
Script-driven Packet Marking for Quality of Service
Support in Legacy Applications

Timothy Roscoe and Gene Bowen
Sprint Advanced Technology Labs

1 Adrian Court
Burlingame, CA 94010, USA

ftroscoe,higeneg@sprintlabs.com

1 ABSTRACT

This paper describes the implementation of a system to de-
liver Quality of Service for IP flows using a DiffServ-like
packet marking mechanism. The system uses an unmodified
commodity operating system (Windows NT), and a policy
daemon is employed to implement arbitrary policies for QoS
via a scripting mechanism. By interposing an agent in the
protocol stack used by the application runtime system, off-
the-shelf applications can have different packet forwarding
policies assigned to different flows they originate, without
any need to recompile either the operating system or the ap-
plication. The principle of the system can be naturally ex-
tended to implement more widely coordinated policy-based
networking, and network reservations using protocols such
as RSVP, without any need to recompile applications.

2 INTRODUCTION AND MOTIVATION

This paper describes the implementation of a technique to
allow existing applications to take advantage of Quality
of Service (QoS) facilities provided by an IP-based net-
work (specifically, the facilities described by the DiffServ
[BBC+98] framework) and thereby improve their perfor-
mance without modifying the application code, or the un-
derlying operating system (in this case, Windows NT).

This paper does not provide quantitative measurements of
the performance of the techniques it describes. Rather, the
point of this paper is to illustrate the techniques themselves,
argue for their usefulness, and describe a demonstration sce-
nario which shows their applicability. We believe the ability
to enhance existing applications to take advantage of network
facilities to be important technically: even carefully written
applications targeted at a best-effort network like the Internet
perform poorly over long distances, particularly during peri-
ods of network congestion. Furthermore, such applications
are frequently unable to take advantage of any improved lev-
els of service that the network might be able to deliver, since
they are incapable of indicating their needs to the network.

This is important from a business perspective as well.
It has long been recognised that some classes of applica-
tions (particularly distributed multimedia applications) re-
quire QoS guarantees of some kind from networks and end-
systems in order to deliver a compelling service to users.
Indeed, this has inspired a large amount of academic re-
search over the years into QoS support in operating systems
(for example, [LMB+96, MP96]), QoS APIs and program-
ming models (for example, [BSY+97]), so-called QoS Ar-
chitectures (see [CCG+93, Nic90] and others), as well as the
wealth of QoS work in the field of networking proper. De-
spite the sustained quality of this work, actual deployment
of QoS-aware applications remains exceedingly rare, even in
networks which have for some time explicitly provided QoS
mechanisms (such as some forms of ATM). Commercial In-
ternet applications which are capable of explicitly requesting
resources are unheard of: one of the additional outcome of
our work is a comprehensive view of how applications on
Windows NT are invoking the operating system’s network-
ing facilities, and we have yet to encounteranyapplications
which make use of the Microsoft Generic Quality of Service
(GQOS) facility in Winsock 2.2.

The reason usually cited for this lack of deployment is a
chicken-and-egg problem: network providers don’t have any
customers requesting different levels of service from the net-
work, since those customers have no applications which can
use such capabilities1. Consequently, network equipment
vendors see no demand for such facilties in network elements
(and the need for end-to-end deployment of these facilities,
across potentially several different vendors and networks,
further discourages implementation. Finally, software devel-
opers see to point in trying to make use of facilities which
are not implemented in the network, and so adopt two, com-
plementary tactics: applications do the best they can with a
best-effort network, through techniques such as large buffers

1A debatable exception in this case might be the provision of IP Virtual
Private Networks (VPNs), but these are not applications in the sense of the
word as used in this paper.

1

to absorb jitter, layered coding, etc., and applications which
might really take advantage of potential QoS features in the
Internet (telemedicine, for example) simply don’t get written
in the first place.

The work described here was motivated by a desire to
break this circle. The idea is that if existing applications can
be shown to benefit from network functionality which deliv-
ers different levels of service,without the need to change or
redeploy these existing applications in any way, there will be
an incentive to implement QoS mechanisms in the network
that application designers and software engineers can subse-
quently explicitly take advantage of.

3 DESIGN

The design of the system presented here has a number of
goals:

No modification of programs: There should be no need to
modify, or even recompile, any applications. Without
this goal, we are back in the cycle described above pre-
venting adoption: already deployed applications must
be able to benefit from our work.

No modification of the operating system:A similar argu-
ment applies to changes to operating system code;
use of non-standard operating systems (even with un-
changed APIs) is too much of a disincentive to adopt
QoS-enabled network facilities.

Encapsulation of policy: The policies which determine
levels of network service granted to an application must
be encapsulated in a central point, at least on a per-
machine basis. The policies cannot live in the appli-
cations, since our assumption is that applications can
know nothing of network QoS. By centralising policy
we can maintain a clear picture of how a given machine
is trading off different applications’ requirements.

Policy expressiveness:It should be possible to express
complex policies regarding how levels of service should
be assigned, policies that include attention to local ma-
chine state, different human users, different remote end-
points for communication, etc. Policies based on simple
lookup, for example in a directory service, are deemed
to be insufficiently expressive.

The goal of modifying neither applications nor operating
system limits us to installing additional software on the ma-
chine (and, ideally, making it possible to remove all trace of
this additional software if need be). This led us to deploy a
mechanism which interposes itself between the application
and the operating system, intercepting network operations
and inserting new ones.

Encapsulation of policy results in a design with a central
process making all policy decisions. This centralisation al-

lows us to coordinate per-machine state when making policy
decisions on a per-application basis.

The requirement for expressiveness led us to employ a
scripting language (SafeTcl in our case) to express policies.
A scripting language permits an open-ended set of policies
which can take into account al kinds of application attributes,
as well as creating and maintaining local state to be used in
making decisions.

3.1 The DiffServ framework

This work was carried out loosely in the framework of a
DiffServ-capable network. DiffServ [BBC+98] is a pro-
posed IETF model for offering differentiated services in the
Internet. IP Packets are marked with a byte value known as
the DS field [BBBN98] (formerly the Type of Service octet
[Alm92]), which specifies how the packet should be treated
on a per-hop basis by routers. Various Per-Hop Behaviours
(PHBs) have been proposed for association with DS Field
values.

It should be pointed out that DiffServ is primarily a facil-
ity to be used in the core of the network: traffic entering a
provider’s network is policed at the edge on a per-flow ba-
sis to ensure that it conforms to a service-level agreement
(SLA) between the network provider and the source of the
traffic (usually another network). Thereafter, the idea is that
per-flow state in the network core’s routers and switches is
not required: they simply examine the DS field to determine
per-hop behaviour, and the admission control procedure ap-
plied to the SLAs, together with the edge policing, should
ensure that guarantees are met.

Traffic can be marked in the end-user’s network either at
an access router (where it leaves the user’s network and en-
ters the wider Internet), or in the end systems themselves.
Our work addresses the latter case, but can be applied where
the gateway router implements the marking policy itself as
well.

4 IMPLEMENTATION

Our design principles lead to a system with three principal
components:

1. A per-application protocol agent which is installed in
the network protocol stack for each application, exe-
cutes in the same address space as the application. The
agent intercepts networking calls by the application, and
can set a particular packet mark for each file descriptor
opened by the application.

2. A per-machine QoS policy daemon which holds the pol-
icy information as to how packets from different net-
work connections on the machine should be marked,
and relays the implications of this policy to the proto-
col agents.

2

NT Kernel

Policy Daemon

Script

LRPC

Winsock 2.2

Protocol
Agent

Win32
Application

(e.g NetMeeting)

Figure 1: Components of the system

3. Networking elements capable of interpreting the packet
markings appropriately. In practice these are IP switch-
es and routers implementing diffserv-like mechanisms.

These relationship between these components is shown in
figure 1. We describe each of them below.

4.1 Mechanism: The Protocol Agent

The basic mechanism we use to add some quality of service
support for existing applications is to interpose a piece of
software in each running application which intercepts calls
made by the application to the networking facilities provided
by the underlying operating system.

In Microsoft Windows NT2, most applications are written
using the “Win32 personality”, which can be thought of as
a large runtime subsystem between the kernel proper (as de-
fined by the system call interface) and the application itself.
How Win32 is actually implemented is beyond the scope of
this paper; what we are interested in here is WinSock, the
Windows networking API.

WinSock is structured as a set of layers, called “service
providers” (see figure 2). Each service provider implements
a standard interface, the “Winsock Service Provider Inter-
face” or WSPI, which is invoked by the layer above it. The
service provider in turn invokes operations on the SPI of the
provider below it. At the top of the stack is the Winsock API
proper, which is invoked by the application itself. At the bot-
tom is the interface to the kernel’s networking functionality.

2We use Windows NT version 4.0 (Workstation or Client versions), with
Service Pack 4 installed. Because what we do is entirely within WinSock,
our system should also work with Windows 98, though we have not tried
this

TCP

UDP

Raw IP

NetBIOS SeqPacket

NetBIOS Datagram

WSPI Interface

WSPI Interface

WSPI Interface

WSPI Interface

Winsock 2

Winsock API

Win32 Application

NT Kernel

Figure 2: Layering of Winsock Service Providers

Note that the layering does not necessarily imply dependence
of one service provider upon a lower one. Since all service
providers execute in the same protection domain as the appli-
cation, and most of the TCP/IP functionality is actually in the
kernel for protection reasons, the service providers for pro-
tocols like TCP don’t really contain the protocol implemen-
tation but instead are thin layers above the kernel interface.

New service providers, in the form of Dynamic Link Li-
braries (DLLs) can be installed between any two existing lay-
ers in the Winsock stack by entering their path names in the
Windows Registry [HOB99]. This has the effect of caus-
ing all programs subsequently launched to include the new
provider in the per-process protocol stack.

This gives us a way implement an agent to intercept net-
working calls made by off-the-shelf applications, and insert
our own behaviour in the chain—the protocol agent is simply
a new service provider which contacts the policy daemon (if
present) whenever the application makes a Winsock call we
are interested in, and otherwise passes all calls and returns
straight through3.

The full set of Winsock calls intercepted by the protocol a-
gent is shown in figure 3, divided into those calls that actually
refer to a socket descriptor, and those calls which deal with
the initialisation and destruction of the library (Winsock) s-
tate itself when the application starts up and exits respective-

3In practice, the need to support asynchronous I/O considerably com-
plicates the implementation of even an “null” service provider, since state
must be maintained at all layers. However, our agent only adds a few hun-
dred lines of code to the simplest, minimal service provider.

3

Call Description
Socket Allocation of a socket
Close Closing a socket
Connect Connect a socket
JoinLeaf Connect for a multicast group
Listen Wait for connections on a socket
RecvDisconnect Receive disconnect
SendDisconnect Send disconnect
Shutdown Shutting down a socket
Startup Library initialises
Cleanup Library finally shutting down

Figure 3: Winsock 2.2 calls intercepted by the agent

ly.

4.1.1 Initialisation and Shutdown of the Agent

As a Winsock service provider, the agent’sStartup function
is called when an application loads. Aside from the usual ser-
vice provider initialisation functions, the method attempts to
establish a local RPC (LRPC) binding to the policy daemon
running on the machine. Assuming that a connection to the
policy daemon is successfully established, the agent sends a
short message to the daemon indicating its presence.

As figure 3 indicates, we also send notification when the
Cleanupmethod on the service provider is called. In theory,
this occurs when the library is unloaded, and gives the policy
agent some information which can be used to update its state
as to which applications are still executing. In practice, we
find that most applications do not shut the Winsock system
down gracefully at all, and so this method is almost never
invoked. Under normal circumstances this doesn’t cause se-
rious problems; Winsock is only a set of shared libraries,
after all. Machine resources used by any active network con-
nections (sockets, for instance) are kernel resources and are
cleaned by NT when the process exits. However, for our pur-
poses it prevents the policy daemon from reliably knowing
when an application ceases using the network, which is un-
fortunate.

4.1.2 Communication Transport

The choice of LRPC as a communications transport between
agents and the policy daemon was motivated by a number of
factors. Firstly, we naturally wanted to avoid any network
communications that might themselves use the Winsock s-
tack. In practice this is not as serious a restriction as it might
be, since there are Win32 network communication facilities
that bypass Winsock and simply invoke the NT kernel ser-
vices, However, keeping everything explicitly local keeps
things simple, and should allow us to run the same code on
Windows 98.

Secondly, we wanted a fairly efficient mechanism. Since

[
 uuid(97cd437c-9b57-11d2-b8c7-00c04f79ebc1),
 version(1.0),
 endpoint("ncalrpc:[sprint_pold]")
]

interface PolicyDaemon
{

 [string] char *Event([in, string] char *event);
}

Figure 4: Microsoft Interface Definition Language (MIDL)
interface to the policy daemon

an invocation on the policy daemon will be made for every
Winsock call in table 3 by every Win32 application on the
machine, imposing a high overhead is to be avoided. How-
ever, this is also less serious than it might sound: we don’t
intercept theRead andWrite calls that are likely to be most
heavily used, and so placing our agent in the IP equivalent of
the network control plane is much less of an overhead than
being on the data path. In practice we have not experienced
any perceptible degredation in performance of applications.

Robustness is a important goal of the protocol agent, e-
specially since it is introduced into every instance of the
Winsock stack running on the machine. For this reason, it’s
important that the agent not rely on the presence of an execut-
ing policy daemon on the machine for correct operation; if it
did, the failure of our daemon would at best cut the machine
off from the network, and at worst prevent any Win32 appli-
cations from functioning. Our implementation catches any
exceptions from the bind process and initial message trans-
mission, if there is a failure of any kind indicating that the
policy daemon cannot be contacted, the agent sets a flag ac-
cordingly and gives up—all subsequent Winsock operations
continue as before.

All communication between between the agents and pol-
icy daemon consists of an exchange of textual strings; the
RPC interface to the daemon is therefore extremely simple
(see figure 4).

We might have chosen to define the signature of every
operation more rigorously using the type system provided
by Microsoft’s IDL, but we made a conscious decision not
to do this. Instead, the arguments are marshaled into a
list of tokens according to the lexical rules of the scripting
language used in the policy daemon, in our case Safe Tcl
[OLW97, Wel97]. The code to correctly format and escape
our arguments is quite simple and coded into the agent: we
don’t employ the Tcl library functions themselves so as to
avoid hauling the Tcl library in its entirety into the applica-
tion, which would result in reduced robustness and the possi-

4

bility of symbol conflicts with applications using a different
version of the library, or multithreaded programs potentially
accessing global variables in the library at the same time as
us. It’s important in this situation to know where we stand
with the agent code.

Since the agent and the protocol daemon are very close-
ly coupled, and invocations of this kind only occur between
them, the advantage of specifying the interface more fully in
MIDL would be minimal. Furthermore, the code we would
need to write to extract the arguments to Winsock calls and
place them in data structures mandated by the MIDL lan-
guage mapping is of comparable complexity with the string
marshaling code we use anyway. Finally, having the argu-
ments in Tcl form greatly simplifies the daemon implemen-
tation, described below.

4.1.3 Runtime Behaviour

For each of the runtime calls in figure 3, the protocol agents
invoke the policy daemon and interpret the result that is sent
back. The string passed with the invocation, considered as
a sequence of Tcl tokens, always starts with four standard
elements:

1. The type of the message. In almost all cases, this is the
name of the Service Provider Interface method which
has been invoked. The exception is one additional mes-
sage type for logging debugging information from the
agent DLL to the policy daemon.

2. The process ID of the NT process within which the ap-
plication is executing.

3. The NT username under which the application is exe-
cuting

4. The command line used to invoke the application. This
is present even when the application is launched from
the Windows graphical shell, and so allows us to distin-
guish different application classes easily, as well as see
the arguments they were invoked with.

Following these elements are typically the arguments to
the SPI method. These include such useful information as
addresses to connect to and socket identifiers, as well as QoS
requests to the operating system specified using GQOS, Mi-
crosoft’s QoS extensions to the networking API. Unfortu-
nately, we have yet to see an application which supplies the
additional GQOS parameters to Winsock, so such values are
generally null.

The SPI method arguments, together with the initial in-
formation about the application currently running, provide
enough data to the policy daemon for it to make decisions as
to how packets should be marked for each connection. The
string returned from the daemon is used to convey this infor-
mation. A present, the string is either empty or contains a

string of the form “TOS textitn”, wheren is the value for the
Type-of-Service octet ([Alm92], now known as the DiffServ
field, [BBBN98]) in the IP header. This can be set using the
appropriatesetsockopt call to the kernel.

Extensions to this trivial return syntax are possible, most
compelling is the addition or modification of GQOS specifi-
cations on the socket. This would allow us to assign rather
more specific levels of service to individual applications than
simple DiffServ allows, for example using RSVP [BBH+97]
“behind the back” of the application to reserve network re-
sources for audio or video streams, for instance.

Alternatively, a different response could prevent the
method from completing successfully and instead make it re-
turn an error, allowing the system to perform some measure
of admission control and reject network operations if they
would result in serious degradation of service for multimedi-
a applications already running on the machine.

Two calls which we do not attempt to intercept in the pro-
tocol agent areread andwrite. We don’t see much advan-
tage to be gained from this, other than the gathering of statis-
tics on application behaviour, especially since traffic shaping
facilities are now available the Windows NT kernel as well
as in Linux and other Unix-like systems. Furthermore, the
cost of a local RPC call for each network read or write is
almost certainly too much, particularly for a time-senstive
multimedia application that cannot afford that many contex-
t switches. Finally, this would probably result in the policy
daemon itself becoming a bottleneck.

4.2 Policy: The QoS Policy Daemon

The function of the QoS Policy Daemon is to assign different
packet markings to network connections originating at the
machine, based on some policy. In a sense, the daemon is
where the policy is encapsulated as far as the applications
(each of which now includes a protocol agent) are concerned.

The implementation of the daemon is very simple - essen-
tially, invocations from the protocol agents executing inside
applications arrive as well-formed Tcl commands (since the
first token in the string is the message type), and are simple
executed by a SafeTcl interpreter.

4.2.1 Quality of Service scripts by example

At startup, the interpreter is loaded with a script which en-
codes the policy set for the machine. Figure 5 shows a simple
script, which on our NT machines assigns a higher impor-
tance to network connections initiated by an instance of Net-
Meeting running on the machine. The script consists of only
one Tcl procedure,Socket. This procedure is invoked when
any Winsock client creates a socket,after the call to the low-
er layer service providers has completed. This explains the
additional “fd” argument—it is the socket descriptor which
has been allocated.

5

#
Give NetMeeting better network service
#

Read the helper functions
source SprintLib.tcl

String to recognize NetMeeting on this machine
set NetMeetingStr
 "\"C:\\Program Files\\NetMeetingNT\\conf.exe\" "

Intercept Socket calls and set packet mark
proc Socket { pid uid cmd family type protocol fd } {

 global NetMeetingStr AF SockType

 if {[string compare $cmd $NetMeetingStr] == 0} {
 if { $family == $AF(INET)
 && $type == $SockType(DGRAM) } {
 # High priority to NetMeeting video/audio
 return "TOS 48"
 } else {
 # Give some help to TCP (for signalling)
 return "TOS 16"
 }
 }
}

Figure 5: Example script to deliver better service to Net-
Meeting streams (slightly reformatted for clarity)

The script makes use of a couple of arrays defined in the
file of helper functions “SprintLib.tcl” which contain
mnemonic names for socket type names and address fami-
lies, making it easier to read the script as well as improving
portability to systems with different numeric assignments for
these values (all such values are passed numerically across
the LRPC connection).

If the call in question is from an application whose com-
mand line matches NetMeetings, then we assign a Type-of-
Service value to 48 to Internet datagram connections (i.e.
UDP), which are what NetMeeting uses to transmit video
and audio. Alternatively, NetMeeting’s TCP connections are
assigned a slightly lower precedence value (16) to ensure that
signalling messages between NetMeeting clients get through
as well during periods of very high network congestion.

Figure 6 shows a different policy, which says that a non-
default level of service should be given to TCP connections
whose destination is a particular machine, one whose IP ad-
dress is 192.168.10.10. We implement this by intercepting
theConnectmethod, rather thanSocket in the previous ex-
ample, since it is withConnect that we discover where the
connection is headed.

While this example is of a host, it should be clear how
per-subnet policies can be implemented by means of, for in-
stance, Tcl’s regular expression facilties.

#
Give different service to a particular destination
#

proc Connect { pid uid cmd fd address sqos gqos } {
 global AF

 # Parse the generic address argument
 set family [lindex $address 0]
 if { $family == $AF(INET) } {

 # Parse an IPv4 destination address
 set inaddr [lindex $address 1]

 if { $inaddr == "199.2.53.102" } {
 return "TOS 48"
 }
 }
}

Figure 6: Example script to deliver better service a particular
destination host

4.3 Network Functionality

In order for the marking of IP packets to have any mean-
ing, of course, it is essential that the network elements which
queue and forward packets can detect and interpret the pack-
et markings in a useful way, and apply different queueing
and/or forwarding behaviour to them. Such an idea is not
new, indeed it is the basis of the definition of the IP header
Type Of Service octet, which dates back to the early defini-
tions of the Internet Protocol. However, not all types routers
in service in the commercial Internet are capable of support-
ing the ToS byte, and interpretations often vary within the
definition. The most common implementation in widespread
commercial deployment is Cisco’s Committed Access Rate
facility.

Just as important, however, to the effective deploymen-
t of differentiated forwarding policies in the network is the
need for implementations to be efficient, in particular to run
at forwarding rates as high as when the facility is not en-
abled. Most current generation routers which offer some
kind of type-of-service or diffserv functionality do not im-
plement it as part of the forwarding fast path. Instead, packet
forwarding when type-of-service detection is enabled is car-
ried out in software by a processor on the router, bringing
the capacity of the router down to levels similar to the BSD
or Linux-based routers used for much networking research.
Such routers offer considerable flexibility in protocol pro-
cessing, but do so at the cost of delivering performance un-
suitable for a large commercial network. Consequently, there
is an overwhelming disincentive for network operators to en-
able the functionality in the network equipment.

6

Fortunately, most next-generation edge routers are capa-
ble of making forwarding decisions on the fast path (in hard-
ware) based on much more of the packet header, including
the type-of-service octet, and also of queueing packets des-
tined for the same output port differently. In our demon-
stration we used a PacketEngines PowerRail 5200 Enter-
prise Routing Switch [Pac98], which will route IP packets at
line rates (100Mbit/second Fast Ethernet is this case), queue
packets on output ports differently according to the priority
field of the Type-Of-Service octet. Such functionality is now
relatively common in new IP routers. The PacketEngines
switch does not provide true DiffServ per-hop behaviours
(PHBs), currently being defined by the IETF DiffServ work-
ing group, but such facilities are now appearing.

5 DEMONSTRATION

We have built a demonstration setup to illustrate the opera-
tion of the system. The configuration is shown in figure 7.

At the centre of the demonstration is a PacketEngines
switch configured to queue packets on its output ports differ-
ently according to the precedence field of the type-of-service
octet in the IP header. The switch will direct packets to one
of eight output queues per port, based on the 3-bit field, and
will then service those output queues using a Weighted Fair
Queueing (WFQ) algorithm with the highest weight corre-
sponding to the highest ToS precedence.

For our purposes the only important details here are that
packets are given different service levels according to the
ToS octet—any router which can forward in this way would
work for us here. However, use of the WFQ algorithm does
have significant advantages over a simple priority scheme:
even under very high network load and congestion, all class-
es of traffic will receive some service under WFQ, something
which is not the case for a priority scheme.

Two PC running Windows NT 4.0 are connected to the
switch/router by 100 Mb/s Fast Ethernet links. The first has
the QoS agent installed on it, and runs an unmodified version
of NetMeeting which can transmit video streams (and audio
streams) across the network to a receiving machine. We con-
figure the policy daemon on this machine with the example
script shown in figure 5, which gives assigns a higher impor-
tance to NetMeeting control connections (using TCP), and
the highest importance to NetMeeting video and audio con-
nections (which use UDP).

The second PC acts as a cross-traffic generator. It runs a
simple program which can send back-to-back UDP packets
to any destination IP address, and is capable of completely
saturating a 100BaseT link. The program sends two seconds
of load, then sleeps for two seconds sending no traffic, before
starting again.

The outgoing link from the switch/router is an Ethernet
link configured to run a 10Mb/s, and is connected to a router

PacketEngines
IP Switch

Cisco 7500
IP Router

NetMeeting
Receiver

NetMeeting
Transmitter

Cross Traffic
Load

Generator

 [SInk for load traffic]

100Mb/s

10Mb/s

100Mb/s
100Mb/s

Figure 7: Demonstration network configuration

(in this case a Cisco 7500). The router in turn has two fur-
ther interfaces configured. Attached to one of these is a third
PC which also runs NetMeeting, to receive streams from the
first PC. The other router interface has no attached hosts, but
acts as a sink interface for packets from the load generator
machine.

The configuration as a whole simulates the effect of send-
ing video traffic (from the NetMeeting source to the Net-
Meeting sink machine) across a wide-area congested link
(the 10Mb/s connection between the routers). The aim is
to illustrate how, with appropriate configuration in network
switches and marking of packets according to desired levels
of service, performance of delay- and loss-sensitive applica-
tions, such as video conferencing with NetMeeting, can be
dramatically improved without any modification to existing
operating systems or applications.

The demonstration does not of course address the relat-
ed issues, just as necessary in a real-world environmen-
t, of Service-Level Agreements (SLAs) between network
providers and users, and the policing of such agreements at
the edge of a providers network. These are crucial elements
of the DiffServ framework.

7

5.1 Observed Behaviour

We do not present here any quantitative results of using the
demonstration configuration. Exact measurements of here
are not really the point, particularly as our experimental con-
figuration is intended to be illustrative, rather than a basis
for measurements that reflect real network conditions. Fur-
thermore, the application behaviour we observe is sufficient-
ly clear-cut that presenting quantitative measurements would
not convey much useful information at this stage. There-
fore, we simply present qualitative observations on our ex-
periments.

We run the load generator to provide cross traffic and set
up a NetMeeting video connection from the source PC to
the sink PC. Without the QoS policy daemon running, the
WinSock protocol stack in the source PC defaults to conven-
tional behaviour with no outgoing network packets marked
(a Type-of-Service value of 0). In this case, we see a com-
plete breakup of the video connection for the 2-second pe-
riods when the load generator is sending cross traffic, even
though the bandwidth required by the H.323 video connec-
tion (a few hundred kilobits at most) is more than an order of
magnitude less than the bandwidth of the 10 Mb/s congesting
link between the routers.

Such a result is unsurprising, but it is indicative of effect-
s that occur in the Internet during transient periods of high
network congestion.

We then start the QoS policy daemon on the source ma-
chine, and restart the NetMeeting application. This time,
the protocol agent in the WinSock stack succeeds in con-
tacting the daemon, and the policy embodied in the script
causes the sockets created by NetMeeting to be configured
to send packets with different Type-of-Service values. The
first result we see is that the conference between the two
NetMeeting applications is established much faster, since the
TCP packets for the control connections receive much high-
er priority treatment. Secondly, and more importantly for
our demonstration, the video quality is now unaffected by
the cross traffic on the congested link, in contrast to before.
We see no visible degradation in video quality whatsoever.

6 SECURITY CONSIDERATIONS

A number of concerns arise to do with security in the con-
text of this work. They fall into two categories in terms of
their consequences for users of the system and of the wider
network:

1. Can users acquire an unfair share of network resources
by abusing the mechanisms our system puts in place?

2. Can legitimate users be more exposed to denial-of-
service attacks (whether service from the network, or
service from the machine they use) by using this sys-
tem?

The first issue is relatively easily addressed: our system adds
no functionality to an individual application that could not
have been added by the application programmers themselves.
Setting the DiffServ octet for a socket is not a privileged op-
eration on Windows NT (or Unix), and so while we may be
making it easier to do this, we are not violating any existing
privilege boundaries in this regard. The protocol agent runs
as an unprivileged library in the same protection domain as
the application itself.

More generally, of course, the problem of users “stealing”
network resources by illegitimately marking packets is ad-
dressed in the DiffServ framework [BBC+98]: IP flows are
individually policed at the edges of networks to ensure that
they conform to service level agreements. Thus any unfair-
ness in network usage (and consequently denial of service
with respect to network resources) will be confined to within
the organisation which is party to the service level agreemen-
t. Our system does not alter this.

The question of denial of machine resources is more d-
ifficult. The protocol agent can only cause damage if it is
connects to a rogue policy daemon which tells it to incorrect-
ly mark packets; written robustly, TCP timeouts and careful
checking of the return value (for buffer overruns, etc.) should
prevent outright failures. It’s impossible to connect to the
daemon from across a network, but there is no authentica-
tion between the daemon and protocol agents (other than the
RPC service identifier).

It is possible that a malicious program running on the same
machine could contact the protocol daemon and send bad
strings to it. SafeTcl here prevents the strings from having
any effects external to the interpreter itself, also it should be
noted that since the protocol daemon only performs calcula-
tion on strings and returns strings, it does not need to have
any system privileges at all. The major threat here is denial-
of-service: while we can guarantee that protocol agents can
only send well-formed and easily executable strings at the
daemon, a malicious program sending it an infinite loop
would tie it up indefinitely.

In practice, the NT servers and workstations where one
might expect to run this system are effectively single-user
machines, and so the dangers of malicious programs being
introduced are no different with our system than on machines
without it. Since the interactions any component has with the
network are limited to packet marking, the system is no more
or less secure than vanilla Windows NT.

7 CONCLUSIONS

We have a described a system for assigning network Quality
of Service characteristics to network flows originating with
preexisting applications written without reference to QoS is-
sues. Two related techniques are employed to achieve a prac-
tical solution to the problem of support for legacy applica-

8

tions.

Firstly, the system uses a “protocol agent” inserted into the
Winsock protocol stack, so as to avoid the need to implemen-
t specific mechanisms in either applications (not an option
for legacy programs) or the operating system itself (we use
unmodified Windows NT). This protocol agent provides the
mechanism required to intercept networking calls and mark
the packets.

Secondly, we employ a domain-specific language tech-
nique in the implementation of a daemon to encapsulate the
policy decisions as to how to mark packets of particular
flows. This provides a per-machine point of control for al-
location of resources, which can be naturally extended to a
distributed management framework.

Additionally, we make use of the capabilities of newly in-
troduced network switches and routers to provide differenti-
ated treatment of network flows based on packet marking.

Finally, we describe an experimental configuration which
clearly demonstrates the benefits of the system on the perfor-
mance of a sample multimedia application, NetMeeting.

The guiding principle of this work has been to enable a
transition from a situation of best-effort network facilities
in the Internet, and multimedia applications written based
on this assumption, to an environment where the network
is capable of delivering multiple levels of service, and ap-
plications are written to take advantage of these facilities.
By intervening at a single point—taking advantage of new
network facilitieswithout requiring new applications to be
written and deployed—we hope to aid in the bootstrapping
process.

8 ACKNOWLEGEMENTS

Thanks are due to Bryan Lyles, for guidance, moral support
and pizza during the long evening hacking the switch.

REFERENCES

Alm92 P. Almquist. Type of Service in the Internet Pro-
tocol Suite. Internet Request for Comments no.
1349, July 1992.

BBBN98 F. Baker, D. Black, S. Blake, and K. Nichols. Def-
inition of the Differentiated Services Field (DS
Field) in the IPv4 and IPv6 Headers. Internet Re-
quest for Comments no. 2474, December 1998.

BBC+98 D. Black, S. Blake, M. Carlson, E. Davies,
Z. Wang, and W. Weiss. An Architecture for D-
ifferentiated Services. Internet Request for Com-
ments no. 2475, December 1998.

BBH+97 S. Berson, R. Braden, S. Herzog, S. Jamin,
and L. Zhang. Resource ReSerVation Protocol

(RSVP)—Version 1 Functional Specification. In-
ternet Request for Comments no. 2205, Septem-
ber 1997.

BSY+97 Yoram Bernet, Jim Stewart, Raj Yavatkar, Dav-
e Andersen, and Charlie Tai. Winsock2 Generic
QOS Mapping. Microsoft Developer Network Li-
brary, 1997. version 2.6.

CCG+93 Andrew Campbell, Geoff Coulson, Francisco
Garcia, David Hutchinson, and Helmut Leopold.
Integrated quality of service for multimedia com-
munication. InProc. IEEE INFOCOMM’93, San
Francisco, March 1993.

HOB99 Wei Hua, Jim Ohlund, and Barry Butterklee. Un-
raveling the Mysteries of Writing a Winsock 2
Layered Service Provider. Microsoft Systems
Journal, May 1999.

LMB+96 I. Leslie, D. McAuley, R. Black, T. Roscoe,
P. Barham, D. Evers, and R. Fairbairns. The
design and implementation of an operating sys-
tem to support distributed multimedia applica-
tions. IEEE Journal on Selected Areas in Com-
munications, 14(7):1280–1297, 1996.

MP96 D. Mosberger and L. Peterson. Making paths ex-
plicit in the Scout operating system. InProc. Sec-
ond Usenix Symposium on Operating System De-
sign and Implementation, pages 153–168, 1996.

Nic90 C. Nicolaou. An architecture for real-time mul-
timedia communication systems.IEEE Journal
on Selected Areas in Communications, 8(3):391–
400, April 1990.

OLW97 John K. Ousterhout, Jacob Y. Levy, and Bren-
t B. Welch. The Safe-Tcl Security Model. Sun
Microsystems Laboratories Technical Report no.
TR-97-60, March 1997.

Pac98 PacketEngines, Inc. The Wire-Speed Rout-
ing Guide. http://www.packetengines.com/

education/techpapers/routing/, May 1998.

Wel97 Brent B. Welch.Practical Programming in Tcl &
Tk. Prentice Hall, 2nd edition, July 1997.

9

