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SummaryIncreases in processor speed and network bandwidth have led to workstationsbeing used to process multimedia data in real time. These applications haverequirements not met by existing operating systems, primarily in the area of re-source control: there is a need to reserve resources, in particular the processor, ata �ne granularity. Furthermore, guarantees need to be dynamically renegotiatedto allow users to reassign resources when the machine is heavily loaded. Therehave been few attempts to provide the necessary facilities in traditional operatingsystems, and the internal structure of such systems makes the implementation ofuseful resource control di�cult.This dissertation presents a way of structuring an operating system to reducecrosstalk between applications sharing the machine, and enable useful resourceguarantees to be made: instead of system services being located in the kernel orserver processes, they are placed as much as possible in client protection domainsand scheduled as part of the client, with communication between domains onlyoccurring when necessary to enforce protection and concurrency control. Thisamounts to multiplexing the service at as low a level of abstraction as possible.A mechanism for sharing processor time between resources is also described. Theprototype Nemesis operating system is used to demonstrate the ideas in use in apractical system, and to illustrate solutions to several implementation problemsthat arise.Firstly, structuring tools in the form of typed interfaces within a single addressspace are used to reduce the complexity of the system from the programmer'sviewpoint and enable rich sharing of text and data between applications.Secondly, a scheduler is presented which delivers useful Quality of Serviceguarantees to applications in a highly e�cient manner. Integrated with thescheduler is an inter-domain communication system which has minimal impacton resource guarantees, and a method of decoupling hardware interrupts fromthe execution of device drivers.Finally, a framework for high-level inter-domain and inter-machine communi-cation is described, which goes beyond object-based RPC systems to permit bothQuality of Service negotiation when a communication binding is established, andservices to be implemented straddling protection domain boundaries as well aslocally and in remote processes.
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Glossary of Terms
The list below is a brief glossary of terms used in this dissertation. Most arespeci�c to the Nemesis operating system, though some general terms have beenincluded for clarity.activation The upcall to the entry point of a domain as a result of the kernelscheduler selecting the domain to execute.ADT Abstract Data Type. A collection of operations, each with a name and asignature de�ning the number and types of its arguments.application domain A domain whose purpose is to execute an application pro-gram.binding An association of a name with some value; in IDC, the local data struc-tures for invoking an operation on an interface.class A set of objects sharing the same implementation. An object is an instanceof exactly one class.closure The concrete realisation of an interface. A record containing two point-ers, one to an operation table and the other to a state record.concrete type A data type whose structure is explicit.constructor An operation on an interface which causes the creation of an object,and returns the interfaces exported by the object.context A collection of bindings of names to values.context slot A data structure used to hold processor execution state within adomain. ix



domain The entity which is activated by the kernel scheduler. Domains can bethought of as analogous to unix processes. A domain has an associatedsdom and protection domain.event channel An inter-domain connection established by the system Binderbetween two event end-points. Event channels are described fully in sec-tion 4.6. They are implemented by the kernel.event end-point A data structure within a domain representing one end of anevent channel.event count A synchronisation primitive, often used with a sequencer. Eventcounts and sequencers are the basic intra-domain synchronisation mecha-nism in Nemesis: they are implemented by the user-level thread scheduler.See [Reed79] for a general description.execution context The processor state corresponding to an activity or thread.IDC Inter-Domain Communication.interface The point at which a service is o�ered; a collection of operations onexactly one object. An instance of an interface type.interface reference An entity containing the engineering information necessaryto establish a binding to an interface. In the local case, this is a pointer.interface speci�cation A de�nition of the abstract type of an interface, which(in Middl) can also include de�nitions of concrete types and exceptions.interface type The abstract type of one or more interfaces. An interface typeis de�ned by an interface speci�cation.invocation reference A name which can be used to invoke operations on aninterface. In the local case, this is the same as the interface reference andis a pointer to the interface closure. In the remote case, it is a pointer toa surrogate closure created from the interface reference by establishing abinding to the interface.latency hint A parameter used by the scheduling algorithm when unblockingan sdom to determine when the sdom's new period will end.MIDDL Mothy's Interface De�nition and Description Language. A language forwriting interface speci�cations. x



module A unit of loadable code. A module contains no unresolved symbols andincludes one or more interface closures whose state is constant.object A computational entity consisting of some state which is manipulatedsolely via the interfaces exported by the object. An object may exportseveral interfaces.period The real time interval over which an sdom is allocated CPU time.pervasive interfaces A set of useful interfaces, references to which are consid-ered part of the execution context of a thread.protection domain A function from virtual addresses to access rights.sdom The entity to which CPU time is allocated. Otherwise known as a schedul-ing domain.sequencer A synchronisation primitive, often used with an event count.slice The quantity of CPU time allocated to a sdom within its period.thread A path of execution within a single domain; a unit of potential concur-rency within a domain.
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Chapter 1
Introduction
This dissertation is concerned with techniques for building operating systems tosupport a wide range of concurrent activities, in particular time-sensitive tasksprocessing multimedia data.1.1 MotivationGeneral-purpose workstations and operating systems are increasingly being calledon to process continuous media such as video and audio streams in real time. Atleast two properties of continuous media set them apart from the kind of datatraditionally handled by general-purpose computers.� The validity of a computation is dependent on the timeliness with which it isperformed. This problem is exacerbated by these time constraints typicallybeing quite strict, and the volume of data to be processed imposing a highload on the system.� To some extent the loss of information in a continuous media stream can betolerated. This does not hold in all cases, but can still be usefully exploitedby an application required to handle such media.Whilst specialised peripheral devices have been developed to capture, encode,decode and present multimedia data in standard formats, general purpose pro-cessing of such data within a traditional workstation environment is still very1



di�cult. The lack of resource control within conventional interactive operatingsystems results in behaviour under load which is often unacceptable for time-sensitive applications. This is particularly the case when the machine is beingused to perform traditional, computationally intensive jobs as well as processmultimedia data at the same time.This dissertation describes operating system technology and principles whichaddress a speci�c problem. This problem can be characterised as follows:� Executing a number of time-sensitive tasks concurrently with the usualselection of interactive and batch processes on a typical workstation.� Running the machine with a set of processes which can utilise more thanthe available processor cycles.� Allowing resources to be dynamically reallocated within the system.� Preventing crosstalk between applications so that one task cannot hog re-sources or violate the timing requirements of another.� Ensuring that when the resources allocated to time-sensitive applicationsare reduced, application performance can degrade in a graceful, application-speci�c manner.The scenario is that of a desktop workstation, with a high-speed network interfaceand associated peripherals such as video and audio input devices, which is beingused to process multimedia data while at the same time executing a mix of moretraditional interactive applications such as text editors and browsers, and batchjobs such as program compilation and numerical analysis. The emphasis is alsoon processing continuous media rather than merely present it: applications suchas real time video indexing, speaker tracking, voice and gesture input, and facerecognition are envisaged.1.2 BackgroundSeveral extensions have been made to existing workstation operating systems toassist the execution of multimedia applications. These usually take the form ofa \real-time" scheduling class with a higher static priority than other tasks inthe system. This solution is inadequate: in practice, several tasks running at2



such a priority still interfere in an unpredictable manner [Nieh93]. Furthermore,lower priority tasks only run when the \real-time" tasks have no work to do, andthe nature of continuous media applications means that this is infrequent. Thusbatch and interactive jobs in the system (even system daemons) are starved ofCPU time.One of the fundamental problems with conventional operating systems is thatdecisions as to which task should receive a given resource are based on a measure(e.g. priority) which does not permit control over the actual quantity of a resourceto be allocated over a given time period, particularly when this time period issmall.Systems which have been developed to specify resource requirements moreaccurately have typically borrowed techniques from the �eld of real-time sys-tems, such as deadline-based scheduling [Oikawa93, Coulson93]. Such systemscan deliver resource guarantees to kernel threads or processes, but do not addressthe problems caused by the interaction of kernel threads with one another, nordo they allow applications to internally redistribute resources among their ownactivities. This issue is addressed more fully in chapter 2.1.3 Quality of ServiceIn the last ten years, similar problems have appeared in communication networkswhich carry a mix of di�erent tra�c types. The term Quality of Service or QoShas been used to denote the generalised idea of explicit, quantitative allocationof network resources, principally with regard to bandwidth, end-to-end delay,and delay jitter. QoS parameters are mostly independent of the mechanismsand algorithms employed by the resource provider, and oriented more towardsapplication requirements. The concept of QoS is very generalised, and guaranteescan take many forms, including probabilistic notions of resource availability.Typically, a client of the network negotiates with the network for resources,and the client and network agree on a particular QoS. This is a measure of theallocation the client can expect to receive and may be much more than a simplelower bound|see, for example, [Clark92]. Within the network, an admissioncontrol procedure ensures that the network does not over-commit its resources,and the process of policing prevents clients from unfairly over-using resources.If the needs of a client change, or network conditions alter the QoS which the3



network can deliver to a client, renegotiation may take place, and a new QoSagreed.The distributed nature of many multimedia applications has resulted in theneed for a way to specify and support end-to-end QoS from application to appli-cation [Nicolaou90, Campbell93]. This in turn has led to investigation of suitableinterfaces between clients and the operating system to provide 
exible resourceallocation in the end system. In this context, the resource provider is the oper-ating system and the clients are application tasks. If the resource is CPU time,the provider is the kernel scheduler.1.4 ContributionThis author has built on the work in [Hyden94], investigating the wider issue ofhow to structure a general-purpose QoS-based operating system and associatedapplications.The thesis of this work is that a general-purpose operating system which:� allocates resources (and CPU time in particular) using a QoS paradigm,� performs in a predictable and stable manner under heavy load,� delivers useful resource guarantees to applications,� allows them to utilise their resources e�ciently, and� ensures that resources can be redistributed dynamically and that applica-tions can seamlessly adapt to the new allocation,|can be achieved by an architecture which places much operating system func-tionality into application processes themselves without impinging upon protec-tion mechanisms, and which multiplexes system resources at as low a level ofabstraction as possible.As well as outlining the architecture, this dissertation contributes to the designof such a system by presenting:� structuring tools to aid the construction of the operating system and toprovide rich sharing of data and code,4



� an e�cient scheduling algorithm for allocating processor time to applica-tions in accordance with QoS speci�cations, even in the presence of highinterrupt rates from devices, and� a concrete model of local client-server binding that allows QoS negotiationand permits services to be migrated across protection domain boundaries.The issues in constructing such a system are illustrated by describing theAlpha/AXP prototype of Nemesis, a multi-service operating system developedby the author in the course of his work. This system was written on the DECchipEB64 board [DEC93] over PALcode written by Robin Fairbairns, and later portedto the DEC3000/400 Sandpiper workstation [DEC94] by the author and PaulBarham.1.5 OverviewThe overall structure of Nemesis is described in chapter 2.An issue raised by chapter 2 is the complexity and code size resulting fromthe architecture. Chapter 3 discusses the use of typed interfaces, closures and aper-machine, single virtual address space to provide modularity and rich sharingof data and code.Chapter 4 describes the scheduling algorithm for allocating CPU time toapplications in accordance with QoS speci�cations existing between applicationdomains and the kernel scheduler. The interface presented to applications isdescribed. This enables the e�cient multiplexing of the CPU required withinan application to support the architecture. The performance of the scheduler isevaluated.Communication between applications within Nemesis is described in chap-ter 5. In particular, a framework for establishing bindings between clients andservers is discussed. This framework allows precise control over the duration andcharacteristics of bindings. Furthermore, it transparently integrates the commu-nication optimisations necessary to migrate code from servers into clients. Usingthis binding model, services can be implemented partly in the client and partlyin the server protection domains, and QoS negotiation with a server can occur.Chapter 6 summarises the research and discusses some areas for future work.5



Chapter 2
Architecture
This chapter describes the architectural principles governing the design of Neme-sis: where services are located in the system. The aim is to minimise the impact oftwo related problems with current operating systems: the lack of �ne-grained re-source control and the presence of application Quality-of-Service crosstalk. Con-sideration of these issues leads to a novel way of structuring the system by ver-tically integrating functions into application programs.2.1 IntroductionThis dissertation uses the term operating system architecture to describe howservices are organised within the operating system in relation to memory protec-tion domains, schedulable entities and processor states. This chapter deals witha high-level view of system structure, whilst later chapters describe the low-leveldetails of protection and scheduling in Nemesis.The major functions of an operating system are to provide:� sharing of hardware resources among applications,� services for applications to use, and� protection between applications.An operating system architecture is to a large extent determined by how thesefunctions are implemented within the system.6



Most operating systems running on interactive workstations fall into one ofthree categories architecturally: monolithic, kernel-based, and microkernel-based.2.1.1 Monolithic SystemsCedar [Swinehart86] and the Macintosh [Apple85] are examples of monolithicoperating systems. Typically all code in the system executes with the sameaccess rights on memory and in the same processor mode (with the exception ofinterrupt masks). System services (memory management, communication, �lingsystems, etc.) are provided via procedure calls or a vector table accessed via aprocessor trap. A single, central policy is used to allocate and release resources.Monolithic systems thus provide simplicity and high performance, while o�er-ing little in the way of protection between di�erent activities on the same machine.The motivation for this tradeo� is twofold. Firstly, the machine is considered tobe a single protection domain under the control of one human user. The danger ofintrusion by other users is avoided, although the risk due to malicious programsinitiated innocently by the user still exists. Secondly, programming languagefeatures (sophisticated type systems, language-level concurrency primitives andstrong modularity) can reduce the chance of bugs in one application corruptingother applications on the same machine, or bringing the whole system down.Such features are hard to justify in a general-purpose system designed to beprogrammed in a variety of di�erent languages, and potentially used by severalusers at once. Generally speaking, hardware features must be used to provideprotection between applications and operating system components. However, itis important to realise that protection from programming bugs is an insu�cientreason on its own for protecting system services with hardware.2.1.2 Kernel-based SystemsMany current workstation operating systems are descended from central multi-user timesharing systems: examples include varieties of unix [Bach86, Le�er89],VMS [Goldenberg92] and Microsoft Windows NT [Custer93]. Systems like theseprovide each application with a di�erent address space and memory protectiondomain. In addition, there is a single large kernel, which runs in a privilegedprocessor mode and is entered from user programs by means of a trap instruction(�gure 2.1). 7



Kernel

Unprivileged:

Privileged:

Process Process Process Process

Figure 2.1: Kernel-based operating system architectureThe kernel provides most system services and presents virtual resources (time,memory, etc) to applications; thus each application is given the illusion of hav-ing the entire machine to itself. Protection is achieved by limiting the physicaladdress space accessible to each application.This virtual machine model provides robustness, provided the kernel is reliableand can be trusted. Unfortunately, as the systems have evolved kernels havebecome large and unwieldy, a situation not improved by their implementation ina language with few ways of enforcing modularity, such as C or C++.Furthermore, recon�guring the operating system involves modifying the ker-nel, which often entails a system restart. Despite features such as loadable devicedrivers, changing the con�guration of a kernel-based system is a di�cult businessand it is still normal for a buggy piece of loadable operating system code to bringdown the whole system.2.1.3 Microkernel-based SystemsThe desire for extensibility and modularity led to the development of microker-nels, for example Mach [Accetta86] and Chorus [Rozier90]. Such systems movefunctionality into separate protection domains and processes, which communicatewith each other and application processes via a small kernel, often using messagepassing (�gure 2.2).The protection boundaries between the various components can make theoperating system as a whole more robust. More importantly, it is much easierto dynamically extend and recon�gure the system. This comes at some cost inperformance since invoking a service now requires communication between two8
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Figure 2.2: Microkernel-based operating system architectureprocesses. In a microkernel system this overhead includes two context switchesas opposed to a simple processor trap in kernel-based system. Much work hasgone into reducing the cost of this communication, for example [Hamilton93a,Bershad90, Bershad91, Hildebrand92]. Some systems have even migrated servicesback into the kernel for performance reasons [Bricker91].2.1.4 Other systemsThe incomplete taxonomy above classi�es systems into those with zero, 1 or manyentities providing operating system services. Naturally, the boundaries betweenclasses are blurred (for example, unix uses server daemons) and there have beenoperating systems (for example, the CAP [Wilkes79]) which do not �t in themodel. However, the classi�cation covers most workstation operating systems inuse today, at least in so far as the architecture impinges on the issue of resourcecontrol.2.2 Resource Control IssuesResource control is concerned with limiting the consumption of resources by ap-plications in a system so that they can all make some satisfactory progress. In this9



sense it is needed to guarantee the liveness of a system: excessive consumptionby one party should not prevent the progress of others. The exercise of controlcan be viewed as a form of contract between the resource provider and user: theuser `pays' in some way for a resource, and the provider guarantees to providethe resource.Resource control in workstation operating systems has traditionally been quiteprimitive. Quite simple scheduling policies can guarantee that each process re-ceives the processor eventually, and rarely are per-process quotas enforced onresources such as physical page frames or disk �le space. Indeed, in this respecttraditional mainframe timesharing systems o�er rather more in the way of re-source control than workstations. The prime motivation in the mainframe caseis the need to charge clients money for use of system resources. However, even inthese systems the contracts employed do not apply over short time scales on theorder of milliseconds, since the applications supported by these do not requiresuch guarantees at this level.It is now widely accepted that processing of continuous media in real timedoes require this kind of resource control. An important feature of the Nemesisoperating system is that it provides �ne-grained resource control. Furthermore, itsupports the provision of a service to change contracts dynamically, and permitsapplications to adapt when this happens.Resource control of this nature has been discussed in the �eld of high speednetworks, particularly those designed to carry a mix of di�erent tra�c types, forsome time. Such ideas have been referred to as Quality of Service or QoS, andthis dissertation borrows much terminology from this �eld.2.2.1 Requirements of a Resource Control SystemA resource control component for an operating system must ful�ll at least �vefunctions: Allocation, Admission Control, Policing, Noti�cation, and InternalMultiplexing support.AllocationAn operating system is a multiplexor of resources such as processor time, physicalmemory, network interface bandwidth, etc. The system should try to share out10



quantities of bulk resource to clients in accordance with their respective contracts.A further requirement is to control resource allocation dynamically. In aworkstation where resources are limited, users may wish to redistribute resourcesto increase the level of service provided to certain applications at the expense ofothers, for example in response to an incoming video phone call.Admission ControlSince the system aims to satisfy all its contracts with clients, it should not ne-gotiate contracts which it will not be able to honour. Admission Control is theterm used in networks for the process by which the system decides whether itwill provide a requested level of service.Systems with a very large number of clients (such as wide-area networks),can employ statistical multiplexing to reserve more resources in total than thesystem can supply instantaneously, relying on the fact that the probability thatall clients will simultaneously require their entire guaranteed resource share issmall.In an operating system environment, this technique cannot be employed.Firstly, there are too few clients to permit valid statistical guarantees, and theirloads are often highly correlated. Secondly, experience with early systems whichattempt to integrate video and audio with the workstation environment (for ex-ample Pandora [Hopper90]) shows that in practice the system is under high loadfor long periods: software systems tend to use all the CPU time allocated tothem.This situation is likely to continue despite the increasing power of worksta-tions, as software becomes more complex. However, this lack of predictability iso�set by the ability to use a central resource allocation mechanism, which hascomplete knowledge of the current system utilisation. Ultimately, a human usercan dictate large-scale resource allocation at run time.PolicingPolicing is the process of ensuring that clients of the operating system do notuse resources unfairly at the expense of other applications. Policing requires anaccounting mechanism to monitor usage of a resource by each application.11



A well-designed resource allocation mechanism should provide a policing func-tion. However, in the case of CPU time there are several operating systems whoseapplications are expected to cooperate and periodically yield the processor. Ex-amples include the Macintosh Operating System and applications running underMicrosoft Windows NT with the /REALTIME1 switch.More importantly, e�ective policing of CPU time can only be carried out bythe system if the application (the complete entity requiring a given QoS) is thesame unit as that dealt with by the scheduler, rather than individual threads.Noti�cationIn a system where applications are allocated resources quantitatively, the `virtualmachine' model of kernel-based systems is inappropriate. Instead of the illusionof an almost limitless virtual resource, clients of the operating system must dealin real resources.For example, unix applications are given huge amounts of address space (inthe form of virtual memory), and a virtual processor which they never lose andis rarely interrupted (by the signal mechanism). In reality, the system is con-stantly interrupting and even paging the process. The passage of real time bearslittle resemblance to the virtual time experienced by the application, particularlymillisecond granularity. While this hiding of real time is highly convenient fortraditional applications, this is precisely the information required by programsprocessing time-sensitive data such as video. Similar arguments apply to physicalmemory (when paging), network interface bandwidth, etc.A key motivation for providing information to applications about resourceavailability is that the policies applied by an application both for degradationwhen starved of resources, and for use of extra resources if they become available,are highly speci�c to the application. It is often best to let the application decidewhat to do.The approach requires a mapping from the application's performance metric(for example, number of video frames rendered per second) to the resources allo-cated by the system (CPU time). This is extremely di�cult analytically, exceptin specialised cases such as hard real-time systems, for example [Ver��ssimo93,Chapman94]. However, if applications are presented with a regular opportunity1Such processes execute at a priority higher than any operating system tasks.12



to gauge their progress in real time, they can use feedback mechanisms to rapidlyadapt their behaviour to optimise their results, provided that conditions changerelatively slowly or infrequently over time.Thus applications require timely knowledge both of their own resource allo-cation and of their progress relative to the passage of real time.Internal Multiplexing MechanismsSimple delivery and noti�cation of a bulk resource to an application are not ingeneral su�cient: a program must be able to make e�ective use of the resource.This amounts to multiplexing the resource internally, and in such a way thatwhen the total allocation changes the application can change its internal resourcetradeo�s to achieve the best results. An operating system should provide themeans for applications to do this e�ciently.The processor is, again, a good concrete example. Threads provide a conve-nient model for dividing the CPU time allocated to a program among its internaltasks. The unix operating system provides no explicit support for user-levelthreads, with the consequence that thread-switching in user-space takes placewith no knowledge of kernel events. Furthermore, most user-level threads pack-ages use a periodic signal to reenter the thread scheduler. This incurs a highoverhead and limits the granularity of scheduling possible. At the other endof the scale, operating systems which provide kernel threads take the thread-scheduling policy away from the application, and so are incompatible with theQoS model.Recently, systems have appeared which provide much greater support for user-level threads systems over kernel threads. The motivation for this approach inScheduler Activations [Anderson92] was the performance gain due to reduced con-text switch time; in Psyche [Scott90] it was the desire to support di�erent threadscheduling and synchronisation policies. These techniques have been adopted, inmodi�ed form, in Nemesis.
13



2.3 CrosstalkA scheduler which provides the facilities discussed above can be built: chapter 4describes the one used in Nemesis. However, scheduling processes in this way isnot in itself su�cient to provide useful resource control for applications.In a conventional operating system, an application spans several processes.Assigning QoS parameters to each process so that the application as a wholeruns e�ciently can be very di�cult, particularly if the resource allocation in thesystem is dynamically changing. In e�ect, the application has lost some controlover its internal resource tradeo�s unless it can rapidly and e�ciently transferresources from one process to another.Furthermore, a process may be shared between several applications. Thisintroduces the problem of crosstalk.2.3.1 Protocol QoS CrosstalkWhen dealing with time-related data streams in network protocol stacks, theproblem of Quality of Service crosstalk between streams has been identi�ed[McAuley89, Tennenhouse89]. QoS crosstalk occurs because of contention forresources between di�erent streams multiplexed onto a single lower-level channel.If the thread processing the channel has no notion of the component streams, itcannot apply resource guarantees to them and statistical delays are introducedinto the packets of each stream. To preserve the QoS allocated to a stream,scheduling decisions must be made at each multiplexing point.When QoS crosstalk occurs the performance of a given network associationat the application level is unduly a�ected by the tra�c pattern of other asso-ciations with which it is multiplexed. The solution advocated in [McAuley89,Tennenhouse89] is to multiplex network associations at a single layer in the pro-tocol stack immediately adjacent to the network point of attachment. This al-lows scheduling decisions to apply to single associations rather than to multi-plexed aggregates. This idea grew out of the use of virtual circuits in ATMnetworks, but can also be employed in IP networks by the use of packet �lters[Mogul87, McCanne93].It is widely accepted that to be useful, QoS guarantees need to be extendedup to the application so as to be truly end-to-end. By extension, we can identify14



application QoS crosstalk as a general problem which arises from the architectureof modern operating systems.2.3.2 Application QoS CrosstalkApplication QoS Crosstalk occurs because operating system services as well asphysical resources are multiplexed among client applications. This multiplexingis performed at a high level by the use of server processes (including the kernelitself).In addition to network protocol processing, components such as device I/O,�ling systems and directory services, memory management, link-loaders, and win-dow systems are accessed via a set of high-level interfaces to client applications.These services must provide concurrency and access control to manage systemstate, and so are generally implemented in server processes or within the kernel.This means that the performance of a client is dependent not only on how itis scheduled, but also on the performance of any servers it requires, including thekernel. The performance of these servers is in turn dependent on the demand fortheir services by other clients. Thus one client's activity can delay invocations ofa service by another. This is at odds with the scheduling policy, which should beattempting to allocate time among applications rather than servers.A particularly impressive example of this in practice is described in [Pratt94].A Sun SparcStation 10 running SunOS received video over an ATM network anddisplayed it on the screen via the X server. In this case the available CPU timein the system was divided roughly equally between the kernel (data copying andprotocol processing), the application itself (conversion between image formats)and the X server (copying the image to the frame bu�er).In this case over 60% of the processor time used by an application was notbeing accounted to it. Other clients were unable to render graphics due to thedemand on the X server from the video application. The point here is not theload on the machine, but that contention for a shared service is occurring, andthe service is unable to e�ectively multiplex its processor time among clients.Some degree of crosstalk is inevitable in an operating system where thereare data structures which are shared and to which access must be synchronised.However, identifying the phenomenon of application QoS crosstalk is importantbecause it allows systems to be designed to minimise its impact. To reduce15



crosstalk, service requests should as far as possible be performed using CPU timeaccounted to the client and by a thread under control of the client.2.4 The Architecture of NemesisNemesis is structured so as to ful�ll the requirements of a �ne-grained resourcecontrol mechanism and minimise application QoS crosstalk. To meet these goalsit is important to account for as much of the time used by an application aspossible, without the application losing control over its resource use.For security reasons, code to mediate access to shared state must execute in adi�erent protection domain (either the kernel or a server process) from the client.This does not imply that the code must execute in a di�erent logical thread tothe client: there are systems which allow threads to undergo protection domainswitches, both in specialised hardware architectures [Wilkes79] and conventionalworkstations [Bershad90]. However, such threads cannot easily be scheduled bytheir parent application, and must be implemented by a kernel which manages theprotection domain boundaries. This kernel must as a consequence, provide syn-chronisation mechanisms for its threads, and applications can no longer controltheir own resource tradeo�s by e�ciently multiplexing the CPU internally.The alternative is to implement servers as separate schedulable entities. Somesystems allow a client to transfer some of their resources to the server to preservea given QoS across server calls. The Processor Capacity Reserves mechanism[Mercer94] is the most prominent of these; the kernel implements objects calledreserves which can be transferred from client threads to servers. This mechanismcan be implemented with a reasonable degree of e�ciency, but does not fullyaddress the problem:� The state associated with a reserve must be transferred to a server threadwhen an IPC call is made. This adds to call overhead, and furthermoresu�ers from the kernel thread-related problems described above.� Crosstalk will still occur within servers, and there is no guarantee that aserver will deal with clients fairly, or that clients will correctly `pay' fortheir service.� It is not clear how nested server calls are handled; in particular, the servermay be able to transfer the reserve to an unrelated thread.16



Nemesis takes the approach of minimising the use of shared servers so as toreduce the impact of application QoS crosstalk: the minimum necessary func-tionality for a service is placed in a shared server. Ideally, the server should onlyperform concurrency control. In addition, to reduce the resource managementwhich must be performed outside applications, resources should be allocated asearly as possible, in bulk if necessary.
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Figure 2.3: Nemesis system architectureThe result is a `vertically integrated' operating system architecture, illustratedin �gure 2.3. The system is organised as a set of domains, which are scheduledby a very small kernel. A Nemesis domain is roughly analogous to a process inmany operating systems: it is the entity scheduled by the kernel, and usuallycorresponds to a memory protection domain. However, a given domain performsmany more functions than a typical thread: the Nemesis kernel on DEC Al-pha/AXP machines consists only of interrupt handlers (including the scheduler)and a small Alpha PALcode image.The minimum functionality possible is placed in server domains, and as muchprocessing as possible is performed in application domains. This amounts tomultiplexing system services at the lowest feasible level of abstraction. This bothreduces the number of multiplexing points in the system, and makes it easier forscheduling decisions to be made at these points. Protection within an applicationdomain is performed by language tools.This stands in contrast to recent trends in operating systems, which havebeen to move functionality away from client domains (and indeed the kernel)into separate processes. 17



However, there are a number of examples in recent literature of services beingimplemented as client libraries instead of within a kernel or server. E�cientuser-level threads packages have already been mentioned.[Thekkath93] discusses implementation of network protocols as client librariesin the interests of ease of prototyping, debugging, maintenance and extensibility,and also to investigate the use of protocols tuned to particular applications. Whileat Xerox PARC, the author of this dissertation investigated implementation ofTCP over ATM networks in a user-space library over SunOS, in order to reducecrosstalk and aid in accounting. In principle packets must be multiplexed securely,but above this in the protocol stack there are no inherent problems in protocolprocessing as part of the application.A recent version of the 812 window system [Pike94] renders graphics almostentirely within the client. The client then sends bitmap tiles to the windowmanager, which is optimised for clipping these tiles and copying them into theframe store. The frame store device for the Desk Area Network [Barham95a]provides these low level window manager primitives in hardware.Finally, a good indicator that most of the functions of the unix kernel can beperformed in the application is given by the Spring SunOS emulator [Khalidi92],which is almost entirely implemented as a client library.Nemesis is designed to make use of these techniques. In addition, most of theengineering for creating and linking new domains, and setting up inter-domaincommunication, is performed in the application.2.5 SummaryResource control in operating systems has traditionally been provided over mediumto long time scales. Continuous media processing requires resources to be allo-cated with much �ner granularity over time, the failure of the system to exercisecontrol over the resource usage of other tasks seriously impacts such applica-tions. The related problem of application QoS crosstalk has been identi�ed as aproblem inherent in operating systems but greatly exacerbated by the high levelfunctionality currently implemented in servers.Nemesis explores the alternative approach of implementing the barest mini-mum of functionality in servers, and executing as much code as possible in the18



application itself. This has the dual aim of enabling more accurate account-ing of resource usage while allowing programs to manage their own resourcese�ciently. Examples from the existing literature illustrate how many operatingsystems functions can be implemented in this way.The architecture raises a number of issues. Programmers should neither haveto cope with writing almost a complete operating system in every application,nor contend with the minimum level interfaces to shared servers. Binaries shouldnot become huge as a result of the extra functionality they support, and resourcesmust be allocated in such a way that applications can manage them e�ectively.The next three chapters present solutions to these problems.
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Chapter 3
Interfaces and Linkage
This chapter deals with linking program components within a single domain. Itpresents solutions to two potential problems caused by the architecture intro-duced in chapter 2. The �rst is the software engineering problem of constructingapplications which execute most of the operating system code themselves. Thisis addressed by the typing, transparency and modularity properties of Nemesisinterfaces. The second problem is the need for safe and extensive sharing of dataand code. The use of closures within a single address space together with mul-tiple protection domains provides great 
exibility in sharing arbitrary areas ofmemory.The programming model used when writing Nemesis modules is presented,followed by the linkage model employed to represent objects in memory. Inaddition, auxiliary functions performed by the name service and runtime typesystem are described, together with the process by which a domain is initialised.3.1 BackgroundThe linkage mechanism in Nemesis encompasses a broad range of concepts, fromobject naming and type systems to address space organisation. Below is a surveyof selected operating systems work which has relevance to linkage in Nemesis inone area or another.
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3.1.1 MulticsIn Multics [Organick72], virtual memory was not organised as a 
at address spacebut as a set of segments, integrated with the �ling system. Any process couldattach a segment and access it via a process-speci�c identi�er (in fact, an entry inthe process segment table). Thus, a great deal of code and data could be sharedbetween processes.Related procedures were organised into segments. Linkage segments wereused to solve the problem of allowing a procedure shared between processes tomake process-speci�c references to data and procedures in other segments. Therewas one process-speci�c linkage segment for each text segment in a process, whichmapped unresolved references in the segment to pairs of (segment identi�er, o�-set) values. This segment was used by the GE645 indirection hardware and was�lled in on demand via a faulting mechanism.The idea worked well (albeit slowly) as a means of linking conventional proce-dural programs. However, the scheme does not sit happily with an object-basedprogramming paradigm where members of a class are instantiated dynamically:Linkage segments are inherently per-process, and work best in situations wherethere is a static number of inter-segment references during the lifetime of a pro-cess.3.1.2 HemlockThe state of the art in unix-based linking is probably Hemlock [Garrett93]. Hem-lock reserves a 1GB section of each 32-bit address space in the machine for aregion to hold shared modules of code, with the obvious extension to 64-bit ad-dress spaces. A great deal of 
exibility is o�ered: modules can be public (sharedbetween all processes), or private (instantiated per-process). They can also bestatic (linked at compile time) or dynamic (linked when the process starts up, orlater when a segment fault occurs).Hemlock is geared towards a unix-oriented programming style, thus modulesare principally units of code. The de�nition of interfaces between modules isleft to programming conventions, and the data segments of private modules areinstantiated on a one-per-process basis.
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3.1.3 SpringAlong with Nemesis, Spring [Hamilton93a, Hamilton93b] is one of the few op-erating systems to use an interface de�nition language for all system interfaces.Spring is implemented in C++ and employs the unix model of one address spaceper process. Shared libraries are used extensively, but the need to link one libraryagainst another has led to copy-on-write sharing of text segments between ad-dress spaces. With the C++ programming language, the number of relocationsis quite large, even with position-independent code. This reduces the bene�tsof sharing and results in increased time to link an image [Nelson93]. The solu-tion adopted has been to cache partially linked images|combinations of librarieslinked against one another|on stable storage.Linkage is carried out mainly by the parent domain through memory mapping,at a di�erent address from that at which the code must execute. However, themodel is essentially the same as unix, with a small number of memory areasholding the state for all objects in the address space.Spring is also unusual in providing a name service that is uniform and capableof naming any object. Naming contexts are �rst-class objects and can be instan-tiated at will. The scope of the naming service is broad, encompassing accesscontrol and support for persistent objects. This requires that all objects musteither provide an interface for requesting that they become persistent, or a wayof obtaining such an interface.3.1.4 Plan 9 from Bell LabsPlan 9 [Pike92] is a unix-like operating system but with a novel approach tonaming. Plan 9 has several di�erent kinds of name space, but the main one isconcerned with naming �ling systems, which are the way many system interfacespresent themselves.This approach has a number of problems:� Instead of the typed interfaces of systems such as Spring, Plan 9 constrainseverything to look like a �le. In most cases the real interface type comprisesthe protocol of messages that must be written to, and read from, a �ledescriptor. This is di�cult to specify and document, and prohibits anyautomatic type checking at all, except for �le errors at run time.22



� Filing systems are heavyweight: access to them must be through the kernel.Instantiating interfaces dynamically is impossible.� There are limits to what can be named. For instance, both the initial I/Ochannels available to a domain and the space of network addresses comprisename spaces separate from the principal one.� Instead of providing a service for mapping strings to pointers to interfaces(which are essentially low-level names for the services), in Plan 9 a pathname relative to a process' implicit root context is the only way to namea service. Binding a name to an object can only be done by giving anexisting name for the object, in the same context as the new name. Assuch, interface references simply cannot be passed between processes, muchless across networks. Instead, communication has to rely on conventions,which are prone to error and do not scale.3.1.5 Microsoft OLE 2OLE 2 [Brockschmidt94] is a system built on top of the Windows 3.1 environmentto provide object-based facilities. Objects export one or more interfaces, whichappear as C++ objects with virtual member functions. Objects are shared be-tween applications in the operating system by the use of stubs and the dynamiclink libraries provided by Windows, though shared memory can be used as atransport mechanism. Above the basic OLE 2 infrastructure are built severalcomplex subsystems to provide object naming and persistent object storage.Interface types in OLE 2 are never explicitly de�ned. Instead, the runtimesystem deals only in globally unique type identi�ers allocated centrally by Mi-crosoft, which by programmer convention refer to particular revisions of C orC++ function de�nitions. As a consequence, type conformance relations arenot supported. Also, runtime information about the structure of types is notavailable.OLE 2 is a large and complex body of software. Much of the complexity ofOLE 2 arises from the need to expose the underlying Windows operating system,which has no speci�ed interfaces or idea of modularity. A further problem isthat while OLE 2 provides object services to application writers, these servicesthemselves are not provided through objects but, like Windows, employ a 
at Cprogramming interface. An operating system designed using a consistent object23



model from the ground up, such as Spring, can be much simpler and more cohesivewhile o�ering superior functionality.3.1.6 Single Address Space Operating SystemsRecently, there have been a number of research projects to build single addressspace operating systems. These projects have generally aimed at providing anenvironment with rich sharing of data and text. They try to achieve this by givingeach process a di�erent memory protection domain within a single, system-wideaddress space. Two representative systems are discussed here.OpalOpal [Chase93] is an experimental, single address space system implemented as aMach server process. Linkage in Opal is based around modules similar to those inHemlock. Domain-speci�c state for a module is stored at an o�set from the Alphaglobal pointer (GP), a general-purpose register reserved in OSF/1 for accessingdata segment values. Modules can contain per-domain, initialised, mutable state:when the module is attached this state is copied into a per-domain data segment.However, this means that modules may only be instantiated once per domain,and the domain may have only one private data segment. Also, the GP registermust be determined on a per-domain basis on every cross-module procedure call;at present it is �xed for the lifetime of a domain. The format of the data segmentis constrained to be the same for all domains.AngelThe Angel microkernel [Wilkinson93] aims to provide a single distributed addressspace spanning many processors. The designers wished to reduce the cost ofcontext switching with virtual processor caches, and to unify all storage as partof the address space. While unix-like text segments are shared, there is nosharing at a �ner granularity. The traditional data and bss segments are stillpresent, and the C compiler is modi�ed to use a reserved processor register toaddress them.
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Like Opal, Angel represents an attempt to use the unix notion of a processin a single address space. However, unix processes are based on the assumptionof a private address space: absolute addresses are used for text and data, andreferences between object �les are resolved statically by the linker. In e�ect, theenvironment in which any piece of code executes is the whole address space.When the address space is shared between processes, this assumption nolonger holds. In both Opal and Angel, the process-wide environment using abso-lute addresses is simply replaced by another using addresses relative to a singlepointer. This precludes most of the potential bene�ts of sharing code and databetween protection domains.3.2 Programming ModelThe programming model of Nemesis is a framework for describing how programsare structured; in a sense, it is how a programmer thinks about an application.In particular, it is concerned with how components of a program or subsysteminteract with one another.The goal of the programming model is to reduce complexity for the program-mer. This is particularly important in Nemesis where applications tend to bemore complex as a consequence of the architecture. The model is independentof programming language or machine representation, though its form has beenstrongly in
uenced by the model of linkage to be presented in section 3.3.In systems, complexity is typically managed by the use of modularity : de-composing a complex system into a set of components which interact acrosswell-de�ned interfaces. In software systems, the interfaces are often instances ofabstract data types (ADTs), consisting of a set of operations which manipulatesome hidden state. This approach is used in Nemesis.Although the model is independent of representation, it is often convenientto describe it in terms of the two main languages used in the implementation ofNemesis: the interface de�nition language Middl and a stylised version of theprogramming language C.
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3.2.1 Types and MIDDLNemesis, like Spring, is unusual among operating systems in that all interfacesare strongly typed, and these types are de�ned in an interface de�nition language.It is clearly important, therefore, to start with a good type system, and [Evers93]presents a good discussion of the issues of typing in a systems environment. Asin many RPC systems, the type system used in Nemesis is a hybrid: it includesnotions both of the abstract types of interfaces and of concrete data types. It rep-resents a compromise between the conceptual elegance and software engineeringbene�ts of purely abstract type systems such as that used in Emerald [Raj91],and the requirements of e�ciency and inter-operability: the goal is to implementan operating system with few restrictions on programming language.Concrete types are data types whose structure is explicit. They can be pre-de�ned (such as booleans, strings, and integers of various sizes) or constructed(as with records, arrays, etc). The space of concrete types also includes typedreferences to interfaces1.Interfaces are instances of ADTs. Interfaces are rarely static: they can bedynamically created and references to them passed around freely. The type sys-tem includes a simple concept of subtyping. An interface type can be a subtypeof another ADT, in which case it supports all the operations of the supertype,and an instance of the subtype can be used where an instance of the supertypeis required.The operations supported by interfaces are like procedure calls: they take anumber of arguments and normally return a number of results. They can alsoraise exceptions, which themselves can take arguments. Exceptions in Nemesisbehave in a similar way to those in Modula-3 [Nelson91].Interface types are de�ned in an interface de�nition language (IDL) calledMiddl [Roscoe94b]. Middl is similar in functionality to the IDLs used in object-based RPC systems, with some additional constructs to handle local and low-leveloperating system interfaces. A Middl speci�cation de�nes a single ADT bydeclaring its supertype, if any, and giving the signatures of all the operations it1The term interface reference is sometimes used to denote a pointer to an interface. Un-fortunately, this can lead to confusion when the reference and the interface are in di�erentdomains or address spaces. Chapter 5 gives a better de�nition of an interface reference. Inthe local case described in this chapter, interfaces references can be thought of as pointers tointerfaces. 26



supports. A speci�cation can also include declarations of exceptions, and concretetypes. Figure 3.1 shows a typical interface speci�cation, the (slightly simpli�ed)de�nition of the Context interface type.3.2.2 Objects and ConstructorsThe word object in Nemesis denotes what lies behind an interface: an objectconsists of state and code to implement the operations of the one or more in-terfaces it provides. A class is a set of objects which share the same underlyingimplementation, and the idea of object class is distinct from that of type, whichis a property of interfaces rather than objects.This de�nition of an object as hidden state and typed interfaces may be con-trasted with the use of the term in some object-oriented programming languageslike C++ [Stroustrup91]. In C++ there is no distinction between class and type,and hence no clear notion of an interface2. The type of an interface is alwayspurely abstract: it says nothing about the implementation of any object whichexports it. It is normal to have a number of di�erent implementations of thesame type.When an operation is invoked upon an object across one of its interfaces, theenvironment in which the operation is performed depends only on the internalstate of the object and the arguments of the invocation. There are no globalsymbols in the programming model. Apart from the bene�ts of encapsulationthis provides, it facilitates the sharing of code described in section 3.3.An object is created by an invocation on an interface, which returns a setof references to the interfaces exported by the new object. As in Emerald, con-structors are the basic instantiation mechanism rather than classes. By removingthe arti�cial distinction between objects and the means used to create them,creation of interfaces in the operating system can be more 
exible than the `in-stitutionalised' mechanisms of language runtime systems. This is particularlyimportant in the lower levels of an operating system, where a language runtimeis not available.2C++ abstract classes often contain implementation details, and were added as an af-terthought [Stroustrup94, p. 277].
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Context : LOCAL INTERFACE =NEEDS Heap;NEEDS Type;BEGIN---- Interface to a naming context.--Exists : EXCEPTION [];-- Name is already bound.-- Type used for listing names in a context:Names : TYPE = SEQUENCE OF STRING;-- "List" returns all the names bound in the context.List : PROC []RETURNS [ nl : Names ]RAISES Heap.NoMemory;-- "Get" maps pathnames to objects.Get : PROC [ IN name : STRING,OUT o : Type.Any ]RETURNS [ found : BOOLEAN ];-- "Add" binds an object to a pathname.Add : PROC [ name : STRING, obj : Type.Any ]RETURNS []RAISES Exists;-- "Remove" deletes a binding.Remove : PROC [ name : STRING ] RETURNS [];END.Figure 3.1: Middl speci�cation of the Context interface type28



3.2.3 PervasivesThe programming model described so far enforces strict encapsulation of objects:the environment in which an interface operation executes is determined entirelyby the operation arguments and the object state. Unfortunately, there are caseswhere this is too restrictive from a practical point of view. Certain interfacesprovided by the operating and runtime systems are used so pervasively by appli-cation code that it is more natural to treat them as part of the thread contextthan the state of some object. These include:� Exception handling� Current thread operations� Domain control� Default memory allocation heapMany systems make these interfaces `well-known', and hardwired into programseither as part of the programming language or as procedures linked into all im-ages. This approach was rejected in Nemesis: the objects concerned have domain-speci�c state which would have to be instantiated at application startup time.This con
icts with the needs of the linkage model (section 3.3), in particular,it severely restricts the degree to which code and data can be shared. Further-more, the simplicity of the purely object-based approach allows great 
exibility,for example in running the same application components simultaneously in verydi�erent situations.However, passing references to all these interfaces as parameters to everyoperation is ugly and complicates code. The references could be stored as partof the object state, but this still requires that they be passed as arguments toobject constructors, and complicates the implementation of objects which wouldotherwise have no mutable state (and could therefore be shared among domainsas is).Pervasive interfaces are therefore viewed as part of the context of the currentlyexecuting thread. As such they are always available, and are carried across aninterface when an invocation is made. This view has a number of advantages:� The references are passed implicitly as parameters.29



� Pervasives are context switched with the rest of the thread state.� If necessary, particular interfaces can be replaced for the purposes of a singleinvocation.3.2.4 Memory AllocationThe programming model has to address the problem of memory allocation. Aninvocation across an interface can cause the creation of a concrete structure whichoccupies an area of memory. There needs to be a convention for determining:� where this memory is allocated from, and� how it may be freed.In many systems the language runtime manages memory centrally (to the do-main) and all objects may be allocated and freed in the same way. Some systemsprovide a garbage collector for automatic management of storage.Unfortunately, Nemesis does not provide a central garbage collector3 and adomain typically has a variety of pools to allocate memory from, each corre-sponding to an interface of type Heap (multiple heaps are used to allocate sharedmemory from areas with di�erent access permissions). Moreover, it is desirableto preserve a degree of communication transparency : wherever possible, a pro-grammer should not need to know whether a particular interface is exported byan object local to the domain or is a surrogate for a remote one.Network-based RPC systems without garbage collection use conventions todecide when the RPC runtime has allocated memory for unmarshalling largeor variable-sized parameters. Usually this memory is allocated by the languageheap, although some RPC systems have allowed callers to specify di�erent heapsat bind time (for example, [Roscoe94c]). To preserve transparency, in all cases thereceiver of the data is responsible for freeing it. This ensures that the applicationcode need not be aware of whether a local object or the RPC run time systemhas allocated memory.3The problems of garbage collection in an environment where most memory is shared be-tween protection domains is beyond the scope of this thesis. This issue is touched upon insection 6.2. 30



In systems where caller and object are in di�erent protection domains butshare areas of memory, the situation is complicated because of the desire toavoid unnecessary memory allocation and data copies. Ideally, the conventionsused should accommodate both the cases where the caller allocates space for theresults in advance, and where the callee allocates space on demand from callermemory during the invocation.Nemesis uses parameter passing modes to indicate memory allocation policy:each parameter in a Middl operation signature has an associated mode, whichis one of the following:IN: Memory is allocated and initialised by client.Client does not alter parameter during invocation.Server may only access parameter during invocation, and cannot alterparameter.IN OUT: Memory is allocated and initialised by client.Client does not alter parameter during invocation.Server may only access parameter during invocation, and may alter pa-rameter.OUT: Memory is allocated but not initialised by client.Server may only access parameter during invocation, and is expected toinitialise it.RESULT: Memory is allocated by server, on client pervasive heap, and resultcopied into it. Pointer to this space is returned to the client.The OUT mode allows results to be written by a local object into space alreadyallocated by the client (in the stack frame, for example). In the remote case, itis more e�cient than the IN OUT mode because the value does not need to betransmitted to the server; it is only returned.These modes are all implemented on the Alpha processor using call by ref-erence, except RESULT, which returns a pointer to the new storage. For valuessmall enough to �t into a machine word, IN is coded as call by value and RESULTreturns the value itself rather than a reference to it.These conventions have been found to cover almost all cases encountered inpractice. As a last resort, Middl possesses a REF type constructor which allowspointers to values of a particular type to be passed explicitly.31



3.3 Linkage ModelThe linkage model concerns the data structures used to link program components,and their interpretation at runtime. An early version of the linkage mechanismwas described in [Roscoe94a]. Its goal is twofold:1. To support and implement the Programming Model.2. To reduce the total size of the system image through sharing of code anddata.A stub compiler is used to map Middl type de�nitions to C language types.The compiler, known as middlc4 processes an interface speci�cation and generatesa header �le giving C type declarations for the concrete types de�ned in theinterface together with special types used to represent instances of the interface.3.3.1 InterfacesAn interface is represented in memory as a closure: a record of two pointers, oneto an array of function pointers and one to a state record (�gure 3.2).
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To invoke an operation on an interface, the client calls through the appropri-ate element of the operation table, passing as �rst argument the address of theclosure itself. The middlc compiler generates appropriate C data types so thatan operation can be coded as, for example:b = ctxt->op->Get( ctxt, "modules/DomainMgr", &dma );In this case, ctxt is the interface reference. middlc generates C preprocessormacros so one may use the CLU-like syntax:b = Context$Get( ctxt, "modules/DomainMgr", &dma );3.3.2 ModulesA Nemesis module is a unit of loadable code, analogous to an object �le. Allthe code in Nemesis exists in one module or another. These modules are quitesmall, typically about 10 kilobytes of text and about the same of constant data.The use of constructor interfaces for objects rather than explicit class structuresmakes it natural to write a module for each kind of object, containing code toimplement both the object's interfaces and its constructors. Such modules aresimilar to CLU clusters [Liskov81], though `own' variables are not permitted.Modules are created by running the unix ld linker on object �les. The resultis a �le which has no unresolved references, a few externally visible references,and no uninitialised or writable data5.All linkage between modules is performed via pointers to closures. A modulewill export one or more �xed closures (for example, the constructors) as externallyvisible symbols, and the system loader installs these in a name space (see section3.4) when the module is loaded. To use the code in a module, an applicationmust locate an interface for the module, often by name lookup. In this senselinking modules is entirely dynamic.If a domain wishes to create an object with mutable state, it must invokean operation on an existing interface which returns an interface reference of therequired type and class.5In other words, there is no bss and the contents of the data segment are constant.33
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Figure 3.3: Module and instantiated objectFigure 3.3 shows an example where a domain has instantiated a naming con-text by calling the New operation of an interface of type ContextMod. The latter isimplemented by a module with no mutable state, and has instantiated an objectwith two interfaces, of types Context and Debugging. The module has returnedpointers to these in the results c and d. The state of the object includes a heapinterface reference, passed as a parameter to the constructor and closed over.3.3.3 Address Space StructureThe use of interfaces and modules in Nemesis permits a model where all text anddata occupies a single address space, since there is no need for data or text to beat well-known addresses in each domain. The increasing use of 64-bit processorswith very large virtual address spaces (the Alpha processor on which Nemesisruns implements 43 bits of a 64-bit architectural addressing range) makes theissue of allocating single addresses to each object in the system relatively easy.It must be emphasised that this in no way implies a lack of memory protectionbetween domains. The virtual address translations in Nemesis are the same forall domains, while the protection rights on a given page may vary. Virtual addressspace in Nemesis is divided into segments (sometimes called stretches) which have34



access control lists associated with them. What it does mean is that any areaof memory in Nemesis can be shared, and addresses of memory locations do notchange between domains.3.4 Naming and Runtime TypingWhile simple addresses in the single address space su�ce to identify any interface(or other data value) in the system, a more structured system of naming is alsorequired.The name space in Nemesis is completely independent of the rest of the op-erating system. While some operating system components do implement part ofthe name space, most naming contexts are �rst-class objects: they can be createdat will and are capable of naming any value which has a Middl type.There are few restrictions on how the name space is structured. The model fol-lowed is that of [Saltzer79]: a name is a textual string, a binding is an associationof a name with some value, and a context is a collection of bindings. Resolving aname is the process of locating the value bound to it. Name resolution requiresthat a context be speci�ed.Context InterfacesNaming contexts are represented by interfaces which conform to the type Context.Operations are provided to bind a name to any value, resolve the name in thecontext and delete a binding from the context. The values bound in a contextcan be of arbitrary type, in particular they can be references to other interfacesof type Context. Naming graphs can be constructed in this way, and a pathnamemay be presented to a context in place of a simple name. A pathname consistsof a sequence of names separated by distinguished characters, either `/' or `>'.To resolve such a pathname, the context object examines the �rst component ofthe name. If this name resolves to a context, this second context is invoked toresolve the remainder of the pathname.
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Ordered Merges of ContextsThe MergedContext interface type is a subtype of Context, modelled after asimilar facility in Spring [Radia93]. An instance of MergedContext represents acomposition of naming contexts; when the merge is searched, each componentcontext is queried in turn to try and resolve the �rst element of the name. Op-erations are provided to add and remove contexts from the merge.An ExampleFigure 3.4 illustrates part of a naming graph created by the Nemesis system atboot time. Context A is the �rst to be created. Since one must always specifya context in which to resolve a name, there is no distinguished root. However Aserves as a root for the kernel by convention. Context B holds local interfacescreated by the system, thus `Services>DomainMgr' is a name for the DomainManager service, relative to context A. Any closures exported by loaded modulesare stored in context C (`Modules'), and are used during domain bootstrapping.
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Context D has two names relative to the root, `Services>TypeSystem' and`Modules>TypeSystem'. This context is not in fact implemented in the usual way,but is part of the runtime type system, described in the next section.3.4.1 Run Time Type SystemThe Type System is a system service which adds a primitive form of dynamictyping, similar to [Rovner85]. EachMiddl type is assigned a unique Type.Code,and the Type.Any type provides support for data values whose type is not knownat compile time. The TypeSystem interface provides the operations IsType, todetermine whether a Type.Any conforms to a particular type, and Narrow, whichconverts a Type.Any to a speci�ed type if the type equivalence rules permit. Amajor use of Type.Any is in the naming interfaces: values of this type are boundto names in the name space.The Type System data structures are accessible at run time through a series ofinterfaces whose types are subtypes of Context. For example, an operation withinan interface is represented by an interface of type Operation, whose namingcontext includes all the parameters of the operation. Every Middl interfacetype is completely represented in this way.3.4.2 CLANGERA good example of how the programming and linkage models work well in practiceis Clanger6 [Roscoe95] , a novel interpreted language for operating systems.Clanger relies on the following three system features:� a naming service which can name any typed value in the system,� complete type information available at runtime, and� a uniform model of interface linkage.In Clanger a variable name is simply a pathname relative to a namingcontext speci�ed when the interpreter was instantiated. All values in the languageare represented as Type.Anys. The language allows operations to be invoked on6Clanger has been implemented by Steven Hand.37



variables which are interface references by synthesising C call frames. Access tothe Type System allows the interpreter to type-check and narrow the argumentsto the invocation, and select appropriate types for the return values.The invocation feature means that the language can be fully general withouta complex interpreter or the need to write interface `wrappers' in a compiledlanguage. This capability was previously only available in development systemssuch as Oberon [Gutknecht] and not in a general-purpose, protected operatingsystem. Clanger can be used for prototyping, debugging, embedded control,operating system con�guration and as a general purpose programmable commandshell.3.5 Domain bootstrappingThe business of starting up a new domain in Nemesis is of interest, partly becausethe system is very di�erent from unix and partly because it gives an example ofthe use of a single address space to simplify some programming problems.The traditional unix fork primitive is not available in Nemesis. The state of arunning domain consists of a large number of objects scattered around memory,many of which are speci�c to the domain. Duplicating this information for achild domain is not possible, and would create much confusion even if it were,particularly for domains with communication channels to the parent. In any case,fork is rarely used for producing an exact duplicate of the parent process, ratherit is a convenient way of bootstrapping a process largely by copying the relevantdata structures. In Nemesis, as in other systems without fork such as VMS, thiscan be achieved by other means.The kernel's view of a domain is limited to a single data structure called theDomain Control Block, or DCB. This contains scheduling information, commu-nication end-points, a protection domain identi�er, an upcall entry point for thedomain, and a small initial stack. The DCB is divided into two areas. One iswritable by the domain itself, the other is readable but not writable. A privi-leged service called the Domain Manager creates DCBs and links them into thescheduler data structures.The arguments to the Domain Manager are a set of Quality of Service (QoS)parameters for the new domain, together with a single closure pointer of typeDomainEntryPoint. This closure provides the initial entry point to the domain38



in its sole operation (called Go), and the state record should contain everythingthe new domain needs to get going.The creation of this DCB is the only involvement the operating system properhas in the process. Everything else is performed by the two domains involved:the parent creates the initial closure for the domain, and the child on startuplocates all the necessary services it needs which have not been provided by theparent. Figure 3.5 shows the process.
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Figure 3.5: Creation of a new domainThe DomainEntryPoint closure is the equivalent of main in unix, with thestate record taking the place of the command line arguments. By convention thecalling domain creates the minimum necessary state, namely:� A naming context.� A heap for memory allocation.� The runtime type system (see below).From the name space, a domain can acquire all the interface references it needs toexecute. One useful consequence of this is that an application can be debuggedin an arti�cial environment by passing it a name space containing bindings todebugging versions of modules. The type system is needed to narrow types re-turned from the name space. The heap is used to create the initial objects neededby the new domain.The BuilderTo save a programmer the tedium of writing both sides of the domain initial-isation code, a module is provided called the Builder. The Builder takes a39



ThreadClosure7 which represents the initial thread of a multi-threaded domainto be created. The Builder instantiates an initial heap for the new domain. Mostheap implementations in Nemesis use a single area of storage for both their in-ternal state and the memory they allocate, so the parent domain can create aheap, allocate initial structures for the child within it, and then hand it over inits entirety to the new domain.The Builder returns a DomainEntryPoint closure which can be passed to theDomain Manager. When started up, the new domain executes code within theBuilder module which carries out conventional initialisation procedures, includinginstantiating a threads package. The main thread entry point is also Buildercode, creating the remaining state before entering the thread procedure originallyspeci�ed. Figure 3.6 shows the sequence of events.This illustrates two situations where a module executes in two domains. Inthe �rst, part of the Builder executes the parent and another part executes inthe child. In the second, a single heap object is instantiated and executes in theparent, and is then handed o� to the child, which continues to invoke operationsupon it. In both cases the programmer need not be aware of this, and instan-tiating a new domain with a fully functional runtime system is a fairly painlessoperation.3.6 DiscussionNemesis has adopted a di�erent method of achieving sharing from Hemlock: ob-jects are used throughout and there are no real `global variables' in a Nemesisprogram. Instead, state is held either in closures or as part of an extended threadcontext containing pervasive interfaces in addition to processor register values.However, the combination of an entirely interface-based programming model,and a per-machine single address space works well in practice. The code forNemesis is highly modular, and there are many situations where use is madeboth of the ability of an object to export multiple interfaces, and of the sameinterface type to be implemented by several classes of object. Unlike Opal andAngel, the single address space is fully exploited.The typing and code reuse bene�ts of interfaces are achieved independently7The user-level threads equivalent of a domain entry point.40
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Figure 3.6: Action of the Builderof any particular programming language. No runtime system is strictly required,although dynamic typing does require the Type System module. This has enabledthe use of interfaces throughout the low levels of the operating system. As anaside, this in turn enables Clanger to be used at a very basic level in the system,and almost the whole operating system to be virtualised: to run entirely insidea Nemesis domain.System development is greatly simpli�ed by the ability to pass pointers be-tween domains. This is particularly useful in situations involving a large quantityof data and where it is undesirable to copy it, for example the processing of video41



streams. The architecture of Nemesis tries to discourage pipelines of domains,since it is preferable to do all processing on a stream within a single applica-tion and thereby preserve QoS guarantees. However, when information must bepassed to another domain (for example, a frame store driver), code on both sidesof the protection boundary can use the same addresses. Indeed, many code mod-ules in Nemesis straddle protection domain boundaries. This idea is returned toin chapter 5.As another example, interrupt service routines (ISRs) are entered with a reg-ister loaded with a pointer to their state. The device driver domain assigned thispointer when it installed the ISR, and the address is valid regardless of whichdomain is currently scheduled. The maintenance of scatter-gather maps to enabledevices to DMA data to and from virtual memory addresses in client domains issimilarly simpli�ed.3.6.1 Overhead of using interfacesThe primary concern with the linkage model is the overhead of passing closureswith interface operations. Table 3.1 shows the results of an experiment to mea-sure null procedure call times. The machine used was a DEC Alpha 3000/400Sandpiper running OSF/1. The compiler used in these experiments (as for allthe results in this dissertation) was GCC 2.6.3, with optimisation on (-O2).
min. mean std. dev.Procedure call 34 34.6 32.50Nemesis closure 39 39.4 25.58Dynamic C++ 39 39.5 30.15Static C++ 34 34.4 28.75Table 3.1: Call times in cycles for di�erent calling conventionsThe overhead of passing a closure in a procedure call is 5 machine cycles(about 37ns in this case). Not surprisingly this corresponds with the overhead ofa C++ virtual function call, which is generally regarded as an acceptable price42



to pay for modularity. The �nal line of the table illustrates the advantage to begained from the compiler being able to optimise across invocation boundaries: ifthe called object is static, GCC can use a simple procedure call to implement themethod invocation. Nemesis forgoes this performance advantage in favour of fulldynamic linking.3.6.2 E�ects of sharing codeIn theory, the performance overhead of using closures for cross-interface invoca-tions should be compensated for to some extent by the increased cache perfor-mance resulting from decreased code size: The granularity at which text is sharedin Nemesis means that the code portion of the working set of the complete systemis much smaller than in a statically-linked, multiple address space system,Unfortunately, observing the e�ect of image size upon execution speed provedto be extremely di�cult due to the cache architecture of the machines available.The DECchip EB64 development board and the DEC3000/400 Sandpiper work-station both use a DECchip 21064-AA processor with 8k of instruction cache and8k of data cache. Both these caches are physically addressed and direct mapped,as is the uni�ed secondary cache of 512k bytes.The non-associativity of the cache system means that the likelihood of `hotspots' occurring in the cache during normal operation is very high. The resultis that minor changes in the arrangement of code in the image can have a largee�ect on the performance of the system as a whole.Figure 3.7 shows the result of altering the order in which modules are loadedinto the address space. A single, reasonably large module (42k text, 15k data)implementing the front end of middlc was moved through the load order, and foreach con�guration a benchmark performed. The benchmark consisted of compil-ing a set of interfaces from an in-memory �ling system 2000 times. The compilerwas the only application domain executing for the duration of the benchmark.The slowest run recorded took over 65% longer than the quickest. Altering theorder in which object �les were linked into the module while keeping the module'sposition in memory constant produced a similar wide distribution. With as muchvariation as this it is di�cult to make comparisons, but an identical experimentwas performed with a version of the middlc module which contained the completeruntime statically linked in, and accessed via procedure calls rather than through43
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Figure 3.7: Variation in execution time for middlcclosures. The results were broadly similar, with the norm around 1220ms asopposed to 1300ms for the shared runtime version, making the overhead of usingclosures in this case about 6.5%.Optimising memory layout of code and data for cache performance on asystem-wide basis is a large research topic, and beyond the scope of this dis-sertation. Intuitively, however, sharing code between domains should improveperformance in Nemesis as a result of the increased cache performance, as itdoes in other systems. The �ner granularity of sharing in Nemesis may causethis performance gain to outweigh the overhead of interface calls, however, accu-rately quantifying the bene�t of such sharing is di�cult in a system as sensitiveas the one used here. Increasing the associativity of one or more caches shoulddramatically improve the predictability of the system as well as its performance.
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3.7 SummaryNemesis programs and subsystems are composed of objects which communicateacross typed interfaces. Interface types are ADTs de�ned in theMiddl interfacede�nition language, which also supports de�nitions of concrete data types andexceptions. Objects are constructed by invocations across interfaces. There is noexplicit notion of a class. There are no well-known interfaces, but a number ofpervasive interfaces are regarded as part of a thread context.Interfaces are implemented as closures. The system is composed of statelessmodules which export constant closures. All linking between modules is dy-namic, and the system employs a single address space to simplify organisationand enhance sharing of data and text.A uniform, 
exible and extensible name service is implemented above inter-faces, together with a run time type system which provides dynamic types, typenarrowing, and information on type representation which can be used by thecommand language to interact with any system components.The single-address space aspect of Nemesis together with its programmingmodel based on objects rather than a single data segment prohibit the use of afork-like primitive to create domains. Instead, runtime facilities are provided toinstantiate a new domain speci�ed by an interface closure. The single addressspace enables the parent domain to hand o� stateful objects to the child.The performance overhead of using closures for linkage is small, roughly equiv-alent to the use of virtual functions in C++. However, it is clear that the cachedesign of the machines on which Nemesis currently runs presents serious obstaclesto the measurement of any performance bene�ts of small code size.
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Chapter 4
Scheduling and Events
This chapter describes the problem of scheduling applications in an operatingsystem from a QoS perspective. It discusses some existing techniques which havebeen applied to scheduling multimedia applications, and then describes the Neme-sis scheduler in detail. This scheduler delivers guarantees of processor bandwidthand timeliness by transforming the problem into two components: a soluble real-time scheduling problem and the issue of allocation of slack time in the system.The client interface is designed so as to support multiplexing of the CPU withinapplication domains, a requirement made all the more important by the use of anarchitecture which places much system functionality in the application. The useof event channels to implement inter-domain communication and synchronisa-tion is described, and �nally the problems of handling interrupts are mentioned,together with the solution adopted in Nemesis.4.1 Scheduling IssuesThe function of an operating system scheduler is to allocate CPU time to activitiesin such a way that the processor is used e�ciently and all processes1 make progressaccording to some policy.In a traditional workstation operating system this policy is simply that allactivities should receive some CPU time over a long period, with some having1The terms process and task are used interchangeably in this chapter to denote an activityschedulable by the operating system. 46



priority over others, but in a multi-service system the policy adopted must nowhave additional constraints based on the passage of real time.True real-time operating systems have quite strict constraints: in a hard real-time system correct results must be delivered at or shortly before the correcttime, or the system can be said to have failed. In a soft real-time system, thetemporal constraint on correctness is relaxed (results can be allowed to be a littlelate), though the results must still be logically correct (the computation musthave completed).Systems handling continuous media frequently have di�erent constraints: notonly can results sometimes be late, they can sometimes be incomplete as well.[Hyden94] gives examples of situations where computations on multimedia dataneed not complete for the partial results to be useful, and a useful taxonomyof algorithms which can make use of variable amounts of CPU time is given in[Liu91].Both the additional constraints on CPU allocation and the tolerant nature ofsome multimedia applications is apparent from attempts to capture and presentvideo and audio data using conventional unix workstations, for example theMedusa system [Hopper92]. Even with some hardware assistance, the audio isbroken and the picture jerky and sometimes fragmented when other processes(such as a large compilation) are competing for CPU time. However, su�cientinformation generally does get through to allow users to see and hear what isgoing on.Nemesis represents an attempt to do better than this: �rstly, to reduce thecrosstalk between applications so that the results are less degraded under load;secondly, to allow application-speci�c degradation (for example, in a way lessobvious to the human eye and ear); and thirdly to support applications whichcannot a�ord to degrade at all by providing real guarantees on CPU allocation.4.1.1 QoS Speci�cationBefore specifying mechanisms for multiplexing the processor among applicationswithin Nemesis, it is important to consider the representation of QoS used be-tween the operating system allocation mechanisms and applications. As in therest of this dissertation, CPU time is taken as an example since it is usually the47



most important resource. However, the principles given here apply to most sys-tem resources. The representation, a QoS speci�cation, must serve two purposes.Firstly, it must allow the application to specify its requirements for CPU time.From the application's point of view, the more sophisticated this speci�cation canbe, the better. However, at odds with the desire for expressiveness is the secondfunction of a QoS speci�cation: to enable the resource provider (in this case thescheduler) to allocate resources between applications e�ciently while satisfyingtheir requirements as far as possible. A key part of this is to be able to scheduleapplications quickly: the overhead of recalculating a complex schedule during acontext switch is undesirable in a workstation operating system. For this reason,it is di�cult (and may be unwise to try) to fully decouple the speci�cation ofCPU time requirements from the scheduling algorithm employed.There is a further incentive to keep the nature of a QoS speci�cation simple.Unlike the hard real-time case, most applications' requirements are not knownprecisely in advance. Furthermore, these requirements change over time; vari-able bit-rate compressed video is a good example. In these cases statistical orprobabilistic guarantees are more appropriate. Furthermore, the application be-ing scheduled is typically multiplexing its allocation of CPU time over severalactivities internally in a way that is almost impossible to express to a kernel-levelscheduler. Any measure of QoS requirements will be approximate at best.To summarise, the type of QoS speci�cation used by a scheduler will be a com-promise between the complexity of expressing fully the needs of any application,and the simplicity required to dynamically schedule a collection of applicationswith low overhead.4.2 Scheduling AlgorithmsAs well as the (relatively simple) code to switch between running domains, theNemesis scheduler has a variety of functions. It must:� account for the time used by each holder of a QoS guarantee and provide apolicing mechanism to ensure domains do not overrun their allotted time,� implement a scheduling policy to ensure that each contract is satis�ed,48



� block and unblock domains in response to their requests and the arrival ofevents,� present an interface to domains which makes them aware both of their ownscheduling and of the passage of real time,� provide a mechanism supporting the e�cient implementation of potentiallyspecialised threads packages within domains.The algorithm used to schedule applications is closely related to the QoS speci-�cation used, and for Nemesis a number of options were considered.4.2.1 PrioritiesPriority-based systems assign each schedulable process an integer representing itsrelative importance, and schedule the runnable process with the highest priority.They are generally unsuitable for supporting multimedia applications: [Black94]provides a comprehensive discussion of the problems of priority-based scheduling.While scheduling algorithms which are based on priority are often simple ande�cient, priority does not give a realistic measure of the requirements of anapplication: it says nothing about the quantity of CPU time an application isallocated. Instead a process is simply given any CPU time unused by a higher-priority application.Despite this, several operating systems which use priority-based scheduling,provide so-called real-time application priority classes, intended for multimediaprocesses. Examples include Sun Microsystems' Solaris 2 and Microsoft's Win-dows NT. Applications instantiated in this class run at a higher priority thanoperating system processes, such as pagers and device drivers. They are requiredto block or yield the CPU voluntarily every so often so that the operating systemand other applications can proceed. Failure to do this can cause the system tohang|the application has e�ectively taken over the machine. Furthermore, as[Nieh93] points out, it is nearly impossible in the presence of several real-timeapplications to assign priorities with acceptable results.
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4.2.2 Rate Monotonic[Liu73] describes the Rate Monotonic (RM) algorithm for scheduling o�-line aset of periodic hard real-time tasks, which essentially involves assigning staticpriorities to the tasks such that those with the highest frequency are given thehighest priority. The schedule calculated by RM is always feasible if the totalutilisation of the processor is less than ln2, and for many task sets RM producesa feasible schedule for higher utilisation. It relies on the following assumptionsabout the task set2:(A1) The requests for all tasks for which hard deadlines exist are periodic, withconstant interval between requests.(A2) Deadlines consist of run-ability constraints only|i.e. each task must becompleted before the next request for it occurs.(A3) The tasks are independent in that requests for a certain task do not dependon the initiation or the completion of requests for other tasks.(A4) Run-time for each task is constant for that task and does not vary withtime. Run-time here refers to the time which is taken by a processor toexecute the task without interruption.(A5) Any non-periodic tasks in the system are special; they are initialisation orfailure-recovery routines; they displace periodic tasks while they themselvesare being run, and do not themselves have hard, critical deadlines.4.2.3 Earliest Deadline FirstThe Earliest Deadline First (EDF) algorithm also presented in [Liu73] is a dy-namic scheduling algorithm which will give a feasible schedule when the CPUutilisation is 100%. It, too, relies on the assumptions of Section 4.2.2, and worksby considering the deadline of a task to be the time at which the results of itscomputation are due.EDF scheduling is used by the Sumo project at Lancaster University to sup-port continuous media applications over the Chorus microkernel [Coulson93].The system uses EDF to schedule a class of kernel threads over which user-level2These assumptions are quoted directly from [Liu73].50



threads are multiplexed. The deadlines are presented to the kernel scheduler bythe user tasks, a decision which has two consequences. Firstly, the guaranteesprovided by the EDF algorithm are now hints at best; deadlines can frequentlybe missed due to the unexpected arrival of a new task and deadline. Secondly,user-level schedulers are expected to cooperate and not present di�cult deadlinesto the kernel. If a user process (through error or malicious design) presents dead-lines requiring more of the CPU than the kernel expects to allocate, all tasks maybe disrupted. In other words, the policing mechanism is inadequate over short tomedium time periods.At �rst sight, the assumptions required by the static RM and dynamic EDFalgorithms seem to rule out their use in a general-purpose operating system:tasks which are periodic and independent with �xed run times are not the norm.In particular, the independence of tasks in the presence of shared server tasksposes a particular di�culty. However, in a system such as Nemesis, where sharedserver tasks are rarely called, EDF may have some bene�t, especially if the algo-rithm is viewed as a means of sharing the processor between domains rather thancompleting tasks from a changing set.4.2.4 Processor BandwidthThe Nemesis scheduler builds on many ideas in the Nemo system built by EoinHyden and described in [Hyden94]. In Nemo, applications negotiated contractswith the system for processor bandwidth (PB) in a manner analogous to modernhigh speed networks. The concept of PB consisted of a percentage share of theprocessor time together with some measure of the granularity with which theshare should be allocated. It can be represented as a pair (p; s), where the appli-cation will receive s seconds of processor time every p seconds, and so containsmeasures of both required bandwidth and acceptable jitter. An admission controlmechanism ensures that the system never contracts out more than 100% of theavailable PB.Nemo investigated use of both RM and EDF algorithms to schedule processes,and also optionally allowed applications to specify their own deadlines. It workedwell in practice, although it did not address the issue of handling interrupts fromdevices, and the problems of communicating domains. Nevertheless, the PB idea(together with elements of Nemo's client interface) have been used in Nemesis.In particular, it represents a highly appropriate form of QoS speci�cation.51



4.2.5 Fawn JubileesThe Fawn system [Black94] adopts a novel scheme whereby each process is allo-cated a particular slice of time over a system-wide, �xed period (31.5 millisecondsin the system reported), called a jubilee. All processes are scheduled in turnwithin a jubilee. At the end of the jubilee all allocations of CPU time are reset.Extra time remaining towards the end of a jubilee is dealt out using a hierarchyof queues: when a process runs out of time in a queue it is moved to the next lowerqueue. Each process has a number of di�erent allocations of time correspondingto di�erent queues it may �nd itself on. When one queue is empty, the schedulerstarts on the next queue down until the jubilee is over, thus guaranteed time ismerely the top-level time allocation.This approach was rejected at an early stage in the development of Nemesisdue to its in
exibility3. No guarantees are given about how often a process isscheduled other than the system-wide jubilee length, thus all processes must bescheduled with this frequency. Accounting is cheap since allocations only occuron jubilee boundaries, but if one process absolutely must be scheduled at somehigh frequency, then all processes must, resulting in an unacceptably high numberof context switches. For n processes, there must be n context switches per jubilee,and it may be impossible to schedule at this granularity.There are environments (such as the switch line cards on which Fawn was de-veloped) where this kind of scheduling mechanism is highly appropriate. However,it is less useful in a general-purpose operating system intended for workstations.4.3 Scheduling in NemesisScheduling in Nemesis is discussed in the next few sections. First, the servicemodel and architecture are presented: how clients of the scheduler view the ser-vices it provides. Then the algorithm itself is described, followed by the interfacebetween the scheduler and the client. Finally, the handling of event channels anddevice interrupts is discussed.3It should be noted that the algorithm referred to under the title `Interprocess Scheduling inNemesis' in [Black94] bears no resemblance to the Nemesis operating system described herein.
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4.3.1 Service Model and ArchitectureThe scheduler deals with entities called scheduling domains, or sdoms. An sdomcorresponds to either a single Nemesis domain or a set of domains collectivelyallocated a share of the available processor time. Each sdom receives a QoS fromthe system speci�ed by a tuple fs; p; x; lg. The slice s and period p togetherrepresent the processor bandwidth to the sdom: it will receive at least s secondsof CPU time in each period of length p. x is a boolean value used to indicatewhether the sdom is prepared to receive extra CPU time left over in the system.l, the unblocking latency, is described in Section 4.4.5 below.The precise nature of guarantee the Nemesis scheduler provides to an sdomis this: the scheduler will divide real time into a set of periods of length p forthe sdom in question, and during each period the sdom will receive the CPU forsome number of slices whose total length will be at least s.
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best-e�ort domains can be run in parallel without impacting the performance oftime-critical activities.4.3.2 Kernel StructureThe Nemesis kernel consists almost entirely of interrupt and trap handlers; thereare no kernel threads. When the kernel is entered from a domain (as opposedto another interrupt handler) a new kernel stack is created afresh in a �xed(per processor) area of memory. The domain operations described below such asblock, yield and send are implemented entirely in PALcode [Sites92], thoughthey may cause the scheduler to be entered. Having the operations entirely inPALcode reduces the number of full context switches required (the penalty fora PALcode trap is only two pipeline drains), and simpli�es the implementationsince PALcode executes with all internal chip registers available and all interruptsmasked. Interrupt dispatching is also performed in PAL mode.The scheduler is implemented as an Alpha/AXP software interrupt handler[DEC92], and so executes in the protection domain of the currently runningdomain. The scheduler is always the last pending interrupt to be serviced, andexecutes with all interrupts masked.4.4 The Nemesis SchedulerThe operation of the scheduler can now be described.4.4.1 Scheduler Domain StatesAn sdom can be in one of �ve states:� running� runnable� waiting� running optimistically� blocked 54



Running sdoms have one of their domains being executed by a processor, in timethat they have been guaranteed by system. Runnable sdoms have guaranteedtime available, but are not currently scheduled. Waiting sdoms are waiting fora new allocation of time, which will notionally be the start of their next period.During this time they may be allocated spare time in the system and `run opti-mistically'. Finally, they may be blocked until an event is transmitted to one oftheir domains.4.4.2 The Basic Scheduling AlgorithmWith each runnable sdom is associated a deadline d, always set to the time atwhich the sdom's current period ends, and a value r which is the time remainingto the sdom within its current period. There are queues Qr and Qw of runnableand waiting sdoms, both sorted by deadline, and a third queue Qb of blockedsdoms.The scheduler requires a hardware timer that will cause the scheduler to be en-tered at or very shortly after a speci�ed time in the future; ideally a microsecond-resolution interval timer. Such a timer is used on the EB64 board, but has to besimulated with a 122�s periodic ticker on the Sandpiper.When the scheduler is entered at time t as a result of a timer interrupt or anevent delivery:1. the time for which the current sdom has been running is deducted from itsvalue of r.2. if r is now zero, the sdom is inserted in Qw.3. for each entry on Qw for which t > d, r is set to s, and the new deadline d0is set to d+ p. This sdom is moved to Qr again.4. a time is calculated for the next timer interrupt depending on which of drand dw + pw is the lower, where dx is the deadline of the head of Qx, andpx is the period of the head of Qx.� if dr is the lower, the time is t + rr. This is the point when the headof Qr will run out of time.
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� otherwise, the time is dw. This is the time that the head of Qw willbecome runnable and take over from the head of Qr.The interval timer is set to interrupt at this time.5. the scheduler always runs the head of the run queue: the sdom with theearliest deadline.This basic algorithm will meet all contracts provided that the total share ofthe CPU does not exceed 100% (i.e. P si=pi < 1). Moreover, it can e�cientlysupport domains requiring a wide range of scheduling granularities.Firstly, note that the scheduler is only entered when a change of domain ispotentially necessary. Step 4 ensures that extra CPU time is only allocated tosdoms when the scheduler has been called for some other reason. The overheadfor actually allocating the time is very small indeed: the operation is a comparisonand an addition.Secondly, the existence of a feasible schedule (one which satis�es all contracts)is guaranteed by the admission control algorithm since the total share of theprocessor is less than 100%, and slices can be executed at any point during theirperiod. In the limit, all sdoms can proceed simultaneously with an instantaneousshare of the processor which is constant over time. This limit is often referred toas processor sharing [Co�man73]4.Finally if we regard a `task' as `the execution of an sdom for s nanoseconds',this approach satis�es the conditions required for an EDF algorithm to functioncorrectly: requests for tasks are periodic with �xed interval between requests andconstant run-time. All tasks are truly independent and non-periodic tasks do notexist, providing no new tasks are introduced into the system (see below). TheEDF result in [Liu73] shows that the algorithm does, in fact, work: all contractswill be met.This argument relies on two simpli�cations: �rstly, that scheduling overheadis negligible, and secondly that the system is in a steady state with no sdomsbeing introduced to or removed from the queues. These points are addressedbelow as well as the other elements of the scheduling algorithm, such as blockingand the use of slack time in the system.4I am indebted to Simon Crosby for this line of argument56



4.4.3 Taking overhead into accountScheduling overhead is currently made up for by `slack' time in the system (100%of the CPU is never contracted out), and by not counting time in the scheduler asused by anybody. This has worked very satisfactorily in practice under quite highload, with a reasonable number of domains. It is conceivable that a pathologicalcollection of periods and slices might induce the highest possible reschedule fre-quency, which is the frequency of the domain with the smallest period times thenumber of domains. However, this is intuitively highly unlikely, and with moreanalysis this might be avoided in the admission control system. Alternativelyit could be detected and dealt with at runtime, for example by renegotiatingcontracts to increase the slack time in the system.4.4.4 Removing Domains from the SystemAn sdom can cease to be considered by the scheduler in one of two ways. The�rst is that it can simply be killed: it is unlinked from its queue, its contractannulled and the storage it occupied returned to the free pool. This poses noparticular problems: the system will continue to schedule things as normal withmore slack time.Secondly, a domain can issue a block PALcode call, which sets a 
ag in thedomain's state indicating that it has requested a block, and enters the scheduler.The domain is descheduled as normal and placed on the blocked queue Qb. Asabove, no special action needs to be taken by the scheduler.If a domain has no further useful work to perform in its current period, itcan issue a yield call, which simply sets r := 0 for the domain and causes areschedule.4.4.5 Adding Domains to the SystemBy contrast, adding a domain to the set considered by the scheduler, whether bycreating a new domain or unblocking an existing one, is more complex since thetotal resource demand increases. The key issue is deciding the values of d and rfor the new domain. 57



If the sdom is to be introduced at time t, a safe option is to set d := t+ p andr := s. This introduces the sdom with the maximum scheduling leeway; since afeasible schedule exists no deadlines will be missed as a result of the new domain.For most domains this is su�cient, and it is the default behaviour for almostall domains. In the case of device drivers reacting to an interrupt, sometimesfaster response may be required. When unblocking an sdom which has beenasleep for more than its period, the scheduler sets r := s and d := t + l, wherel is the latency hint. For most sdoms l will be equal to p to prevent deadlinesbeing missed. For device drivers l may be reduced.The consequences of reducing l in this way are that if such an sdom is wokenup when the system is under heavy load, some sdoms may miss their deadlinefor one of their periods. The scheduler's behaviour in these circumstances is totruncate the running time of the sdoms: they lose part of their slice for thatperiod. Thereafter, things settle down.
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BlockFigure 4.2: Unfairness due to short blocksEven with sdoms for which l = p, a problem can arise if a domain is unblockedbefore the end of the period in which it was originally blocked (see �gure 4.2). Thepolicy above would give it a fresh allocation and period immediately, which is notentirely fair. One approach is leave r and d unchanged over the short block, butthis might cause other domains to miss their deadlines when the driver unblockswith a large allocation and very short deadline. Such situations are thereforetreated as if a yield had been executed, and the sdom is given its allocation atthe start of its next period (see �gure 4.3).
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Figure 4.3: Fairer unblocking4.4.6 Use of Extra TimeAs long as Qr is non-empty, the head is due some contracted time and shouldbe run. If Qr becomes empty, the scheduler has ful�lled all its commitments tosdoms until the head of Qw becomes runnable. In this case, the scheduler can optto run some sdom in Qw for which x is true, i.e. one which has requested use ofslack time in the system. Domains are made aware of whether they are runningin this manner or in contracted time by a 
ag in their control block.The current policy adopted by the scheduler is to run a random element of Qwfor a small, �xed interval or until the head of Qw becomes runnable, whichever issooner. Thus several sdoms can receive the processor `optimistically' before Qrbecomes non-empty. The optimal policy for picking sdoms to run optimisticallyis a subject for further research. The current implementation allocates a verysmall time quantum (122 �s) to a member of Qw picked cyclically. This workswell in most cases, but there have been situations in which unfair `beats' havebeen observed.4.5 Client InterfaceThe runtime interface between a domain and the scheduler serves two purposes:� It provides the application with information about when and why it is beingscheduled, and feedback as to the domain's progress relative to the passageof real time.� It supports user-level multiplexing of the CPU among distinct subtaskswithin the domain, for example by supporting a threads package.59



TimeThe abstraction of time used in the system is the same throughout: the systemassumes the presence of a world-readable clock giving time in nanoseconds sincethe machine started. In practice this will inevitably be an approximation, butit can be provided very simply and e�ciently by means of a single 64-bit wordin memory. There is no guarantee that this time value runs at precisely thesame rate as time outside the machine, nor is such assurance needed. Domainssynchronising to events clocked externally from the machine will need to makedomain-speci�c long-term adjustments anyway, and the passage of true, planet-wide time falls into this category also.Context SlotsA Nemesis domain is provided with an array of slots, each of which can hold aprocessor context. In the case of the Alpha/AXP implementation, a slot consistsof 31 integer and 31 
oating-point registers, plus a program counter and processorstatus word. Two of the slots are designated the activation context and resumecontext respectively; this designation can be changed at will by the domain. Adomain also holds a bit of information called the activation bit.Descheduling and ActivationA mechanism similar to Nemo's is used when the domain is descheduled. Thecontext is saved into the activation context or the resume context, depending onwhether the activation bit is set or not. When the domain is once again sched-uled, if its activation bit is clear, the resume context is simply resumed. If theactivation bit is set, it is cleared and an upcall takes place to a routine previouslyspeci�ed by the domain (in fact, an invocation occurs across an interface of typeDomainEntryPoint). This entry point will typically be a user-level thread sched-uler, but domains are also initially entered this way5. Figure 4.4 illustrates thetwo cases.The upcall occurs on a dedicated stack (in the domain control block) anddelivers information such as current system time, time of last deschedule, reasonfor upcall and context slot used at last deschedule. The state pointer for the5Indeed, a new domain to be started is speci�ed solely by its DomainEntryPoint closure.60
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Figure 4.4: Deschedules, Activations and Resumptionsclosure will contain enough information to give the domain a su�cient executionenvironment to schedule a thread.A threads package will typically use one context slot for each thread andchange the designated activation context according to which thread is running.If more threads than slots are required (currently 32), slots can be used as a cachefor thread contexts. The activation bit can be used with appropriate exit checksto allow the thread scheduler to be non-reentrant, and therefore simpler.Implementing threads packages over the upcall interface has proved remark-ably easy. A Nemesis module implementing both preemptive and non-preemptivethreads packages, providing both an interface to the event mechanism and syn-chronisation based on event counts and sequencers comes to about 900 lines ofheavily commented C (much of which is closure boilerplate) and about 20 assem-bler opcodes. A further module providing the thread synchronisation primitivesdescribed in [Birrell87] comes to 202 lines of C, including comments. For compar-ison, the POSIX threads library for OSF/1 achieves essentially the same function-ality over OSF/1 kernel threads with over 6000 lines of code, with considerablyinferior performance.4.6 Scheduling and CommunicationCommunication between domains is relevant to the scheduler because it maywell a�ect the optimal choice of domain to run. However, it is important not toallow communication to in
uence scheduling decisions to the extent that resourceguarantees are violated. 61



Inter-process communication generally has two aspects: �rstly the presenta-tion of information by one entity to another, and secondly a synchronisation signalby the sender to indicate that the receiver should take action. These componentsare orthogonal, and in Nemesis they are clearly separated. Information transferoccurs through areas of shared memory, and is discussed in chapter 5. Signallingbetween domains is provided by event channels. An event channel is a unidirec-tional connection capable of conveying single integer values and in
uencing thescheduler.In the context of this dissertation, the key points about event channels are asfollows:� They provide a communication and synchronisation mechanism which doesnot rely on a server (such as the kernel).� They impose no particular synchronisation policy on either of the domainsusing a channel. The e�ect of the arrival of an event for a domain is limitedto unblocking the domain if necessary, and causing a reactivation if thedomain is running.Event channels are more primitive than traditional communication mecha-nisms such as semaphores, event counts and sequencers, and message passing,in that they tend to transfer less information and are less coupled to the sched-uler. Such mechanisms can be built on top of event channels, and chapter 5describes how RPC, the most common form of inter-domain communication usedin Nemesis, is implemented over them.4.6.1 Channel End-PointsDomains are provided with arrays of transmit- and receive-side event channelend-points, analogous to sockets. An end-point may be in one of four states,shown in �gure 4.5. When the domain starts up all but two end-points areinitially free. The domain may Allocate an end-point of either type, which maysubsequently become connected as a result of either a Connect operation initiatedby the domain or the domain replying to an incoming connection request. If aconnection is closed down, the end-point enters a dead state, from which it canbe Freed. 62
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Figure 4.5: Event Channel End-Point StatesAs well as its current state, a receive-side end-point contains two 64-bit valuescalled received and acknowledged. If an end-point (of either 
avour) is in theconnected state, it also contains a (domain; index) pair giving its peer. Figure 4.6shows the user writable and user read-only portions of event end-points. It isimportant to note that the state of an end-point is represented by a combinationof a state word and the values of the peer �elds, in such a way that the twotransitions which require privileged actions (close and connect) rely only on�elds which cannot be written by the domain itself. In e�ect, the only end-pointstates seen by privileged code are `connected' and `not connected'.
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4.6.2 Sending EventsAn invocation to transmit an event takes as arguments the transmitter's chan-nel end-point, and a value to add to the receiver's count. The event deliverymechanism is required to perform sanity checks on the speci�ed event channel,increment the remote count, and if necessary signal to the scheduler that thetarget domain requires attention. The exact procedure is as follows:1. Validate the event channel end-point in the transmitter. Event channelsare speci�ed by an index in an array, so this involves a range check andensuring that the receive domain pointer is non-zero.2. The relevant end-point in the receiving domain is located and its receivedcount incremented by the value speci�ed in the call.3. Each domain has a FIFO holding receive-side event end-point indices, toaid in demultiplexing incoming events. If this FIFO is not full, the receiveend-point is entered into the FIFO.4. A 
ag is set in the domain to indicate that it has received one or moreevents.5. If this 
ag was previously clear, a reschedule is requested.Only information which is read-only to the user is examined during the call,much reducing the number of consistency checks that need to be performed atinvocation time. The procedure is implemented as the event PALcode call andthe entire code, including checks and error conditions, consists of 87 machineinstructions. For a multiprocessor version the code would be slightly longer, toinclude spinlocks on the event structures.The event delivery mechanism in the version of Nemesis described herein isquite conservative about reschedules: it requests a schedule whenever the targetdomain has not received any events since it last executed. Event delivery wasexpected to be more common than reschedules, so it was important to make theevent operation very fast.With experience, this tradeo� has proved inappropriate. Domains tend tobe scheduled quite frequently and so the scheduler is entered as a result of mostevent calls, often unnecessarily. The new version of Nemesis has a PALcode64



image6 which only enters the scheduler if the target is blocked or actually running.Otherwise, event processing by the scheduler is deferred until it is entered forother reasons.An important aspect of the event mechanism is that while it acts as a hintto the scheduler, causing it to unblock or reactivate a domain as necessary, thesending of an event does not in itself force a reschedule. Thus communication be-tween domains is decoupled from scheduling decisions to the extent that resourcecontracts are not a�ected by the transmission of events.4.6.3 Connecting and Disconnecting End-PointsThe process of event channel setup is carried out as much as possible withinthe two domains involved. A privileged third party is required to perform twofunctions:� Acting as an exchange for routing initial connection requests.� Filling in the event �elds not writable by the domains.This third party is called the Binder. Every domain is started up with initialevent channels to and from the Binder, and these are used for connection requests.Figure 4.7 shows the interaction with the Binder when domain d1 wishes to setup a connection to send events to d2.
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Figure 4.7: Event Channel Connection Setup6Written by Paul Barham. 65



A similar thing happens when the initiator wishes to receive events, or setup two event channels, one each way. Connection setup takes the form of twointer-domain RPC calls, one nested within another:1. Domain d1 sends a request to the Binder specifying a transmit end-pointit has allocated for itself (tx), the target domain d2, a service identi�er s,and a cookie c1. s is a 64-bit identi�er used to identify what domain d1actually wants to talk to in d2. c1 is another 64-bit number typically usedby the Inter-domain Communication mechanism to pass shared memoryaddresses, but it is ignored by the Binder.2. The Binder then calls a method of an interface in domain d2 passing theidenti�er of d1, s and c1. This interface has previously been registered withthe Binder by d2.3. If the connection request is accepted, d2 returns to the Binder a receiveend-point that it has allocated (rx) together with c2, a cookie of its own.4. The Binder �lls in the �elds of the two end-points tx and rx, thus creatingthe channel.5. The �rst call returns with the cookie c2. The connection has now beenmade.This is the only interaction required with the Binder. Close down of eventchannels is performed by the close PALcode routine, which zeroes the peerinformation in both end-points. The representation of end-point states withinthe domain is chosen so that this represents the dead state. If the caller is onthe transmit side, the PALcode also sends an event of value zero to the receivingdomain. This has the e�ect of alerting the domain to the demise of the channel.A channel closed by a receiver will cause an exception to the sender next time ittries to send on it.4.7 Device Handling and InterruptsThe Nemesis scheduler as described provides e�cient scheduling of domains withclear allocation of CPU time according to QoS speci�cations. Interrupts presenta problem to the scheduler, however, because CPU cycles used in the executionof an interrupt service routine are di�cult to account to a particular domain.66



Interrupts cause other problems for a system which attempts to give guar-antees on available time. In most existing operating systems, the arrival of aninterrupt usually causes a task to be scheduled immediately to handle the inter-rupt, preempting whatever is running. The scheduler itself is usually not involvedin this decision: the new task runs as an interrupt service routine.The interrupt service routine (ISR) for a high interrupt rate device can there-fore hog the processor for long periods, since the scheduler itself hardly gets achance to run, let alone another process. [Dixon92] describes a situation wherecareful prioritising of interrupts led to high throughput, but with most interruptsdisabled for a high proportion of the time.Sensible design of hardware interfaces can alleviate this problem, but devicesdesigned with this behaviour in mind are still rare, and moreover they do notaddress the fundamental problem: scheduling decisions are being made by theinterrupting device and interrupt dispatching code, and not by the system sched-uler, e�ectively bypassing the policing mechanism.The solution adopted in Nemesis decouples the interrupt itself from the do-main which is handling the interrupt source. Device driver domains register aninterrupt handler7 with the system, which is called by the interrupt dispatchPALcode with a minimum of registers saved. This ISR typically clears the con-dition, disables the source of the interrupt, and sends an event to the domainresponsible. This sequence is su�ciently short that it can be ignored from anaccounting point of view. For example, the ISR for the LANCE Ethernet driveron the Sandpiper8 is 12 instructions long.Since any domain can be running when the ISR is executed, a PALcode trapcalled kevent is used by the ISR to send the event. This call is similar to eventbut bypasses all checks and allows the caller to specify a receive end-point directly.It can only be executed from kernel mode.4.7.1 E�ect of Interrupt LoadAt low load, the unblocking latency hint l can be used by the device driver domainto respond to interrupts with low latency if necessary, while interrupts which donot need to be serviced quickly (such as those from serial lines) do not disturbthe scheduling of other tasks.7Actually a closure of type KernelEntryPoint.8Written by Paul Barham. 67



At a high interrupt rate from a given device, at most one processor interrupt istaken per activation of the driver domain, and the scheduling mechanism preventsthe driver from hogging the CPU. As the activity in the device approaches themaximum that the driver has time to process with its CPU allocation, the driverrarely has time to block before the next action in the device that would causean interrupt, and so converges to a situation where the driver polls the devicewhenever it has the CPU.When device activity is more than the driver can process, overload occurs.Device activity which would normally cause interrupts is ignored by the systemsince the driver cannot keep up with the device. This is deemed to be moredesirable than having the device schedule the processor: if the driver has all theCPU cycles, the `clients' of the device wouldn't be able to do anything with thedata anyway. If they could, then the driver is not being given enough processortime by the domain manager. The system can detect such a condition over alonger period of time and reallocate processor bandwidth in the system to adaptto conditions.4.8 Comparison with Related workThe client interface to the Nemesis scheduler is a development of that used in theNemo system; [Hyden94] gives an extensive survey of related schemes as well asdescribing Nemo in detail. This section presents a selection of scheduling systemsnot already mentioned which are of relevance to Nemesis.4.8.1 SchedulingThe Psyche system [Scott90] aims to support a number of di�erent schedulingpolicies and process models over the same hardware. Psyche uses an upcallmechanism to notify a user-level scheduler that it had received service by a virtualprocessor, which is analogous to a kernel thread in a traditional system. Upcallsare also used to support user-level threads packages in systems such as SchedulerActivations [Anderson92], but these systems rely on kernel threads in some form,adding to the number of register context switches needed and the amount ofstate required in the kernel. The underlying kernel-level scheduler in all casesdoes not use �ne-grained allocation of time, and time is not presented explicitlyto the user-level schedulers as a useful aid to scheduling. Psyche also provides a68



re-activation prior to de-scheduling as a hint to the user process that it is aboutto lose the processor. Such a mechanism was thought unnecessary in Nemesis,where applications are expected to adapt their behaviour over longer time scalesthan single time slices.Various algorithms have been produced to deliver a share of the CPU ratherthan priorities. A recent example, Lottery Scheduling [Waldspurger94] employsan interesting scheduler which uses a random probabilistic allocation of CPUtime. The abstraction used is that of tickets in a lottery: the more tickets aprocess has, the more likely it is to `win' the next scheduling slot, and so thegreater the share of the CPU it receives in the long run. The lottery modelcopes nicely with nested allocations of CPU time, but does not give a notion ofthe passage of real time, or allow domains to specify a particular granularity ofallocation. Like the Fawn system, allocation is based on a �xed ticker (100msin this case), allowing no precision in scheduling below this level. Furthermore,extra time in the system is implicitly handed out equally to all domains: there isno room for a tailor-able allocation policy.Processor Capacity Reserves [Mercer93] is a scheme similar to Nemesis inspecifying the service required by an application in terms of processor bandwidth.However, the problem of shared servers is addressed by having clients transferresource reservations to the server, with the server charging time to the client.This can create problems of QoS crosstalk between domains and also fails toaddress the problem of blocking synchronisation between domains. Nor is theallocation of slack time addressed: all processes are scheduled as best-e�ort duringslack time in the system.4.8.2 Communication and InterruptsThe method of interrupt handling in Nemesis somewhat resembles `structuredinterrupts' [Hills93], though the presence of a QoS -based scheduler gives consid-erably more incentive to use them.At least one recent ATM interface [Smith93] has resorted to polling on aperiodic timer interrupt to alleviate the problem of high interrupt rates. Nemesisnaturally converges to a polling system at high loads but retains the bene�ts ofinterrupt-driven operation when system load is low.
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In terms of inter-process communication, few systems have separated sig-nalling, synchronisation and data transfer to the extent that Nemesis has. Mostkernels (such as Mach [Accetta86] or Chorus [Rozier90]) provide blocking syn-chronisation primitives for kernel threads and message passing for inter-domaincommunication. Nemesis has no kernel threads and relies on user-space function-ality for data transfer. This di�erence is addressed in more detail in chapter 5.4.9 EvaluationTo examine the behaviour of the scheduler under load, a set of domains wererun over the Sandpiper version of the kernel, with a scheduler which used theprocessor cycle counter to record the length of time each domain ran betweenreschedules. The mix of domains was chosen to represent device drivers, appli-cations using blocking communication, and `free-running' domains able to makeuse of all available CPU cycles. The full set was as follows:� The middlc compiler, in a loop compiling a set of interface de�nitions. Thisdomain did not perform any communication, and simply ran `
at out'.� An application to draw an animation of a spacecraft on the screen, andprint logging information to the console driver using blocking local RPC.Two instantiations of this application were employed.� A console daemon, consisting of an interrupt driven UART driver and anRPC service used by the spacecraft domains.� An Ethernet monitor, which responded to each packet received from theEthernet interface in promiscuous mode and generated a graph of networkload on the screen.For an initial run, the QoS parameters used in table 4.1 were used. The resultsare shown in �gure 4.8.In these graphs each data point represents the CPU time used by a domainsince the previous point. Points are plotted when a domain passes a deadline(and so receives a new allocation of CPU time), or when it blocks or unblocks.This representation is chosen because it makes clear exactly what the scheduler isdoing at each point, information that would be obscured by integrating the time70
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(b) Total timeFigure 4.8: CPU allocation under 70% load.
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QoS parameters (�s)p s l CPU shareConsole daemon 14000 1400 14000 10%Ethernet monitor 2000 200 200 10%Spacecraft 1 10000 100 10000 10%Spacecraft 2 10000 2000 10000 20%Middl compiler 25000 5000 25000 20%Total: 70%Table 4.1: QoS parameters used in �gure 4.8
QoS parameters (�s)p s l CPU shareConsole daemon 14000 350 14000 2.5%Ethernet monitor 4000 160 160 4%Spacecraft 1 10000 2000 10000 20%Spacecraft 2 10000 4350 10000 43.5%Middl compiler 25000 7500 25000 30%Total: 100%Table 4.2: QoS parameters used in �gure 4.9
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used over one or more allocation periods. Short vertical troughs in the traces forspacecraft domains correspond to blocks.Allocation of guaranteed CPU time is clearly fairly accurate. Accounting andscheduling within Nemesis is performed at the granularity of the system clock,which in this case is 122�s. Thus a small amount of jitter is introduced into eachdomain's allocation on every reschedule. This is the reason why middlc has ahigher jitter than the other domains: since its period is longer, it will experiencemore reschedules per period.Figure 4.8 shows that the pseudo-random algorithm for allocating extra timeleaves something to be desired: the allocation to a given domain is fair over along time scale, but can vary wildly from period to period.4.9.1 Behaviour Under Heavy LoadThe next run used the QoS parameters shown in table 4.2.In theory all the processor time in the system was committed at this point,although since the console driver is blocked for much of the time there is still asmall amount of leeway. Figure 4.9 shows the result: contracted time allocationis still very stable, even when the amount of slack time available to domains issmall.4.9.2 Dynamic CPU reallocationAn important feature of Nemesis is its ability to reallocate resources dynamically,under user or program control. Figure 4.10 shows this in action. The experimentused the same QoS parameters in table 4.2, except the slice length for somedomains was altered at roughly 5, 10 and 12 seconds into the experiment. Thevalues of s used are shown in table 4.3.This reallocation was achieved by simply altering the values of the s �eld inthe domain control blocks, and shows how the scheduler can cope immediatelywith the new distribution of resources, even when the system load is pushed upto 100%. In practice this reallocation would be subject to an admission controlprocedure to ensure that the processor was never over-committed.73
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Value of s (�s)0-5 sec. 5-10 sec. 10-12 sec. 12-22 sec.Spacecraft 2 3000 4250 4250 5350Middl compiler 7500 7500 5000 5000Total CPU share committed86.5% 99% 89% 100%Table 4.3: Changes in CPU allocation in �gure 4.104.9.3 E�ect of Interrupt LoadFigure 4.11 illustrates the e�ective decoupling of domain scheduling from inter-rupt handling in Nemesis. It shows a trace of time allocated to the Ethernetload monitor during the experiment shown in �gure 4.9. The load monitor usesthe LANCE Ethernet interface on the Sandpiper in promiscuous mode to draw abar on the screen corresponding to current Ethernet usage. The reception of anEthernet packet causes an interrupt, which in turn causes an event to be sent tothe domain.The �rst point to note is that most of the time, a reschedule is occurringupon the receipt of every packet on the network. Despite this, and the relativelylow CPU allocation given to the domain (4% of the total available), almost allEthernet packets are processed.The second and more important point is that this activity is not interfer-ing with the rest of the system. The load monitor is running with slightly lessCPU time guaranteed to it than it really requires: during the 18 seconds of therun about 12 bu�er overruns occurred9. Since the system as a whole is heavilycommitted, the time available to the domain has been limited and the interruptrate on the device is prevented from impacting on the performance of the otherdomains in the system.9The monitor is capable of processing every packet if it is given about 5% of the processor.75



4.9.4 Scheduler OverheadTo obtain an idea of how much of the processor's time was spent scheduling, thescheduler was instrumented using the processor cycle counter on the 21064 pro-cessor. The system was run with a set of 7 domains: 6 application domains whichdrew animations on the screen and performed RPCs to write logging informationto a 7th domain implementing an interrupt-driven console driver. Rescheduleswere therefore being caused by time-slicing interrupts, events sent by domains,block requests from domains, and events generated by the UART interrupt ser-vice routines. This provided a plausible approximation to the system under realload.Each of the application domains was receiving a guaranteed 400�s of processortime every 3600�s, and the console driver was receiving 1400�s every 14000�s.The system was therefore about 77% committed. An 8th domain, the DomainManager, was blocked throughout the run. 30000 passes through the schedulerwere observed; this took about 5 seconds. The cache artifacts reported in chapter3 caused some problems, but a coherent picture emerged. Figure 4.12 shows thedistribution of times taken to calculate a new schedule.
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is 1.37�s not including context switch overhead, and most schedules take under4�s. The four peaks in the graph correspond to tasks the scheduler may or maynot need to perform during the course of a reschedule, namely:1. The case when no priority queue manipulation is required; it is this casewhich is most likely to be produced by the event delivery optimisationsmentioned in section 4.6.2.2. Moving one sdom between Qr and Qw.3. Handling the arrival of events, including blocking and unblocking domains.Also moving more than one domain between queues.4. Combinations of 2 and 3.The scheduler is not a well-tuned piece of software at present: is was writ-ten with comprehensibility and ease of experimentation in mind more than rawperformance. Despite this, it represents on average less than 2% overhead at thefastest reschedule rate possible on a Sandpiper (about once every 122�s). Thecost of unblocking domains could be signi�cantly reduced by re-implementing thealgorithm which �nds the domain to unblock: it is currently a linear scan of thequeue10.4.9.5 Scheduler ScalabilityThe execution time of the scheduler depends on the number of domains beingscheduled. Aside from the unblocking search mentioned above, the dependencyis entirely due to the queue manipulation functions. The queues are implementedas heaps, so one would expect the relation between reschedule time and numberof domains to be logarithmic.Figure 4.13 shows the result of performing the experiment in section 4.9.4 withvarying numbers of domains, altering the allocation period for the applicationdomains to keep their total processor bandwidth at 67%, with slices of 400�s.The results tend to support the hypothesis that scheduling overhead is logarithmicwith the number of domains. Furthermore the incremental cost of extra domains10At time of writing, a new version of Nemesis incorporates modi�cations to the schedulerby David Evers to remove this bottleneck. 77
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Figure 4.13: Cost of reschedule with increasing number of domainsabove about 10 is very small (a few nanoseconds), resulting in an highly scalableas well as e�cient scheduler.The anomaly in the case of 3 domains is believed to be an artifact of the heapmanipulation procedures.4.9.6 Event deliveryThe time taken to deliver an event to a domain has been measured at roughly2.3�s. This does not include the scheduler processing required. In a heavilyloaded system event processing for several domains will be performed in a singlepass through the scheduler, resulting in a reduction in this overhead over alldomains.Section 5.5.1 presents the results of timing RPC calls built over the eventmechanism.
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4.10 SummaryThis chapter has discussed scheduling in operating systems, and in particular therequirements of continuous media applications, which frequently occupy a regiondistinct from hard and soft real-time applications but are still time-sensitive.The form and meaning of a QoS speci�cation with regard to CPU time has beendiscussed.Various approaches to scheduling in multi-service operating systems have beendescribed, culminating in the scheduler used in Nemesis. The latter separates thegeneral QoS-based scheduling problem into two components: that of deliveringguaranteed CPU time and that of allocating slack time in the system. The �rstproblem is mapped onto one which is solved using Earliest Deadline First tech-niques whilst still enabling strict policing of applications. The present solutionto the second problem is simple and reasonably e�ective; re�ning it is a subjectfor future research.The scheduler is fast, scalable, and permits domains to be scheduled e�cientlysubject to QoS contracts even when nearly all processor time has been contractedout to domains. Furthermore, allocation of processor share to domains can beeasily varied dynamically without requiring any complex scheduling calculations.The client interface to the scheduler is based on the idea of activations. Itmakes applications aware of their CPU allocation and provides a natural basisfor the implementation of application-speci�c threads packages, of which severalhave been produced.The only kernel-provided mechanism for inter-domain communication is theevent channel, which transmits a single value along a unidirectional channel.Event arrival unblocks a blocked domain and causes reactivation in a runningdomain.Interrupts are integrated at a low level by means of simple �rst-level inter-rupt handlers with most processing occurring within application domains. Theactivation interface allows this to be achieved with a small interrupt latency atlow machine load, and the policing mechanism ensures that high interrupt ratesdo not starve any processes under high load.
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Chapter 5
Inter-Domain Communication
The basic method for communication between Nemesis domains is the event chan-nel mechanism described in chapter 4. However, it is clearly desirable to providefacilities for communication at a higher level of abstraction. These communica-tion facilities come under the general heading of Inter-Domain Communication(IDC).Nemesis provides a framework for building IDC mechanisms over events. Useis made of the run-time type system to allow an arbitrary interface to be madeavailable for use by other domains. The basic paradigm is dictated by theMiddlinterface de�nition language: Remote Procedure Call (RPC) with the additionof `announcement' operations, which allow use of message passing semantics.This chapter discusses the nature of IDC in general, and then describes indetail the Nemesis approach to inter-domain binding and invocation, includingoptimisations which make use of the single address space and the system's no-tion of real time to reduce synchronisation overhead and the need for protectiondomain switches.5.1 GoalsMost operating systems provide a basic IDC mechanism based on passing mes-sages between domains, or using RPC [Birrell84]. The RPC paradigm was chosenas the default mechanism for Nemesis, because it �ts in well with the use of in-terfaces, and does not preclude the use of other mechanisms.80



The use of an RPC paradigm for communication in no way implies the tra-ditional RPC implementation techniques (marshalling into bu�er, transmissionof bu�er, unmarshalling and dispatching, etc.). This should not be surprising,since RPC is itself an attempt to make communication look like local procedurecall. There are cases where the RPC programming model is appropriate, but theunderlying implementation can be radically di�erent. In particular, with the richsharing of data and text a�orded by a single address space, a number of highlye�cient implementation options are available.Furthermore, there are situations where RPC is clearly not the ideal paradigm:for example, bulk data transfer or continuous media streams are often best han-dled using an out-of-band RPC interface only for control. [Nicolaou90] describesearly work integrating an RPC system for control with a typed stream-basedcommunication mechanism for transfer and synchronisation of continuous mediadata.The aim in building RPC-based IDC in Nemesis was not to constrain allcommunication to look like traditionally-implemented RPC, but rather to:1. provide a convenient default communication mechanism,2. allow a variety of transport mechanisms to be provided behind the sameRPC interface, and3. allow other communication paradigms to be integrated with the IDC mech-anism and coexist with (and employ) RPC-like systems.5.2 BackgroundThe design of an RPC system has to address two groups of problems: the cre-ation and destruction of bindings, and the communication of information acrossa binding.Operating systems research to date has tended to focus on optimising theperformance of the communication systems used for RPCs, with relatively littleattention given to the process of binding to interfaces. By contrast, the �eld ofdistributed processing has sophisticated and well-established notions of interfacesand binding. 81



5.2.1 BindingIn order to invoke operations on a remote interface, a client requires a localinterface encapsulating the engineering needed for the remote invocation. Thisis sometimes called an invocation reference. In the context of IDC a binding isan association of an invocation reference with an interface instance. In NemesisIDC an invocation reference is a closure pointer of the same type as the remoteinterface, in other words, it is a surrogate for the remote interface.An interface reference is some object containing the information needed toestablish a binding to a given interface. To invoke operations on a remote inter-face, a client has to have acquired an interface reference for the interface. It must�rst establish a binding to the interface (so acquiring an invocation reference),and then use the invocation reference to call operations in the remote interface.An interface reference can be acquired in a variety of ways, but it typicallyarrives in a domain as a result of a previous invocation. Name servers or tradersprovide services by which clients can request a service by specifying its properties.An interface reference is matched to the service request and then returned to theclient. Such services can be embedded in the communication mechanism, but ifinterface references are �rst-class data types (as they are in Nemesis) traders aresimply conventional services implemented entirely over the IDC mechanism. Thisleads to a programming model where it is natural to create interface referencesdynamically and pass them around at will.In the local case (described in chapter 3), an interface reference is simply apointer to the interface closure, and binding is the trivial operation of reading thepointer. In the case where communication has to occur across protection domainboundaries (or across a network), the interface reference has to include rathermore information and the binding process is correspondingly more complex.Strictly speaking, there is a subtle distinction between creating a binding(simply an association) and establishing it (allocating the resources necessary tomake an invocation). This distinction is often ignored, and the term interfacereference used to refer to an invocation reference. This leads to systems where thetrue interface reference itself is hidden from the client, which only sees invocationreferences.
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Implicit bindingAn implicit binding mechanism creates the engineering state associated with abinding in a manner invisible to the client. An invocation which is declared toreturn an interface reference actually returns a closure for a valid surrogate forthe interface. Creation of the surrogate can be performed at any stage betweenthe arrival of the interface reference in an application domain and an attemptby the application to invoke an operation on the interface reference. Indeed,bindings can time out and then be re-established on demand.The key feature of the implicit binding paradigm is that information aboutthe binding itself is hidden from the client, who is presented with a surrogateinterface indistinguishable from the `real thing'.Implicit binding is the approach adopted by many distributed object systems,for example Modula-3 Network Objects [Birrell93] and CORBA [Obj91]. It isintuitive and easy to use from the point of view of a client programmer. Formany applications, it provides all the functionality required, provided that agarbage collector is available to destroy the binding when it is no longer in use.The Spring operating system [Hamilton93a] is one of the few operating sys-tems with a clear idea of binding. Binding in Spring is implicit. It uses theconcept of doors, which correspond to exported interfaces. A client requires avalid local door identi�er to invoke an operation on a door; an identi�er is boundto a door by the kernel when the door interface reference arrives in the domain.Binding is hidden not only from the client but also from the server, which is gener-ally unaware of the number of clients currently bound to it. Spring allows a serverto specify one of a number of mechanisms for communication when the serviceis �rst o�ered for export. These services are called subcontracts [Hamilton93b].However, there is no way for the mechanism to be tailored to a particular typeof service.Explicit bindingTraditional RPC systems have tended to require clients to perform an explicitbind step due to the di�culty of implementing generic implicit binding. The ad-vent of object-based systems has recently made the implicit approach prominentfor the advantages mentioned above. 83



However, implicit binding is inadequate in some circumstances, due to thehidden nature of the binding mechanism. It assumes a single, `best e�ort' levelof service, and precludes any explicit control over the duration of the binding.Implicit binding can therefore be ill-suited to the needs of time-critical applica-tions.Instead, bindings can be established explicitly by the client when needed. Ifbinding is explicit, an operation which returns an interface reference does notcreate a surrogate as part of the unmarshalling process, but instead provides alocal interface which can be later used to create a binding. This interface canallow the duration and qualities of the binding to be precisely controlled at bindtime with no loss in type safety or e�ciency. The price of this level of control isextra application complexity, which arises both from the need to parametrise thebinding and from the loss of transparency: acquiring an interface reference froma locally-implemented interface can now be di�erent from acquiring one from asurrogate.Some recent research, notably ANSA Phase III [Otway94], is developing so-phisticated binding models which are type-safe and encompass both implicit andexplicit binding to support QoS speci�cation at the level of RPC invocations.Much terminology used in this chapter is borrowed from the ANSA BindingModel, and Nemesis IDC binding shares many concepts with ANSA.Finally, note that the behaviour of the server is independent of whether clientbinding is performed explicitly or implicitly, since the same communication mech-anism is likely to be used in both cases for setting up the binding.5.2.2 CommunicationThe communication aspect of IDC (how invocations occur across a binding) isindependent of the binding model used. Ideally, an IDC framework should beable to accommodate numerous di�ering methods of data transport within thecomputational model. Current operating systems which support RPC as a localcommunications mechanism tend to use one of two approaches to the problem ofcarrying a procedure invocation across domain boundaries: message passing andthread tunnelling.
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Message PassingOne approach is to use the same mechanism as that used for remote (cross-network) RPC calls: a bu�er is allocated, arguments are marshalled into it, andthe bu�er is `transmitted' to the server domain via the local version of the networkcommunication mechanism. The client then blocks waiting for the results to comeback. In the server a thread is waiting on the communication channel, and thisthread unblocks, processes the call, marshals results into a bu�er and sends itback. The client thread is woken up, unmarshals the results, and continues.Much recent research has concentrated on reducing the latency for this kindof invocation, mostly by raising the level at which the optimisations due to thelocal case are performed. Since the local case can be detected when the bindingis established, an entirely di�erent marshalling and transmission mechanism canbe used, and hidden behind the surrogate interface. Frequently one bu�er is usedin each direction, mapped into both domains with appropriate protection rights.This means the bu�er itself does not need to be copied, values are simply writtenin on one side and read out on the other.The ultimate latency bottleneck in message-passing comes down to the timetaken to copy the arguments into a bu�er and perform a context switch, therebyinvoking the system scheduler.Thread tunnellingThis bottleneck can often be eliminated by leaving the arguments where theyare when the surrogate is called (i.e., in registers), and `tunnelling' the threadbetween protection domains. Care must be taken with regard to protection ofstack frames, etc, but very low latency can be achieved. The scheduler itself canbe bypassed, so that the call simply executes a protection domain switch.Lightweight RPC [Bershad90] replaced the Taos RPC mechanism for the caseof same machine invocations with a sophisticated thread-tunnelling mechanism.Each RPC binding state includes a set of shared regions of memory maintainedby the kernel called A-stacks, which hold a partial stack frame for a call, and aset of linkage records. Each thread has a chain of linkage records, which holdreturn addresses in domains and are used to patch the A-stack during call returnfor security. LRPC uses a feature of the Modula-2+ calling conventions to holdthe stack frame for the call in the A-stack, while executing in the server on a85



local stack called the E-stack, which must be allocated by the kernel when thecall is made. Various caching techniques are used to reduce the overhead of thisoperation so that it is insigni�cant in the common case. To address the problemof threads being `captured' by a server domain, a facility is provided for a clientto create a new thread which appears to have returned from a given call.For RPC calls which pass arguments too large to be held in registers, or whichrequire kernel validation, other mechanisms must be used. For example, Springfalls back on message passing for large parameters, and the nucleus must performaccess control and binding when doors are passed between domains.A slightly di�erent approach is used by the Opal system [Chase93]. Opaluses binding identi�ers similar to Spring doors, conveniently called portals. Call-ing through a portal is a kernel trap which causes execution at a �xed addressin the server protection domain. Unlike doors, however, portals are named bysystem-wide identi�ers which can be freely passed between domains, and so any-one can try to call through a portal. Security is implemented through check�elds validated at call time, and password capabilities. An RPC system basedon surrogates is built on top of this mechanism. This approach reduces kerneloverhead over Spring at the cost of call-time performance.In all cases, the performance advantage of thread tunnelling comes at a price:since the thread has left the client domain, it has the same e�ect as having blockedas far as the client is concerned. All threads must now be scheduled by the kernel(since they cross protection domain boundaries), thus applications can no longerreliably internally multiplex the CPU. Accounting information must be tied tokernel threads, leading to the crosstalk discussed in chapter 2.5.2.3 DiscussionRPC invocations have at least three aspects:1. The transfer of information from sender to receiver, whether client or server2. Signalling the transfer of information3. The transfer of control from the sender to the receiverThe thread tunnelling model achieves very low latency by combining all compo-nents into one operation: the transfer of the thread from client to server, using86



the kernel to simulate the protected procedure calls implemented in hardware on,for example, Multics [Organick72] and some capability systems such as the CAP[Wilkes79]. These systems assumed a single, global resource allocation policy, sono special mechanism was required for communication between domains.With care, a message passing system using shared memory regions mappedpairwise between communicating protection domains can provide high through-put by amortising the cost of context switches over several invocations, in otherwords by having many RPC invocations from a domain outstanding. This sep-aration of information transfer from control transfer is especially bene�cial in ashared memory multiprocessor, as described in [Bershad91].Of equal importance to Nemesis is that the coupling of data transfer andcontrol transfer in tunnelling systems can result in considerable crosstalk betweenapplications, and can seriously impede application-speci�c scheduling.5.2.4 Design PrinciplesA good RPC system provides high throughput and low latency, and should beas easy as possible for a programmer to use without compromising 
exibility orexpressiveness. A number of design principles can be identi�ed:1. The invocation path should be fast. In cases where it is acceptable tosacri�ce security and other guarantees in the interest of performance, thisshould be possible without introducing undue complexity into the API.2. Since much code is shared, and re-compilation of code is much less frequentthan the creation and destruction of services, as much optimisation andchecking as possible should be performed at compile time.3. Since creation and destruction of connections to services is less frequentthan invocations, as much runtime optimisation and checking as possibleshould be performed well before any calls between from a particular clientto a server are actually made.4. To support an object-based (or interface-based) programming paradigm, itshould be easy to create and destroy services dynamically, and pass refer-ences to them freely around the system.87



5. The common case in the system should be very simple to use, withoutcompromising the 
exibility needed to handle unusual cases.Communication in Nemesis has been designed with these goals in mind.5.3 Binding in NemesisThis section describes how IDC bindings are created between domains in Neme-sis. Although designed for a single machine and address space, the architecturehas many similarities with ideas developed in the �eld of distributed namingand binding, in particular ANSA Phase III. As a local operating system IDCmechanism, it has a number of novel features:� All interfaces are strongly typed. Most type checking is done at compile-time. Run-time type checking is highly e�cient.� Multiple classes of communication mechanism are supported. The particu-lar implementation of IDC transport is chosen by the server domain whena service is exported.� Optimisations can be integrated transparently into the system. These in-clude the elimination of context switches for invocations which do not alterserver state, and relaxation of synchronisation conditions and security incertain circumstances.� Both implicit and explicit binding are supported. The binding model isdetermined by the client independently of the class of IDC communicationemployed. Precise control over the duration and qualities of a binding ispossible.5.3.1 InfrastructureThe system-wide infrastructure for IDC in Nemesis consists of the Binder andevent delivery mechanism (discussed in chapter 4) and various modules, each ofwhich implements a class of IDC transport. In addition, there are stub mod-ules which encapsulate code speci�c to the remote interface type, and a numberof support objects which are instantiated by domains wishing to communicate.These include object tables and gatekeepers.88



Object TablesA domain has an object table which can map an interface reference either to apreviously created surrogate or to a `real' interface closure, depending on whetherthe service is local or not. It is used in a similar way to the Modula-3 objecttable [Evers93], except that Nemesis does not implement garbage collection.GatekeepersMost classes of IDC communication mechanism use shared memory bu�ers forcommunication of arguments and results. Thus when establishing a binding, bothclient and server need to acquire regions of memory which are mapped read-onlyto the other domain. A per-domain service called a gatekeeper maps protectiondomains to memory heaps. The precise mapping is domain-dependent: for ex-ample, a domain may use a single, globally readable heap for all communicationwhen information leakage is not a concern, or can instantiate new heaps on a per-protection domain basis. This allows a domain to trade o� security for e�ciencyof memory usage.Stub modulesA stub module implements all the type-speci�c IDC code for an interface type.This includes a number of components:� An operation table for the client surrogate. Each operation marshals therelevant arguments, signals that the data is ready, and blocks the threadwaiting for a reply. When this arrives, it unmarshals the results, and ifnecessary dispatches any exceptions which have been raised.� The dispatch procedure for the server side. This is called by the serverthread corresponding to a binding when an invocation arrives. It unmar-shals arguments for the appropriate operation, invokes the operation in thetrue interface, catches any exceptions and marshals them or the results intothe bu�er.� A stub record. This includes information on the type of interface this is astub module for, together with information useful at bind time such as thesize of bu�ers needed for the binding.89



A stub module such as this can be generated automatically by the Middl com-piler. Other stubs, implementing caching, bu�ering or the more specialised opti-misations mentioned below can be built from a mixture of generated and hand-written code. Stub modules are installed by the system loader in a namingcontext which allows them to be located based on the type they support.5.3.2 Creating an o�erTo export an IDC service, a domain uses an instance of an IDCTransport closuretype. Typically there will be several available, o�ering di�erent classes of IDCtransport. The class of transport used determines the underlying communicationimplementation to be employed. The domain also uses an object table (of typeObjectTbl), which provides two closures. The �rst is used by the domain toregister and lookup interface references and o�ers, and the second is invoked bythe system Binder when a client wishes to bind to an interface that the domainhas exported.The situation in �gure 5.1 shows a situation in which a domain has decided too�er for export an interface of type FileSystem. The domain invokes the Offeroperation of the IDCTransport, passing the FileSystem closure as a Type.Any.The ObjectTbl is accessible through the pervasive record.
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Figure 5.1: Creating a service o�erIf all goes well, the result should be as shown in �gure 5.2. The IDCTransporthas created two new closures of types IDCService and IDCOffer. The IDCServiceclosure allows the domain to control the operation of the o�er, for example it al-lows the o�er to be withdrawn and the state associated with it destroyed. It also90



provides an operation used internally for binding to the service. Not shown isthe stub module, located at this time by looking up the name `FileSystem' in anappropriate naming context maintained by the loader.The IDCOffer itself is what is handed out to prospective clients, for example itcan be stored as a Type.Any in some naming context. In other words, it functionsas an interface reference. It is e�ectively a module (its operations can be invokedlocally in any domain), and it has a Bind operation which attempts to connectto the real service. The type of service referred to by an o�er is available as atype code. The closure (code and state) is assumed to be available read-only toany domain which might wish to bind to it.A �nal consequence of o�ering a service is that the o�er is registered in theserver domain's object table. This is so that if the server domain receives the o�erfrom another domain at some later stage, it can recognise it as a local interfaceand need not perform a full bind to it.5.3.3 Binding to an o�erGiven an IDCOffer closure, a client can invoke the Bind operation to attemptto connect to the server. The IDCOffer operates as a local interface, and uses
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Figure 5.2: The result of o�ering a service91



the client's local state to call the Binder with a request to set up event channelsto the server domain, passing the o�er interface reference as an identi�er (�gure5.3).
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Figure 5.3: An attempt to bind to an o�erSince the client is e�ectively executing some code supplied by the server in theclient's protection domain, there is conceivably a security problem here. However,since all o�ers generated by a particular transport class share the same operationtable1, and the number of di�erent transport classes in the system is small, it isa simple matter for a concerned client to copy the closure record and validate theaddress of the operation table. A similar mechanism is used in Spring.The Binder in turn calls the object table in the server domain, which deter-mines which IDCService closure corresponds to the o�er. The Bind operation onthis closure is called. This invocation creates the state (shared memory bu�ers,event channel end-points, threads, etc.) for the binding. It also creates a closureof type IDCServerStub, which allows the server domain to close down a binding,for example.It is at this point that access control on the interface is exercised. How thisis performed is, once again, up to the server. The object table could hold accesscontrol lists, for example. Alternatively, the IDCService could implement arather more application-speci�c policy. The exchange of cookies can be used formore secure authentication if necessary.Information for creating the connection between the client and server domainsis passed back to the Binder. The Binder connects the event channel end-points1Regardless of type 92



in client and server domains, and returns from the call by the IDCOffer in theclient's domain. Finally, the Bind call to the o�er returns after creating twoclosures: the �rst is of the same type as the service and acts as the surrogate.The second is of type IDCClient and allows the client domain to manipulatethe binding in certain ways (for example, to close it down). At this stage thesituation looks like �gure 5.4. All the state required for the binding has beencreated in both client and server domains.
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Figure 5.4: The result of a successful bind5.3.4 Naming of Interface ReferencesIn this binding system the interface reference which is passed between domainsis a pointer to the IDCOffer closure. Possession of an interface reference doesnot imply any kind of access rights to the service. Rather, the interface referenceis simply a low-level name for the service. Access control is carried out by theserver domain at bind time, so the kernel does not need to enforce restrictions onhow interface references are passed between domains2.2In this respect, the statement concerning unguessable interface references in Nemesis onpage 56 of [Black94] is incorrect. 93



As with any other value in the system, the IDCOffer may be installed at willin the name space. This is made possible by the highly orthogonal nature of theNemesis naming scheme: any value can be named, and because of the explicitnature of interface references (closure pointers in the local case and IDCOffersin the remote case) there is little reliance on name space conventions, with theirassociated management problems.5.4 CommunicationOne of the principal bene�ts of the binding model is that by allowing the server todictate the transport mechanism used, it allows great 
exibility in implementingcommunication across a binding.Coupled with the use of a single address space, a number of useful optimi-sations are possible in the case of communication between domains on a singlemachine, without a�ecting the performance of conventional RPC. In this sectionseveral increasingly specialised optimisations are described, starting with the de-fault Nemesis local RPC transport.5.4.1 Standard mechanismThe `baseline' IDC transport mechanism (and the �rst to be implemented) op-erates very much like a conventional RPC mechanism. The bind process createsa pair of event channels between client and server. Each side allocates a sharedmemory bu�er of a size determined from the stub record of the o�er and froma heap determined by the domain's gatekeeper, which ensures that it is mappedread-only into the other domain. The server creates a thread which waits on theincoming event channel.An invocation copies the arguments (and the operation to be invoked) into theclient's bu�er and sends an event on its outgoing channel, before waiting on theincoming event channel. The server thread wakes up, unmarshals the argumentsand calls the concrete interface. Results are marshalled back into the bu�er, orany exception raised by the server is caught and marshalled. The server thensends an event on its outgoing channel, causing the client thread to wake up.The client unmarshals the results and re-raises any exceptions.94



Stubs for this transport are entirely generated by the Middl compiler, andthe system is good enough for cases where performance is not critical. The initialbindings domains possess to the Binder itself use this transport mechanism.5.4.2 Constant Read-only DataFor information which does not change, or which is guaranteed to be read andwritten atomically (for example, single machine words), data can simply be madereadable in the client domain. All `IDC' transport code is executed within theclient's domain, and no communication need occur. The Domain interface (whichpresents the client interface to the kernel scheduler and the domain data struc-tures), the system local clock (a 64-bit ticker), and the initial implementation ofthe Type System use this optimisation.If the data involved is readable globally, no bind step is technically necessaryand a ready-made surrogate (requiring no per-domain state) may be exportedinstead of the IDCOffer. Alternatively, a trivial IDCOffer could return the sur-rogate.A more useful function of the IDCOffer in this case is to ensure that thedata is available, or request that it be made so. The (constant) surrogate is onlyreturned if the data is readable.5.4.3 Optimistic SynchronisationIn many cases it may be possible for a server domain to modify a data structurein place in such a way that a client which is reading it does not cause any excep-tions. Version numbers can then be employed to implement a form of optimisticsynchronisation: a client wishing to read the data structure notes the versionnumber, reads the data structure, and then looks to see if the version numberhas changed. If it has, then some invariant on the data structure as read by theclient may not hold and it must retry the operation. If updates to the structureare rare, this technique can be very fast.If it is desired to share write access to a data structure between mutuallytrusting domains, more sophisticated optimistic synchronisation methods canemployed. Such an approach has been found to work well in the Synthesis oper-95



ating system [Massalin89]. As with access to immutable data, the details of themechanism can be hidden with a surrogate object.5.4.4 Timed Critical SectionsA more exciting possibility is to use the knowledge of the passage of time to allowsafe read access to data structures which may change, and which might normallycause exceptions (such as bad pointer references) in clients if they changed in themiddle of a read sequence.The basic idea is that a data structure is always changed in such a way thata client in the process of traversing it will not encounter a bad reference until a�xed period of time has passed from the time of update.A simple example is to have a single location holding a pointer to a structure.To update the structure, a new copy is made, the pointer changed in an atomicwrite, and then the old copy deleted after a certain period of time.A timed critical section is a programming construct that causes a threadto register the start of the traversal with the threads package. Since the user-level thread scheduler is entered with a guaranteed frequency (given by its QoSparameters), it can observe modi�cations to the data structure and halt thethread (by raising an exception on it) before it has a chance to encounter a badreference if the time limit is passed.Timed critical sections have yet to be implemented, and while clearly inap-propriate in some circumstances they are mentioned here as an intriguing line offuture work.5.4.5 Specialist Server Code and Hybrid SolutionsAs a �nal point, note that all the techniques described in the previous sectionscan coexist within the same interface stub. For example, information can be readfrom a server simply by reading shared memory while cross-domain events areused to transmit updates to a data structure. For ease of prototyping it may beeasy to use a compiler to generate a standard set of stubs for a given service,and then at a later date optimise the stubs when the performance requirementsof the interface and its e�ect on the rest of the system are better understood.96



5.5 DiscussionIt is vital to make the distinction between the interfaces that a programmer seesto a particular service, and the interfaces placed at the boundaries of protectiondomains or schedulable entities. A noticeable feature of most modern operatingsystems is that they usually confuse these two types of interface. This is a majorcontributing factor to the problem of application crosstalk.The binding model described above enables the functionality of a service tobe split arbitrarily between the protection and scheduling domains of client andserver with no increase in complexity; indeed the object-based RPC invocationof Nemesis is simpler to use than the ad-hoc mechanisms in most traditionaloperating systems.It is interesting to note that the binding model is much closer to that of mod-ern distributed programming environments than conventional operating systems.This is a natural consequence of Nemesis enforcing much stronger separation ofresource usage (in particular CPU time) between applications than other oper-ating systems. It is also a re
ection of the fact that the fundamental concepts inbinding are much more prominent in the distributed case.Within the 
exibility of the binding model, a number of techniques can beemployed for communication between domains to reduce the level of synchroni-sation that must occur. The division in service functionality between client andserver is usually dictated by the needs of security and synchronisation rather thanby the abstractions used to think about the service. When server processes areeventually called, it is generally to perform the minimum necessary work in theshortest possible time.When a conventional message exchange between domains has to occur, theseparation of data transmission (shared memory bu�ers) from synchronisation(events) allows high performance without unduly compromising the QoS guaran-tees or scheduling policies of both client and server.Finally, Nemesis bindings are one-to-one and visible in the server. This meansthat a server can attach QoS parameters to incoming invocations according tocontracts negotiated at bind time. This is in marked contrast to systems suchas Spring: in Spring the kernel is aware of bindings and threads but the serveris not, whereas in Nemesis the server is aware of bindings and threads but thekernel is not. 97



This feature of Nemesis enables the use of small schedulers within the serversto reduce crosstalk, and gives client applications qualitative bounds on the jitterthey experience from a service. Operating system servers which provide QoS inthis way, particularly window systems, are currently being investigated withinNemesis [Barham95b].5.5.1 PerformanceFigure 5.5 shows the distribution of same-machine null RPC times between twodomains on an otherwise unloaded machine. Most calls take about 30�s, whichcompares very favourably with those reported in [Chase93] for Mach (88�s) andOpal (122�s) on the same hardware. The calls taking between 55�s and 65�sexperience more than one reschedule between event transmissions.
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Figure 5.5: Distribution of Null RPC timesNemesis does not currently implement full memory protection domains; thecost of a full protection domain switch consists of a single instruction to 
ushthe 21064 data translation bu�er (DTB), followed by a few DTB misses. Thiscost of a DTB �ll on the current hardware has been estimated at less than 1�s[Fairbairns95]. 98



It must be emphasised that �gure 5.5 represents measurements of absolutelystandard, non-optimised user-thread to user-thread RPC calls across an interfaceof type NullRPC. The RPC involved calling through generated stubs, two com-plete passes through the scheduler, plus an activation to both client and serverdomains, each of which was running the default vanilla threads package. Thecall even went through a call dispatcher at the server end. A highly optimisedNemesis domain has been observed to send a message to another domain andreceive a reply in under 14�s though it is unreasonable to claim this is a nullRPC call. It does, however, illustrate the e�ciency of the event mechanism inaddition to its 
exibility. percentageScheduler and context switch 29Event delivery 20Activation handler 47Stubs 4Table 5.1: Breakdown of call time for same-machine RPCThe cost of a same-machine null RPC call breaks down roughly as shown intable 5.1 (measured using the processor cycle counter). There are no unexpected�gures, except that the e�ciency of the user-level thread scheduler in dispatchingevents clearly leaves something to be desired.5.6 SummaryCommunication between domains in Nemesis is object-based and uses invocationson surrogate interfaces. As in the case of a single domain, interfaces can be createdand destroyed easily, and interface references can be passed around at will.Establishing a binding to an interface in another domain is an explicit op-eration, and is type-safe. This explicit bind operation allows the negotiation ofQoS with the server and returns control interface closures which allow client andserver to control the characteristics of the binding. Implicit binding of interface99



references can be performed if desired in generated stub code. Passing interfacereferences between domains requires no intervention by the operating system,and the single address space facilitates the process of binding so that the systembinder's involvement in the process is minimal.Communication between domains over a binding is in the default case per-formed with shared memory bu�ers, using events to convey synchronisation infor-mation. This provides low kernel overhead and to a large extent decouples remoteinvocation from the scheduler, preventing crosstalk due to IDC operations. Thenormal invocation path is very fast, more so if the cost of a reschedule can beamortised over several invocations.The 
exibility and abstraction of the binding model also permits the trans-parent integration of a number of local-case RPC optimisations, including a noveltechnique to use domains' knowledge of the passage of time to relax synchroni-sation constraints on data structures.This leads on to the more general value of the Nemesis IDC architecture:since the interfaces over which invocations are performed are not the same asthose between protection domains or schedulable entities, functionality can bemoved between server and client. In particular, as much of an operating systemservice can be executed in the client domain as the requirements of security andsynchronisation will allow.
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Chapter 6
Conclusion
This dissertation has presented a way of structuring an operating system bettersuited to the handling of time-sensitive media than existing systems. This chaptersummarises the work and its conclusions, and suggests future areas of study.6.1 SummaryChapter 2 discussed the requirements for an operating system to process multime-dia. The use of a Quality of Service paradigm to allocate resources, in particularthe processor, has been shown to give the kind of guarantees required. How-ever, implementing such a resource allocation policy in a conventional kernel-or microkernel-based operating system is problematic for two reasons, both aris-ing from the fact that operating system facilities are provided by the kernel andserver processes, and hence are shared between applications.The �rst problem is that of accounting for resource usage in a server. Currentattempts to solve this problem fall into two categories:� Accounting can be performed on a per-thread basis, in which case threadsmust be implemented by the kernel and cross protection domain boundariesto execute server code.� Alternatively, accounting can be performed on a per-domain basis, in whichcase some means of transferring resources from a client to a server is re-quired. 101



Both these solutions are shown to be inadequate. The former approach preventsthe use of application-speci�c scheduling policies, while the latter is di�cult tomake e�cient in practice since resource requirements are di�cult to determine.Both approaches also allow badly behaved servers to capture clients' resources.The second problem is that of application crosstalk, �rst identi�ed in protocolstack implementations but extended in this dissertation to cover all shared oper-ating system services. Crosstalk has been observed in practice and it is importantto design an operating system to minimise its e�ect.The approach proposed in this dissertation is to multiplex system services aswell as resources at as low a level as possible. This amounts to implementing theminimum functionality in servers, migrating components of the operating systeminto the client applications themselves. The rest of the dissertation is concernedwith demonstrating that it is possible to construct a working system along theselines, by describing the Nemesis operating system.Chapter 3 presented the model of interfaces and modules in Nemesis, whichaddress the two principal software engineering problems in constructing the sys-tem: managing the complexity of a domain which must now implement most ofthe operating system, and sharing as much code and data between domains aspossible. The use of closures within a single address space allows great 
exibilityin sharing, while typed interfaces provide modularity and hide the fact that mostsystem services are located in the client application.An unexpected result from chapter 3 is that the gain in performance fromsmall image sizes is very di�cult to quantify. The fully direct-mapped cachesystem in the machines used meant that e�ects of rearranging code within thesystem overwhelmed the e�ects of sharing memory, even with image sizes muchlarger than the cache. The overhead of closure passing in Nemesis is also swampedby the cache e�ects.Chapter 4 addressed the problem of scheduling, and how CPU time can beallocated to domains within a system such as Nemesis. Existing systems eitherdo not allow su�cient 
exibility in the nature of CPU time guarantees, or else donot permit adequate policing of processor usage by domains. Allocation of CPUtime in Nemesis is based on a notion of a time slice within a period best suitedto an individual domain's needs. An algorithm is devised which transforms theproblem of meeting all domains' contracts into one which can be solved using anEarliest Deadline First (EDF) scheduler. A mechanism developed from that of theNemo system is used to present domains with information about their resource102



allocation, and to provide support for internal multiplexing of the CPU withineach domain via a user-level threads package. Communication between domainsis designed so as not to violate scheduling constraints. Processor interrupts aredecoupled from scheduling so as to prevent high interrupt rates from seriouslyimpacting system performance.The scheduler is shown to be very fast, and to scale well with the numberof schedulable entities in the system. Furthermore, it can e�ciently schedule ajob mix where resource guarantees have e�ectively committed all the availableprocessor resources.Chapter 5 discusses the design of an inter-domain communication facility.A model of binding is presented which allows great freedom in splitting servicefunctionality between client and server domains, and permits negotiation of qual-ity of service parameters at bind time where server domains implement resourcescheduling between clients.A conventional local RPC system built over this framework, using sharedmemory and the events mechanism from chapter 4, is shown to be signi�cantlyfaster than comparable systems on the same hardware. Furthermore, several op-timisations are discussed which use the single address space structure of Nemesis.In the design of an operating system for multi-service applications, there isa tension between the need for predictability and accurate accounting, and thedesire for e�ciency of resource usage and allocation in the system. Monolithicand kernel-based systems can make highly e�cient use of resources but give littlein the way of �ne-grained guarantees to applications. Nemesis demonstratesthat an operating system can make useful Quality of Service guarantees withoutcompromising system performance.6.2 Future WorkNemesis as described in this dissertation is a working prototype, and while itappears capable of achieving its aims, much work needs to be done before it canbe used reliably as a workstation operating system: virtual memory, networkprotocol stacks, etc. The system is also currently geared towards uniprocessormachines, and the changes required to the scheduling mechanism on a multipro-cessor require consideration. 103



The issue of how to collect garbage automatically in a single address space op-erating system remains problematic. Not all pointers can be traced from a givenprotection domain, and without a central policy or convention for object cre-ation and destruction it is di�cult to imagine an e�ective, system-wide collector.Ideas from the �eld of distributed systems may help here: it might be possible torun a local per-domain collector with communication between domains to handleinter-domain references.Some of these issues are being addressed in a new version of the operatingsystem being produced in the Computer Laboratory. This system will be madeavailable for general release, and is one of the platforms used in the DCANproject, a collaborative venture between the Laboratory, APM Ltd. and NemesysResearch Ltd. to investigate the distributed control and management of ATMnetworks.Research into the design of applications which can adapt to changing condi-tions is at an early stage. Of particular interest is the design of real-time threadspackages for applications with particular requirements. The implementation ofthe timed critical sections outlined in section 5.4.4 also falls into this category.It is expected that experience with the system will make clear the issues in thedesign of a Quality of Service Manager, to provide system wide resource alloca-tion and admission control. This service, and its user interface, are crucial to thesuccess of QoS as a resource allocation paradigm.
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