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Summary

Increases in processor speed and network bandwidth have led to workstations
being used to process multimedia data in real time. These applications have
requirements not met by existing operating systems, primarily in the area of re-
source control: there is a need to reserve resources, in particular the processor, at
a fine granularity. Furthermore, guarantees need to be dynamically renegotiated
to allow users to reassign resources when the machine is heavily loaded. There
have been few attempts to provide the necessary facilities in traditional operating
systems, and the internal structure of such systems makes the implementation of
useful resource control difficult.

This dissertation presents a way of structuring an operating system to reduce
crosstalk between applications sharing the machine, and enable useful resource
guarantees to be made: instead of system services being located in the kernel or
server processes, they are placed as much as possible in client protection domains
and scheduled as part of the client, with communication between domains only
occurring when necessary to enforce protection and concurrency control. This
amounts to multiplexing the service at as low a level of abstraction as possible.
A mechanism for sharing processor time between resources is also described. The
prototype Nemesis operating system is used to demonstrate the ideas in use in a
practical system, and to illustrate solutions to several implementation problems
that arise.

Firstly, structuring tools in the form of typed interfaces within a single address
space are used to reduce the complexity of the system from the programmer’s
viewpoint and enable rich sharing of text and data between applications.

Secondly, a scheduler is presented which delivers useful Quality of Service
guarantees to applications in a highly efficient manner. Integrated with the
scheduler is an inter-domain communication system which has minimal impact
on resource guarantees, and a method of decoupling hardware interrupts from
the execution of device drivers.

Finally, a framework for high-level inter-domain and inter-machine communi-
cation is described, which goes beyond object-based RPC systems to permit both
Quality of Service negotiation when a communication binding is established, and
services to be implemented straddling protection domain boundaries as well as
locally and in remote processes.
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Glossary of Terms

The list below is a brief glossary of terms used in this dissertation. Most are
specific to the Nemesis operating system, though some general terms have been
included for clarity.

activation The upcall to the entry point of a domain as a result of the kernel
scheduler selecting the domain to execute.

ADT Abstract Data Type. A collection of operations, each with a name and a
signature defining the number and types of its arguments.

application domain A domain whose purpose is to execute an application pro-
gram.

binding An association of a name with some value; in IDC, the local data struc-
tures for invoking an operation on an interface.

class A set of objects sharing the same implementation. An object is an instance
of exactly one class.

closure The concrete realisation of an interface. A record containing two point-
ers, one to an operation table and the other to a state record.

concrete type A data type whose structure is explicit.

constructor An operation on an interface which causes the creation of an object,
and returns the interfaces exported by the object.

context A collection of bindings of names to values.

context slot A data structure used to hold processor execution state within a
domain.

X



domain The entity which is activated by the kernel scheduler. Domains can be
thought of as analogous to UNIX processes. A domain has an associated
sdom and protection domain.

event channel An inter-domain connection established by the system Binder
between two event end-points. Event channels are described fully in sec-
tion 4.6. They are implemented by the kernel.

event end-point A data structure within a domain representing one end of an
event channel.

event count A synchronisation primitive, often used with a sequencer. Event
counts and sequencers are the basic intra-domain synchronisation mecha-
nism in Nemesis: they are implemented by the user-level thread scheduler.
See [Reed79] for a general description.

execution context The processor state corresponding to an activity or thread.
IDC Inter-Domain Communication.

interface The point at which a service is offered; a collection of operations on
exactly one object. An instance of an interface type.

interface reference An entity containing the engineering information necessary
to establish a binding to an interface. In the local case, this is a pointer.

interface specification A definition of the abstract type of an interface, which
(in MiDDL) can also include definitions of concrete types and exceptions.

interface type The abstract type of one or more interfaces. An interface type
is defined by an interface specification.

invocation reference A name which can be used to invoke operations on an
interface. In the local case, this is the same as the interface reference and
is a pointer to the interface closure. In the remote case, it is a pointer to
a surrogate closure created from the interface reference by establishing a
binding to the interface.

latency hint A parameter used by the scheduling algorithm when unblocking
an sdom to determine when the sdom’s new period will end.

MIDDL Mothy’s Interface Definition and Description Language. A language for
writing interface specifications.



module A unit of loadable code. A module contains no unresolved symbols and
includes one or more interface closures whose state is constant.

object A computational entity consisting of some state which is manipulated
solely via the interfaces exported by the object. An object may export
several interfaces.

period The real time interval over which an sdom is allocated CPU time.

pervasive interfaces A set of useful interfaces, references to which are consid-
ered part of the execution context of a thread.

protection domain A function from virtual addresses to access rights.

sdom The entity to which CPU time is allocated. Otherwise known as a schedul-
ing domain.

sequencer A synchronisation primitive, often used with an event count.
slice The quantity of CPU time allocated to a sdom within its period.

thread A path of execution within a single domain; a unit of potential concur-
rency within a domain.

xi



Chapter 1

Introduction

This dissertation is concerned with techniques for building operating systems to
support a wide range of concurrent activities, in particular time-sensitive tasks
processing multimedia data.

1.1 Motivation

General-purpose workstations and operating systems are increasingly being called
on to process continuous media such as video and audio streams in real time. At
least two properties of continuous media set them apart from the kind of data
traditionally handled by general-purpose computers.

e The validity of a computation is dependent on the timeliness with which it is
performed. This problem is exacerbated by these time constraints typically
being quite strict, and the volume of data to be processed imposing a high
load on the system.

e To some extent the loss of information in a continuous media stream can be
tolerated. This does not hold in all cases, but can still be usefully exploited
by an application required to handle such media.

Whilst specialised peripheral devices have been developed to capture, encode,
decode and present multimedia data in standard formats, general purpose pro-
cessing of such data within a traditional workstation environment is still very



difficult. The lack of resource control within conventional interactive operating
systems results in behaviour under load which is often unacceptable for time-
sensitive applications. This is particularly the case when the machine is being
used to perform traditional, computationally intensive jobs as well as process
multimedia data at the same time.

This dissertation describes operating system technology and principles which
address a specific problem. This problem can be characterised as follows:

e Executing a number of time-sensitive tasks concurrently with the usual
selection of interactive and batch processes on a typical workstation.

e Running the machine with a set of processes which can utilise more than
the available processor cycles.

e Allowing resources to be dynamically reallocated within the system.

e Preventing crosstalk between applications so that one task cannot hog re-
sources or violate the timing requirements of another.

e Ensuring that when the resources allocated to time-sensitive applications
are reduced, application performance can degrade in a graceful, application-
specific manner.

The scenario is that of a desktop workstation, with a high-speed network interface
and associated peripherals such as video and audio input devices, which is being
used to process multimedia data while at the same time executing a mix of more
traditional interactive applications such as text editors and browsers, and batch
jobs such as program compilation and numerical analysis. The emphasis is also
on processing continuous media rather than merely present it: applications such
as real time video indexing, speaker tracking, voice and gesture input, and face
recognition are envisaged.

1.2 Background

Several extensions have been made to existing workstation operating systems to
assist the execution of multimedia applications. These usually take the form of
a “real-time” scheduling class with a higher static priority than other tasks in
the system. This solution is inadequate: in practice, several tasks running at



such a priority still interfere in an unpredictable manner [Nieh93]. Furthermore,
lower priority tasks only run when the “real-time” tasks have no work to do, and
the nature of continuous media applications means that this is infrequent. Thus

batch and interactive jobs in the system (even system daemons) are starved of
CPU time.

One of the fundamental problems with conventional operating systems is that
decisions as to which task should receive a given resource are based on a measure
(e.g. priority) which does not permit control over the actual quantity of a resource
to be allocated over a given time period, particularly when this time period is
small.

Systems which have been developed to specify resource requirements more
accurately have typically borrowed techniques from the field of real-time sys-
tems, such as deadline-based scheduling [Oikawa93, Coulson93]. Such systems
can deliver resource guarantees to kernel threads or processes, but do not address
the problems caused by the interaction of kernel threads with one another, nor
do they allow applications to internally redistribute resources among their own
activities. This issue is addressed more fully in chapter 2.

1.3 Quality of Service

In the last ten years, similar problems have appeared in communication networks
which carry a mix of different traffic types. The term Quality of Service or QoS
has been used to denote the generalised idea of explicit, quantitative allocation
of network resources, principally with regard to bandwidth, end-to-end delay,
and delay jitter. QoS parameters are mostly independent of the mechanisms
and algorithms employed by the resource provider, and oriented more towards
application requirements. The concept of QoS is very generalised, and guarantees
can take many forms, including probabilistic notions of resource availability.

Typically, a client of the network negotiates with the network for resources,
and the client and network agree on a particular QoS. This is a measure of the
allocation the client can expect to receive and may be much more than a simple
lower bound—see, for example, [Clark92]. Within the network, an admission
control procedure ensures that the network does not over-commit its resources,
and the process of policing prevents clients from unfairly over-using resources.
If the needs of a client change, or network conditions alter the QoS which the



network can deliver to a client, renegotiation may take place, and a new QoS
agreed.

The distributed nature of many multimedia applications has resulted in the
need for a way to specify and support end-to-end QoS from application to appli-
cation [Nicolaou90, Campbell93]. This in turn has led to investigation of suitable
interfaces between clients and the operating system to provide flexible resource
allocation in the end system. In this context, the resource provider is the oper-
ating system and the clients are application tasks. If the resource is CPU time,
the provider is the kernel scheduler.

1.4 Contribution

This author has built on the work in [Hyden94], investigating the wider issue of
how to structure a general-purpose QoS-based operating system and associated
applications.

The thesis of this work is that a general-purpose operating system which:

allocates resources (and CPU time in particular) using a QoS paradigm,

performs in a predictable and stable manner under heavy load,

delivers useful resource guarantees to applications,

allows them to utilise their resources efficiently, and

ensures that resources can be redistributed dynamically and that applica-
tions can seamlessly adapt to the new allocation,

—can be achieved by an architecture which places much operating system func-
tionality into application processes themselves without impinging upon protec-
tion mechanisms, and which multiplexes system resources at as low a level of
abstraction as possible.

As well as outlining the architecture, this dissertation contributes to the design
of such a system by presenting:

e structuring tools to aid the construction of the operating system and to
provide rich sharing of data and code,



e an efficient scheduling algorithm for allocating processor time to applica-
tions in accordance with QoS specifications, even in the presence of high
interrupt rates from devices, and

e a concrete model of local client-server binding that allows QoS negotiation
and permits services to be migrated across protection domain boundaries.

The issues in constructing such a system are illustrated by describing the
Alpha/AXP prototype of Nemesis, a multi-service operating system developed
by the author in the course of his work. This system was written on the DECchip
EB64 board [DEC93] over PALcode written by Robin Fairbairns, and later ported
to the DEC3000/400 Sandpiper workstation [DEC94] by the author and Paul
Barham.

1.5 Overview

The overall structure of Nemesis is described in chapter 2.

An issue raised by chapter 2 is the complexity and code size resulting from
the architecture. Chapter 3 discusses the use of typed interfaces, closures and a
per-machine, single virtual address space to provide modularity and rich sharing
of data and code.

Chapter 4 describes the scheduling algorithm for allocating CPU time to
applications in accordance with QoS specifications existing between application
domains and the kernel scheduler. The interface presented to applications is
described. This enables the efficient multiplexing of the CPU required within
an application to support the architecture. The performance of the scheduler is
evaluated.

Communication between applications within Nemesis is described in chap-
ter 5. In particular, a framework for establishing bindings between clients and
servers is discussed. This framework allows precise control over the duration and
characteristics of bindings. Furthermore, it transparently integrates the commu-
nication optimisations necessary to migrate code from servers into clients. Using
this binding model, services can be implemented partly in the client and partly
in the server protection domains, and QoS negotiation with a server can occur.

Chapter 6 summarises the research and discusses some areas for future work.



Chapter 2

Architecture

This chapter describes the architectural principles governing the design of Neme-
sis: where services are located in the system. The aim is to minimise the impact of
two related problems with current operating systems: the lack of fine-grained re-
source control and the presence of application Quality-of-Service crosstalk. Con-
sideration of these issues leads to a novel way of structuring the system by ver-
tically integrating functions into application programs.

2.1 Introduction

This dissertation uses the term operating system architecture to describe how
services are organised within the operating system in relation to memory protec-
tion domains, schedulable entities and processor states. This chapter deals with
a high-level view of system structure, whilst later chapters describe the low-level
details of protection and scheduling in Nemesis.

The major functions of an operating system are to provide:

e sharing of hardware resources among applications,
e services for applications to use, and

e protection between applications.

An operating system architecture is to a large extent determined by how these
functions are implemented within the system.



Most operating systems running on interactive workstations fall into one of
three categories architecturally: monolithic, kernel-based, and microkernel-based.

2.1.1 Monolithic Systems

Cedar [Swinehart86] and the Macintosh [Apple85] are examples of monolithic
operating systems. Typically all code in the system executes with the same
access rights on memory and in the same processor mode (with the exception of
interrupt masks). System services (memory management, communication, filing
systems, etc.) are provided via procedure calls or a vector table accessed via a
processor trap. A single, central policy is used to allocate and release resources.

Monolithic systems thus provide simplicity and high performance, while offer-
ing little in the way of protection between different activities on the same machine.
The motivation for this tradeoff is twofold. Firstly, the machine is considered to
be a single protection domain under the control of one human user. The danger of
intrusion by other users is avoided, although the risk due to malicious programs
initiated innocently by the user still exists. Secondly, programming language
features (sophisticated type systems, language-level concurrency primitives and
strong modularity) can reduce the chance of bugs in one application corrupting
other applications on the same machine, or bringing the whole system down.

Such features are hard to justify in a general-purpose system designed to be
programmed in a variety of different languages, and potentially used by several
users at once. Generally speaking, hardware features must be used to provide
protection between applications and operating system components. However, it
is important to realise that protection from programming bugs is an insufficient
reason on its own for protecting system services with hardware.

2.1.2 Kernel-based Systems

Many current workstation operating systems are descended from central multi-
user timesharing systems: examples include varieties of UNIX [Bach86, Leffler89],
VMS [Goldenberg92] and Microsoft Windows NT [Custer93]. Systems like these
provide each application with a different address space and memory protection
domain. In addition, there is a single large kernel, which runs in a privileged
processor mode and is entered from user programs by means of a trap instruction
(figure 2.1).
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Privileged:

Kernel

Figure 2.1: Kernel-based operating system architecture

The kernel provides most system services and presents virtual resources (time,
memory, etc) to applications; thus each application is given the illusion of hav-
ing the entire machine to itself. Protection is achieved by limiting the physical
address space accessible to each application.

This virtual machine model provides robustness, provided the kernel is reliable
and can be trusted. Unfortunately, as the systems have evolved kernels have
become large and unwieldy, a situation not improved by their implementation in
a language with few ways of enforcing modularity, such as C or C++.

Furthermore, reconfiguring the operating system involves modifying the ker-
nel, which often entails a system restart. Despite features such as loadable device
drivers, changing the configuration of a kernel-based system is a difficult business
and it is still normal for a buggy piece of loadable operating system code to bring
down the whole system.

2.1.3 Microkernel-based Systems

The desire for extensibility and modularity led to the development of microker-
nels, for example Mach [Accetta86] and Chorus [Rozier90]. Such systems move
functionality into separate protection domains and processes, which communicate
with each other and application processes via a small kernel, often using message
passing (figure 2.2).

The protection boundaries between the various components can make the
operating system as a whole more robust. More importantly, it is much easier
to dynamically extend and reconfigure the system. This comes at some cost in
performance since invoking a service now requires communication between two
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Figure 2.2: Microkernel-based operating system architecture

processes. In a microkernel system this overhead includes two context switches
as opposed to a simple processor trap in kernel-based system. Much work has
gone into reducing the cost of this communication, for example [Hamilton93a,
Bershad90, Bershad91, Hildebrand92]. Some systems have even migrated services
back into the kernel for performance reasons [Bricker91].

2.1.4 Other systems

The incomplete taxonomy above classifies systems into those with zero, 1 or many
entities providing operating system services. Naturally, the boundaries between
classes are blurred (for example, UNIX uses server daemons) and there have been
operating systems (for example, the CAP [Wilkes79]) which do not fit in the
model. However, the classification covers most workstation operating systems in
use today, at least in so far as the architecture impinges on the issue of resource
control.

2.2 Resource Control Issues

Resource control is concerned with limiting the consumption of resources by ap-
plications in a system so that they can all make some satisfactory progress. In this



sense it is needed to guarantee the liveness of a system: excessive consumption
by one party should not prevent the progress of others. The exercise of control
can be viewed as a form of contract between the resource provider and user: the
user ‘pays’ in some way for a resource, and the provider guarantees to provide
the resource.

Resource control in workstation operating systems has traditionally been quite
primitive. Quite simple scheduling policies can guarantee that each process re-
ceives the processor eventually, and rarely are per-process quotas enforced on
resources such as physical page frames or disk file space. Indeed, in this respect
traditional mainframe timesharing systems offer rather more in the way of re-
source control than workstations. The prime motivation in the mainframe case
is the need to charge clients money for use of system resources. However, even in
these systems the contracts employed do not apply over short time scales on the
order of milliseconds, since the applications supported by these do not require
such guarantees at this level.

It is now widely accepted that processing of continuous media in real time
does require this kind of resource control. An important feature of the Nemesis
operating system is that it provides fine-grained resource control. Furthermore, it
supports the provision of a service to change contracts dynamically, and permits
applications to adapt when this happens.

Resource control of this nature has been discussed in the field of high speed
networks, particularly those designed to carry a mix of different traffic types, for
some time. Such ideas have been referred to as Quality of Service or QoS, and
this dissertation borrows much terminology from this field.

2.2.1 Requirements of a Resource Control System

A resource control component for an operating system must fulfill at least five
functions: Allocation, Admission Control, Policing, Notification, and Internal
Multiplexing support.

Allocation

An operating system is a multiplexor of resources such as processor time, physical
memory, network interface bandwidth, etc. The system should try to share out
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quantities of bulk resource to clients in accordance with their respective contracts.

A further requirement is to control resource allocation dynamically. In a
workstation where resources are limited, users may wish to redistribute resources
to increase the level of service provided to certain applications at the expense of
others, for example in response to an incoming video phone call.

Admission Control

Since the system aims to satisfy all its contracts with clients, it should not ne-
gotiate contracts which it will not be able to honour. Admission Control is the
term used in networks for the process by which the system decides whether it
will provide a requested level of service.

Systems with a very large number of clients (such as wide-area networks),
can employ statistical multiplexing to reserve more resources in total than the
system can supply instantaneously, relying on the fact that the probability that
all clients will simultaneously require their entire guaranteed resource share is
small.

In an operating system environment, this technique cannot be employed.
Firstly, there are too few clients to permit valid statistical guarantees, and their
loads are often highly correlated. Secondly, experience with early systems which
attempt to integrate video and audio with the workstation environment (for ex-
ample Pandora [Hopper90]) shows that in practice the system is under high load
for long periods: software systems tend to use all the CPU time allocated to
them.

This situation is likely to continue despite the increasing power of worksta-
tions, as software becomes more complex. However, this lack of predictability is
offset by the ability to use a central resource allocation mechanism, which has
complete knowledge of the current system utilisation. Ultimately, a human user
can dictate large-scale resource allocation at run time.

Policing

Policing is the process of ensuring that clients of the operating system do not
use resources unfairly at the expense of other applications. Policing requires an
accounting mechanism to monitor usage of a resource by each application.
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A well-designed resource allocation mechanism should provide a policing func-
tion. However, in the case of CPU time there are several operating systems whose
applications are expected to cooperate and periodically yield the processor. Ex-
amples include the Macintosh Operating System and applications running under
Microsoft Windows NT with the /REALTIME' switch.

More importantly, effective policing of CPU time can only be carried out by
the system if the application (the complete entity requiring a given QoS) is the
same unit as that dealt with by the scheduler, rather than individual threads.

Notification

In a system where applications are allocated resources quantitatively, the ‘virtual
machine’ model of kernel-based systems is inappropriate. Instead of the illusion
of an almost limitless virtual resource, clients of the operating system must deal
in real resources.

For example, UNIX applications are given huge amounts of address space (in
the form of virtual memory), and a virtual processor which they never lose and
is rarely interrupted (by the signal mechanism). In reality, the system is con-
stantly interrupting and even paging the process. The passage of real time bears
little resemblance to the virtual time experienced by the application, particularly
millisecond granularity. While this hiding of real time is highly convenient for
traditional applications, this is precisely the information required by programs
processing time-sensitive data such as video. Similar arguments apply to physical
memory (when paging), network interface bandwidth, etc.

A key motivation for providing information to applications about resource
availability is that the policies applied by an application both for degradation
when starved of resources, and for use of extra resources if they become available,
are highly specific to the application. It is often best to let the application decide
what to do.

The approach requires a mapping from the application’s performance metric
(for example, number of video frames rendered per second) to the resources allo-
cated by the system (CPU time). This is extremely difficult analytically, except
in specialised cases such as hard real-time systems, for example [Verissimo93,
Chapman94|. However, if applications are presented with a regular opportunity

1Such processes execute at a priority higher than any operating system tasks.
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to gauge their progress in real time, they can use feedback mechanisms to rapidly
adapt their behaviour to optimise their results, provided that conditions change
relatively slowly or infrequently over time.

Thus applications require timely knowledge both of their own resource allo-
cation and of their progress relative to the passage of real time.

Internal Multiplexing Mechanisms

Simple delivery and notification of a bulk resource to an application are not in
general sufficient: a program must be able to make effective use of the resource.
This amounts to multiplexing the resource internally, and in such a way that
when the total allocation changes the application can change its internal resource
tradeoffs to achieve the best results. An operating system should provide the
means for applications to do this efficiently.

The processor is, again, a good concrete example. Threads provide a conve-
nient model for dividing the CPU time allocated to a program among its internal
tasks. The UNIX operating system provides no explicit support for user-level
threads, with the consequence that thread-switching in user-space takes place
with no knowledge of kernel events. Furthermore, most user-level threads pack-
ages use a periodic signal to reenter the thread scheduler. This incurs a high
overhead and limits the granularity of scheduling possible. At the other end
of the scale, operating systems which provide kernel threads take the thread-
scheduling policy away from the application, and so are incompatible with the

QoS model.

Recently, systems have appeared which provide much greater support for user-
level threads systems over kernel threads. The motivation for this approach in
Scheduler Activations [Anderson92] was the performance gain due to reduced con-
text switch time; in Psyche [Scott90] it was the desire to support different thread
scheduling and synchronisation policies. These techniques have been adopted, in
modified form, in Nemesis.
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2.3 Crosstalk

A scheduler which provides the facilities discussed above can be built: chapter 4
describes the one used in Nemesis. However, scheduling processes in this way is
not in itself sufficient to provide useful resource control for applications.

In a conventional operating system, an application spans several processes.
Assigning QoS parameters to each process so that the application as a whole
runs efficiently can be very difficult, particularly if the resource allocation in the
system is dynamically changing. In effect, the application has lost some control
over its internal resource tradeoffs unless it can rapidly and efficiently transfer
resources from one process to another.

Furthermore, a process may be shared between several applications. This
introduces the problem of crosstalk.

2.3.1 Protocol QoS Crosstalk

When dealing with time-related data streams in network protocol stacks, the
problem of Quality of Service crosstalk between streams has been identified
[McAuley89, Tennenhouse89]. QoS crosstalk occurs because of contention for
resources between different streams multiplexed onto a single lower-level channel.
If the thread processing the channel has no notion of the component streams, it
cannot apply resource guarantees to them and statistical delays are introduced
into the packets of each stream. To preserve the QoS allocated to a stream,
scheduling decisions must be made at each multiplexing point.

When QoS crosstalk occurs the performance of a given network association
at the application level is unduly affected by the traffic pattern of other asso-
ciations with which it is multiplexed. The solution advocated in [McAuley89,
Tennenhouse89] is to multiplex network associations at a single layer in the pro-
tocol stack immediately adjacent to the network point of attachment. This al-
lows scheduling decisions to apply to single associations rather than to multi-
plexed aggregates. This idea grew out of the use of virtual circuits in ATM

networks, but can also be employed in IP networks by the use of packet filters
[Mogul87, McCanne93].

It is widely accepted that to be useful, QoS guarantees need to be extended
up to the application so as to be truly end-to-end. By extension, we can identify
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application QoS crosstalk as a general problem which arises from the architecture
of modern operating systems.

2.3.2 Application QoS Crosstalk

Application QoS Crosstalk occurs because operating system services as well as
physical resources are multiplexed among client applications. This multiplexing
is performed at a high level by the use of server processes (including the kernel
itself).

In addition to network protocol processing, components such as device 1/0,
filing systems and directory services, memory management, link-loaders, and win-
dow systems are accessed via a set of high-level interfaces to client applications.
These services must provide concurrency and access control to manage system
state, and so are generally implemented in server processes or within the kernel.

This means that the performance of a client is dependent not only on how it
is scheduled, but also on the performance of any servers it requires, including the
kernel. The performance of these servers is in turn dependent on the demand for
their services by other clients. Thus one client’s activity can delay invocations of
a service by another. This is at odds with the scheduling policy, which should be
attempting to allocate time among applications rather than servers.

A particularly impressive example of this in practice is described in [Pratt94].
A Sun SparcStation 10 running SunOS received video over an ATM network and
displayed it on the screen via the X server. In this case the available CPU time
in the system was divided roughly equally between the kernel (data copying and
protocol processing), the application itself (conversion between image formats)
and the X server (copying the image to the frame buffer).

In this case over 60% of the processor time used by an application was not
being accounted to it. Other clients were unable to render graphics due to the
demand on the X server from the video application. The point here is not the
load on the machine, but that contention for a shared service is occurring, and
the service is unable to effectively multiplex its processor time among clients.

Some degree of crosstalk is inevitable in an operating system where there
are data structures which are shared and to which access must be synchronised.
However, identifying the phenomenon of application QoS crosstalk is important
because it allows systems to be designed to minimise its impact. To reduce
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crosstalk, service requests should as far as possible be performed using CPU time
accounted to the client and by a thread under control of the client.

2.4 The Architecture of Nemesis

Nemesis is structured so as to fulfill the requirements of a fine-grained resource
control mechanism and minimise application QoS crosstalk. To meet these goals
it is important to account for as much of the time used by an application as
possible, without the application losing control over its resource use.

For security reasons, code to mediate access to shared state must execute in a
different protection domain (either the kernel or a server process) from the client.
This does not imply that the code must execute in a different logical thread to
the client: there are systems which allow threads to undergo protection domain
switches, both in specialised hardware architectures [Wilkes79] and conventional
workstations [Bershad90]. However, such threads cannot easily be scheduled by
their parent application, and must be implemented by a kernel which manages the
protection domain boundaries. This kernel must as a consequence, provide syn-
chronisation mechanisms for its threads, and applications can no longer control
their own resource tradeoffs by efficiently multiplexing the CPU internally.

The alternative is to implement servers as separate schedulable entities. Some
systems allow a client to transfer some of their resources to the server to preserve
a given QoS across server calls. The Processor Capacity Reserves mechanism
[Mercer94] is the most prominent of these; the kernel implements objects called
reserves which can be transferred from client threads to servers. This mechanism
can be implemented with a reasonable degree of efficiency, but does not fully
address the problem:

e The state associated with a reserve must be transferred to a server thread
when an IPC call is made. This adds to call overhead, and furthermore
suffers from the kernel thread-related problems described above.

e Crosstalk will still occur within servers, and there is no guarantee that a
server will deal with clients fairly, or that clients will correctly ‘pay’ for
their service.

e [t is not clear how nested server calls are handled; in particular, the server
may be able to transfer the reserve to an unrelated thread.
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Nemesis takes the approach of minimising the use of shared servers so as to
reduce the impact of application QoS crosstalk: the minimum necessary func-
tionality for a service is placed in a shared server. Ideally, the server should only
perform concurrency control. In addition, to reduce the resource management
which must be performed outside applications, resources should be allocated as
early as possible, in bulk if necessary.
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Figure 2.3: Nemesis system architecture

The result is a ‘vertically integrated’ operating system architecture, illustrated
in figure 2.3. The system is organised as a set of domains, which are scheduled
by a very small kernel. A Nemesis domain is roughly analogous to a process in
many operating systems: it is the entity scheduled by the kernel, and usually
corresponds to a memory protection domain. However, a given domain performs
many more functions than a typical thread: the Nemesis kernel on DEC Al-
pha/AXP machines consists only of interrupt handlers (including the scheduler)
and a small Alpha PALcode image.

The minimum functionality possible is placed in server domains, and as much
processing as possible is performed in application domains. This amounts to
multiplexing system services at the lowest feasible level of abstraction. This both
reduces the number of multiplexing points in the system, and makes it easier for
scheduling decisions to be made at these points. Protection within an application
domain is performed by language tools.

This stands in contrast to recent trends in operating systems, which have
been to move functionality away from client domains (and indeed the kernel)

into separate processes.
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However, there are a number of examples in recent literature of services being
implemented as client libraries instead of within a kernel or server. Efficient
user-level threads packages have already been mentioned.

[Thekkath93] discusses implementation of network protocols as client libraries
in the interests of ease of prototyping, debugging, maintenance and extensibility,
and also to investigate the use of protocols tuned to particular applications. While
at Xerox PARC, the author of this dissertation investigated implementation of
TCP over ATM networks in a user-space library over SunOS, in order to reduce
crosstalk and aid in accounting. In principle packets must be multiplexed securely,
but above this in the protocol stack there are no inherent problems in protocol
processing as part of the application.

A recent version of the 8% window system [Pike94] renders graphics almost
entirely within the client. The client then sends bitmap tiles to the window
manager, which is optimised for clipping these tiles and copying them into the
frame store. The frame store device for the Desk Area Network [Barham95a]
provides these low level window manager primitives in hardware.

Finally, a good indicator that most of the functions of the UNIX kernel can be
performed in the application is given by the Spring SunOS emulator [Khalidi92],
which is almost entirely implemented as a client library.

Nemesis is designed to make use of these techniques. In addition, most of the
engineering for creating and linking new domains, and setting up inter-domain
communication, is performed in the application.

2.5 Summary

Resource control in operating systems has traditionally been provided over medium
to long time scales. Continuous media processing requires resources to be allo-

cated with much finer granularity over time, the failure of the system to exercise

control over the resource usage of other tasks seriously impacts such applica-

tions. The related problem of application QoS crosstalk has been identified as a

problem inherent in operating systems but greatly exacerbated by the high level

functionality currently implemented in servers.

Nemesis explores the alternative approach of implementing the barest mini-
mum of functionality in servers, and executing as much code as possible in the
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application itself. This has the dual aim of enabling more accurate account-
ing of resource usage while allowing programs to manage their own resources
efficiently. Examples from the existing literature illustrate how many operating
systems functions can be implemented in this way.

The architecture raises a number of issues. Programmers should neither have
to cope with writing almost a complete operating system in every application,
nor contend with the minimum level interfaces to shared servers. Binaries should
not become huge as a result of the extra functionality they support, and resources
must be allocated in such a way that applications can manage them effectively.
The next three chapters present solutions to these problems.
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Chapter 3

Interfaces and Linkage

This chapter deals with linking program components within a single domain. It
presents solutions to two potential problems caused by the architecture intro-
duced in chapter 2. The first is the software engineering problem of constructing
applications which execute most of the operating system code themselves. This
is addressed by the typing, transparency and modularity properties of Nemesis
interfaces. The second problem is the need for safe and extensive sharing of data
and code. The use of closures within a single address space together with mul-
tiple protection domains provides great flexibility in sharing arbitrary areas of
memory.

The programming model used when writing Nemesis modules is presented,
followed by the linkage model employed to represent objects in memory. In
addition, auxiliary functions performed by the name service and runtime type
system are described, together with the process by which a domain is initialised.

3.1 Background

The linkage mechanism in Nemesis encompasses a broad range of concepts, from
object naming and type systems to address space organisation. Below is a survey
of selected operating systems work which has relevance to linkage in Nemesis in
one area or another.
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3.1.1 Multics

In Multics [Organick72], virtual memory was not organised as a flat address space
but as a set of segments, integrated with the filing system. Any process could
attach a segment and access it via a process-specific identifier (in fact, an entry in
the process segment table). Thus, a great deal of code and data could be shared
between processes.

Related procedures were organised into segments. Linkage segments were
used to solve the problem of allowing a procedure shared between processes to
make process-specific references to data and procedures in other segments. There
was one process-specific linkage segment for each text segment in a process, which
mapped unresolved references in the segment to pairs of (segment identifier, off-
set) values. This segment was used by the GE645 indirection hardware and was
filled in on demand via a faulting mechanism.

The idea worked well (albeit slowly) as a means of linking conventional proce-
dural programs. However, the scheme does not sit happily with an object-based
programming paradigm where members of a class are instantiated dynamically:
Linkage segments are inherently per-process, and work best in situations where
there is a static number of inter-segment references during the lifetime of a pro-
cess.

3.1.2 Hemlock

The state of the art in UNIX-based linking is probably Hemlock [Garrett93]. Hem-
lock reserves a 1GB section of each 32-bit address space in the machine for a
region to hold shared modules of code, with the obvious extension to 64-bit ad-
dress spaces. A great deal of flexibility is offered: modules can be public (shared
between all processes), or private (instantiated per-process). They can also be
static (linked at compile time) or dynamic (linked when the process starts up, or
later when a segment fault occurs).

Hemlock is geared towards a UNIX-oriented programming style, thus modules
are principally units of code. The definition of interfaces between modules is
left to programming conventions, and the data segments of private modules are
instantiated on a one-per-process basis.
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3.1.3 Spring

Along with Nemesis, Spring [Hamilton93a, Hamilton93b] is one of the few op-
erating systems to use an interface definition language for all system interfaces.
Spring is implemented in C++ and employs the UNIX model of one address space
per process. Shared libraries are used extensively, but the need to link one library
against another has led to copy-on-write sharing of text segments between ad-
dress spaces. With the C++ programming language, the number of relocations
is quite large, even with position-independent code. This reduces the benefits
of sharing and results in increased time to link an image [Nelson93]. The solu-
tion adopted has been to cache partially linked images combinations of libraries
linked against one another on stable storage.

Linkage is carried out mainly by the parent domain through memory mapping,
at a different address from that at which the code must execute. However, the
model is essentially the same as UNIX, with a small number of memory areas
holding the state for all objects in the address space.

Spring is also unusual in providing a name service that is uniform and capable
of naming any object. Naming contexts are first-class objects and can be instan-
tiated at will. The scope of the naming service is broad, encompassing access
control and support for persistent objects. This requires that all objects must
either provide an interface for requesting that they become persistent, or a way
of obtaining such an interface.

3.1.4 Plan 9 from Bell Labs

Plan 9 [Pike92| is a UNix-like operating system but with a novel approach to
naming. Plan 9 has several different kinds of name space, but the main one is
concerned with naming filing systems, which are the way many system interfaces
present themselves.

This approach has a number of problems:

e Instead of the typed interfaces of systems such as Spring, Plan 9 constrains
everything to look like a file. In most cases the real interface type comprises
the protocol of messages that must be written to, and read from, a file
descriptor. This is difficult to specify and document, and prohibits any
automatic type checking at all, except for file errors at run time.
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e Filing systems are heavyweight: access to them must be through the kernel.
Instantiating interfaces dynamically is impossible.

e There are limits to what can be named. For instance, both the initial I/O
channels available to a domain and the space of network addresses comprise
name spaces separate from the principal one.

e Instead of providing a service for mapping strings to pointers to interfaces
(which are essentially low-level names for the services), in Plan 9 a path
name relative to a process’ implicit root context is the only way to name
a service. Binding a name to an object can only be done by giving an
existing name for the object, in the same context as the new name. As
such, interface references simply cannot be passed between processes, much
less across networks. Instead, communication has to rely on conventions,
which are prone to error and do not scale.

3.1.5 Microsoft OLE 2

OLE 2 [Brockschmidt94] is a system built on top of the Windows 3.1 environment
to provide object-based facilities. Objects export one or more interfaces, which
appear as C++ objects with virtual member functions. Objects are shared be-
tween applications in the operating system by the use of stubs and the dynamic
link libraries provided by Windows, though shared memory can be used as a
transport mechanism. Above the basic OLE 2 infrastructure are built several
complex subsystems to provide object naming and persistent object storage.

Interface types in OLE 2 are never explicitly defined. Instead, the runtime
system deals only in globally unique type identifiers allocated centrally by Mi-
crosoft, which by programmer convention refer to particular revisions of C or
C++ function definitions. As a consequence, type conformance relations are
not supported. Also, runtime information about the structure of types is not
available.

OLE 2 is a large and complex body of software. Much of the complexity of
OLE 2 arises from the need to expose the underlying Windows operating system,
which has no specified interfaces or idea of modularity. A further problem is
that while OLE 2 provides object services to application writers, these services
themselves are not provided through objects but, like Windows, employ a flat C
programming interface. An operating system designed using a consistent object
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model from the ground up, such as Spring, can be much simpler and more cohesive
while offering superior functionality.

3.1.6 Single Address Space Operating Systems

Recently, there have been a number of research projects to build single address
space operating systems. These projects have generally aimed at providing an
environment with rich sharing of data and text. They try to achieve this by giving
each process a different memory protection domain within a single, system-wide
address space. Two representative systems are discussed here.

Opal

Opal [Chase93] is an experimental, single address space system implemented as a
Mach server process. Linkage in Opal is based around modules similar to those in
Hemlock. Domain-specific state for a module is stored at an offset from the Alpha
global pointer (GP), a general-purpose register reserved in OSF/1 for accessing
data segment values. Modules can contain per-domain, initialised, mutable state:
when the module is attached this state is copied into a per-domain data segment.

However, this means that modules may only be instantiated once per domain,
and the domain may have only one private data segment. Also, the GP register
must be determined on a per-domain basis on every cross-module procedure call;
at present it is fixed for the lifetime of a domain. The format of the data segment
is constrained to be the same for all domains.

Angel

The Angel microkernel [Wilkinson93] aims to provide a single distributed address
space spanning many processors. The designers wished to reduce the cost of
context switching with virtual processor caches, and to unify all storage as part
of the address space. While UNiX-like text segments are shared, there is no
sharing at a finer granularity. The traditional data and bss segments are still
present, and the C compiler is modified to use a reserved processor register to
address them.
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Like Opal, Angel represents an attempt to use the UNIX notion of a process
in a single address space. However, UNIX processes are based on the assumption
of a private address space: absolute addresses are used for text and data, and
references between object files are resolved statically by the linker. In effect, the
environment in which any piece of code executes is the whole address space.

When the address space is shared between processes, this assumption no
longer holds. In both Opal and Angel, the process-wide environment using abso-
lute addresses is simply replaced by another using addresses relative to a single
pointer. This precludes most of the potential benefits of sharing code and data
between protection domains.

3.2 Programming Model

The programming model of Nemesis is a framework for describing how programs
are structured; in a sense, it is how a programmer thinks about an application.
In particular, it is concerned with how components of a program or subsystem
interact with one another.

The goal of the programming model is to reduce complexity for the program-
mer. This is particularly important in Nemesis where applications tend to be
more complex as a consequence of the architecture. The model is independent
of programming language or machine representation, though its form has been
strongly influenced by the model of linkage to be presented in section 3.3.

In systems, complexity is typically managed by the use of modularity: de-
composing a complex system into a set of components which interact across
well-defined interfaces. In software systems, the interfaces are often instances of
abstract data types (ADTs), consisting of a set of operations which manipulate
some hidden state. This approach is used in Nemesis.

Although the model is independent of representation, it is often convenient
to describe it in terms of the two main languages used in the implementation of
Nemesis: the interface definition language MIDDL and a stylised version of the
programming language C.
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3.2.1 Types and MIDDL

Nemesis, like Spring, is unusual among operating systems in that all interfaces
are strongly typed, and these types are defined in an interface definition language.
[t is clearly important, therefore, to start with a good type system, and [Evers93]
presents a good discussion of the issues of typing in a systems environment. As
in many RPC systems, the type system used in Nemesis is a hybrid: it includes
notions both of the abstract types of interfaces and of concrete data types. It rep-
resents a compromise between the conceptual elegance and software engineering
benefits of purely abstract type systems such as that used in Emerald [Rajo1],
and the requirements of efficiency and inter-operability: the goal is to implement
an operating system with few restrictions on programming language.

Concrete types are data types whose structure is explicit. They can be pre-
defined (such as booleans, strings, and integers of various sizes) or constructed
(as with records, arrays, etc). The space of concrete types also includes typed
references to interfaces'.

Interfaces are instances of ADTs. Interfaces are rarely static: they can be
dynamically created and references to them passed around freely. The type sys-
tem includes a simple concept of subtyping. An interface type can be a subtype
of another ADT, in which case it supports all the operations of the supertype,
and an instance of the subtype can be used where an instance of the supertype
is required.

The operations supported by interfaces are like procedure calls: they take a
number of arguments and normally return a number of results. They can also
raise exceptions, which themselves can take arguments. Exceptions in Nemesis
behave in a similar way to those in Modula-3 [Nelson91].

Interface types are defined in an interface definition language (IDL) called
MippL [Roscoe94b]. MIDDL is similar in functionality to the IDLs used in object-
based RPC systems, with some additional constructs to handle local and low-level
operating system interfaces. A MIDDL specification defines a single ADT by
declaring its supertype, if any, and giving the signatures of all the operations it

!The term interface reference is sometimes used to denote a pointer to an interface. Un-
fortunately, this can lead to confusion when the reference and the interface are in different
domains or address spaces. Chapter 5 gives a better definition of an interface reference. In
the local case described in this chapter, interfaces references can be thought of as pointers to
interfaces.
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supports. A specification can also include declarations of exceptions, and concrete
types. Figure 3.1 shows a typical interface specification, the (slightly simplified)
definition of the Context interface type.

3.2.2 Objects and Constructors

The word object in Nemesis denotes what lies behind an interface: an object
consists of state and code to implement the operations of the one or more in-
terfaces it provides. A class is a set of objects which share the same underlying
implementation, and the idea of object class is distinct from that of type, which
is a property of interfaces rather than objects.

This definition of an object as hidden state and typed interfaces may be con-
trasted with the use of the term in some object-oriented programming languages
like C++ [Stroustrup91]. In C++ there is no distinction between class and type,
and hence no clear notion of an interface?. The type of an interface is always
purely abstract: it says nothing about the implementation of any object which
exports it. It is normal to have a number of different implementations of the
same type.

When an operation is invoked upon an object across one of its interfaces, the
environment in which the operation is performed depends only on the internal
state of the object and the arguments of the invocation. There are no global
symbols in the programming model. Apart from the benefits of encapsulation
this provides, it facilitates the sharing of code described in section 3.3.

An object is created by an invocation on an interface, which returns a set
of references to the interfaces exported by the new object. As in Emerald, con-
structors are the basic instantiation mechanism rather than classes. By removing
the artificial distinction between objects and the means used to create them,
creation of interfaces in the operating system can be more flexible than the ‘in-
stitutionalised” mechanisms of language runtime systems. This is particularly
important in the lower levels of an operating system, where a language runtime
is not available.

2C+4+ abstract classes often contain implementation details, and were added as an af-
terthought [Stroustrup94, p. 277].
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Context : LOCAL INTERFACE =
NEEDS Heap;
NEEDS Type;

BEGIN

-— Interface to a naming context.

Exists : EXCEPTION [];
—-- Name is already bound.

-— Type used for listing names in a context:
Names : TYPE = SEQUENCE OF STRING;

-— "List" returns all the names bound in the context.
List : PROC [l

RETURNS [ nl : Names ]

RAISES Heap.NoMemory;

-— "Get" maps pathnames to objects.

Get : PROC [ IN name : STRING,
0UT o : Type.Any ]

RETURNS [ found : BOOLEAN ];

-— "Add" binds an object to a pathname.

Add : PROC [ name : STRING, obj : Type.Any ]
RETURNS []
RAISES Exists;

-— "Remove" deletes a binding.
Remove : PROC [ name : STRING ] RETURNS [];

END.

Figure 3.1: MIDDL specification of the Context interface type
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3.2.3 Pervasives

The programming model described so far enforces strict encapsulation of objects:
the environment in which an interface operation executes is determined entirely
by the operation arguments and the object state. Unfortunately, there are cases
where this is too restrictive from a practical point of view. Certain interfaces
provided by the operating and runtime systems are used so pervasively by appli-
cation code that it is more natural to treat them as part of the thread context
than the state of some object. These include:

e Exception handling
e Current thread operations
e Domain control

e Default memory allocation heap

Many systems make these interfaces ‘well-known’, and hardwired into programs
either as part of the programming language or as procedures linked into all im-
ages. This approach was rejected in Nemesis: the objects concerned have domain-
specific state which would have to be instantiated at application startup time.
This conflicts with the needs of the linkage model (section 3.3), in particular,
it severely restricts the degree to which code and data can be shared. Further-
more, the simplicity of the purely object-based approach allows great flexibility,
for example in running the same application components simultaneously in very
different situations.

However, passing references to all these interfaces as parameters to every
operation is ugly and complicates code. The references could be stored as part
of the object state, but this still requires that they be passed as arguments to
object constructors, and complicates the implementation of objects which would
otherwise have no mutable state (and could therefore be shared among domains
as is).

Pervasive interfaces are therefore viewed as part of the context of the currently
executing thread. As such they are always available, and are carried across an
interface when an invocation is made. This view has a number of advantages:

e The references are passed implicitly as parameters.
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e Pervasives are context switched with the rest of the thread state.

e [f necessary, particular interfaces can be replaced for the purposes of a single
invocation.

3.2.4 Memory Allocation

The programming model has to address the problem of memory allocation. An
invocation across an interface can cause the creation of a concrete structure which
occupies an area of memory. There needs to be a convention for determining:

e where this memory is allocated from, and

e how it may be freed.

In many systems the language runtime manages memory centrally (to the do-
main) and all objects may be allocated and freed in the same way. Some systems
provide a garbage collector for automatic management of storage.

Unfortunately, Nemesis does not provide a central garbage collector® and a
domain typically has a variety of pools to allocate memory from, each corre-
sponding to an interface of type Heap (multiple heaps are used to allocate shared
memory from areas with different access permissions). Moreover, it is desirable
to preserve a degree of communication transparency: wherever possible, a pro-
grammer should not need to know whether a particular interface is exported by
an object local to the domain or is a surrogate for a remote one.

Network-based RPC systems without garbage collection use conventions to
decide when the RPC runtime has allocated memory for unmarshalling large
or variable-sized parameters. Usually this memory is allocated by the language
heap, although some RPC systems have allowed callers to specify different heaps
at bind time (for example, [Roscoe94c]). To preserve transparency, in all cases the
receiver of the data is responsible for freeing it. This ensures that the application
code need not be aware of whether a local object or the RPC run time system
has allocated memory.

3The problems of garbage collection in an environment where most memory is shared be-
tween protection domains is beyond the scope of this thesis. This issue is touched upon in
section 6.2.
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In systems where caller and object are in different protection domains but
share areas of memory, the situation is complicated because of the desire to
avoid unnecessary memory allocation and data copies. Ideally, the conventions
used should accommodate both the cases where the caller allocates space for the
results in advance, and where the callee allocates space on demand from caller
memory during the invocation.

Nemesis uses parameter passing modes to indicate memory allocation policy:
each parameter in a MIDDL operation signature has an associated mode, which
is one of the following:

IN: Memory is allocated and initialised by client.
Client does not alter parameter during invocation.
Server may only access parameter during invocation, and cannot alter
parameter.

IN OUT: Memory is allocated and initialised by client.
Client does not alter parameter during invocation.
Server may only access parameter during invocation, and may alter pa-
rameter.

QUT: Memory is allocated but not initialised by client.
Server may only access parameter during invocation, and is expected to
initialise it.

RESULT: Memory is allocated by server, on client pervasive heap, and result
copied into it. Pointer to this space is returned to the client.

The OUT mode allows results to be written by a local object into space already
allocated by the client (in the stack frame, for example). In the remote case, it
is more efficient than the IN OUT mode because the value does not need to be
transmitted to the server; it is only returned.

These modes are all implemented on the Alpha processor using call by ref-
erence, except RESULT, which returns a pointer to the new storage. For values
small enough to fit into a machine word, IN is coded as call by value and RESULT
returns the value itself rather than a reference to it.

These conventions have been found to cover almost all cases encountered in
practice. As a last resort, MIDDL possesses a REF type constructor which allows
pointers to values of a particular type to be passed explicitly.
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3.3 Linkage Model

The linkage model concerns the data structures used to link program components,
and their interpretation at runtime. An early version of the linkage mechanism
was described in [Roscoe94al. Its goal is twofold:

1. To support and implement the Programming Model.
2. To reduce the total size of the system image through sharing of code and

data.

A stub compiler is used to map MIDDL type definitions to C language types.
The compiler, known as middlc* processes an interface specification and generates
a header file giving C type declarations for the concrete types defined in the
interface together with special types used to represent instances of the interface.

3.3.1 Interfaces

An interface is represented in memory as a closure: a record of two pointers, one
to an array of function pointers and one to a state record (figure 3.2).

Text and read-only
data implementing

List method
c : | REF Context
—> Li st |®
Context op i )
interface operation
st|e® table
| —
per-
instance
state

Figure 3.2: Context interface closure

4middlc was written by the author and David Evers.
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To invoke an operation on an interface, the client calls through the appropri-
ate element of the operation table, passing as first argument the address of the
closure itself. The middlc compiler generates appropriate C data types so that
an operation can be coded as, for example:

b = ctxt->op->Get( ctxt, "modules/DomainMgr", &dma );

In this case, ctxt is the interface reference. middlc generates C preprocessor
macros so one may use the CLU-like syntax:

b = Context$Get( ctxt, "modules/DomainMgr", &dma );

3.3.2 Modules

A Nemesis module is a unit of loadable code, analogous to an object file. All
the code in Nemesis exists in one module or another. These modules are quite
small, typically about 10 kilobytes of text and about the same of constant data.
The use of constructor interfaces for objects rather than explicit class structures
makes it natural to write a module for each kind of object, containing code to
implement both the object’s interfaces and its constructors. Such modules are
similar to CLU clusters [Liskov81], though ‘own’ variables are not permitted.

Modules are created by running the UNIX 1d linker on object files. The result
is a file which has no unresolved references, a few externally visible references,
and no uninitialised or writable data®.

All linkage between modules is performed via pointers to closures. A module
will export one or more fixed closures (for example, the constructors) as externally
visible symbols, and the system loader installs these in a name space (see section
3.4) when the module is loaded. To use the code in a module, an application
must locate an interface for the module, often by name lookup. In this sense
linking modules is entirely dynamic.

If a domain wishes to create an object with mutable state, it must invoke
an operation on an existing interface which returns an interface reference of the
required type and class.

5In other words, there is no bss and the contents of the data segment are constant.
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Figure 3.3: Module and instantiated object

Figure 3.3 shows an example where a domain has instantiated a naming con-
text by calling the New operation of an interface of type ContextMod. The latter is
implemented by a module with no mutable state, and has instantiated an object
with two interfaces, of types Context and Debugging. The module has returned
pointers to these in the results ¢ and d. The state of the object includes a heap
interface reference, passed as a parameter to the constructor and closed over.

3.3.3 Address Space Structure

The use of interfaces and modules in Nemesis permits a model where all text and
data occupies a single address space, since there is no need for data or text to be
at well-known addresses in each domain. The increasing use of 64-bit processors
with very large virtual address spaces (the Alpha processor on which Nemesis
runs implements 43 bits of a 64-bit architectural addressing range) makes the
issue of allocating single addresses to each object in the system relatively easy.

It must be emphasised that this in no way implies a lack of memory protection
between domains. The virtual address translations in Nemesis are the same for
all domains, while the protection rights on a given page may vary. Virtual address
space in Nemesis is divided into segments (sometimes called stretches) which have
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access control lists associated with them. What it does mean is that any area
of memory in Nemesis can be shared, and addresses of memory locations do not
change between domains.

3.4 Naming and Runtime Typing

While simple addresses in the single address space suffice to identify any interface
(or other data value) in the system, a more structured system of naming is also
required.

The name space in Nemesis is completely independent of the rest of the op-
erating system. While some operating system components do implement part of
the name space, most naming contexts are first-class objects: they can be created
at will and are capable of naming any value which has a MIDDL type.

There are few restrictions on how the name space is structured. The model fol-
lowed is that of [Saltzer79]: a name is a textual string, a binding is an association
of a name with some value, and a context is a collection of bindings. Resolving a
name is the process of locating the value bound to it. Name resolution requires
that a context be specified.

Context Interfaces

Naming contexts are represented by interfaces which conform to the type Context.
Operations are provided to bind a name to any value, resolve the name in the
context and delete a binding from the context. The values bound in a context
can be of arbitrary type, in particular they can be references to other interfaces
of type Context. Naming graphs can be constructed in this way, and a pathname
may be presented to a context in place of a simple name. A pathname consists
of a sequence of names separated by distinguished characters, either ‘/’ or >’
To resolve such a pathname, the context object examines the first component of
the name. If this name resolves to a context, this second context is invoked to
resolve the remainder of the pathname.
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Ordered Merges of Contexts

The MergedContext interface type is a subtype of Context, modelled after a
similar facility in Spring [Radia93]. An instance of MergedContext represents a
composition of naming contexts; when the merge is searched, each component
context is queried in turn to try and resolve the first element of the name. Op-
erations are provided to add and remove contexts from the merge.

An Example

Figure 3.4 illustrates part of a naming graph created by the Nemesis system at
boot time. Context A is the first to be created. Since one must always specify
a context in which to resolve a name, there is no distinguished root. However A
serves as a root for the kernel by convention. Context B holds local interfaces
created by the system, thus ‘Services>DomainMgr’ is a name for the Domain
Manager service, relative to context A. Any closures exported by loaded modules
are stored in context C (‘Modules’), and are used during domain bootstrapping.

Servi ces
Modul es 1
I DC Donai nMyr
Ti mer
A TypeSyst em
( Cont ext Mod —> B
Thr eadsPackage —>
Domvyr Mbd L,
Ti mer Mod —>
StretchAl | oc —»
Fr anesMod —>
TypeSystem —
C -
Heap

Figure 3.4: Example name space
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Context D has two names relative to the root, ‘Services>TypeSystem’ and
‘Modules>TypeSystem’. This context is not in fact implemented in the usual way,
but is part of the runtime type system, described in the next section.

3.4.1 Run Time Type System

The Type System is a system service which adds a primitive form of dynamic
typing, similar to [Rovner85]. Each MIDDL type is assigned a unique Type.Code,
and the Type.Any type provides support for data values whose type is not known
at compile time. The TypeSystem interface provides the operations IsType, to
determine whether a Type . Any conforms to a particular type, and Narrow, which
converts a Type.Any to a specified type if the type equivalence rules permit. A
major use of Type.Any is in the naming interfaces: values of this type are bound
to names in the name space.

The Type System data structures are accessible at run time through a series of
interfaces whose types are subtypes of Context. For example, an operation within
an interface is represented by an interface of type Operation, whose naming
context includes all the parameters of the operation. Every MIDDL interface
type is completely represented in this way.

3.4.2 CLANGER

A good example of how the programming and linkage models work well in practice
is CLANGER® [Roscoe95] , a novel interpreted language for operating systems.
CLANGER relies on the following three system features:

e a naming service which can name any typed value in the system,

e complete type information available at runtime, and

e a uniform model of interface linkage.

In CLANGER a variable name is simply a pathname relative to a naming

context specified when the interpreter was instantiated. All values in the language
are represented as Type.Anys. The language allows operations to be invoked on

SCLANGER has been implemented by Steven Hand.
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variables which are interface references by synthesising C call frames. Access to
the Type System allows the interpreter to type-check and narrow the arguments
to the invocation, and select appropriate types for the return values.

The invocation feature means that the language can be fully general without
a complex interpreter or the need to write interface ‘wrappers’ in a compiled
language. This capability was previously only available in development systems
such as Oberon [Gutknecht| and not in a general-purpose, protected operating
system. CLANGER can be used for prototyping, debugging, embedded control,
operating system configuration and as a general purpose programmable command
shell.

3.5 Domain bootstrapping

The business of starting up a new domain in Nemesis is of interest, partly because
the system is very different from UNIX and partly because it gives an example of
the use of a single address space to simplify some programming problems.

The traditional UNIX fork primitive is not available in Nemesis. The state of a
running domain consists of a large number of objects scattered around memory,
many of which are specific to the domain. Duplicating this information for a
child domain is not possible, and would create much confusion even if it were,
particularly for domains with communication channels to the parent. In any case,
fork is rarely used for producing an exact duplicate of the parent process, rather
it is a convenient way of bootstrapping a process largely by copying the relevant
data structures. In Nemesis, as in other systems without fork such as VMS, this
can be achieved by other means.

The kernel’s view of a domain is limited to a single data structure called the
Domain Control Block, or DCB. This contains scheduling information, commu-
nication end-points, a protection domain identifier, an upcall entry point for the
domain, and a small initial stack. The DCB is divided into two areas. One is
writable by the domain itself, the other is readable but not writable. A privi-
leged service called the Domain Manager creates DCBs and links them into the
scheduler data structures.

The arguments to the Domain Manager are a set of Quality of Service (QoS)
parameters for the new domain, together with a single closure pointer of type
DomainEntryPoint. This closure provides the initial entry point to the domain
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in its sole operation (called Go), and the state record should contain everything
the new domain needs to get going.

The creation of this DCB is the only involvement the operating system proper
has in the process. Everything else is performed by the two domains involved:
the parent creates the initial closure for the domain, and the child on startup
locates all the necessary services it needs which have not been provided by the
parent. Figure 3.5 shows the process.

Instantiate : Creat : Create remaining
) . ] reate )
nEnt r yPoi nt —> . —> .
Domai yrol ! Domain Control Block ! domain state
closure & state ' '
Parent domain i Domain Manager i Child domain

Figure 3.5: Creation of a new domain

The DomainEntryPoint closure is the equivalent of main in UNIX, with the
state record taking the place of the command line arguments. By convention the
calling domain creates the minimum necessary state, namely:

e A naming context.

e A heap for memory allocation.

e The runtime type system (see below).
From the name space, a domain can acquire all the interface references it needs to
execute. One useful consequence of this is that an application can be debugged
in an artificial environment by passing it a name space containing bindings to
debugging versions of modules. The type system is needed to narrow types re-

turned from the name space. The heap is used to create the initial objects needed
by the new domain.

The Builder

To save a programmer the tedium of writing both sides of the domain initial-
isation code, a module is provided called the Builder. The Builder takes a
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ThreadClosure’ which represents the initial thread of a multi-threaded domain
to be created. The Builder instantiates an initial heap for the new domain. Most
heap implementations in Nemesis use a single area of storage for both their in-
ternal state and the memory they allocate, so the parent domain can create a
heap, allocate initial structures for the child within it, and then hand it over in
its entirety to the new domain.

The Builder returns a DomainEntryPoint closure which can be passed to the
Domain Manager. When started up, the new domain executes code within the
Builder module which carries out conventional initialisation procedures, including
instantiating a threads package. The main thread entry point is also Builder
code, creating the remaining state before entering the thread procedure originally
specified. Figure 3.6 shows the sequence of events.

This illustrates two situations where a module executes in two domains. In
the first, part of the Builder executes the parent and another part executes in
the child. In the second, a single heap object is instantiated and executes in the
parent, and is then handed off to the child, which continues to invoke operations
upon it. In both cases the programmer need not be aware of this, and instan-
tiating a new domain with a fully functional runtime system is a fairly painless
operation.

3.6 Discussion

Nemesis has adopted a different method of achieving sharing from Hemlock: ob-
jects are used throughout and there are no real ‘global variables’ in a Nemesis
program. Instead, state is held either in closures or as part of an extended thread
context containing pervasive interfaces in addition to processor register values.

However, the combination of an entirely interface-based programming model,
and a per-machine single address space works well in practice. The code for
Nemesis is highly modular, and there are many situations where use is made
both of the ability of an object to export multiple interfaces, and of the same
interface type to be implemented by several classes of object. Unlike Opal and
Angel, the single address space is fully exploited.

The typing and code reuse benefits of interfaces are achieved independently

"The user-level threads equivalent of a domain entry point.
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Figure 3.6: Action of the Builder

of any particular programming language. No runtime system is strictly required,
although dynamic typing does require the Type System module. This has enabled
the use of interfaces throughout the low levels of the operating system. As an
aside, this in turn enables CLANGER to be used at a very basic level in the system,
and almost the whole operating system to be virtualised: to run entirely inside
a Nemesis domain.

System development is greatly simplified by the ability to pass pointers be-
tween domains. This is particularly useful in situations involving a large quantity
of data and where it is undesirable to copy it, for example the processing of video
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streams. The architecture of Nemesis tries to discourage pipelines of domains,
since it is preferable to do all processing on a stream within a single applica-
tion and thereby preserve QoS guarantees. However, when information must be
passed to another domain (for example, a frame store driver), code on both sides
of the protection boundary can use the same addresses. Indeed, many code mod-
ules in Nemesis straddle protection domain boundaries. This idea is returned to
in chapter 5.

As another example, interrupt service routines (ISRs) are entered with a reg-
ister loaded with a pointer to their state. The device driver domain assigned this
pointer when it installed the ISR, and the address is valid regardless of which
domain is currently scheduled. The maintenance of scatter-gather maps to enable
devices to DMA data to and from virtual memory addresses in client domains is
similarly simplified.

3.6.1 Overhead of using interfaces

The primary concern with the linkage model is the overhead of passing closures
with interface operations. Table 3.1 shows the results of an experiment to mea-
sure null procedure call times. The machine used was a DEC Alpha 3000/400
Sandpiper running OSF/1. The compiler used in these experiments (as for all
the results in this dissertation) was GCC 2.6.3, with optimisation on (-02).

min. mean std. dev.

Procedure call 34  34.6 32.50
Nemesis closure 39 394 25.58
Dynamic C++ 39 395 30.15
Static C++ 34 344 28.75

Table 3.1: Call times in cycles for different calling conventions

The overhead of passing a closure in a procedure call is 5 machine cycles
(about 37ns in this case). Not surprisingly this corresponds with the overhead of
a C++ virtual function call, which is generally regarded as an acceptable price
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to pay for modularity. The final line of the table illustrates the advantage to be
gained from the compiler being able to optimise across invocation boundaries: if
the called object is static, GCC can use a simple procedure call to implement the
method invocation. Nemesis forgoes this performance advantage in favour of full
dynamic linking.

3.6.2 Effects of sharing code

In theory, the performance overhead of using closures for cross-interface invoca-
tions should be compensated for to some extent by the increased cache perfor-
mance resulting from decreased code size: The granularity at which text is shared
in Nemesis means that the code portion of the working set of the complete system
is much smaller than in a statically-linked, multiple address space system,

Unfortunately, observing the effect of image size upon execution speed proved
to be extremely difficult due to the cache architecture of the machines available.
The DECchip EB64 development board and the DEC3000/400 Sandpiper work-
station both use a DECchip 21064-AA processor with 8k of instruction cache and
8k of data cache. Both these caches are physically addressed and direct mapped,
as is the unified secondary cache of 512k bytes.

The non-associativity of the cache system means that the likelihood of ‘hot
spots’ occurring in the cache during normal operation is very high. The result
is that minor changes in the arrangement of code in the image can have a large
effect on the performance of the system as a whole.

Figure 3.7 shows the result of altering the order in which modules are loaded
into the address space. A single, reasonably large module (42k text, 15k data)
implementing the front end of midd1lc was moved through the load order, and for
each configuration a benchmark performed. The benchmark consisted of compil-
ing a set of interfaces from an in-memory filing system 2000 times. The compiler
was the only application domain executing for the duration of the benchmark.

The slowest run recorded took over 65% longer than the quickest. Altering the
order in which object files were linked into the module while keeping the module’s
position in memory constant produced a similar wide distribution. With as much
variation as this it is difficult to make comparisons, but an identical experiment
was performed with a version of the midd1lc module which contained the complete
runtime statically linked in, and accessed via procedure calls rather than through
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Figure 3.7: Variation in execution time for middlc

closures. The results were broadly similar, with the norm around 1220ms as
opposed to 1300ms for the shared runtime version, making the overhead of using
closures in this case about 6.5%.

Optimising memory layout of code and data for cache performance on a
system-wide basis is a large research topic, and beyond the scope of this dis-
sertation. Intuitively, however, sharing code between domains should improve
performance in Nemesis as a result of the increased cache performance, as it
does in other systems. The finer granularity of sharing in Nemesis may cause
this performance gain to outweigh the overhead of interface calls, however, accu-
rately quantifying the benefit of such sharing is difficult in a system as sensitive
as the one used here. Increasing the associativity of one or more caches should
dramatically improve the predictability of the system as well as its performance.
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3.7 Summary

Nemesis programs and subsystems are composed of objects which communicate
across typed interfaces. Interface types are ADTs defined in the MIDDL interface
definition language, which also supports definitions of concrete data types and
exceptions. Objects are constructed by invocations across interfaces. There is no
explicit notion of a class. There are no well-known interfaces, but a number of
pervasive interfaces are regarded as part of a thread context.

Interfaces are implemented as closures. The system is composed of stateless
modules which export constant closures. All linking between modules is dy-
namic, and the system employs a single address space to simplify organisation
and enhance sharing of data and text.

A uniform, flexible and extensible name service is implemented above inter-
faces, together with a run time type system which provides dynamic types, type
narrowing, and information on type representation which can be used by the
command language to interact with any system components.

The single-address space aspect of Nemesis together with its programming
model based on objects rather than a single data segment prohibit the use of a
fork-like primitive to create domains. Instead, runtime facilities are provided to
instantiate a new domain specified by an interface closure. The single address
space enables the parent domain to hand off stateful objects to the child.

The performance overhead of using closures for linkage is small, roughly equiv-
alent to the use of virtual functions in C++4. However, it is clear that the cache
design of the machines on which Nemesis currently runs presents serious obstacles
to the measurement of any performance benefits of small code size.
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Chapter 4

Scheduling and Events

This chapter describes the problem of scheduling applications in an operating
system from a QoS perspective. It discusses some existing techniques which have
been applied to scheduling multimedia applications, and then describes the Neme-
sis scheduler in detail. This scheduler delivers guarantees of processor bandwidth
and timeliness by transforming the problem into two components: a soluble real-
time scheduling problem and the issue of allocation of slack time in the system.
The client interface is designed so as to support multiplexing of the CPU within
application domains, a requirement made all the more important by the use of an
architecture which places much system functionality in the application. The use
of event channels to implement inter-domain communication and synchronisa-
tion is described, and finally the problems of handling interrupts are mentioned,
together with the solution adopted in Nemesis.

4.1 Scheduling Issues

The function of an operating system scheduler is to allocate CPU time to activities
in such a way that the processor is used efficiently and all processes' make progress
according to some policy.

In a traditional workstation operating system this policy is simply that all
activities should receive some CPU time over a long period, with some having

!The terms process and task are used interchangeably in this chapter to denote an activity
schedulable by the operating system.
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priority over others, but in a multi-service system the policy adopted must now
have additional constraints based on the passage of real time.

True real-time operating systems have quite strict constraints: in a hard real-
time system correct results must be delivered at or shortly before the correct
time, or the system can be said to have failed. In a soft real-time system, the
temporal constraint on correctness is relaxed (results can be allowed to be a little
late), though the results must still be logically correct (the computation must
have completed).

Systems handling continuous media frequently have different constraints: not
only can results sometimes be late, they can sometimes be incomplete as well.
[Hyden94] gives examples of situations where computations on multimedia data
need not complete for the partial results to be useful, and a useful taxonomy
of algorithms which can make use of variable amounts of CPU time is given in
[Liu91].

Both the additional constraints on CPU allocation and the tolerant nature of
some multimedia applications is apparent from attempts to capture and present
video and audio data using conventional UNIX workstations, for example the
Medusa system [Hopper92]. Even with some hardware assistance, the audio is
broken and the picture jerky and sometimes fragmented when other processes
(such as a large compilation) are competing for CPU time. However, sufficient
information generally does get through to allow users to see and hear what is
going on.

Nemesis represents an attempt to do better than this: firstly, to reduce the
crosstalk between applications so that the results are less degraded under load;
secondly, to allow application-specific degradation (for example, in a way less
obvious to the human eye and ear); and thirdly to support applications which
cannot afford to degrade at all by providing real guarantees on CPU allocation.

4.1.1 QoS Specification

Before specifying mechanisms for multiplexing the processor among applications
within Nemesis, it is important to consider the representation of QoS used be-
tween the operating system allocation mechanisms and applications. As in the
rest of this dissertation, CPU time is taken as an example since it is usually the
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most important resource. However, the principles given here apply to most sys-
tem resources. The representation, a QoS specification, must serve two purposes.

Firstly, it must allow the application to specify its requirements for CPU time.
From the application’s point of view, the more sophisticated this specification can
be, the better. However, at odds with the desire for expressiveness is the second
function of a QoS specification: to enable the resource provider (in this case the
scheduler) to allocate resources between applications efficiently while satisfying
their requirements as far as possible. A key part of this is to be able to schedule
applications quickly: the overhead of recalculating a complex schedule during a
context switch is undesirable in a workstation operating system. For this reason,
it is difficult (and may be unwise to try) to fully decouple the specification of
CPU time requirements from the scheduling algorithm employed.

There is a further incentive to keep the nature of a QoS specification simple.
Unlike the hard real-time case, most applications’ requirements are not known
precisely in advance. Furthermore, these requirements change over time; vari-
able bit-rate compressed video is a good example. In these cases statistical or
probabilistic guarantees are more appropriate. Furthermore, the application be-
ing scheduled is typically multiplexing its allocation of CPU time over several
activities internally in a way that is almost impossible to express to a kernel-level
scheduler. Any measure of QoS requirements will be approximate at best.

To summarise, the type of QoS specification used by a scheduler will be a com-
promise between the complexity of expressing fully the needs of any application,
and the simplicity required to dynamically schedule a collection of applications
with low overhead.

4.2 Scheduling Algorithms

As well as the (relatively simple) code to switch between running domains, the
Nemesis scheduler has a variety of functions. It must:

e account for the time used by each holder of a QoS guarantee and provide a
policing mechanism to ensure domains do not overrun their allotted time,

e implement a scheduling policy to ensure that each contract is satisfied,
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e block and unblock domains in response to their requests and the arrival of

events,

e present an interface to domains which makes them aware both of their own
scheduling and of the passage of real time,

e provide a mechanism supporting the efficient implementation of potentially
specialised threads packages within domains.

The algorithm used to schedule applications is closely related to the QoS speci-
fication used, and for Nemesis a number of options were considered.

4.2.1 Priorities

Priority-based systems assign each schedulable process an integer representing its
relative importance, and schedule the runnable process with the highest priority.
They are generally unsuitable for supporting multimedia applications: [Black94]
provides a comprehensive discussion of the problems of priority-based scheduling.
While scheduling algorithms which are based on priority are often simple and
efficient, priority does not give a realistic measure of the requirements of an
application: it says nothing about the quantity of CPU time an application is
allocated. Instead a process is simply given any CPU time unused by a higher-
priority application.

Despite this, several operating systems which use priority-based scheduling,
provide so-called real-time application priority classes, intended for multimedia
processes. Examples include Sun Microsystems’ Solaris 2 and Microsoft’s Win-
dows NT. Applications instantiated in this class run at a higher priority than
operating system processes, such as pagers and device drivers. They are required
to block or yield the CPU voluntarily every so often so that the operating system
and other applications can proceed. Failure to do this can cause the system to
hang the application has effectively taken over the machine. Furthermore, as
[Nieh93] points out, it is nearly impossible in the presence of several real-time
applications to assign priorities with acceptable results.
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4.2.2 Rate Monotonic

[Liu73] describes the Rate Monotonic (RM) algorithm for scheduling off-line a
set of periodic hard real-time tasks, which essentially involves assigning static
priorities to the tasks such that those with the highest frequency are given the
highest priority. The schedule calculated by RM is always feasible if the total
utilisation of the processor is less than In2, and for many task sets RM produces
a feasible schedule for higher utilisation. It relies on the following assumptions
about the task set?:

(A1) The requests for all tasks for which hard deadlines exist are periodic, with
constant interval between requests.

(A2) Deadlines consist of run-ability constraints only i.e. each task must be
completed before the next request for it occurs.

(A3) The tasks are independent in that requests for a certain task do not depend
on the initiation or the completion of requests for other tasks.

(A4) Run-time for each task is constant for that task and does not vary with
time. Run-time here refers to the time which is taken by a processor to
execute the task without interruption.

(A5) Any non-periodic tasks in the system are special; they are initialisation or
failure-recovery routines; they displace periodic tasks while they themselves
are being run, and do not themselves have hard, critical deadlines.

4.2.3 FEarliest Deadline First

The Earliest Deadline First (EDF) algorithm also presented in [Liu73] is a dy-
namic scheduling algorithm which will give a feasible schedule when the CPU
utilisation is 100%. It, too, relies on the assumptions of Section 4.2.2, and works
by considering the deadline of a task to be the time at which the results of its
computation are due.

EDF scheduling is used by the Sumo project at Lancaster University to sup-
port continuous media applications over the Chorus microkernel [Coulson93].
The system uses EDF to schedule a class of kernel threads over which user-level

2These assumptions are quoted directly from [Liu73].
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threads are multiplexed. The deadlines are presented to the kernel scheduler by
the user tasks, a decision which has two consequences. Firstly, the guarantees
provided by the EDF algorithm are now hints at best; deadlines can frequently
be missed due to the unexpected arrival of a new task and deadline. Secondly,
user-level schedulers are expected to cooperate and not present difficult deadlines
to the kernel. If a user process (through error or malicious design) presents dead-
lines requiring more of the CPU than the kernel expects to allocate, all tasks may
be disrupted. In other words, the policing mechanism is inadequate over short to
medium time periods.

At first sight, the assumptions required by the static RM and dynamic EDF
algorithms seem to rule out their use in a general-purpose operating system:
tasks which are periodic and independent with fixed run times are not the norm.
In particular, the independence of tasks in the presence of shared server tasks
poses a particular difficulty. However, in a system such as Nemesis, where shared
server tasks are rarely called, EDF may have some benefit, especially if the algo-
rithm is viewed as a means of sharing the processor between domains rather than
completing tasks from a changing set.

4.2.4 Processor Bandwidth

The Nemesis scheduler builds on many ideas in the Nemo system built by Eoin
Hyden and described in [Hyden94]. In Nemo, applications negotiated contracts
with the system for processor bandwidth (PB) in a manner analogous to modern
high speed networks. The concept of PB consisted of a percentage share of the
processor time together with some measure of the granularity with which the
share should be allocated. It can be represented as a pair (p, s), where the appli-
cation will receive s seconds of processor time every p seconds, and so contains
measures of both required bandwidth and acceptable jitter. An admission control
mechanism ensures that the system never contracts out more than 100% of the
available PB.

Nemo investigated use of both RM and EDF algorithms to schedule processes,
and also optionally allowed applications to specify their own deadlines. It worked
well in practice, although it did not address the issue of handling interrupts from
devices, and the problems of communicating domains. Nevertheless, the PB idea
(together with elements of Nemo’s client interface) have been used in Nemesis.
In particular, it represents a highly appropriate form of QoS specification.
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4.2.5 Fawn Jubilees

The Fawn system [Black94] adopts a novel scheme whereby each process is allo-
cated a particular slice of time over a system-wide, fixed period (31.5 milliseconds
in the system reported), called a jubilee. All processes are scheduled in turn
within a jubilee. At the end of the jubilee all allocations of CPU time are reset.

Extra time remaining towards the end of a jubilee is dealt out using a hierarchy
of queues: when a process runs out of time in a queue it is moved to the next lower
queue. Each process has a number of different allocations of time corresponding
to different queues it may find itself on. When one queue is empty, the scheduler
starts on the next queue down until the jubilee is over, thus guaranteed time is
merely the top-level time allocation.

This approach was rejected at an early stage in the development of Nemesis
due to its inflexibility®. No guarantees are given about how often a process is
scheduled other than the system-wide jubilee length, thus all processes must be
scheduled with this frequency. Accounting is cheap since allocations only occur
on jubilee boundaries, but if one process absolutely must be scheduled at some
high frequency, then all processes must, resulting in an unacceptably high number
of context switches. For n processes, there must be n context switches per jubilee,
and it may be impossible to schedule at this granularity.

There are environments (such as the switch line cards on which Fawn was de-
veloped) where this kind of scheduling mechanism is highly appropriate. However,
it is less useful in a general-purpose operating system intended for workstations.

4.3 Scheduling in Nemesis

Scheduling in Nemesis is discussed in the next few sections. First, the service
model and architecture are presented: how clients of the scheduler view the ser-
vices it provides. Then the algorithm itself is described, followed by the interface
between the scheduler and the client. Finally, the handling of event channels and
device interrupts is discussed.

31t should be noted that the algorithm referred to under the title ‘Interprocess Scheduling in
Nemesis’ in [Black94] bears no resemblance to the Nemesis operating system described herein.
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4.3.1 Service Model and Architecture

The scheduler deals with entities called scheduling domains, or sdoms. An sdom
corresponds to either a single Nemesis domain or a set of domains collectively
allocated a share of the available processor time. Each sdom receives a QoS from
the system specified by a tuple {s,p,z,l}. The slice s and period p together
represent the processor bandwidth to the sdom: it will receive at least s seconds
of CPU time in each period of length p. x is a boolean value used to indicate
whether the sdom is prepared to receive extra CPU time left over in the system.
[, the unblocking latency, is described in Section 4.4.5 below.

The precise nature of guarantee the Nemesis scheduler provides to an sdom
is this: the scheduler will divide real time into a set of periods of length p for
the sdom in question, and during each period the sdom will receive the CPU for
some number of slices whose total length will be at least s.

Scheduler:

Sdoms:

Best-effort
Domains:

Contracted
Domain A

Best-effort
Class 1

Contracted
Domain B

Best-effort
Class 2

Contracted
Domain C

Best-effort
Domain a

Best-effort
Domain b

Best-effort
Domain c

Figure 4.1: Scheduling service architecture

The service architecture is illustrated in figure 4.1. Sdoms usually correspond
to contracted domains, but also correspond to best-effort classes of domains.
In the latter case, processor time allotted to the sdom is shared out among its
domains according to one of several algorithms, such as simple round-robin or
multi-level feedback queues.

The advantage of this approach is that a portion of the total CPU time can be
reserved for domains with no special timing requirements to ensure that they are
not starved of processor time. Also, several different algorithms for scheduling
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best-effort domains can be run in parallel without impacting the performance of
time-critical activities.

4.3.2 Kernel Structure

The Nemesis kernel consists almost entirely of interrupt and trap handlers; there
are no kernel threads. When the kernel is entered from a domain (as opposed
to another interrupt handler) a new kernel stack is created afresh in a fixed
(per processor) area of memory. The domain operations described below such as
block, yield and send are implemented entirely in PALcode [Sites92], though
they may cause the scheduler to be entered. Having the operations entirely in
PALcode reduces the number of full context switches required (the penalty for
a PALcode trap is only two pipeline drains), and simplifies the implementation
since PALcode executes with all internal chip registers available and all interrupts
masked. Interrupt dispatching is also performed in PAL mode.

The scheduler is implemented as an Alpha/AXP software interrupt handler
[DEC92], and so executes in the protection domain of the currently running
domain. The scheduler is always the last pending interrupt to be serviced, and
executes with all interrupts masked.

4.4 The Nemesis Scheduler

The operation of the scheduler can now be described.

4.4.1 Scheduler Domain States

An sdom can be in one of five states:

e running

e runnable

e waiting

e running optimistically

e blocked
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Running sdoms have one of their domains being executed by a processor, in time
that they have been guaranteed by system. Runnable sdoms have guaranteed
time available, but are not currently scheduled. Waiting sdoms are waiting for
a new allocation of time, which will notionally be the start of their next period.
During this time they may be allocated spare time in the system and ‘run opti-
mistically’. Finally, they may be blocked until an event is transmitted to one of
their domains.

4.4.2 The Basic Scheduling Algorithm

With each runnable sdom is associated a deadline d, always set to the time at
which the sdom’s current period ends, and a value r which is the time remaining
to the sdom within its current period. There are queues @), and @, of runnable
and waiting sdoms, both sorted by deadline, and a third queue @, of blocked
sdoms.

The scheduler requires a hardware timer that will cause the scheduler to be en-
tered at or very shortly after a specified time in the future; ideally a microsecond-
resolution interval timer. Such a timer is used on the EB64 board, but has to be
simulated with a 122us periodic ticker on the Sandpiper.

When the scheduler is entered at time t as a result of a timer interrupt or an
event delivery:

1. the time for which the current sdom has been running is deducted from its
value of r.

2. if r is now zero, the sdom is inserted in ().

3. for each entry on @, for which ¢ > d, r is set to s, and the new deadline d’
is set to d 4+ p. This sdom is moved to @), again.

4. a time is calculated for the next timer interrupt depending on which of d,
and d,, + p, is the lower, where d, is the deadline of the head of @Q),, and
ps is the period of the head of Q).

e if d, is the lower, the time is ¢ 4+ r,.. This is the point when the head
of ), will run out of time.
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e otherwise, the time is d,. This is the time that the head of @, will
become runnable and take over from the head of (),.

The interval timer is set to interrupt at this time.

5. the scheduler always runs the head of the run queue: the sdom with the
earliest deadline.

This basic algorithm will meet all contracts provided that the total share of
the CPU does not exceed 100% (i.e. Y s;/p; < 1). Moreover, it can efficiently
support domains requiring a wide range of scheduling granularities.

Firstly, note that the scheduler is only entered when a change of domain is
potentially necessary. Step 4 ensures that extra CPU time is only allocated to
sdoms when the scheduler has been called for some other reason. The overhead
for actually allocating the time is very small indeed: the operation is a comparison
and an addition.

Secondly, the existence of a feasible schedule (one which satisfies all contracts)
is guaranteed by the admission control algorithm since the total share of the
processor is less than 100%, and slices can be executed at any point during their
period. In the limit, all sdoms can proceed simultaneously with an instantaneous
share of the processor which is constant over time. This limit is often referred to
as processor sharing [Coffman73]*.

Finally if we regard a ‘task’ as ‘the execution of an sdom for s nanoseconds’,
this approach satisfies the conditions required for an EDF algorithm to function
correctly: requests for tasks are periodic with fixed interval between requests and
constant run-time. All tasks are truly independent and non-periodic tasks do not
exist, providing no new tasks are introduced into the system (see below). The
EDF result in [Liu73] shows that the algorithm does, in fact, work: all contracts
will be met.

This argument relies on two simplifications: firstly, that scheduling overhead
is negligible, and secondly that the system is in a steady state with no sdoms
being introduced to or removed from the queues. These points are addressed
below as well as the other elements of the scheduling algorithm, such as blocking
and the use of slack time in the system.

1 am indebted to Simon Crosby for this line of argument
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4.4.3 Taking overhead into account

Scheduling overhead is currently made up for by ‘slack’ time in the system (100%
of the CPU is never contracted out), and by not counting time in the scheduler as
used by anybody. This has worked very satisfactorily in practice under quite high
load, with a reasonable number of domains. It is conceivable that a pathological
collection of periods and slices might induce the highest possible reschedule fre-
quency, which is the frequency of the domain with the smallest period times the
number of domains. However, this is intuitively highly unlikely, and with more
analysis this might be avoided in the admission control system. Alternatively
it could be detected and dealt with at runtime, for example by renegotiating
contracts to increase the slack time in the system.

4.4.4 Removing Domains from the System

An sdom can cease to be considered by the scheduler in one of two ways. The
first is that it can simply be killed: it is unlinked from its queue, its contract
annulled and the storage it occupied returned to the free pool. This poses no
particular problems: the system will continue to schedule things as normal with
more slack time.

Secondly, a domain can issue a block PALcode call, which sets a flag in the
domain’s state indicating that it has requested a block, and enters the scheduler.
The domain is descheduled as normal and placed on the blocked queue @)y. As
above, no special action needs to be taken by the scheduler.

If a domain has no further useful work to perform in its current period, it
can issue a yield call, which simply sets r := 0 for the domain and causes a
reschedule.

4.4.5 Adding Domains to the System

By contrast, adding a domain to the set considered by the scheduler, whether by
creating a new domain or unblocking an existing one, is more complex since the
total resource demand increases. The key issue is deciding the values of d and r
for the new domain.
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If the sdom is to be introduced at time £, a safe option is to set d := t+ p and
r := s. This introduces the sdom with the maximum scheduling leeway; since a
feasible schedule exists no deadlines will be missed as a result of the new domain.

For most domains this is sufficient, and it is the default behaviour for almost
all domains. In the case of device drivers reacting to an interrupt, sometimes
faster response may be required. When unblocking an sdom which has been
asleep for more than its period, the scheduler sets r := s and d := t + [, where
[ is the latency hint. For most sdoms [ will be equal to p to prevent deadlines
being missed. For device drivers [ may be reduced.

The consequences of reducing [ in this way are that if such an sdom is woken
up when the system is under heavy load, some sdoms may miss their deadline
for one of their periods. The scheduler’s behaviour in these circumstances is to
truncate the running time of the sdoms: they lose part of their slice for that
period. Thereafter, things settle down.

Typical Allocation:

— — — — |

Allocation with short block:

Block Unblock

Figure 4.2: Unfairness due to short blocks

Even with sdoms for which [ = p, a problem can arise if a domain is unblocked
before the end of the period in which it was originally blocked (see figure 4.2). The
policy above would give it a fresh allocation and period immediately, which is not
entirely fair. One approach is leave r and d unchanged over the short block, but
this might cause other domains to miss their deadlines when the driver unblocks
with a large allocation and very short deadline. Such situations are therefore
treated as if a yield had been executed, and the sdom is given its allocation at
the start of its next period (see figure 4.3).
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Typical Allocation:

— — — — |

Allocation with short block:

— I—i : — — |

Block Unblock

Figure 4.3: Fairer unblocking

4.4.6 Use of Extra Time

As long as @), is non-empty, the head is due some contracted time and should
be run. If @), becomes empty, the scheduler has fulfilled all its commitments to
sdoms until the head of (),, becomes runnable. In this case, the scheduler can opt
to run some sdom in (),, for which x is true, i.e. one which has requested use of
slack time in the system. Domains are made aware of whether they are running
in this manner or in contracted time by a flag in their control block.

The current policy adopted by the scheduler is to run a random element of (),
for a small, fixed interval or until the head of ),, becomes runnable, whichever is
sooner. Thus several sdoms can receive the processor ‘optimistically’ before @),
becomes non-empty. The optimal policy for picking sdoms to run optimistically
is a subject for further research. The current implementation allocates a very
small time quantum (122 us) to a member of @, picked cyclically. This works
well in most cases, but there have been situations in which unfair ‘beats’ have
been observed.

4.5 Client Interface

The runtime interface between a domain and the scheduler serves two purposes:

e [t provides the application with information about when and why it is being
scheduled, and feedback as to the domain’s progress relative to the passage
of real time.

e [t supports user-level multiplexing of the CPU among distinct subtasks
within the domain, for example by supporting a threads package.
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Time

The abstraction of time used in the system is the same throughout: the system
assumes the presence of a world-readable clock giving time in nanoseconds since
the machine started. In practice this will inevitably be an approximation, but
it can be provided very simply and efficiently by means of a single 64-bit word
in memory. There is no guarantee that this time value runs at precisely the
same rate as time outside the machine, nor is such assurance needed. Domains
synchronising to events clocked externally from the machine will need to make
domain-specific long-term adjustments anyway, and the passage of true, planet-
wide time falls into this category also.

Context Slots

A Nemesis domain is provided with an array of slots, each of which can hold a
processor context. In the case of the Alpha/AXP implementation, a slot consists
of 31 integer and 31 floating-point registers, plus a program counter and processor
status word. Two of the slots are designated the activation context and resume
context respectively; this designation can be changed at will by the domain. A
domain also holds a bit of information called the activation bit.

Descheduling and Activation

A mechanism similar to Nemo’s is used when the domain is descheduled. The
context is saved into the activation context or the resume context, depending on
whether the activation bit is set or not. When the domain is once again sched-
uled, if its activation bit is clear, the resume context is simply resumed. If the
activation bit is set, it is cleared and an upcall takes place to a routine previously
specified by the domain (in fact, an invocation occurs across an interface of type
DomainEntryPoint). This entry point will typically be a user-level thread sched-
uler, but domains are also initially entered this way®. Figure 4.4 illustrates the
two cases.

The upcall occurs on a dedicated stack (in the domain control block) and
delivers information such as current system time, time of last deschedule, reason
for upcall and context slot used at last deschedule. The state pointer for the

®Indeed, a new domain to be started is specified solely by its DomainEntryPoint closure.
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Figure 4.4: Deschedules, Activations and Resumptions

closure will contain enough information to give the domain a sufficient execution
environment to schedule a thread.

A threads package will typically use one context slot for each thread and
change the designated activation context according to which thread is running.
If more threads than slots are required (currently 32), slots can be used as a cache
for thread contexts. The activation bit can be used with appropriate exit checks
to allow the thread scheduler to be non-reentrant, and therefore simpler.

Implementing threads packages over the upcall interface has proved remark-
ably easy. A Nemesis module implementing both preemptive and non-preemptive
threads packages, providing both an interface to the event mechanism and syn-
chronisation based on event counts and sequencers comes to about 900 lines of
heavily commented C (much of which is closure boilerplate) and about 20 assem-
bler opcodes. A further module providing the thread synchronisation primitives
described in [Birrell87] comes to 202 lines of C, including comments. For compar-
ison, the POSIX threads library for OSF /1 achieves essentially the same function-
ality over OSF/1 kernel threads with over 6000 lines of code, with considerably
inferior performance.

4.6 Scheduling and Communication

Communication between domains is relevant to the scheduler because it may
well affect the optimal choice of domain to run. However, it is important not to
allow communication to influence scheduling decisions to the extent that resource
guarantees are violated.
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Inter-process communication generally has two aspects: firstly the presenta-
tion of information by one entity to another, and secondly a synchronisation signal
by the sender to indicate that the receiver should take action. These components
are orthogonal, and in Nemesis they are clearly separated. Information transfer
occurs through areas of shared memory, and is discussed in chapter 5. Signalling
between domains is provided by event channels. An event channel is a unidirec-
tional connection capable of conveying single integer values and influencing the
scheduler.

In the context of this dissertation, the key points about event channels are as
follows:

e They provide a communication and synchronisation mechanism which does
not rely on a server (such as the kernel).

e They impose no particular synchronisation policy on either of the domains
using a channel. The effect of the arrival of an event for a domain is limited
to unblocking the domain if necessary, and causing a reactivation if the
domain is running.

Event channels are more primitive than traditional communication mecha-
nisms such as semaphores, event counts and sequencers, and message passing,
in that they tend to transfer less information and are less coupled to the sched-
uler. Such mechanisms can be built on top of event channels, and chapter 5
describes how RPC, the most common form of inter-domain communication used
in Nemesis, is implemented over them.

4.6.1 Channel End-Points

Domains are provided with arrays of transmit- and receive-side event channel
end-points, analogous to sockets. An end-point may be in one of four states,
shown in figure 4.5. When the domain starts up all but two end-points are
initially free. The domain may Allocate an end-point of either type, which may
subsequently become connected as a result of either a Connect operation initiated
by the domain or the domain replying to an incoming connection request. If a
connection is closed down, the end-point enters a dead state, from which it can
be Freed.
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Figure 4.5: Event Channel End-Point States

As well as its current state, a receive-side end-point contains two 64-bit values
called received and acknowledged. If an end-point (of either flavour) is in the
connected state, it also contains a (domain, index) pair giving its peer. Figure 4.6
shows the user writable and user read-only portions of event end-points. It is
important to note that the state of an end-point is represented by a combination
of a state word and the values of the peer fields, in such a way that the two
transitions which require privileged actions (close and connect) rely only on
fields which cannot be written by the domain itself. In effect, the only end-point
states seen by privileged code are ‘connected’ and ‘not connected’.

|
|
Transmit : Receive
Side : Side
|
|
|
!
Writeable by | State
owning domain ! Acked Count
|

Read-only to

|
owning domain [ Rx. Donain !
Rx. Index |
! Recei ved Count
! Tx. Domain
! TX. |ndex

Figure 4.6: Event Channel End-Point Data Structures
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4.6.2 Sending Events

An invocation to transmit an event takes as arguments the transmitter’s chan-
nel end-point, and a value to add to the receiver’s count. The event delivery
mechanism is required to perform sanity checks on the specified event channel,
increment the remote count, and if necessary signal to the scheduler that the
target domain requires attention. The exact procedure is as follows:

1. Validate the event channel end-point in the transmitter. Event channels
are specified by an index in an array, so this involves a range check and
ensuring that the receive domain pointer is non-zero.

2. The relevant end-point in the receiving domain is located and its received
count incremented by the value specified in the call.

3. Each domain has a FIFO holding receive-side event end-point indices, to
aid in demultiplexing incoming events. If this FIFO is not full, the receive
end-point is entered into the FIFO.

4. A flag is set in the domain to indicate that it has received one or more
events.

5. If this flag was previously clear, a reschedule is requested.

Only information which is read-only to the user is examined during the call,
much reducing the number of consistency checks that need to be performed at
invocation time. The procedure is implemented as the event PALcode call and
the entire code, including checks and error conditions, consists of 87 machine
instructions. For a multiprocessor version the code would be slightly longer, to
include spinlocks on the event structures.

The event delivery mechanism in the version of Nemesis described herein is
quite conservative about reschedules: it requests a schedule whenever the target
domain has not received any events since it last executed. Event delivery was
expected to be more common than reschedules, so it was important to make the
event operation very fast.

With experience, this tradeoff has proved inappropriate. Domains tend to
be scheduled quite frequently and so the scheduler is entered as a result of most
event calls, often unnecessarily. The new version of Nemesis has a PALcode
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image® which only enters the scheduler if the target is blocked or actually running.
Otherwise, event processing by the scheduler is deferred until it is entered for
other reasons.

An important aspect of the event mechanism is that while it acts as a hint
to the scheduler, causing it to unblock or reactivate a domain as necessary, the
sending of an event does not in itself force a reschedule. Thus communication be-
tween domains is decoupled from scheduling decisions to the extent that resource
contracts are not affected by the transmission of events.

4.6.3 Connecting and Disconnecting End-Points

The process of event channel setup is carried out as much as possible within
the two domains involved. A privileged third party is required to perform two
functions:

e Acting as an exchange for routing initial connection requests.

e Filling in the event fields not writable by the domains.
This third party is called the Binder. Every domain is started up with initial
event channels to and from the Binder, and these are used for connection requests.

Figure 4.7 shows the interaction with the Binder when domain d; wishes to set
up a connection to send events to ds.

Domain d1 E Binder E Domain d2
! domain '
@ (tx,d2,s,cl) :
. o (di,s,cl) =
. @ (rx, c2)

@ < c2)

Figure 4.7: Event Channel Connection Setup

6Written by Paul Barham.
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A similar thing happens when the initiator wishes to receive events, or set
up two event channels, one each way. Connection setup takes the form of two
inter-domain RPC calls, one nested within another:

1. Domain d; sends a request to the Binder specifying a transmit end-point
it has allocated for itself (tx), the target domain dy, a service identifier s,
and a cookie ¢;. s is a 64-bit identifier used to identify what domain d;
actually wants to talk to in dy. ¢; is another 64-bit number typically used
by the Inter-domain Communication mechanism to pass shared memory
addresses, but it is ignored by the Binder.

2. The Binder then calls a method of an interface in domain dy passing the
identifier of d;, s and ¢;. This interface has previously been registered with
the Binder by d,.

3. If the connection request is accepted, dy returns to the Binder a receive
end-point that it has allocated (rz) together with ¢y, a cookie of its own.

4. The Binder fills in the fields of the two end-points tx and rz, thus creating
the channel.

5. The first call returns with the cookie ¢;. The connection has now been
made.

This is the only interaction required with the Binder. Close down of event
channels is performed by the close PALcode routine, which zeroes the peer
information in both end-points. The representation of end-point states within
the domain is chosen so that this represents the dead state. If the caller is on
the transmit side, the PALcode also sends an event of value zero to the receiving
domain. This has the effect of alerting the domain to the demise of the channel.
A channel closed by a receiver will cause an exception to the sender next time it
tries to send on it.

4.7 Device Handling and Interrupts

The Nemesis scheduler as described provides efficient scheduling of domains with
clear allocation of CPU time according to QoS specifications. Interrupts present
a problem to the scheduler, however, because CPU cycles used in the execution
of an interrupt service routine are difficult to account to a particular domain.
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Interrupts cause other problems for a system which attempts to give guar-
antees on available time. In most existing operating systems, the arrival of an
interrupt usually causes a task to be scheduled immediately to handle the inter-
rupt, preempting whatever is running. The scheduler itself is usually not involved
in this decision: the new task runs as an interrupt service routine.

The interrupt service routine (ISR) for a high interrupt rate device can there-
fore hog the processor for long periods, since the scheduler itself hardly gets a
chance to run, let alone another process. [Dixon92] describes a situation where
careful prioritising of interrupts led to high throughput, but with most interrupts
disabled for a high proportion of the time.

Sensible design of hardware interfaces can alleviate this problem, but devices
designed with this behaviour in mind are still rare, and moreover they do not
address the fundamental problem: scheduling decisions are being made by the
interrupting device and interrupt dispatching code, and not by the system sched-
uler, effectively bypassing the policing mechanism.

The solution adopted in Nemesis decouples the interrupt itself from the do-
main which is handling the interrupt source. Device driver domains register an
interrupt handler” with the system, which is called by the interrupt dispatch
PALcode with a minimum of registers saved. This ISR typically clears the con-
dition, disables the source of the interrupt, and sends an event to the domain
responsible. This sequence is sufficiently short that it can be ignored from an
accounting point of view. For example, the ISR for the LANCE Ethernet driver
on the Sandpiper® is 12 instructions long.

Since any domain can be running when the ISR is executed, a PALcode trap
called kevent is used by the ISR to send the event. This call is similar to event
but bypasses all checks and allows the caller to specify a receive end-point directly.
It can only be executed from kernel mode.

4.7.1 Effect of Interrupt Load

At low load, the unblocking latency hint [ can be used by the device driver domain
to respond to interrupts with low latency if necessary, while interrupts which do
not need to be serviced quickly (such as those from serial lines) do not disturb
the scheduling of other tasks.

TActually a closure of type KernelEntryPoint.
8 Written by Paul Barham.
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At a high interrupt rate from a given device, at most one processor interrupt is
taken per activation of the driver domain, and the scheduling mechanism prevents
the driver from hogging the CPU. As the activity in the device approaches the
maximum that the driver has time to process with its CPU allocation, the driver
rarely has time to block before the next action in the device that would cause

an interrupt, and so converges to a situation where the driver polls the device
whenever it has the CPU.

When device activity is more than the driver can process, overload occurs.
Device activity which would normally cause interrupts is ignored by the system
since the driver cannot keep up with the device. This is deemed to be more
desirable than having the device schedule the processor: if the driver has all the
CPU cycles, the ‘clients’ of the device wouldn’t be able to do anything with the
data anyway. If they could, then the driver is not being given enough processor
time by the domain manager. The system can detect such a condition over a
longer period of time and reallocate processor bandwidth in the system to adapt
to conditions.

4.8 Comparison with Related work

The client interface to the Nemesis scheduler is a development of that used in the
Nemo system; [Hyden94] gives an extensive survey of related schemes as well as
describing Nemo in detail. This section presents a selection of scheduling systems
not already mentioned which are of relevance to Nemesis.

4.8.1 Scheduling

The Psyche system [Scott90] aims to support a number of different scheduling
policies and process models over the same hardware. Psyche uses an upcall
mechanism to notify a user-level scheduler that it had received service by a virtual
processor, which is analogous to a kernel thread in a traditional system. Upcalls
are also used to support user-level threads packages in systems such as Scheduler
Activations [Anderson92], but these systems rely on kernel threads in some form,
adding to the number of register context switches needed and the amount of
state required in the kernel. The underlying kernel-level scheduler in all cases
does not use fine-grained allocation of time, and time is not presented explicitly
to the user-level schedulers as a useful aid to scheduling. Psyche also provides a
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re-activation prior to de-scheduling as a hint to the user process that it is about
to lose the processor. Such a mechanism was thought unnecessary in Nemesis,
where applications are expected to adapt their behaviour over longer time scales
than single time slices.

Various algorithms have been produced to deliver a share of the CPU rather
than priorities. A recent example, Lottery Scheduling [Waldspurger94] employs
an interesting scheduler which uses a random probabilistic allocation of CPU
time. The abstraction used is that of tickets in a lottery: the more tickets a
process has, the more likely it is to ‘win’ the next scheduling slot, and so the
greater the share of the CPU it receives in the long run. The lottery model
copes nicely with nested allocations of CPU time, but does not give a notion of
the passage of real time, or allow domains to specify a particular granularity of
allocation. Like the Fawn system, allocation is based on a fixed ticker (100ms
in this case), allowing no precision in scheduling below this level. Furthermore,
extra time in the system is implicitly handed out equally to all domains: there is
no room for a tailor-able allocation policy.

Processor Capacity Reserves [Mercer93] is a scheme similar to Nemesis in
specifying the service required by an application in terms of processor bandwidth.
However, the problem of shared servers is addressed by having clients transfer
resource reservations to the server, with the server charging time to the client.
This can create problems of QoS crosstalk between domains and also fails to
address the problem of blocking synchronisation between domains. Nor is the
allocation of slack time addressed: all processes are scheduled as best-effort during
slack time in the system.

4.8.2 Communication and Interrupts

The method of interrupt handling in Nemesis somewhat resembles ‘structured
interrupts’ [Hills93], though the presence of a QoS -based scheduler gives consid-
erably more incentive to use them.

At least one recent ATM interface [Smith93] has resorted to polling on a
periodic timer interrupt to alleviate the problem of high interrupt rates. Nemesis
naturally converges to a polling system at high loads but retains the benefits of
interrupt-driven operation when system load is low.
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In terms of inter-process communication, few systems have separated sig-
nalling, synchronisation and data transfer to the extent that Nemesis has. Most
kernels (such as Mach [Accetta86] or Chorus [Rozier90]) provide blocking syn-
chronisation primitives for kernel threads and message passing for inter-domain
communication. Nemesis has no kernel threads and relies on user-space function-
ality for data transfer. This difference is addressed in more detail in chapter 5.

4.9 Evaluation

To examine the behaviour of the scheduler under load, a set of domains were
run over the Sandpiper version of the kernel, with a scheduler which used the
processor cycle counter to record the length of time each domain ran between
reschedules. The mix of domains was chosen to represent device drivers, appli-
cations using blocking communication, and ‘free-running’ domains able to make
use of all available CPU cycles. The full set was as follows:

e The middlc compiler, in a loop compiling a set of interface definitions. This
domain did not perform any communication, and simply ran ‘flat out’.

e An application to draw an animation of a spacecraft on the screen, and
print logging information to the console driver using blocking local RPC.
Two instantiations of this application were employed.

e A console daemon, consisting of an interrupt driven UART driver and an
RPC service used by the spacecraft domains.

e An Ethernet monitor, which responded to each packet received from the
Ethernet interface in promiscuous mode and generated a graph of network
load on the screen.

For an initial run, the QoS parameters used in table 4.1 were used. The results
are shown in figure 4.8.

In these graphs each data point represents the CPU time used by a domain
since the previous point. Points are plotted when a domain passes a deadline
(and so receives a new allocation of CPU time), or when it blocks or unblocks.
This representation is chosen because it makes clear exactly what the scheduler is
doing at each point, information that would be obscured by integrating the time
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Figure 4.8: CPU allocation under 70% load.
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QoS parameters (us)

P s [ CPU share

Console daemon 14000 1400 14000 10%
Ethernet monitor 2000 200 200 10%
Spacecraft 1 10000 100 10000 10%
Spacecraft 2 10000 2000 10000 20%
MIDDL compiler 25000 5000 25000 20%
Total: 70%

Table 4.1: QoS parameters used in figure 4.8

QoS parameters (us)

P s [ CPU share

Console daemon 14000 350 14000 2.5%
Ethernet monitor 4000 160 160 4%
Spacecraft 1 10000 2000 10000 20%
Spacecraft 2 10000 4350 10000 43.5%
MIDDL compiler 25000 7500 25000 30%
Total: 100%

Table 4.2: QoS parameters used in figure 4.9
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used over one or more allocation periods. Short vertical troughs in the traces for
spacecraft domains correspond to blocks.

Allocation of guaranteed CPU time is clearly fairly accurate. Accounting and
scheduling within Nemesis is performed at the granularity of the system clock,
which in this case is 122us. Thus a small amount of jitter is introduced into each
domain’s allocation on every reschedule. This is the reason why middlc has a
higher jitter than the other domains: since its period is longer, it will experience
more reschedules per period.

Figure 4.8 shows that the pseudo-random algorithm for allocating extra time
leaves something to be desired: the allocation to a given domain is fair over a
long time scale, but can vary wildly from period to period.

4.9.1 Behaviour Under Heavy Load

The next run used the QoS parameters shown in table 4.2.

In theory all the processor time in the system was committed at this point,
although since the console driver is blocked for much of the time there is still a
small amount of leeway. Figure 4.9 shows the result: contracted time allocation
is still very stable, even when the amount of slack time available to domains is
small.

4.9.2 Dynamic CPU reallocation

An important feature of Nemesis is its ability to reallocate resources dynamically,
under user or program control. Figure 4.10 shows this in action. The experiment
used the same QoS parameters in table 4.2, except the slice length for some
domains was altered at roughly 5, 10 and 12 seconds into the experiment. The
values of s used are shown in table 4.3.

This reallocation was achieved by simply altering the values of the s field in
the domain control blocks, and shows how the scheduler can cope immediately
with the new distribution of resources, even when the system load is pushed up
to 100%. In practice this reallocation would be subject to an admission control
procedure to ensure that the processor was never over-committed.
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Value of s (us)
0-5sec. H5-10sec. 10-12 sec. 12-22 sec.

Spacecraft 2 3000 4250 4250 5350
MIDDL compiler 7500 7500 5000 5000

Total CPU share committed

86.5% 99% 89% 100%

Table 4.3: Changes in CPU allocation in figure 4.10

4.9.3 Effect of Interrupt Load

Figure 4.11 illustrates the effective decoupling of domain scheduling from inter-
rupt handling in Nemesis. [t shows a trace of time allocated to the Ethernet
load monitor during the experiment shown in figure 4.9. The load monitor uses
the LANCE Ethernet interface on the Sandpiper in promiscuous mode to draw a
bar on the screen corresponding to current Ethernet usage. The reception of an
Ethernet packet causes an interrupt, which in turn causes an event to be sent to
the domain.

The first point to note is that most of the time, a reschedule is occurring
upon the receipt of every packet on the network. Despite this, and the relatively
low CPU allocation given to the domain (4% of the total available), almost all
Ethernet packets are processed.

The second and more important point is that this activity is not interfer-
ing with the rest of the system. The load monitor is running with slightly less
CPU time guaranteed to it than it really requires: during the 18 seconds of the
run about 12 buffer overruns occurred”. Since the system as a whole is heavily
committed, the time available to the domain has been limited and the interrupt
rate on the device is prevented from impacting on the performance of the other
domains in the system.

9The monitor is capable of processing every packet if it is given about 5% of the processor.
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4.9.4 Scheduler Overhead

To obtain an idea of how much of the processor’s time was spent scheduling, the
scheduler was instrumented using the processor cycle counter on the 21064 pro-
cessor. The system was run with a set of 7 domains: 6 application domains which
drew animations on the screen and performed RPCs to write logging information
to a 7th domain implementing an interrupt-driven console driver. Reschedules
were therefore being caused by time-slicing interrupts, events sent by domains,
block requests from domains, and events generated by the UART interrupt ser-
vice routines. This provided a plausible approximation to the system under real
load.

Each of the application domains was receiving a guaranteed 400us of processor
time every 3600us, and the console driver was receiving 1400us every 14000pus.
The system was therefore about 77% committed. An 8th domain, the Domain
Manager, was blocked throughout the run. 30000 passes through the scheduler
were observed; this took about 5 seconds. The cache artifacts reported in chapter
3 caused some problems, but a coherent picture emerged. Figure 4.12 shows the
distribution of times taken to calculate a new schedule.
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Figure 4.12: Distribution of reschedule times

The scheduler can execute extremely fast: the lowest time observed so far
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is 1.37us not including context switch overhead, and most schedules take under
4pus. The four peaks in the graph correspond to tasks the scheduler may or may
not need to perform during the course of a reschedule, namely:

1. The case when no priority queue manipulation is required; it is this case
which is most likely to be produced by the event delivery optimisations
mentioned in section 4.6.2.

2. Moving one sdom between @, and Q.

3. Handling the arrival of events, including blocking and unblocking domains.
Also moving more than one domain between queues.

4. Combinations of 2 and 3.

The scheduler is not a well-tuned piece of software at present: is was writ-
ten with comprehensibility and ease of experimentation in mind more than raw
performance. Despite this, it represents on average less than 2% overhead at the
fastest reschedule rate possible on a Sandpiper (about once every 122us). The
cost of unblocking domains could be significantly reduced by re-implementing the
algorithm which finds the domain to unblock: it is currently a linear scan of the
queue'?.

4.9.5 Scheduler Scalability

The execution time of the scheduler depends on the number of domains being
scheduled. Aside from the unblocking search mentioned above, the dependency
is entirely due to the queue manipulation functions. The queues are implemented
as heaps, so one would expect the relation between reschedule time and number
of domains to be logarithmic.

Figure 4.13 shows the result of performing the experiment in section 4.9.4 with
varying numbers of domains, altering the allocation period for the application
domains to keep their total processor bandwidth at 67%, with slices of 400pus.
The results tend to support the hypothesis that scheduling overhead is logarithmic
with the number of domains. Furthermore the incremental cost of extra domains

10At time of writing, a new version of Nemesis incorporates modifications to the scheduler
by David Evers to remove this bottleneck.

7



reschedule time (microseconds)

0 I I I I I I
0 2 4 6 8 10 12

number of application domains

Figure 4.13: Cost of reschedule with increasing number of domains

above about 10 is very small (a few nanoseconds), resulting in an highly scalable
as well as efficient scheduler.

The anomaly in the case of 3 domains is believed to be an artifact of the heap
manipulation procedures.

4.9.6 Event delivery

The time taken to deliver an event to a domain has been measured at roughly
2.3us. This does not include the scheduler processing required. In a heavily
loaded system event processing for several domains will be performed in a single
pass through the scheduler, resulting in a reduction in this overhead over all
domains.

Section 5.5.1 presents the results of timing RPC calls built over the event
mechanism.
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4.10 Summary

This chapter has discussed scheduling in operating systems, and in particular the
requirements of continuous media applications, which frequently occupy a region
distinct from hard and soft real-time applications but are still time-sensitive.
The form and meaning of a QoS specification with regard to CPU time has been
discussed.

Various approaches to scheduling in multi-service operating systems have been
described, culminating in the scheduler used in Nemesis. The latter separates the
general QoS-based scheduling problem into two components: that of delivering
guaranteed CPU time and that of allocating slack time in the system. The first
problem is mapped onto one which is solved using Earliest Deadline First tech-
niques whilst still enabling strict policing of applications. The present solution
to the second problem is simple and reasonably effective; refining it is a subject
for future research.

The scheduler is fast, scalable, and permits domains to be scheduled efficiently
subject to QoS contracts even when nearly all processor time has been contracted
out to domains. Furthermore, allocation of processor share to domains can be
easily varied dynamically without requiring any complex scheduling calculations.

The client interface to the scheduler is based on the idea of activations. It
makes applications aware of their CPU allocation and provides a natural basis
for the implementation of application-specific threads packages, of which several
have been produced.

The only kernel-provided mechanism for inter-domain communication is the
event channel, which transmits a single value along a unidirectional channel.
Event arrival unblocks a blocked domain and causes reactivation in a running
domain.

Interrupts are integrated at a low level by means of simple first-level inter-
rupt handlers with most processing occurring within application domains. The
activation interface allows this to be achieved with a small interrupt latency at
low machine load, and the policing mechanism ensures that high interrupt rates
do not starve any processes under high load.
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Chapter 5

Inter-Domain Communication

The basic method for communication between Nemesis domains is the event chan-
nel mechanism described in chapter 4. However, it is clearly desirable to provide
facilities for communication at a higher level of abstraction. These communica-
tion facilities come under the general heading of Inter-Domain Communication

(IDC).

Nemesis provides a framework for building IDC mechanisms over events. Use
is made of the run-time type system to allow an arbitrary interface to be made
available for use by other domains. The basic paradigm is dictated by the MIDDL
interface definition language: Remote Procedure Call (RPC) with the addition
of ‘announcement’ operations, which allow use of message passing semantics.

This chapter discusses the nature of IDC in general, and then describes in
detail the Nemesis approach to inter-domain binding and invocation, including
optimisations which make use of the single address space and the system’s no-
tion of real time to reduce synchronisation overhead and the need for protection
domain switches.

5.1 Goals

Most operating systems provide a basic IDC mechanism based on passing mes-
sages between domains, or using RPC [Birrell84]. The RPC paradigm was chosen
as the default mechanism for Nemesis, because it fits in well with the use of in-
terfaces, and does not preclude the use of other mechanisms.
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The use of an RPC paradigm for communication in no way implies the tra-
ditional RPC implementation techniques (marshalling into buffer, transmission
of buffer, unmarshalling and dispatching, etc.). This should not be surprising,
since RPC is itself an attempt to make communication look like local procedure
call. There are cases where the RPC programming model is appropriate, but the
underlying implementation can be radically different. In particular, with the rich
sharing of data and text afforded by a single address space, a number of highly
efficient implementation options are available.

Furthermore, there are situations where RPC is clearly not the ideal paradigm:
for example, bulk data transfer or continuous media streams are often best han-
dled using an out-of-band RPC interface only for control. [Nicolaou90] describes
early work integrating an RPC system for control with a typed stream-based
communication mechanism for transfer and synchronisation of continuous media
data.

The aim in building RPC-based IDC in Nemesis was not to constrain all
communication to look like traditionally-implemented RPC, but rather to:

1. provide a convenient default communication mechanism,

2. allow a variety of transport mechanisms to be provided behind the same
RPC interface, and

3. allow other communication paradigms to be integrated with the IDC mech-
anism and coexist with (and employ) RPC-like systems.

5.2 Background

The design of an RPC system has to address two groups of problems: the cre-
ation and destruction of bindings, and the communication of information across
a binding.

Operating systems research to date has tended to focus on optimising the
performance of the communication systems used for RPCs, with relatively little
attention given to the process of binding to interfaces. By contrast, the field of
distributed processing has sophisticated and well-established notions of interfaces
and binding.
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5.2.1 Binding

In order to invoke operations on a remote interface, a client requires a local
interface encapsulating the engineering needed for the remote invocation. This
is sometimes called an invocation reference. In the context of IDC a binding is
an association of an invocation reference with an interface instance. In Nemesis
IDC an invocation reference is a closure pointer of the same type as the remote
interface, in other words, it is a surrogate for the remote interface.

An interface reference is some object containing the information needed to
establish a binding to a given interface. To invoke operations on a remote inter-
face, a client has to have acquired an interface reference for the interface. It must
first establish a binding to the interface (so acquiring an invocation reference),
and then use the invocation reference to call operations in the remote interface.

An interface reference can be acquired in a variety of ways, but it typically
arrives in a domain as a result of a previous invocation. Name servers or traders
provide services by which clients can request a service by specifying its properties.
An interface reference is matched to the service request and then returned to the
client. Such services can be embedded in the communication mechanism, but if
interface references are first-class data types (as they are in Nemesis) traders are
simply conventional services implemented entirely over the IDC mechanism. This
leads to a programming model where it is natural to create interface references
dynamically and pass them around at will.

In the local case (described in chapter 3), an interface reference is simply a
pointer to the interface closure, and binding is the trivial operation of reading the
pointer. In the case where communication has to occur across protection domain
boundaries (or across a network), the interface reference has to include rather
more information and the binding process is correspondingly more complex.

Strictly speaking, there is a subtle distinction between creating a binding
(simply an association) and establishing it (allocating the resources necessary to
make an invocation). This distinction is often ignored, and the term interface
reference used to refer to an invocation reference. This leads to systems where the
true interface reference itself is hidden from the client, which only sees invocation
references.
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Implicit binding

An implicit binding mechanism creates the engineering state associated with a
binding in a manner invisible to the client. An invocation which is declared to
return an interface reference actually returns a closure for a valid surrogate for
the interface. Creation of the surrogate can be performed at any stage between
the arrival of the interface reference in an application domain and an attempt
by the application to invoke an operation on the interface reference. Indeed,
bindings can time out and then be re-established on demand.

The key feature of the implicit binding paradigm is that information about
the binding itself is hidden from the client, who is presented with a surrogate
interface indistinguishable from the ‘real thing’.

Implicit binding is the approach adopted by many distributed object systems,
for example Modula-3 Network Objects [Birrell93] and CORBA [Obj91]. It is
intuitive and easy to use from the point of view of a client programmer. For
many applications, it provides all the functionality required, provided that a
garbage collector is available to destroy the binding when it is no longer in use.

The Spring operating system [Hamilton93a] is one of the few operating sys-
tems with a clear idea of binding. Binding in Spring is implicit. It uses the
concept of doors, which correspond to exported interfaces. A client requires a
valid local door identifier to invoke an operation on a door; an identifier is bound
to a door by the kernel when the door interface reference arrives in the domain.
Binding is hidden not only from the client but also from the server, which is gener-
ally unaware of the number of clients currently bound to it. Spring allows a server
to specify one of a number of mechanisms for communication when the service
is first offered for export. These services are called subcontracts [Hamilton93b].
However, there is no way for the mechanism to be tailored to a particular type
of service.

Explicit binding

Traditional RPC systems have tended to require clients to perform an explicit
bind step due to the difficulty of implementing generic implicit binding. The ad-
vent of object-based systems has recently made the implicit approach prominent
for the advantages mentioned above.
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However, implicit binding is inadequate in some circumstances, due to the
hidden nature of the binding mechanism. It assumes a single, ‘best effort’ level
of service, and precludes any explicit control over the duration of the binding.
Implicit binding can therefore be ill-suited to the needs of time-critical applica-
tions.

Instead, bindings can be established explicitly by the client when needed. If
binding is explicit, an operation which returns an interface reference does not
create a surrogate as part of the unmarshalling process, but instead provides a
local interface which can be later used to create a binding. This interface can
allow the duration and qualities of the binding to be precisely controlled at bind
time with no loss in type safety or efficiency. The price of this level of control is
extra application complexity, which arises both from the need to parametrise the
binding and from the loss of transparency: acquiring an interface reference from
a locally-implemented interface can now be different from acquiring one from a
surrogate.

Some recent research, notably ANSA Phase III [Otway94], is developing so-
phisticated binding models which are type-safe and encompass both implicit and
explicit binding to support QoS specification at the level of RPC invocations.
Much terminology used in this chapter is borrowed from the ANSA Binding
Model, and Nemesis IDC binding shares many concepts with ANSA.

Finally, note that the behaviour of the server is independent of whether client
binding is performed explicitly or implicitly, since the same communication mech-
anism is likely to be used in both cases for setting up the binding.

5.2.2 Communication

The communication aspect of IDC (how invocations occur across a binding) is
independent of the binding model used. Ideally, an IDC framework should be
able to accommodate numerous differing methods of data transport within the
computational model. Current operating systems which support RPC as a local
communications mechanism tend to use one of two approaches to the problem of
carrying a procedure invocation across domain boundaries: message passing and
thread tunnelling.
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Message Passing

One approach is to use the same mechanism as that used for remote (cross-
network) RPC calls: a buffer is allocated, arguments are marshalled into it, and
the buffer is ‘transmitted’ to the server domain via the local version of the network
communication mechanism. The client then blocks waiting for the results to come
back. In the server a thread is waiting on the communication channel, and this
thread unblocks, processes the call, marshals results into a buffer and sends it
back. The client thread is woken up, unmarshals the results, and continues.

Much recent research has concentrated on reducing the latency for this kind
of invocation, mostly by raising the level at which the optimisations due to the
local case are performed. Since the local case can be detected when the binding
is established, an entirely different marshalling and transmission mechanism can
be used, and hidden behind the surrogate interface. Frequently one buffer is used
in each direction, mapped into both domains with appropriate protection rights.
This means the buffer itself does not need to be copied, values are simply written
in on one side and read out on the other.

The ultimate latency bottleneck in message-passing comes down to the time
taken to copy the arguments into a buffer and perform a context switch, thereby
invoking the system scheduler.

Thread tunnelling

This bottleneck can often be eliminated by leaving the arguments where they
are when the surrogate is called (i.e., in registers), and ‘tunnelling’ the thread
between protection domains. Care must be taken with regard to protection of
stack frames, etc, but very low latency can be achieved. The scheduler itself can
be bypassed, so that the call simply executes a protection domain switch.

Lightweight RPC [Bershad90] replaced the Taos RPC mechanism for the case
of same machine invocations with a sophisticated thread-tunnelling mechanism.
Each RPC binding state includes a set of shared regions of memory maintained
by the kernel called A-stacks, which hold a partial stack frame for a call, and a
set of linkage records. Each thread has a chain of linkage records, which hold
return addresses in domains and are used to patch the A-stack during call return
for security. LRPC uses a feature of the Modula-2+ calling conventions to hold
the stack frame for the call in the A-stack, while executing in the server on a
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local stack called the E-stack, which must be allocated by the kernel when the
call is made. Various caching techniques are used to reduce the overhead of this
operation so that it is insignificant in the common case. To address the problem
of threads being ‘captured’ by a server domain, a facility is provided for a client
to create a new thread which appears to have returned from a given call.

For RPC calls which pass arguments too large to be held in registers, or which
require kernel validation, other mechanisms must be used. For example, Spring
falls back on message passing for large parameters, and the nucleus must perform
access control and binding when doors are passed between domains.

A slightly different approach is used by the Opal system [Chase93]. Opal
uses binding identifiers similar to Spring doors, conveniently called portals. Call-
ing through a portal is a kernel trap which causes execution at a fixed address
in the server protection domain. Unlike doors, however, portals are named by
system-wide identifiers which can be freely passed between domains, and so any-
one can try to call through a portal. Security is implemented through check
fields validated at call time, and password capabilities. An RPC system based
on surrogates is built on top of this mechanism. This approach reduces kernel
overhead over Spring at the cost of call-time performance.

In all cases, the performance advantage of thread tunnelling comes at a price:
since the thread has left the client domain, it has the same effect as having blocked
as far as the client is concerned. All threads must now be scheduled by the kernel
(since they cross protection domain boundaries), thus applications can no longer
reliably internally multiplex the CPU. Accounting information must be tied to
kernel threads, leading to the crosstalk discussed in chapter 2.

5.2.3 Discussion
RPC invocations have at least three aspects:

1. The transfer of information from sender to receiver, whether client or server
2. Signalling the transfer of information

3. The transfer of control from the sender to the receiver

The thread tunnelling model achieves very low latency by combining all compo-
nents into one operation: the transfer of the thread from client to server, using
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the kernel to simulate the protected procedure calls implemented in hardware on,
for example, Multics [Organick72] and some capability systems such as the CAP
[Wilkes79]. These systems assumed a single, global resource allocation policy, so
no special mechanism was required for communication between domains.

With care, a message passing system using shared memory regions mapped
pairwise between communicating protection domains can provide high through-
put by amortising the cost of context switches over several invocations, in other
words by having many RPC invocations from a domain outstanding. This sep-
aration of information transfer from control transfer is especially beneficial in a
shared memory multiprocessor, as described in [Bershad91].

Of equal importance to Nemesis is that the coupling of data transfer and
control transfer in tunnelling systems can result in considerable crosstalk between
applications, and can seriously impede application-specific scheduling.

5.2.4 Design Principles

A good RPC system provides high throughput and low latency, and should be
as easy as possible for a programmer to use without compromising flexibility or
expressiveness. A number of design principles can be identified:

1. The invocation path should be fast. In cases where it is acceptable to
sacrifice security and other guarantees in the interest of performance, this
should be possible without introducing undue complexity into the APIL.

2. Since much code is shared, and re-compilation of code is much less frequent
than the creation and destruction of services, as much optimisation and
checking as possible should be performed at compile time.

3. Since creation and destruction of connections to services is less frequent
than invocations, as much runtime optimisation and checking as possible
should be performed well before any calls between from a particular client
to a server are actually made.

4. To support an object-based (or interface-based) programming paradigm, it
should be easy to create and destroy services dynamically, and pass refer-
ences to them freely around the system.
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5. The common case in the system should be very simple to use, without
compromising the flexibility needed to handle unusual cases.

Communication in Nemesis has been designed with these goals in mind.

5.3 Binding in Nemesis

This section describes how IDC bindings are created between domains in Neme-
sis. Although designed for a single machine and address space, the architecture
has many similarities with ideas developed in the field of distributed naming
and binding, in particular ANSA Phase III. As a local operating system IDC
mechanism, it has a number of novel features:

e All interfaces are strongly typed. Most type checking is done at compile-
time. Run-time type checking is highly efficient.

e Multiple classes of communication mechanism are supported. The particu-
lar implementation of IDC transport is chosen by the server domain when
a service is exported.

e Optimisations can be integrated transparently into the system. These in-
clude the elimination of context switches for invocations which do not alter
server state, and relaxation of synchronisation conditions and security in
certain circumstances.

e Both implicit and explicit binding are supported. The binding model is
determined by the client independently of the class of IDC communication
employed. Precise control over the duration and qualities of a binding is
possible.

5.3.1 Infrastructure

The system-wide infrastructure for IDC in Nemesis consists of the Binder and
event delivery mechanism (discussed in chapter 4) and various modules, each of
which implements a class of IDC transport. In addition, there are stub mod-
ules which encapsulate code specific to the remote interface type, and a number
of support objects which are instantiated by domains wishing to communicate.
These include object tables and gatekeepers.
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Object Tables

A domain has an object table which can map an interface reference either to a
previously created surrogate or to a ‘real’ interface closure, depending on whether
the service is local or not. It is used in a similar way to the Modula-3 object
table [Evers93], except that Nemesis does not implement garbage collection.

Gatekeepers

Most classes of IDC communication mechanism use shared memory buffers for
communication of arguments and results. Thus when establishing a binding, both
client and server need to acquire regions of memory which are mapped read-only
to the other domain. A per-domain service called a gatekeeper maps protection
domains to memory heaps. The precise mapping is domain-dependent: for ex-
ample, a domain may use a single, globally readable heap for all communication
when information leakage is not a concern, or can instantiate new heaps on a per-
protection domain basis. This allows a domain to trade off security for efficiency
of memory usage.

Stub modules

A stub module implements all the type-specific IDC code for an interface type.
This includes a number of components:

e An operation table for the client surrogate. Each operation marshals the
relevant arguments, signals that the data is ready, and blocks the thread
waiting for a reply. When this arrives, it unmarshals the results, and if
necessary dispatches any exceptions which have been raised.

e The dispatch procedure for the server side. This is called by the server
thread corresponding to a binding when an invocation arrives. It unmar-
shals arguments for the appropriate operation, invokes the operation in the
true interface, catches any exceptions and marshals them or the results into
the buffer.

e A stub record. This includes information on the type of interface this is a
stub module for, together with information useful at bind time such as the
size of buffers needed for the binding.
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A stub module such as this can be generated automatically by the MIDDL com-
piler. Other stubs, implementing caching, buffering or the more specialised opti-
misations mentioned below can be built from a mixture of generated and hand-
written code. Stub modules are installed by the system loader in a naming
context which allows them to be located based on the type they support.

5.3.2 Creating an offer

To export an IDC service, a domain uses an instance of an IDCTransport closure
type. Typically there will be several available, offering different classes of IDC
transport. The class of transport used determines the underlying communication
implementation to be employed. The domain also uses an object table (of type
ObjectTbl), which provides two closures. The first is used by the domain to
register and lookup interface references and offers, and the second is invoked by
the system Binder when a client wishes to bind to an interface that the domain
has exported.

The situation in figure 5.1 shows a situation in which a domain has decided to
offer for export an interface of type FileSystem. The domain invokes the Offer
operation of the IDCTransport, passing the FileSystem closure as a Type.Any.
The ObjectTbl is accessible through the pervasive record.

Server
Domain

(Coj ect Thl
Bi nder Cal | back

Fi | eSystem

| DCTr anspor t

A

Offer(FileSystem_clp)

Figure 5.1: Creating a service offer

If all goes well, the result should be as shown in figure 5.2. The IDCTransport
has created two new closures of types IDCService and IDCOffer. The IDCService
closure allows the domain to control the operation of the offer, for example it al-
lows the offer to be withdrawn and the state associated with it destroyed. It also
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provides an operation used internally for binding to the service. Not shown is
the stub module, located at this time by looking up the name ‘FileSystem’ in an
appropriate naming context maintained by the loader.

The IDCOffer itself is what is handed out to prospective clients, for example it
can be stored as a Type . Any in some naming context. In other words, it functions
as an interface reference. It is effectively a module (its operations can be invoked
locally in any domain), and it has a Bind operation which attempts to connect
to the real service. The type of service referred to by an offer is available as a
type code. The closure (code and state) is assumed to be available read-only to
any domain which might wish to bind to it.

A final consequence of offering a service is that the offer is registered in the
server domain’s object table. This is so that if the server domain receives the offer
from another domain at some later stage, it can recognise it as a local interface
and need not perform a full bind to it.

5.3.3 Binding to an offer

Given an IDCOffer closure, a client can invoke the Bind operation to attempt
to connect to the server. The IDCOffer operates as a local interface, and uses

Server Client
Domain Domain
ICbj ect Thl

Bi nder Cal | back

L.pfFil eSystem

| DCTr ansport

-]l DCSer vi ce

| DCOf f er | DCOf f er

Figure 5.2: The result of offering a service
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the client’s local state to call the Binder with a request to set up event channels
to the server domain, passing the offer interface reference as an identifier (figure

5.3).

Server Binder Client
Domain Domain

[Obj ect Thl

—Bi nder Cal | back Connect()

..... 0

Bi nder

=i | eSystem [
> Connect()

| DCTr anspor t

=3 DCSer vi ce

Bind()
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" Bindo

Figure 5.3: An attempt to bind to an offer

Since the client is effectively executing some code supplied by the server in the
client’s protection domain, there is conceivably a security problem here. However,
since all offers generated by a particular transport class share the same operation
table!, and the number of different transport classes in the system is small, it is
a simple matter for a concerned client to copy the closure record and validate the
address of the operation table. A similar mechanism is used in Spring.

The Binder in turn calls the object table in the server domain, which deter-
mines which IDCService closure corresponds to the offer. The Bind operation on
this closure is called. This invocation creates the state (shared memory buffers,
event channel end-points, threads, etc.) for the binding. It also creates a closure
of type IDCServerStub, which allows the server domain to close down a binding,
for example.

It is at this point that access control on the interface is exercised. How this
is performed is, once again, up to the server. The object table could hold access
control lists, for example. Alternatively, the IDCService could implement a
rather more application-specific policy. The exchange of cookies can be used for
more secure authentication if necessary.

Information for creating the connection between the client and server domains
is passed back to the Binder. The Binder connects the event channel end-points

'Regardless of type
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in client and server domains, and returns from the call by the IDCOffer in the
client’s domain. Finally, the Bind call to the offer returns after creating two
closures: the first is of the same type as the service and acts as the surrogate.
The second is of type IDCClient and allows the client domain to manipulate
the binding in certain ways (for example, to close it down). At this stage the
situation looks like figure 5.4. All the state required for the binding has been
created in both client and server domains.

Server Binder Client
Domain Domain
Cbj ect Thl
Bi nder Cal | back
JR o T
N 0
Bi nder
*.pfFil eSystem
DCTr ansport
:'~-> DCSer vi ce
e
_____________________ >
DCOf f er | DCOf f er
______________________ >

Fi | eSystem

| DCOl i ent

SCServerSIn Event Channels

Figure 5.4: The result of a successful bind

5.3.4 Naming of Interface References

In this binding system the interface reference which is passed between domains
is a pointer to the IDCOffer closure. Possession of an interface reference does
not imply any kind of access rights to the service. Rather, the interface reference
is simply a low-level name for the service. Access control is carried out by the
server domain at bind time, so the kernel does not need to enforce restrictions on

how interface references are passed between domains?.

%In this respect, the statement concerning unguessable interface references in Nemesis on
page 56 of [Black94] is incorrect.
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As with any other value in the system, the IDCOffer may be installed at will
in the name space. This is made possible by the highly orthogonal nature of the
Nemesis naming scheme: any value can be named, and because of the explicit
nature of interface references (closure pointers in the local case and IDCOffers
in the remote case) there is little reliance on name space conventions, with their
associated management problems.

5.4 Communication

One of the principal benefits of the binding model is that by allowing the server to
dictate the transport mechanism used, it allows great flexibility in implementing
communication across a binding.

Coupled with the use of a single address space, a number of useful optimi-
sations are possible in the case of communication between domains on a single
machine, without affecting the performance of conventional RPC. In this section
several increasingly specialised optimisations are described, starting with the de-
fault Nemesis local RPC transport.

5.4.1 Standard mechanism

The ‘baseline’ IDC transport mechanism (and the first to be implemented) op-
erates very much like a conventional RPC mechanism. The bind process creates
a pair of event channels between client and server. Each side allocates a shared
memory buffer of a size determined from the stub record of the offer and from
a heap determined by the domain’s gatekeeper, which ensures that it is mapped
read-only into the other domain. The server creates a thread which waits on the
incoming event channel.

An invocation copies the arguments (and the operation to be invoked) into the
client’s buffer and sends an event on its outgoing channel, before waiting on the
incoming event channel. The server thread wakes up, unmarshals the arguments
and calls the concrete interface. Results are marshalled back into the buffer, or
any exception raised by the server is caught and marshalled. The server then
sends an event on its outgoing channel, causing the client thread to wake up.
The client unmarshals the results and re-raises any exceptions.
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Stubs for this transport are entirely generated by the MIDDL compiler, and
the system is good enough for cases where performance is not critical. The initial
bindings domains possess to the Binder itself use this transport mechanism.

5.4.2 Constant Read-only Data

For information which does not change, or which is guaranteed to be read and
written atomically (for example, single machine words), data can simply be made
readable in the client domain. All ‘IDC’ transport code is executed within the
client’s domain, and no communication need occur. The Domain interface (which
presents the client interface to the kernel scheduler and the domain data struc-
tures), the system local clock (a 64-bit ticker), and the initial implementation of
the Type System use this optimisation.

If the data involved is readable globally, no bind step is technically necessary
and a ready-made surrogate (requiring no per-domain state) may be exported
instead of the IDCOffer. Alternatively, a trivial IDCOffer could return the sur-
rogate.

A more useful function of the IDCOffer in this case is to ensure that the
data is available, or request that it be made so. The (constant) surrogate is only
returned if the data is readable.

5.4.3 Optimistic Synchronisation

In many cases it may be possible for a server domain to modify a data structure
in place in such a way that a client which is reading it does not cause any excep-
tions. Version numbers can then be employed to implement a form of optimistic
synchronisation: a client wishing to read the data structure notes the version
number, reads the data structure, and then looks to see if the version number
has changed. If it has, then some invariant on the data structure as read by the
client may not hold and it must retry the operation. If updates to the structure
are rare, this technique can be very fast.

If it is desired to share write access to a data structure between mutually
trusting domains, more sophisticated optimistic synchronisation methods can
employed. Such an approach has been found to work well in the Synthesis oper-
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ating system [Massalin89]. As with access to immutable data, the details of the
mechanism can be hidden with a surrogate object.

5.4.4 Timed Critical Sections

A more exciting possibility is to use the knowledge of the passage of time to allow
safe read access to data structures which may change, and which might normally
cause exceptions (such as bad pointer references) in clients if they changed in the
middle of a read sequence.

The basic idea is that a data structure is always changed in such a way that
a client in the process of traversing it will not encounter a bad reference until a
fixed period of time has passed from the time of update.

A simple example is to have a single location holding a pointer to a structure.
To update the structure, a new copy is made, the pointer changed in an atomic
write, and then the old copy deleted after a certain period of time.

A timed critical section is a programming construct that causes a thread
to register the start of the traversal with the threads package. Since the user-
level thread scheduler is entered with a guaranteed frequency (given by its QoS
parameters), it can observe modifications to the data structure and halt the
thread (by raising an exception on it) before it has a chance to encounter a bad
reference if the time limit is passed.

Timed critical sections have yet to be implemented, and while clearly inap-
propriate in some circumstances they are mentioned here as an intriguing line of
future work.

5.4.5 Specialist Server Code and Hybrid Solutions

As a final point, note that all the techniques described in the previous sections
can coexist within the same interface stub. For example, information can be read
from a server simply by reading shared memory while cross-domain events are
used to transmit updates to a data structure. For ease of prototyping it may be
easy to use a compiler to generate a standard set of stubs for a given service,
and then at a later date optimise the stubs when the performance requirements
of the interface and its effect on the rest of the system are better understood.

96



5.5 Discussion

It is vital to make the distinction between the interfaces that a programmer sees
to a particular service, and the interfaces placed at the boundaries of protection
domains or schedulable entities. A noticeable feature of most modern operating
systems is that they usually confuse these two types of interface. This is a major
contributing factor to the problem of application crosstalk.

The binding model described above enables the functionality of a service to
be split arbitrarily between the protection and scheduling domains of client and
server with no increase in complexity; indeed the object-based RPC invocation
of Nemesis is simpler to use than the ad-hoc¢ mechanisms in most traditional
operating systems.

It is interesting to note that the binding model is much closer to that of mod-
ern distributed programming environments than conventional operating systems.
This is a natural consequence of Nemesis enforcing much stronger separation of
resource usage (in particular CPU time) between applications than other oper-
ating systems. It is also a reflection of the fact that the fundamental concepts in
binding are much more prominent in the distributed case.

Within the flexibility of the binding model, a number of techniques can be
employed for communication between domains to reduce the level of synchroni-
sation that must occur. The division in service functionality between client and
server is usually dictated by the needs of security and synchronisation rather than
by the abstractions used to think about the service. When server processes are
eventually called, it is generally to perform the minimum necessary work in the
shortest possible time.

When a conventional message exchange between domains has to occur, the
separation of data transmission (shared memory buffers) from synchronisation
(events) allows high performance without unduly compromising the QoS guaran-
tees or scheduling policies of both client and server.

Finally, Nemesis bindings are one-to-one and visible in the server. This means
that a server can attach QoS parameters to incoming invocations according to
contracts negotiated at bind time. This is in marked contrast to systems such
as Spring: in Spring the kernel is aware of bindings and threads but the server
is not, whereas in Nemesis the server is aware of bindings and threads but the
kernel is not.
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This feature of Nemesis enables the use of small schedulers within the servers
to reduce crosstalk, and gives client applications qualitative bounds on the jitter
they experience from a service. Operating system servers which provide QoS in
this way, particularly window systems, are currently being investigated within
Nemesis [Barham95b].

5.5.1 Performance

Figure 5.5 shows the distribution of same-machine null RPC times between two
domains on an otherwise unloaded machine. Most calls take about 30us, which
compares very favourably with those reported in [Chase93] for Mach (88us) and
Opal (122us) on the same hardware. The calls taking between 55us and 65us
experience more than one reschedule between event transmissions.
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Figure 5.5: Distribution of Null RPC times

Nemesis does not currently implement full memory protection domains; the
cost of a full protection domain switch consists of a single instruction to flush
the 21064 data translation buffer (DTB), followed by a few DTB misses. This
cost of a DTB fill on the current hardware has been estimated at less than 1us
[Fairbairns95].
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It must be emphasised that figure 5.5 represents measurements of absolutely
standard, non-optimised user-thread to user-thread RPC calls across an interface
of type NullRPC. The RPC involved calling through generated stubs, two com-
plete passes through the scheduler, plus an activation to both client and server
domains, each of which was running the default vanilla threads package. The
call even went through a call dispatcher at the server end. A highly optimised
Nemesis domain has been observed to send a message to another domain and
receive a reply in under 14us though it is unreasonable to claim this is a null
RPC call. It does, however, illustrate the efficiency of the event mechanism in
addition to its flexibility.

percentage
Scheduler and context switch 29
Event delivery 20
Activation handler 47
Stubs 4

Table 5.1: Breakdown of call time for same-machine RPC

The cost of a same-machine null RPC call breaks down roughly as shown in
table 5.1 (measured using the processor cycle counter). There are no unexpected
figures, except that the efficiency of the user-level thread scheduler in dispatching
events clearly leaves something to be desired.

5.6 Summary

Communication between domains in Nemesis is object-based and uses invocations
on surrogate interfaces. Asin the case of a single domain, interfaces can be created
and destroyed easily, and interface references can be passed around at will.

Establishing a binding to an interface in another domain is an explicit op-
eration, and is type-safe. This explicit bind operation allows the negotiation of
QoS with the server and returns control interface closures which allow client and
server to control the characteristics of the binding. Implicit binding of interface
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references can be performed if desired in generated stub code. Passing interface
references between domains requires no intervention by the operating system,
and the single address space facilitates the process of binding so that the system
binder’s involvement in the process is minimal.

Communication between domains over a binding is in the default case per-
formed with shared memory buffers, using events to convey synchronisation infor-
mation. This provides low kernel overhead and to a large extent decouples remote
invocation from the scheduler, preventing crosstalk due to IDC operations. The
normal invocation path is very fast, more so if the cost of a reschedule can be
amortised over several invocations.

The flexibility and abstraction of the binding model also permits the trans-
parent integration of a number of local-case RPC optimisations, including a novel
technique to use domains’ knowledge of the passage of time to relax synchroni-
sation constraints on data structures.

This leads on to the more general value of the Nemesis IDC architecture:
since the interfaces over which invocations are performed are not the same as
those between protection domains or schedulable entities, functionality can be
moved between server and client. In particular, as much of an operating system
service can be executed in the client domain as the requirements of security and
synchronisation will allow.

100



Chapter 6

Conclusion

This dissertation has presented a way of structuring an operating system better
suited to the handling of time-sensitive media than existing systems. This chapter
summarises the work and its conclusions, and suggests future areas of study.

6.1 Summary

Chapter 2 discussed the requirements for an operating system to process multime-
dia. The use of a Quality of Service paradigm to allocate resources, in particular
the processor, has been shown to give the kind of guarantees required. How-
ever, implementing such a resource allocation policy in a conventional kernel-
or microkernel-based operating system is problematic for two reasons, both aris-
ing from the fact that operating system facilities are provided by the kernel and
server processes, and hence are shared between applications.

The first problem is that of accounting for resource usage in a server. Current
attempts to solve this problem fall into two categories:

e Accounting can be performed on a per-thread basis, in which case threads
must be implemented by the kernel and cross protection domain boundaries
to execute server code.

e Alternatively, accounting can be performed on a per-domain basis, in which
case some means of transferring resources from a client to a server is re-
quired.
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Both these solutions are shown to be inadequate. The former approach prevents
the use of application-specific scheduling policies, while the latter is difficult to
make efficient in practice since resource requirements are difficult to determine.
Both approaches also allow badly behaved servers to capture clients’ resources.

The second problem is that of application crosstalk, first identified in protocol
stack implementations but extended in this dissertation to cover all shared oper-
ating system services. Crosstalk has been observed in practice and it is important
to design an operating system to minimise its effect.

The approach proposed in this dissertation is to multiplex system services as
well as resources at as low a level as possible. This amounts to implementing the
minimum functionality in servers, migrating components of the operating system
into the client applications themselves. The rest of the dissertation is concerned
with demonstrating that it is possible to construct a working system along these
lines, by describing the Nemesis operating system.

Chapter 3 presented the model of interfaces and modules in Nemesis, which
address the two principal software engineering problems in constructing the sys-
tem: managing the complexity of a domain which must now implement most of
the operating system, and sharing as much code and data between domains as
possible. The use of closures within a single address space allows great flexibility
in sharing, while typed interfaces provide modularity and hide the fact that most
system services are located in the client application.

An unexpected result from chapter 3 is that the gain in performance from
small image sizes is very difficult to quantify. The fully direct-mapped cache
system in the machines used meant that effects of rearranging code within the
system overwhelmed the effects of sharing memory, even with image sizes much
larger than the cache. The overhead of closure passing in Nemesis is also swamped
by the cache effects.

Chapter 4 addressed the problem of scheduling, and how CPU time can be
allocated to domains within a system such as Nemesis. Existing systems either
do not allow sufficient flexibility in the nature of CPU time guarantees, or else do
not permit adequate policing of processor usage by domains. Allocation of CPU
time in Nemesis is based on a notion of a time slice within a period best suited
to an individual domain’s needs. An algorithm is devised which transforms the
problem of meeting all domains’ contracts into one which can be solved using an
Earliest Deadline First (EDF) scheduler. A mechanism developed from that of the
Nemo system is used to present domains with information about their resource
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allocation, and to provide support for internal multiplexing of the CPU within
each domain via a user-level threads package. Communication between domains
is designed so as not to violate scheduling constraints. Processor interrupts are
decoupled from scheduling so as to prevent high interrupt rates from seriously
impacting system performance.

The scheduler is shown to be very fast, and to scale well with the number
of schedulable entities in the system. Furthermore, it can efficiently schedule a
job mix where resource guarantees have effectively committed all the available
processor resources.

Chapter 5 discusses the design of an inter-domain communication facility.
A model of binding is presented which allows great freedom in splitting service
functionality between client and server domains, and permits negotiation of qual-
ity of service parameters at bind time where server domains implement resource
scheduling between clients.

A conventional local RPC system built over this framework, using shared
memory and the events mechanism from chapter 4, is shown to be significantly
faster than comparable systems on the same hardware. Furthermore, several op-
timisations are discussed which use the single address space structure of Nemesis.

In the design of an operating system for multi-service applications, there is
a tension between the need for predictability and accurate accounting, and the
desire for efficiency of resource usage and allocation in the system. Monolithic
and kernel-based systems can make highly efficient use of resources but give little
in the way of fine-grained guarantees to applications. Nemesis demonstrates
that an operating system can make useful Quality of Service guarantees without
compromising system performance.

6.2 Future Work

Nemesis as described in this dissertation is a working prototype, and while it
appears capable of achieving its aims, much work needs to be done before it can
be used reliably as a workstation operating system: virtual memory, network
protocol stacks, etc. The system is also currently geared towards uniprocessor
machines, and the changes required to the scheduling mechanism on a multipro-
cessor require consideration.
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The issue of how to collect garbage automatically in a single address space op-
erating system remains problematic. Not all pointers can be traced from a given
protection domain, and without a central policy or convention for object cre-
ation and destruction it is difficult to imagine an effective, system-wide collector.
Ideas from the field of distributed systems may help here: it might be possible to
run a local per-domain collector with communication between domains to handle
inter-domain references.

Some of these issues are being addressed in a new version of the operating
system being produced in the Computer Laboratory. This system will be made
available for general release, and is one of the platforms used in the DCAN
project, a collaborative venture between the Laboratory, APM Ltd. and Nemesys
Research Ltd. to investigate the distributed control and management of ATM
networks.

Research into the design of applications which can adapt to changing condi-
tions is at an early stage. Of particular interest is the design of real-time threads
packages for applications with particular requirements. The implementation of
the timed critical sections outlined in section 5.4.4 also falls into this category.
It is expected that experience with the system will make clear the issues in the
design of a Quality of Service Manager, to provide system wide resource alloca-
tion and admission control. This service, and its user interface, are crucial to the
success of QoS as a resource allocation paradigm.

104



Bibliography

[Accetta86] Mike Accetta, Robert Baron, William Bolosky, David Golub,

Richard Rashid, Avadis Tevanian, and Michael Young. Mach: A
New Foundation for UNIX Development. In USENIX, pages 93 112,
Summer 1986. (pp38, 70)

[Anderson92] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and

[Apple85]

[Bach86]

Henry M. Levy. Scheduler Activations: Effective Kernel Support for
the User-Level Management of Parallelism. ACM Transactions on
Computer Systems, 10(1):53-79, February 1992. (pp 13, 68)

Apple Computer. Inside Macintosh, volume 1. Addison-Wesley, 1st
edition, 1985. (p7)

Maurice J. Bach. The Design of the UNIX Operating System. Prentice-
Hall International, 1986. (p7)

[Barham95a] P. Barham, M. Hayter, D. McAuley, and I. Pratt. Devices on the

Desk Area Network. IEEE Journal on Selected Areas in Communi-
cation, 13, March 1995. To appear. (p18)

[Barham95b] Paul Barham. Devices in a Multi-Service Operating System. PhD

[Bayer79]

thesis, University of Cambridge Computer Laboratory, 1995. in
preparation. (p98)

R. Bayer, R. M. Graham, and G. Seegmuller, editors. Operating
Systems: an Advanced Course, volume 60 of LNCS. Springer-Verlag,
1979. (p112)

[Bershad90] Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, and

Henry M. Levy. Lightweight Remote Procedure Call. ACM Transac-
tions on Computer Systems, 8(1):37 55, February 1990.  (pp?9, 16,
85)

105



[Bershad91] Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, and

[Birrell84]

[Birrell87]

[Birrell93]

[Black94]

[Bricker91]

Henry M. Levy. User-Level Interprocess Communication for Shared
Memory Multiprocessors. ACM Transactions on Computer Systems,
9(2):175 198, May 1991. (pp9, 87)

Andrew D. Birrell and Bruce Jay Nelson. Implementing Remote Pro-
cedure Calls. ACM Transactions on Computer Systems, 2(1):39 59,
February 1984. (p 80)

A.D. Birrell, J.V. Guttag, J.J. Horning, and R. Levin. Synchronisa-
tion Primitives for a Multiprocessor: A Formal Specification. Tech-
nical Report 20, Digital Equipment Corporation Systems Research
Centre, August 1987. (p61)

Andrew Birrell, Greg Nelson, Susan Owicki, and Ted Wobber. Net-
work Objects.  Proceedings of the 14th ACM SIGOPS Sympo-
sium on Operating Systems Principles, Operating Systems Review,
27(5):217 230, December 1993.  (p83)

Richard J. Black. Ezplicit Network Scheduling. PhD thesis, Univer-
sity of Cambridge Computer Laboratory, 1994. (pp49, 52, 93)

A. Bricker, M. Gien, M. Guillemont, J. Lipkis, D. Orr, and M. Rozier.
A New Look at Microkernel-based unix Operating Systems: Lessons
in Performance and Compatibility. Technical Report CS/TR-91-7,
Chorus Systemes, February 1991. (p9)

[Brockschmidt94] Kraig Brockschmidt. Inside OLE 2. Microsoft Press, 1994.

(p23)

[Campbell93] Andrew Campbell, Geoff Coulson, Francisco Garcia, David Hutchi-

son, and Helmut Leopold. Integrated Quality of Service for Multi-
media Communications. In Proceedings of IEEE INFOCOMM 93,
volume 2, pages 732-739, March/April 1993. (p4)

[Chapman94] Roderick Chapman, Alan Burns, and Andy Wellings. Integrated

[Chase93|

program proof and worst-case timing analysis of SPARK Ada. In
Proceedings 1994 ACM Workshop on Language, Compiler, and Tool
Support for Real-Time Systems, June 1994. (p12)

Jeffrey S. Chase, Henry M. Levy, Michael J. Feeley, and Edward D.
Lazowska. Sharing and Protection in a Single Address Space Oper-

106



[Clark92]

ating System. Technical Report 93-04-02, revised January 1994, De-
partment of Computer Science and Engineering, University of Wash-
ington, Seattle, Washington 98195, USA, April 1993. (pp 24, 86,
98)

David D. Clark, Scott Shenker, and Lixia Zhang. Supporting Real-
Time Applications in an Integrated Services Packet Network: Archi-
tecture and Mechanism. In Proceedings of SIGCOMM ’92, pages
14-26, 1992.  (p3)

[Coffman73] E. Coffman and P. Denning. Operating Systems Theory. Prentice-

Hall Inc., Englewood Cliffs, N. J., 1973. (p56)

[Coulson93] Geoff Coulson, G. Blair, P. Robin, and D. Shepherd. FExtending

[Custer93]

[DEC92]

[DEC93]

[DEC94]

[Dixon92]

[Evers93|

the Chorus Micro-kernel to support Continuous Media Applications.
In Proceedings of the 4th International Workshop on Network and
Operating System Support for Digital Audio and Video, pages 49 60,
November 1993. (pp3, 50)

Helen Custer. Inside Windows NT. Microsoft Press, 1993. (p7)

Digital Equipment Corporation. DECchip 21064-AA Microproces-
sor Hardware Reference Manual, 1st edition, October 1992. Order
Number EC-N0079-72.  (p 54)

Digital Equipment Corporation. DECchip 21064 Evaluation Board
User’s Guide, May 1993. Order Number EC-N0351-72.  (p5)

Digital Equipment Corporation. DECS3000 300/400/500/600/700/
800/900 AXP Models: System Programmer’s Manual, 2nd edition,
July 1994. Order Number EK-D3SYS-PM.B01, and good luck to

you. (p5)
Michael Joseph Dixon. System Support for Multi-Service Traffic. PhD

thesis, University of Cambridge Computer Laboratory, January 1992.
Available as Technical Report no. 245.  (p67)

David Evers. Distributed Computing with Objects. PhD thesis, Uni-
versity of Cambridge Computer Laboratory, September 1993. Avail-
able as Technical Report No. 332.  (pp 26, 89)

[Fairbairns95] Robin Fairbairns. Cost of an Alpha Nemesis protection domain

switch. personal communication, March 1995.  (p98)

107



[Garrett93] W. E. Garrett, M. L. Scott, R. Bianchini, L. [. Kontothanassis, R. A.
McCallum, J. A. Thomas, R. Wisniewski, and S. Luk. Linkage Shared
Segments. In Proceedings of Winter USENIX|, pages 13-28, January
1993. (p21)

[Goldenberg92] Ruth E. Goldenberg and Saro Saravanan. VMS for Alpha Plat-
forms Internals and Data Structures, volume 1. Digital Press, pre-
liminary edition, 1992. (p7)

[Gutknecht] Jiirg Gutknecht. The Oberon Guide. (version 2.2). (p38)

[Hamilton93a] Graham Hamilton and Panos Kougiouris. The Spring Nucleus: A
Microkernel for Objects. Technical Report 93-14, Sun Microsystems
Laboratories, Inc., April 1993. (pp9, 22, 83)

[Hamilton93b] Graham Hamilton, Michael L. Powell, and James G. Mitchell.
Subcontract: A Flexible Base for Distributed Programming. Techni-
cal Report 93-13, Sun Microsystems Laboratories, Inc., April 1993.

(pp 22, 83)

[Hildebrand92] Dan Hildebrand. An Architectural Overview of QNX. In USENIX
Workshop Proceedings : Micro-kernels and Other Kernel Architec-
tures, pages 113-126, April 1992. (p9)

[Hills93]  Ted Hills. Structured Interrupts. ACM Operating Systems Review,
27(1):51-68, January 1993. (p69)

[Hopper90] Andy Hopper. Pandora: An Ezperimental System for Multimedia
Applications. ACM Operating Systems Review, 24(2):19-34, April
1990. Available as ORL Report no. 90-1.  (p11)

[Hopper92] Andy Hopper. Digital Video on Computer Workstations. In Proceed-
ings Eurographics 92, September 1992. Available as ORL Technical
Report 92-6.  (p47)

[Hyden94| Eoin Hyden. Operating System Support for Quality of Service. PhD
thesis, University of Cambridge Computer Laboratory, February
1994. Available as Technical Report No. 340.  (pp4, 47, 51, 68)

[Khalidi92] Yousef A. Khalidi and Michael N. Nelson. An Implementation of
UNIX on an Object-oriented Operating System. Technical Report
92-3, Sun Microsystems Laboratories, Inc., December 1992.  (p 18)

108



[Leffler89] S.J. Leffler, M. McKusick, M. Karels, and J. Quarterman. The Design
and Implementation of the 4.3BSD UNIX Operating System. Addison-
Wesley, 1989. (p7)

[Liskov81] Barbara Liskov, Russell Atkinson, Toby Bloom, Eliot Moss, J. Craig
Schaffert, Robert Scheifler, and Alan Snyder. CLU Reference Manual,
volume 114 of LNCS. Springer-Verlag, 1981.  (p33)

[Liu73] C. L. Liu and James W. Layland. Scheduling Algorithms for Mul-
tiprogrammaing in a Hard-Real-Time Environment. Journal of the
Association for Computing Machinery, 20(1):46 61, January 1973.
(pp 50, 56)

[Liu91] J. Liu, J. Lin, W. Shih, A. Yu, J. Chung, and Z. Wei. Algorithms for
Scheduling Imprecise Computations. TEEE Computer, 24(5):58 68,
May 1991.  (p47)

[Massalin89] Henry Massalin and Calton Pu. Threads and Input/Output in the
Synthesis Kernel. In Proceedings of the 12th ACM Symposium on
Operating Systems Principles, December 13-16 1989.  (p 96)

[McAuley89] Derek McAuley. Protocol Design for High Speed Networks. PhD
thesis, University of Cambridge Computer Laboratory, September
1989. Available as Technical Report no. 186.  (p14)

[McCanne93] S. McCanne and V. Jacobson. The BSD Packet Filter: A New Ar-
chitecture for User-level Packet Capture. In USENIX Winter Tech-
nical Conference, pages 259 269, January 1993. (p14)

[Mercer93] Clifford W. Mercer, Stefan Savage, and Hideyuki Tokuda. Processor
Capacity Reserves: An Abstraction for Managing Processor Usage. In
Proc. Fourth Workshop on Workstation Operating Systems (WWOS-
IV), October 1993.  (p69)

[Mercer94] Clifford W. Mercer, Stefan Savage, and Hideyuki Tokuda. Processor
Capacity Reserves: Operating System Support for Multimedia Ap-
plications. In Proceedings of the IEEE International Conference on
Multimedia Computing and Systems, May 1994.  (p 16)

[Mogul87] Jeffrey C. Mogul, Richard F. Rashid, and Michael J. Accetta. The
Packet Filter: An Efficient Mechanism for User-level Network Code.
Research Report 87/2, Digital Equipment Corporation, Western

109



Research Laboratory, 100 Hamilton Avenue, Palo Alto, California
94301, November 1987. (p14)

[Mullender93] Sape Mullender, editor. Distributed Systems. Addison Wes-

[Nelson91]

[Nelson93]

ley/ACM Press, 2nd edition, 1993. (p113)

Greg Nelson, editor. Systems Programming With Modula-3. Prentice-
Hall, Englewood Cliffs, NJ 07632, 1991.  (p 26)

Michael N. Nelson and Graham Hamilton. High Performance Dy-
namic Linking Through Caching. Technical Report 93-15, Sun Mi-
crosystems Laboratories, Inc., April 1993. (p 22)

[Nicolaou90] Cosmos Nicolaou. A Distributed Architecture for Multimedia Com-

[Nieh93]

[Objo1]

[Oikawa93]

munication Systems. PhD thesis, University of Cambridge Computer
Laboratory, December 1990. Available as Technical Report no. 220.

(pp4, 81)

J. Nieh, J. Hanko, J. Northcutt, and G. Wall. SVR/ uNix Scheduler
Unacceptable for Multimedia Applications. In Proceedings of the 4th
International Workshop on Network and Operating Systems Support
for Digital Audio Video, pages 35 47, November 1993. (pp3, 49)

Object Management Group. The Common Object Request Broker:

Architecture and Specification, Draft 10th December 1991. OMG
Document Number 91.12.1, revision 1.1. (p83)

Shuichi Oikawa and Hideyuki Tokuda. User-Level Real-Time
Threads: An Approach Towards High Performance Multimedia
Threads. In Proceedings of the 4th International Workshop on Net-
work and Operating Systems Support for Digital Audio Video, pages
61 75, November 1993. (p3)

[Organick72] E.I. Organick. The Multics System: An Ezamination of Its Struc-

[Otway94]

ture. MIT Press, 1972.  (pp21, 87)

Dave Otway. The ANSA Binding Model. ANSA Phase III docu-
ment APM.1314.01, Architecture Projects Management Limited, Po-
seidon House, Castle Park, Cambridge, CB3 ORD, UK, October 1994.

(p84)

110



[Pike92] Rob Pike, Dave Presotto, Ken Thompson, Howard Trickey, and Phil
Winterbottom. The Use of Name Spaces in Plan 9. Technical Re-
port, AT&T Bell Laboratories, Murray Hill, New Jersey 07974, 1992.

(p22)

[Pike94| Rob Pike. 8% in Brazil. Personal communication, December 1994.
(p18)

[Pratt94] lan Pratt. Hardware support for operating system support for contin-
uous media. PhD Thesis proposal, July 1994. (p15)

[Radia93] Sanjay Radia, Michael N. Nelson, and Michael L. Powell. The Spring
Name Service. Technical Report 93-16, Sun Microsystems Laborato-
ries, Inc., November 1993.  (p 36)

[Rajo1] Rajendra K. Raj, Ewan Tempero, Henry M. Levy, Andrew P.
Black, Norman C. Hutchinson, and Eric Jul. Emerald: A General-

Purpose Programming Language. Software Practice and Experi-
ence, 21(1):91-118, January 1991.  (p26)

[Reed79] David P. Reed and Rajendra K. Kanodia.  Synchronization
with Fventcounts and Sequencers. Communications of the ACM,
22(2):115-123, February 1979. (px)

[Roscoe94a] Timothy Roscoe. Linkage in the Nemesis Single Address Space Oper-
ating System. ACM Operating Systems Review, 28(4):48-55, October
1994. (p32)

[Roscoe94b| Timothy Roscoe. The MIDDL Manual. Pegasus Working Document,
(4th Edition), available from ftp://ftp.cl.cam.ac.uk/pegasus/
Middl.ps.gz, August 1994. (p26)

[Roscoe94c| Timothy Roscoe, Simon Croshy, and Richard Hayton. The MSRPC2
User Manual . In SRG [SRG94|, chapter 16. SRG Technical Note.

(p30)

[Roscoe95] Timothy Roscoe. CLANGER : An Interpreted Systems Programming
Language. ACM Operating Systems Review, 29(2):13 20, April 1995.

(p37)

[Rovner85] Paul Rovner. On Adding Garbage Collection and Runtime Types to a
Strongly- Typed, Statically-Checked, Concurrent Language. Technical

111



[Rozier90)]

[Saltzer79]

[Scott90)]

[Sites92]

[Smith93]

[SRGY4|

Report CSL-84-7, Xerox Corporation, Palo Alto Research Center,
July 1985. (p37)

M. Rozier, V. Abrossimov, F. Armand, 1. Boule, M. Gien, M. Guille-
mont, F. Herrmann, C. Kaiser, S. Langlois, P. Leonard, and
W. Neuhauser. Querview of the CHORUS Distributed Operating Sys-
tems. Technical Report Technical Report CS-TR-90-25, Chorus Sys-
temes, 1990. (pp8, 70)

J. H. Saltzer. Naming and Binding of Objects. In Bayer et al.
[Bayer79], chapter 3.A, pages 100 208. (p35)

Michael L. Scott, Thomas J. LeBlanc, and Brian D. Marsh. Multi-
Modal Parallel Programmaing in Psyche. In Proceedings of the 2nd
ACM Symposium on Principles and Practice of Parallel Program-
ming, pages 70-78, March 1990. (pp13, 68)

Richard L. Sites, editor. Alpha Architecture Reference Manual. Dig-
ital Press, 1992. (p54)

Jonathan M. Smith and C. Brenden S. Traw. Giving Applications
Access to Gb/s Networking. IEEE Network, 7(4):44 52,1993. (p69)

Systems Research Group. ATM Document Collection. University of
Cambridge Computer Laboratory, 3rd (Blue Book) edition, March
1994. SRG Technical Note. (p111)

[Stroustrup91] Bjarne Stroustrup. The C++ Programming Language. Addison-

Wesley, 2nd edition, 1991. (p27)

[Stroustrup94] Bjarne Stroustrup. The Design and FEvolution of C++. Addison-

Wesley, 1994.  (p27)

[Swinehart86] D. Swinehart, P. Zellweger, R. Beach, and R. Hagemann. A Struc-

tural View of the Cedar Programming FEnvironment. Technical Re-
port CSL-86-1, Xerox Corporation, Palo Alto Research Center, June
1986. (published in ACM Transactions on Computing Systems 8(4),
October 1986). (p7)

[Tennenhouse89] David L. Tennenhouse. Layered Multiplexing Considered Harm-

ful. In Protocols for High Speed Networks, IBM Zurich Research Lab.,
May 1989. IFIP WG6.1/6.4 Workshop.  (p 14)

112



[Thekkath93] Chandramohan A. Thekkath, Thu D. Nguyen, Evelyn Moy, and
Edward D. Lazowska. Implementing Network Protocols at User Level.
Technical Report 93-03-01, Department of Computer Science and
Engineering, University of Washington, Seattle, WA 98195, 1993.

(p18)

[Verissimo93] Paulo Verissimo and Hermann Kopetz. Design of Distributed Real-
Time Systems. In Mullender [Mullender93|, chapter 19, pages 511
530. (p12)

[Waldspurger94] Carl A. Waldspurger and William E. Weihl. Lottery Scheduling:
Flexible Proportional-Share Resource Management. In Proceedings
of the 1st USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 1-11, Novemeber 1994.  (p 69)

[Wilkes79] M. V. Wilkes and R. M. Needham. The Cambridge CAP Computer
and its Operating System. North Holland, 1979. (pp?9, 16, 87)

[Wilkinson93] Tim Wilkinson, Ashley Saulsbury, Tom Stiemerling, and Kevin
Murray. Compiling for a 64-bit Single Address Space Architecture.
Technical Report TCU/SARC/1993/1, Systems Architecture Re-

search Centre, City University, London, March 1993. (p24)

113



