑓𝑖
into 𝑓𝑖+1.

3. When the counter is not 0, decrement counter.
4. Apply the Fibonacci operation to 𝑓𝑖+1 and counter.
Back in the state view, we can test our operation by setting

up a linked list with the first two Fibonacci numbers and a
counter of how many additional nodes to compute. This can
be seen in Fig. 17.

6.5 A Data Structure — Binary Search Tree
In this final example, we will implement an operation that
works on binary trees. We assume classical binary search
trees that store values only in non-leaf nodes. This means
that values in leaves do not have any significance. For ex-
ample, a node with no edges is therefore an empty binary
search tree, because the root is also the only leaf.

Let us now define an operation Insert that inserts a value
into a binary search tree. It will take two inputs: The root of
the binary search tree and a node new containing the value
to insert.
After we modeled the two inputs in the input stage, we

move on to query stage. The first thing that interests us is

Figure 18. If the root does not have outgoing edges it is a
leaf and we can copy the value of new into it. In the next
step, we will add two leaves to root.

Figure 19. We test the Insert operation in the state view.
10, 4, 7, 13, 19 have already been inserted.

whether the root of the tree provided is also a leaf itself.
To do so, we use the Has Outgoing? query. Clearly, a node
without any outgoing edges is a leaf.

Next, in the action stage we need to consider both cases.
The case where the root is a leaf is easy: We copy the value
from new to root (see Fig. 18) and add two children to root
to ensure the binary search tree invariant. The case where
the root is not a leaf is more involved. We need to access
both the left or right subtree of root, which requires pattern
matching. Because pattern matching is not available at this
stage, we will define a helper operation Insert into non-leaf.

For Insert into non-leaf we have the same inputs as before
and model the subtree using pattern matching in the input
stage. Then in the query stage, we ask whether the value of
new is less than the value of root. Finally, in the action stage,
we apply Insert to the left subtree and new if the value of
new is less than the value of root (see Fig. 4), and otherwise
apply Insert to the right subtree and new.

This concludes the implementation. An example of insert-
ing the values 10, 4, 7, 13, 19, 11 in this order can be seen in
Fig. 19.



Theo B. Weidmann, Sverrir Thorgeirsson, and Zhendong Su

Figure 20. A conceptual design of Algot integrated with
example-based live programming. In this case, the program-
mer can enter the demonstration view by first selecting an
example (in this case, two singleton nodes with the values 6
and 0) and then selecting New from the operation view to
define an operation with two inputs.

Let us note that the helper operation is not strictly neces-
sary. Since pattern nodes that cannot be matched against any
concrete node are represented by the empty set, we could
have also used pattern matching in the input stage of the In-
sert operation. We nonetheless think that the separation into
two operations makes this example easier to understand.

7 System Extensions
Algot is a new programming language whose appeal is not
only based on its current implementation but also the myriad
ways in which it can be expanded. In this section, we explain
two possible system extensions that are being worked on
but have not yet been implemented.

7.1 Example-Based Live Programming
While the current version of operation definitions in Algot
uses programming-by-demonstration, it still requires manip-
ulating nodes without seeing explicit numerical values. This
means that when functions involve a large number of math-
ematical operations, the programmer needs to keep track of
many changes without any immediate visual feedback. A
possible response to this is example-based live programming,
which is intended to help programmers by defining and using
live examples as a part of the program and thereby “explore
the actual behavior of their code during development” [25].
Algot is well-suited towards supporting example-based

live programming without any changes to its underlying
computational model. To define a new operation, program-
mers may select an example from the state view (see Fig. 20)
that matches the expected arity of the operation.
In the demonstration view, the abstract input nodes will

have a name and a concrete value that initially match the
values of the example input. As the user applies operations

Figure 21. When attempting to define a function that calcu-
lates triangle numbers, the programmer can view how the
values change during the course of the operation definition.

on the abstract nodes, their displayed values change. Fig. 21
shows how programmers can use the value changes of the
input nodes in Fig. 20 to help define the triangle numbers 𝑇𝑛 .
After inserting a child node to the first input node, copying
the value of its parent (6) and decrementing it by one, it
displays the value 5. After the next operation, the second
input node will subsequently display the sum of 6 and 5.
The programmer proceeds normally by defining a query for
the base case and by calling the Triangle Number operation
recursively on the nodes b and sum. Note that the underlying
model is unchanged, but by displaying example values, it is
easier for the programmer to keep track of value changes.
As without the extension, programmers can add queries

in the query stage and apply predicates in the action stage
independently of the example values. However, if the user
applies a predicate that contradicts the original input exam-
ple, the user is asked to provide additional suitable example
values that satisfy the predicates.

7.2 Typed Algot
While the modeling powers of Algot are technically unlim-
ited, it lacks modularity to build larger systems from funda-
mentals like strings and trees more conveniently. To effec-
tively achieve this, a type system, which will make Algot
more suitable for constructing complex applications, can be
introduced into Algot in two steps.
First, we introduce two primitive types for nodal values.

The numeric type has been presented as the default in this
paper. Numerical values are unbounded, and arithmetic is
exact, as proposed for languages such as ABC [24]. The
other type is a Unicode code-point, similar to the Haskell
Data.Char type [20], which we leverage to represent strings
and refer to as char type.

A string can now be conveniently represented as a linked
list of char nodes. The user interface will display all code



Bridging the Syntax-Semantics Gap of Programming

points using a conventional, suitable representation. An ex-
ample can be seen in Fig. 22.

Figure 22. A string with value “Hello” followed by an emoji

In the second step, we introduce composite types as a way
to group and designate one or more related connected com-
ponents to be of a specific type. This makes working with
them more convenient and better expresses the program-
mer’s intent. Users can now select composite types as a single
unit in the state view and during operation demonstration.

For example, we might introduce a composite type String
to convey the meaning of a linked list of chars. Moreover,
we could model a parcel as a combination of a String repre-
senting its destination and a numerical node containing its
weight. In Fig. 23, the user has selected a string and is about
to apply an operation Uppercase to the string. Furthermore,
an instance of the Parcel type can be seen.

Figure 23. The user has selected a value of composite type
String and is about to apply the Uppercase operation to the
string.

When modelling inputs in the input stage now, program-
mers specify the type of the input. An input can either be
a numeric node, a char node or a composite type. When
the user selects a composite type, input abstract nodes ap-
pear for the composite members, and users are free to use
pattern matching within the composite type instance. The
toolbar will take into account types and only display suitable
operations.

Typing Algot will also be crucial in building more complex
applications, allowing for abstraction and encapsulation. Dis-
playing all data structures in the graph layout we presented
so far would prove impractical for larger applications. We
can improve this by allowing users to define custom, more
specific representations for each type of component, simi-
lar to how Subtext [8] allows customizing the presentation
of the program. For example, it might be better to display
strings more compactly than the general linked-list represen-
tation the state view shows by default. Moreover, we believe
that enabling this kind of customization of the state view
can naturally lead to a new way of defining graphical user
interfaces as a native representation of state. Finally, we are
working on a library feature (see top left in Fig. 6) that will
allow effortless sharing of operations between projects and
with other people; types will be fundamental in ensuring
correct use of library code.

8 Discussion and Open Challenges
Our goal with this paper was to show how the programming
language Algot with its environment can bridge the syntax-
semantics gap of programming. While Algot is in its infancy,
we hope that our examples have convinced the reader that
this novel approach is a solution to the syntax barrier that
can significantly improve how we create programs.
As our language becomes more mature, we hope that it

will prove to be useful in educating computer science stu-
dents. Section 3.1 summarized some of Bret Victor’s design
principles for programming languages that support learning.
We have designed Algot with these principles in mind, and
more generally believe that it encourages what Victor calls
“powerful way of thinking,” in our case via an expressive and
intuitive demonstration system.
Algot has limitations that leave room for improvement.

First, Algot is currently better suited for program compo-
sition than program comprehension; in our work, we have
not presented a way to make existing programs easier to un-
derstand than those written using conventional textual lan-
guages. When the programmer wishes to trace user-defined
operations, they can view a textual representation (see the
left menu in Fig. 6) which resembles pseudo-code. To bet-
ter align code comprehension in Algot with our research
vision, we are exploring additional options, such as playing
a demonstration of the program back to the user, or to intro-
duce an abridged version of our input-query-action panels
in the Newly Defined Operations view (Fig. 6). Implementing
this and studying how this affects the usability of the system
remains an avenue for future research.

We believe that Algot has the potential to make computer
programming more approachable. Nonetheless, program-
ming remains an iterative and error-prone activity for the
foreseeable future. Therefore, Algot needs to enable the user
to edit operations with ease, both to expand or redefine their



Theo B. Weidmann, Sverrir Thorgeirsson, and Zhendong Su

purpose and correct mistakes. During the development pro-
cess, we have experimentedwith several ways to support this,
such as allowing the programmer to re-enter the demonstra-
tion view of a given operation and replace incorrect queries
or operations.
Our short-term vision is that the user can take the same

approach as when working in other languages; when the
user identifies a mistake in an existing program, they can rec-
tify the issue by selectively redemonstrating individual steps
or the entire operation. In the long-term, we aim to intro-
duce debugging tools that closely integrate with operation
demonstration. When a user, for example, walks through the
actions of an operation one-by-one using the debugger and
realizes an error, they can enter the demonstration view right
from the debugger to fix the problem. The demonstration
view could then take over values of the program execution
as examples, as we described in 7.1.
Some early feedback gathered by providing people unfa-

miliar with the system access to Algot seems promising and
might indicate that it has a relatively shallow learning curve.
We instructed volunteers to follow the tutorial described in
Section 5.2 and freely experiment with the system. Among
our testers was an 11-year-old with some prior exposure to
programming. After completing the tutorial, she continued
playing with Algot for several hours and implemented addi-
tional operations. She considered the system intuitive and
visually appealing, and therefore found it easy to use and
highly motivating. More rigorous, empirical studies of our
system, for example, a memory load reduction evaluation,
are pending; the results will help us better understand how
the system can be used for learning.

Additionally, Algot may turn out to be particularly useful
for users who are not proficient in using textual languages.
In some ways, Algot resembles no-code and low-code develop-
ment platforms that are intended for programming business
applications. Many such platforms are limited in their fo-
cus on stitching pre-defined components via drag-and-drop
operations. After implementing the features discussed in
the previous section and adding better support for input-
output, the expressiveness and hypothesized intuitiveness
of the Algot environment can make it appealing as an appli-
cation programming language for users with a less technical
background.

9 Conclusion
We introduced a new version of Algot, a new programming-
by-demonstration system that allows users to easily define
complex operations using recursion. Algot includes a state
view for easy testing and experimentation, intended to help
users get familiar with the mechanics of state changes. The
user interface for demonstrating new operations strongly

resembles the state view and always presents an approxi-
mation of the state resulting from performing the demon-
strated operations. Our aim with this is to make the process
of programming as similar as possible to manually modifying
the state, thereby eliminating cognitive overhead as often
introduced by conventional syntax. We believe that Algot
provides a new direction in researching more approachable
programming paradigms with applications both in industry
and education.

Acknowledgments
We thank Tracy Ewen, Karl-HeinzWeidmann, and the anony-
mous Onward! reviewers for valuable feedback on earlier
versions of this paper and Katrin Steigenberger for inputs
on the visual design of Algot.

References
[1] Accessed: 2022-07-10. Is Java "pass-by-reference" or "pass-by-value"?

Online: Stack Overflow. https://stackoverflow.com/questions/40480/
is-java-pass-by-reference-or-pass-by-value

[2] Shulamyt Ajami, Yonatan Woodbridge, and Dror G Feitelson. 2019.
Syntax, predicates, idiomsâĂŤwhat really affects code complexity?
Empirical Software Engineering 24, 1 (2019), 287–328. https://doi.org/
10.1007/s10664-018-9628-3

[3] Aude Billard, Sylvain Calinon, Ruediger Dillmann, and Stefan Schaal.
2008. Survey: Robot programming by demonstration. Handbook of
robotics 59 (2008). https://doi.org/10.1007/978-3-540-30301-5_60

[4] Nigel Bosch and Sidney DâĂŹMello. 2017. The affective experience
of novice computer programmers. International journal of artificial
intelligence in education 27, 1 (2017), 181–206. https://doi.org/10.1007/
s40593-015-0069-5

[5] Manuel MT Chakravarty and Gabriele Keller. 2004. The risks and
benefits of teaching purely functional programming in first year.
Journal of Functional Programming 14, 1 (2004), 113–123. https:
//doi.org/10.1017/S0956796803004805

[6] John J Chilenski, Thomas C Timberlake, and John M Masalskis. 2002.
Issues Concerning the Structural Coverage of Object-Oriented Software.
Technical Report. Office of Aviation Research, Washington DC, USA.

[7] Paul Denny, Andrew Luxton-Reilly, Ewan Tempero, and Jacob Hen-
drickx. 2011. Understanding the syntax barrier for novices. In Proceed-
ings of the 16th annual joint conference on Innovation and technology in
computer science education. 208–212. https://doi.org/10.1145/1999747.
1999807

[8] Jonathan Edwards. 2005. Subtext: uncovering the simplicity of pro-
gramming. In Proceedings of the 20th annual ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications.
505–518. https://doi.org/10.1145/1094811.1094851

[9] Nicolas Guibert, Patrick Girard, and Laurent Guittet. 2004. Example-
based programming: a pertinent visual approach for learning to pro-
gram. In Proceedings of the working conference on Advanced visual
interfaces. 358–361. https://doi.org/10.1145/989863.989924

[10] Daniel Conrad Halbert. 1984. Programming by example. Ph. D. Disser-
tation. University of California, Berkeley.

[11] Peter Henderson. 1986. Functional programming, formal specification,
and rapid prototyping. IEEE Transactions on Software Engineering 2
(1986), 241–250. https://doi.org/10.1109/TSE.1986.6312939

[12] Geert Heyman, Rafael Huysegems, Pascal Justen, and Tom Van Cut-
sem. 2021. Natural language-guided programming. In Proceedings
of the 2021 ACM SIGPLAN International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software. 39–55.
https://doi.org/10.1145/3486607.3486749

https://stackoverflow.com/questions/40480/is-java-pass-by-reference-or-pass-by-value
https://stackoverflow.com/questions/40480/is-java-pass-by-reference-or-pass-by-value
https://doi.org/10.1007/s10664-018-9628-3
https://doi.org/10.1007/s10664-018-9628-3
https://doi.org/10.1007/978-3-540-30301-5_60
https://doi.org/10.1007/s40593-015-0069-5
https://doi.org/10.1007/s40593-015-0069-5
https://doi.org/10.1017/S0956796803004805
https://doi.org/10.1017/S0956796803004805
https://doi.org/10.1145/1999747.1999807
https://doi.org/10.1145/1999747.1999807
https://doi.org/10.1145/1094811.1094851
https://doi.org/10.1145/989863.989924
https://doi.org/10.1109/TSE.1986.6312939
https://doi.org/10.1145/3486607.3486749


Bridging the Syntax-Semantics Gap of Programming

[13] Stef Joosten, Klaas Van Den Berg, and Gerrit Van Der Hoeven. 1993.
Teaching functional programming to first-year students. Journal of
Functional Programming 3, 1 (1993), 49–65. https://doi.org/10.1017/
S0956796800000599

[14] Abdullah Khanfor and Ye Yang. 2017. An overview of practical Im-
pacts of Functional Programming. In 2017 24th Asia-Pacific Software
Engineering Conference Workshops (APSECW). IEEE, 50–54. https:
//doi.org/10.1109/APSECW.2017.27

[15] Maria Kordaki, Micael Miatidis, and George Kapsampelis. 2008. A
computer environment for beginnersâĂŹ learning of sorting algo-
rithms: Design and pilot evaluation. Computers & Education 51, 2
(2008), 708–723. https://doi.org/10.1016/j.compedu.2007.07.006

[16] Shriram Krishnamurthi and Kathi Fisler. 2019. 13 Programming
Paradigms and Beyond. The Cambridge handbook of computing educa-
tion research (2019), 377. https://doi.org/10.1017/9781108654555

[17] Henry Lieberman. 2000. Programming by example (introduction).
Commun. ACM 43, 3 (2000), 72–74. https://doi.org/10.1145/330534.
330543

[18] Raymond Lister. 2011. Computing education research programming,
syntax and cognitive load. ACM Inroads 2, 2 (2011), 21–22. https:
//doi.org/10.1145/1963533.1963539

[19] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and
Evelyn Eastmond. 2010. The Scratch programming language and
environment. ACM Transactions on Computing Education (TOCE) 10,
4 (2010), 1–15. https://doi.org/10.1145/1868358.1868363

[20] Simon Marlow et al. 2010. Haskell 2010 language report. (2010).
[21] LeonidMikhajlov and Emil Sekerinski. 1998. A study of the fragile base

class problem. In European Conference on Object-Oriented Programming.
Springer, 355–382. https://doi.org/10.1007/BFb0054099

[22] Brad A Myers. 1986. Visual programming, programming by example,
and program visualization: a taxonomy. ACM SIGCHI Bulletin 17, 4
(1986), 59–66. https://doi.org/10.1145/22339.22349

[23] James Noble, Jan Vitek, Doug Lea, and Paulo Sergio Almeida. 1999.
Aliasing in object oriented systems. In European Conference on Object-
Oriented Programming. Springer, 136–163. https://doi.org/10.1007/3-
540-46589-8_8

[24] Steven Pemberton. 1991. A short introduction to the ABC language.
ACM SIGPLAN Notices 26, 2 (1991), 11–16. https://doi.org/10.1145/
122179.122180

[25] David Rauch, Patrick Rein, Stefan Ramson, Jens Lincke, and Robert
Hirschfeld. 2019. Babylonian-style Programming: Design and Imple-
mentation of an Integration of Live Examples into General-purpose
Source Code. The Art, Science, and Engineering of Programming, 2019,
Vol. 3, Issue 3 (2019), Article 9. https://doi.org/10.22152/programming-

journal.org/2019/3/9
[26] Yonghee Shin and Laurie Williams. 2008. An empirical model to

predict security vulnerabilities using code complexity metrics. In
Proceedings of the Second ACM-IEEE international symposium on
Empirical software engineering and measurement. 315–317. https:
//doi.org/10.1145/1414004.1414065

[27] Mel Siegel. 2003. The sense-think-act paradigm revisited. In 1st In-
ternational Workshop on Robotic Sensing, 2003. ROSE’03. IEEE, 5–pp.
https://doi.org/10.1109/ROSE.2003.1218700

[28] David Canfield Smith, Allen Cypher, and Larry Tesler. 2000. Program-
ming by example: novice programming comes of age. Commun. ACM
43, 3 (2000), 75–81. https://doi.org/10.1016/B978-155860688-3/50002-6

[29] Andreas Stefik and Susanna Siebert. 2013. An empirical investigation
into programming language syntax. ACM Transactions on Computing
Education (TOCE) 13, 4 (2013), 1–40. https://doi.org/10.1145/2534973

[30] Sverrir Thorgeirsson and Zhendong Su. 2021. Algot: An Educational
Programming Language with Human-Intuitive Visual Syntax. In 2021
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, 1–5. https://doi.org/10.1109/VL/HCC51201.2021.
9576166

[31] Bret Victor. 2012. Inventing on Principle. https://www.youtube.com/
watch?v=EGqwXt90ZqA.

[32] Bret Victor. 2012. Learnable Programming: designing a program-
ming system for understanding programs. Published online: http:
//worrydream.com/LearnableProgramming.

[33] G Vlachogiannis, V Kekatos, M Miatides, M Kordaki, and E Houstis.
2001. A multi-representational environment for the learning of Bubble
sort. In proccedings of Panhellenic Conference with International Partic-
ipation âĂŸNew Technologies in Education and in Distance Learning’.
481–495.

[34] David Weintrop. 2019. Block-based programming in computer science
education. Commun. ACM 62, 8 (2019), 22–25. https://doi.org/10.1145/
3341221

[35] David Weintrop and Uri Wilensky. 2017. Comparing block-based and
text-based programming in high school computer science classrooms.
ACM Transactions on Computing Education (TOCE) 18, 1 (2017), 1–25.
https://doi.org/10.1145/3089799

[36] Reilly Wood. 2019. The hunt for shorter edit/compile/debug cy-
cles. Published online: https://www.reillywood.com/blog/inventing-
on-principle.

[37] Xin Xia, Lingfeng Bao, David Lo, Pavneet Singh Kochhar, Ahmed E
Hassan, and Zhenchang Xing. 2017. What do developers search for
on the web? Empirical Software Engineering 22, 6 (2017), 3149–3185.
https://doi.org/10.1007/s10664-017-9514-4

https://doi.org/10.1017/S0956796800000599
https://doi.org/10.1017/S0956796800000599
https://doi.org/10.1109/APSECW.2017.27
https://doi.org/10.1109/APSECW.2017.27
https://doi.org/10.1016/j.compedu.2007.07.006
https://doi.org/10.1017/9781108654555
https://doi.org/10.1145/330534.330543
https://doi.org/10.1145/330534.330543
https://doi.org/10.1145/1963533.1963539
https://doi.org/10.1145/1963533.1963539
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1007/BFb0054099
https://doi.org/10.1145/22339.22349
https://doi.org/10.1007/3-540-46589-8_8
https://doi.org/10.1007/3-540-46589-8_8
https://doi.org/10.1145/122179.122180
https://doi.org/10.1145/122179.122180
https://doi.org/10.22152/programming-journal.org/2019/3/9
https://doi.org/10.22152/programming-journal.org/2019/3/9
https://doi.org/10.1145/1414004.1414065
https://doi.org/10.1145/1414004.1414065
https://doi.org/10.1109/ROSE.2003.1218700
https://doi.org/10.1016/B978-155860688-3/50002-6
https://doi.org/10.1145/2534973
https://doi.org/10.1109/VL/HCC51201.2021.9576166
https://doi.org/10.1109/VL/HCC51201.2021.9576166
https://www.youtube.com/watch?v=EGqwXt90ZqA
https://www.youtube.com/watch?v=EGqwXt90ZqA
http://worrydream.com/LearnableProgramming
http://worrydream.com/LearnableProgramming
https://doi.org/10.1145/3341221
https://doi.org/10.1145/3341221
https://doi.org/10.1145/3089799
https://www.reillywood.com/blog/inventing-on-principle
https://www.reillywood.com/blog/inventing-on-principle
https://doi.org/10.1007/s10664-017-9514-4

	Abstract
	1 Introduction
	2 Motivating Examples
	3 Background
	3.1 Algot
	3.2 Learnable Programming
	3.3 Block-Based Programming
	3.4 Programming-by-Demonstration

	4 Approach
	4.1 Key Insights
	4.2 Implementation

	5 System Overview
	5.1 User-Defined Operations
	5.2 Tutorial

	6 Examples
	6.1 Simple Example — Add Child with +1
	6.2 A Mathematical Function — The Minimum
	6.3 Pattern Matching — Incrementing the Right Sibling
	6.4 The Power of Recursion — Fibonacci
	6.5 A Data Structure — Binary Search Tree

	7 System Extensions
	7.1 Example-Based Live Programming
	7.2 Typed Algot

	8 Discussion and Open Challenges
	9 Conclusion
	Acknowledgments
	References

